WO2023050801A1 - 三元材料微粉回收处理的方法及其应用 - Google Patents

三元材料微粉回收处理的方法及其应用 Download PDF

Info

Publication number
WO2023050801A1
WO2023050801A1 PCT/CN2022/090065 CN2022090065W WO2023050801A1 WO 2023050801 A1 WO2023050801 A1 WO 2023050801A1 CN 2022090065 W CN2022090065 W CN 2022090065W WO 2023050801 A1 WO2023050801 A1 WO 2023050801A1
Authority
WO
WIPO (PCT)
Prior art keywords
micropowder
coating agent
ternary
sintering
ternary material
Prior art date
Application number
PCT/CN2022/090065
Other languages
English (en)
French (fr)
Inventor
王雀乐
李长东
阮丁山
刘伟健
蔡勇
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to ES202390108A priority Critical patent/ES2957086A2/es
Priority to DE112022000323.5T priority patent/DE112022000323T5/de
Priority to GB2310282.5A priority patent/GB2618231A/en
Publication of WO2023050801A1 publication Critical patent/WO2023050801A1/zh
Priority to US18/229,213 priority patent/US20240170662A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • C01P2006/82Compositional purity water content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of lithium-ion battery materials, and in particular relates to a method for recycling and processing ternary material micropowder and its application.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned prior art. For this reason, the present invention proposes a method and application thereof for the recycling and processing of ternary material micropowder, so that the originally scrapped material becomes a ternary positive electrode material with high economic added value and good performance, and the processing method is less difficult and easy to process. accomplish.
  • a kind of ternary material micropowder recycling method comprising the following steps:
  • S2 Stir the micropowder filter cake with water, during which a coating agent and an accelerator are added to obtain a second slurry;
  • the accelerator is polyimide, polyethylene oxide, polyethyleneimine, polypyrrole, melamine, One or more of polyvinyl alcohol, ethylene glycol, triethylamine, polyphenylene ether or polythiophene;
  • step S1 the particle size Dv50 of the ternary material powder is ⁇ 3.0 ⁇ m; the liquid-solid ratio of the water to the ternary material powder is 0.4-1.2 L/kg.
  • the stirring speed is 100-600 rpm; preferably, the stirring time is 5-30 min.
  • the dehydration method is filter press dehydration or centrifugal dehydration.
  • step S1 the water content of the fine powder filter cake is 5-16%.
  • the coating agent is TiO 2 , AL 2 O 3 , ZrO 2 , MgO, SnO 2 , WO 3 , AL(OH) 3 , Li 3 PO 4 , CeO One or more of Li 4 TiO 4 or In 2 O 3 ; preferably, the coating agent is added in an amount of 0.1-0.9% of the mass of the ternary material powder. Further, after adding the coating agent, stir for 3-10 minutes.
  • step S2 the accelerator needs to be pretreated before being added: the accelerator is added to the ethanol solution, heated and stirred in a water bath or an oil bath to dissolve. Further, the concentration of the ethanol solution is 5%.
  • step S2 the amount of the accelerator added is 0.2-1.2% of the mass of the ternary material micropowder. Further, after adding the accelerator, stir for 2-10 minutes.
  • step S2 the solid content of the second slurry is 20-60%; the rotation speed of the stirring is 100-500 rpm.
  • the reaction temperature is 100-200° C.; preferably, the reaction pressure is 1-10 MPa; preferably, the reaction time is 5-10 h. Further, the reaction is carried out in a high-pressure hydrothermal reactor.
  • step S3 the water content of the coating substrate is ⁇ 10%.
  • the sintering method is to use a rotary kiln to sinter in an oxygen atmosphere; preferably, the sintering temperature is 300-900°C, preferably, the sintered The time is 3-10 hours, the oxygen concentration is >90%, and the thickness of the material is controlled to be 3-20 cm, more preferably 6 cm-15 cm.
  • the sintering method used is the rotary kiln one-step sintering method. With this sintering method, only one step of sintering is required to obtain the ternary positive electrode material.
  • the traditional processing method is to use the roller kiln for secondary or tertiary sintering, and use The rotary kiln requires less energy consumption, gas consumption, and less consumable materials, and the cost is more advantageous.
  • the extractant is ethylene glycol, sec-butyl acetate, kerosene, trioctyl tertiary amine, ethyl acetate, glycerin, N-methylpyrrolidone or benzene one or more of.
  • step S4 the drying temperature is 100-200° C.; the moisture content of the obtained dried material is less than 600 ppm.
  • step S4 the mesh size used for the sieving is 200-400 mesh.
  • the device used for removing iron is an electromagnetic iron remover, and its magnetic field strength is controlled at 5000-9000 Gauss.
  • the invention also provides the application of the method in preparing lithium ion batteries.
  • the micropowder produced in the production process that needs to be scrapped can be turned into a ternary positive electrode material with good performance, so that resources can be recycled and used to improve economic benefits, while the traditional direct scrapping The processing method cannot bring new economic benefits.
  • the process of the present invention is simple and easy to implement.
  • the residual lithium on the surface that affects the material properties can be dissolved by washing with water, and the residual lithium can be removed after dehydration.
  • the traditional treatment method is to use the characteristics of organic matter to remove residual lithium and modify the surface of the material , by contrast the processing mode of the present invention is more economical.
  • the present invention adds a coating agent and an accelerator to perform high-pressure hydrothermal coating on the micropowder.
  • the coating agent can optimize the storage performance of the material and improve the life of the material.
  • the accelerator can promote the better coating of the coating agent on the surface of the material. Prevent the coating agent from falling off. Accelerator residues in the material will affect the cyclic performance of the material, so after sintering, it is necessary to add an extractant to extract the residual accelerator.
  • Fig. 1 is a synthetic process schematic diagram of the present invention
  • Fig. 2 is the SEM figure of embodiment 1 Li (Ni 0.8 Co 0.1 Mn 0.1 ) O polycrystalline micropowder;
  • Fig. 3 is the SEM picture of the finished product of ternary cathode material obtained in embodiment 1;
  • Example 4 is a characterization diagram of the capacity retention rate of the finished ternary cathode material obtained in Example 1 of the present invention.
  • Example 5 is a DCR characterization diagram of the finished ternary cathode material obtained in Example 1 of the present invention.
  • Fig. 6 is the SEM image of the single crystal micropowder of Li(Ni 0.5 Co 0.2 Mn 0.3 ) O 2 of Example 2 of the present invention
  • Fig. 7 is the SEM picture of the finished product of ternary cathode material obtained in Example 2 of the present invention.
  • Fig. 8 is a characterization diagram of the capacity retention rate of the finished ternary cathode material obtained in Example 2 of the present invention.
  • Fig. 9 is a DCR characterization diagram of the finished ternary cathode material obtained in Example 2 of the present invention.
  • the accelerator used is polyimide, and the accelerator needs to be pretreated first.
  • the accelerator needs to be added to the ethanol solution with a concentration of 5%. After heating and stirring in a water bath or an oil bath to dissolve, then add it to the slurry for stirring and mixing.
  • the amount of accelerator added is 0.5% of the mass of the ternary material micropowder, and the stirring time is 8 minutes;
  • the sintering method adopted is one-step sintering in a rotary kiln under an oxygen atmosphere. Higher than 90%, the material thickness is controlled at 6cm-15cm;
  • the accelerator used is polyvinyl alcohol, and the accelerator needs to be pretreated first.
  • the accelerator needs to be added to an ethanol solution with a concentration of 5%. After heating and stirring in a water bath or an oil bath to dissolve, then add it to the slurry for stirring and mixing.
  • the amount of accelerator added is 0.6% of the mass of the ternary material micropowder, and the stirring time is 10 minutes;
  • the sintering method adopted is one-step sintering in a rotary kiln under an oxygen atmosphere. Higher than 90%, the material thickness is controlled at 6cm-15cm;
  • the first cycle discharge capacity can reach 167.2mAH/g, and its The electrical performance is good, and it has passed the electrical performance cycle test; refer to Figure 8, under the condition of 4.25V/0.5C, after 100 cycles of charging and discharging, its capacity retention rate is still 90.1%; after the DCR test, refer to Figure 9, the first cycle test , its DCR is 43.6 ⁇ /cm, under the test condition of 4.25V/0.5C, after 100 laps of the cycle test, its DCR does not appear to increase significantly, which shows that the ternary positive electrode material with good performance can be obtained through the micro-powder treatment method of the present invention , suitable for the preparation of lithium-ion batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本发明公开了一种三元材料微粉回收处理的方法及其应用,包括将三元材料微粉进行水洗,向水洗后微粉加入包覆剂和促进剂,在加热加压下进行反应,过滤得到包覆基材,再将包覆基材进行烧结,向烧结后物料中加入萃取剂,搅拌,过滤,烘干,所得烘干物料经过筛和除铁,即得三元正极材料。本发明加入包覆剂和促进剂对微粉进行高压水热包覆,包覆剂能够优化材料的存储性能,提升材料寿命,促进剂能够促进包覆剂更好的包覆在材料表面,防止包覆剂脱落。促进剂残留在材料内会影响材料循环性能的发挥,因此烧结后需加入萃取剂把残余的促进剂萃取出来。

Description

三元材料微粉回收处理的方法及其应用 技术领域
本发明属于锂离子电池材料技术领域,具体涉及一种三元材料微粉回收处理的方法及其应用。
背景技术
目前,新能源汽车发展迅猛,年销售量不断攀升,锂电池销量也随之攀升。作为锂电池主要的正极材料,三元材料具有能量密度高,循环性能好等优点,其产能同时也在逐年扩张。在正极材料生产过程中,每生产1吨正极材料大约会产生1%的小颗粒微粉,主要是在粉碎过程产生,如果微粉混入成品中会对产品的循环性能造成影响。目前的正极材料厂的产能已能达到数万吨级别,每年在生产过程中产生的微粉数量也是非常庞大,目前许多企业处理微粉的方式是当做生产过程废料进行报废。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种三元材料微粉回收处理的方法及其应用,使得原本被报废的材料变成经济附加价值高的性能良好的三元正极材料,且该处理方法工艺难度小,易于实现。
根据本发明的一个方面,提出了一种三元材料微粉回收处理的方法,包括以下步骤:
S1:将三元材料微粉与水混合并搅拌一定时间,所得第一浆料进行脱水,得到微粉滤饼;
S2:将所述微粉滤饼加水搅拌,期间加入包覆剂和促进剂,得到第二浆料;所述促进剂为聚酰亚胺、聚氧化乙烯、聚乙烯亚胺、聚吡咯、三聚氰胺、聚乙烯醇、乙二醇、三乙胺、聚苯醚桐或聚噻吩中的一种或几种;
S3:将所述第二浆料在加热加压下进行反应,过滤得到包覆基材;
S4:将所述包覆基材进行烧结,向烧结后物料中加入萃取剂,搅拌,过滤,烘干,所得烘干物料经过筛和除铁,即得三元正极材料。
在本发明的一些实施方式中,步骤S1中,所述三元材料微粉的粒径Dv50<3.0μm;所述水与三元材料微粉的液固比为0.4-1.2L/kg。
在本发明的一些实施方式中,步骤S1中,所述搅拌的转速为100-600rpm;优选地,所述搅拌的时间为5-30min。
在本发明的一些实施方式中,步骤S1中,所述脱水的方式为压滤式脱水或离心式脱水。
在本发明的一些实施方式中,步骤S1中,所述微粉滤饼的含水量为5-16%。
在本发明的一些实施方式中,步骤S2中,所述包覆剂为TiO 2、AL 2O 3、ZrO 2、MgO、SnO 2、WO 3、AL(OH) 3、Li 3PO 4、CeO、Li 4TiO 4或In 2O 3中的一种或几种;优选地,所述包覆剂的添加量为三元材料微粉质量的0.1-0.9%。进一步地,加入包覆剂后搅拌3-10min。
在本发明的一些实施方式中,步骤S2中,所述促进剂加入前需进行预处理:将促进剂加入到乙醇溶液中进行水浴或油浴加热搅拌溶解。进一步地,乙醇溶液的浓度为5%。
在本发明的一些实施方式中,步骤S2中,所述促进剂的添加量为三元材料微粉质量的0.2-1.2%。进一步地,加入促进剂后搅拌2-10min。
在本发明的一些实施方式中,步骤S2中,所述第二浆料的固含量为20-60%;所述搅拌的转速为100-500rpm。
在本发明的一些实施方式中,步骤S3中,所述反应的温度为100-200℃;优选地,所述反应的压力为1-10MPa;优选地,所述反应的时间为5-10h。进一步地,所述反应在高压水热反应釜中进行。
在本发明的一些实施方式中,步骤S3中,所述包覆基材的水含量<10%。
在本发明的一些实施方式中,步骤S4中,所述烧结的方式为利用回转窑在氧气氛围下进行烧结;优选地,所述烧结的温度为300-900℃,优选地,所述烧结的时间为3-10h,氧气浓度>90%,物料的厚度控制为3-20cm,进一步优选为6cm-15cm。所用烧结方式为回转窑一步烧结法,利用该烧结方式,仅需要进行一步烧结,就能得到三元正极材料,传统的处理方式更多的是利用辊道窑进行二次或者三次烧结,且利用回转窑所需要耗能, 耗气,耗材更为少,成本更有优势。
在本发明的一些实施方式中,步骤S4中,所述萃取剂为乙二醇、醋酸仲丁酯、煤油、三辛烷基叔胺、乙酸乙酯、甘油、N-甲基吡咯烷酮或苯中的一种或几种。
在本发明的一些实施方式中,步骤S4中,所述烘干的温度为100-200℃;所得烘干物料的水分<600ppm。
在本发明的一些实施方式中,步骤S4中,所述过筛所用筛网目数为200-400目。
在本发明的一些实施方式中,步骤S4中,所述除铁使用的装置为电磁除铁器,其磁场强度控制在5000-9000高斯。
本发明还提供所述的方法在制备锂离子电池中的应用。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
1、通过本发明的处理工艺,能把生产过程中产生的需要进行报废处理的微粉,变成了性能良好的三元正极材料,使得资源得到回收利用,提升了经济效益,而传统的直接报废的处理方式不能带来新的经济效益。
2、本发明的工艺简单,易于实现,通过水洗能把影响材料性能的表面残余锂进行溶解,脱水后去除残余锂,传统的处理方式更多是利用有机物的特性进行去除残余锂,修饰材料表面,相比之下本发明的处理方式更加经济。
3、本发明加入包覆剂和促进剂对微粉进行高压水热包覆,包覆剂能够优化材料的存储性能,提升材料寿命,促进剂能够促进包覆剂更好的包覆在材料表面,防止包覆剂脱落。促进剂残留在材料内会影响材料循环性能的发挥,因此烧结后需加入萃取剂把残余的促进剂萃取出来。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明的合成工艺示意图;
图2为实施例1Li(Ni 0.8Co 0.1Mn 0.1)O 2多晶微粉的SEM图;
图3为实施例1所得三元正极材料成品的SEM图;
图4为本发明实施例1所得三元正极材料成品的容量保持率表征图;
图5为本发明实施例1所得三元正极材料成品的DCR表征图;
图6为本发明实施例2Li(Ni 0.5Co 0.2Mn 0.3)O 2的单晶微粉SEM图;
图7为本发明实施例2所得三元正极材料成品的SEM图;
图8为本发明实施例2所得三元正极材料成品的容量保持率表征图;
图9为本发明实施例2所得三元正极材料成品的DCR表征图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
一种Li(Ni 0.8Co 0.1Mn 0.1)O 2多晶体微粉回收处理的方法,参照图1,具体过程为:
(1)把Li(Ni 0.8Co 0.1Mn 0.1)O 2生产过程产生的微粉进行收集,所收集微粉其Dv50<3.0μm,图2为Li(Ni 0.8Co 0.1Mn 0.1)O 2微粉的SEM图,所收集的Li(Ni 0.8Co 0.1Mn 0.1)O 2颗粒极小,且布满残留的氢氧化锂,碳酸锂;
(2)把所收集微粉与纯水进行混合,水洗过程中水洗釜转速为100rpm,搅拌时间控制为20min,纯水与微粉的液固比为0.6L/kg,水洗后形成水洗浆料;
(3)把所得水洗浆料进行脱水,其所用脱水方式为压滤式脱水,脱水处理后得到滤饼,其表面残余锂下降幅度在1000ppm-9000ppm,所得滤饼含水量为8%;
(4)所得滤饼再次加入纯水,进行搅拌混合,其浆料固含量为35%,所用搅拌装置为高速搅拌机,搅拌转速为300rpm,在混合过程中,首先先加入包覆剂TiO 2和AL 2O 3,包覆剂总的添加量为三元材料微粉质量的0.8%,混合时间为5min;
(5)包覆剂混合后,需要继续往浆料加入促进剂,所用促进剂为聚酰亚胺,其中促进剂需要先进行预处理,需将促进剂先加入到浓度为5%的乙醇溶液进行水浴或油浴加热 搅拌溶解后,再加入到浆料中进行搅拌混合,其中促进剂的添加量为三元材料微粉质量的0.5%,搅拌时间为8min;
(6)把上一步所形成的浆料加入到高压水热反应釜进行高压水热法包覆,反应温度控制在150℃,釜内压力为4MPa,反应时间为5h,过滤后包覆基材水含量小于10%;
(7)把上一步所得包覆基材进行烧结,所采用的烧结方式为在氧气气氛下利用回转窑一步烧结,其中烧结温度为500℃,降温冷却时间为4h,烧结时间为5h,氧气浓度高于90%,物料厚度控制为6cm-15cm;
(8)往回转窑烧结后物料加入乙二醇,使用高速搅拌桨,充分搅拌5min,搅拌转速为120rpm;
(9)把上一步萃取后物料加入到烘箱进行烘干,烘干温度为130℃,烘干时间为100min,把烘干后物料进行过筛除铁,过筛所用筛网目数为400目,所用除铁装置为电磁除铁器,其磁场强度控制在8000高斯,经过除铁后得到性能良好的三元正极材料。
表征测试:经过该工艺处理的Li(Ni 0.8Co 0.1Mn 0.1)O 2生产过程产生的微粉,参见图3,所形成形貌为类单晶形貌,且表面残余锂已经明显下降,经电位滴定法测试,其残余锂为931ppm,经过静态法测试,该样品为高比表样品,其BET为0.83m 2/g,在4.25V/0.5C的测试条件下,首圈放电容量能达到183.6mAH/g,且其电性能良好,经过电性能循环测试,参加图4,在4.25V/0.5C的条件下,循环充放电100圈,其容量保持率仍然有91.8%。经DCR测试,参加图5,首圈测试,其DCR为35.3Ω/cm,在4.25V/0.5C的测试条件下,循环测试100圈,其DCR没有出现明显增长,说明经过本发明的微粉处理方法,能得到性能良好的三元正极材料,适用于锂离子电池的制备。
实施例2
一种Li(Ni 0.5Co 0.2Mn 0.3)O 2多晶体微粉回收处理的方法,具体过程为:
(1)把所收集Li(Ni 0.5Co 0.2Mn 0.3)O 2单晶体微粉与纯水进行混合,图6为生产过程收集到的Li(Ni 0.5Co 0.2Mn 0.3)O 2单晶体微粉的SEM图,从SEM图可以看出微粉内有较多的黑色氢氧化锂,碳酸锂附着在微粉上,水洗过程中水洗釜转速为300rpm,搅拌时间控制为10min,纯水与微粉的液固比为1L/kg,水洗后形成水洗浆料;
(2)把所得水洗浆料进行脱水,其所用脱水方式为离心式脱水,脱水处理后得到滤饼,其表面残余锂下降幅度在200ppm-1000ppm,所得滤饼含水量约为10%。
(3)所得滤饼再次加入纯水,进行搅拌混合,所得浆料的固含量为30%,所用搅拌装置为高速搅拌机,搅拌转速为500rpm,在混合过程中,首先加入包覆剂ZrO 2和MgO,包覆剂总的添加量为三元材料微粉质量的0.5%,混合时间为5min;
(4)包覆剂混合后,需要继续往浆料加入促进剂,所用促进剂为聚乙烯醇,其中促进剂需要先进行预处理,需将促进剂先加入到浓度为5%的乙醇溶液进行水浴或油浴加热搅拌溶解后,再加入到浆料中进行搅拌混合,其中促进剂的添加量为三元材料微粉质量的0.6%,搅拌时间为10min;
(5)把上一步所形成的浆料加入到高压水热反应釜进行高压水热法包覆,反应温度控制在120℃,釜内压力为4MPa,反应时间为5h,过滤后包覆基材水含量小于10%;
(6)把上一步所得包覆基材进行烧结,所采用的烧结方式为在氧气气氛下利用回转窑一步烧结,其中烧结温度为540℃,降温冷却时间为4h,烧结时间为5h,氧气浓度高于90%,物料厚度控制在6cm-15cm;
(7)往回转窑烧结后物料加入萃取剂醋酸仲丁酯,使用高速搅拌桨,充分搅拌5min,搅拌转速为120rpm;
(8)把上一步萃取后物料加入到烘箱进行烘干,烘干温度为150℃,烘干时间为170min,把烘干后物料进行过筛除铁,过筛所用筛网目数为200目,所用除铁装置为电磁除铁器,其磁场强度控制7000高斯,经过除铁后得到性能良好的三元正极材料。
表征测试:经过该工艺处理的Li(Ni 0.5Co 0.2Mn 0.3)O 2生产过程产生的微粉,参见图7,所形成形貌为类单晶形貌,且SEM图上已经无明显残余锂,经电位滴定法测试,其残余锂为386ppm,经过静态法测试,其BET为0.95m 2/g,在4.25V/0.5C的测试条件下,首圈放电容量能达到167.2mAH/g,且其电性能良好,经过电性能循环测试;参加图8,在4.25V/0.5C的条件下,循环充放电100圈,其容量保持率仍然有90.1%;经DCR测试,参加图9,首圈测试,其DCR为43.6Ω/cm,在4.25V/0.5C的测试条件下,循环测试100圈,其DCR没有出现明显增长,说明经过本发明的微粉处理方法,能得到性能良好的三 元正极材料,适用于锂离子电池的制备。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种三元材料微粉回收处理的方法,其特征在于,包括以下步骤:
    S1:将三元材料微粉与水混合并搅拌一定时间,所得第一浆料进行脱水,得到微粉滤饼;
    S2:将所述微粉滤饼加水搅拌,期间加入包覆剂和促进剂,得到第二浆料;所述促进剂为聚酰亚胺、聚氧化乙烯、聚乙烯亚胺、聚吡咯、三聚氰胺、聚乙烯醇、乙二醇、三乙胺、聚苯醚桐或聚噻吩中的一种或几种;
    S3:将所述第二浆料在加热加压下进行反应,过滤得到包覆基材;
    S4:将所述包覆基材进行烧结,向烧结后物料中加入萃取剂,搅拌,过滤,烘干,所得烘干物料经过筛和除铁,即得三元正极材料。
  2. 根据权利要求1所述的方法,其特征在于,步骤S1中,所述三元材料微粉的粒径Dv50<3.0μm;所述水与三元材料微粉的液固比为0.4-1.2L/kg。
  3. 根据权利要求1所述的方法,其特征在于,步骤S1中,所述搅拌的转速为100-600rpm;优选地,所述搅拌的时间为5-30min。
  4. 根据权利要求1所述的方法,其特征在于,步骤S1中,所述微粉滤饼的含水量为5-16%。
  5. 根据权利要求1所述的方法,其特征在于,步骤S2中,所述包覆剂为TiO 2、AL 2O 3、ZrO 2、MgO、SnO 2、WO 3、AL(OH) 3、Li 3PO 4、CeO、Li 4TiO 4或In 2O 3中的一种或几种;优选地,所述包覆剂的添加量为三元材料微粉质量的0.1-0.9%。
  6. 根据权利要求1所述的方法,其特征在于,步骤S2中,所述促进剂的添加量为三元材料微粉质量的0.2-1.2%。
  7. 根据权利要求1所述的方法,其特征在于,步骤S3中,所述反应的温度为100-200℃;优选地,所述反应的压力为1-10MPa;优选地,所述反应的时间为5-10h。
  8. 根据权利要求1所述的方法,其特征在于,步骤S4中,所述烧结的方式为利用回转窑在氧气氛围下进行烧结;优选地,所述烧结的温度为300-900℃,优选地,所述 烧结的时间为3-10h。
  9. 根据权利要求1所述的方法,其特征在于,步骤S4中,所述萃取剂为乙二醇、醋酸仲丁酯、煤油、三辛烷基叔胺、乙酸乙酯、甘油、N-甲基吡咯烷酮或苯中的一种或几种。
  10. 权利要求1-9任一项所述的方法在制备锂离子电池中的应用。
PCT/CN2022/090065 2021-09-30 2022-04-28 三元材料微粉回收处理的方法及其应用 WO2023050801A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES202390108A ES2957086A2 (es) 2021-09-30 2022-04-28 Metodo de reciclaje de micropolvo de material ternario, y uso del mismo
DE112022000323.5T DE112022000323T5 (de) 2021-09-30 2022-04-28 Recyclingverfahren für mikropulver aus ternärem material und anwendung dieses
GB2310282.5A GB2618231A (en) 2021-09-30 2022-04-28 Ternary material micropowder recovery method and application thereof
US18/229,213 US20240170662A1 (en) 2021-09-30 2023-08-02 Recycling method of ternary material micropowder, and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111157697.XA CN113968593B (zh) 2021-09-30 2021-09-30 三元材料微粉回收处理的方法及其应用
CN202111157697.X 2021-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/229,213 Continuation US20240170662A1 (en) 2021-09-30 2023-08-02 Recycling method of ternary material micropowder, and use thereof

Publications (1)

Publication Number Publication Date
WO2023050801A1 true WO2023050801A1 (zh) 2023-04-06

Family

ID=79587069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090065 WO2023050801A1 (zh) 2021-09-30 2022-04-28 三元材料微粉回收处理的方法及其应用

Country Status (6)

Country Link
US (1) US20240170662A1 (zh)
CN (1) CN113968593B (zh)
DE (1) DE112022000323T5 (zh)
ES (1) ES2957086A2 (zh)
GB (1) GB2618231A (zh)
WO (1) WO2023050801A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113968593B (zh) * 2021-09-30 2022-11-15 广东邦普循环科技有限公司 三元材料微粉回收处理的方法及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106299529A (zh) * 2016-09-27 2017-01-04 荆门市格林美新材料有限公司 一种从废旧电池中回收再生高压实正极材料的方法
CN106785177A (zh) * 2017-03-10 2017-05-31 中南大学 一种从废旧镍钴锰三元锂离子电池回收、制备镍钴锰铝四元正极材料的方法
CN110277552A (zh) * 2018-03-16 2019-09-24 荆门市格林美新材料有限公司 废旧电池中镍钴锰三元正极材料的修复再生方法
US20190386293A1 (en) * 2016-12-20 2019-12-19 Byd Company Limited Ternary material and preparation method thereof, battery slurry, positive electrode and lithium battery
CN111129487A (zh) * 2020-01-03 2020-05-08 昆明理工大学 一种废旧三元正极材料的水热补锂-喷雾重塑再生方法
CN112340783A (zh) * 2020-09-30 2021-02-09 宜宾锂宝新材料有限公司 降低高镍三元正极材料表面残余碱的改性方法及所制得的高镍三元正极材料、锂离子电池
CN113968593A (zh) * 2021-09-30 2022-01-25 广东邦普循环科技有限公司 三元材料微粉回收处理的方法及其应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107394166A (zh) * 2017-07-26 2017-11-24 广东天劲新能源科技股份有限公司 高安全性双层包覆的镍钴锰酸锂正极材料及其制备方法
CN109244447B (zh) * 2018-09-26 2020-06-05 合肥国轩高科动力能源有限公司 一种包覆型镍钴锰酸锂三元正极材料及其制备方法和应用
CN109994725A (zh) * 2018-12-12 2019-07-09 彩虹集团新能源股份有限公司 一种疏水型高镍三元正极材料的制造方法
CN111916711B (zh) * 2020-08-18 2024-01-23 成都巴莫科技有限责任公司 一种双核壳结构三元正极材料及其制备方法
CN112164775A (zh) * 2020-09-08 2021-01-01 合肥国轩高科动力能源有限公司 一种原位氧化聚合包覆锂离子三元正极材料及其制备方法
CN112661205A (zh) * 2020-12-31 2021-04-16 格林美股份有限公司 一种多氧化物包覆的三元锂离子电池正极材料、制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106299529A (zh) * 2016-09-27 2017-01-04 荆门市格林美新材料有限公司 一种从废旧电池中回收再生高压实正极材料的方法
US20190386293A1 (en) * 2016-12-20 2019-12-19 Byd Company Limited Ternary material and preparation method thereof, battery slurry, positive electrode and lithium battery
CN106785177A (zh) * 2017-03-10 2017-05-31 中南大学 一种从废旧镍钴锰三元锂离子电池回收、制备镍钴锰铝四元正极材料的方法
CN110277552A (zh) * 2018-03-16 2019-09-24 荆门市格林美新材料有限公司 废旧电池中镍钴锰三元正极材料的修复再生方法
CN111129487A (zh) * 2020-01-03 2020-05-08 昆明理工大学 一种废旧三元正极材料的水热补锂-喷雾重塑再生方法
CN112340783A (zh) * 2020-09-30 2021-02-09 宜宾锂宝新材料有限公司 降低高镍三元正极材料表面残余碱的改性方法及所制得的高镍三元正极材料、锂离子电池
CN113968593A (zh) * 2021-09-30 2022-01-25 广东邦普循环科技有限公司 三元材料微粉回收处理的方法及其应用

Also Published As

Publication number Publication date
GB202310282D0 (en) 2023-08-16
DE112022000323T5 (de) 2023-09-14
ES2957086A2 (es) 2024-01-10
GB2618231A (en) 2023-11-01
CN113968593A (zh) 2022-01-25
US20240170662A1 (en) 2024-05-23
CN113968593B (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
CN101383442B (zh) 一种从废旧锂离子电池中回收、制备钴酸锂的方法
CN108400399B (zh) 一种废旧锰酸锂电池制备磷酸锰锂/碳正极材料的方法
CN107699692A (zh) 一种回收及再生废旧锂离子电池正极材料的方法
CN105576314A (zh) 一种锂离子电池正极片回收利用方法
WO2022193781A1 (zh) 一种废旧三元正极材料的再生方法和应用
CN103956534A (zh) 一种废旧锂离子电池成分的资源化分离方法
WO2022134423A1 (zh) 一种动力电池逆向定位制备镍钴锰酸锂的方法和应用
CN106505273A (zh) 一种磷酸铁锂电池生产环节正极废旧材料的回收修复和再利用的方法
CN104078719A (zh) 利用废旧锰酸锂电池制备镍锰酸锂的方法
CN109148875A (zh) 一种高镍正极材料及其制备方法
CN112838205B (zh) 一种锂离子电池正极材料细粉的回收方法
WO2023050801A1 (zh) 三元材料微粉回收处理的方法及其应用
CN104157926A (zh) 一种锂电池回收工艺
CN105870533A (zh) 回收锂离子电池正极边角料的方法
CN108172834A (zh) 一种低成本石墨烯改性负极材料的制备方法
CN110526301A (zh) 一种对锂电池正极失效钴酸锂结构馈补重制的方法
CN110676452A (zh) 一种锂离子电池ncm811三元正极材料的制备方法
CN104466293B (zh) 锂离子电池正极材料钴酸锂废料的再生方法
WO2022142581A1 (zh) 掺氮中间相碳微球及其制备方法和应用
CN103199319A (zh) 一种从钴酸锂电池废旧正极片中回收钴酸锂的方法
CN103311518B (zh) 锂离子二次电池用硬碳负极材料及其制备方法
CN104485494B (zh) 钴酸锂废锂离子电池中正极活性材料的再生方法
CN104600284B (zh) 锰酸锂废锂离子电池中正极活性材料的再生方法
CN103825013B (zh) 一种四氧化三锰生产高温型锰酸锂的方法
CN117096486A (zh) 一种废旧锂离子电池正极材料的修复再生方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874199

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202310282

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220428

WWE Wipo information: entry into national phase

Ref document number: 112022000323

Country of ref document: DE