WO2023054334A1 - エピタキシャルウェーハ及びその製造方法 - Google Patents

エピタキシャルウェーハ及びその製造方法 Download PDF

Info

Publication number
WO2023054334A1
WO2023054334A1 PCT/JP2022/035882 JP2022035882W WO2023054334A1 WO 2023054334 A1 WO2023054334 A1 WO 2023054334A1 JP 2022035882 W JP2022035882 W JP 2022035882W WO 2023054334 A1 WO2023054334 A1 WO 2023054334A1
Authority
WO
WIPO (PCT)
Prior art keywords
gettering
epitaxial
film
atoms
epitaxial film
Prior art date
Application number
PCT/JP2022/035882
Other languages
English (en)
French (fr)
Inventor
温 鈴木
康 水澤
寿樹 松原
達夫 阿部
剛 大槻
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to JP2023507242A priority Critical patent/JP7487407B2/ja
Priority to CN202280064800.2A priority patent/CN118043947A/zh
Publication of WO2023054334A1 publication Critical patent/WO2023054334A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2015Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate the substrate being of crystalline semiconductor material, e.g. lattice adaptation, heteroepitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections

Definitions

  • the present invention relates to an epitaxial wafer and its manufacturing method.
  • Metal contamination is known to degrade the electrical properties of semiconductor devices.
  • a method of preventing metal contamination to the device region by preparing a metal gettering site and trapping the metal is widely used.
  • a typical example is metal gettering in the substrate bulk under the device region using BMD (Bulk Micro Defect).
  • BMD Bit Micro Defect
  • the gettering effect in the bulk may decrease due to the structure in which wiring is performed on the front surface and the active layer (light-receiving layer) is exposed by thinning the back surface. It is
  • Patent Document 1 In a conventional back-illuminated solid-state imaging device, a method has been proposed in which carbon is ion-implanted into the surface of a silicon substrate in advance and epitaxial growth is performed thereon, thereby enhancing the gettering effect mainly by the ion-implanted carbon.
  • Patent Document 1 Although this is an excellent method, the use of an ion implanter poses problems such as cross-contamination and high costs.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a low-cost, low-contamination carbon-containing epitaxial wafer and a method for producing the same.
  • the present invention uses a low pressure CVD apparatus to form a gettering epitaxial film containing silicon and carbon on a silicon substrate under reduced pressure, and on the gettering epitaxial film and a method for manufacturing an epitaxial wafer, characterized by forming a silicon epitaxial film.
  • the method of doping carbon is not a conventional method using an ion implantation apparatus, but a method using a low pressure CVD apparatus (gas doping under reduced pressure). Therefore, it is possible to manufacture epitaxial wafers containing carbon at low cost and with low contamination. At the same time, it is possible to obtain an epitaxial wafer in which carbon is uniformly doped in the entire gettering epitaxial film (in the thickness direction and radial direction plane of the film), and the gettering ability is uniform within the plane. can be done.
  • the gettering epitaxial film when it is formed, it can be formed under a pressure of 133 Pa to 10666 Pa (1 Torr to 80 Torr).
  • the thickness of the gettering epitaxial layer and the doping of carbon can be made uniform easily.
  • the gettering epitaxial film when forming the gettering epitaxial film, it can be formed under a pressure of 667 Pa to 2666 Pa (5 Torr to 20 Torr).
  • the film thickness and carbon doping can be made uniform more reliably.
  • the film thickness can be set to 0.025 ⁇ m to 1 ⁇ m.
  • the film thickness can be set to 0.025 ⁇ m to 0.3 ⁇ m.
  • the carbon atom concentration can be set to 1.0 ⁇ 10 17 atoms/cm 3 or more and 5.0 ⁇ 10 21 atoms/cm 3 or less.
  • the silicon epitaxial film on the gettering epitaxial film can also have good crystallinity.
  • the carbon atom concentration can be set to 1.0 ⁇ 10 19 atoms/cm 3 or more and 1.0 ⁇ 10 21 atoms/cm 3 or less, and further 1.0 ⁇ 10 19 atoms/cm 3 or more and 5.0 ⁇ 10 20 atoms/cm 3 or less.
  • the gettering epitaxial film when forming the gettering epitaxial film, it can be formed at 550° C. to 1150° C. in a mixed gas atmosphere containing silicon and carbon.
  • the gettering epitaxial film when forming the gettering epitaxial film, it can be formed at 550° C. to 800° C. in a mixed gas atmosphere containing silicon and carbon.
  • SiH 4 , SiH 2 Cl 2 and SiHCl 3 can be used as the silicon source of the mixed gas atmosphere containing silicon and carbon.
  • SiH 3 (CH 3 ), SiH 2 (CH 3 ) 2 , SiH(CH 3 ) 3 , CH 4 , C 2 H 6 and C 3 H are used as the carbon source in the mixed gas atmosphere containing silicon and carbon.
  • At least one of 8 can be used.
  • Such gas is suitable for obtaining a gettering epitaxial film containing silicon and carbon.
  • the present invention also provides an epitaxial wafer comprising a silicon substrate, a gettering epitaxial film made of silicon uniformly gas-doped with carbon on the silicon substrate, and a silicon epitaxial film on the gettering epitaxial film.
  • I will provide a.
  • Such an epitaxial wafer of the present invention is doped with carbon at low cost and low contamination.
  • the entire gettering epitaxial film is uniformly gas-doped with carbon, the gettering ability is uniform within the plane, and the quality can be improved to the same level or better than the conventional one.
  • the gettering epitaxial film may have a film thickness of 0.025 ⁇ m to 1 ⁇ m.
  • the gettering ability is sufficient, and the gettering epitaxial film is not formed to a thickness more than necessary, resulting in a more reliable low cost.
  • the gettering epitaxial film may have a film thickness of 0.025 ⁇ m to 0.3 ⁇ m.
  • the gettering epitaxial film may have a carbon atom concentration of 1.0 ⁇ 10 17 atoms/cm 3 or more and 5.0 ⁇ 10 21 atoms/cm 3 or less.
  • the silicon epitaxial film on the gettering epitaxial film has good crystallinity as well as having sufficient gettering ability.
  • the gettering epitaxial film may have a carbon atom concentration of 1.0 ⁇ 10 19 atoms/cm 3 or more and 1.0 ⁇ 10 21 atoms/cm 3 or less, and further 1.0 ⁇ 10 19 atoms/cm 3 or more and 1.0 ⁇ 10 21 atoms/cm 3 or less It can be 10 19 atoms/cm 3 or more and 5.0 10 20 atoms/cm 3 or less.
  • the crystallinity of the silicon epitaxial film becomes more excellent while having sufficient gettering ability.
  • the present invention has a silicon substrate and a gettering epitaxial film made of silicon uniformly gas-doped with carbon on the silicon substrate, An epitaxial wafer is provided in which the gettering epitaxial film has insulating properties and high frequency characteristics.
  • Such an epitaxial wafer of the present invention is doped with carbon at low cost and low contamination.
  • the entire gettering epitaxial film is uniformly gas-doped with carbon, the gettering ability is uniform within the plane, and the quality can be improved to the same level or better than the conventional one.
  • it has insulating properties and high-frequency characteristics, and can be made suitable for manufacturing high-frequency devices.
  • it may further have a silicon epitaxial film on the gettering epitaxial film.
  • Such an epitaxial wafer having a silicon epitaxial film which has sufficient gettering ability, insulating properties and high-frequency characteristics and is suitable for manufacturing high-frequency devices, can be obtained.
  • the gettering epitaxial film may have a carbon atom concentration of 1.0 ⁇ 10 20 atoms/cm 3 or more and 5.0 ⁇ 10 21 atoms/cm 3 or less. It can be 0 ⁇ 10 20 atoms/cm 3 or more and 1.0 ⁇ 10 21 atoms/cm 3 or less.
  • the gettering epitaxial film may have a thickness of 0.025 ⁇ m to 3 ⁇ m, more preferably 0.025 ⁇ m to 1 ⁇ m.
  • the gettering epitaxial film may be doped with the carbon at the silicon substitution position.
  • an epitaxial wafer having a carbon-doped gettering epitaxial film under a silicon epitaxial film can be obtained at low cost and with low contamination.
  • carbon can be uniformly doped over the entire gettering epitaxial film (both in the radial direction and in the thickness direction), and the in-plane uniformity of the gettering ability can be achieved. It is possible to obtain an epitaxial wafer that is sufficiently superior in terms of quality.
  • an epitaxial wafer having insulating properties and high-frequency characteristics and suitable for manufacturing high-frequency devices can be obtained.
  • 2HD high-frequency characteristics
  • FIG. 1 is a schematic diagram showing an example of the epitaxial wafer of the present invention.
  • the epitaxial wafer 1 of the present invention comprises a silicon substrate 2, a gettering epitaxial film (hereinafter also referred to as a GEP film) 3 containing silicon and carbon, and a silicon epitaxial film 4, which are laminated in this order.
  • the silicon substrate 2 is not particularly limited, and can be obtained by slicing an ingot manufactured by, for example, the Czochralski method or the floating zone method. be able to.
  • the silicon epitaxial film 4 is not particularly limited, and can be formed, for example, by a conventional method. Dopants and the like can be included as necessary.
  • the GEP film 3 is an epitaxial film made of silicon gas-doped with carbon. Due to gas doping, carbon is uniformly doped over the entire GEP film 3 (that is, in the thickness direction and radial direction of the film). Therefore, the in-plane gettering ability due to the inclusion of carbon can be made uniform, and in-plane variation can be prevented.
  • carbon doping is performed by ion implantation, so carbon is doped only at a predetermined depth from the surface. Therefore, the film is not uniformly doped with a width, especially in the thickness direction of the film. It takes a lot of time and effort and cost to make it uniform with a certain width.
  • the ion implantation tends to be non-uniform even within the wafer surface. Furthermore, if it is based on ion implantation (that is, if it is carbon-doped using an ion implantation apparatus), problems are likely to occur in terms of cost and cross contamination, but in the case of the present invention, low cost and low cost Contamination can be achieved.
  • the product of the present invention can be said to be equal to or superior to the conventional product in terms of gettering ability, and is superior to the conventional product in terms of cost and contamination. Therefore, it is an epitaxial wafer having excellent quality.
  • the film thickness of the GEP film 3 is not particularly limited, it can be, for example, 0.025 ⁇ m to 1 ⁇ m, more preferably 0.025 ⁇ m to 0.3 ⁇ m. With such a film thickness, the cost is much lower and the film has sufficient gettering ability.
  • the carbon atom concentration is not particularly limited, but is, for example, in the range of 1.0 ⁇ 10 17 atoms/cm 3 or more and 5.0 ⁇ 10 21 atoms/cm 3 or less, more preferably 1.0 ⁇ 10 19 atoms/cm 3 or more.
  • Such an epitaxial wafer 1 of the present invention is suitable, for example, for manufacturing a back-illuminated solid-state imaging device, but its application is not particularly limited.
  • FIG. 2 is a flowchart showing an example of the epitaxial wafer manufacturing method of the present invention, which can manufacture the epitaxial wafer 1 of the present invention.
  • Step 1 Formation of gettering epitaxial film (containing silicon and carbon) under reduced pressure>
  • a silicon substrate 2 as described above is prepared, and a GEP film 3 is formed by epitaxial growth under reduced pressure using a reduced pressure CVD apparatus (also called an RP-CVD apparatus).
  • a reduced pressure CVD apparatus also called an RP-CVD apparatus.
  • the low-pressure CVD apparatus for example, the same apparatus as conventionally used can be used.
  • the carbon doping of the GEP film 3 is performed by gas doping during epitaxial growth under reduced pressure using a low pressure CVD apparatus, instead of the conventional method of implanting carbon using an ion implantation apparatus. Therefore, it can be performed at a lower cost than conventionally. In addition, it is possible to prevent the occurrence of cross-contamination problems that may occur when using an ion implanter that has been used in another process. Furthermore, the entire GEP film 3 can be more uniformly doped with carbon than the conventional method, and the gettering ability of the GEP film 3 can be easily imparted at a level equal to or higher than that of the conventional method. , a high-quality GEP film 3 and even an epitaxial wafer 1 can be obtained.
  • At least one of SiH 4 , SiH 2 Cl 2 and SiHCl 3 can be used as a silicon source gas in a mixed gas atmosphere for forming the GEP film 3 , and SiH 4 is used as a carbon source gas to be doped.
  • SiH 4 is used as a carbon source gas to be doped.
  • At least one of 3 ( CH3 ), SiH2 ( CH3 ) 2 , SiH( CH3 ) 3 , CH4 , C2H6 , and C3H8 can be used.
  • the raw material gas and the doping gas are not particularly limited as long as they can be gas-doped with carbon while forming a silicon epitaxial film.
  • the pressure in the chamber of the reduced pressure CVD apparatus at this time is not particularly limited as long as it is in a reduced pressure state, but can be, for example, 133 Pa to 10666 Pa (1 Torr to 80 Torr), more preferably 667 Pa to 2666 Pa (5 Torr to 20 Torr). be able to.
  • the film thickness and carbon doping of the GEP layer 3 can be performed more easily and more reliably and uniformly.
  • the holding temperature in the chamber can be, for example, 550° C. to 1150° C., and film formation and carbon doping can be performed efficiently. If the temperature is 550° C. to 800° C., it can be carried out more efficiently. In this manner, a GEP film 3 of excellent quality having the film thickness and carbon atom concentration as described above can be obtained.
  • the film thickness and carbon atom concentration can be adjusted, for example, by adjusting the length of processing time and the amount of source gas introduced.
  • a silicon epitaxial film 4 is formed.
  • the method for forming this silicon epitaxial film 4 is not particularly limited, and it can be formed by a conventional method.
  • the silicon source gas described above can be introduced into the chamber and formed at a holding temperature of around 1000.degree.
  • a silicon epitaxial film 4 having a desired film thickness, conductivity type and resistivity can be formed on the GEP film 3 by controlling the processing time and the doping gas for adjusting the resistivity.
  • the epitaxial wafer 1 of the present invention can be obtained.
  • FIG. 5 shows an example of an epitaxial wafer of another form of the present invention.
  • the epitaxial wafer 1' of the present invention is obtained by laminating a gettering epitaxial film (GEP film) 3' containing silicon and carbon on a silicon substrate 2 and a silicon epitaxial film 4 in this order.
  • the silicon substrate 2 and the silicon epitaxial film 4 can be the same as in the embodiment of FIG.
  • the GEP film 3' is an epitaxial film made of silicon gas-doped with carbon, and is uniformly doped with carbon, so that the gettering ability can be made uniform in the plane due to the inclusion of carbon. Moreover, it has insulating properties and high frequency characteristics.
  • Such an epitaxial wafer 1' of the present invention is suitable, for example, for manufacturing high frequency devices, but its application is not particularly limited.
  • the example having the silicon epitaxial film 4 is given here, the structure may be composed of only the silicon substrate 2 and the GEP film 3'.
  • the carbon atom concentration of the GEP film 3′ is not particularly limited, it is, for example, in the range of 1.0 ⁇ 10 20 atoms/cm 3 or more and 5.0 ⁇ 10 21 atoms/cm 3 or less, more preferably 3.0. It can be in the range of 1.0 ⁇ 10 21 atoms/cm 3 or more and 1.0 ⁇ 10 21 atoms/cm 3 or less. With such a carbon atom concentration, the gettering ability and the crystallinity of the silicon epitaxial film 4 will be more excellent, the quality will be higher, and the insulation and high frequency characteristics will be more reliably obtained. become a thing.
  • the film thickness of the GEP film 3' is not particularly limited, it can be, for example, 0.025 ⁇ m to 3 ⁇ m, more preferably 0.025 ⁇ m to 1 ⁇ m. With such a film thickness, the cost is much lower, the gettering ability is sufficient, and the insulating property and high-frequency characteristics are more reliably obtained. Further, the GEP film 3' can be doped with carbon at silicon substitution sites. In this case, the gettering ability and suitability for manufacturing high frequency devices are further improved.
  • An epitaxial wafer 1' of the present invention as shown can be obtained.
  • the doping position of carbon in the gas doping described above, it is usually a silicon substitution position, but gas doping may be performed at the interstitial position.
  • the insulating properties of the epitaxial wafer 1' of the present invention were investigated.
  • the configuration is made up of only the silicon substrate 2 and the GEP film 3'.
  • the film thickness of the GEP film 3' was set to 1 ⁇ m.
  • the results (dielectric breakdown voltage) are shown in FIG.
  • the horizontal axis is the carbon atom concentration
  • the vertical axis is the dielectric breakdown voltage value (V BD ).
  • the combination of (carbon atom concentration: V BD ) is as follows.
  • the dielectric breakdown voltage is about the same at 4.0 ⁇ 10 20 to 1.0 ⁇ 10 21 atoms/cm 3 , so if there is a margin of 5.0 ⁇ 10 21 atoms/cm 3 Enough.
  • the high-frequency characteristics of the epitaxial wafer 1' of the present invention were investigated.
  • the silicon substrate 2 has a resistivity of 10 ⁇ cm, and the silicon substrate 2 is composed only of the GEP film 3'.
  • the film thickness of the GEP film 3' was set to 1 ⁇ m.
  • CPW Co-Planar Waveguide
  • 2HD second harmonic
  • 2HD characteristics of ⁇ 5 dBm are exhibited even at about 2.0 ⁇ 10 19 atoms/cm 3 , and furthermore, 2HD characteristics of ⁇ 20 dBm or less can be exhibited at 1.0 ⁇ 10 20 atoms/cm 3 or more, for example. It is possible to obtain even better high-frequency characteristics.
  • the 2HD characteristics are about the same at 3.0 ⁇ 10 20 to 4.0 ⁇ 10 21 atoms/cm 3 , 5.0 ⁇ 10 21 atoms/cm 3 is sufficient with some margin. I can say.
  • Example 1 Silicon and carbon are deposited on a silicon substrate having a diameter of 300 mm using an RP-CVD apparatus at 800° C. under a reduced pressure of 667 Pa (5 Torr) in a mixed gas atmosphere containing SiH 4 and SiH 3 (CH 3 ).
  • a gettering epitaxial film (concentration of carbon atoms: 2 ⁇ 10 19 atoms/cm 3 : measured by SIMS) containing The epitaxial wafer of the present invention was manufactured by forming.
  • the obtained epitaxial wafer was intentionally contaminated with Ni and Cu. Specifically, a nitric acid aqueous solution of Cu 1000 ppb and a nitric acid aqueous solution of Ni 1000 ppb were prepared, and 10 ml of each was dropped onto the wafer, and the wafer was coated by a spin coater so as to spread over the entire surface. After that, it was naturally dried, and heat-treated at 1000° C. for 30 minutes in a nitrogen atmosphere in a heat treatment furnace.
  • FIG. 3 is a graph showing the relationship between the carbon doping concentration and the Ni and Cu concentrations in the gettering epitaxial film after heat treatment in Example 1 and Examples 2-4 described later.
  • Example 2 As an epitaxial wafer to be evaluated, an epitaxial wafer was manufactured under the same conditions as in Example 1, except that the gettering epitaxial film had a carbon atom concentration of 5 ⁇ 10 18 atoms/cm 3 , and subjected to intentional contamination and heat treatment. The carbon atom concentration was adjusted by changing the introduced amounts of SiH 4 and SiH 3 (CH 3 ). The concentrations of Ni and Cu in the gettering epitaxial film after heat treatment were 1.7 ⁇ 10 15 atoms/cm 3 and 1.1 ⁇ 10 15 atoms/cm 3 , respectively.
  • Example 3 As an epitaxial wafer to be evaluated, an epitaxial wafer was manufactured under the same conditions as in Example 1 except that the gettering epitaxial film had a carbon atom concentration of 1 ⁇ 10 18 atoms/cm 3 , and intentional contamination and heat treatment were performed. The carbon atom concentration was adjusted by changing the introduced amounts of SiH 4 and SiH 3 (CH 3 ). The concentrations of Ni and Cu in the gettering epitaxial film after heat treatment were 1.1 ⁇ 10 15 atoms/cm 3 and 7.9 ⁇ 10 14 atoms/cm 3 , respectively.
  • Example 4 As an epitaxial wafer to be evaluated, an epitaxial wafer was manufactured under the same conditions as in Example 1, except that the gettering epitaxial film had a carbon atom concentration of 3 ⁇ 10 17 atoms/cm 3 , and subjected to intentional contamination and heat treatment. The carbon atom concentration was adjusted by changing the introduced amounts of SiH 4 and SiH 3 (CH 3 ). The concentrations of Ni and Cu in the gettering epitaxial film after heat treatment were 9.2 ⁇ 10 14 atoms/cm 3 and 8.1 ⁇ 10 14 atoms/cm 3 , respectively.
  • a carbon-containing layer (carbon atom concentration: 3 ⁇ 10 19 atoms) produced by ion-implanting carbon into a silicon epitaxial wafer at an acceleration voltage of 32 keV and a dose of 1 ⁇ 10 15 atoms/cm 2 using an ion implantation apparatus. /cm 3 ) was prepared. Intentional contamination and heat treatment were carried out under the same conditions as in Example 1.
  • the silicon epitaxial wafer into which carbon is ion-implanted was obtained by forming a silicon epitaxial film (thickness: 9 ⁇ m) on the same silicon substrate as in the first embodiment.
  • the ion implantation depth (the position of the carbon-containing layer) is 9 ⁇ m from the surface of the silicon epitaxial film, and the thickness of the carbon-containing layer is 0.1 ⁇ m.
  • the concentrations of Ni and Cu in the carbon-containing layer (gettering epitaxial film) after heat treatment were 1.0 ⁇ 10 17 atoms/cm 3 and 4.0 ⁇ 10 16 atoms/cm 3 , respectively.
  • FIG. 4 is a graph showing the relationship between the depth from the surface of the epitaxial wafer and the concentrations of Ni, Cu, C, and O in Example 1 and Comparative Example.
  • a peak of C concentration is observed particularly near a depth of 2 ⁇ m.
  • the depth ( ⁇ m) on the horizontal axis in FIG. 4 is a value obtained by subtracting 7 ⁇ m from the actual depth before polishing. That is, the 2 ⁇ m depth position shown in FIG. 4 means the 9 ⁇ m depth position before polishing.
  • Example 1 Although the peak concentration values are different, in Example 1, a thick peak with a width of about 0.3 ⁇ m is observed, and the entire gettering epitaxial film is uniformly doped. Only narrow peaks are obtained.
  • the C concentration of Example 1 when the thickness of the gettering epitaxial film is 0.3 ⁇ m, the depth of the gettering epitaxial film spreads relatively gently in the shallow direction and the deep direction around the depth position. On the other hand, the vicinity of the peak of the C concentration in the comparative example is steep.
  • Ni and Cu concentration peaks are located at approximately the same depth as the vicinity of the C concentration peak.
  • the Ni and Cu concentrations (7.0 ⁇ 10 16 atoms/cm 3 , 6.0 ⁇ 10 16 atoms/cm 3 ) in the gettering epitaxial film of Example 1 described above and the carbon-containing layer (getter Ni and Cu concentrations (1.0 ⁇ 10 17 atoms/cm 3 , 4.0 ⁇ 10 16 atoms/cm 3 ) in the ring epitaxial film) are average concentrations at a depth of 2 ⁇ m to 2.5 ⁇ m.
  • Example 1 captures Ni and Cu in a wider range in the depth direction than Comparative Example 1.
  • the peak value of C concentration is lower than that of Comparative Example (and the peak values of Ni and Cu concentrations are also lower)
  • Ni and Cu can be captured at approximately the same average concentration level. be done.
  • the depth position of the C concentration peak and the depth positions of the Ni and Cu concentration peaks are slightly shifted. This is considered to be due to stress strain due to the difference in modulus and the accompanying defects.
  • the epitaxial wafer manufacturing method of the present invention can manufacture an epitaxial wafer having a gettering ability equal to or higher than that of the conventional product. Moreover, the present invention can be manufactured at a low cost, and can prevent cross-contamination that can occur when using an ion implantation apparatus. Moreover, as can be seen from Examples 1-4, the carbon atom concentration in the gettering epitaxial film can be variously adjusted as needed, and the gettering ability can be appropriately adjusted.
  • the present invention is not limited to the above embodiments.
  • the above embodiment is an example, and any device that has substantially the same configuration as the technical idea described in the claims of the present invention and produces similar effects is the present invention. It is included in the technical scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本発明は、減圧CVD装置を用いて、シリコン基板上に、シリコン及びカーボンを含有するゲッタリングエピタキシャル膜を減圧下にて形成し、該ゲッタリングエピタキシャル膜の上に、シリコンエピタキシャル膜を形成するエピタキシャルウェーハの製造方法である。これにより、低コストかつ低コンタミネーションのカーボンを含有したエピタキシャルウェーハ及びそれを製造するための方法が提供される。

Description

エピタキシャルウェーハ及びその製造方法
 本発明はエピタキシャルウェーハ及びその製造方法に関する。
 金属汚染は半導体デバイスの電気特性を悪化させることが知られている。金属汚染の影響を小さくするため、金属ゲッタリングサイトを用意して金属をトラップすることで、デバイス領域への金属汚染を防ぐという手法が広くとられている。代表的な例として、BMD(Bulk Micro Defect)を利用したデバイス領域下の基板バルクでの金属ゲッタリングが挙げられる。
 しかしながら、裏面照射型の固体撮像素子においては、表面に配線を行い、裏面側を薄膜化して活性層(受光層)を露出させる構造のために、バルクでのゲッタリング効果が減少することが懸念されている。
 従来の裏面照射型の固体撮像素子においては、シリコン基板表面にあらかじめ炭素をイオン注入してその上にエピタキシャル成長を行うことで、主にイオン注入された炭素によってゲッタリング効果を高める方法が提案されている(特許文献1)。優れた方法ではあるが、イオン注入装置を用いることで、クロスコンタミネーションや高コストといった問題があった。
特開2015-216327号公報
 本発明は、上記事情に鑑みてなされたもので、低コストかつ低コンタミネーションのカーボンを含有したエピタキシャルウェーハ及びそれを製造するための方法を提供することを目的としている。
 上記目的を達成するために、本発明は、減圧CVD装置を用いて、シリコン基板上に、シリコン及びカーボンを含有するゲッタリングエピタキシャル膜を減圧下にて形成し、該ゲッタリングエピタキシャル膜の上に、シリコンエピタキシャル膜を形成することを特徴とするエピタキシャルウェーハの製造方法を提供する。
 このような本発明のエピタキシャルウェーハの製造方法であれば、カーボンのドープの仕方が従来のようなイオン注入装置を用いた方法ではなく、減圧CVD装置を用いた方法(減圧下でのガスドープ)であるので、低コストかつ低コンタミネーションのカーボンを含有したエピタキシャルウェーハを製造可能となる。
 また同時に、ゲッタリングエピタキシャル膜の全体において(膜の厚さ方向及び径方向面内において)カーボンが均一にドープされたエピタキシャルウェーハを得ることができ、ゲッタリング能力が面内均一のものとすることができる。
 イオン注入装置を用いた従来方法では、ある一定の深さにしかカーボンを注入できず、注入深さを変えるにはイオン注入条件を変える必要性があるとともに、ウェーハ面内で不均一になりがちである。しかし本発明であればゲッタリングエピタキシャル膜の成長中にガスドープできるので、従来よりも簡便に膜の厚さ方向や径方向の全般にわたって均一にカーボンドープすることができる。
 このように従来と同程度以上の品質で、ゲッタリング能力を十分に有するエピタキシャルウェーハを簡便に得ることができる。
 そして、前記ゲッタリングエピタキシャル膜を形成するとき、133Pa~10666Pa(1Torr~80Torr)の圧力下にて形成することができる。
 このようにすれば、簡便にゲッタリングエピタキシャル層の膜厚やカーボンのドープを均一なものとすることができる。
 さらには、前記ゲッタリングエピタキシャル膜を形成するとき、667Pa~2666Pa(5Torr~20Torr)の圧力下にて形成することができる。
 このようにすれば、より確実に膜厚やカーボンドープを均一なものとすることができる。
 また、前記ゲッタリングエピタキシャル膜を形成するとき、膜厚を0.025μm~1μmとすることができる。
 このようにすればゲッタリング能力を十分に得られるとともに、ゲッタリングエピタキシャル膜を必要以上の厚さにまで形成することもなく、より確実に低コストでエピタキシャルウェーハを得ることができる。
 さらには、前記ゲッタリングエピタキシャル膜を形成するとき、膜厚を0.025μm~0.3μmとすることができる。
 このようにすれば、より一層低コストで、十分なゲッタリング能力を有するエピタキシャルウェーハを得ることができる。
 また、前記ゲッタリングエピタキシャル膜を形成するとき、炭素原子濃度を1.0×1017atoms/cm以上、5.0×1021atoms/cm以下とすることができる。
 このようにすれば、十分なゲッタリング能力を得ることができるとともに、ゲッタリングエピタキシャル膜の上のシリコンエピタキシャル膜も結晶性の良いものとすることができる。
 また、前記ゲッタリングエピタキシャル膜を形成するとき、炭素原子濃度を1.0×1019atoms/cm以上、1.0×1021atoms/cm以下とすることができ、さらには1.0×1019atoms/cm以上、5.0×1020atoms/cm以下とすることができる。
 このようにすれば、ゲッタリング能力を十分に備えつつ、シリコンエピタキシャル膜の結晶性がより優れたものを得ることができる。
 また、前記ゲッタリングエピタキシャル膜を形成するとき、シリコン及びカーボンを含有する混合ガス雰囲気下、550℃~1150℃にて形成することができる。
 このようにすれば、ゲッタリングエピタキシャル膜の形成及びカーボンのドープを効率良く行うことができる。
 さらには、前記ゲッタリングエピタキシャル膜を形成するとき、シリコン及びカーボンを含有する混合ガス雰囲気下、550℃~800℃にて形成することができる。
 このようにすれば、ゲッタリングエピタキシャル膜の形成及びカーボンのドープをより一層効率良く行うことができる。
 また、前記シリコン及びカーボンを含有する混合ガス雰囲気のシリコンソースとして、SiH、SiHCl、SiHClのうち少なくとも一つを用いることができる。
 また、前記シリコン及びカーボンを含有する混合ガス雰囲気のカーボンソースとして、SiH(CH)、SiH(CH、SiH(CH、CH、C、Cのうち少なくとも一つを用いることができる。
 このようなガスは、シリコン及びカーボンを含有するゲッタリングエピタキシャル膜を得るのに好適である。
 また本発明は、シリコン基板と、該シリコン基板上のカーボンが均一にガスドープされたシリコンからなるゲッタリングエピタキシャル膜と、該ゲッタリングエピタキシャル膜上のシリコンエピタキシャル膜とを有することを特徴とするエピタキシャルウェーハを提供する。
 このような本発明のエピタキシャルウェーハであれば、低コストかつ低コンタミネーションでカーボンドープされたものである。また、ゲッタリングエピタキシャル膜全体においてカーボンが均一にガスドープされていることから、ゲッタリング能力が面内均一なものであり、従来と同程度以上の品質のものとすることができる。
 そして、前記ゲッタリングエピタキシャル膜は、膜厚が0.025μm~1μmであるものとすることができる。
 このようなものであればゲッタリング能力が十分なものであるとともに、ゲッタリングエピタキシャル膜が必要以上の厚さにまで形成されておらず、より確実に低コストなものとなる。
 さらには、前記ゲッタリングエピタキシャル膜は、膜厚が0.025μm~0.3μmであるものとすることができる。
 このようなものであれば、より一層低コストで、十分なゲッタリング能力を有するものとなる。
 また、前記ゲッタリングエピタキシャル膜は、炭素原子濃度が1.0×1017atoms/cm以上、5.0×1021atoms/cm以下であるものとすることができる。
 このようなものであれば、十分なゲッタリング能力を有するとともに、ゲッタリングエピタキシャル膜の上のシリコンエピタキシャル膜も結晶性の良いものとなる。
 また、前記ゲッタリングエピタキシャル膜は、炭素原子濃度が1.0×1019atoms/cm以上、1.0×1021atoms/cm以下であるものとすることができ、さらには1.0×1019atoms/cm以上、5.0×1020atoms/cm以下であるものとすることができる。
 このようなものであれば、ゲッタリング能力を十分に備えつつ、シリコンエピタキシャル膜の結晶性がより優れたものとなる。
 また本発明は、シリコン基板と、該シリコン基板上のカーボンが均一にガスドープされたシリコンからなるゲッタリングエピタキシャル膜とを有し、
 該ゲッタリングエピタキシャル膜が絶縁性と高周波特性を有することを特徴とするエピタキシャルウェーハを提供する。
 このような本発明のエピタキシャルウェーハであれば、低コストかつ低コンタミネーションでカーボンドープされたものである。また、ゲッタリングエピタキシャル膜全体においてカーボンが均一にガスドープされていることから、ゲッタリング能力が面内均一なものであり、従来と同程度以上の品質のものとすることができる。さらには、絶縁性並びに高周波特性を有し、高周波デバイスの製造に好適なものとすることができる。
 また、前記ゲッタリングエピタキシャル膜上にシリコンエピタキシャル膜をさらに有するものとすることができる。
 このようなものであれば十分なゲッタリング能力を有するとともに、絶縁性並びに高周波特性を有し、高周波デバイスの製造に好適な、シリコンエピタキシャル膜を有するエピタキシャルウェーハとすることができる。
 また、前記ゲッタリングエピタキシャル膜は、炭素原子濃度が1.0×1020atoms/cm以上、5.0×1021atoms/cm以下であるものとすることができ、さらには、3.0×1020atoms/cm以上、1.0×1021atoms/cm以下であるものとすることができる。
 このようなものであれば、十分なゲッタリング能力を有するとともに、絶縁性並びに高周波特性をより確実に有するものを得ることができる。
 また、前記ゲッタリングエピタキシャル膜は、膜厚が0.025μm~3μmであるものとすることができ、さらには、0.025μm~1μmであるものとすることができる。
 このようなものであれば、十分なゲッタリング能力を有するとともに、絶縁性並びに高周波特性をより確実に有するものを得ることができる。
 また、前記ゲッタリングエピタキシャル膜は、前記カーボンがシリコン置換位置にドープされているものとすることができる。
 このようなものであれば、より一層、十分なゲッタリング能力を有するとともに高周波デバイスの製造に好適なものとすることができる。
 本発明のエピタキシャルウェーハ及びその製造方法であれば、低コストかつ低コンタミネーションで、シリコンエピタキシャル膜の下にカーボンドープのゲッタリングエピタキシャル膜を有するエピタキシャルウェーハを得ることができる。しかも、ゲッタリングエピタキシャル膜の全体にわたって(径方向面内でも厚さ方向でも)均一にカーボンをドープでき、ゲッタリング能力の面内均一性を図ることができる。品質面でも十分優れたエピタキシャルウェーハを得られる。さらには絶縁性並びに高周波特性を有し、高周波デバイスの製造に好適なエピタキシャルウェーハを得られる。
本発明のエピタキシャルウェーハの一例を示す概略図である。 本発明のエピタキシャルウェーハの製造方法の一例を示すフロー図である。 実施例1-4におけるカーボンドープ濃度と熱処理後のゲッタリングエピタキシャル膜中のNi、Cu濃度の関係を示すグラフである。 実施例1と比較例における、エピタキシャルウェーハの表面からの深さとNi、Cu、C、O濃度の関係を示すグラフである。 本発明のエピタキシャルウェーハの別の形態の一例を示す概略図である。 別形態での各C濃度における絶縁破壊電圧の関係を示すグラフである。 別形態での各C濃度における高周波特性(2HD)の関係を示すグラフである。
 以下、図面を参照して本発明についてより詳細に説明するが、本発明はこれに限定されるものではない。
 図1は本発明のエピタキシャルウェーハの一例を示す概略図である。この本発明のエピタキシャルウェーハ1は、シリコン基板2上に、シリコン及びカーボンを含有するゲッタリングエピタキシャル膜(以下、GEP膜とも言う)3と、シリコンエピタキシャル膜4とがこの順で積層されたものである。
 シリコン基板2は特に限定されず、例えばチョクラルスキー法やフローティングゾーン法などにより製造されたインゴットをスライスして得たものとすることができ、直径は例えば200mm、さらには300mm以上のものとすることができる。
 またシリコンエピタキシャル膜4は特に限定されず、例えば従来と同様の方法により形成されたものとすることができる。必要に応じてドーパント等を含むことができる。
 また、GEP膜3はカーボンがガスドープされたシリコンからなるエピタキシャル膜である。ガスドープのため、GEP膜3の全体にわたって(つまり、膜の厚さ方向及び径方向面内において)カーボンが均一にドープされたものとなっている。そのため、カーボン含有によるゲッタリング能力も面内均一なものとすることができ、面内でバラついてしまうのを防ぐことができる。
 一方で従来品ではカーボンドープはイオン注入によるものであるため、表面から予め設定した所定深さの位置にのみカーボンドープされたものとなる。したがって、特に膜の厚さ方向において幅を持って均一にドープされたものにはならない。ある程度の幅を持って均一なものとさせるには手間およびコストがかかるものとなる。ウェーハ面内においても、イオン注入が不均一になり易いという問題もある。
 さらに、イオン注入によるものであると(すなわち、イオン注入装置を用いたカーボンドープのものであると)コストやクロスコンタミネーションの面で問題が生じ易いが、本発明の場合では、低コストかつ低コンタミネーションを達成することができる。
 このように本発明品は、ゲッタリング能力の面において従来品と同等あるいはそれ以上のものと言えるし、また、コストやコンタミネーションの面において従来品よりも優れたものである。したがって、優れた品質を有するエピタキシャルウェーハである。
 なお、GEP膜3の膜厚は特に限定されないが、例えば0.025μm~1μm、さらに好ましくは0.025μm~0.3μmとすることができる。このような膜厚であれば、より一層低コストで、十分なゲッタリング能力を有するものとなる。
 また、その炭素原子濃度は特に限定されないが、例えば1.0×1017atoms/cm以上、5.0×1021atoms/cm以下の範囲、さらに好ましくは1.0×1019atoms/cm以上、1.0×1021atoms/cm以下の範囲、さらに好ましくは1.0×1019atoms/cm以上、5.0×1020atoms/cm以下の範囲とすることができる。このような炭素原子濃度のものであれば、ゲッタリング能力や、シリコンエピタキシャル膜4の結晶性がより優れたものとなり、一層高品質なものとなる。
 このような本発明のエピタキシャルウェーハ1は例えば裏面照射型の固体撮像素子の製造に好適なものであるが、用途は特に限定されない。
 図2は、本発明のエピタキシャルウェーハ1を製造することができる、本発明のエピタキシャルウェーハの製造方法の一例を示すフロー図である。
<工程1:減圧下でのゲッタリングエピタキシャル膜(シリコン及びカーボン含有)の形成>
 まず、前述したようなシリコン基板2を用意し、減圧CVD装置(RP-CVD装置とも言う)を用いてGEP膜3を減圧下にてエピタキシャル成長により形成する。なお、減圧CVD装置としては例えば従来から使用しているものと同様のものを用いることができる。
 このように本発明ではGEP膜3のカーボンドープに関して、従来のようにイオン注入装置を用いてカーボンをイオン注入する方法ではなく、減圧CVD装置を用いて減圧下でのエピタキシャル成長時にガスドープする方法であるため、従来よりも低コストで行うことができる。また、別のプロセスで使用していたイオン注入装置を使用することで生じ得るクロスコンタミネーションの問題の発生を防ぐことができる。さらには、従来法よりもGEP膜3全体へ均一にカーボンをドープすることができるし、GEP膜3によるゲッタリング能力も従来法と同等程度、あるいはそれ以上のレベルで簡便に付与することができ、高品質のGEP膜3、さらにはエピタキシャルウェーハ1を得ることができる。
 GEP膜3を形成するための混合ガス雰囲気のシリコンのソースガスとしてはSiH、SiHCl、SiHClのうち少なくとも一つを用いることができ、また、ドープするカーボンのソースガスとしてはSiH(CH)、SiH(CH、SiH(CH、CH、C、Cのうち少なくとも一つを用いることができる。シリコンエピタキシャル膜を形成しつつカーボンをガスドープできる原料ガス、ドープガスであれば特に限定されないが、これらのソースガスであれば通常よく用いられており、入手しやすく好適である。
 このときの減圧CVD装置のチャンバー内の圧力は減圧状態であれば特に限定されないが、例えば133Pa~10666Pa(1Torr~80Torr)とすることができ、さらに好ましくは667Pa~2666Pa(5Torr~20Torr)とすることができる。このような減圧下でのエピタキシャル成長によって、GEP層3の膜厚やカーボンドープを一層簡便かつ確実に均一に行うことができる。
 また、チャンバー内の保持温度は例えば550℃~1150℃とすることができ、膜形成およびカーボンドープを効率的に行うことができる。550℃~800℃とすると、さらに効率良く行うことができる。
 このようにして、前述したような膜厚や炭素原子濃度を有する優れた品質のGEP膜3を得ることができる。膜厚や炭素原子濃度の調整は、例えば処理時間の長さやソースガスの導入量の調整により行うことができる。
<工程2:シリコンエピタキシャル膜の形成>
 次に、シリコンエピタキシャル膜4の形成を行う。このシリコンエピタキシャル膜4の形成方法は特に限定されず、従来と同様の方法で形成することができる。例えば、前述したシリコンのソースガスをチャンバー内に導入するとともに1000℃前後の保持温度の下で形成することができる。処理時間や抵抗率調整用のドープガスの制御により、所望の膜厚や、導電型や抵抗率を有するシリコンエピタキシャル膜4をGEP膜3上に形成することができる。
 以上より、本発明のエピタキシャルウェーハ1を得ることができる。
 また本発明の別の形態について説明する。
 図5に別の形態の本発明のエピタキシャルウェーハの一例を示す。この本発明のエピタキシャルウェーハ1’は、シリコン基板2上に、シリコン及びカーボンを含有するゲッタリングエピタキシャル膜(GEP膜)3’と、シリコンエピタキシャル膜4とがこの順で積層されたものである。
 シリコン基板2、シリコンエピタキシャル膜4は、図1の形態の場合と同様のものとすることができる。
 またGEP膜3’はカーボンがガスドープされたシリコンからなるエピタキシャル膜であり、カーボンが均一にドープされたものであり、カーボン含有によるゲッタリング能力も面内均一なものとすることができる。しかも、絶縁性と高周波特性を有している。
 このような本発明のエピタキシャルウェーハ1’は、例えば高周波デバイスの製造に好適なものであるが、用途は特に限定されない。
 また、ここではシリコンエピタキシャル膜4を有する例を挙げたが、シリコン基板2、GEP膜3’のみからなる構成であっても良い。
 なお、GEP膜3’の炭素原子濃度は特に限定されないが、例えば1.0×1020atoms/cm以上、5.0×1021atoms/cm以下の範囲、さらに好ましくは、3.0×1020atoms/cm以上、1.0×1021atoms/cm以下の範囲とすることができる。このような炭素原子濃度のものであれば、ゲッタリング能力や、シリコンエピタキシャル膜4の結晶性がより優れたものとなり、一層高品質なものとなるし、絶縁性並びに高周波特性をより確実に有するものとなる。
 またGEP膜3’の膜厚は特に限定されないが、例えば0.025μm~3μm、さらに好ましくは、0.025μm~1μmとすることができる。このような膜厚であれば、より一層低コストで、十分なゲッタリング能力を有するものとなるし、絶縁性並びに高周波特性をより確実に有するものとなる。
 さらにGEP膜3’は、カーボンがシリコン置換位置にドープされているものとすることができる。この場合、ゲッタリング能力や高周波デバイスの製造の適正がより一層優れたものとなる。
 なお、上述した図1のエピタキシャルウェーハ1の製造方法に対し、例えば処理時間の長さやソースガスの導入量の調整などを行って、膜厚や炭素原子濃度の調整を行うことにより、図5に示すような本発明のエピタキシャルウェーハ1’を得ることができる。カーボンのドープ位置に関して、上述したガスドープでは通常はシリコン置換位置となるが、格子間位置にガスドープされていても良い。
 ここで、本発明のエピタキシャルウェーハ1’の絶縁性について調査した。
 ここではシリコン基板2とGEP膜3’のみからなる構成とした。GEP膜3’の膜厚は1μmとした。実際にGEP膜3’における炭素原子濃度を変化させて、どのくらいの電圧まで破壊されないかを調べた。その結果(絶縁破壊耐圧)を図6に示す。横軸が炭素原子濃度、縦軸が絶縁破壊電圧値(VBD)である。
 なお、(炭素原子濃度:VBD)の組み合わせは以下の通りである。(2.0×1019atoms/cm:5V)、(6.0×1019atoms/cm:80V)、(1.0×1020atoms/cm:205V)、(2.0×1020atoms/cm:375V)、(3.0×1020atoms/cm:450V)、(4.0×1020atoms/cm:515V)、(6.0×1020atoms/cm:510V)、(8.0×1020atoms/cm:495V)、(1.0×1021atoms/cm:500V)。
 例えば1.0×1020atoms/cm以上であれば205V以上の絶縁破壊特性を示すことができ、より一層優れた絶縁性を得ている。なお、4.0×1020~1.0×1021atoms/cmでは絶縁破壊耐圧は同程度であることから、少し余裕を持たせて5.0×1021atoms/cmもあれば十分と言える。
 また、本発明のエピタキシャルウェーハ1’の高周波特性について調査した。
 ここではシリコン基板2の抵抗率を10Ω・cmとし、該シリコン基板2上にはGEP膜3’のみからなる構成とした。GEP膜3’の膜厚は1μmとした。実際にGEP膜3’における炭素原子濃度を変化させるとともに、Co-Planar Waveguide(CPW)を形成し、2次高調波(2HD)特性を評価した。その結果(2HD特性)を図7に示す。横軸が炭素原子濃度、縦軸が2HDである。
 なお、(炭素原子濃度:2HD)の組み合わせで示すと以下の通りである。(2.0×1019atoms/cm:-5dBm)、(6.0×1019atoms/cm:-18dBm)、(1.0×1020atoms/cm:-20dBm)、(3.0×1020atoms/cm:-28dBm)、(7.0×1020atoms/cm:-28dBm)、(4.0×1021atoms/cm:-28dBm)。
 2.0×1019atoms/cm程度でも-5dBmの2HD特性を示しており、さらには、例えば1.0×1020atoms/cm以上であれば-20dBm以下の2HD特性を示すことができ、より一層優れた高周波特性を得ている。なお、3.0×1020~4.0×1021atoms/cmでは2HD特性は同程度であることから、少し余裕を持たせて5.0×1021atoms/cmもあれば十分と言える。
 以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明は
これらに限定されるものではない。
(実施例1)
 直径300mmのシリコン基板上に、RP-CVD装置を使用して、800℃、667Pa(5Torr)の減圧下、SiHとSiH(CH)を含有する混合ガス雰囲気にて、シリコン及びカーボンを含有するゲッタリングエピタキシャル膜(炭素原子濃度:2×1019atoms/cm:SIMSにて測定)を0.3μm形成し、該ゲッタリングエピタキシャル膜の上にシリコンエピタキシャル膜(膜厚:9μm)を形成して本発明のエピタキシャルウェーハを製造した。
 このエピタキシャルウェーハのゲッタリングエピタキシャル膜のゲッタリング能力について評価を行うため、得られたエピタキシャルウェーハに対して、Ni、Cuを故意汚染した。具体的には、Cu1000ppbの硝酸水溶液と、Ni1000ppbの硝酸水溶液を準備し、それぞれを10mlだけウェーハ上に滴下し、スピンコーターで全面に拡がるようにコートした。その後に自然乾燥し、熱処理炉にて窒素雰囲気中で1000℃、30分間の熱処理を実施した。熱処理後のゲッタリングエピタキシャル膜中のNi、Cu濃度はそれぞれ7.0×1016atoms/cm、6.0×1016atoms/cmとなった。
 図3に、実施例1および後述する実施例2-4におけるカーボンドープ濃度と熱処理後のゲッタリングエピタキシャル膜中のNi、Cu濃度の関係をグラフで示す。
(実施例2)
 評価するエピタキシャルウェーハとして、ゲッタリングエピタキシャル膜の炭素原子濃度が5×1018atoms/cmであること以外は実施例1と同じ条件でエピタキシャルウェーハを製造し、故意汚染、熱処理を実施した。なお、炭素原子濃度の調整はSiHとSiH(CH)の導入量を変えることにより行った。
 熱処理後のゲッタリングエピタキシャル膜中のNi、Cu濃度はそれぞれ1.7×1015atoms/cm、1.1×1015atoms/cmとなった。
(実施例3)
 評価するエピタキシャルウェーハとして、ゲッタリングエピタキシャル膜の炭素原子濃度が1×1018atoms/cmであること以外は実施例1と同じ条件でエピタキシャルウェーハを製造し、故意汚染、熱処理を実施した。なお、炭素原子濃度の調整はSiHとSiH(CH)の導入量を変えることにより行った。
 熱処理後のゲッタリングエピタキシャル膜中のNi、Cu濃度はそれぞれ1.1×1015atoms/cm、7.9×1014atoms/cmとなった。
(実施例4)
 評価するエピタキシャルウェーハとして、ゲッタリングエピタキシャル膜の炭素原子濃度が3×1017atoms/cmであること以外は実施例1と同じ条件でエピタキシャルウェーハを製造し、故意汚染、熱処理を実施した。なお、炭素原子濃度の調整はSiHとSiH(CH)の導入量を変えることにより行った。
 熱処理後のゲッタリングエピタキシャル膜中のNi、Cu濃度はそれぞれ9.2×1014atoms/cm、8.1×1014atoms/cmとなった。
(比較例)
 シリコンエピタキシャルウェーハに対して、イオン注入装置を用いてカーボンを加速電圧32keV、ドーズ量1×1015atoms/cmにてイオン注入して作製した炭素含有層(炭素原子濃度:3×1019atoms/cm)をもつシリコンエピタキシャルウェーハを用意した。実施例1と同じ条件で、故意汚染、熱処理を実施した。
 なお、カーボンをイオン注入するシリコンエピタキシャルウェーハは、実施例1と同様のシリコン基板上にシリコンエピタキシャル膜(膜厚:9μm)を形成したものである。またイオン注入深さ(炭素含有層の位置)はシリコンエピタキシャル膜の表面から深さ9μmの位置で、炭素含有層の厚さは0.1μmである。
 熱処理後の炭素含有層(ゲッタリングエピタキシャル膜)中のNi、Cu濃度はそれぞれ1.0×1017atoms/cm、4.0×1016atoms/cmとなった。
 また、図4に実施例1と比較例における、エピタキシャルウェーハの表面からの深さとNi、Cu、C、O濃度の関係をグラフで示す。実施例1、比較例の各々において、特には深さ2μm付近にC濃度のピークが見られる。なお、SIMSでの濃度測定前に表層を7μm研磨しているため、図4の横軸の深さ(μm)に関しては、研磨前の実際の深さから7μm差し引いた値となっている。すなわち、図4で示す2μmの深さ位置は研磨前の9μmの深さ位置を意味する。
 ピーク濃度の値は異なるものの、実施例1では幅が0.3μm程度の太いピークが見られ、そのゲッタリングエピタキシャル膜の全体にわたって均一にドープされているのに対し、比較例では0.1μmの狭いピークしか得られていない。なお、実施例1のC濃度において、ゲッタリングエピタキシャル膜の厚さが0.3μmのところ、その深さ位置を中心にして浅い方向と深い方向に比較的緩やかに拡がっている。一方、比較例の方のC濃度ではピーク付近は急峻となっている。
 そして、Ni、Cu濃度のピークがC濃度ピーク付近とほぼ同じ深さに位置している。なお、前述した実施例1のゲッタリングエピタキシャル膜中のNi、Cu濃度(7.0×1016atoms/cm、6.0×1016atoms/cm)、比較例の炭素含有層(ゲッタリングエピタキシャル膜)中のNi、Cu濃度(1.0×1017atoms/cm、4.0×1016atoms/cm)は、深さ2μm~2.5μmにおける平均濃度である。
 図4に示すように、実施例1の方が比較例1よりも深さ方向の広範囲でNiやCuを捕獲できていることが分かる。実施例1ではC濃度のピーク値は比較例よりも低い(また、Ni、Cu濃度のピーク値も低い)ものの、同程度の平均濃度レベルでNiやCuを捕獲できているのはそのためと考えられる。
 なお、図4においてC濃度ピークの深さ位置とNi、Cu濃度ピークの深さ位置とが若干ずれているが、これはシリコン基板とカーボンを含有するゲッタリングエピタキシャル膜との界面に、熱膨張係数の差による応力歪またはこれに伴う欠陥が発生した影響によるものと考えられる。
 このように実施例1と比較例から分かるように、本発明のエピタキシャルウェーハの製造方法によって従来品と同程度、あるいはそれ以上のゲッタリング能力を備えたものを製造できる。しかも本発明は低コストで製造可能であるし、イオン注入装置を用いた場合に生じ得るクロスコンタミネーションを防ぐこともできる。
 また、実施例1-4から分かるように、ゲッタリングエピタキシャル膜内の炭素原子濃度を必要に応じて様々に調整可能であり、ゲッタリング能力の調整を適宜行うことができる。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (25)

  1.  減圧CVD装置を用いて、シリコン基板上に、シリコン及びカーボンを含有するゲッタリングエピタキシャル膜を減圧下にて形成し、該ゲッタリングエピタキシャル膜の上に、シリコンエピタキシャル膜を形成することを特徴とするエピタキシャルウェーハの製造方法。
  2.  前記ゲッタリングエピタキシャル膜を形成するとき、133Pa~10666Paの圧力下にて形成することを特徴とする請求項1に記載のエピタキシャルウェーハの製造方法。
  3.  前記ゲッタリングエピタキシャル膜を形成するとき、667Pa~2666Paの圧力下にて形成することを特徴とする請求項1または請求項2に記載のエピタキシャルウェーハの製造方法。
  4.  前記ゲッタリングエピタキシャル膜を形成するとき、膜厚を0.025μm~1μmとすることを特徴とする請求項1から請求項3のいずれか一項に記載のエピタキシャルウェーハの製造方法。
  5.  前記ゲッタリングエピタキシャル膜を形成するとき、膜厚を0.025μm~0.3μmとすることを特徴とする請求項1から請求項4のいずれか一項に記載のエピタキシャルウェーハの製造方法。
  6.  前記ゲッタリングエピタキシャル膜を形成するとき、炭素原子濃度を1.0×1017atoms/cm以上、5.0×1021atoms/cm以下とすることを特徴とする請求項1から請求項5のいずれか一項に記載のエピタキシャルウェーハの製造方法。
  7.  前記ゲッタリングエピタキシャル膜を形成するとき、炭素原子濃度を1.0×1019atoms/cm以上、1.0×1021atoms/cm以下とすることを特徴とする請求項1から請求項6のいずれか一項に記載のエピタキシャルウェーハの製造方法。
  8.  前記ゲッタリングエピタキシャル膜を形成するとき、炭素原子濃度を1.0×1019atoms/cm以上、5.0×1020atoms/cm以下とすることを特徴とする請求項1から請求項7のいずれか一項に記載のエピタキシャルウェーハの製造方法。
  9.  前記ゲッタリングエピタキシャル膜を形成するとき、シリコン及びカーボンを含有する混合ガス雰囲気下、550℃~1150℃にて形成することを特徴とする請求項1から請求項8のいずれか一項に記載のエピタキシャルウェーハの製造方法。
  10.  前記ゲッタリングエピタキシャル膜を形成するとき、シリコン及びカーボンを含有する混合ガス雰囲気下、550℃~800℃にて形成することを特徴とする請求項1から請求項9のいずれか一項に記載のエピタキシャルウェーハの製造方法。
  11.  前記シリコン及びカーボンを含有する混合ガス雰囲気のシリコンソースとして、SiH、SiHCl、SiHClのうち少なくとも一つを用いることを特徴とする請求項9または請求項10に記載のエピタキシャルウェーハの製造方法。
  12.  前記シリコン及びカーボンを含有する混合ガス雰囲気のカーボンソースとして、SiH(CH)、SiH(CH、SiH(CH、CH、C、Cのうち少なくとも一つを用いることを特徴とする請求項9から請求項11のいずれか一項に記載のエピタキシャルウェーハの製造方法。
  13.  シリコン基板と、該シリコン基板上のカーボンが均一にガスドープされたシリコンからなるゲッタリングエピタキシャル膜と、該ゲッタリングエピタキシャル膜上のシリコンエピタキシャル膜とを有することを特徴とするエピタキシャルウェーハ。
  14.  前記ゲッタリングエピタキシャル膜は、膜厚が0.025μm~1μmであることを特徴とする請求項13に記載のエピタキシャルウェーハ。
  15.  前記ゲッタリングエピタキシャル膜は、膜厚が0.025μm~0.3μmであることを特徴とする請求項13または請求項14に記載のエピタキシャルウェーハ。
  16.  前記ゲッタリングエピタキシャル膜は、炭素原子濃度が1.0×1017atoms/cm以上、5.0×1021atoms/cm以下であることを特徴とする請求項13から請求項15のいずれか一項に記載のエピタキシャルウェーハ。
  17.  前記ゲッタリングエピタキシャル膜は、炭素原子濃度が1.0×1019atoms/cm以上、1.0×1021atoms/cm以下であることを特徴とする請求項13から請求項16のいずれか一項に記載のエピタキシャルウェーハ。
  18.  前記ゲッタリングエピタキシャル膜は、炭素原子濃度が1.0×1019atoms/cm以上、5.0×1020atoms/cm以下であることを特徴とする請求項13から請求項17のいずれか一項に記載のエピタキシャルウェーハ。
  19.  シリコン基板と、該シリコン基板上のカーボンが均一にガスドープされたシリコンからなるゲッタリングエピタキシャル膜とを有し、
     該ゲッタリングエピタキシャル膜が絶縁性と高周波特性を有することを特徴とするエピタキシャルウェーハ。
  20.  前記ゲッタリングエピタキシャル膜上にシリコンエピタキシャル膜をさらに有することを特徴とする請求項19に記載のエピタキシャルウェーハ。
  21.  前記ゲッタリングエピタキシャル膜は、炭素原子濃度が1.0×1020atoms/cm以上、5.0×1021atoms/cm以下であることを特徴とする請求項19または請求項20に記載のエピタキシャルウェーハ。
  22.  前記ゲッタリングエピタキシャル膜は、炭素原子濃度が3.0×1020atoms/cm以上、1.0×1021atoms/cm以下であることを特徴とする請求項19から請求項21のいずれか一項に記載のエピタキシャルウェーハ。
  23.  前記ゲッタリングエピタキシャル膜は、膜厚が0.025μm~3μmであることを特徴とする請求項19から請求項22のいずれか一項に記載のエピタキシャルウェーハ。
  24.  前記ゲッタリングエピタキシャル膜は、膜厚が0.025μm~1μmであることを特徴とする請求項19から請求項23のいずれか一項に記載のエピタキシャルウェーハ。
  25.  前記ゲッタリングエピタキシャル膜は、前記カーボンがシリコン置換位置にドープされていることを特徴とする請求項19から請求項24のいずれか一項に記載のエピタキシャルウェーハ。
PCT/JP2022/035882 2021-09-30 2022-09-27 エピタキシャルウェーハ及びその製造方法 WO2023054334A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023507242A JP7487407B2 (ja) 2021-09-30 2022-09-27 エピタキシャルウェーハの製造方法
CN202280064800.2A CN118043947A (zh) 2021-09-30 2022-09-27 外延片及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021161813 2021-09-30
JP2021-161813 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023054334A1 true WO2023054334A1 (ja) 2023-04-06

Family

ID=85782733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035882 WO2023054334A1 (ja) 2021-09-30 2022-09-27 エピタキシャルウェーハ及びその製造方法

Country Status (4)

Country Link
JP (1) JP7487407B2 (ja)
CN (1) CN118043947A (ja)
TW (1) TW202338934A (ja)
WO (1) WO2023054334A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216934A (ja) * 2005-02-07 2006-08-17 Samsung Electronics Co Ltd エピタキシャル半導体基板の製造方法及び半導体装置の製造方法
JP2009164590A (ja) * 2007-12-13 2009-07-23 Sumco Corp エピタキシャルウェーハ及びその製造方法
JP2009200231A (ja) * 2008-02-21 2009-09-03 Sumco Corp エピタキシャルウェーハ及びその製造方法
JP2010010615A (ja) * 2008-06-30 2010-01-14 Sumco Corp 固体撮像素子用シリコン基板およびその製造方法
JP2010034330A (ja) * 2008-07-29 2010-02-12 Sumco Corp エピタキシャルウェーハおよびその製造方法
JP2015216327A (ja) 2014-05-13 2015-12-03 株式会社Sumco エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4158607B2 (ja) 2003-06-09 2008-10-01 株式会社Sumco 半導体基板の製造方法
US9064960B2 (en) 2007-01-31 2015-06-23 Applied Materials, Inc. Selective epitaxy process control
JP2012199323A (ja) 2011-03-18 2012-10-18 Panasonic Corp トランジスタ及びその製造方法
JP5772491B2 (ja) 2011-10-20 2015-09-02 信越半導体株式会社 エピタキシャルウエーハ及びその製造方法
JP6278592B2 (ja) 2012-11-13 2018-02-14 株式会社Sumco 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法
KR102136000B1 (ko) 2015-02-18 2020-07-20 쇼와 덴코 가부시키가이샤 에피택셜 탄화 규소 단결정 웨이퍼의 제조 방법 및 에피택셜 탄화 규소 단결정 웨이퍼

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216934A (ja) * 2005-02-07 2006-08-17 Samsung Electronics Co Ltd エピタキシャル半導体基板の製造方法及び半導体装置の製造方法
JP2009164590A (ja) * 2007-12-13 2009-07-23 Sumco Corp エピタキシャルウェーハ及びその製造方法
JP2009200231A (ja) * 2008-02-21 2009-09-03 Sumco Corp エピタキシャルウェーハ及びその製造方法
JP2010010615A (ja) * 2008-06-30 2010-01-14 Sumco Corp 固体撮像素子用シリコン基板およびその製造方法
JP2010034330A (ja) * 2008-07-29 2010-02-12 Sumco Corp エピタキシャルウェーハおよびその製造方法
JP2015216327A (ja) 2014-05-13 2015-12-03 株式会社Sumco エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法

Also Published As

Publication number Publication date
JP7487407B2 (ja) 2024-05-20
TW202338934A (zh) 2023-10-01
JPWO2023054334A1 (ja) 2023-04-06
CN118043947A (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
KR100724329B1 (ko) Igbt 용 실리콘 웨이퍼 및 그 제조 방법
KR100847112B1 (ko) Igbt용 실리콘 단결정 웨이퍼 및 igbt용 실리콘단결정 웨이퍼의 제조방법
US6165872A (en) Semiconductor device and its manufacturing method
EP2169708A2 (en) Silicon wafer and fabrication method thereof
WO2011125305A1 (ja) シリコンエピタキシャルウエーハ、シリコンエピタキシャルウエーハの製造方法、及び半導体素子又は集積回路の製造方法
JP2002009081A (ja) 半導体装置及びその製造方法
KR19990072884A (ko) 다결정실리콘구조물의제조방법
TWI534306B (zh) 磊晶晶圓的製造方法及磊晶晶圓
WO2017104584A1 (ja) 半導体エピタキシャルウェーハの製造方法および固体撮像素子の製造方法
TW201721710A (zh) 貼合式soi晶圓的製造方法
JP2007317760A (ja) 半導体装置及びその製造方法
JP5938969B2 (ja) エピタキシャルウエーハの製造方法および固体撮像素子の製造方法
US7560363B2 (en) Manufacturing method for SIMOX substrate
JP2735407B2 (ja) 半導体装置およびその製造方法
TWI688002B (zh) 磊晶矽晶圓的製造方法、磊晶矽晶圓及固體攝像元件的製造方法
WO2023054334A1 (ja) エピタキシャルウェーハ及びその製造方法
CN108885998B (zh) 外延晶圆的制造方法及外延晶圆
WO2014057741A1 (ja) シリコンエピタキシャルウェーハ及びそれを用いた固体撮像素子の製造方法
WO2013153724A1 (ja) エピタキシャルウェーハとその製造方法
US7799660B2 (en) Method for manufacturing SOI substrate
US20020098664A1 (en) Method of producing SOI materials
KR20220029585A (ko) 탄소도프 실리콘 단결정 웨이퍼 및 그의 제조방법
JP7416171B1 (ja) エピタキシャルウェーハの製造方法
JP6540607B2 (ja) 接合ウェーハの製造方法および接合ウェーハ
CN110010445B (zh) 键合晶片用支撑基板的制造方法和键合晶片的制造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023507242

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876200

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022876200

Country of ref document: EP

Effective date: 20240430