WO2023047895A1 - 成膜方法、成膜装置及び結晶性酸化物膜 - Google Patents

成膜方法、成膜装置及び結晶性酸化物膜 Download PDF

Info

Publication number
WO2023047895A1
WO2023047895A1 PCT/JP2022/032486 JP2022032486W WO2023047895A1 WO 2023047895 A1 WO2023047895 A1 WO 2023047895A1 JP 2022032486 W JP2022032486 W JP 2022032486W WO 2023047895 A1 WO2023047895 A1 WO 2023047895A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
film
nozzle
heating
mist
Prior art date
Application number
PCT/JP2022/032486
Other languages
English (en)
French (fr)
Inventor
武紀 渡部
洋 橋上
崇寛 坂爪
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to JP2023549435A priority Critical patent/JPWO2023047895A1/ja
Priority to KR1020247008811A priority patent/KR20240063901A/ko
Publication of WO2023047895A1 publication Critical patent/WO2023047895A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate

Definitions

  • the present invention relates to a film forming method, a film forming apparatus, and a crystalline oxide film.
  • gallium oxide Ga 2 O 3
  • next-generation switching elements capable of achieving high withstand voltage, low loss, and high heat resistance
  • gallium oxide is expected to be widely applied as a light-receiving and emitting device such as an LED and a sensor because of its wide bandgap.
  • gallium oxides ⁇ -Ga 2 O 3 and the like, which have a corundum structure, can control the bandgap by forming a mixed crystal of indium and aluminum, respectively, or in combination. It constitutes an attractive material system.
  • Patent Document 1 describes a method for producing an oxide crystal thin film by a mist CVD method using bromide or iodide of gallium or indium.
  • Patent Documents 2 to 4 describe a multilayer structure in which a semiconductor layer having a corundum-type crystal structure and an insulating film having a corundum-type crystal structure are laminated on an underlying substrate having a corundum-type crystal structure.
  • Patent Documents 5 to 7 film formation by mist CVD using an ELO substrate or void formation is being studied.
  • Patent Document 8 describes forming a film of gallium oxide having a corundum structure by a halide vapor phase epitaxy method (HVPE method) using at least a gallium source and an oxygen source. Further, Patent Document 9 describes that ELO crystal growth is performed using a patterned substrate to obtain a crystal film having a surface area of 9 ⁇ m 2 or more and a dislocation density of 5 ⁇ 10 6 cm ⁇ 2 or less. ing.
  • HVPE method halide vapor phase epitaxy method
  • gallium oxide has a problem with heat dissipation, and in order to solve the problem of heat dissipation, it is necessary to reduce the film thickness of gallium oxide to, for example, 30 ⁇ m or less, but the polishing process becomes complicated and the cost increases. In addition, when the thickness is reduced by polishing, it is difficult to obtain a large-area gallium oxide film while maintaining the film thickness distribution. Also, the series resistance when applied to a vertical device was not sufficiently satisfactory. Therefore, in order to fully exhibit the performance of gallium oxide as a power semiconductor device, it is desirable to obtain a thin gallium oxide film having a large area and a good film thickness distribution, for example, a film thickness of 30 ⁇ m or less. was awaited.
  • Patent Document 10 discloses a method of obtaining a gallium oxide film with a good film thickness distribution using an ELO mask. Also, there is a problem that the yield is lowered due to the complicated process.
  • the present invention provides a crystalline oxide film containing gallium oxide as a main component, which is excellent in crystallinity and has a good in-plane film thickness distribution even when the film is large and thin, and is applied to a semiconductor device.
  • An object of the present invention is to provide a crystalline oxide film having excellent semiconductor characteristics, a film forming method for forming such a crystalline oxide film, and a manufacturing apparatus for performing the film forming method.
  • the present invention has been made to achieve the above objects, and provides a film formation method for forming a crystalline oxide film containing gallium oxide as a main component on a substrate by a mist CVD method, which comprises heating the substrate. heating a nozzle for supplying mist containing the raw material solution; and supplying the mist onto the heated substrate such that the ejection direction of the heated nozzle is perpendicular to the surface of the substrate.
  • the nozzle is heated in a state where the substrate is not present in the discharge direction of the nozzle, and the crystalline oxide film is formed.
  • a film is formed in a state in which the substrate is present in the discharge direction of the nozzle.
  • a crystalline oxide film containing gallium oxide as a main component which is excellent in crystallinity and has a good in-plane film thickness distribution even when the film is thin, can be used in a semiconductor device.
  • a crystalline oxide film having excellent semiconductor properties can be obtained.
  • the heating of the substrate is performed by placing the substrate on the substrate placing portion using a substrate heating means having a substrate placing portion and a non-substrate placing portion, and in the step of heating the nozzle,
  • the film formation method may include positioning the non-substrate mounting portion in the discharge direction of the nozzle and heating the nozzle by the substrate heating means.
  • the film formation method can be such that the heating of the nozzle is performed by a nozzle heating means provided in the nozzle.
  • the nozzle can be efficiently heated.
  • the present invention also relates to a film forming method for forming a crystalline oxide film containing gallium oxide as a main component on a substrate by a mist CVD method, comprising a step of heating the substrate and a step of heating a film forming member. and forming a crystalline oxide film by supplying mist in a state where the heated film-forming member exists on the substrate in the normal direction of the surface of the substrate, wherein
  • a film-forming method is provided in which the film-forming member is heated in a state where the film-forming member does not exist on the substrate in the normal direction of the surface of the substrate.
  • a crystalline oxide film containing gallium oxide as a main component which is excellent in crystallinity and has a good in-plane film thickness distribution even when the film is thin, can be used in a semiconductor device.
  • a crystalline oxide film having excellent semiconductor properties can be obtained.
  • a substrate heating means having a substrate mounting portion and a non-substrate mounting portion is used to place the substrate on the substrate mounting portion and heat the substrate.
  • the film forming member is positioned on the non-substrate mounting portion in the normal direction to the surface of the non-substrate mounting portion, and the film forming member is heated by the substrate heating means.
  • the film-forming method may be such that heating of the film-forming member is performed by film-forming member heating means provided in the film-forming member.
  • the film-forming member can be efficiently heated.
  • the film formation member is a nozzle for supplying the mist to the substrate
  • the film-forming method can be such that the nozzle is heated in a state where the ejection port of the nozzle does not exist on the substrate in the normal direction of the surface of the substrate.
  • the film formation surface area is 100 mm 2 or more, or the diameter is 2 inches (50 mm) or more, and the diameter is 4 inches (100 mm) to 8 inches (200 mm).
  • the film formation surface area is 100 mm 2 or more, or the diameter is 2 inches (50 mm) or more, and the diameter is 4 inches (100 mm) to 8 inches (200 mm).
  • a crystalline oxide film having a good film thickness distribution can be obtained even on such a large-sized substrate.
  • the present invention has also been made to achieve the above objects, and is a film forming apparatus for performing the mist CVD method, which comprises substrate heating means having a substrate mounting portion for mounting a substrate, and a discharge direction. a nozzle for supplying a mist containing a raw material solution in a direction perpendicular to the surface of the substrate; A film forming apparatus is provided that includes a nozzle and/or position adjusting means for the substrate heating means.
  • the above-described film forming method can be performed, and gallium oxide, which has excellent crystallinity and a good in-plane film thickness distribution even when the film is thin, is mainly used. It becomes a film forming apparatus capable of obtaining a crystalline oxide film as a component.
  • the substrate heating means further includes a substrate non-mounting portion, and the position adjusting means for the nozzle and/or the substrate heating means adjusts the position of the substrate non-mounting portion to the position of the nozzle in the discharge direction.
  • the deposition apparatus may be adjustable.
  • the structure of the device is simplified, and the footprint of the device itself is reduced, which is advantageous in terms of cost.
  • the nozzle may be a film forming apparatus including nozzle heating means for heating the nozzle.
  • the nozzle can be heated efficiently and with a high degree of freedom.
  • the present invention also provides a film forming apparatus for performing a mist CVD method, comprising: a substrate heating means having a substrate mounting portion for mounting a substrate; a film forming member; and a position adjusting means that can be adjusted to a position other than the position on the substrate platform in the direction normal to the surface of the platform.
  • the above-described film forming method can be performed, and gallium oxide, which has excellent crystallinity and a good in-plane film thickness distribution even when the film is thin, is mainly used. It becomes a film forming apparatus capable of obtaining a crystalline oxide film as a component.
  • the substrate heating means further includes a substrate non-mounting portion, and the film forming member and/or the position adjusting means for the substrate heating means adjusts the position of the film forming member to the substrate non-mounting portion.
  • the film forming apparatus can be adjusted to a position on the non-substrate mounting portion in the normal direction of the surface.
  • the structure of the device is simplified, and the footprint of the device itself is reduced, which is advantageous in terms of cost.
  • the film-forming member can be a film-forming apparatus provided with film-forming member heating means for heating the film-forming member.
  • the film forming member can be heated efficiently and with a high degree of freedom.
  • the film-forming member can be a film-forming device that is a nozzle for supplying mist to the substrate or a top plate for rectifying the supplied mist on the substrate.
  • the film forming apparatus can more effectively obtain a crystalline oxide film containing gallium oxide as a main component and having a good in-plane film thickness distribution.
  • the present invention has been made to achieve the above objects, and is a crystalline oxide film containing gallium oxide as a main component, wherein V A crystalline oxide film having a value of 0.045 or less is provided.
  • Such a crystalline oxide film has a good film thickness distribution, and when it is used as a power semiconductor device, the performance of the crystalline oxide film can be fully exhibited, and variations in performance can be suppressed. Become.
  • the film thickness distribution becomes better, and the variation in performance when used as a power semiconductor device can be further suppressed.
  • a laminated structure including a substrate with a diameter of 4 inches (100 mm) to 8 inches (200 mm) and the crystalline oxide film provided on the substrate can be obtained.
  • Such a multi-layered structure in which the film thickness distribution of the large-area crystalline oxide film is good can fully exhibit the performance of the crystalline oxide film when used as a power semiconductor device, and also suppresses variations in performance. It becomes possible.
  • a product lot containing only two or more semiconductor devices manufactured from the laminated structure and having a withstand voltage yield of 75% or more can be set as a product lot of semiconductor devices.
  • the present invention also provides a film formation method for forming a crystalline oxide film containing gallium oxide as a main component on a substrate by a mist CVD method, comprising the steps of heating the substrate and supplying a mist containing a raw material solution. heating the nozzle to a predetermined temperature; guiding the mist to the substrate to form a crystalline oxide film; and exhausting the mist after film formation, wherein the nozzle is heated to the predetermined temperature.
  • a film forming method is provided in which, in the step of heating up to the temperature of the substrate, discharge discharged from the nozzle is exhausted without passing through the substrate.
  • a crystalline oxide film containing gallium oxide as a main component which is excellent in crystallinity and has a good in-plane film thickness distribution even when the film is thin, can be used in a semiconductor device.
  • a crystalline oxide film having excellent semiconductor properties can be obtained.
  • the present invention also provides a film formation apparatus for performing a mist CVD method, comprising: a substrate heating means having a substrate mounting portion for mounting a substrate; a nozzle for supplying mist to the substrate; exhaust means for exhausting the mist, and the exhaust means has a mechanism for exhausting the emissions discharged from the nozzle without passing through the substrate mounting part.
  • a substrate heating means having a substrate mounting portion for mounting a substrate
  • a nozzle for supplying mist to the substrate
  • exhaust means for exhausting the mist
  • the exhaust means has a mechanism for exhausting the emissions discharged from the nozzle without passing through the substrate mounting part.
  • the above-described film forming method can be performed, and gallium oxide, which has excellent crystallinity and a good in-plane film thickness distribution even when the film is thin, is mainly used. It becomes a film forming apparatus capable of obtaining a crystalline oxide film as a component.
  • a crystalline oxide film containing gallium oxide as a main component which has excellent crystallinity and a good in-plane film thickness distribution even when the film is thin, is obtained. Therefore, it is possible to form a crystalline oxide film having excellent semiconductor characteristics when applied to a semiconductor device.
  • the film forming apparatus of the present invention the above-described film forming method can be performed, and gallium oxide is mainly used, which has excellent crystallinity and a good in-plane film thickness distribution even when the film is thin. It becomes a film forming apparatus capable of obtaining a crystalline oxide film as a component.
  • the crystalline oxide film of the present invention the film thickness distribution is good, and when used as a power semiconductor device, the performance of the crystalline oxide film can be fully exhibited, and variations in performance can be suppressed. become a thing.
  • FIG. 1 shows a schematic block diagram showing an example of a semiconductor device according to the present invention
  • a crystalline oxide film containing gallium oxide as a main component which is excellent in crystallinity and has a good in-plane film thickness distribution even with a large area and a small film thickness, is applied to a semiconductor device. It is desired to provide a crystalline oxide film having excellent semiconductor characteristics in various cases, a film forming method for forming such a crystalline oxide film, and a manufacturing apparatus for performing the film forming method. rice field.
  • the inventors of the present invention have found a film formation method for forming a crystalline oxide film containing gallium oxide as a main component on a substrate by a mist CVD method, wherein the substrate is heated. heating a nozzle that supplies mist containing a raw material solution; and supplying the mist onto the heated substrate such that the ejection direction of the heated nozzle is perpendicular to the surface of the substrate. and forming a crystalline oxide film, wherein in the step of heating the nozzle, the nozzle is heated in a state where the substrate is not present in the ejection direction of the nozzle, thereby forming the crystalline oxide film.
  • the film is formed in a state where the substrate is present in the discharge direction of the nozzle, so that the crystallinity is excellent and the in-plane film thickness distribution is good even if the film is thin.
  • the inventors have found that a crystalline oxide film containing gallium oxide as a main component and having excellent semiconductor characteristics when applied to a semiconductor device can be obtained, and have completed the present invention.
  • the present inventors have also developed a film formation method for forming a crystalline oxide film containing gallium oxide as a main component on a substrate by a mist CVD method, which comprises a step of heating the substrate and a step of heating a film formation member. and forming a crystalline oxide film by supplying mist in a state where the heated film-forming member exists on the substrate in the normal direction of the surface of the substrate, In the step of heating the film-forming member, the film-forming method heats the film-forming member in a state where the film-forming member is not present on the substrate in the normal direction of the surface of the substrate.
  • a crystalline oxide film composed mainly of gallium oxide which has excellent in-plane film thickness distribution even when it is thin, and has excellent semiconductor characteristics when applied to a semiconductor device. They found that an oxide film can be obtained, and completed the present invention.
  • the present inventors have also proposed a film formation apparatus that performs a mist CVD method, a substrate heating means having a substrate mounting portion for mounting a substrate, and a discharge direction that is perpendicular to the surface of the substrate.
  • a film forming apparatus capable of obtaining a crystalline oxide film composed mainly of gallium oxide, which has excellent crystallinity and a good in-plane film thickness distribution even when the film is thin. The present invention has been completed by finding that it becomes.
  • the present inventors have also proposed a film forming apparatus for performing a mist CVD method, which comprises a substrate heating means having a substrate mounting portion for mounting a substrate, a film forming member, and a position of the film forming member.
  • the above-described film forming method can be carried out by a film forming apparatus including position adjusting means that can be adjusted to a position other than the position on the substrate mounting portion in the direction normal to the surface of the substrate mounting portion.
  • position adjusting means that can be adjusted to a position other than the position on the substrate mounting portion in the direction normal to the surface of the substrate mounting portion.
  • a crystalline oxide film containing gallium oxide as a main component has a V value of 0.045 or less obtained by the following formula (1) for the film thickness at 25 points in the plane.
  • the crystalline oxide film has a good film thickness distribution, and when used as a power semiconductor device, the performance of the crystalline oxide film can be fully exhibited and variations in performance can be suppressed. , completed the present invention.
  • the present inventors have also developed a film formation method for forming a crystalline oxide film containing gallium oxide as a main component on a substrate by a mist CVD method, which comprises a step of heating the substrate, and a mist containing a raw material solution. a step of heating a nozzle that supplies the crystalline oxide to a predetermined temperature; a step of guiding the mist to the substrate to form a crystalline oxide film; and a step of exhausting the mist after film formation,
  • a film formation method in which discharges discharged from the nozzle are discharged without passing through the substrate provides excellent crystallinity and in-plane film thickness distribution even if the film is thin.
  • the inventors have found that a crystalline oxide film composed mainly of gallium oxide with good sulfide resistance and having excellent semiconductor characteristics when applied to a semiconductor device can be obtained, and completed the present invention. .
  • the present inventors have also proposed a film deposition apparatus for performing a mist CVD method, comprising: a substrate heating means having a substrate mounting portion for mounting a substrate; a nozzle for supplying mist to the substrate; exhaust means for exhausting the mist afterward, and the exhaust means has a mechanism for exhausting the substances discharged from the nozzle without passing through the substrate mounting portion. It is possible to carry out the above-described film forming method by using a film apparatus, and the crystalline oxide containing gallium oxide as a main component has excellent crystallinity and a good in-plane film thickness distribution even if the film is thin. The inventors have found that the film forming apparatus can obtain a thin film, and have completed the present invention.
  • the crystalline oxide film according to the present invention is a crystalline oxide film containing gallium oxide as a main component, and has a V value of 0.045 or less obtained by the following formula (1) for the film thickness at 25 points in the plane. is a crystalline oxide film.
  • Such a crystalline oxide film according to the present invention has a good film thickness distribution, can fully exhibit the performance of the crystalline oxide film when used as a power semiconductor device, and suppresses variations in performance. is possible.
  • a crystalline oxide film containing gallium oxide as a main component may be simply referred to as a "crystalline oxide film”.
  • a crystalline oxide film is generally composed of metal and oxygen, but in the crystalline oxide film according to the present invention, gallium may be used as the main component of the metal.
  • gallium may be used as the main component of the metal.
  • "mainly containing gallium” means that 50 to 100% of the metal component is gallium.
  • Metal components other than gallium may include, for example, one or more metals selected from iron, indium, aluminum, vanadium, titanium, chromium, rhodium, iridium, nickel and cobalt.
  • a dopant element may be contained in the crystalline oxide film.
  • Examples include n-type dopants such as tin, germanium, silicon, titanium, zirconium, vanadium, and niobium, and p-type dopants such as copper, silver, tin, iridium, rhodium, and magnesium, but are not particularly limited.
  • the dopant concentration may be, for example, about 1 ⁇ 10 16 /cm 3 to 1 ⁇ 10 22 /cm 3 , and a low concentration of about 1 ⁇ 10 17 /cm 3 or less may be about 1 ⁇ 10 20 /cm 3 .
  • the concentration may be as high as cm 3 or more.
  • the crystal structure of the crystalline oxide film is not particularly limited, and may be a ⁇ -gallia structure, a corundum structure, or a cubic crystal. Although a plurality of crystal structures may be mixed or may be polycrystalline, a single crystal or uniaxially oriented film is preferred. Whether it is a single crystal or uniaxially oriented film can be confirmed by an X-ray diffraction device, an electron beam diffraction device, or the like. When the film is irradiated with X-rays or electron beams, a diffraction image corresponding to the crystal structure is obtained, but only specific peaks appear when the film is uniaxially oriented. From this, it can be determined that the film is uniaxially oriented.
  • the film thickness of the crystalline oxide film is not particularly limited, it is preferably 0.1 ⁇ m or more.
  • the upper limit is not particularly limited. For example, it may be 100 ⁇ m or less, preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less.
  • the film thickness can be measured by a method such as a stylus-type profilometer, a reflectance spectroscopic film-thickness meter, an ellipsometer, or observation of a cross section with an SEM or TEM, and any method may be used.
  • the V value is 0.045 or less when the film thickness is measured at 25 points in the plane of the crystalline oxide film.
  • the V value is preferably 0.041 or less.
  • a crystalline oxide film having a V value of 0.041 or less is preferable because the film thickness distribution is better and the variation in performance when used as a power semiconductor device can be more effectively suppressed.
  • Such a crystalline oxide film can be obtained by forming a film by a mist CVD method using a mist CVD apparatus (film forming apparatus) to be described later. Note that the lower limit of the V value is 0 or more.
  • a laminated structure 210 according to the present invention can have a crystalline oxide film 203 provided at least on a substrate 110, as shown in FIG.
  • the crystalline oxide film 203 may be a single layer or multiple layers as shown in FIG. Further, the substrate at this time may have a diameter of 4 inches (100 mm) to 8 inches (200 mm).
  • the film thickness distribution is excellent over a large area, and the semiconductor characteristics are excellent when applied to a semiconductor device. That is, when a semiconductor device such as a power semiconductor device is manufactured from such a laminated structure, a product lot containing two or more semiconductor devices can have a withstand voltage yield of 75% or more.
  • the separate layer is a layer having a composition different from that of the substrate and the outermost crystalline oxide film, and is also called a buffer layer.
  • the buffer layer may be an oxide semiconductor film, an insulating film, a metal film, or the like, and examples of materials include Al 2 O 3 , Ga 2 O 3 , Cr 2 O 3 , Fe 2 O 3 , and In 2 O. 3 , Rh 2 O 3 , V 2 O 3 , Ti 2 O 3 , Ir 2 O 3 and the like are preferably used.
  • the thickness of the buffer layer is preferably 0.1 ⁇ m to 2 ⁇ m.
  • the laminated structure containing the crystalline oxide according to the present invention and the substrate used in the film forming method according to the present invention are not particularly limited as long as they serve as a support for the crystalline oxide film.
  • the material is not particularly limited, and a known substrate can be used, and it may be an organic compound or an inorganic compound.
  • a substrate can be used, and it may be an organic compound or an inorganic compound.
  • polysulfone, polyethersulfone, polyphenylene sulfide, polyetheretherketone, polyimide, polyetherimide, fluororesin, metals such as iron, aluminum, stainless steel, and gold, quartz, glass, calcium carbonate, gallium oxide, ZnO, etc. is mentioned.
  • single crystal substrates such as silicon, sapphire, lithium tantalate, lithium niobate, SiC, GaN, iron oxide, chromium oxide, etc.
  • a crystalline substrate is preferred. With these, a crystalline oxide film of better quality can be obtained.
  • sapphire substrates, lithium tantalate substrates, and lithium niobate substrates are relatively inexpensive and industrially advantageous.
  • the thickness of the substrate is preferably 100-5000 ⁇ m. Within this range, handling is easy, and thermal resistance can be suppressed during film formation, making it easier to obtain a good quality film.
  • the size of the substrate is not particularly limited, but a substrate having an area of 100 mm 2 or more or a diameter of 2 inches (50 mm) or more is preferable because a large-area film with good crystallinity can be obtained.
  • the upper limit of the area of the substrate is not particularly limited, it can be 100000 mm 2 or less.
  • the diameter of the substrate is set to 4 inches (100 mm) to 8 inches (200 mm), it becomes easier to process the obtained laminated structure using existing processing equipment, which is an industrial advantage when manufacturing semiconductor devices. advantageous in terms of
  • FIG. 7 shows a preferred example of a semiconductor device 200 using a laminated structure 210 according to the present invention.
  • a crystalline oxide film 203 is formed on the substrate 110 .
  • the crystalline oxide film 203 is formed by stacking an insulating thin film 203a and a conductive thin film 203b in order from the substrate 110 side.
  • a gate insulating film 205 is formed on the conductive thin film 203b.
  • a gate electrode 207 is formed on the gate insulating film 205 .
  • Source/drain electrodes 209 are formed on the conductive thin film 203b so as to sandwich the gate electrode 207 therebetween. According to such a configuration, the depletion layer formed in the conductive thin film 203b can be controlled by the gate voltage applied to the gate electrode 207, enabling transistor operation (FET device).
  • FET device transistor operation
  • Semiconductor devices formed using the laminated structure according to the present invention include transistors and TFTs such as MIS, HEMTs, and IGBTs, Schottky barrier diodes (SBDs) using semiconductor-metal junctions, and combinations with other P layers. PN or PIN diodes, and light emitting/receiving elements.
  • the laminated structure according to the present invention is useful for improving the characteristics of these devices.
  • the crystalline oxide film and laminated structure according to the present invention as described above can be produced by the mist CVD method.
  • a film forming apparatus and a film forming method suitable for manufacturing a crystalline oxide film and a laminated structure according to the present invention will be described below.
  • the term "mist” as used in the present invention refers to a general term for fine particles of liquid dispersed in gas, and includes what is called mist, liquid droplets, and the like. Description will be made below with reference to the drawings.
  • FIG. 5 shows an outline of a film forming apparatus 101 for forming a film by the mist CVD method.
  • the film formation apparatus 101 includes a mist formation section 120 that forms a mist from the source solution 104a to generate mist, a carrier gas supply section 130 that supplies a carrier gas for transporting the mist, a mist formation section 120, and a film formation chamber 107.
  • a supply pipe 109 is connected to transport mist by a carrier gas, a film formation chamber 107 heats the mist to form a film on a substrate 110, and the mist is supplied from the supply pipe 109 together with the carrier gas. and a nozzle 150 for ejecting onto the substrate.
  • the mist generating unit 120 mists the raw material solution 104a to generate mist.
  • the misting means is not particularly limited as long as it can mist the raw material solution 104a, and may be a known misting means, but it is preferable to use a misting means using ultrasonic vibration. This is because mist can be made more stably.
  • the mist generation unit 120 includes a mist generation source 104 containing a raw material solution 104a, a container 105 containing a medium capable of transmitting ultrasonic vibrations, such as water 105a, and an ultrasonic oscillator attached to the bottom surface of the container 105.
  • 106 may be included.
  • the mist generation source 104 which is a container containing the raw material solution 104a, can be accommodated in the container 105 containing the water 105a using a support (not shown).
  • An ultrasonic transducer 106 may be provided at the bottom of the container 105, and the ultrasonic transducer 106 and the oscillator 116 may be connected. When the oscillator 116 is operated, the ultrasonic vibrator 106 vibrates, ultrasonic waves propagate into the mist generation source 104 through the water 105a, and the raw material solution 104a becomes mist.
  • the material contained in the raw material solution 104a is not particularly limited as long as it can be misted, and may be an inorganic material or an organic material.
  • Metals or metal compounds are preferably used, for example, those containing one or more metals selected from gallium, iron, indium, aluminum, vanadium, titanium, chromium, rhodium, nickel and cobalt may be used. I don't mind.
  • a raw material solution a solution obtained by dissolving or dispersing a metal in the form of a complex or a salt in an organic solvent or water can be suitably used.
  • Salt forms include, for example, halide salts such as metal chloride salts, metal bromide salts, and metal iodide salts.
  • a solution obtained by dissolving the above metal in a hydrogen halide such as hydrobromic acid, hydrochloric acid or hydroiodic acid can also be used as a salt solution.
  • a hydrogen halide such as hydrobromic acid, hydrochloric acid or hydroiodic acid
  • forms of the complex include acetylacetonate complexes, carbonyl complexes, ammine complexes, hydride complexes, and the like.
  • Acetylacetonate complexes can also be formed by mixing acetylacetone with the aforementioned salt solutions.
  • the metal concentration in the raw material solution 104a is not particularly limited, and can be set to 0.005 to 1 mol/L.
  • the hydrohalic acid includes, for example, hydrobromic acid, hydrochloric acid, hydroiodic acid, etc. Among them, hydrobromic acid and hydroiodic acid are preferable.
  • the oxidizing agent include hydrogen peroxide (H 2 O 2 ), sodium peroxide (Na 2 O 2 ), barium peroxide (BaO 2 ), benzoyl peroxide (C 6 H 5 CO) 2 O 2 and the like.
  • the raw material solution may contain a dopant.
  • a dopant is not specifically limited. Examples include n-type dopants such as tin, germanium, silicon, titanium, zirconium, vanadium or niobium, or p-type dopants such as copper, silver, iridium, rhodium and magnesium.
  • the carrier gas supply section 130 has a carrier gas source 102a that supplies carrier gas.
  • a flow control valve 103a for adjusting the flow rate of the carrier gas sent from the carrier gas source 102a may be provided.
  • a carrier gas source 102b for dilution that supplies a carrier gas for dilution and a flow control valve 103b for adjusting the flow rate of the carrier gas for dilution sent out from the carrier gas source 102b for dilution can also be provided as necessary. .
  • the type of carrier gas is not particularly limited, and can be appropriately selected according to the film to be deposited. Examples thereof include oxygen, ozone, inert gases such as nitrogen and argon, and reducing gases such as hydrogen gas and forming gas. Also, the number of carrier gases may be one, or two or more.
  • the second carrier gas a diluent gas obtained by diluting the same gas as the first carrier gas with another gas (for example, diluted 10 times) may be used, or air may be used.
  • the film forming apparatus 101 has a supply pipe 109 that connects the misting section 120 and the film forming chamber 107 .
  • the mist is transported by the carrier gas from the mist generation source 104 of the mist generator 120 through the supply pipe 109 and supplied into the film forming chamber 107 .
  • a quartz tube, a glass tube, a resin tube, or the like can be used as the supply tube 109, for example.
  • a substrate 110 is installed in the film forming chamber 107, and a substrate heating means 108 such as a heater is provided for placing the substrate 110 on a substrate placing portion and heating it.
  • a substrate placement portion the area where the substrate is placed in the substrate heating means 108 will be referred to as a "substrate placement portion".
  • the later-described "substrate non-mounting portion" indicates a region of the substrate heating means on which the substrate is not mounted.
  • the substrate heating means will have a "substrate mounting portion” and a “non-substrate mounting portion” (see FIGS. 1 and 2).
  • the substrate heating means may not have a "non-substrate mounting portion" (see FIGS. 3 and 4). .
  • the substrate heating means 108 may be provided outside the film formation chamber 107 as shown in FIG. 5, or may be provided inside the film formation chamber 107 . Further, the film forming chamber 107 has a nozzle 150 for ejecting mist containing the raw material solution supplied from the supply pipe 109 toward the substrate 110 together with the carrier gas. The ejection direction of the nozzle 150 during film formation is perpendicular to the surface of the substrate 110 .
  • the film forming apparatus is equipped with position adjusting means for the nozzle and/or the substrate heating means that can adjust the position of the substrate mounting portion between the position of the nozzle 150 in the ejection direction and the position other than the ejection direction. As described above, if the position of the substrate mounting portion can be adjusted with respect to the position of the nozzle 150 in the discharge direction, adverse effects on the substrate can be suppressed when the nozzle is heated as in the film formation method described later. .
  • FIGS. 1 and 3 An example of nozzle heating is shown in Figure 1-4.
  • the example shown in FIGS. 1 and 3 has a nozzle position adjusting means 170. After heating the nozzle, the nozzle is moved onto the substrate 110 (substrate mounting portion 111A), and the substrate is moved in the ejection direction of the nozzle. It is something that can be brought into existence. It should be noted that the nozzle position adjusting means 170 is not limited to the one shown in FIGS.
  • FIGS. 2 and 4 are provided with the position adjusting means 180 of the substrate heating means 108, and after the nozzle is heated, the substrate 110 (substrate mounting portion 111A) is moved below the nozzle (discharge direction). It is possible to make the substrate exist in the ejection direction of the nozzle.
  • the substrate heating means 108 has a substrate mounting portion 111A and a non-substrate mounting portion 111B.
  • the position adjusting means 170 of the nozzle and/or the position adjusting means 180 of the substrate heating means can adjust the position of the non-substrate mounting portion 111B to the position of the ejection direction of the nozzle.
  • the nozzle 150 is provided with a nozzle heating means 151 for heating the nozzle.
  • a nozzle heating means 151 for heating the nozzle.
  • the nozzle 150 may be provided with the nozzle heating means 151 .
  • the substrate heating means 108 may have a substrate mounting portion 111A and a non-substrate mounting portion 111B. In this case, the nozzle can be heated more efficiently.
  • the deposition chamber 107 may be provided with an exhaust port 112 for exhaust gas at a position that does not affect the supply of mist to the substrate 110 .
  • the substrate 110 may be placed on the top surface of the film formation chamber 107 to face down, or the substrate 110 may be placed on the bottom surface of the film formation chamber 107 to face up.
  • the angle of the surface of the substrate heating means on which the substrate 110 is placed with respect to the horizontal plane is also not particularly limited. The ejection direction of the nozzle may be adjusted according to the installation angle of the substrate.
  • a second example of a film forming apparatus that performs the mist CVD method includes a substrate heating means having a substrate mounting portion for mounting a substrate, a film forming member, and a film forming member positioned on the surface of the substrate mounting portion. and a position adjusting means that can be adjusted to a position other than the position on the substrate platform in the normal direction of .
  • the film forming members can be adjusted as in the film forming method described later. It is possible to suppress adverse effects on the substrate when heating the .
  • the substrate heating means can further include a non-substrate placement portion.
  • the position adjusting means for the film forming member and/or the substrate heating means can adjust the position of the film forming member to a position on the substrate non-mounting portion in the normal direction to the surface of the substrate non-mounting portion. It is preferable to be
  • the position of the film-forming member on the non-substrate-mounting portion in the normal direction to the surface of the non-substrate-mounting portion means that the film-forming member is positioned in the space that extends in the normal direction of the non-substrate-mounting portion. It means that a member exists (position).
  • the position of the film-forming member is the position on the substrate platform in the normal direction of the surface of the substrate platform. can be said to be in
  • the film-forming member can be provided with film-forming member heating means for heating the film-forming member.
  • film-forming member heating means for heating the film-forming member.
  • the film-forming member is not particularly limited as long as it is a member used for film-forming in the film-forming apparatus. mentioned.
  • a third example of a film forming apparatus for performing the mist CVD method includes a substrate heating means having a substrate mounting portion for mounting a substrate, a nozzle for supplying mist to the substrate, and exhausting the mist after film formation.
  • the exhaust means has a mechanism for exhausting the discharge discharged from the nozzle without passing through the substrate mounting portion.
  • the deposition chamber 107 is provided with the exhaust port 112 for the exhaust gas at a position that does not affect the mist supply to the substrate 110 .
  • the film forming apparatus of the third example includes, for example, a film forming member capable of adjusting the relative position between the film forming member such as the nozzle 150 and the top plate for rectification and the substrate mounting portion as described above, and/or By providing the position adjusting means for the substrate heating means, the exhaust means becomes a mechanism capable of exhausting the discharged matter discharged from the nozzle without passing through the substrate mounting part, so that the film formation method described later can be performed. As described above, it is possible to suppress adverse effects on the substrate when the film forming member is heated.
  • the film forming method according to the present invention includes the steps of heating a substrate, heating a nozzle that supplies mist containing a raw material solution, and discharging the heated nozzle onto the heated substrate in a direction perpendicular to the surface of the substrate.
  • the step of heating the nozzle the nozzle is heated in a state where there is no substrate in the discharge direction of the nozzle, and the crystallinity is
  • the method forms the film while the substrate is present in the ejection direction of the nozzle.
  • the above raw material solution 104a is accommodated in the mist generation source 104, the substrate 110 is placed in the film formation chamber 107, the heater 108 is operated, and the substrate is heated to a predetermined temperature.
  • the nozzle 150 is heated. This is because abnormal growth may occur if the temperature of the nozzle changes during film formation.
  • the method of heating the nozzle is not particularly limited, and as described in the film formation apparatus described above, the temperature of the nozzle may be controlled independently by mounting the nozzle heating means 151 such as a heater on the nozzle, or the substrate may be heated. The means 108 may heat the nozzle until the temperature stabilizes. When the nozzle is heated by the nozzle heating means provided in the nozzle, the nozzle can be efficiently heated.
  • the positional relationship between the nozzle 150 and the substrate when heating the nozzle is such that the substrate does not exist in the ejection direction of the nozzle. This is because if the substrate is present in the ejection direction of the nozzle during nozzle heating, an unintended film will grow on the substrate, resulting in extremely poor film thickness distribution and crystallinity. Although the cause is not clear, it is considered that mist or droplets remaining in the nozzle or pipe are evaporated by heating and attached to the substrate.
  • the above problem can be solved by providing the substrate heating means or the nozzle with the position adjusting means.
  • the heating of the nozzle can be performed using the substrate heating means. If the substrate is heated until the temperature of the nozzle is stabilized by the substrate heating means 108, the structure of the film forming apparatus is simplified, and the size of the apparatus itself is reduced, resulting in a smaller footprint, which is advantageous in terms of cost. be.
  • the substrate heating means 108 having the substrate mounting portion 111A and the non-substrate mounting portion 111B is used to mount the substrate on the substrate mounting portion 111A and discharge the nozzles. It is preferable to heat the nozzle 150 by the substrate heating means 108 so as to position the substrate non-placing portion 111B in the direction. It is advantageous in terms of cost, and more efficient nozzle heating can be performed.
  • the heating of the nozzle can be performed by a nozzle heating means 151 provided in the nozzle 150 as shown in FIGS.
  • the nozzle can be heated and temperature-controlled more efficiently.
  • the substrate heating means 108 having the substrate mounting portion 111A and the non-substrate mounting portion 111B.
  • the nozzle position adjusting means 170 moves the nozzle above the substrate so that the substrate exists in the ejection direction of the nozzle.
  • the substrate is moved under the nozzle by the position adjusting means 180 of the substrate heating means so that the substrate exists in the ejection direction of the nozzle.
  • the nozzle temperature can be, for example, 50 to 250°C. Note that the film formation reaction also depends on the temperature of the environment around the substrate. Therefore, it is desirable that not only the temperature of the nozzle but also the temperature of the inner wall of the deposition chamber be higher than room temperature.
  • the film forming process is performed by moving the nozzle or the substrate (substrate heating means) so that the substrate exists in the ejection direction of the nozzle.
  • Film formation by the mist CVD method includes the following steps as general steps. That is, in the misting section, a mist generation step of making a raw material solution containing gallium into mist to generate mist, a carrier gas supply step of supplying a carrier gas for conveying the mist to the misting section, and a misting section.
  • the flow control valves 103a and 103b are opened to supply the carrier gas from the carrier gas sources 102a and 102b into the film forming chamber 107.
  • the flow rate of the carrier gas is changed. and the flow rate of the carrier gas for dilution are adjusted respectively.
  • the flow rate of carrier gas is not particularly limited.
  • the carrier gas flow rate is preferably 0.05 to 50 L/min, more preferably 5 to 20 L/min.
  • the ultrasonic oscillator 106 is vibrated, and the vibration is propagated to the raw material solution 104a through the water 105a, thereby misting the raw material solution 104a and generating mist.
  • a carrier gas for transporting mist is supplied to the misting section 120 .
  • the mist is transported from the mist generating section 120 to the film forming chamber 107 via the supply pipe 109 that connects the mist generating section 120 and the film forming chamber 107 with a carrier gas.
  • the mist supplied from the supply pipe 109 passes through the pipe in the film forming chamber 107, and the mist containing the raw material solution together with the carrier gas is discharged from the nozzle 150 toward the substrate 110 and supplied.
  • the mist conveyed to the film formation chamber 107 is heated to cause a thermal reaction, thereby forming a film on part or all of the surface of the substrate 110 .
  • mist is supplied onto the heated substrate so that the ejection direction of the heated nozzle is perpendicular to the surface of the substrate to form a crystalline oxide film. Also, it is assumed that the substrate exists in the ejection direction of the nozzle. In this way, by adjusting the positional relationship between the nozzle and the substrate when the nozzle is heated and when the film is formed, an oxidation film with excellent crystallinity and a good in-plane film thickness distribution even with a thin film can be obtained. A crystalline oxide film containing gallium as a main component and having excellent semiconductor characteristics when applied to a semiconductor device can be obtained. In particular, it is possible to fabricate a crystalline oxide film containing gallium oxide as a main component and having a V value of 0.045 or less obtained by the above formula (1) for 25 in-plane film thicknesses, as described above. .
  • the temperature of the substrate surface during the reaction must be at least 400° C. or higher.
  • the mist CVD method requires that the raw material reach the substrate surface in a liquid state. Therefore, the temperature of the substrate surface is greatly lowered. Therefore, the temperature of the substrate surface during the reaction differs from the set temperature of the apparatus. It is preferable to be able to measure the temperature of the substrate surface during the reaction, but if this is difficult, the reaction can be simulated by introducing only a carrier gas or water mist containing no solute. It can be used to measure the temperature by making it.
  • the thermal reaction may be carried out under vacuum, under a non-oxygen atmosphere, under a reducing gas atmosphere, under an air atmosphere, or under an oxygen atmosphere, and may be appropriately set according to the film to be deposited.
  • the reaction pressure may be under atmospheric pressure, under increased pressure or under reduced pressure, but film formation under atmospheric pressure is preferable because the apparatus configuration can be simplified.
  • an appropriate buffer layer may be provided between the substrate and the crystalline oxide film.
  • the method of forming the buffer layer is not particularly limited, and it can be formed by a known method such as a sputtering method or a vapor deposition method. It's easy and convenient. Specifically, one or more metals selected from aluminum, gallium, chromium, iron, indium, rhodium, vanadium, titanium, and iridium are dissolved or dispersed in water in the form of complexes or salts. can be suitably used as the raw material aqueous solution.
  • Examples of forms of the complex include acetylacetonate complexes, carbonyl complexes, ammine complexes, hydride complexes, and the like.
  • Salt forms include, for example, metal chloride salts, metal bromide salts, and metal iodide salts.
  • a solution obtained by dissolving the above metal in hydrobromic acid, hydrochloric acid, hydroiodic acid, or the like can also be used as an aqueous salt solution.
  • the solute concentration is preferably 0.005 to 1 mol/L, and the dissolution temperature is preferably 20° C. or higher.
  • the buffer layer can also be formed under the same conditions as above. After forming the buffer layer to a predetermined thickness, a crystalline oxide film is formed by the film forming method according to the present invention.
  • the film obtained by the film forming method according to the present invention may be heat-treated at 200 to 600.degree. As a result, unreacted species and the like in the film are removed, and a higher quality crystalline oxide film can be obtained.
  • the heat treatment may be performed in air, in an oxygen atmosphere, or in an inert gas atmosphere such as nitrogen or argon.
  • the heat treatment time is appropriately determined, and can be, for example, 5 to 240 minutes.
  • peeling After obtaining the laminated structure including the substrate and the crystalline oxide film, the crystalline oxide film can be peeled off from the substrate.
  • the peeling means is not particularly limited, and known means may be used. Examples of peeling means include means for applying mechanical impact to peel, means for applying heat and utilizing thermal stress for peeling, means for peeling by applying vibration such as ultrasonic waves, and means for peeling by etching. etc. By peeling off, a crystalline oxide film can be obtained as a free-standing film.
  • Step of heating the film-forming member In the step of heating the film-forming members, the film-forming members such as the nozzle 150 and the top plate for rectification are heated. This is because abnormal growth may occur if the temperature of film-forming members such as a nozzle and a top plate for rectification changes during film-forming.
  • the method of heating the film-forming members such as the nozzles and the top plate for rectification is not particularly limited, and as described in the film forming apparatus described above, the film-forming members such as the nozzles and the top plate for rectification may be heated by a heater or the like.
  • the temperature of the film formation members such as the nozzles and the top plate for rectification may be controlled by mounting heating means, or the temperature of the film formation members such as the nozzles and the top plate for rectification may be controlled by the substrate heating means 108 . may be heated until the temperature stabilizes.
  • the nozzles and the top plate for rectification are efficiently heated. can be heated.
  • the positional relationship between the film formation members such as the nozzles 150 and the top plate for rectification and the substrate when heating the film formation members such as the nozzles and the top plate for rectification is determined in the normal direction of the surface of the substrate. It is assumed that there is no film forming member on the substrate. In other words, the film formation member does not exist in the space extending in the normal direction of the substrate. With such a method, gas or the like discharged from the nozzle can be discharged without passing through the substrate when the nozzle is heated to a predetermined temperature.
  • the film-forming members such as the nozzle and the top plate for rectification are heated, if the film-forming members are placed on the substrate in the direction normal to the surface of the substrate, an unintended film will grow on the substrate, resulting in a decrease in film thickness. The distribution and crystallinity are extremely deteriorated. Although the cause is not clear, it is thought that the mist, droplets, etc. remaining in the film-forming members such as the nozzles and the top plate for rectification, and the pipes evaporate due to heating and adhere to the substrate.
  • the above problem can be solved by providing position adjusting means in the film forming members such as the substrate heating means, the nozzle, and the ceiling plate for rectification. can.
  • a substrate heating means having a substrate mounting portion and a non-substrate mounting portion is used to place the substrate on the substrate mounting portion and heat the substrate, thereby heating the film forming member.
  • the film forming member is positioned on the non-substrate mounting portion in the direction normal to the surface of the non-substrate mounting portion, and the film forming member is heated by the substrate heating means.
  • the film-forming member it is preferable to heat the film-forming member by a film-forming member heating means provided in the film-forming member.
  • the film-forming member is a nozzle for supplying mist to the substrate. is preferably heated.
  • a third example includes a step of heating a substrate, a step of heating a nozzle that supplies mist containing a raw material solution to a predetermined temperature, and guiding the mist to the substrate to form a crystalline oxide film. and evacuating subsequent mist. Then, in the step of heating the nozzle to a predetermined temperature, a crystalline oxide film containing gallium oxide as a main component is formed on the substrate by a mist CVD method so as to exhaust emissions from the nozzle without passing through the substrate. It is a film forming method for forming a film.
  • a crystalline oxide film containing gallium oxide as a main component which is excellent in crystallinity and has a good in-plane film thickness distribution even when the film is thin, can be used in a semiconductor device.
  • a crystalline oxide film having excellent semiconductor properties can be obtained.
  • Such a film forming method can be performed using the apparatus shown in the third example of the film forming apparatus described above.
  • the film forming apparatus 101 used in this example will be described with reference to FIG.
  • the film forming apparatus 101 includes a carrier gas source 102a that supplies a carrier gas, a flow control valve 103a that adjusts the flow rate of the carrier gas sent from the carrier gas source 102a, and a dilution carrier gas that supplies a dilution carrier gas.
  • the substrate heating means 108 is provided with a transport mechanism so that the substrate does not exist in the vertical direction, which is the ejection direction of the nozzle, before film formation.
  • a 4-inch (100 mm) c-plane sapphire substrate was prepared as the substrate 110 and placed in the deposition chamber 107 .
  • the substrate heating means 108 is moved so that the nozzle is not in the vertical direction of the substrate. to stabilize the temperature in the deposition chamber including the nozzle.
  • the temperature at the tip of the nozzle 150 at this time was measured using a thermocouple, it was 146°C.
  • the substrate heating means 108 was moved together with the substrate to a position below the nozzle in the ejection direction (positions shown in FIGS. 2 to 5).
  • the raw material solution 104a For the raw material solution 104a, ultrapure water was used as the solvent and gallium bromide was used as the solute. The gallium concentration was set to 0.1 mol/L.
  • the obtained raw material solution 104 a was accommodated in the mist generation source 104 .
  • the flow control valves 103a and 103b are opened to supply the carrier gas from the carrier gas sources 102a and 102b into the film forming chamber 107. After sufficiently replacing the atmosphere in the film forming chamber 107 with the carrier gas, the carrier gas is supplied. The flow rate was adjusted to 2 L/min, and the flow rate of the carrier gas for dilution was adjusted to 6 L/min. Nitrogen was used as the carrier gas.
  • the ultrasonic oscillator 106 was vibrated at 2.4 MHz, and the vibration was propagated through the water 105a to the raw material solution 104a, thereby misting the raw material solution 104a to generate mist.
  • This mist was introduced into the film formation chamber 107 through the supply pipe 109 by the carrier gas, and the mist was thermally reacted on the substrate 110 to form a thin film of gallium oxide on the substrate 110 .
  • the film formation time was 30 minutes.
  • Example 1 In Example 1, the substrate and the nozzle were heated and the temperature was raised in a state in which the nozzle was vertically above the substrate before film formation. Film formation and evaluation were performed in the same manner as in Example 1 except for this. As a result, the average film thickness was 932 nm, and the V value obtained by the formula (1) was 0.046. In addition, the reflected light from the substrate showed various color distributions in the plane with the naked eye, and the appearance was not satisfactory. Further, when SBDs, which are semiconductor devices, were manufactured from this laminated structure, the withstand voltage yield of a product lot consisting of 66 SBDs was 30%.
  • the film thickness distribution can be greatly improved by the simple method of performing nozzle heating in a state where there is no substrate in the discharge direction of the nozzle before film formation.
  • the crystalline gallium oxide film obtained by the film forming method according to the present invention has a large area and excellent film thickness distribution and crystallinity, and is useful for semiconductor devices and the like.
  • the present invention is not limited to the above embodiments.
  • the above-described embodiment is an example, and any device having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect is the present invention. is included in the technical scope of

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Ceramic Engineering (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

本発明は、基板上に酸化ガリウムを主成分とする結晶性酸化物膜をミストCVD法により成膜する成膜方法であって、基板を加熱する工程と、原料溶液を含むミストを供給するノズルを加熱する工程と、加熱した前記基板上に加熱した前記ノズルの吐出方向が前記基板の表面に対し垂直方向となるように前記ミストを供給して結晶性酸化物膜の成膜を行う工程とを含み、前記ノズルを加熱する工程において、前記ノズルの吐出方向に前記基板が存在しない状態で前記ノズルの加熱を行い、前記結晶性酸化物膜の成膜を行う工程において、前記ノズルの吐出方向に前記基板が存在する状態で成膜を行う成膜方法である。これにより、結晶性に優れ、大面積で薄い膜厚であっても面内の膜厚分布が良好な酸化ガリウムを主成分とする結晶性酸化物膜、該結晶性酸化物膜を成膜するための成膜方法及び該成膜方法を行うための成膜装置を提供する。

Description

成膜方法、成膜装置及び結晶性酸化物膜
 本発明は、成膜方法、成膜装置及び結晶性酸化物膜に関する。
 高耐圧、低損失及び高耐熱を実現できる次世代のスイッチング素子として、バンドギャップの大きな酸化ガリウム(Ga)を用いた半導体装置が注目されており、インバータなどの電力用半導体装置への適用が期待されている。また、酸化ガリウムはその広いバンドギャップから、LEDやセンサー等の受発光装置としての幅広い応用も期待されている。特に、酸化ガリウムの中でもコランダム構造を有するα-Ga等は、インジウムやアルミニウムをそれぞれ、あるいは組み合わせて混晶とすることによりバンドギャップを制御することが可能であり、InAlGaO系半導体として極めて魅力的な材料系統を構成している。ここでInAlGaO系半導体とは、InAlGa(0≦X≦2、0≦Y≦2、0≦Z≦2、X+Y+Z=1.5~2.5)を示し、酸化ガリウムを内包する同一材料系統として俯瞰することができる。
 しかしながら、酸化ガリウムは最安定相がβガリア構造であるので、特殊な成膜法を用いなければ、準安定相であるコランダム構造の結晶膜を成膜することが困難である。例えば、ヘテロエピタキシャル成長等に結晶成長条件が制約されることも多く、そのため、転位密度が高くなる傾向がある。また、コランダム構造の結晶膜に限らず、成膜レートや結晶品質の向上、クラックや異常成長の抑制、ツイン抑制、反りによる基板の割れ等においてもまだまだ課題が数多く存在している。このような状況下、現在、コランダム構造を有する結晶性半導体の成膜について、いくつか検討がなされている。
 特許文献1には、ガリウム又はインジウムの臭化物又はヨウ化物を用いて、ミストCVD法により、酸化物結晶薄膜を製造する方法が記載されている。特許文献2~4には、コランダム型結晶構造を有する下地基板上に、コランダム型結晶構造を有する半導体層と、コランダム型結晶構造を有する絶縁膜とが積層された多層構造体が記載されている。また、特許文献5~7に記載されているように、ELO基板やボイド形成を用いて、ミストCVDによる成膜も検討されている。
 特許文献8には、少なくとも、ガリウム原料と酸素原料とを用いて、ハライド気相成長法(HVPE法)によりコランダム構造を有する酸化ガリウムを成膜することが記載されている。また、特許文献9には、パターン形成された基板を用いてELO結晶成長を行い、表面積は9μm以上であり、転移密度が5×10cm-2以下の結晶膜を得ることが記載されている。
特許第5397794号公報 特許第5343224号公報 特許第5397795号公報 特開2014-072533号公報 特開2016-100592号公報 特開2016-098166号公報 特開2016-100593号公報 特開2016-155714号公報 特開2019-034883号公報 国際公開第2021/065940号
 しかしながら、酸化ガリウムは放熱性に問題があり、放熱性の問題を解消するには、例えば酸化ガリウムの膜厚を30μm以下に薄くする必要があるが、研磨工程が煩雑となり、コストが高くなるという問題があり、また、そもそも、研磨により薄くした場合には、膜厚分布を維持したまま大面積の酸化ガリウム膜を得ることが困難という問題を抱えていた。また、縦型デバイスに適用した場合の直列抵抗においても、十分に満足できるものではなかった。そのため、パワー半導体デバイスとして酸化ガリウムの性能を存分に発揮するには、さらに大面積で膜厚分布のよい、例えば膜厚30μm以下の薄い酸化ガリウム膜を得ることが望ましく、このような結晶膜が待ち望まれていた。
 この課題に対し、特許文献10では、ELOマスクを用いて膜厚分布の良好な酸化ガリウム膜を得る方法が開示されているが、当該方法は剥離工程や研磨工程が必要であり工程が煩雑であったり、複雑な工程のため歩留まりが低下するといった問題があった。
 本発明は、結晶性に優れ、大面積で薄い膜厚であっても面内の膜厚分布が良好な酸化ガリウムを主成分とする結晶性酸化物膜であって、半導体装置に適用した場合に優れた半導体特性を有する結晶性酸化物膜、そのような結晶性酸化物膜を成膜するための成膜方法及び該成膜方法を行うための製造装置を提供することを目的とする。
 本発明は、上記目的を達成するためになされたものであり、基板上に酸化ガリウムを主成分とする結晶性酸化物膜をミストCVD法により成膜する成膜方法であって、基板を加熱する工程と、原料溶液を含むミストを供給するノズルを加熱する工程と、加熱した前記基板上に加熱した前記ノズルの吐出方向が前記基板の表面に対し垂直方向となるように前記ミストを供給して結晶性酸化物膜の成膜を行う工程とを含み、前記ノズルを加熱する工程において、前記ノズルの吐出方向に前記基板が存在しない状態で前記ノズルの加熱を行い、前記結晶性酸化物膜の成膜を行う工程において、前記ノズルの吐出方向に前記基板が存在する状態で成膜を行う成膜方法を提供する。
 このような成膜方法によれば、結晶性に優れ、薄い膜厚であっても面内の膜厚分布が良好な酸化ガリウムを主成分とする結晶性酸化物膜であって、半導体装置に適用した場合に優れた半導体特性を有する結晶性酸化物膜を得ることができる。
 このとき、前記基板の加熱を、基板載置部と基板非載置部を有する基板加熱手段を用い、前記基板載置部に前記基板を載置して行い、前記ノズルを加熱する工程において、前記ノズルの吐出方向に前記基板非載置部を位置させて、前記基板加熱手段により前記ノズルの加熱を行う成膜方法とすることができる。
 これにより、簡略化された成膜装置を使用することができるため、コスト的に有利となる。
 このとき、前記ノズルの加熱を、前記ノズルに設けたノズル加熱手段により行う成膜方法とすることができる。
 これにより、効率的にノズルを加熱することができる。
 本発明は、また、基板上に酸化ガリウムを主成分とする結晶性酸化物膜をミストCVD法により成膜する成膜方法であって、基板を加熱する工程と、成膜用部材を加熱する工程と、前記基板の表面の法線方向の前記基板上に、加熱した前記成膜用部材が存在する状態でミストを供給して結晶性酸化物膜の成膜を行う工程とを含み、前記成膜用部材を加熱する工程において、前記基板の表面の法線方向の前記基板上に前記成膜用部材が存在しない状態で前記成膜用部材の加熱を行う成膜方法を提供する。
 このような成膜方法によれば、結晶性に優れ、薄い膜厚であっても面内の膜厚分布が良好な酸化ガリウムを主成分とする結晶性酸化物膜であって、半導体装置に適用した場合に優れた半導体特性を有する結晶性酸化物膜を得ることができる。
 このとき、前記基板を加熱する工程において、基板載置部と基板非載置部を有する基板加熱手段を用い、前記基板載置部に前記基板を載置して基板の加熱を行い、前記成膜用部材を加熱する工程において、前記基板非載置部の表面の法線方向の前記基板非載置部上に前記成膜用部材を位置させて、前記基板加熱手段により前記成膜用部材の加熱を行う成膜方法とすることができる。
 これにより、簡略化された成膜装置を使用することができるため、コスト的に有利となる。
 このとき、前記成膜用部材を加熱する工程において、前記成膜用部材の加熱を、前記成膜用部材に設けた成膜用部材加熱手段により行う成膜方法とすることができる。
 これにより、効率的に成膜用部材を加熱することができる。
 このとき、前記成膜用部材は、前記基板に前記ミストを供給するためのノズルであり、
 前記成膜用部材を加熱する工程において、前記基板の表面の法線方向の前記基板上に前記ノズルの吐出口が存在しない状態で前記ノズルの加熱を行う成膜方法とすることができる。
 これにより、より効果的に膜厚分布が良好な酸化ガリウムを主成分とする結晶性酸化物膜を得ることができる。
 このとき、前記基板として、成膜面の面積が100mm以上、又は、直径2インチ(50mm)以上のもの、さらに、直径が4インチ(100mm)~8インチ(200mm)のものを用いる成膜方法とすることができる。
 本発明に係る成膜方法によれば、このような大面積基板に対しても膜厚分布が良好な結晶性酸化物膜を得ることができる。
 本発明は、また、上記目的を達成するためになされたものであり、ミストCVD法を行う成膜装置であって、基板を載置する基板載置部を有する基板加熱手段と、吐出方向が前記基板の表面に対し垂直方向である、原料溶液を含むミストを供給するノズルと、前記ノズルの前記吐出方向の位置と前記吐出方向以外の位置に前記基板載置部の位置を調整可能な前記ノズル及び/又は前記基板加熱手段の位置調整手段とを備える成膜装置を提供する。
 このような成膜装置によれば、上述の成膜方法を実施することができるものであり、結晶性に優れ、薄い膜厚であっても面内の膜厚分布が良好な酸化ガリウムを主成分とする結晶性酸化物膜を得ることができる成膜装置となる。
 このとき、前記基板加熱手段はさらに基板非載置部を備え、前記ノズル及び/又は前記基板加熱手段の位置調整手段は、前記ノズルの前記吐出方向の位置に前記基板非載置部の位置を調整可能なものである成膜装置とすることができる。
 これにより、装置の構造が簡略化され、また、装置自体が小型化されてフットプリントも小さくなるため、コスト的に有利なものとなる。
 このとき、前記ノズルは、該ノズルを加熱するためのノズル加熱手段を備える成膜装置とすることができる。
 これにより、効率的にかつ自由度高くノズルを加熱することができるものとなる。
 本発明は、また、ミストCVD法を行う成膜装置であって、基板を載置する基板載置部を有する基板加熱手段と、成膜用部材と、前記成膜用部材の位置を前記基板載置部の表面の法線方向の前記基板載置部上の位置以外の位置に調整可能な位置調整手段とを備える成膜装置を提供する。
 このような成膜装置によれば、上述の成膜方法を実施することができるものであり、結晶性に優れ、薄い膜厚であっても面内の膜厚分布が良好な酸化ガリウムを主成分とする結晶性酸化物膜を得ることができる成膜装置となる。
 このとき、前記基板加熱手段はさらに基板非載置部を備え、前記成膜用部材及び/又は前記基板加熱手段の位置調整手段は、前記成膜用部材の位置を前記基板非載置部の表面の法線方向の前記基板非載置部上の位置に調整可能なものである成膜装置とすることができる。
 これにより、装置の構造が簡略化され、また、装置自体が小型化されてフットプリントも小さくなるため、コスト的に有利なものとなる。
 このとき、前記成膜用部材は、該成膜用部材を加熱するための成膜用部材加熱手段を備える成膜装置とすることができる。
 これにより、効率的にかつ自由度高く成膜用部材を加熱することができるものとなる。
 このとき、前記成膜用部材は、前記基板にミストを供給するためのノズル又は供給されたミストを前記基板上で整流するための天板である成膜装置とすることができる。
 これにより、より効果的に面内の膜厚分布が良好な酸化ガリウムを主成分とする結晶性酸化物膜を得ることができる成膜装置となる。
 本発明は、上記目的を達成するためになされたものであり、酸化ガリウムを主成分とする結晶性酸化物膜であって、面内25点の膜厚について下記式(1)で得られるV値が0.045以下である結晶性酸化物膜を提供する。
Figure JPOXMLDOC01-appb-M000002
 ここで、xはi番目(i=1~25)の測定値である。
 このような結晶性酸化物膜は、膜厚分布が良好であり、パワー半導体デバイスとしたときには結晶性酸化物膜の性能を存分に発揮でき、また、性能のばらつきを抑えることができるものとなる。
 このとき、前記V値が0.041以下である結晶性酸化物膜とすることができる。
 これにより、膜厚分布はより良好となり、パワー半導体デバイスとしたときの性能のばらつきをより抑えることができるものとなる。
 このとき、直径が4インチ(100mm)~8インチ(200mm)の基板と該基板上に設けられた上記結晶性酸化物膜とを含む積層構造体とすることができる。
 このような大面積の結晶性酸化物膜の膜厚分布が良好な積層構造体は、パワー半導体デバイスとしたときには結晶性酸化物膜の性能を存分に発揮でき、また、性能のばらつきを抑えることができるものとなる。
 このとき、上記積層構造体から製造された半導体装置のみを2以上含む製品ロットであって、その耐圧歩留まりが75%以上のものである半導体装置の製品ロットとすることができる。
 このような製品ロットは、高歩留まりのものである。
 本発明は、また、基板上に酸化ガリウムを主成分とする結晶性酸化物膜をミストCVD法により成膜する成膜方法であって、基板を加熱する工程と、原料溶液を含むミストを供給するノズルを所定温度まで加熱する工程と、前記ミストを前記基板に導いて結晶性酸化物膜の成膜を行い、成膜後の前記ミストを排気する工程と、を含み、前記ノズルを所定温度まで加熱する工程において、前記ノズルから排出される排出物を、前記基板を経由することなく排気する成膜方法を提供する。
 このような成膜方法によれば、結晶性に優れ、薄い膜厚であっても面内の膜厚分布が良好な酸化ガリウムを主成分とする結晶性酸化物膜であって、半導体装置に適用した場合に優れた半導体特性を有する結晶性酸化物膜を得ることができる。
 本発明は、また、ミストCVD法を行う成膜装置であって、基板を載置する基板載置部を有する基板加熱手段と、前記基板にミストを供給するためのノズルと、成膜後の前記ミストを排気するための排気手段とを有し、前記排気手段は、前記ノズルから排出される排出物を、前記基板載置部を経由することなく排気する機構を有するものである成膜装置を提供する。
 このような成膜装置によれば、上述の成膜方法を実施することができるものであり、結晶性に優れ、薄い膜厚であっても面内の膜厚分布が良好な酸化ガリウムを主成分とする結晶性酸化物膜を得ることができる成膜装置となる。
 以上のように、本発明の成膜方法によれば、結晶性に優れ、薄い膜厚であっても面内の膜厚分布が良好な酸化ガリウムを主成分とする結晶性酸化物膜であって、半導体装置に適用した場合に優れた半導体特性を有する結晶性酸化物膜を成膜することが可能となる。本発明の成膜装置によれば、上述の成膜方法を実施することができるものであり、結晶性に優れ、薄い膜厚であっても面内の膜厚分布が良好な酸化ガリウムを主成分とする結晶性酸化物膜を得ることができる成膜装置となる。本発明の結晶性酸化物膜によれば、膜厚分布が良好であり、パワー半導体デバイスとしたときには結晶性酸化物膜の性能を存分に発揮でき、また、性能のばらつきを抑えることができるものとなる。
ノズル加熱時の第1の例を示す。 ノズル加熱時の第2の例を示す。 ノズル加熱時の第3の例を示す。 ノズル加熱時の第4の例を示す。 ミストCVD法により成膜を行う成膜装置の概略を示す。 成膜装置におけるミスト化部の一例を説明する図を示す。 本発明に係る半導体装置の一例を示す概略構成図を示す。
 以下、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
 上述のように、結晶性に優れ、大面積で薄い膜厚であっても面内の膜厚分布が良好な酸化ガリウムを主成分とする結晶性酸化物膜であって、半導体装置に適用した場合に優れた半導体特性を有する結晶性酸化物膜、そのような結晶性酸化物膜を成膜するための成膜方法及び該成膜方法を行うための製造装置を提供することが求められていた。
 本発明者らは、上記課題について鋭意検討を重ねた結果、基板上に酸化ガリウムを主成分とする結晶性酸化物膜をミストCVD法により成膜する成膜方法であって、基板を加熱する工程と、原料溶液を含むミストを供給するノズルを加熱する工程と、加熱した前記基板上に加熱した前記ノズルの吐出方向が前記基板の表面に対し垂直方向となるように前記ミストを供給して結晶性酸化物膜の成膜を行う工程とを含み、前記ノズルを加熱する工程において、前記ノズルの吐出方向に前記基板が存在しない状態で前記ノズルの加熱を行い、前記結晶性酸化物膜の成膜を行う工程において、前記ノズルの吐出方向に前記基板が存在する状態で成膜を行う成膜方法により、結晶性に優れ、薄い膜厚であっても面内の膜厚分布が良好な酸化ガリウムを主成分とする結晶性酸化物膜であって、半導体装置に適用した場合に優れた半導体特性を有する結晶性酸化物膜を得ることができることを見出し、本発明を完成した。
 本発明者らは、また基板上に酸化ガリウムを主成分とする結晶性酸化物膜をミストCVD法により成膜する成膜方法であって、基板を加熱する工程と、成膜用部材を加熱する工程と、前記基板の表面の法線方向の前記基板上に、加熱した前記成膜用部材が存在する状態でミストを供給して結晶性酸化物膜の成膜を行う工程とを含み、前記成膜用部材を加熱する工程において、前記基板の表面の法線方向の前記基板上に前記成膜用部材が存在しない状態で前記成膜用部材の加熱を行う成膜方法により、結晶性に優れ、薄い膜厚であっても面内の膜厚分布が良好な酸化ガリウムを主成分とする結晶性酸化物膜であって、半導体装置に適用した場合に優れた半導体特性を有する結晶性酸化物膜を得ることができることを見出し、本発明を完成した。
 本発明者らは、また、ミストCVD法を行う成膜装置であって、基板を載置する基板載置部を有する基板加熱手段と、吐出方向が前記基板の表面に対し垂直方向である、原料溶液を含むミストを供給するノズルと、前記ノズルの前記吐出方向の位置と前記吐出方向以外の位置に前記基板載置部の位置を調整可能な前記ノズル及び/又は前記基板加熱手段の位置調整手段とを備える成膜装置により、結晶性に優れ、薄い膜厚であっても面内の膜厚分布が良好な酸化ガリウムを主成分とする結晶性酸化物膜を得ることができる成膜装置となることを見出し、本発明を完成した。
 本発明者らは、また、ミストCVD法を行う成膜装置であって、基板を載置する基板載置部を有する基板加熱手段と、成膜用部材と、前記成膜用部材の位置を前記基板載置部の表面の法線方向の前記基板載置部上の位置以外の位置に調整可能な位置調整手段とを備える成膜装置により、上述の成膜方法を実施することができるものであり、結晶性に優れ、薄い膜厚であっても面内の膜厚分布が良好な酸化ガリウムを主成分とする結晶性酸化物膜を得ることができる成膜装置となることを見出し、本発明を完成した。
 本発明者らは、また、酸化ガリウムを主成分とする結晶性酸化物膜であって、面内25点の膜厚について下記式(1)で得られるV値が0.045以下である結晶性酸化物膜により、膜厚分布が良好であり、パワー半導体デバイスとしたときには結晶性酸化物膜の性能を存分に発揮でき、また、性能のばらつきを抑えることができるものとなることを見出し、本発明を完成した。
Figure JPOXMLDOC01-appb-M000003
 ここで、xはi番目(i=1~25)の測定値である。
 本発明者らは、また、基板上に酸化ガリウムを主成分とする結晶性酸化物膜をミストCVD法により成膜する成膜方法であって、基板を加熱する工程と、原料溶液を含むミストを供給するノズルを所定温度まで加熱する工程と、前記ミストを前記基板に導いて結晶性酸化物膜の成膜を行い、成膜後の前記ミストを排気する工程と、を含み、前記ノズルを所定温度まで加熱する工程において、前記ノズルから排出される排出物を、前記基板を経由することなく排気する成膜方法により、結晶性に優れ、薄い膜厚であっても面内の膜厚分布が良好な酸化ガリウムを主成分とする結晶性酸化物膜であって、半導体装置に適用した場合に優れた半導体特性を有する結晶性酸化物膜を得ることができることを見出し、本発明を完成した。
 本発明者らは、また、ミストCVD法を行う成膜装置であって、基板を載置する基板載置部を有する基板加熱手段と、前記基板にミストを供給するためのノズルと、成膜後の前記ミストを排気するための排気手段とを有し、前記排気手段は、前記ノズルから排出される排出物を、前記基板載置部を経由することなく排気する機構を有するものである成膜装置により、上述の成膜方法を実施することができるものであり、結晶性に優れ、薄い膜厚であっても面内の膜厚分布が良好な酸化ガリウムを主成分とする結晶性酸化物膜を得ることができる成膜装置となることを見出し、本発明を完成した。
 以下、図面を参照して説明する。
 (結晶性酸化物膜)
 まず、本発明に係る結晶性酸化物膜について説明する。本発明に係る結晶性酸化物膜は、酸化ガリウムを主成分とする結晶性酸化物膜であって、面内25点の膜厚について下記式(1)で得られるV値が0.045以下である結晶性酸化物膜である。
Figure JPOXMLDOC01-appb-M000004
 ここで、xはi番目(i=1~25)の測定値である。
 このような本発明に係る結晶性酸化物膜は、膜厚分布が良好であり、パワー半導体デバイスとしたときには結晶性酸化物膜の性能を存分に発揮でき、また、性能のばらつきを抑えることができるものである。以下の説明では、「酸化ガリウムを主成分とする結晶性酸化物膜」を単に「結晶性酸化物膜」ということもある。
 一般に結晶性酸化物膜は金属と酸素から構成されるが、本発明に係る結晶性酸化物膜においては、金属としてガリウムを主成分としていればよい。なお、本発明において「ガリウムを主成分とする」とは、金属成分のうち50~100%がガリウムであることを意味する。ガリウム以外の金属成分としては、例えば、鉄、インジウム、アルミニウム、バナジウム、チタン、クロム、ロジウム、イリジウム、ニッケル及びコバルトから選ばれる1種又は2種以上の金属を含んでもよい。
 結晶性酸化物膜中には、ドーパント元素が含まれていてもよい。例えば、スズ、ゲルマニウム、ケイ素、チタン、ジルコニウム、バナジウム又はニオブ等のn型ドーパント、又は、銅、銀、スズ、イリジウム、ロジウム、マグネシウム等のp型ドーパントなどが挙げられ、特に限定されない。ドーパントの濃度は、例えば、約1×1016/cm~1×1022/cmであってもよく、約1×1017/cm以下の低濃度としても、約1×1020/cm以上の高濃度としてもよい。
 結晶性酸化物膜の結晶構造は特に限定されず、βガリア構造であってもよいし、コランダム構造であってもよいし、直方晶でもよい。複数の結晶構造が混在していても、多結晶でもかまわないが、単結晶又は一軸配向した膜であることが好ましい。単結晶又は一軸配向した膜であることは、X線回折装置や電子線回折装置などで確認することができる。膜にX線や電子線を照射すると結晶構造に応じた回折像が得られるが、一軸配向していると特定のピークのみが出現する。これにより、一軸配向していると判断できる。
 結晶性酸化物膜の膜厚は特に限定されないが、0.1μm以上であることが好ましい。上限値は特に限定されない。例えば、100μm以下であってよく、好ましくは50μm以下であり、より好ましくは30μm以下とすることができる。膜厚は、触針式の段差計や、反射分光式の膜厚計、エリプソメータ、断面をSEMやTEMで観察するなどの方法で測定することができ、いずれの方法でもよい。本発明に係る結晶性酸化物膜においては、結晶性酸化物膜の面内の25点を膜厚測定した際のV値が0.045以下である。ここで、V値は、次の式(1)で定義される無次元量である。
Figure JPOXMLDOC01-appb-M000005
 なお、xはi番目(i=1~25)の測定値である。
 V値が小さいほど膜厚バラツキが小さいことを表す。このため、V値は0.041以下であることが好ましい。V値が0.041以下の結晶性酸化物膜であれば、膜厚分布がより良好となり、パワー半導体デバイスとしたときの性能のばらつきをより有効に抑えることができるものとなるため好ましい。このような結晶性酸化物膜は、後述するミストCVD装置(成膜装置)を用いたミストCVD法により成膜することで得ることができる。なお、V値の下限は0以上である。
 (積層構造体)
 本発明に係る積層構造体210は、図7に示すように、少なくとも基板110上に結晶性酸化物膜203を設けたものとすることができる。結晶性酸化物膜203は単層でも、図7に示すように複数層であってもよい。また、このときの基板としては、直径が4インチ(100mm)~8インチ(200mm)の基板とすることができる。こうすることで、大面積で膜厚分布に優れ、半導体装置に適用した場合に半導体特性は優れたものとなる。すなわち、このような積層構造体からパワー半導体デバイスなどの半導体装置を製造したとき、当該半導体装置を2以上含む製品ロットは、その耐圧歩留まりを75%以上とすることができる。
 基板110と結晶性酸化物膜203の間には別の層が介在しても構わない。別の層とは、基板ならびに最表層の結晶性酸化物膜と組成が異なる層であり、バッファ層とも呼ばれる。バッファ層は、酸化物半導体膜、絶縁膜、金属膜等、いずれでも構わなく、材料としては、例えば、Al、Ga、Cr、Fe、In、Rh、V、Ti、Ir、等が好適に用いられる。バッファ層の厚さとしては0.1μm~2μmが好ましい。
 (基板)
 本発明に係る結晶性酸化物を含む積層構造体や本発明に係る成膜方法で用いる基板は、上記の結晶性酸化物膜の支持体となるものであれば特に限定されない。材料は特に限定されず、公知の基板を用いることができ、有機化合物であってもよいし、無機化合物であってもよい。例えば、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミド、フッ素樹脂、鉄やアルミニウム、ステンレス鋼、金等の金属、石英、ガラス、炭酸カルシウム、酸化ガリウム、ZnO等が挙げられる。これらに加え、シリコン、サファイアや、タンタル酸リチウム、ニオブ酸リチウム、SiC、GaN、酸化鉄、酸化クロム、などの単結晶基板が挙げられ、本発明に係る積層構造体においては以上のような単結晶基板が望ましい。これらにより、より良質な結晶性酸化物膜を得ることができる。特に、サファイア基板、タンタル酸リチウム基板、ニオブ酸リチウム基板は比較的安価であり、工業的に有利である。
 基板の厚さは100~5000μmであることが好ましい。このような範囲のものであれば、ハンドリングが容易であり、かつ、成膜時に熱抵抗を抑制できるため良質の膜が得られやすくなる。
 基板の大きさに特に制限はないが、基板の面積が100mm以上、又は、直径2インチ(50mm)以上のものであれば、結晶性の良好な大面積の膜が得られ好ましい。基板の面積の上限は特に限定されないが、100000mm以下とすることができる。さらに、基板の直径を4インチ(100mm)~8インチ(200mm)とすれば、得られた積層構造体に対し、既存の加工装置を用いた加工が施しやすくなり、半導体装置製造の際に工業的に有利となる。
 (半導体装置の構成例)
 本発明に係る積層構造体210を用いた半導体装置200の好適な例を図7に示す。図7の例では、基板110上に結晶性酸化物膜203が形成されている。結晶性酸化物膜203は、基板110側から順に絶縁性薄膜203aと導電性薄膜203bが積層されて構成されている。導電性薄膜203b上にゲート絶縁膜205が形成されている。ゲート絶縁膜205上にはゲート電極207が形成されている。また、導電性薄膜203b上には、ゲート電極207を挟むように、ソース・ドレイン電極209が形成されている。このような構成によれば、ゲート電極207に印加するゲート電圧によって、導電性薄膜203bに形成される空乏層の制御が可能となり、トランジスタ動作(FETデバイス)が可能となる。
 本発明に係る積層構造体を用いて形成される半導体装置としては、MISやHEMT、IGBT等のトランジスタやTFT、半導体-金属接合を利用したショットキーバリアダイオード(SBD)、他のP層と組み合わせたPN又はPINダイオード、受発光素子が挙げられる。本発明に係る積層構造体は、これらデバイスの特性向上に有用である。
 上述のような本発明に係る結晶性酸化物膜や積層構造体は、ミストCVD法で作製することが可能である。以下に、本発明に係る結晶性酸化物膜や積層構造体の製造に好適な成膜装置、成膜方法を説明する。ここで、本発明でいうミストとは、気体中に分散した液体の微粒子の総称を指し、霧、液滴等と呼ばれるものを含む。以下、図面を参照しながら説明する。
 [成膜装置]
 (第1の成膜装置)
 まず、本発明に係る成膜装置の第1の例について説明する。図5にミストCVD法により成膜を行う成膜装置101の概略を示す。成膜装置101は、原料溶液104aをミスト化してミストを発生させるミスト化部120と、ミストを搬送するキャリアガスを供給するキャリアガス供給部130と、ミスト化部120と成膜室107とを接続し、キャリアガスによってミストが搬送される供給管109と、当該ミストを熱処理して、基板110上に成膜を行う成膜室107、ならびに、供給管109からキャリアガスとともに供給されたミストを基板上に噴出させるノズル150と、を少なくとも有している。
 (ミスト化部)
 ミスト化部120では、原料溶液104aをミスト化してミストを発生させる。ミスト化手段は、原料溶液104aをミスト化できさえすれば特に限定されず、公知のミスト化手段であってよいが、超音波振動によるミスト化手段を用いることが好ましい。より安定してミスト化することができるためである。
 このようなミスト化部120の一例を図6に示す。ミスト化部120は、原料溶液104aが収容されるミスト発生源104と、超音波振動を伝達可能な媒体、例えば水105aが入れられる容器105と、容器105の底面に取り付けられた超音波振動子106を含んでもよい。詳細には、原料溶液104aが収容されている容器からなるミスト発生源104が、水105aが収容されている容器105に、支持体(図示せず)を用いて収納されることができる。容器105の底部には、超音波振動子106が備え付けられていてもよく、超音波振動子106と発振器116とが接続されていてもよい。そして、発振器116を作動させると超音波振動子106が振動し、水105aを介してミスト発生源104内に超音波が伝播し、原料溶液104aがミスト化するように構成されることができる。
 (原料溶液)
 原料溶液104aはミスト化が可能であれば溶液に含まれる材料は特に限定されず、無機材料であっても、有機材料であってもよい。金属又は金属化合物が好適に用いられ、例えば、ガリウム、鉄、インジウム、アルミニウム、バナジウム、チタン、クロム、ロジウム、ニッケル及びコバルトから選ばれる1種又は2種以上の金属を含むものを使用してもかまわない。このような原料溶液として、金属を錯体又は塩の形態で、有機溶媒又は水に溶解又は分散させたものを好適に用いることができる。塩の形態としては、例えば、塩化金属塩、臭化金属塩、ヨウ化金属塩のようなハロゲン化塩などが挙げられる。また、上記金属を、臭化水素酸、塩酸、ヨウ化水素酸のようなハロゲン化水素等に溶解したものも塩の溶液として用いることができる。錯体の形態としては、例えば、アセチルアセトナート錯体、カルボニル錯体、アンミン錯体、ヒドリド錯体などが挙げられる。前述した塩の溶液にアセチルアセトンを混合することによっても、アセチルアセトナート錯体を形成することができる。原料溶液104a中の金属濃度は特に限定されず、0.005~1mol/Lなどとすることができる。
 原料溶液には、ハロゲン化水素酸や酸化剤等の添加剤を混合してもよい。ハロゲン化水素酸としては、例えば、臭化水素酸、塩酸、ヨウ化水素酸などが挙げられるが、なかでも、臭化水素酸又はヨウ化水素酸が好ましい。酸化剤としては、例えば、過酸化水素(H)、過酸化ナトリウム(Na)、過酸化バリウム(BaO)、過酸化ベンゾイル(CCO)等の過酸化物、次亜塩素酸(HClO)、過塩素酸、硝酸、オゾン水、過酢酸やニトロベンゼン等の有機過酸化物などが挙げられる。
 原料溶液には、ドーパントが含まれていてもよい。ドーパントは特に限定されない。例えば、スズ、ゲルマニウム、ケイ素、チタン、ジルコニウム、バナジウム又はニオブ等のn型ドーパント、又は、銅、銀、イリジウム、ロジウム、マグネシウム等のp型ドーパントなどが挙げられる。
 (キャリアガス供給部)
 図5に示すように、キャリアガス供給部130はキャリアガスを供給するキャリアガス源102aを有する。このとき、キャリアガス源102aから送り出されるキャリアガスの流量を調節するための流量調節弁103aを備えていてもよい。また、必要に応じて希釈用キャリアガスを供給する希釈用キャリアガス源102bや、希釈用キャリアガス源102bから送り出される希釈用キャリアガスの流量を調節するための流量調節弁103bを備えることもできる。
 キャリアガスの種類は、特に限定されず、成膜物に応じて適宜選択可能である。例えば、酸素、オゾン、窒素やアルゴン等の不活性ガス、又は水素ガスやフォーミングガス等の還元ガスなどが挙げられる。また、キャリアガスの種類は1種類でも、2種類以上であってもよい。例えば、第2のキャリアガスとして、第1のキャリアガスと同じガスをそれ以外のガスで希釈した(例えば10倍に希釈した)希釈ガスなどをさらに用いてもよく、空気を用いることもできる。
 (供給管)
 成膜装置101は、ミスト化部120と成膜室107とを接続する供給管109を有する。この場合、ミストは、ミスト化部120のミスト発生源104から供給管109を介してキャリアガスによって搬送され、成膜室107内に供給される。供給管109は、例えば、石英管やガラス管、樹脂製のチューブなどを使用することができる。
 (成膜室)
 成膜室107内には基板110が設置されており、基板110を基板載置部に載置して加熱するためのヒーターなどの基板加熱手段108を備えている。以下、基板加熱手段108において基板が載置される領域を「基板載置部」という。また、後述の「基板非載置部」とは、基板加熱手段のうち基板が載置されていない領域を示す。例えば、基板より基板加熱手段の基板載置面の方が大きければ、基板加熱手段は「基板載置部」と「基板非載置部」とを有することになる(図1,2参照)。基板加熱手段の基板載置面の大きさが基板と同じ(またはそれ以下)場合のように、基板加熱手段は「基板非載置部」を有さないこともある(図3,4参照)。
 基板加熱手段108は、図5に示されるように成膜室107の外部に設けられていてもよいし、成膜室107の内部に設けられていてもよい。また、成膜室107内には、供給管109から供給された原料溶液を含むミストを、キャリアガスとともに基板110に向けて噴出するためのノズル150を有する。成膜時のノズル150の吐出方向は、基板110の表面に対し垂直方向である。
 そして本発明に係る成膜装置は、ノズル150の吐出方向の位置と吐出方向以外の位置に基板載置部の位置を調整可能なノズル及び/又は基板加熱手段の位置調整手段を備えている。このように、ノズル150の吐出方向の位置に対して基板載置部の位置が調整可能なものであれば、後述する成膜方法のようにノズルを加熱するときの基板への悪影響を抑制できる。
 図1-4にノズル加熱の例を示す。図1,3に示す例はノズルの位置調整手段170を備えたものであり、ノズルを加熱した後に、ノズルを基板110(基板載置部111A)上に移動させ、ノズルの吐出方向に基板を存在する状態にすることができるものである。なお、ノズルの位置調整手段170は図1,3に例示するような基板に対して平行移動させるものに限られず、ノズルの角度を傾けるような機構であってもよい。
 図2、図4に示す例は、基板加熱手段108の位置調整手段180を備えたものであり、ノズルを加熱した後に、基板110(基板載置部111A)をノズル下(吐出方向)に移動させ、ノズルの吐出方向に基板を存在する状態にすることができるものである。
 また、図1,2に示す例では、基板加熱手段108が、基板載置部111Aと基板非載置部111Bを有している。このとき、ノズルの位置調整手段170及び/又は基板加熱手段の位置調整手段180が、ノズルの吐出方向の位置に基板非載置部111Bの位置を調整可能なものであることが好ましい。このような装置であれば、装置の構造が簡略化され、また、装置自体が小型化されてフットプリントも小さくなるため、コスト的に有利なものとなるとともに、基板加熱手段によりノズルの加熱を効率的に行うことができるものとなる。
 また、図3,4に示す例は、ノズルを加熱するためのノズル加熱手段151が、ノズル150に設けられている。これにより、基板と独立にノズルの加熱・温調ができるため自由度が高くなり、より効率的にノズルを加熱・温調することができる成膜装置となる。
 なお、図1,2に記載の成膜装置において、ノズル150にノズル加熱手段151が設けられていてもよい。また、図3,4に記載の成膜装置において、基板加熱手段108が、基板載置部111Aと基板非載置部111Bを有するものであってもよい。この場合、ノズルの加熱をさらに効率的に行うことができるものとなる。
 また、成膜室107には、基板110へのミストの供給に影響を及ぼさない位置に、排ガスの排気口112が設けられてもよい。また、基板110を成膜室107の上面に設置するなどして、フェイスダウンとしてもよいし、基板110を成膜室107の底面に設置して、フェイスアップとしてもよい。基板110を設置する基板加熱手段の表面の水平面に対する角度も特に限定されない。基板の設置角度に応じてノズルの吐出方向を調整すればよい。
 (第2の成膜装置)
 次に、本発明に係る成膜装置の第2の例について説明する。以下の説明では、第1の例と異なる点を中心に説明する。ミストCVD法を行う成膜装置の第2の例は、基板を載置する基板載置部を有する基板加熱手段と、成膜用部材と、成膜用部材の位置を基板載置部の表面の法線方向の基板載置部上の位置以外の位置に調整可能な位置調整手段とを備えるものである。このように、ノズル150や整流用の天板などの成膜用部材の位置に対して基板載置部の位置が調整可能なものであれば、後述する成膜方法のように成膜用部材を加熱するときの基板への悪影響を抑制できる。
 上記の基板加熱手段はさらに基板非載置部を備えることができる。そして、成膜用部材及び/又は記基板加熱手段の位置調整手段は、成膜用部材の位置を基板非載置部の表面の法線方向の基板非載置部上の位置に調整可能なものであることが好ましい。
 なお、成膜用部材の位置が基板非載置部の表面の法線方向の基板非載置部上の位置にあるとは、基板非載置部が法線方向に張る空間に成膜用部材が存在(位置)することを意味する。基板載置部が法線方向に張る空間に成膜用部材が存在(位置)するときは、成膜用部材の位置が基板載置部の表面の法線方向の基板載置部上の位置にあるということができる。
 成膜用部材は、成膜用部材を加熱するための成膜用部材加熱手段を備えることができる。例えば、ノズルや整流用の天板などの成膜用部材にヒーターなどの加熱手段を搭載するなどしてノズルや整流用の天板などの成膜用部材単独で温調を行うことが可能である。
 成膜用部材は成膜装置の中で成膜時に用いる部材であれば特に限定されないが、基板にミストを供給するためのノズルや供給されたミストを前記基板上で整流するための天板が挙げられる。
 (第3の成膜装置)
 次に、本発明に係る成膜装置の第3の例について説明する。以下の説明では、第1の例と異なる点を中心に説明する。ミストCVD法を行う成膜装置の第3の例は、基板を載置する基板載置部を有する基板加熱手段と、基板にミストを供給するためのノズルと、成膜後のミストを排気するための排気手段とを有し、排気手段が、ノズルから排出される排出物を、基板載置部を経由することなく排気する機構を有するものである。上述の通り、成膜室107には、基板110へのミストの供給に影響を及ぼさない位置に、排ガスの排気口112が設けられている。第3の例の成膜装置は、例えば上述のようにノズル150や整流用の天板などの成膜用部材と基板載置部の相対的な位置を調整可能な成膜用部材及び/又は基板加熱手段の位置調整手段を備えることで、排気手段が、ノズルから排出される排出物を、基板載置部を経由することなく排気することが可能な機構となるため、後述する成膜方法のように成膜用部材を加熱するときの基板への悪影響を抑制できるものとなる。
 [成膜方法]
 (第1の成膜方法)
 次に、以下、図1-6を参照しながら、本発明に係る成膜方法の第1の例を説明する。本発明に係る成膜方法は、基板を加熱する工程と、原料溶液を含むミストを供給するノズルを加熱する工程と、加熱した基板上に加熱したノズルの吐出方向が基板の表面に対し垂直方向となるようにミストを供給して結晶性酸化物膜の成膜を行う工程とを含み、ノズルを加熱する工程において、ノズルの吐出方向に基板が存在しない状態でノズルの加熱を行い、結晶性酸化物膜の成膜を行う工程において、ノズルの吐出方向に基板が存在する状態で成膜を行う方法である。
 (基板加熱工程)
 前述の原料溶液104aをミスト発生源104内に収容し、基板110を成膜室107内に載置して、ヒーター108を作動させ、基板を加熱・昇温し所定の温度にする。
 (ノズル加熱工程)
 また、ノズル150の加熱を行う。成膜中にノズルの温度が変化すると、異常成長が生じたりするためである。ノズルの加熱方法は特に限定されず、上述の成膜装置で説明したように、ノズルにヒーターなどのノズル加熱手段151を搭載するなどしてノズル単独で温調を行ってもよいし、基板加熱手段108でノズルの温度が安定するまで加熱してもよい。ノズルに設けたノズル加熱手段によりノズルの加熱を行う場合には、効率的にノズルを加熱することができる。
 ここで、ノズルを加熱する際のノズル150と基板の位置関係は、ノズルの吐出方向に基板が存在しない状態とする。ノズル加熱時にノズルの吐出方向に基板を存在させると、基板上に意図しない膜が成長してしまい、膜厚分布や結晶性が極めて悪化してしまうためである。原因は定かでないが、ノズルや配管内に残留したミストや液滴が加熱により蒸発するなどしてこれが基板に付着していると考えられる。
 ノズルの加熱が終了してから基板を載置することも考えられるが、成膜室の開閉などによる温度変化の影響が懸念されるため好ましくない。このため本発明に係る成膜方法では、基板加熱手段やノズルに位置調整手段を設けるなどの方法により上記問題を解消することができる。
 成膜前のノズルを加熱する方法の例を図1~4を参照しながら説明する。いずれも、ノズル150の吐出方向に基板が存在しない状態としている。
 上記のように、ノズルの加熱は、基板加熱手段を用いて行うことができる。基板加熱手段108でノズルの温度が安定するまで加熱することとすれば、成膜装置の構造が簡略化され、また、装置自体が小型化されてフットプリントも小さくなるため、コスト的に有利である。このとき、図1、図2に示すように、基板載置部111Aと基板非載置部111Bを有する基板加熱手段108を用い、基板載置部111Aに基板を載置して、ノズルの吐出方向に基板非載置部111Bを位置させるようにして、基板加熱手段108によりノズル150の加熱を行うことが好ましい。コスト的に有利であるとともに、より効率的なノズルの加熱を行うことができる。
 また、ノズルの加熱は、図3、図4に示すようにノズル150に設けたノズル加熱手段151により行うこともできる。この場合、より効率的にノズルを加熱・温調することができる。なお、ノズルの加熱をノズル加熱手段151により行う場合にも、さらに基板載置部111Aと基板非載置部111Bを有する基板加熱手段108を使用することも可能である。
 図1、図3の例では、ノズルを加熱した後に、ノズルの位置調整手段170により、ノズルの吐出方向に基板が存在する状態となるようにノズルを基板上に移動させる。図2、図4は、ノズルを加熱した後に、基板加熱手段の位置調整手段180により、ノズルの吐出方向に基板が存在する状態となるように基板をノズル下に移動させる。
 ノズル温度は、例えば50~250℃とすることができる。なお、成膜反応は基板周囲の環境の温度にも依存する。従って、ノズルだけでなく、成膜室の内壁の温度も室温よりも高くすることが望ましい。
 (成膜工程等)
 ノズルの温度が安定したら、ノズルの吐出方向に基板が存在する状態となるようにノズル又は基板(基板加熱手段)を移動して成膜工程を行う。
 ミストCVD法による成膜では、一般的な工程として以下の工程が含まれる。すなわち、ミスト化部において、ガリウムを含む原料溶液をミスト化してミストを発生させるミスト発生工程と、ミストを搬送するためのキャリアガスをミスト化部に供給するキャリアガス供給工程と、ミスト化部と成膜室とを接続する供給管を介して、ミスト化部から成膜室へと、ミストを前記キャリアガスにより搬送する搬送工程と、搬送されたミストを熱処理して基板上に成膜を行う成膜工程である。以下に説明する。
 まず、流量調節弁103a、103bを開いてキャリアガス源102a、102bからキャリアガスを成膜室107内に供給し、成膜室107の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量と希釈用キャリアガスの流量をそれぞれ調節する。キャリアガスの流量は特に限定されない。例えば、2インチの基板上に成膜する場合には、キャリアガスの流量は0.05~50L/分とすることが好ましく、5~20L/分とすることがより好ましい。
 次に、ミスト発生工程として、超音波振動子106を振動させ、その振動を、水105aを通じて原料溶液104aに伝播させることによって、原料溶液104aをミスト化してミストを発生させる。
 次に、キャリアガス供給工程として、ミストを搬送するためのキャリアガスをミスト化部120に供給する。
 次に、搬送工程として、ミスト化部120と成膜室107とを接続する供給管109を介して、ミスト化部120から成膜室107へと、ミストをキャリアガスにより搬送する。
 次に、成膜工程として、供給管109から供給されたミストは成膜室107内の配管を通り、ノズル150から基板110に向けてキャリアガスとともに原料溶液を含むミストを吐出して供給する。成膜室107に搬送されたミストを加熱し熱反応を生じさせて、基板110の表面の一部又は全部に成膜を行う。
 このとき、図5に示すように、加熱した基板上に、加熱したノズルの吐出方向が基板の表面に対し垂直方向となるようにミストを供給して結晶性酸化物膜の成膜を行う。また、ノズルの吐出方向に基板が存在する状態とする。このように、ノズルを加熱する時と成膜を行うときのノズルと基板の位置関係を調整することにより、結晶性に優れ、薄い膜厚であっても面内の膜厚分布が良好な酸化ガリウムを主成分とする結晶性酸化物膜であって、半導体装置に適用した場合に優れた半導体特性を有する結晶性酸化物膜を得ることができる。特に、上述したような、面内25点の膜厚について上記式(1)で得られるV値が0.045以下である酸化ガリウムを主成分とする結晶性酸化物膜を作製することができる。
 熱反応は、加熱によりミストに含まれるガリウム等の反応を進行する必要がある。このため、反応時の基板表面の温度は少なくとも400℃以上である必要がある。ミストCVD法は、他のCVD法と異なり、原料を液体の状態で基板表面まで到達させる必要がある。このため、基板表面の温度は大きく低下する。従って、反応時の基板表面の温度は、装置の設定の温度とは異なる。反応時も基板表面の温度を測定できることが好ましいが、これが困難な場合は、キャリアガスのみを導入したり、溶質を含まない水ミストを導入したりするなどして、反応の様子を模擬的に作って温度を測定し代用することができる。
 なお、熱反応は、真空下、非酸素雰囲気下、還元ガス雰囲気下、空気雰囲気下及び酸素雰囲気下のいずれの雰囲気下で行われてもよく、成膜物に応じて適宜設定すればよい。また、反応圧力は、大気圧下、加圧下又は減圧下のいずれの条件下で行われてもよいが、大気圧下の成膜であれば、装置構成が簡略化できるので好ましい。
 (バッファ層の形成)
 上述のように、基板と結晶性酸化物膜の間に適宜バッファ層を設けてもよい。バッファ層の形成方法は特に限定されず、スパッタ法、蒸着法など公知の方法により成膜することができるが、上記のようなミストCVD法を用いる場合は、原料溶液を適宜変更するだけで形成でき簡便である。具体的には、アルミニウム、ガリウム、クロム、鉄、インジウム、ロジウム、バナジウム、チタン、イリジウム、から選ばれる1種又は2種以上の金属を、錯体又は塩の形態で水に溶解又は分散させたものを原料水溶液として好適に用いることができる。錯体の形態としては、例えば、アセチルアセトナート錯体、カルボニル錯体、アンミン錯体、ヒドリド錯体などが挙げられる。塩の形態としては、例えば、塩化金属塩、臭化金属塩、ヨウ化金属塩などが挙げられる。また、上記金属を、臭化水素酸、塩酸、ヨウ化水素酸等に溶解したものも塩の水溶液として用いることができる。この場合も、溶質濃度は0.005~1mol/Lが好ましく、溶解温度は20℃以上とすることが好ましい。他の条件についても、上記と同様にすることでバッファ層を形成することが可能である。バッファ層を所定の厚さ成膜した後、本発明に係る成膜方法により結晶性酸化物膜の成膜を行う。
 (熱処理)
 また、本発明に係る成膜方法で得られた膜を、200~600℃で熱処理してもよい。これにより、膜中の未反応種などが除去され、より高品質の結晶性酸化物膜を得ることができる。熱処理は、空気中、酸素雰囲気中で行ってもよいし、窒素やアルゴン等の不活性ガス雰囲気下で行ってもかまわない。熱処理時間は適宜決定されるが、例えば、5~240分とすることができる。
 (剥離)
 基板と結晶性酸化物膜を含む積層構造体を得た後に、結晶性酸化物膜を基板から剥離することもできる。剥離手段は特に限定されず、公知の手段であってもよい。剥離手段の方法としては例えば、機械的衝撃を与えて剥離する手段、熱を加えて熱応力を利用して剥離する手段、超音波等の振動を加えて剥離する手段、エッチングして剥離する手段などが挙げられる。剥離することによって、結晶性酸化物膜を自立膜として得ることができる。
 (第2の成膜方法)
 次に、本発明に係る成膜方法の第2の例について説明する。第2の例では、基板を加熱する工程と、成膜用部材を加熱する工程と、基板の表面の法線方向の基板上に、加熱した成膜用部材が存在する状態でミストを供給して結晶性酸化物膜の成膜を行う工程とを含み、成膜用部材を加熱する工程において、基板の表面の法線方向の基板上に成膜用部材が存在しない状態で成膜用部材の加熱を行う、基板上に酸化ガリウムを主成分とする結晶性酸化物膜をミストCVD法により成膜する成膜方法である。以下の説明では、第1の成膜方法の例と異なる点を中心に説明する。
 (成膜用部材を加熱する工程)
 成膜用部材を加熱する工程では、ノズル150や整流用の天板などの成膜用部材の加熱を行う。成膜中にノズルや整流用の天板などの成膜用部材の温度が変化すると、異常成長が生じたりするためである。ノズルや整流用の天板などの成膜用部材の加熱方法は特に限定されず、上述の成膜装置で説明したように、ノズルや整流用の天板などの成膜用部材にヒーターなどの加熱手段を搭載するなどしてノズルや整流用の天板などの成膜用部材単独で温調を行ってもよいし、基板加熱手段108でノズルや整流用の天板などの成膜用部材の温度が安定するまで加熱してもよい。ノズルや整流用の天板などの成膜用部材に設けた加熱手段によりノズルや整流用の天板などの成膜用部材の加熱を行う場合には、効率的にノズルや整流用の天板などの成膜用部材を加熱することができる。
 ここで、ノズルや整流用の天板などの成膜用部材を加熱する際のノズル150や整流用の天板などの成膜用部材と基板の位置関係は、基板の表面の法線方向の基板上に成膜用部材が存在しない状態とする。言い換えると、基板が法線方向に張る空間内に成膜用部材が存在しない状態とする。このような方法により、ノズルの所定温度までの加熱時に、当該ノズルから排出されるガス等を前記基板を経由することなく排気することができる。
 ノズルや整流用の天板などの成膜用部材の加熱時に基板の表面の法線方向の基板上に成膜用部材を位置させると、基板上に意図しない膜が成長してしまい、膜厚分布や結晶性が極めて悪化してしまう。原因は定かでないが、ノズルや整流用の天板などの成膜用部材や配管内に残留したミストや液滴などが加熱により蒸発するなどしてこれが基板に付着していると考えられる。
 ノズルや整流用の天板などの成膜用部材の加熱が終了してから基板を載置することも考えられるが、成膜室の開閉などによる温度変化の影響が懸念されるため好ましくない。このため本発明に係る成膜方法の第2の例では、基板加熱手段やノズルや整流用の天板などの成膜用部材に位置調整手段を設けるなどの方法により上記問題を解消することができる。
 基板を加熱する工程において、基板載置部と基板非載置部を有する基板加熱手段を用い、基板載置部に基板を載置して基板の加熱を行い、成膜用部材を加熱する工程において、基板非載置部の表面の法線方向の基板非載置部上に成膜用部材を位置させて、基板加熱手段により成膜用部材の加熱を行うことが好ましい。
 また、成膜用部材を加熱する工程において、成膜用部材の加熱を、成膜用部材に設けた成膜用部材加熱手段により行うことが好ましい。
 成膜用部材は、基板にミストを供給するためのノズルであり、成膜用部材を加熱する工程において、基板の表面の法線方向の基板上に、ノズルの吐出口が存在しない状態でノズルの加熱を行うことが好ましい。
 (第3の成膜方法)
 次に、本発明に係る成膜方法の第3の例について説明する。第3の例は、基板を加熱する工程と、原料溶液を含むミストを供給するノズルを所定温度まで加熱する工程と、ミストを基板に導いて結晶性酸化物膜の成膜を行い、成膜後のミストを排気する工程と、を含む。そして、ノズルを所定温度まで加熱する工程において、ノズルから排出される排出物を、基板を経由することなく排気する、基板上に酸化ガリウムを主成分とする結晶性酸化物膜をミストCVD法により成膜する成膜方法である。このような成膜方法によれば、結晶性に優れ、薄い膜厚であっても面内の膜厚分布が良好な酸化ガリウムを主成分とする結晶性酸化物膜であって、半導体装置に適用した場合に優れた半導体特性を有する結晶性酸化物膜を得ることができる。このような成膜方法は、上述の成膜装置の第3の例に示すような装置を用いて行うことができる。
 以下、実施例を挙げて本発明について具体的に説明するが、これは本発明を限定するものではない。
 [実施例1]
 図5を参照しながら、本実施例で用いた成膜装置101を説明する。成膜装置101は、キャリアガスを供給するキャリアガス源102aと、キャリアガス源102aから送り出されるキャリアガスの流量を調節するための流量調節弁103aと、希釈用キャリアガスを供給する希釈用キャリアガス源102bと、希釈用キャリアガス源102bから送り出される希釈用キャリアガスの流量を調節するための流量調節弁103bと、原料溶液104aが収容されるミスト発生源104と、水105aが収容された容器105と、容器105の底面に取り付けられた超音波振動子106と、基板加熱手段108を具備する成膜室107と、ミスト発生源104から成膜室107までをつなぐ石英製の供給管109と、ノズル150と、を備えている。さらに、図2に示すように、基板加熱手段108に搬送機構を持たせ、成膜前にノズルの吐出方向である鉛直方向に基板が存在しない状態にできるようにしてある。
 基板110として4インチ(100mm)のc面サファイア基板を用意し、当該基板を成膜室107内に載置した。成膜開始前は、図2に示すように基板加熱手段108を移動させ、ノズルを基板の鉛直方向にない状態としてから、基板加熱手段108を450℃に設定、昇温し、30分放置して、ノズルを含む成膜室内の温度を安定化させた。このときのノズル150の先端部の温度を熱電対を用いて測定したところ、146℃であった。ノズルの温度が安定したのを確認した後、基板加熱手段108を基板とともにノズル下の吐出方向の位置まで移動させた(図2から図5の位置にした)。
 原料溶液104aは、溶媒は超純水、溶質は臭化ガリウムとした。ガリウム濃度は0.1mol/Lとした。得られた原料溶液104aをミスト発生源104内に収容した。続いて、流量調節弁103a、103bを開いてキャリアガス源102a、102bからキャリアガスを成膜室107内に供給し、成膜室107の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量を2L/分に、希釈用キャリアガスの流量を6L/分にそれぞれ調節した。キャリアガスとしては窒素を用いた。
 次に、超音波振動子106を2.4MHzで振動させ、その振動を、水105aを通じて原料溶液104aに伝播させることによって、原料溶液104aをミスト化してミストを生成した。このミストを、キャリアガスによって供給管109を経て成膜室107内に導入し、基板110上でミストを熱反応させて、基板110上に酸化ガリウムの薄膜を形成した。成膜時間は30分とした。
 (評価)
 基板110上に形成した薄膜について、X線回折により、α-Gaが形成されていることを確認した。α-Gaの(006)面のロッキングカーブを測定したところ、その半値幅は9.2秒と極めて結晶性が良好であった。膜厚を、フィルメトリクス社の反射分光式膜厚計F50で面内25点を測定したところ、平均膜厚は824nm、上述の式(1)で得られるV値は0.040であった。外観上も面内一様な色を呈しており、膜厚分布が非常に良好であることがうかがえた。又、本積層構造体から半導体装置であるSBDを製造したとき、当該SBD66台からなる製品ロットは、その耐圧歩留まりが82%であった。
 [比較例]
 実施例1において、成膜前に基板の鉛直上方にノズルが存在する状態で基板及びノズルの加熱・昇温を行った。これ以外は実施例1と同様に成膜、評価を行った。この結果、平均膜厚は932nm、式(1)で得られるV値は0.046であった。また、基板からの反射光は、面内に様々な色の分布が肉眼で確認され、外観上も満足できるものではなかった。又、本積層構造体から半導体装置であるSBD製造したとき、当該SBD66台からなる製品ロットは、その耐圧歩留まりが30%であった。
 [実施例2~7]
 下記表に記載した条件以外は実施例1と同様に操作し実験及び評価を行った。
Figure JPOXMLDOC01-appb-T000006
 以上の結果より、成膜前にノズルの吐出方向に基板が存在しない状態でノズル加熱を行うという簡易な方法で、膜厚分布が大きく改善されることがわかる。本発明に係る成膜方法で得られた結晶性酸化ガリウム膜は、大面積でかつ膜厚分布ならびに結晶性が非常に良好であり、半導体装置等に有用である。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (22)

  1.  基板上に酸化ガリウムを主成分とする結晶性酸化物膜をミストCVD法により成膜する成膜方法であって、
     基板を加熱する工程と、原料溶液を含むミストを供給するノズルを加熱する工程と、加熱した前記基板上に加熱した前記ノズルの吐出方向が前記基板の表面に対し垂直方向となるように前記ミストを供給して結晶性酸化物膜の成膜を行う工程とを含み、
     前記ノズルを加熱する工程において、前記ノズルの吐出方向に前記基板が存在しない状態で前記ノズルの加熱を行い、
     前記結晶性酸化物膜の成膜を行う工程において、前記ノズルの吐出方向に前記基板が存在する状態で成膜を行うことを特徴とする成膜方法。
  2.  前記基板の加熱を、基板載置部と基板非載置部を有する基板加熱手段を用い、前記基板載置部に前記基板を載置して行い、
     前記ノズルを加熱する工程において、前記ノズルの吐出方向に前記基板非載置部を位置させて、前記基板加熱手段により前記ノズルの加熱を行うことを特徴とする請求項1に記載の成膜方法。
  3.  前記ノズルの加熱を、前記ノズルに設けたノズル加熱手段により行うことを特徴とする請求項1又は2に記載の成膜方法。
  4.  基板上に酸化ガリウムを主成分とする結晶性酸化物膜をミストCVD法により成膜する成膜方法であって、
     基板を加熱する工程と、
     成膜用部材を加熱する工程と、
     前記基板の表面の法線方向の前記基板上に、加熱した前記成膜用部材が存在する状態でミストを供給して結晶性酸化物膜の成膜を行う工程とを含み、
     前記成膜用部材を加熱する工程において、前記基板の表面の法線方向の前記基板上に前記成膜用部材が存在しない状態で前記成膜用部材の加熱を行うことを特徴とする成膜方法。
  5.  前記基板を加熱する工程において、基板載置部と基板非載置部を有する基板加熱手段を用い、前記基板載置部に前記基板を載置して基板の加熱を行い、
     前記成膜用部材を加熱する工程において、前記基板非載置部の表面の法線方向の前記基板非載置部上に前記成膜用部材を位置させて、前記基板加熱手段により前記成膜用部材の加熱を行うことを特徴とする請求項4に記載の成膜方法。
  6.  前記成膜用部材を加熱する工程において、前記成膜用部材の加熱を、前記成膜用部材に設けた成膜用部材加熱手段により行うことを特徴とする請求項4又は5に記載の成膜方法。
  7.  前記成膜用部材は、前記基板に前記ミストを供給するためのノズルであり、
     前記成膜用部材を加熱する工程において、前記基板の表面の法線方向の前記基板上に前記ノズルの吐出口が存在しない状態で前記ノズルの加熱を行うことを特徴とする請求項4から請求項6のいずれか一項に記載の成膜方法。
  8.  前記基板として、成膜面の面積が100mm以上、又は、直径2インチ(50mm)以上のものを用いることを特徴とする請求項1から請求項7のいずれか一項に記載の成膜方法。
  9.  前記基板として、直径が4インチ(100mm)~8インチ(200mm)のものを用いることを特徴とする請求項1から請求項8のいずれか一項に記載の成膜方法。
  10.  ミストCVD法を行う成膜装置であって、
     基板を載置する基板載置部を有する基板加熱手段と、
     吐出方向が前記基板の表面に対し垂直方向である、原料溶液を含むミストを供給するノズルと、
     前記ノズルの前記吐出方向の位置と前記吐出方向以外の位置に前記基板載置部の位置を調整可能な前記ノズル及び/又は前記基板加熱手段の位置調整手段とを備えることを特徴とする成膜装置。
  11.  前記基板加熱手段はさらに基板非載置部を備え、
     前記ノズル及び/又は前記基板加熱手段の位置調整手段は、前記ノズルの前記吐出方向の位置に前記基板非載置部の位置を調整可能なものであることを特徴とする請求項10に記載の成膜装置。
  12.  前記ノズルは、該ノズルを加熱するためのノズル加熱手段を備えることを特徴とする請求項10又は11に記載の成膜装置。
  13.  ミストCVD法を行う成膜装置であって、
     基板を載置する基板載置部を有する基板加熱手段と、
     成膜用部材と、
     前記成膜用部材の位置を前記基板載置部の表面の法線方向の前記基板載置部上の位置以外の位置に調整可能な位置調整手段とを備えることを特徴とする成膜装置。
  14.  前記基板加熱手段はさらに基板非載置部を備え、
     前記成膜用部材及び/又は前記基板加熱手段の位置調整手段は、前記成膜用部材の位置を前記基板非載置部の表面の法線方向の前記基板非載置部上の位置に調整可能なものであることを特徴とする請求項13に記載の成膜装置。
  15.  前記成膜用部材は、該成膜用部材を加熱するための成膜用部材加熱手段を備えることを特徴とする請求項13又は14に記載の成膜装置。
  16.  前記成膜用部材は、前記基板にミストを供給するためのノズル又は供給されたミストを前記基板上で整流するための天板であることを特徴とする請求項13から請求項15のいずれか一項に記載の成膜装置。
  17.  酸化ガリウムを主成分とする結晶性酸化物膜であって、面内25点の膜厚について下記式(1)で得られるV値が0.045以下であることを特徴とする結晶性酸化物膜。
    Figure JPOXMLDOC01-appb-M000001
     ここで、xはi番目(i=1~25)の測定値である。
  18.  前記V値が0.041以下であることを特徴とする請求項17に結晶性酸化物膜。
  19.  直径が4インチ(100mm)~8インチ(200mm)の基板と該基板上に設けられた請求項17又は18に記載の結晶性酸化物膜とを含むものであることを特徴とする積層構造体。
  20.  請求項19に記載の積層構造体から製造された半導体装置のみを2以上含む製品ロットであって、その耐圧歩留まりが75%以上のものであることを特徴とする半導体装置の製品ロット。
  21.  基板上に酸化ガリウムを主成分とする結晶性酸化物膜をミストCVD法により成膜する成膜方法であって、
     基板を加熱する工程と、
     原料溶液を含むミストを供給するノズルを所定温度まで加熱する工程と、
     前記ミストを前記基板に導いて結晶性酸化物膜の成膜を行い、成膜後の前記ミストを排気する工程と、を含み、
     前記ノズルを所定温度まで加熱する工程において、前記ノズルから排出される排出物を、前記基板を経由することなく排気することを特徴とする成膜方法。
  22.  ミストCVD法を行う成膜装置であって、
     基板を載置する基板載置部を有する基板加熱手段と、
     前記基板にミストを供給するためのノズルと、
     成膜後の前記ミストを排気するための排気手段とを有し、
     前記排気手段は、前記ノズルから排出される排出物を、前記基板載置部を経由することなく排気する機構を有するものであることを特徴とする成膜装置。
PCT/JP2022/032486 2021-09-22 2022-08-30 成膜方法、成膜装置及び結晶性酸化物膜 WO2023047895A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023549435A JPWO2023047895A1 (ja) 2021-09-22 2022-08-30
KR1020247008811A KR20240063901A (ko) 2021-09-22 2022-08-30 성막방법, 성막장치 및 결정성 산화물막

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021154679 2021-09-22
JP2021-154679 2021-09-22

Publications (1)

Publication Number Publication Date
WO2023047895A1 true WO2023047895A1 (ja) 2023-03-30

Family

ID=85574930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032486 WO2023047895A1 (ja) 2021-09-22 2022-08-30 成膜方法、成膜装置及び結晶性酸化物膜

Country Status (5)

Country Link
JP (1) JPWO2023047895A1 (ja)
KR (1) KR20240063901A (ja)
CN (2) CN218951491U (ja)
TW (2) TW202334484A (ja)
WO (1) WO2023047895A1 (ja)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5343224B1 (ja) 2012-09-28 2013-11-13 Roca株式会社 半導体装置および結晶
JP5397794B1 (ja) 2013-06-04 2014-01-22 Roca株式会社 酸化物結晶薄膜の製造方法
JP5397795B1 (ja) 2013-06-21 2014-01-22 Roca株式会社 半導体装置及びその製造方法、結晶及びその製造方法
JP2014072533A (ja) 2013-10-10 2014-04-21 Roca Kk 半導体装置
WO2014170972A1 (ja) * 2013-04-17 2014-10-23 東芝三菱電機産業システム株式会社 成膜方法
JP2016100592A (ja) 2014-11-26 2016-05-30 株式会社Flosfia 結晶性積層構造体およびその製造方法
JP2016100593A (ja) 2014-11-26 2016-05-30 株式会社Flosfia 結晶性積層構造体
JP2016098166A (ja) 2014-11-26 2016-05-30 株式会社Flosfia 結晶成長用基板、結晶性積層構造体およびそれらの製造方法ならびにエピタキシャル成長方法
JP2016146442A (ja) * 2015-01-29 2016-08-12 株式会社Flosfia 成膜装置および成膜方法
JP2016155714A (ja) 2015-02-25 2016-09-01 国立研究開発法人物質・材料研究機構 α−Ga2O3単結晶、α−Ga2O3の製造方法、および、それを用いた半導体素子
JP2019034883A (ja) 2017-08-21 2019-03-07 株式会社Flosfia 結晶膜の製造方法
JP2020002426A (ja) * 2018-06-28 2020-01-09 信越化学工業株式会社 成膜装置及び成膜方法
JP2020002396A (ja) * 2018-06-26 2020-01-09 信越化学工業株式会社 成膜装置及び成膜方法
WO2021065940A1 (ja) 2019-09-30 2021-04-08 株式会社Flosfia 積層構造体および半導体装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5397794U (ja) 1977-01-12 1978-08-08
JPS5397795U (ja) 1977-01-12 1978-08-08
JPS5344110Y2 (ja) 1977-06-03 1978-10-23

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5343224B1 (ja) 2012-09-28 2013-11-13 Roca株式会社 半導体装置および結晶
WO2014170972A1 (ja) * 2013-04-17 2014-10-23 東芝三菱電機産業システム株式会社 成膜方法
JP5397794B1 (ja) 2013-06-04 2014-01-22 Roca株式会社 酸化物結晶薄膜の製造方法
JP5397795B1 (ja) 2013-06-21 2014-01-22 Roca株式会社 半導体装置及びその製造方法、結晶及びその製造方法
JP2014072533A (ja) 2013-10-10 2014-04-21 Roca Kk 半導体装置
JP2016100593A (ja) 2014-11-26 2016-05-30 株式会社Flosfia 結晶性積層構造体
JP2016100592A (ja) 2014-11-26 2016-05-30 株式会社Flosfia 結晶性積層構造体およびその製造方法
JP2016098166A (ja) 2014-11-26 2016-05-30 株式会社Flosfia 結晶成長用基板、結晶性積層構造体およびそれらの製造方法ならびにエピタキシャル成長方法
JP2016146442A (ja) * 2015-01-29 2016-08-12 株式会社Flosfia 成膜装置および成膜方法
JP2016155714A (ja) 2015-02-25 2016-09-01 国立研究開発法人物質・材料研究機構 α−Ga2O3単結晶、α−Ga2O3の製造方法、および、それを用いた半導体素子
JP2019034883A (ja) 2017-08-21 2019-03-07 株式会社Flosfia 結晶膜の製造方法
JP2020002396A (ja) * 2018-06-26 2020-01-09 信越化学工業株式会社 成膜装置及び成膜方法
JP2020002426A (ja) * 2018-06-28 2020-01-09 信越化学工業株式会社 成膜装置及び成膜方法
WO2021065940A1 (ja) 2019-09-30 2021-04-08 株式会社Flosfia 積層構造体および半導体装置

Also Published As

Publication number Publication date
CN115838922A (zh) 2023-03-24
CN218951491U (zh) 2023-05-02
TW202334484A (zh) 2023-09-01
TWM639608U (zh) 2023-04-11
KR20240063901A (ko) 2024-05-10
JPWO2023047895A1 (ja) 2023-03-30

Similar Documents

Publication Publication Date Title
JP7223515B2 (ja) 成膜装置及び成膜方法
JP7492621B2 (ja) 成膜装置
JP2023015226A (ja) 酸化ガリウム半導体膜及び原料溶液
JP7404593B2 (ja) 成膜方法および結晶性積層構造体
JP2024023981A (ja) 結晶性酸化物薄膜、積層体及び結晶性酸化物薄膜の製造方法
JP7065440B2 (ja) 半導体装置の製造方法および半導体装置
JP7105703B2 (ja) 酸化物半導体膜、積層体及び酸化物半導体膜の製造方法
WO2023047895A1 (ja) 成膜方法、成膜装置及び結晶性酸化物膜
WO2020004250A1 (ja) 結晶性酸化物膜
CN217948254U (zh) 成膜系统及成膜装置
WO2023238587A1 (ja) 成膜方法、及び成膜装置
WO2022230577A1 (ja) 積層構造体、半導体装置及び積層構造体の製造方法
JP7313530B2 (ja) 成膜方法
WO2023079787A1 (ja) 成膜装置及び成膜方法並びに酸化物半導体膜及び積層体
WO2024043049A1 (ja) 成膜方法、成膜装置、及びα-Ga2O3膜
WO2022191230A1 (ja) 酸化物半導体膜およびその成膜方法、半導体装置
WO2023062889A1 (ja) 成膜装置及び製造方法
WO2023053817A1 (ja) 積層構造体、半導体装置及び結晶性酸化物膜の成膜方法
WO2023021815A1 (ja) 半導体膜及び複合基板
JP7161456B2 (ja) 積層構造体及び半導体装置並びに積層構造体の製造方法
JP7254131B2 (ja) 酸化ガリウム膜の製造方法および縦型半導体装置の製造方法
WO2023149180A1 (ja) 結晶性酸化物膜、積層構造体、半導体装置、及び結晶性酸化物膜の製造方法
JP2023156732A (ja) 結晶性積層構造体、半導体装置及び結晶性積層構造体の製造方法
JP2023052378A (ja) 酸化物半導体膜の電気抵抗率調整方法、酸化ガリウム半導体膜、酸化ガリウム半導体膜の製造方法、酸化ガリウム半導体膜の電気抵抗率の変動抑制方法及び半導体装置の製造方法
JP6774593B2 (ja) 結晶性酸化物膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872651

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023549435

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20247008811

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022872651

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022872651

Country of ref document: EP

Effective date: 20240422