WO2023042545A1 - 厚鋼板の製造方法および製造設備 - Google Patents

厚鋼板の製造方法および製造設備 Download PDF

Info

Publication number
WO2023042545A1
WO2023042545A1 PCT/JP2022/028414 JP2022028414W WO2023042545A1 WO 2023042545 A1 WO2023042545 A1 WO 2023042545A1 JP 2022028414 W JP2022028414 W JP 2022028414W WO 2023042545 A1 WO2023042545 A1 WO 2023042545A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel plate
cooling
thick steel
water
temperature
Prior art date
Application number
PCT/JP2022/028414
Other languages
English (en)
French (fr)
Inventor
佑介 野島
雄太 田村
悟史 上岡
貴大 平野
健 三浦
篤 栗本
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2022561032A priority Critical patent/JP7452696B2/ja
Priority to KR1020247007754A priority patent/KR20240047396A/ko
Priority to EP22869693.6A priority patent/EP4378603A1/en
Priority to CN202280061134.7A priority patent/CN117980508A/zh
Publication of WO2023042545A1 publication Critical patent/WO2023042545A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/04Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/04Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing
    • B21B45/06Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing of strip material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C51/00Measuring, gauging, indicating, counting, or marking devices specially adapted for use in the production or manipulation of material in accordance with subclasses B21B - B21F
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0062Heat-treating apparatus with a cooling or quenching zone
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Definitions

  • the present invention relates to a method and equipment for manufacturing thick steel plates.
  • the basic technical concept of manufacturing low yield ratio steel is as follows. A composite structure of ferrite phase and bainite or martensite phase is created, and the soft ferrite phase keeps the yield stress low. And the yield ratio is lowered by obtaining high tensile strength in the hard bainite or martensite phase.
  • a composite structure is generally obtained mainly by controlling cooling, especially accelerated cooling immediately after hot rolling. More specifically, the accelerated cooling is divided into two stages, the former slow cooling and the latter rapid cooling, and the soft ferrite phase is sufficiently grown in the former slow cooling. Then, by obtaining a hard bainite or martensite phase in the subsequent rapid cooling, a composite structure that achieves a low yield ratio is obtained.
  • Patent Document 1 describes a method for manufacturing a steel pipe with a low yield ratio and high weldability, composed of a composite structure containing a soft ferrite phase and a hard bainite or martensite phase.
  • the steel plate immediately after the hot rolling is slowly cooled until the temperature reaches around 600° C., and then the post-cooling is rapidly cooled to the coiling temperature. Accelerated cooling is performed in two steps. Then, it is said that the soft ferrite phase can be sufficiently grown by the slow cooling in the former stage, and the hard bainite or martensite phase can be obtained in the rapid cooling in the latter stage.
  • Patent Document 1 when steel plates are welded to form a steel pipe, where t is the wall thickness of the steel pipe and D is the outer diameter, when t/D ⁇ 2, the yield ratio ⁇ 80%, and 2 ⁇ t/D It is stated that when t/D>3, a low yield ratio welded steel pipe satisfying the yield ratio ⁇ 85% and when t/D>3 satisfies the yield ratio ⁇ 88%.
  • Patent Document 2 discloses a technique of slowly cooling a steel plate having a thickness of 25 mm at a cooling rate of 5 to 15° C./s.
  • Fig. 2 shows an example of the history of the steel plate surface temperature in the high-temperature steel plate water cooling process.
  • the steel plate in the initial stage of water cooling, the steel plate is cooled in a film boiling state in which a vapor film exists between the steel plate and the water. Since the water does not come into direct contact with the steel plate in the film boiling state, the heat transfer coefficient, which is an index of the cooling capacity, is low, and the surface temperature drops slowly.
  • the lower limit value that is, the lower limit value of the transition temperature
  • the spontaneous nucleation temperature is considered to be arranged by the spontaneous nucleation temperature, for example, in Non-Patent Document 1.
  • the interface temperature between the refrigerant and the steel plate exceeding the spontaneous nucleation temperature of the refrigerant is a necessary condition for generating evaporation nuclei in the refrigerant and shifting to a film boiling state.
  • Equation 1 The interface temperature Tb between the coolant and the steel plate is given by Equation 1, where ⁇ is the thermal conductivity, ⁇ is the thermal diffusivity, and T is the temperature. shown.
  • Tb When the coolant is water, Tb is about 300°C. Therefore, if the water temperature Tw is 30°C, the steel plate temperature Ts when spontaneous nucleation occurs in water when carbon steel is water-cooled is about 330 to 330°C. 350°C. Therefore, the film boiling state can be physically maintained only up to 330 to 350° C. at the lowest, and it is necessary to stop the film boiling cooling when the steel plate surface temperature is higher than that. Therefore, it should be noted that the injection of cooling water to the steel plate should be done before the temperature of the front and back layers of the steel plate reaches 350° C. at the lowest.
  • cooling nozzles arranged in rows in the conveying direction of a thick steel plate are separated by pinch rolls, and rapid cooling in a nucleate boiling state is performed by injecting a large flow of water, and air cooling without injecting water. alternating states. It is said that this enables stable cooling at a surface layer cooling rate of 30° C./s or more.
  • Injection of gas for example, air
  • gas for example, air
  • the cooling capacity by forced convection of gas is one order lower than the film boiling cooling capacity of water cooling, and it is necessary to inject gas at high speed in order to obtain the target cooling rate. Therefore, it is necessary to inject the gas after compressing it with a compressor or the like.
  • the former slow cooling should be performed in a film boiling state with a low heat transfer coefficient.
  • Water cooling is preferred.
  • the film boiling state transitions to a nucleate boiling state with a high heat transfer coefficient when the surface temperature of the steel plate reaches 700 to 500°C, so it is important to stably maintain the film boiling state down to low temperatures. .
  • Patent Document 4 discloses a technique for reducing the transition temperature to the nucleate boiling state by increasing the temperature of the cooling water.
  • Patent Document 5 discloses a technique for increasing the heat transfer coefficient in the film boiling state while reducing the transition temperature to the nucleate boiling state by adding steam to water.
  • Patent Document 2 does not mention a specific method for maintaining weak cooling of 5 to 15°C/s to a sufficiently low temperature, and the lower limit was up to 600°C. Considering variations in processes and components, it is thought that slow cooling to a low temperature of 600° C. or less is necessary. Therefore, it is thought that the technology described in Patent Document 2 does not stabilize the characteristics of the manufactured product.
  • Patent Document 3 cooling by alternately providing rapid cooling by nucleate boiling and air cooling is limited to conditions where the surface layer cooling rate is 30°C/s or more. Therefore, the technology of Patent Document 3 is suitable for a low cooling rate process with a surface layer cooling rate of less than 30 ° C./s, such as the process with a cooling rate of 5 to 15 ° C./s required by the technology of Patent Document 5. Not applicable.
  • the cooling capacity is adjusted by controlling the water volume density of the cooling water in the zone.
  • the water volume density of the cooling water in the cooling zone also correlates with the steel plate surface layer temperature (hereinafter referred to as the transition temperature) at the moment of transition from the film boiling state to the nucleate boiling state. Therefore, in the prior art, it was not possible to reduce the water mass density for the purpose of lowering the transition temperature when there is a desired cooling rate, and it was not possible to lower only the transition temperature independently.
  • Non-Patent Document 1 Although a physical lower limit temperature that can maintain cooling in the film boiling state has been proposed, a method for reducing the boiling transition temperature with the water volume density parameter fixed unknown.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a method and method for manufacturing a thick steel plate that maintains the film boiling state to a low temperature without adding additional equipment and without consuming extra energy. to provide facilities.
  • [3] The method for manufacturing a thick steel plate according to any one of [1] or [2], wherein the thick steel plate is descaled before the water cooling.
  • [4] The method for manufacturing a thick steel plate according to any one of [1] to [3], wherein the steel plate is subjected to oxide scale removal treatment and heating before the water cooling.
  • [5] The method for manufacturing a thick steel plate according to any one of [1] to [4], wherein the temperature of one or both of the upper and lower surfaces of the thick steel plate is measured after the water cooling.
  • [6] The method for manufacturing a thick steel plate according to any one of [2] to [5], wherein the surface layer cooling rate is controlled by controlling the amount of cooling water injected from the cooling water injection nozzle.
  • the cooling stop temperature of the thick steel plate is controlled by controlling the number of the cooling water injection nozzles and the conveying speed of the thick steel plate, and the cooling stop temperature is 350°C or higher in terms of the surface layer temperature of the thick steel plate.
  • the method for manufacturing a thick steel plate according to any one of [1] to [6].
  • a thick steel plate manufacturing facility comprising: a control device for controlling a jet speed of cooling water jetted from a jet nozzle to 0.4 m/s or more and 30 m/s or less.
  • the film boiling state can be stably maintained even at low temperatures.
  • FIG. 4 is a graph showing the surface temperature history of a thick steel plate in a water cooling process; 4 is a graph showing the relationship between the injection speed of cooling water and the transition temperature of a thick steel plate; 3 is a block diagram showing the configuration of a control device and the like;
  • FIG. It is a figure which shows schematic structure of the heat processing equipment provided with the draining roll. It is a figure which shows schematic structure of the heat processing equipment provided with the drainage purge nozzle.
  • 1 is a diagram showing a schematic configuration of a heat treatment facility provided with draining rolls and draining purge nozzles; FIG.
  • FIG. 1 is a diagram showing a schematic configuration of a heat treatment facility having large-flow cooling water injection nozzles on the inlet side and the outlet side of a water cooling device;
  • FIG. It is a figure which shows the schematic structure of the heat processing equipment which equipped the large flow cooling water injection nozzle inside the water cooling device.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows schematic structure of the heat treatment equipment of the thick steel plate which concerns on an Example.
  • 4 is a graph showing the relationship between the water volume density in the cooling zone and the cooling rate. 4 is a graph showing the relationship between the water density in the cooling zone and the injection speed;
  • FIG. 1 is a diagram showing a schematic configuration of a heat treatment facility for thick steel plates, which is one embodiment of the present invention.
  • a thick steel plate heat treatment facility 1 according to an embodiment of the present invention is an off-line type facility, and includes an oxide scale removing device (not shown) for removing oxide scale from a thick steel plate S, A heating furnace 2 for heating a thick steel plate S to a predetermined temperature, a water cooling device 3 for cooling the thick steel plate S heated in the heating furnace 2, and a descaling device for descaling the thick steel plate S between the heating furnace 2 and the water cooling device 3.
  • oxide scale removing device not shown
  • a heating furnace 2 for heating a thick steel plate S to a predetermined temperature
  • a water cooling device 3 for cooling the thick steel plate S heated in the heating furnace 2
  • a descaling device for descaling the thick steel plate S between the heating furnace 2 and the water cooling device 3.
  • thermometer 4 for measuring the temperature of the steel plate S on the delivery side of the water cooling device 3 and a control device 10 for controlling the operation of the water cooling device 3 are provided as main components. Further, the heat treatment facility 1 corresponds to the "facilities for manufacturing thick steel plates" in the present invention.
  • a thick steel plate S is hot-rolled to a predetermined thickness (eg, 30 mm) and width (eg, 2000 mm) in a hot rolling line located at a location different from the heat treatment facility 1, and cooled to about room temperature. loaded.
  • a thick steel plate S is heated to a predetermined temperature (eg, 910° C.) in a heating furnace 2 .
  • the thick steel plate S extracted from the heating furnace 2 is cooled by the water cooling device 3 while being conveyed by a plurality of table rolls 6 installed on the delivery side of the heating furnace 2 .
  • the steel plate is extracted from the heating furnace 2 and conveyed at a substantially constant speed until cooling by the water cooling device 3 is completed. is small. That is, if the heating temperature of the thick steel plate is T0, the distance from the heating furnace 2 to the water cooling device 3 is L0, and the conveying speed of the thick steel plate is V0, the front end of the thick steel plate is extracted at the temperature T0, and the cooling time is L0/ Cooled through V0.
  • the off-line type heat treatment facility is advantageous in manufacturing a thick steel plate whose temperature is apt to be lowered by standing to cool.
  • the present invention can also be applied to online heat treatment equipment.
  • a heating facility that heats the thick steel plate a rolling facility that rolls the thick steel plate heated by the heating facility, and a water cooling device that cools the thick steel plate that has been rolled to a predetermined thickness by the rolling facility.
  • the thick steel plate is heated to a high temperature on the entry side of the water cooling device, which is the same as the off-line type heat treatment equipment.
  • the cooling time from immediately after rolling to the start of cooling is longer at the tail end of the steel plate than at the front end.
  • the heating furnace 2 is preferably heated in a non-oxidizing atmosphere (for example, a nitrogen atmosphere).
  • a non-oxidizing atmosphere for example, a nitrogen atmosphere.
  • the transition temperature is affected by the thickness of the oxide scale, and the thicker the oxide scale, the easier the transition from the film boiling state to the nucleate boiling state.
  • the oxygen concentration in the heating furnace 2 is preferably controlled to 1% (volume %) or less.
  • the water cooling device 3 is equipped with a water cooling device 3 that water-cools the thick steel plate S under predetermined cooling conditions.
  • the water cooling device 3 includes a plurality of pairs of upper cooling water injection nozzles 32a and lower cooling water injection nozzles 32b, which are vertically paired with respect to the conveying direction of the thick steel plate S, and are arranged at a predetermined pitch along the conveying direction of the thick steel plate S. are arranged side by side.
  • the cooling water 7 is injected toward the thick steel plate S from the cooling water injection nozzles 32 (the upper cooling water injection nozzle 32a and the lower cooling water injection nozzle 32b).
  • a plurality of sets of at least one pair of upper and lower cooling water injection nozzles arranged along the conveying direction of the thick steel plate S are provided.
  • the thick steel plate S is cooled while being conveyed by table rolls 6 arranged side by side at a predetermined pitch along the conveying direction of the thick steel plate S.
  • a cooling section in which a pair of cooling water injection nozzles 32a and 32b is a unit is called a cooling zone, and the cooling zone is counted as a unit of "zone.”
  • a total of 7 cooling zones are drawn, but the effects of the present invention are not impaired even if the number of cooling zones is other than 7 zones.
  • the operating parameters of the water cooling device 3 include the amount of cooling water 7 injected from the pair of cooling water injection nozzles 32a and 32b (cooling water amount) and the conveying speed of the thick steel plate S conveyed by the table rolls 6. ing. As the amount of cooling water increases, the cooling rate and the amount of temperature drop of the steel plate S can be increased. On the other hand, the lower the conveying speed of the thick steel plate S, the greater the temperature drop of the thick steel plate S can be. Also, by combining these operating parameters, it is possible to control the cooling stop temperature and cooling rate as cooling conditions for obtaining a desired material quality.
  • the balance of the amount of cooling water for each cooling zone (for example, increasing the amount of cooling water in the cooling zone on the upstream side and decreasing the amount of cooling water in the cooling zone on the downstream side) may be set. .
  • the cooling rate can be controlled according to the temperature range of the steel plate S.
  • the number of cooling zones into which cooling water is injected may be set. This is because the cooling stop temperature can be controlled while maintaining the same cooling rate depending on the number of cooling zones used.
  • the surface layer cooling rate can be varied depending on the material, and from the viewpoint of obtaining a soft ferrite phase, the surface layer cooling rate is preferably 29°C/s or less. It is preferable to cool the steel plate S at a surface cooling rate of 15° C./s or less, more preferably 10° C./s or less. Moreover, if the surface layer cooling rate is less than 0.4° C./s, the cooling rate becomes almost the same as that of air cooling, resulting in a decrease in production efficiency. Therefore, the surface layer cooling rate is preferably 0.4° C./s or more.
  • the film boiling state will eventually shift to the nucleate boiling state, and the lower limit of the temperature thereafter is about 330°C to 350°C, as described above. Therefore, the injection of the cooling water 7 to the thick steel plate S is preferably stopped when the front and rear surface temperatures of the thick steel plate S are 350° C. or higher, more preferably 400° C. or higher.
  • the injection of the cooling water 7 to the thick steel plate S should preferably be stopped when the front and rear surface temperatures of the thick steel plate S are 350° C. or higher, more preferably 400° C. or higher.
  • the minimum water density in the cooling zone is preferably 300 L/(m 2 ⁇ min) or more.
  • the minimum water density in the cooling zone is more preferably 1000 L/(m 2 min) or more. It is more preferably 1500 L/(m 2 ⁇ min) or more, most preferably 2000 L/(m 2 ⁇ min) or more.
  • the maximum water volume density is preferably 4000 L/(m 2 ⁇ min) or less.
  • FIG. 3 shows the relationship between the injection speed of cooling water injected from the cooling water injection nozzle and the transition temperature. It can be seen from the figure that there is a positive correlation between the cooling water injection speed and the transition temperature. In addition, it can be read from the figure that when slow cooling is performed to 600° C. as in the technique disclosed in Patent Document 1, the jetted cooling water should be controlled to 30 m/s or less.
  • the injection speed of the cooling water injected from the cooling water injection nozzle 32 is controlled to 30 m/s or less, preferably 20 m/s or less, more preferably 7 m/s or less. It should be. In order to stably inject the cooling water 7 from the cooling water injection nozzle 32, the injection speed should be controlled to 0.4 m/s or more, preferably 0.9 m/s or more.
  • a spray nozzle capable of uniformly injecting cooling water at a predetermined injection speed can be used as the cooling water injection nozzle 32 .
  • a spray type in which the cooling water is ejected while being rotated inside the nozzle specifically, a type such as a full cone spray or a square spray is preferable. This is because the injection speed of the cooling water can be reduced by applying rotational force to the water inside the nozzle.
  • a slit-type nozzle, a multi-hole jet nozzle, or a mist nozzle may be used as long as the jetting speed can be sufficiently reduced.
  • the cooling nozzle preferably has a cooling water volume density that can be varied in accordance with the target cooling rate.
  • the operating conditions of the cooling water injection nozzle 32 are not limited to the above. That is, the cooling water injection nozzle 32 is used for both film boiling cooling and nucleate boiling cooling. Cooling in a boiling state may be used separately.
  • the transition temperature is affected by the oxide scale formed on the front and back surfaces of the steel plate S. Since the thicker the oxide scale, the higher the transition temperature, the oxide scale on the front and back surfaces of the steel plate S is preferably removed in order to stably maintain the film boiling state. Therefore, it is preferable to remove the oxide scale formed on the front and back surfaces of the steel plate S with an oxide scale removing device before the steel plate S is charged into the heating furnace 2 .
  • an oxide scale removing device a shot blasting device may be used to subject the thick steel plate S to shot blasting to remove oxide scale on the front and back surfaces.
  • the thick steel plate S may be pickled using a pickling device to remove the oxide scale on the front and back surfaces.
  • the thick steel plate S may be ground using a grinding device to remove the oxide scale on the front and back surfaces.
  • the general mill scale is about 10 to 50 ⁇ m.
  • the oxide scale can be reduced to a thickness of less than 1 ⁇ m. Therefore, it is preferable that the thickness of the oxide scale covering the front and back surfaces of the steel plate S charged into the heating furnace 2 is less than 1 ⁇ m.
  • the oxide scale removing device does not necessarily need to be arranged in the same line as the heat treatment equipment 1, and an oxide scale removing device arranged in another line, another facility, or another factory may be used. This is because the flexibility of distribution of the thick steel plate S charged into the heating furnace 2 can be increased, and the production efficiency can be improved.
  • the thick steel plate S extracted from the heating furnace 2 is exposed to the atmosphere while it is in a high temperature state. Therefore, oxide scales are formed on the front and back surfaces of the thick steel plate S while it is being conveyed from the heating furnace 2 to the water cooling device 3 . Therefore, it is preferable to dispose a descaling device 9 between the heating furnace 2 and the water cooling device 3 to descale the oxide scale attached to the front and back surfaces of the steel plate S.
  • both the descaling device 9 and the oxide scale removing device may be arranged. If the oxide scale formed on the steel plate S is removed by the oxide scale removing device before being charged into the heating furnace 2, and the oxide scale formed on the steel plate S extracted from the heating furnace 2 is removed by the descaling device 9, , the scale can be uniformly and easily removed.
  • the general mill scale is about 10 to 50 ⁇ m.
  • the thickness of the oxide scale can be reduced to less than 1 ⁇ m. Therefore, the thickness of the oxide scale covering the front and back surfaces of the steel plate S entering the water cooling device 3 is preferably less than 1 ⁇ m.
  • the thick steel plate S passes through the water cooling device 3 so as to stop at a temperature of 350°C or higher as described above. Therefore, by installing the thermometer 4 on the output side of the water cooling device 3 and measuring the surface temperature of the thick steel plate S cooled by the water cooling device 3, it is possible to confirm whether the thick steel plate S is cooled as expected. can be done. In addition, it is possible to check whether the thick steel plate S is cooled as expected by performing calculations and heat transfer simulations together with the heating temperature information and the temperature measurement results to calculate the cooling rate during water cooling. Furthermore, by measuring the in-plane temperature distribution of the thick steel plate S after water cooling, it may be confirmed whether the thick steel plate S is uniformly cooled.
  • the thermometer 4 is a device that measures the temperature of the thick steel plate S by a method of scanning the thermometer in the width direction of the thick steel plate S, a method of arranging a single or a plurality of thermometers in the width direction of the thick steel plate S, or the like. . Also, the thermometer 4 measures the temperature of one or both of the upper and lower surfaces of the thick steel plate.
  • thermometer 4 is installed on the output side of the water cooling device 3 in FIG. At that time, a plurality of thermometers 4 may be arranged side by side in the conveying direction of the thick steel plate S to measure the temperature of the thick steel plate S in each cooling zone. Further, a thermometer 4 may be installed on the inlet side of the water cooling device 3 to measure the heating temperature and cooling start temperature of the thick steel plate S. This is because measuring the temperature of the steel plate S on the entry side of the water cooling device 3 improves the calculation accuracy of the cooling rate.
  • the control device 10 is configured by a known information processing device such as a personal computer.
  • the control device 10 receives from the host computer 11 the heating temperature of the thick steel plate S, size information such as plate thickness, as well as the target range of the cooling stop temperature (target cooling stop temperature) necessary for obtaining the desired material quality and the cooling rate. Get information about the target range (target cooling rate). Then, the control device 10 calculates the operating conditions of the heat treatment equipment 1 for realizing such conditions, and determines the operating parameters of each device of the water cooling device 3 .
  • the control device 10 functions as a water cooling condition calculation section 12 by executing a computer program.
  • the water cooling condition calculation unit 12 performs heat transfer calculation based on the internal model, and determines the number of cooling zones to be used, the amount of cooling water, and the thickness of the steel plate S so as to satisfy the target cooling stop temperature and target cooling rate set as the cooling conditions. determine the transport speed of the The command values for the amount of cooling water and the conveying speed of the thick steel plate S thus determined are sent from the water cooling operation condition output unit 13 to the water cooling device 3 .
  • the operating pressure and the number of operating cooling water pumps, the number of headers provided on the upstream side of the cooling water injection nozzles 32, and the flow control valve are controlled based on the command values for the amount of cooling water and the conveying speed of the thick steel plate S. and the rotational speed of the motor driving the table roll 6 are determined.
  • a method for manufacturing a thick steel plate according to the present invention using the heat treatment equipment 1 shown in FIG. 1 will be described.
  • it is preliminarily hot rolled to a predetermined thickness (eg, 30 mm) and width (eg, 2000 mm) in a hot rolling line (not shown) separate from the heat treatment equipment 1, and after reaching room temperature, scale is removed by an oxide scale removing device.
  • the removed thick steel plate S is loaded into the heating furnace 2 .
  • the thick steel plate S is heated to a predetermined temperature in the heating furnace 2 .
  • the thick steel plate S is extracted from the heating furnace 2 and cooled by the water cooling device 3 while being transported by a plurality of table rolls 6 installed on the delivery side of the heating furnace 2 .
  • the number of zones and the amount of water to be used are calculated and set by the control device 10 according to the plate thickness and target properties of the material.
  • the thick steel plate S is sprayed with cooling water 7 from cooling water spray nozzles 32 arranged in seven pairs above and below.
  • the water volume density and the conveying speed of the thick steel plate S in the water cooling device are set by the control device 10 and commanded to the cooling water injection nozzle 32 and the table roll 6 so as to obtain the target thick steel plate characteristics. is.
  • the thick steel plate S that has undergone this cooling process is used in subsequent processes.
  • a thick steel plate having desired thick steel plate properties for example, a yield ratio of 80% or less
  • a draining roll 33 may be installed on the exit side of the water cooling device 3 to drain the cooling water 7 remaining on the thick steel plate S. By removing the cooling water 7 remaining on the plate, the desired cooling stop temperature and thus the desired characteristics can be obtained more reliably.
  • the pressing force of the draining roll 33 against the thick steel plate S is preferably 4 tons or more, more preferably 6 tons or more, and still more preferably 8 tons or more. If the pressing force is 20 tons or less, the draining roll 33 is not deformed and a better draining property can be obtained. Therefore, it is preferable that the pressing force is 20 tons or less.
  • the mechanism for applying the pressing force by the draining roll 33 may be a spring type such as a spring, or a mechanism capable of applying a constant pressing force such as air pressure or hydraulic pressure.
  • a mechanism capable of maintaining a constant pressing force is preferable, and a responsive mechanism capable of changing the pressing force in the longitudinal direction of the thick steel plate S is preferable.
  • a draining purge nozzle 34 may be arranged instead of the draining roll 33, and the cooling water 7 remaining on the thick steel plate S may be drained by injecting the draining purge 35.
  • the draining purge 35 may be liquid or gas, or a mixed fluid thereof may be jetted. In order to keep the temperature deviation of the steel plate S smaller, it is preferable to use a gas. Furthermore, from the viewpoint of production cost, it is more preferable to use air.
  • the draining roll 33 and the draining purge nozzle 34 may be used together. Either or both of the drain roll 33 and the drain purge nozzle 34 may be arranged on the inlet side of the water cooling device 3 to cut off the cooling water 7 leaking from the water cooling device 3 . This is because the cooling start temperature of the steel plate S can be controlled more accurately.
  • either or both of the draining rolls 33 and the draining purge nozzles 34 may be arranged to separate the cooling zones. This is because, when jetting different amounts of water for each cooling zone, the zones with different amounts of cooling water can be separated to ensure the temperature history of the steel plate.
  • the number of nozzle pairs to be used can be freely set, for example, by stopping the injection on the most inlet side of the water cooling device 3 to shorten the cooling time. As a result, a variety of temperature histories can be obtained for the steel plate to be cooled, and appropriate cooling can be performed according to the required properties.
  • a large flow cooling water injection nozzle 36 (an upper large flow cooling water injection nozzle 36a and a lower The large flow rate cooling water injection nozzles 36b) may be installed and used to cool the thick steel plate S according to the target characteristics of the steel plate S.
  • the number of cooling zones in which the large-flow cooling water injection nozzles 36 are installed is 3 zones on the inlet side and 3 zones on the outlet side of the water cooling device 3 in FIG.
  • the cooling water injection nozzle 32 and the large-flow cooling water injection nozzle 36 capable of injecting an amount of water outside the scope of the invention may be arranged in the same cooling zone within the water cooling device 3 . This is because by combining slow cooling according to the present invention with rapid cooling outside the scope of the present invention, it is possible to obtain a wider variety of temperature histories.
  • the cooling water injection nozzles 32 and the large flow rate cooling water injection nozzles 36 arranged in the same cooling zone constitute a total of 7 zones, but the effect is not impaired even if there are other than 7 zones.
  • a large-flow cooling water injection nozzle 36 capable of injecting an amount of water outside the scope of the invention may be installed on either or both of the inlet and outlet sides of the water cooling device 3 .
  • a thick steel plate (thickness 19 mm, 25 mm, 40 mm x width 3500 mm x length 7 m) at room temperature from which scale had been removed by shot blasting was heated in a heating furnace to 840°C in a nitrogen atmosphere. . After that, the steel was cooled by a water cooling device located 2.0 m away from the heating furnace to produce a low yield ratio tempered steel having a yield ratio of 80% or less.
  • the thick steel plate material to be cooled was heated to 840°C in a small sample thermal cycle test conducted in the laboratory, cooled to 450°C at a cooling rate of 6°C/s, and then rapidly cooled to room temperature.
  • the structure is ferrite + bainite, and the yield ratio is 75%.
  • ferrite + bainite was used as the target structure for steel plate S, it was confirmed from other tests that even if part of the plate thickness direction (for example, near the surface layer) is ferrite + martensite, the properties do not deteriorate significantly. are doing.
  • a steel plate is manufactured in an actual heat treatment facility with the same thermal history as this thermal history, it will have a mixed phase structure of ferrite + bainite, and the yield ratio is expected to be 75%. do. A yield ratio of 80% or less was regarded as acceptable.
  • the water cooling device 3 was arranged on the outlet side of the heating furnace 2, and seven pairs of cooling water injection nozzles 32 were arranged inside it. Furthermore, a thermometer 4 is arranged on the delivery side so that the temperature of the surface layer of the thick steel plate S after cooling can be measured.
  • the thermometer 4 is a scanning thermometer that measures the temperature distribution of the steel plate S in the width direction. A value obtained by subtracting the minimum value from the maximum value of the surface temperatures of the steel plate measured over the entire surface of the steel plate was evaluated as the temperature deviation value within the steel plate.
  • cooling water injection nozzle 32 As the cooling water injection nozzle 32, two types of a full cone nozzle and a flat spray nozzle were used together. The speed of the cooling water jetted from these nozzles was measured in advance in a laboratory, and the result was compared with the result of the operating conditions to confirm whether it fell within the scope of the present invention.
  • cooling water is injected so that the average cooling rate in the range from 800 ° C. to 650 ° C. in the steel plate surface layer is 4 ° C./s, and the thick steel plate surface temperature at the thermometer 4 is 450 ° C.
  • the number of nozzles 32 used, the density of water in each zone, and the conveying speed of the thick steel plate were set.
  • the steel plate S discharged from the water cooling device 3 was subjected to rapid cooling as a post-process, and was rapidly cooled to room temperature by a well-known technique.
  • the thick steel plate S was heated to a high temperature of 1000°C and then water-cooled to 650°C.
  • a thick steel plate S was heated to 1000° C. in a heating furnace 2 in a nitrogen atmosphere, and then cooled by a water cooling device 3 .
  • the surface layer temperature of the steel plate S measured by the thermometer 4 on the outlet side of the water cooling device 3 is 650°C ⁇ 25°C, and the average cooling rate of the surface layer of the steel plate S in the range from 800°C to 650°C is 4 to 10°C/s.
  • the number of cooling water injection nozzles 32 used, the density of water in each zone, and the conveying speed of the thick steel plate are set as follows.
  • cooling water injection nozzle 32 two types of a full cone nozzle and a flat spray nozzle were used, and the respective results were compared.
  • a one-dimensional heat transfer simulation was performed based on the surface layer temperature of the thick steel plate S measured by the thermometer 4 on the output side of the water cooling device 3 and the heating temperature of the thick steel plate S. The average cooling rate over the range to °C was calculated.
  • the relationship between the water volume density and the cooling speed in the cooling zone in the water cooling device 3 is shown in Fig. 11, and the relationship between the water volume density and the injection speed is shown in Fig. 12. That is, the relationship between water density and cooling rate does not change with the type of spray. On the other hand, the relationship between the water density and the injection speed was different, and the full cone nozzle had a lower cooling water injection speed than the flat spray nozzle even though the same water flow density was used.
  • a thick steel plate S was heated to 840° C. in a heating furnace 2 in a nitrogen atmosphere, and then cooled by a water cooling device 3 .
  • the temperature of the surface layer of the steel plate S in the thermometer 4 on the outlet side of the water cooling device 3 is 450°C ⁇ 25°C, and the average cooling rate of the surface layer of the steel plate S in the range from 800°C to 650°C is 6°C/s.
  • the number of cooling water injection nozzles 32 to be used, the water volume density of each zone, and the conveying speed of the thick steel plate are set.
  • the number of cooling water injection nozzles 32 used, the water volume density in each zone, and the conveying speed of the steel plate were set using the results of the cooling speed measurement experiment described above.
  • As the cooling water injection nozzle 32 two types, a full cone nozzle and a flat spray nozzle, were used, and the respective results were compared.
  • a one-dimensional heat transfer simulation was performed based on the surface layer temperature of the thick steel plate S measured by the thermometer 4 on the output side of the water cooling device 3 and the heating temperature of the thick steel plate S, and from 800 ° C. on the surface layer of the thick steel plate S Average cooling rates in the range up to 650° C. were calculated.
  • the steel plate S discharged from the water cooling device 3 was subjected to rapid cooling, which is a post-process, and was rapidly cooled to room temperature by a well-known technique. After that, a small sample was taken from the manufactured thick steel plate S, and a tensile test was performed to measure the yield ratio and to observe the microstructure.
  • Table 1 shows the manufacturing conditions of thick steel plate S and the results of property evaluation tests.
  • F in "structure” in the table means ferrite
  • B means bainite
  • M means martensite
  • RT in "cooling stop temperature” means room temperature.
  • Examples 1 to 3 are conditions in which water cooling was performed by using a full cone spray nozzle to reduce the cooling water injection speed.
  • the steel plate S could be cooled at the target cooling rate and cooling stop temperature, and the yield ratio was within the acceptable range.
  • the transition temperature is reduced, the film boiling state can be maintained at low temperatures, and the average cooling speed in the range from 800 ° C. to 650 ° C. can be maintained at low temperatures. It is thought that this is because
  • Example 4 is a condition in which the surface layer of the steel plate was not descaled by shot blasting. Although the thick steel plate S could be cooled at a cooling rate and a cooling stop temperature substantially as intended, the temperature deviation in the width direction of the thick steel plate increased compared to Example 1 in which scale was removed. This is probably because the boiling transition temperature of the portion where the scale had been generated increased, causing partial nucleate boiling and increasing the cooling rate.
  • Comparative Examples 1 to 3 are conditions in which water cooling was performed by using a flat spray nozzle and increasing the cooling water injection speed beyond the scope of the invention.
  • the cooling conditions were set using the results of the cooling rate measurement experiment described above, but the cooling stop temperature fell to room temperature. Therefore, the exact cooling rate was unknown. Therefore, a separate test was conducted to identify the cooling rate by reducing the number of zones. As a result, the cooling rate increased beyond the scope of the present invention.
  • the cooling rate was high, the yield ratio was out of the acceptable range. This is probably because the boiling transition temperature was improved and the cooling became a nucleate boiling state, and the average cooling rate in the range from 800°C to 650°C could not be maintained to low temperatures.
  • Comparative Example 4 is a condition in which water cooling was performed by using a flat spray nozzle to reduce the cooling water injection speed to the extent outside the scope of the invention.
  • the cooling rate was almost the same as that of air cooling.
  • the temperature deviation in the width direction of the steel plate was rejected. This is probably because the flow velocity of the spray became low and the cooling water could not be stably injected, and the water was concentrated just below the spray.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

付帯設備を増設することなく、また余分なエネルギを消費することなく膜沸騰状態をできるだけ低温まで維持する製造設備および製造方法を提供することを目的とするものである。 厚鋼板の水冷を行う厚鋼板の製造方法であって、前記厚鋼板の搬送方向に沿って配置された少なくとも上下1対の冷却水噴射ノズルを複数組有する水冷装置を用いて、前記冷却水噴射ノズルの冷却水の噴射速度を0.4m/s以上30m/s以下として前記厚鋼板の水冷を行う。

Description

厚鋼板の製造方法および製造設備
 本発明は、厚鋼板の製造方法および製造設備に関する。
 近年、建築構造物の大型化に伴い、使用される鋼材の高強度化が要求されている。同時に安全性の観点から、高い許容応力を有するとともに、引張強さに対する降伏強さの比である降伏比を低減することも要求されている。降伏比を低減すると、降伏点以上の応力が付加されても、破壊までに許容される応力および一様伸びが大きくなり、建築構造物に好適である塑性変形能に優れた鋼材となるためである。
 低降伏比鋼製造の基本的な技術思想は下記の通りである。フェライト相とベイナイトあるいはマルテンサイト相の複合組織を造り込み、軟らかいフェライト相によって降伏応力を低く保つ。そして、硬いベイナイトあるいはマルテンサイト相で高い引張強さを得ることで、降伏比を低くする。
 複合組織は一般的に、主に冷却、特に熱間圧延直後の加速冷却を制御することで得られる。より具体的には、加速冷却を前段の緩冷却と後段の急冷却の2段階に分け、前段の緩冷却で軟質のフェライト相を十分に成長させる。そして、後段の急冷却で硬質のベイナイトあるいはマルテンサイト相を得ることで、低降伏比を実現する複合組織を得ている。
 例えば特許文献1には、軟質のフェライト相と硬質のベイナイトあるいはマルテンサイト相を含む複合組織で構成された、降伏比が低く溶接性の高い鋼管の製造方法が記載されている。特許文献1に示す低降伏比溶接鋼管の製造方法によると、熱延終了直後の鋼板を、その温度が600℃前後になるまで緩冷却する前段冷却と、その後巻き取り温度まで急冷却する後段冷却の2段階に分けて加速冷却を実施する。そして、前段の緩冷却で軟質のフェライト相を十分に成長させ、後段の急冷却で硬質のベイナイトあるいはマルテンサイト相を得られるとしている。
 また、特許文献1によると、鋼板を溶接し鋼管とした状態において、鋼管の肉厚をt、外径をDとすると、t/D≦2のとき降伏比≦80%、2<t/D≦3のとき降伏比≦85%、t/D>3のとき降伏比≦88%を満たす低降伏比溶接鋼管が得られるとしている。軟質のフェライト相を析出させるための具体的な冷却速度として特許文献2には、板厚25mmの厚鋼板に冷却速度が5~15℃/sの緩冷却を施す技術が開示されている。
 図2に高温厚鋼板水冷プロセスにおける厚鋼板表面温度の履歴の一例を示す。図2に示すように、水冷の初期段階では、厚鋼板と水との間に蒸気膜がある膜沸騰状態で冷却される。膜沸騰状態では水と厚鋼板が直接接触しないため、冷却能力の指標である熱伝達率が低く、表面温度の低下も緩やかである。
 しかしながら、表面温度が700~500℃程度に達すると、水と厚鋼板との間の蒸気膜を維持することが難しくなり、水と厚鋼板が部分的に接触する遷移沸騰状態で冷却される。一旦水と厚鋼板の接触が起こると、厚鋼板に接触した水の蒸発によって厚鋼板近傍の水の流動が激しくなり、熱伝達率が急激に上昇し、表面温度が急激に低下する。そしてその後、高い熱伝達率を保ったまま、厚鋼板と水との接触が定常的に起こる核沸騰状態に移行し、表面温度は急激に水温付近まで低下する。
 特許文献1もしくは特許文献2に記載された技術のように、厚鋼板を600℃前後になるまで緩冷却する場合には、熱伝達率の低い膜沸騰状態で厚鋼板を冷却することが好適である。しかし先述の通り、膜沸騰状態は厚鋼板表面温度が700~500℃の程度に達すると熱伝達率の高い核沸騰状態に遷移してしまう。ひとたび核沸騰状態に移行してしまうと、厚鋼板表面温度が急激に低下して冷却速度が過大になり、所望の特性をもった厚鋼板を製造することができない。加えて厚鋼板内で核沸騰状態への移行が部分的に発生した場合、その部分のみ所定の材質を造りこむことができず、厚鋼板全面で均質な特性を得ることができない。そのため、膜沸騰状態で厚鋼板を水冷するに際しては、膜沸騰状態から核沸騰状態へ遷移する温度を制御し、安定に膜沸騰状態を保つことが肝要である。
 なお、図2に示した水冷プロセスの模式図から、膜沸騰状態はいずれ必ず核沸騰状態へ移行することがわかる。その下限値、つまり遷移温度の下限値については、たとえば非特許文献1においては、自発核生成温度で整理できると考えられている。つまり、冷媒と厚鋼板の界面温度が冷媒の自発核生成温度を上回ることが、冷媒中に蒸発核が生成し膜沸騰状態へ移行するための必要条件であるとされている。
 冷媒と厚鋼板の界面温度Tbは、熱伝導率をλ、熱拡散率をα、温度をTとおき、冷媒のパラメータを添え字w、厚鋼板のパラメータを添え字sで表すと式1で示される。
Figure JPOXMLDOC01-appb-M000001
 冷媒が水の場合、Tbはおよそ300℃とされているため、水温Twを30℃とすると、炭素鋼を水冷する場合に水に自発核生成が起こるときの厚鋼板温度Tsは、おおむね330~350℃となる。したがって膜沸騰状態は物理的に低くとも330~350℃までしか維持することができず、厚鋼板表層温度がそれ以上の温度において、膜沸騰冷却を停止する必要がある。したがって厚鋼板への冷却水の噴射は、厚鋼板の表裏層の温度が低くとも350℃になる前にされるべきであることに留意するべきである。
 要求される冷却速度が高い場合は、遷移温度を上昇させて核沸騰状態と空冷状態を間欠的に行なうことで可能である。たとえば特許文献3では、厚鋼板の搬送方向に列を成して配置された冷却ノズルをピンチロールで区切り、大流量の水を噴射することによる核沸騰状態の急冷却と、水を噴射しない空冷状態を交互に設けている。これによって、表層冷却速度が30℃/s以上の冷却速度で、安定的に冷却可能だとされている。
 上記のような沸騰遷移を伴わない冷却として、気体(たとえば空気)を厚鋼板に噴射することが考えられる。しかし一般に気体の強制対流による冷却能力は水冷の膜沸騰冷却能力と比較して1オーダ低く、目標の冷却速度を得るためには高速で気体を噴射する必要がある。したがってコンプレッサなどで気体を圧縮した後に噴射する必要があるが、コンプレッサの電力消費により製造コストが増大することを考えると好ましくない。
 以上の事情を鑑みると、低降伏比鋼を前段の緩冷却と後段の急冷却に分けて複合組織を造りこむ商品を製造するに際しては、前段の緩冷却を熱伝達率の低い膜沸騰状態で水冷することが好ましい。しかし膜沸騰状態は厚鋼板表面の温度が700~500℃になると熱伝達率の高い核沸騰状態に遷移してしまうため、膜沸騰状態を低温まで安定的に維持することが重要になっている。
 膜沸騰状態を低温まで安定的に維持する技術として、たとえば特許文献4では、冷却水を高温にすることで核沸騰状態への遷移温度を低減する技術が開示されている。また特許文献5では、水に蒸気を添加することで核沸騰状態への遷移温度を低減させつつ、膜沸騰状態における熱伝達率を上昇させる技術が開示されている。
特開平10-17980号公報 特開2005-313223号公報 特開2005-154841号公報 特開昭58-71339号公報 特開平10-300301号公報
動力炉・核燃料開発事業団、「原子炉安全性評価に関連する蒸気爆発現象」、1980年2月
 しかしながら、特許文献2に記載の技術では、5~15℃/sの弱冷却を十分低温まで維持するための具体的な方法に言及がなく、その下限は600℃までであった。プロセスや成分のばらつきを鑑みると、600℃以下の低温までの緩冷却が必要であると考えられるため、特許文献2に記載の技術では製造した商品の特性が安定しないと考えられる。
 特許文献3で開示されている技術は、核沸騰状態による急冷却と空冷状態を交互に設けることによる冷却は表層冷却速度が30℃/s以上の条件に限定されている。そのため特許文献5の技術で要求されている冷却速度が5~15℃/sのプロセスのような、表層冷却速度が30℃/s未満の低冷速プロセスに対しては特許文献3の技術は適用できない。
 遷移温度を低減するための技術として、特許文献4のように水温を上昇させるためには、ヒータなどの付帯設備が必要となるほか、そのランニングコストにより製造コストが増大するといった問題点がある。加えて厚鋼板の冷却水を循環利用している場合は、厚鋼板の抽出能率によって冷却水温度が変動するため、その管理は一層難しくなる。
 また、特許文献5のように蒸気を使用する場合においても、蒸気を発生させる付帯設備が必要となる。加えて蒸気量を制御するための弁やヘッダなどを新設する必要があり、設備費の増大や管理項目の増加によるメンテナンス性の悪化をまねく。加えて両先行技術においては、いずれも冷却水温を上昇させることで膜沸騰から核沸騰状態への遷移温度を低減させている。しかし水温上昇のためのエネルギを余分に消費することは、省エネルギの観点から好ましくない。
 ところで、一般に冷却ゾーン内における冷却水の水量密度と冷却能力が相関を持つことが知られている。そのため、所望の冷却速度で厚鋼板を冷却する場合は、ゾーン内における冷却水の水量密度を制御して冷却能力を調整する。一方で冷却ゾーン内における冷却水の水量密度はまた、膜沸騰状態から核沸騰状態に遷移する瞬間の厚鋼板表層温度(以降、遷移温度と呼称)とも相関を持つ。したがって先行する技術では、所望の冷却速度がある場合に、遷移温度を低下させる目的で水量密度を低減させることはできず、遷移温度のみを独立して低下させることができなかった。
 そのため、非特許文献1に記載の通り、膜沸騰状態の冷却を維持できる物理的な下限温度は提案されているものの、水量密度のパラメータを固定した状態で沸騰遷移温度を低減される方法については知られていない。
 本発明は、かかる事情を鑑みてなされたもので、その目的は、付帯設備を増設することなく、また余分なエネルギを消費することなく膜沸騰状態を低温まで維持する厚鋼板の製造方法および製造設備を提供することにある。
 上記課題を解決する本発明の要旨構成は以下のとおりである。
[1]厚鋼板の水冷を行う厚鋼板の製造方法であって、前記厚鋼板の搬送方向に沿って配置された少なくとも上下1対の冷却水噴射ノズルを複数組有する水冷装置を用いて、前記冷却水噴射ノズルの冷却水の噴射速度を0.4m/s以上30m/s以下として前記厚鋼板の水冷を行う、厚鋼板の製造方法。
[2]前記水冷装置内での前記厚鋼板の表層冷却速度を0.4℃/s以上29℃/s以下とする、[1]に記載の厚鋼板の製造方法。
[3]前記水冷の前に前記厚鋼板のデスケーリングを行う、[1]または[2]のいずれか1つに記載の厚鋼板の製造方法。
[4]前記水冷の前に前記厚鋼板の酸化スケール除去処理及び加熱を行う、[1]~[3]のいずれか1つに記載の厚鋼板の製造方法。
[5]前記水冷の後に前記厚鋼板の上下面のいずれか一方の面または両方の面の温度を測定する、[1]~[4]のいずれか1つに記載の厚鋼板の製造方法。
[6]前記冷却水噴射ノズルから噴射される冷却水量を制御することによって前記表層冷却速度を制御する[2]~[5]のいずれか1つに記載の厚鋼板の製造方法。
[7]前記冷却水噴射ノズルの本数および前記厚鋼板の搬送速度を制御することによって前記厚鋼板の冷却停止温度を制御し、前記冷却停止温度を前記厚鋼板の表層温度にして350℃以上とする、[1]~[6]のいずれか1つに記載の厚鋼板の製造方法。
[8]厚鋼板の水冷を行う厚鋼板の製造設備であって、前記厚鋼板の搬送方向に沿って配置された少なくとも上下1対の冷却水噴射ノズルを複数組有する水冷装置と、前記冷却水噴射ノズルから噴射される冷却水の噴射速度を0.4m/s以上30m/s以下に制御する制御装置と、を備える、厚鋼板の製造設備。
[9]前記制御装置は前記水冷装置内での前記厚鋼板の表層冷却速度を0.4℃/s以上29℃/s以下に制御する、[8]に記載の厚鋼板の製造設備。
[10]前記水冷装置の入側にデスケーリング装置を更に備える、[8]または[9]のいずれか1つに記載の厚鋼板の製造設備。
[11]前記水冷装置の出側に前記厚鋼板の上下面のいずれか一方の面または両方の面の温度を測定する温度計を更に備える、[8]~[10]のいずれか1つに記載の厚鋼板の製造設備。
[12]前記制御装置は前記冷却水噴射ノズルから噴射される冷却水量を更に制御する、[8]~[11]のいずれか1つに記載の厚鋼板の製造設備。
[13]前記制御装置は、前記冷却水噴射ノズルの本数および前記厚鋼板の搬送速度を制御する、[8]~[12]のいずれか1つに記載の厚鋼板の製造設備。
 本発明にかかる厚鋼板の製造設備および製造方法によれば、厚鋼板を顕著に低い冷却速度で水冷するに際して、膜沸騰状態を低温まで安定して維持できる。膜沸騰状態を低温まで安定して維持することで、全面で特性が均質な厚鋼板を製造することができる。
厚鋼板の熱処理設備の概略構成を示す図である。 水冷プロセスにおける厚鋼板表面温度履歴を示すグラフである。 冷却水の噴射速度と厚鋼板の遷移温度との関係を示すグラフである。 制御装置等の構成を示すブロック図である。 水切りロールを備えた熱処理設備の概略構成を示す図である。 水切りパージノズルを備えた熱処理設備の概略構成を示す図である。 水切りロールおよび水切りパージノズルを備えた熱処理設備の概略構成を示す図である。 大流量冷却水噴射ノズルを水冷装置の入側および出側に備えた熱処理設備の概略構成を示す図である。 大流量冷却水噴射ノズルを水冷装置の内側に備えた熱処理設備の概略構成を示す図である。 実施例に係る厚鋼板の熱処理設備の概略構成を示す図である。 冷却ゾーンの水量密度と冷却速度との関係を示すグラフである。 冷却ゾーンの水量密度と噴射速度との関係を示すグラフである。
 以下、本発明の実施形態について図面を参照して説明する。以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記の実施形態に特定するものではない。また、図面は模式的なものである。そのため、厚みと平面寸法との関係、比率等は現実のものとは異なることに留意すべきであり、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。
 図1は、本発明の一実施形態である厚鋼板の熱処理設備の概略構成を示す図である。図1に示すように、本発明の一実施形態である厚鋼板の熱処理設備1は、オフライン型の設備であり、厚鋼板Sに酸化スケール除去処理を施す酸化スケール除去装置(図示せず)、厚鋼板Sを所定温度まで加熱する加熱炉2、加熱炉2で加熱された厚鋼板Sを冷却する水冷装置3、加熱炉2と水冷装置3の間で厚鋼板Sをデスケーリングするデスケーリング装置9、水冷装置3の出側における厚鋼板Sの温度を計測する温度計4、及び水冷装置3の動作を制御する制御装置10を主な構成要素として備えている。また、熱処理設備1が本発明における「厚鋼板の製造設備」に相当する。
 加熱炉2には、熱処理設備1とは別の場所にある熱間圧延ラインで所定の厚み(例えば30mm)及び幅(例えば2000mm)に熱間圧延され、室温程度まで冷却された厚鋼板Sが装入される。厚鋼板Sは加熱炉2において所定温度(例えば910℃)に加熱される。加熱炉2から抽出された厚鋼板Sは、加熱炉2の出側に設置されている複数のテーブルロール6によって搬送されながら水冷装置3で冷却される。
 なお、一般に、オフライン型の熱処理設備では、厚鋼板は加熱炉2から抽出されて水冷装置3によって冷却が終わるまでほぼ一定速度で搬送されるため、厚鋼板の先尾端での冷却開始温度差は小さい。すなわち、厚鋼板の加熱温度をT0、加熱炉2から水冷装置3までの距離をL0、厚鋼板の搬送速度をV0とおくと、厚鋼板の先端部は温度T0で抽出され放冷時間L0/V0を経て冷却される。オフライン型の熱処理設備では、加熱炉2から水冷装置3までの距離L0が短いため、厚鋼板の先端部が加熱炉2から抽出され水冷装置3の入口に到っても、厚鋼板の尾端部は加熱炉2内で温度T0に保たれている。そのため、厚鋼板の尾端部も先端部と同じように温度T0で抽出され、放冷時間L0/V0を経て冷却されるので、厚鋼板の全長にわたって冷却開始温度を一定に保つことができる。このように、放冷によって温度低下しやすい厚鋼板において、全面で材質的に均質な厚鋼板を製造するのに有利なのがオフライン型の熱処理設備の特徴である。
 但し、本発明はオンライン型の熱処理設備にも適用できる。この場合には、厚鋼板を加熱する加熱設備と、加熱設備によって加熱された厚鋼板を圧延する圧延設備と、圧延設備により所定の板厚まで圧延された厚鋼板を冷却する水冷装置を備える厚鋼板の熱処理設備が対象となる。この場合にも、水冷装置の入側では厚鋼板は高温に加熱された状態である点で、オフライン型の熱処理設備と同様である。一方でオンライン型の熱処理設備では、圧延直後から冷却開始までの放冷時間は、厚鋼板の先端部よりも尾端部の方が長い。そのため、厚鋼板の長さをL、厚鋼板の搬送速度をvとすると、尾端部と先端部とでは時間L/vだけ放冷時間差が生じてしまう。従って、圧延後の厚鋼板温度が均一だった場合でも、尾端部は放冷時間差だけ余分に放冷されるため、先端部と尾端部の冷却開始温度に差が生じ、全面にわたって特性が均質な厚鋼板が得られない。そのため後述するように、制御装置10によって厚鋼板の温度を予測し、それに応じて水冷装置3の操業条件を厚鋼板Sの長手位置にわたって変更することが好ましい。
 加熱炉2においては、無酸化雰囲気(たとえば窒素雰囲気)で加熱されることが好ましい。後述するように遷移温度は、酸化スケールの厚さに影響を受け、酸化スケールが厚いほど膜沸騰状態から核沸騰状態に遷移しやすくなるためである。その際、加熱炉2内の酸素濃度は1%(体積%)以下に制御されるのが好ましい。
 水冷装置3は、厚鋼板Sを所定の冷却条件で水冷する水冷装置3を備えている。水冷装置3は、厚鋼板Sの搬送方向に対して上下で対を成す上側の冷却水噴射ノズル32aおよび下側の冷却水噴射ノズル32bを複数対、厚鋼板Sの搬送方向に沿って所定ピッチで並べて配置している。冷却水噴射ノズル32(上側の冷却水噴射ノズル32aおよび下側の冷却水噴射ノズル32b)からは厚鋼板Sに向けて冷却水7が噴射される。つまり、厚鋼板Sの搬送方向に沿って配置された少なくとも上下1対の冷却水噴射ノズルを複数組有している。また厚鋼板Sは、厚鋼板Sの搬送方向に沿って所定ピッチで並べて配置されたテーブルロール6によって搬送されながら冷却される。なお、一対の冷却水噴射ノズル32a,32bを単位とした冷却区間のことを冷却ゾーンと呼称し、冷却ゾーンは単位を「ゾーン」として数えることとする。図1では、冷却ゾーンは計7ゾーンとして描かれているが、7ゾーン以外としても本発明の効果は損なわれない。
 水冷装置3の操業パラメータには、一対の冷却水噴射ノズル32a,32bから噴射される冷却水7の水量(冷却水量)と、テーブルロール6によって搬送される厚鋼板Sの搬送速度とが含まれている。冷却水量が多いほど、厚鋼板Sの冷却速度及び温度降下量を大きくすることができる。一方、厚鋼板Sの搬送速度が低いほど、厚鋼板Sの温度低下量を大きくすることができる。また、これらの操業パラメータを組み合わせることにより、所望の材質を得るための冷却条件として冷却停止温度や冷却速度を制御することができる。
 水冷装置3の操業パラメータとして、冷却水量の冷却ゾーン毎のバランス(例えば、上流側の冷却ゾーンで冷却水量を多くし、下流側の冷却ゾーンで冷却水量を少なくする等)を設定してもよい。厚鋼板Sの温度域に応じて冷却速度を制御できるからである。さらに、冷却水を噴射する冷却ゾーンの数を設定してもよい。使用する冷却ゾーンの数によって冷却速度を同じにしながら冷却停止温度を制御できるからである。
 冷却速度は材質によって種々変更できることが好ましく、軟質のフェライト相を得る観点から表層冷却速度は29℃/s以下であることが好ましい。より好ましくは15℃/s以下、さらに好ましくは10℃/s以下の表層冷却速度で厚鋼板Sを冷却するのが好ましい。また表層冷却速度が0.4℃/s未満になると、放冷とほとんど同等の冷却速度となってしまい、生産効率が低下する。そのため表層冷却速度は0.4℃/s以上とするのが好ましい。
 図2に示した水冷プロセスの模式図から、膜沸騰状態はいずれ必ず核沸騰状態へ移行し、それ以降温度の下限はおおむね330℃から350℃であることは先述の通りである。したがって厚鋼板Sへの冷却水7の噴射は、好ましくは厚鋼板Sの表裏面温度が350℃以上、より好ましくは400℃以上で停止されればよい。
 また、図3に示した冷却水の噴射速度Vと遷移温度Ttの関係を定式化すると式2のように表される。
Figure JPOXMLDOC01-appb-M000002
 これに後述する冷却水を安定的に噴射するための噴射速度を代入すると、V=0.4m/sでTt=350℃、V=0.9m/sでTt=400℃となる。このことからも、厚鋼板Sへの冷却水7の噴射は、好ましくは厚鋼板Sの表裏面温度が350℃以上、より好ましくは400℃以上で停止されればよい。
 上記温度で冷却停止したのちは核沸騰状態になりやすい。そのため公知の技術で核沸騰状態による急冷却を施すのが好ましい。核沸騰による冷却を維持するためには、冷却ゾーンの最小水量密度が300L/(m・min)以上であることが好ましい。また、高温かつ含熱量の大きい厚鋼板でも確実に核沸騰による急速冷却が行なわれるよう配慮するべきであるため、冷却ゾーンにおける最小水量密度がより好ましくは1000L/(m・min)以上である。さらに好ましくは1500L/(m・min)以上、最も好ましくは2000L/(m・min)以上である。一方冷却ゾーンにおいて、水量密度が4000L/(m・min)よりも大きいと、水量密度を上げても冷却速度がほとんど変化しない。このことから、冷却水の動力など経済性の観点から好ましくないため、最大水量密度は4000L/(m・min)以下とするのが良い。
 さらに、発明者らが鋭意調査した結果、ゾーン内水量密度が同じであった場合、遷移温度は冷却水噴射ノズルから噴射される冷却水の噴射速度と相関を持つことが明らかになった。図3に冷却水噴射ノズルから噴射される冷却水の噴射速度と、遷移温度の関係を示す。冷却水の噴射速度と遷移温度が正の相関をもつことが図から読み取れる。加えて、特許文献1に示された技術のように600℃までの緩冷却を行なう場合は、噴射される冷却水は30m/s以下に制御するべきであることも図から読み取れる。したがって、安定して膜沸騰状態を維持するに際しては、冷却水噴射ノズル32から噴射される冷却水の噴射速度は30m/s以下、好ましくは20m/s以下、さらに好ましくは7m/s以下に制御されるべきである。また冷却水噴射ノズル32から射出される冷却水7を安定的に射出するためには、噴射速度は0.4m/s以上、好ましくは0.9m/s以上に制御されるべきである。
 冷却水噴射ノズル32には、冷却水を所定の噴射速度で均一に噴射できるスプレノズルを使用することができる。その際、冷却水をノズル内部で回転させながら射出するスプレ形式、具体的には、フルコーンスプレや角吹スプレのような形式が好ましい。ノズル内部で水に回転力を与えることによって、冷却水の噴射速度を低減できるからである。十分に噴射速度を低減できるのであれば、スリットタイプのノズルや多孔噴流ノズルやミストノズルを用いてもよい。また冷却ノズルは、冷却水量密度を目標とする冷却速度に応じて種々変更できるものが好ましい。
 なお、冷却水噴射ノズル32の操業条件は、上記に限定されるものではない。すなわち、冷却水噴射ノズル32を膜沸騰状態の冷却と核沸騰状態の冷却の兼用ノズルとし、所望の材質によって上記条件での膜沸騰状態の冷却と、大流量の冷却水を噴射することによる核沸騰状態の冷却を使い分けても良い。
 一般に遷移温度は、厚鋼板Sの表裏面に生成する酸化スケールの影響を受けることが知られている。酸化スケールが厚いほど遷移温度が高くなる傾向にあるため、安定して膜沸騰状態を維持するためには、厚鋼板S表裏面の酸化スケールは除去されるのが好ましい。したがって加熱炉2に装入される前に酸化スケール除去装置で厚鋼板Sの表裏面に生成した酸化スケールを除去することが好ましい。なお酸化スケール除去装置として、ショットブラスト装置を用いて厚鋼板Sをショットブラスト処理して表裏面の酸化スケールを除去しても良い。また酸洗装置を用いて厚鋼板Sを酸洗処理して表裏面の酸化スケールを除去しても良い。さらに研削装置を用いて厚鋼板Sを研削して表裏面の酸化スケールを除去しても良い。
 酸化スケールの厚さに関して、一般的なミルスケールは10~50μm程度である。そのような厚さの酸化スケールを持つ厚鋼板Sに対して、上記に具体例として挙げた酸化スケール除去処理を施すことにより、酸化スケールを厚さ1μm未満まで低減させることができる。したがって加熱炉2に装入される厚鋼板Sの表裏面を覆う酸化スケールの厚さは、1μm未満であることが好ましい。
 なお、酸化スケール除去装置は、必ずしも熱処理設備1と同じライン内に配置される必要はなく、別のラインや別の設備、あるいは別の工場に配置された酸化スケール除去装置を用いてもよい。加熱炉2に装入される厚鋼板Sの物流の自由度を高め、生産効率を向上させられるためである。
 加熱炉2から抽出された厚鋼板Sは、高温状態のまま大気雰囲気にさらされる。したがって加熱炉2から水冷装置3まで搬送されている間に、厚鋼板Sの表裏面に酸化スケールが生成する。そのため加熱炉2と水冷装置3の間にデスケーリング装置9を配置し、厚鋼板Sの表裏面についた酸化スケールをデスケーリングすることが好ましい。
 さらに、デスケーリング装置9と酸化スケール除去装置の両方を配置しても良い。加熱炉2に装入される前に厚鋼板Sに生成した酸化スケールを酸化スケール除去装置で除去、加熱炉2から抽出された厚鋼板Sに生成した酸化スケールをデスケーリング装置9で除去すれば、スケールを均一かつ容易に除去できる。
 酸化スケールの厚さに関して、一般的なミルスケールは10~50μm程度である。そのような厚さの酸化スケールを持つ厚鋼板Sに対して、デスケーリング処理を施すことにより、酸化スケールを厚さ1μm未満まで低減させることができる。したがって水冷装置3に進入する厚鋼板Sの表裏面を覆う酸化スケールの厚さは、1μm未満であることが好ましい。
 厚鋼板Sは、前述の通り350℃以上の温度で停止するよう水冷装置3を通過する。したがって温度計4を、水冷装置3の出側に設置し、水冷装置3によって冷却された厚鋼板Sの表面温度を計測することで、厚鋼板Sが想定通りに冷却できているかを確認することができる。また加熱温度情報と温度測定結果を併せて、計算や伝熱シミュレーションを行い、水冷中の冷却速度を算出することで、厚鋼板Sが想定通りに冷却できているかを確認することもできる。さらに水冷後の厚鋼板Sの面内温度分布を測定することで、厚鋼板Sが均一に冷却されているかを確認してもよい。
 温度計4は、厚鋼板Sの幅方向に温度計を走査する方式や厚鋼板Sの幅方向に単数もしくは複数の温度計を配置する方式等により、厚鋼板Sの温度を計測する装置である。また、温度計4は、厚鋼板の上下面のいずれか一方の面または両方の面の温度を測定する。
 図1において温度計4は水冷装置3の出側に設置されているが、水冷装置3の冷却後の厚鋼板温度を測定できれば水冷装置3の中に温度計4を設置してもよい。その際、温度計4を厚鋼板Sの搬送方向に対して複数台並べて設置し、各冷却ゾーンにおける厚鋼板Sの温度を測定してもよい。さらに温度計4を水冷装置3の入側に設置し、厚鋼板Sの加熱温度や冷却開始温度を測定しても良い。水冷装置3の入側での厚鋼板Sの温度を測温した方が、冷却速度の計算精度が向上するからである。
 制御装置10は、パーソナルコンピュータ等の周知の情報処理装置によって構成される。制御装置10は、上位コンピュータ11から厚鋼板Sの加熱温度、板厚等のサイズ情報の他、所望の材質を得るために必要な冷却停止温度の目標範囲(目標冷却停止温度)や冷却速度の目標範囲(目標冷却速度)に関する情報を取得する。そして、制御装置10は、このような条件を実現するための熱処理設備1の操業条件を算出し、水冷装置3の各機器の操業パラメータを決定する。
 本実施形態では、図4に示すように、制御装置10は、コンピュータプログラムを実行することにより、水冷条件演算部12として機能する。水冷条件演算部12は、内部モデルに基づいた伝熱計算を行ない、冷却条件として設定される目標冷却停止温度や目標冷却速度を満たすように、使用する冷却ゾーンの数、冷却水量および厚鋼板Sの搬送速度を決定する。このようにして決定された冷却水量と厚鋼板Sの搬送速度の指令値は、水冷操業条件出力部13から水冷装置3に送られる。水冷装置3では、冷却水量と厚鋼板Sの搬送速度の指令値に基づいて、冷却水ポンプの作動圧や作動台数、冷却水噴射ノズル32の上流側に設けられたヘッダの本数や流量調整弁の開度、及びテーブルロール6を駆動するモーターの回転速度が決定される。
 次に、図1に示す熱処理設備1を用いた本発明の厚鋼板の製造方法について説明する。まず熱処理設備1とは別の熱間圧延ライン(図示せず)で所定の厚み(例えば30mm)および幅(例えば2000mm)にあらかじめ熱間圧延され、室温になった後に酸化スケール除去装置でスケールを除去した厚鋼板Sを加熱炉2に装入する。そして、加熱炉2において厚鋼板Sを所定温度まで加熱する。
 次いで、厚鋼板Sは加熱炉2から抽出され、加熱炉2の出側に設置されている複数のテーブルロール6により搬送されながら、水冷装置3で冷却する。この冷却工程では、板厚と目標とする素材の特性に応じて使用するゾーン数や水量を制御装置10によって計算し設定するが、ここでは例として図1に示したすべてのゾーンから水を噴射する場合の製造方法を示す。
 まず厚鋼板Sは、上下7対に配置された冷却水噴射ノズル32から冷却水7を厚鋼板Sに噴射する。これら水冷装置内での水量密度および厚鋼板Sの搬送速度は、目標の厚鋼板特性が得られるように、制御装置10によって設定され、冷却水噴射ノズル32、およびテーブルロール6に指令されるものである。
 この冷却工程を経た厚鋼板Sは後工程に供される。水冷装置に、加熱炉2から抽出された厚鋼板Sを通板することによって、所望の厚鋼板特性(たとえば、降伏比80%以下)を確保した厚鋼板を製造することができる。
 以上、本発明の実施形態について説明してきたが、本発明はこれに限定されずに種々の変更、改良を行なうことができる。たとえば図5に示すように、水冷装置3の出側に水切りロール33を設置し、厚鋼板S上に滞留した冷却水7を切ってもよい。板上に滞留した冷却水7を除去することによって、所望の冷却停止温度、ひいては特性をより確実に得ることができる。
 良好な水切り性を得るために、水切りロール33の厚鋼板Sへの押し付け力は、好ましくは4ton以上、より好ましくは6ton以上、さらに好ましくは8ton以上であるとよい。押し付け力が20ton以下であれば、水切りロール33が変形せずより良好な水切り性が得られる。そのため、押し付け力は20ton以下とすることが好ましい。
 水切りロール33により押し付け力を付与する機構としては、バネ等のスプリング型や、空圧や油圧のような一定の押し付け力を付与可能なもののいずれでも構わない。水切りロール33のたわみを調整する目的からは、一定の押し付け力を維持できる機構が好ましく、さらには押し付け力を厚鋼板Sの長手方向で変更できるような応答性を有する機構が好適である。
 図6に示すように、水切りロール33の代わりに水切りパージノズル34を配置し、水切りパージ35を噴射することで、厚鋼板S上に滞留した冷却水7を切っても良い。水切りパージ35は液体でも気体であってもよく、それらの混合流体を噴射しても構わない。厚鋼板Sの温度偏差をより小さく保つには、気体を用いることが好ましい。さらに、生産コストの観点からは空気を用いることがより好ましい。
 図7に示すように、水切りロール33と水切りパージノズル34を併用してもよい。また水冷装置3の入側に水切りロール33および水切りパージノズル34のどちらかもしくはその両方を配置して、水冷装置3から漏洩する冷却水7を切っても良い。厚鋼板Sの冷却開始温度をより正確にコントロールできるからである。
 さらに、水冷装置3の入出側に限らず、各冷却ゾーンの入出側に水切りロール33および水切りパージノズル34のどちらかもしくはその両方を配置して、各冷却ゾーンを区切ってもよい。冷却ゾーンごとに異なる水量を噴射する際に、冷却水量が異なるゾーンを区切り厚鋼板の温度履歴を確かなものにできるからである。加えてたとえば水冷装置3の最も入側の噴射を停止させ冷却時間を短くするなど、使用するノズル対の数を自由に設定することができる。これにより、冷却される厚鋼板がとれる温度履歴をより多彩なものとし、要求特性に合わせて適切な冷却が行なえる。
 図8に示すように、水冷装置3の入出側のいずれかもしくは両方に発明範囲外の水量を噴射することができる大流量冷却水噴射ノズル36(上側の大流量冷却水噴射ノズル36aおよび下側の大流量冷却水噴射ノズル36b)を設置し、目標とする厚鋼板Sの特性に応じてそれらを用いて厚鋼板Sを冷却しても良い。大流量冷却水噴射ノズル36が設置された冷却ゾーン数は、図8においては水冷装置3の入側3ゾーン、出側3ゾーンとなっているが、3ゾーン以外としても効果は損なわれない。
 さらに、図9に示すように、水冷装置3内で冷却水噴射ノズル32と発明範囲外の水量を噴射することができる大流量冷却水噴射ノズル36とを同一冷却ゾーンに配置してもよい。本発明の緩冷却と発明範囲外の急冷却を組み合わせることによって、さらに多彩な温度履歴をとることができるためである。図9において同一冷却ゾーンに配置された冷却水噴射ノズル32と大流量冷却水噴射ノズル36は計7ゾーンとなっているが、7ゾーン以外としても効果は損なわれない。それに加えて水冷装置3の入出側のいずれかもしくは両方に発明範囲外の水量を噴射することができる大流量冷却水噴射ノズル36を設置してもよい。
 以下、本実施形態に係る厚鋼板の製造方法を用いて厚鋼板を製造した実施例を説明する。
 図10に示す設備において、あらかじめショットブラスト加工でスケールを除去した室温状態の厚鋼板(板厚19mm、25mm、40mm×板幅3500mm×板長7m)を加熱炉で840℃まで窒素雰囲気で加熱した。その後、加熱炉から2.0m離れた位置にある水冷装置で冷却し、降伏比が80%以下である低降伏比調質鋼を製造した。
 冷却対象となる厚鋼板の素材は、実験室で実施した小サンプルの熱サイクル試験で840℃まで加熱後、冷却速度6℃/sで450℃まで冷却したのち、室温まで急速冷却した試験を行ない、組織はフェライト+ベイナイトとなり、降伏比が75%となったものである。厚鋼板Sの狙いの組織としてはフェライト+ベイナイトとしたが、その他の試験から板厚方向の一部(例えば、表層近傍)がフェライト+マルテンサイトとなっていても特性が大きく劣化しないことを確認している。このため、本熱履歴と同じ熱履歴で実際の熱処理設備で厚鋼板を製造した場合、フェライト+ベイナイトの混相組織となり、降伏比は75%と予想され、これを目標の組織及び低降伏比とする。なお、降伏比は80%以下を合格とした。
 水冷装置3は加熱炉2の出側に配置されており、その内部には冷却水噴射ノズル32が上下7対配置されていた。さらにその出側には温度計4が配置されており、冷却後の厚鋼板Sの表層温度を測温できるようになっている。温度計4は厚鋼板Sの幅方向温度分布を測定する走査型温度計である。厚鋼板全面に対して測定された厚鋼板表面温度のうち、最大値から最小値を差し引いた値を厚鋼板内の温度偏差値として評価した。
 全面で均一な厚鋼板を得るためには、全面で均一な冷却速度と冷却停止温度となるよう冷却する必要がある。そのため、厚鋼板面内の特性の均一性を冷却停止温度で評価することとし、厚鋼板内の温度偏差値が±25℃以内に収まっているものを合格とした。
 冷却水噴射ノズル32としては、フルコーンノズルとフラットスプレノズルの2種類を併用した。なおこれらノズルから噴射される冷却水の速度は、事前に実験室内で測定しており、その結果と操業条件の結果を照合して本発明の範囲内に収まっているかを確認した。
 厚鋼板Sの製造に際しては、厚鋼板表層における800℃から650℃までの範囲の平均冷却速度が4℃/s、温度計4時点での厚鋼板表層温度が450℃になるよう、冷却水噴射ノズル32の使用本数と各ゾーンの水量密度、厚鋼板の搬送速度を設定した。また水冷装置3から払い出された厚鋼板Sは、後工程である急速冷却に供され、周知の技術で室温まで急速冷却した。
 まず初めに、水量密度と冷却速度の関係を把握するために、厚鋼板Sを1000℃まで高温加熱したのち、650℃まで水冷する予備実験を行なった。厚鋼板Sを窒素雰囲気の加熱炉2で1000℃まで加熱した後、水冷装置3で冷却を行った。水冷装置3出側の温度計4における厚鋼板Sの表層温度が650℃±25℃、厚鋼板Sの表層における800℃から650℃までの範囲の平均冷却速度が4~10℃/sとなるように、冷却水噴射ノズル32の使用本数と各ゾーンの水量密度、厚鋼板の搬送速度を設定した。
 また、冷却水噴射ノズル32としては、フルコーンノズルとフラットスプレノズルの2種類を使用し、それぞれの結果を比較した。また水冷装置3出側の温度計4で測定した厚鋼板Sの表層温度と厚鋼板Sの加熱温度をもとに1次元の伝熱シミュレーションを実施し、厚鋼板Sの表層における800℃から650℃までの範囲の平均冷却速度を計算した。
 水冷装置3内の冷却ゾーンの水量密度と冷却速度の関係は図11に、水量密度と噴射速度の関係は図12に示す通りとなった。すなわち、水量密度と冷却速度の関係はスプレの種類によって変化しない。一方で水量密度と噴射速度の関係は異なり、同じ水量密度で噴射するにしてもフルコーンノズルの方がフラットスプレノズルよりも冷却水の噴射速度が低かった。
 次に、降伏比が80%以下である低降伏比調質鋼を製造した。厚鋼板Sを窒素雰囲気の加熱炉2で840℃まで加熱した後、水冷装置3で冷却を行った。水冷装置3出側の温度計4における厚鋼板Sの表層温度が450℃±25℃、厚鋼板Sの表層における800℃から650℃までの範囲の平均冷却速度が6℃/sとなるように、冷却水噴射ノズル32の使用本数と各ゾーンの水量密度、厚鋼板の搬送速度を設定した。なお冷却水噴射ノズル32の使用本数と各ゾーンの水量密度、厚鋼板の搬送速度は、先述の冷却速度測定実験の結果を用いて設定した。冷却水噴射ノズル32としては、フルコーンノズルとフラットスプレノズルの2種類を使用し、それぞれの結果を比較した。
 また、水冷装置3出側の温度計4で測定した厚鋼板Sの表層温度と厚鋼板Sの加熱温度をもとに1次元の伝熱シミュレーションを実施し、厚鋼板Sの表層における800℃から650℃までの範囲の平均冷却速度を計算した。水冷装置3から払い出された厚鋼板Sは、後工程である急速冷却に供され、周知の技術で室温まで急速冷却した。そののち、製造した厚鋼板Sから小サンプルを採取し、引張試験を行ない降伏比を測定するとともにミクロ組織を観察した。
Figure JPOXMLDOC01-appb-T000003
 表1に厚鋼板Sの製造条件および特性評価試験の結果を示す。表中の「組織」におけるFはフェライトを、Bはベイナイトを、Mはマルテンサイトを意味し、「冷却停止温度」における「R.T.」は室温を意味する。
 実施例1~3は、フルコーンスプレノズルを用いて冷却水の噴射速度を低減させて、水冷を行なった条件である。狙い通りの冷却速度と冷却停止温度で厚鋼板Sを冷却でき、降伏比は合格範囲内となった。冷却水の噴射速度を低減させたことにより、遷移温度が低減して膜沸騰状態を低温まで維持することができ、800℃から650℃までの範囲の平均冷却速度を低温まで維持することができたためと考えられる。
 実施例4はショットブラストによる厚鋼板表層のスケール除去を行なわなかった条件である。ほぼ狙い通りの冷却速度と冷却停止温度で厚鋼板Sを冷却できているが、スケール除去を行なった実施例1と比較して厚鋼板幅方向の温度偏差が拡大した。スケールが生成していた部分の沸騰遷移温度が上昇し、部分的に核沸騰化して冷却速度が増加していたためと考えられる。
 比較例1~3は、フラットスプレノズルを用いて冷却水の噴射速度を発明の範囲外まで増速させて、水冷を行なった条件である。冷却条件は先述の冷却速度測定実験の結果を用いて設定したが、冷却停止温度は室温まで低下してしまった。そのため、正確な冷却速度は不明であった。そのためゾーン数を短くして別途冷却速度を同定する試験を行なった結果、冷却速度は本発明の範囲外まで増加していた。また冷却速度が高かったため、降伏比は合格範囲外となってしまった。沸騰遷移温度が向上して冷却が核沸騰状態となり、800℃から650℃までの範囲の平均冷却速度を低温まで維持できなかったためと考えられる。
 比較例4は、フラットスプレノズルを用いて冷却水の噴射速度を発明の範囲外まで減速させて、水冷を行なった条件である。冷却速度は空冷とほとんど同等だった。また厚鋼板の幅方向温度偏差が不合格となった。スプレの噴射流速が低くなり、冷却水を安定的に噴射できずに、スプレ直下にのみ水が集中したためと考えられる。
 1 熱処理設備(厚鋼板の製造設備)
 2 加熱炉
 3 水冷装置
 4 温度計
 5 冷却ゾーン
 6 テーブルロール
 7 冷却水
 9 デスケーリング装置
 10 制御装置
 11 上位コンピュータ
 12 水冷条件演算部
 13 水冷操業条件出力部
 32 冷却水噴射ノズル
 32a 上側の冷却水噴射ノズル
 32b 下側の冷却水噴射ノズル
 33 水切りロール
 34 水切りパージノズル
 35 水切りパージ
 36 大流量冷却水噴射ノズル
 36a 上側の大流量冷却水噴射ノズル
 36b 下側の大流量冷却水噴射ノズル
 S 厚鋼板

 

Claims (13)

  1.  厚鋼板の水冷を行う厚鋼板の製造方法であって、
     前記厚鋼板の搬送方向に沿って配置された少なくとも上下1対の冷却水噴射ノズルを複数組有する水冷装置を用いて、
     前記冷却水噴射ノズルの冷却水の噴射速度を0.4m/s以上30m/s以下として前記厚鋼板の水冷を行う、厚鋼板の製造方法。
  2.  前記水冷装置内での前記厚鋼板の表層冷却速度を0.4℃/s以上29℃/s以下とする、請求項1に記載の厚鋼板の製造方法。
  3.  前記水冷の前に前記厚鋼板のデスケーリングを行う、請求項1または2のいずれか1項に記載の厚鋼板の製造方法。
  4.  前記水冷の前に前記厚鋼板の酸化スケール除去処理及び加熱を行う、請求項1~3のいずれか1項に記載の厚鋼板の製造方法。
  5.  前記水冷の後に前記厚鋼板の上下面のいずれか一方の面または両方の面の温度を測定する、請求項1~4のいずれか1項に記載の厚鋼板の製造方法。
  6.  前記冷却水噴射ノズルから噴射される冷却水量を制御することによって前記表層冷却速度を制御する、請求項2~5のいずれか1項に記載の厚鋼板の製造方法。
  7.  前記冷却水噴射ノズルの本数および前記厚鋼板の搬送速度を制御することによって前記厚鋼板の冷却停止温度を制御し、前記冷却停止温度を前記厚鋼板の表層温度にして350℃以上とする、請求項1~6のいずれか1項に記載の厚鋼板の製造方法。
  8.  厚鋼板の水冷を行う厚鋼板の製造設備であって、
     前記厚鋼板の搬送方向に沿って配置された少なくとも上下1対の冷却水噴射ノズルを複数組有する水冷装置と、
     前記冷却水噴射ノズルから噴射される冷却水の噴射速度を0.4m/s以上30m/s以下に制御する制御装置と、を備える、厚鋼板の製造設備。
  9.  前記制御装置は前記水冷装置内での前記厚鋼板の表層冷却速度を0.4℃/s以上29℃/s以下に制御する、請求項8に記載の厚鋼板の製造設備。
  10.  前記水冷装置の入側にデスケーリング装置を更に備える、請求項8または9のいずれか1項に記載の厚鋼板の製造設備。
  11.  前記水冷装置の出側に前記厚鋼板の上下面のいずれか一方の面または両方の面の温度を測定する温度計を更に備える、請求項8~10のいずれか1項に記載の厚鋼板の製造設備。
  12.  前記制御装置は前記冷却水噴射ノズルから噴射される冷却水量を更に制御する、請求項8~11のいずれか1項に記載の厚鋼板の製造設備。
  13.  前記制御装置は、前記冷却水噴射ノズルの本数および前記厚鋼板の搬送速度を制御する、請求項8~12のいずれか1項に記載の厚鋼板の製造設備。
     
PCT/JP2022/028414 2021-09-16 2022-07-21 厚鋼板の製造方法および製造設備 WO2023042545A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022561032A JP7452696B2 (ja) 2021-09-16 2022-07-21 厚鋼板の製造方法および製造設備
KR1020247007754A KR20240047396A (ko) 2021-09-16 2022-07-21 후강판의 제조 방법 및 제조 설비
EP22869693.6A EP4378603A1 (en) 2021-09-16 2022-07-21 Manufacturing method and manufacturing equipment for thick steel plate
CN202280061134.7A CN117980508A (zh) 2021-09-16 2022-07-21 厚钢板的制造方法及制造设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-150947 2021-09-16
JP2021150947 2021-09-16

Publications (1)

Publication Number Publication Date
WO2023042545A1 true WO2023042545A1 (ja) 2023-03-23

Family

ID=85602679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028414 WO2023042545A1 (ja) 2021-09-16 2022-07-21 厚鋼板の製造方法および製造設備

Country Status (5)

Country Link
EP (1) EP4378603A1 (ja)
JP (1) JP7452696B2 (ja)
KR (1) KR20240047396A (ja)
CN (1) CN117980508A (ja)
WO (1) WO2023042545A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5871339A (ja) 1981-10-23 1983-04-28 Mitsubishi Heavy Ind Ltd 帯状鋼板の冷却方法および装置
JPH1017980A (ja) 1996-06-28 1998-01-20 Sumitomo Metal Ind Ltd 低降伏比溶接鋼管およびその製造方法
JPH10300301A (ja) 1997-04-28 1998-11-13 Nippon Steel Corp 鋼材の制御冷却方法
JP2005154841A (ja) 2003-11-26 2005-06-16 Jfe Steel Kk 鋼板長手方向の材質均一性に優れた薄物鋼板の製造方法
JP2005313223A (ja) 2003-06-13 2005-11-10 Jfe Steel Kk 厚鋼板の制御冷却装置および制御冷却方法
WO2010110473A1 (ja) * 2009-03-25 2010-09-30 Jfeスチール株式会社 厚鋼板の製造設備及び製造方法
WO2010114083A1 (ja) * 2009-03-30 2010-10-07 Jfeスチール株式会社 熱延鋼板の冷却装置
JP2016163898A (ja) * 2015-03-06 2016-09-08 株式会社神戸製鋼所 厚鋼板冷却方法及び厚鋼板冷却装置
JP2019505388A (ja) * 2015-12-30 2019-02-28 アルセロールミタル 金属基材を冷却するための方法及び装置
WO2019087805A1 (ja) * 2017-10-31 2019-05-09 Jfeスチール株式会社 厚鋼板の製造設備及び製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5871339A (ja) 1981-10-23 1983-04-28 Mitsubishi Heavy Ind Ltd 帯状鋼板の冷却方法および装置
JPH1017980A (ja) 1996-06-28 1998-01-20 Sumitomo Metal Ind Ltd 低降伏比溶接鋼管およびその製造方法
JPH10300301A (ja) 1997-04-28 1998-11-13 Nippon Steel Corp 鋼材の制御冷却方法
JP2005313223A (ja) 2003-06-13 2005-11-10 Jfe Steel Kk 厚鋼板の制御冷却装置および制御冷却方法
JP2005154841A (ja) 2003-11-26 2005-06-16 Jfe Steel Kk 鋼板長手方向の材質均一性に優れた薄物鋼板の製造方法
WO2010110473A1 (ja) * 2009-03-25 2010-09-30 Jfeスチール株式会社 厚鋼板の製造設備及び製造方法
WO2010114083A1 (ja) * 2009-03-30 2010-10-07 Jfeスチール株式会社 熱延鋼板の冷却装置
JP2016163898A (ja) * 2015-03-06 2016-09-08 株式会社神戸製鋼所 厚鋼板冷却方法及び厚鋼板冷却装置
JP2019505388A (ja) * 2015-12-30 2019-02-28 アルセロールミタル 金属基材を冷却するための方法及び装置
WO2019087805A1 (ja) * 2017-10-31 2019-05-09 Jfeスチール株式会社 厚鋼板の製造設備及び製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Power Reactor and Nuclear Fuel Development Corporation", VAPOR EXPLOSION PHENOMENON RELATED TO SAFETY ASSESSMENT OF NUCLEAR REACTOR, February 1980 (1980-02-01)

Also Published As

Publication number Publication date
CN117980508A (zh) 2024-05-03
KR20240047396A (ko) 2024-04-12
JP7452696B2 (ja) 2024-03-19
EP4378603A1 (en) 2024-06-05
JPWO2023042545A1 (ja) 2023-03-23

Similar Documents

Publication Publication Date Title
JP5218435B2 (ja) 厚鋼板の制御冷却方法
CN111247256A (zh) 厚钢板的制造设备和制造方法
JP4604564B2 (ja) 厚鋼板の制御冷却方法及び装置
CN114888094B (zh) 基于冷却过程残余应力预测的轧制板形补偿方法
JP5811046B2 (ja) 熱延鋼板の温度むら予測方法、平坦度制御方法、温度むら制御方法、及び、製造方法
JP5310966B1 (ja) 熱延鋼板冷却装置
WO2023042545A1 (ja) 厚鋼板の製造方法および製造設備
JP6870701B2 (ja) 鋼板の冷却方法、鋼板の冷却装置および鋼板の製造方法
JP6699688B2 (ja) 熱延鋼板の製造方法
JP5482365B2 (ja) 鋼板の冷却方法、製造方法および製造設備
JP2000042621A (ja) 熱間圧延鋼板の制御冷却方法
KR102675218B1 (ko) 후강판의 제조 설비 및 제조 방법
KR20220152392A (ko) 후강판의 온도 편차 예측 방법, 후강판의 온도 편차 제어 방법, 후강판의 온도 편차 예측 모델의 생성 방법, 후강판의 제조 방법, 및 후강판의 제조 설비
JP6962084B2 (ja) 鋼管の冷却速度を決定する方法及びそれを用いた鋼管の製造方法
EP0803583A2 (en) Primary cooling method in continuously annealing steel strips
WO2022209320A1 (ja) 鋼板の材質予測モデルの生成方法、材質予測方法、製造方法、及び製造設備
EP4275806A1 (en) Method for predicting shape of steel sheet, shape control method, manufacturing method, method for generating shape prediction model, and manufacturing equipment
JP4111144B2 (ja) 高温鋼板の冷却方法
Reis et al. EFFECT OF PLATE SURFACE CONDITIONS ON ACCELERATED COOLING PERFORMANCE
JP4333523B2 (ja) 熱延鋼板の製造方法
CN115917288A (zh) 热处理轨道的硬度预测方法、热处理方法、硬度预测装置、热处理装置、制造方法、制造设备、以及硬度预测模型的生成方法
JP2002317227A (ja) 鋼板の熱処理方法およびその装置
JP5991283B2 (ja) 鋼帯の製造方法および製造設備
JPH03166318A (ja) レールの熱処理方法
JP2005264184A (ja) 高炭素鋼又は高炭素合金鋼からなる熱延鋼板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022561032

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869693

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022869693

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022869693

Country of ref document: EP

Effective date: 20240226

ENP Entry into the national phase

Ref document number: 20247007754

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280061134.7

Country of ref document: CN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024004653

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112024004653

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20240308