JP5310966B1 - 熱延鋼板冷却装置 - Google Patents

熱延鋼板冷却装置 Download PDF

Info

Publication number
JP5310966B1
JP5310966B1 JP2013512286A JP2013512286A JP5310966B1 JP 5310966 B1 JP5310966 B1 JP 5310966B1 JP 2013512286 A JP2013512286 A JP 2013512286A JP 2013512286 A JP2013512286 A JP 2013512286A JP 5310966 B1 JP5310966 B1 JP 5310966B1
Authority
JP
Japan
Prior art keywords
hot
rolled steel
steel sheet
cooling
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013512286A
Other languages
English (en)
Other versions
JPWO2014087520A1 (ja
Inventor
透 明石
進吾 栗山
健郎 伊藤
浩嗣 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Application granted granted Critical
Publication of JP5310966B1 publication Critical patent/JP5310966B1/ja
Publication of JPWO2014087520A1 publication Critical patent/JPWO2014087520A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/26Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • B21B37/76Cooling control on the run-out table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2273/00Path parameters
    • B21B2273/02Vertical deviation, e.g. slack, looper height
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/006Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/02Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring flatness or profile of strips

Abstract


本発明の熱延鋼板冷却装置は、熱延鋼板の温度を測定する温度計と;前記熱延鋼板の形状を測定する形状計と;冷却区間において前記熱延鋼板の上面を冷却する上側冷却装置と;冷却区間において前記熱延鋼板の下面を冷却する下側冷却装置と;温度測定結果と形状測定結果とに基づいて、前記上側冷却装置及び前記下側冷却装置を制御することにより、前記冷却区間における前記熱延鋼板の上面冷却抜熱量と下面冷却抜熱量との少なくとも一方を制御する制御装置と;を備える。

Description

本発明は、仕上圧延機で熱間圧延された熱延鋼板を冷却する熱延鋼板冷却装置に関する。
例えば自動車及び産業機械等に使用される熱延鋼板は、一般に、粗圧延工程及び仕上圧延工程を経て製造される。図18は、従来の熱延鋼板の製造方法を模式的に示す図である。熱延鋼板の製造工程においては、先ず、所定の組成に調整した溶鋼を連続鋳造して得たスラブSを粗圧延機201により圧延した後、さらに複数の圧延スタンド202a〜202dで構成される仕上圧延機203により熱間圧延して、所定の厚さの熱延鋼板Hを形成する。そして、この熱延鋼板Hは、冷却装置211から注水される冷却水によって冷却された後、巻取装置212によりコイル状に巻き取られる。
冷却装置211は、一般に仕上圧延機203から搬送される熱延鋼板Hに対していわゆるラミナー冷却を施すための設備である。この冷却装置211は、ランナウトテーブル上を移動する熱延鋼板Hの上面に対して、垂直方向の上方から冷却ノズルを介して冷却水を噴流水として噴射すると共に、熱延鋼板Hの下面に対して、パイプラミナーを介して噴流水として冷却水を噴射することにより、熱延鋼板Hを冷却する。
そして、従来において、例えば特許文献1には、厚鋼板の上下面の表面温度差を低減させることにより、その鋼板の形状不良を防止する技術が開示されている。この特許文献1に開示された技術によれば、冷却装置による冷却時において鋼板の上面及び下面の表面温度を温度計で同時に測定して得られた表面温度差に基づいて、鋼板の上面と下面に供給する冷却水の水量比を調整する。
また、例えば特許文献2には、仕上圧延機の隣接する2つのスタンド間において噴射スプレーを用いて被圧延材の冷却を行うことで、被圧延材のγ−α変態を開始及び完了させ、スタンド間における通板性悪化を防止する技術が開示されている。
また、例えば特許文献3には、圧延機出口側に設置した急峻度計により、鋼板先端の急峻度を測定し、その測定した急峻度に応じて冷却水流量を幅方向に変えて調整することにより、鋼板の穴あきを防止する技術が開示されている。
さらに、例えば特許文献4には、熱延鋼板の板幅方向における波形状の板厚分布を解消し、板幅方向の板厚を均一化させることを目的とし、熱延鋼板の板幅方向における最高熱伝達率と最低熱伝達率との差が所定値の範囲に収まるように制御する技術が開示されている。
ここで、図18に示した製造方法によって製造される熱延鋼板Hは、例えば図19に示すように冷却装置211におけるランナウトテーブル(以降、「ROT」と記載する場合がある。)の搬送ロール220上で圧延方向(図19中の矢印方向)に波形状を生ずる場合がある。その場合、熱延鋼板Hの上面と下面の冷却にバラツキが生じてしまう。すなわち、熱延鋼板H自身が有する波形状に起因した冷却偏差によって、圧延方向に対して均一な冷却を行うことができなくなるという問題点があった。
そこで、例えば特許文献5には、圧延方向に波形状が形成された鋼板において、その鋼板の冷却を均一化するために、その鋼板の上部の乗り水と下部のテーブルローラーとの距離の影響を最小化するように、上部冷却と下部冷却の冷却能力を同一にする技術が開示されている。
日本国特開2005−74463号公報 日本国特開平5−337505号公報 日本国特開2005−271052号公報 日本国特開2003−48003号公報 日本国特開平6−328117号公報
しかしながら、特許文献1の冷却方法は、熱延鋼板が圧延方向に波形状を有する場合を考慮していない。上述した波形状を有する熱延鋼板Hにおいては、図19に示すように、波形状の底部において搬送ロール220と局所的に接触する場合がある。また、熱延鋼板Hは、波形状底部において、搬送ロール220同士の間に熱延鋼板Hの落ち込みを防止するためのサポートとして設けられるエプロン(図19には図示せず)とも局所的に接触する場合がある。波形状の熱延鋼板Hにおいて、搬送ロール220やエプロンと局所的に接触する部分は、接触抜熱によって他の部分よりも冷却され易くなる。このため、熱延鋼板Hが不均一に冷却されるという問題点があった。即ち、特許文献1では、熱延鋼板が波形状であることで搬送ロールやエプロンと熱延鋼板とが局所的に接触し、その接触部分が接触抜熱によって冷却され易くなることを考慮していない。したがって、このように波形状が形成された熱延鋼板を均一に冷却することができない場合がある。
また、特許文献2に記載の技術は、比較的硬度の低い(軟らかい)極低炭素鋼を仕上圧延機のスタンド間においてγ−α変態させるものであり、均一な冷却を行うことを目的とするものではない。また、特許文献2の発明は、被圧延材が圧方向に波形状を有する場合や、被圧延材が引張強度(TS)800MPa以上のいわゆるハイテンと呼ばれる鋼材である場合についての冷却に関するものではないため、被圧延材が波形状を有する熱延鋼板である場合や比較的硬度の高い鋼材である場合には、均一な冷却が行われない虞がある。
また、特許文献3の冷却方法では、鋼板の幅方向の急峻度を測定して、その急峻度の高い部分の冷却水流量を調整している。しかしながら、鋼板の板幅方向の冷却水流量を変更すると、その鋼板の板幅方向の温度を均一にするのは困難となる。さらに、特許文献3においても、熱延鋼板が圧延方向に波形状を有する場合を考慮しておらず、上述したように熱延鋼板を均一に冷却することはできない場合がある。
また、特許文献4の冷却は、仕上圧延機ロールバイトの直前における熱延鋼板の冷却であるため、仕上圧延されて所定の厚みになった熱延鋼板に適用できない。さらに、特許文献4においても、熱延鋼板の圧延方向に波形状が形成される場合を考慮しておらず、上述したように熱延鋼板をその圧延方向に対して均一に冷却することができない場合がある。
また、特許文献5の冷却方法において、上部冷却の冷却能力には、上部注水ノズルから鋼板に供給される冷却水による冷却に加えて、鋼板の上部の乗り水による冷却も含まれる。この乗り水は、鋼板に形成された波形状の急峻度や鋼板の通板速度によって影響されるため、厳密に乗り水による鋼板の冷却能力を特定することはできない。そうすると、上部冷却の冷却能力を正確に制御することが困難である。このため、上部冷却と下部冷却の冷却能力を同一にすることも困難である。しかも、上部冷却と下部冷却の冷却能力を同一にするに際し、これら冷却能力の決定方法の一例は例示されているものの、普遍的な決定方法は開示されていない。したがって、特許文献5の冷却方法は、熱延鋼板を均一に冷却できない場合がある。
本発明は、上述した問題点に鑑みてなされたものであり、仕上圧延機で熱間圧延された熱延鋼板を均一に冷却することを目的とする。
本発明は、上記課題を解決して係る目的を達成するために以下の手段を採用する。
すなわち、

(1)本発明の一態様に係る熱延鋼板冷却装置は、仕上圧延機で熱間圧延された熱延鋼板を、その通板経路上に設けられた冷却区間において冷却する熱延鋼板冷却装置であって、前記冷却区間の下流側における前記熱延鋼板の温度を測定する温度計と;前記冷却区間の下流側における前記熱延鋼板の形状を測定する形状計と;前記冷却区間において前記熱延鋼板の上面を冷却する上側冷却装置と;前記冷却区間において前記熱延鋼板の下面を冷却する下側冷却装置と;前記温度計から得られる前記熱延鋼板の温度測定結果と前記形状計から得られる前記熱延鋼板の形状測定結果とに基づいて、前記上側冷却装置及び前記下側冷却装置を制御することにより、前記冷却区間における前記熱延鋼板の上面冷却抜熱量と下面冷却抜熱量との少なくとも一方を制御する制御装置と;を備え、前記制御装置が、前記温度測定結果に基づいて前記冷却区間の下流側における前記熱延鋼板の温度の時系列平均値を平均温度として算出する平均温度算出部と;前記形状測定結果に基づいて前記冷却区間の下流側における前記熱延鋼板の変動速度を算出する変動速度算出部と;前記熱延鋼板の鉛直方向の上向きを正とした場合において、前記変動速度が正の領域で、前記熱延鋼板の波形状1周期以上の範囲の前記平均温度に対して前記熱延鋼板の温度が低い場合は、前記上面冷却抜熱量が減少する方向及び前記下面冷却抜熱量が増加する方向の少なくとも一方を制御方向として決定し、前記平均温度に対して前記熱延鋼板の温度が高い場合は、前記上面冷却抜熱量が増加する方向及び前記下面冷却抜熱量が減少する方向の少なくとも一方を前記制御方向として決定し、前記変動速度が負の領域で、前記平均温度に対して前記熱延鋼板の温度が低い場合は、前記上面冷却抜熱量が増加する方向及び前記下面冷却抜熱量が減少する方向の少なくとも一方を前記制御方向として決定し、前記平均温度に対して前記熱延鋼板の温度が高い場合は、前記上面冷却抜熱量が減少する方向及び前記下面冷却抜熱量が増加する方向の少なくとも一方を前記制御方向として決定する制御方向決定部と;前記制御方向決定部にて決定された前記制御方向に基づいて、前記冷却区間における前記熱延鋼板の前記上面冷却抜熱量と前記下面冷却抜熱量との合計値を調整する冷却抜熱量合計値調整部と;を含む。
(2)上記(1)に記載の熱延鋼板冷却装置において、前記熱延鋼板上における前記温度計の温度測定箇所と前記形状計の形状測定箇所との位置ずれが50mm以内であることが好ましい。
(3)上記(1)または(2)に記載の熱延鋼板冷却装置において、前記冷却区間における前記熱延鋼板の通板速度は、550m/min以上から機械的な限界速度以下の範囲内に設定されていることが好ましい。
(4)上記(3)に記載の熱延鋼板冷却装置において、前記熱延鋼板の引張強度は800MPa以上であることが好ましい。

(5)上記(3)に記載の熱延鋼板冷却装置において、前記仕上圧延機は複数の圧延スタンドから構成されており、互いに隣合う前記圧延スタンドの間に、前記熱延鋼板の補助冷却を行う補助冷却装置をさらに備えることが好ましい。
本発明の上記態様によれば、熱延鋼板の温度の位相を検出し、その熱延鋼板の波形状と比較することによって、上側冷却能力と下側冷却能力を調整することができ、熱延鋼板の上面冷却抜熱量及び下面冷却抜熱量を調整することができる。したがって、その後、調整された冷却能力で熱延鋼板を冷却することで、その熱延鋼板を均一に冷却することができる。
本発明の一実施形態における熱延鋼板冷却装置を備えた熱間圧延設備1を示す説明図である。 本実施形態における冷却装置14の構成の概略を示す説明図である。 熱間圧延設備1において冷却装置14付近の構成の概略を示す説明図である。 通常の操業における代表的なストリップのROT内冷却の熱延鋼板Hの温度変動と急峻度の関係を示すグラフであって、上側のグラフは、コイル先端からの距離或いは定点経過時間に対する温度変動を示し、下側のグラフは、コイル先端からの距離または定点経過時間に対する急峻度を示している。 通常の操業における代表的なストリップのROT内冷却の熱延鋼板Hの温度変動と急峻度の関係を示すグラフである。 熱延鋼板の変動速H度が正の領域で熱延鋼板Hの平均温度に対して熱延鋼板Hの温度が低くなり、変動速度が負の領域で熱延鋼板Hの温度が高くなった場合に、上面冷却抜熱量を減少させ、下面冷却抜熱量を増加させたときの熱延鋼板Hの温度変動と急峻度の関係を示すグラフである。なお、熱延鋼板Hの波形状の急峻度とは、波形状の振幅を1周期分の圧延方向の長さで割った値である。 熱延鋼板Hの変動速度が正の領域で熱延鋼板Hの平均温度に対して熱延鋼板Hの温度が低く、変動速度が負の領域で熱延鋼板Hの温度が高くなった場合に、上面冷却抜熱量を増加させ、下面冷却抜熱量を減少させたときの熱延鋼板Hの温度変動と急峻度の関係を示すグラフである。 熱間圧延設備1において温度計40と形状計41の配置を示す説明図である。 熱間圧延設備1において冷却装置14の変形例を示す説明図である。 熱延鋼板Hの急峻度と温度標準偏差との関係を示すグラフである。 熱延鋼板Hの通板速度と温度標準偏差との関係を示すグラフである。 熱延鋼板Hの板幅方向に温度標準偏差が形成された様子を示す説明図である。 他の実施形態における熱延鋼板Hの冷却方法を実現するための熱間圧延設備2を示す説明図である。 熱間圧延設備2において配設される冷却装置114の構成の概略を示す説明図である。 熱延鋼板Hの最下点が搬送ロール132と接触する様子を示す説明図である。 熱延鋼板Hの最下点が搬送ロール132及びエプロン133と接触する様子を示す説明図である。 熱延鋼板Hの通板速度が低速の場合における熱延鋼板Hの温度の経時変化を示すグラフである。 熱延鋼板Hの通板速度が高速の場合における熱延鋼板Hの温度の経時変化を示すグラフである。 スタンド間冷却を行うことが可能な仕上圧延機113の説明図である。 従来の熱延鋼板Hの製造方法を示す説明図である。 従来の熱延鋼板Hの冷却方法を示す説明図である。
以下、本発明の実施の形態として、例えば自動車及び産業機械等に使用される熱延鋼板を冷却する熱延鋼板冷却装置について、図面を参照しながら詳細に説明する。
図1は、本実施形態における熱延鋼板冷却装置を備えた熱間圧延設備1の例を模式的に示している。この熱間圧延設備1は、加熱したスラブSをロールで上下に挟んで連続的に圧延し、最小1mmまで薄くしてこれを巻き取ることを目的とした設備である。
この熱間圧延設備1は、スラブSを加熱するための加熱炉11と、この加熱炉11において加熱されたスラブSを幅方向に圧延する幅方向圧延機16と、この幅方向に圧延されたスラブSを上下方向から圧延して粗バーにする粗圧延機12と、粗バーをさらに所定の厚みまで連続して熱間仕上圧延をする仕上圧延機13と、この仕上圧延機13により熱間仕上圧延された熱延鋼板Hを冷却水により冷却する冷却装置14と、冷却装置14により冷却された熱延鋼板Hをコイル状に巻き取る巻取装置15とを備えている。
加熱炉11には、装入口を介して外部から搬入されてきたスラブSに対して、火炎を吹き出すことによりスラブSを加熱するサイドバーナ、軸流バーナ、ルーフバーナが配設されている。加熱炉11に搬入されたスラブSは、各ゾーンにおいて形成される各加熱帯において順次加熱され、さらに最終ゾーンにおいて形成される均熱帯において、ルーフバーナを利用してスラブSを均等加熱することにより、最適温度で搬送できるようにするための保熱処理を行う。加熱炉11における加熱処理が全て終了すると、スラブSは加熱炉11外へと搬送され、粗圧延機12による圧延工程へと移行することになる。
粗圧延機12は、搬送されてきたスラブSにつき、複数スタンドに亘って配設される円柱状の回転ロールの間隙を通過させる。例えば、この粗圧延機12は、第1スタンドにおいて上下に配設されたワークロール12aのみによりスラブSを熱間圧延して粗バーを形成する。次に、このワークロール12aを通過した粗バーをワークロールとバックアップロールとにより構成される複数の4重圧延機12bによりさらに連続的に圧延する。その結果、この粗圧延工程の終了時に、粗バーは、厚さ30〜60mm程度まで圧延され、仕上圧延機13へと搬送されることになる。
仕上圧延機13は、粗圧延機12から搬送されてきた粗バーを、その厚さが数mm程度になるまで仕上げ圧延する。これら仕上圧延機13は、6〜7スタンドに亘って上下一直線に並べられた仕上げ圧延ロール13aの間隙に粗バーを通過させ、これを徐々に圧下していく。この仕上圧延機13により仕上げ圧延された熱延鋼板Hは、後述する搬送ロール32によって冷却装置14へと搬送される。
冷却装置14は、仕上圧延機13から搬送される熱延鋼板Hに対していわゆるラミナー冷却を施すための設備である。この冷却装置14は、図2に示すように、ランナウトテーブルの搬送ロール32上を移動する熱延鋼板Hの上面に対して、上側の冷却口31から冷却水を噴射する上側冷却装置14aと、熱延鋼板Hの下面に対して、下側の冷却口31から冷却水を噴射する下側冷却装置14bとを備えている。冷却口31は、上側冷却装置14a及び下側冷却装置14bのそれぞれについて複数個設けられている。
また、冷却口31には、冷却ヘッダー(図示省略)が接続されている。この冷却口31の個数によって、上側冷却装置14a及び下側冷却装置14bの冷却能力が決定される。なお、この冷却装置14は、上下スプリットラミナー、パイプラミナー、スプレー冷却等の少なくとも一つで構成されていてもよい。また、この冷却装置14によって熱延鋼板Hが冷却される区間が、本発明における冷却区間に相当する。
また、図3に示すように、冷却区間(つまり冷却装置14)の下流側には、熱延鋼板Hの圧延方向に定められた測定位置の温度を測定する温度計40と、温度計40と同一測定位置の熱延鋼板Hの波形状を測定する形状計41とが配置されている。
これら温度計40及び形状計41は、ケーブル等を介して制御装置50と電気的に接続されている。また、制御装置50は、ケーブル等を介して上側冷却装置14a及び下側冷却装置14bと電気的に接続されている。
温度計40は、熱延鋼板Hの温度測定結果を制御装置50に出力する。形状計41は、熱延鋼板Hの形状測定結果を制御装置50に出力する。
制御装置50は、温度計40から得られる温度測定結果と形状計41から得られる形状測定結果とに基づいて、上側冷却装置14a及び下側冷却装置14bを制御することにより、冷却区間における熱延鋼板Hの上面冷却抜熱量と下面冷却抜熱量との少なくとも一方を制御する。
この制御装置50は、プログラムの実行によって実現される機能として、平均温度算出部51、変動速度算出部52、制御方向決定部53及び冷却抜熱量合計値調整部54を備えている。これら各機能部の役割については後述する。
巻取装置15は、図1に示すように、冷却装置14により冷却された熱延鋼板Hを所定の巻取温度で巻き取る。巻取装置15によりコイル状に巻き取られた熱延鋼板Hは、熱間圧延設備1外へと搬送されることになる。
なお、上記のように構成された熱間圧延設備1において、上側冷却装置14a、下側冷却装置14b、温度計40、形状計41及び制御装置50が、本実施形態における熱延鋼板冷却装置を構成している。
次に、上記のように構成された熱間圧延設備1によって実現される熱延鋼板Hの冷却方法について説明する。
なお、以下の説明において、仕上圧延機13で熱間圧延された熱延鋼板Hには、図19に示すように、その圧延方向に表面高さ(波高さ)が変動する波形状が形成されている。また、以下の説明において、熱延鋼板Hの冷却時に、その熱延鋼板H上に溜まる乗り水の影響は無視する。実際に、本願発明者による調査の結果、熱延鋼板H上に溜まる乗り水の影響はほとんどないことがわかっている。
先ず、冷却装置14で熱延鋼板Hを冷却する前に、予め冷却装置14の上側冷却装置14aの冷却能力(上側冷却能力)と下側冷却装置14bの冷却能力(下側冷却能力)をそれぞれ調整する。これら上側冷却能力と下側冷却能力は、それぞれ上側冷却装置14aによって冷却される熱延鋼板Hの上面の熱伝達係数と、下側冷却装置14bによって冷却される熱延鋼板Hの下面の熱伝達係数とを用いて調整する。
ここで、熱延鋼板Hの上面と下面の熱伝達係数の算出方法について説明する。熱伝達係数は、単位面積からの単位時間当たりの冷却抜熱量(熱エネルギー)を、被熱伝達体と熱媒体との温度差で除した値である(熱伝達係数=冷却抜熱量/温度差)。ここでの温度差は、冷却装置14の入口側の温度計によって測定される熱延鋼板Hの温度と、冷却装置14で用いられる冷却水の温度との差である。
また、冷却抜熱量は、熱延鋼板Hの温度差と比熱と質量をそれぞれ乗じた値である(冷却抜熱量=温度差×比熱×質量)。すなわち、冷却抜熱量は冷却装置14における熱延鋼板Hの冷却抜熱量であって、冷却装置14の入口側の温度計と出口側の温度計によってそれぞれ測定される熱延鋼板Hの温度の差と、熱延鋼板Hの比熱と、冷却装置14で冷却される熱延鋼板Hの質量とをそれぞれ乗じた値である。
上述のように算出された熱延鋼板Hの熱伝達係数は、熱延鋼板Hの上面と下面の熱伝達係数に分けられる。これら上面と下面の熱伝達係数は、例えば次のようにして予め得られる比率を用いて算出される。
すなわち、上側冷却装置14aのみで熱延鋼板Hを冷却する場合の熱延鋼板Hの熱伝達係数と、下側冷却装置14bのみで熱延鋼板Hを冷却する場合の熱延鋼板Hの熱伝達係数を測定する。
このとき、上側冷却装置14aからの冷却水量と下側冷却装置14bからの冷却水量を同一とする。測定された上側冷却装置14aを用いた場合の熱伝達係数と下側冷却装置14bを用いた場合の熱伝達係数との比率の逆数が、上下熱伝達係数比率を“1”とする場合の上側冷却装置14aからの冷却水量と下側冷却装置14bからの冷却水量との上下比率となる。
そして、このようにして得られた冷却水量の上下比率を、熱延鋼板Hを冷却する際の上側冷却装置14aからの冷却水量又は下側冷却装置14bからの冷却水量に乗じて、上述した熱延鋼板Hの上面と下面の熱伝達係数の比率を算出する。
また、上述では、上側冷却装置14aのみと下側冷却装置14bのみで冷却される熱延鋼板Hの熱伝達係数を用いたが、上側冷却装置14aと下側冷却装置14bの両方で冷却される熱延鋼板Hの熱伝達係数を用いてもよい。すなわち、上側冷却装置14aと下側冷却装置14bの冷却水量を変更した場合の熱延鋼板Hの熱伝達係数を測定し、その熱伝達係数の比率を用いて熱延鋼板Hの上面と下面の熱伝達係数の比率を算出してもよい。
以上のように、熱延鋼板Hの熱伝達係数を算出し、熱延鋼板Hの上面と下面の熱伝達係数の上記比率(上下熱伝達係数比率)に基づいて、熱延鋼板Hの上面と下面の熱伝達係数が算出される。
ここで、熱延鋼板Hを均一に冷却するために、上側冷却装置14aと下側冷却装置14bの冷却能力を調整する(熱延鋼板Hの上面冷却抜熱量と下面冷却抜熱量とを制御する)ことについて、本願発明者らが鋭意検討した結果、さらに、以下の知見を得るに至った。
本願発明者らは、熱延鋼板Hの波形状が発生した状態での冷却によって発生した温度標準偏差の特徴について鋭意検討を重ねて来た結果、次の事を明らかにした。
通板中の熱延鋼板Hに対し、温度計40と形状計41によって熱延鋼板Hの圧延方向に定められた測定位置(以下では、この測定位置を定点と呼ぶ場合がある)の温度測定及び形状測定を一定の時間間隔(サンプリング間隔)で行い、温度測定結果及び形状測定結果の時系列データを取得する。
なお、温度計40による温度の測定領域は、熱延鋼板Hの幅方向の全域を含む。また、形状とは、定点測定で観測される熱延鋼板Hの高さ方向の変動量に熱延鋼板Hの通板方向の移動量を用いて、波のピッチ分の高さ或いは変動成分の線積分で求めた急峻度である。また、同時に単位時間当たりの変動量、即ち変動速度も求める。さらに、形状の測定領域は、温度の測定領域と同様に、熱延鋼板Hの幅方向の全域を含む。また、各測定結果のサンプリング時間に熱延鋼板Hの通板速度(搬送速度)を乗算すると、各測定結果が得られた熱延鋼板Hの圧延方向の位置を算出することができる。つまり、各測定結果の時系列データがサンプリングされた時間に通板速度を乗じると、各測定結果の時系列データを圧延方向の位置に紐付けすることが可能となる。
この時系列データを用いて、先ず、熱延鋼板Hの上面冷却抜熱量と下面冷却抜熱量との合計値を調整する。具体的には、温度計40で測定される温度の時系列平均値が所定の目標値に一致するように、熱延鋼板Hの上面冷却抜熱量と下面冷却抜熱量との合計値を調整する。
そして、上面冷却抜熱量と下面冷却抜熱量との合計値を調整する時には、例えば三塚の式等に代表される実験理論式を用いて予め求められた理論値に対して、実際の操業実績との誤差を補正する様に設定した学習値に基づき、冷却装置14に接続される冷却ヘッダーのオンオフ制御を行っても良い。或いは、実際に温度計40で測定された温度に基づいて、上記冷却ヘッダーのオンオフをフィードバック制御又はフィードフォワード制御してもよい。
次に、上述した温度計40と形状計41から得られるデータを用いて従来のROTの冷却制御について説明をする。図4は、通常の操業における代表的なストリップのROT内冷却の熱延鋼板Hの温度変動と急峻度の関係を示している。図4における熱延鋼板Hの上下熱伝達係数比率は1.2:1であり、上側冷却能力が下側冷却能力よりも高くなっている。図4の上側のグラフは、コイル先端からの距離或いは定点経過時間に対する温度変動を示し、図4の下側のグラフは、コイル先端からの距離または定点経過時間に対する急峻度を示している。
図4における領域Aは、図3に示すストリップ先端部が巻取装置15のコイラーに噛み込まれる前の領域(張力が無い為、形状が悪い領域)である。図4における領域Bは、ストリップ先端部がコイラーに噛み込まれた後の領域(ユニットテンションの影響で波形状がフラットに変化する領域)である。このような熱延鋼板Hの形状がフラットでない領域で発生する大きな温度変動(つまり温度標準偏差)を改善することが望まれる。
そこで、本願発明者らは、ROTにおける温度標準偏差の増大を抑制することを目標として、鋭意実験を行ってきた結果、以下のような知見を得るに至った。
図5は、図4と同様に通常の操業における代表的なストリップのROT内冷却の同一形状急峻度に対する温度変動成分を示している。この温度変動成分とは、実際の鋼板温度から温度の時系列平均(以下、「平均温度」という場合がある)を引いた残差である。例えば平均温度は、熱延鋼板Hの波形状1周期以上の範囲を平均としても良い。
なお、平均温度は、原則として周期単位での範囲の平均である。また、1周期の範囲の平均温度は、2周期以上の範囲の平均温度と大きな差がないことが操業データによって確認されている。
従って、少なくとも波形状1周期の範囲の平均温度を算出すればよい。熱延鋼板Hの波形状の範囲の上限は特に限定されないが、好ましくは5周期に設定すれば、十分な精度の平均温度を得られる。また、平均する範囲が周期単位の範囲でなくとも、2〜5周期の範囲であれば許容できる平均温度を得られる。
ここで、熱延鋼板Hの鉛直方向(熱延鋼板Hの上下面に直交する方向)の上向きを正とすると、定点で測定された変動速度が正の領域で、熱延鋼板Hの波形状1周期以上の範囲の平均温度に対して熱延鋼板Hの温度(定点で測定された温度)が低い場合は、上面冷却抜熱量が減少する方向及び下面冷却抜熱量が増加する方向の少なくとも一方を制御方向として決定し、上記の平均温度に対して熱延鋼板Hの温度が高い場合は、上面冷却抜熱量が増加する方向及び下面冷却抜熱量が減少する方向の少なくとも一方を制御方向として決定する。
また、定点で測定された変動速度が負の領域で、上記の平均温度に対して熱延鋼板Hの温度が低い場合は、上面冷却抜熱量が増加する方向及び下面冷却抜熱量が減少する方向の少なくとも一方を制御方向として決定し、上記の平均温度に対して熱延鋼板Hの温度が高い場合は、上面冷却抜熱量が減少する方向及び下面冷却抜熱量が増加する方向の少なくとも一方を制御方向として決定する。
そして、上記のように決定された制御方向に基づいて、冷却区間における熱延鋼板Hの上面冷却抜熱量及び下面冷却抜熱量の少なくとも一方を調整すると、図6に示すように、図5と比較して、熱延鋼板Hの形状がフラットでない領域Aで発生する温度変動を低減できることがわかった。
上記とは逆の操作を行った場合について以下に記す。定点で測定された変動速度が正の領域で、熱延鋼板Hの平均温度に対して熱延鋼板Hの温度が低い場合は、上面冷却抜熱量が増加する方向及び下面冷却抜熱量が減少する方向の少なくとも一方を制御方向として決定し、上記の平均温度に対して熱延鋼板Hの温度が高い場合は、上面冷却抜熱量が減少する方向及び下面冷却抜熱量が増加する方向の少なくとも一方を制御方向として決定する。
また、定点で測定された変動速度が負の領域で、上記の平均温度に対して熱延鋼板Hの温度が低い場合は、上面冷却抜熱量が減少する方向及び下面冷却抜熱量が増加する方向の少なくとも一方を制御方向として決定し、上記の平均温度に対して熱延鋼板Hの温度が高い場合は、上面冷却抜熱量が増加する方向及び下面冷却抜熱量が減少する方向の少なくとも一方を制御方向として決定する。
そして、上記のように決定された制御方向に基づいて、冷却区間における熱延鋼板Hの上面冷却抜熱量及び下面冷却抜熱量の少なくとも一方を調整すると、図7に示すように、図5と比較して、熱延鋼板Hの形状がフラットでない領域Aで発生する温度変動が拡大することがわかった。なお、ここで説明する例でも冷却停止温度を変えてよいという前提にはなっていない。
この関係を利用すれば、温度変動、つまり温度標準偏差を低減させるために、冷却装置14の上側冷却装置14aと下側冷却装置14bのどちらの冷却能力を調整すればよいのかが明確になる。なお、表1は上記関係をまとめた表である。
本実施形態の熱延鋼板冷却装置は、上述した冷却方法を実現するものである。すなわち、制御装置50の平均温度算出部51は、温度計40から時系列的に得られる温度測定結果の時系列平均値を平均温度として算出する。また、変動速度算出部52は、形状計41から時系列的に得られる形状測定結果に基づいて、熱延鋼板Hの変動速度を算出する。
制御方向決定部53は、熱延鋼板Hの鉛直方向の上向きを正とすると、定点で測定された変動速度が正の領域で、熱延鋼板Hの波形状1周期以上の範囲の平均温度に対して熱延鋼板Hの温度(定点で測定された温度)が低い場合は、上面冷却抜熱量が減少する方向及び下面冷却抜熱量が増加する方向の少なくとも一方を制御方向として決定し、上記の平均温度に対して熱延鋼板Hの温度が高い場合は、上面冷却抜熱量が増加する方向及び下面冷却抜熱量が減少する方向の少なくとも一方を制御方向として決定する。
また、制御方向決定部53は、定点で測定された変動速度が負の領域で、上記の平均温度に対して熱延鋼板Hの温度が低い場合は、上面冷却抜熱量が増加する方向及び下面冷却抜熱量が減少する方向の少なくとも一方を制御方向として決定し、上記の平均温度に対して熱延鋼板Hの温度が高い場合は、上面冷却抜熱量が減少する方向及び下面冷却抜熱量が増加する方向の少なくとも一方を制御方向として決定する。
そして、冷却抜熱量合計値調整部54は、上記のように決定された制御方向に基づいて、冷却区間における熱延鋼板Hの上面冷却抜熱量と下面冷却抜熱量との合計値を調整する。
なお、上側冷却装置14aの冷却能力と下側冷却装置14bの冷却能力を調整する際には、例えば上側冷却装置14aの冷却口31に接続される冷却ヘッダーと下側冷却装置14bの冷却口31に接続される冷却ヘッダーとを、それぞれオンオフ制御してもよい。あるいは、上側冷却装置14aと下側冷却装置14bにおける各冷却ヘッダーの冷却能力を制御してもよい。すなわち、各冷却口31から噴射される冷却水の水量密度、圧力、水温の少なくとも一つを調整してもよい。
また、上側冷却装置14aと下側冷却装置14bの冷却ヘッダー(冷却口31)を間引いて、上側冷却装置14aと下側冷却装置14bから噴射される冷却水の流量や圧力を調整してもよい。例えば冷却ヘッダーを間引く前の上側冷却装置14aの冷却能力が、下側冷却装置14bの冷却能力よりも上回っている場合、上側冷却装置14aを構成する冷却ヘッダーを間引くことが好ましい。
こうして調整された冷却能力で、上側冷却装置14aから熱延鋼板Hの上面に冷却水を噴射すると共に、下側冷却装置14bから熱延鋼板Hの下面に冷却水を噴射することにより、熱延鋼板Hが均一に冷却される。
その後、冷却装置14によって冷却された熱延鋼板Hに対し、温度計40と形状計41によって温度と形状をそれぞれ同一点で定点測定を行い、時系列データとして測定する。なお、温度の測定領域は、熱延鋼板Hの幅方向の全域を含む。また、形状とは、定点測定で観測される熱延鋼板Hの高さ方向の変動量を示す。さらに、形状の測定領域は、温度の測定領域と同様に熱延鋼板Hの幅方向の全域を含む。これらのサンプリングされた時間に通板速度を乗じると、温度及び変動速度などの測定結果の時系列データを圧延方向の位置に紐付けすることが可能となる。
図4、図5、図6及び図7を使って説明したように、熱延鋼板Hの定点での変動速度が正の領域で、定点での平均温度に対して熱延鋼板Hの定点での温度が低い場合には、上側冷却能力(上面冷却抜熱量)を小さくすることにより、温度標準偏差を低減することができる。同様に、下側冷却能力(下面冷却抜熱量)を大きくすることにより、温度標準偏差を低減することができる。この関係を利用すれば、温度標準偏差を低減させるために、冷却装置14の上側冷却装置14aと下側冷却装置14bのどちらの冷却能力を調整すればよいのかが明確になる。
すなわち、これらの熱延鋼板Hの波形状と紐付けられる温度の変動位置を把握すれば、現在発生している温度標準偏差が上側冷却あるいは下側冷却のどちらによって発生しているのかを明らかにすることが可能となる。したがって、温度標準偏差を小さくするための上側冷却能力(上面冷却抜熱量)と下側冷却能力(下面冷却抜熱量)の増減方向(制御方向)が決定され、上下熱伝達係数比率を調整することができる。
また、温度標準偏差の大きさに基づいて、その温度標準偏差が許容範囲、例えば最小値から最小値+10℃以内の範囲に収まるように上下熱伝達係数比率を決定することができる。なお、この温度標準偏差を最小値から最小値+10℃以内の範囲に収めることにより、降伏応力、引張強さなどのバラつきを製造許容範囲内に抑えられ、熱延鋼板Hを均一に冷却できる。また、かなりのばらつきはあるものの、冷却水量密度比率が、温度標準偏差が最小値となる冷却水量密度比率に対して±5%以内であれば、温度標準偏差が最小値から最小値+10℃以内の範囲に収まる。すなわち、冷却水量密度を用いる場合、冷却水量密度の上下比率(冷却水量密度比率)を、温度標準偏差が最小値となる冷却水量密度比率に対して±5%以内に設定することが望ましい。ただし、この許容範囲は必ずしも上下同水量密度を含むとは限らない。
以上の実施形態によれば、予め上側冷却装置14aと下側冷却装置14bの冷却能力を調整して、熱延鋼板Hを冷却した後、さらに冷却された熱延鋼板Hの温度と波形状の測定結果に基づいて、上側冷却装置14aの冷却能力と下側冷却装置14bの冷却能力を調整している。このように上側冷却装置14aと下側冷却装置14bの冷却能力をフィードバック制御して定性的及び定量的に適切な冷却能力に調整できるので、その後冷却される熱延鋼板Hの均一性をより向上させることができる。
以上のように、本実施形態によれば、熱延鋼板Hの温度標準偏差を最小にして当該熱延鋼板Hを均一に冷却することができる。
以上の実施形態では、温度計40と形状計41によって熱延鋼板Hの温度と形状を同一の測定位置で定点測定していたが、本願発明者らが調べたところ、温度計40と形状計41の測定位置が厳密に同一でなくてもよいことが分かった。具体的には、図8に示すように、熱延鋼板H上における温度計40の温度測定箇所P1と形状計41の形状測定箇所P2との位置ずれ(距離)Lが、50mm以内、より好ましくは30mm以内であれば、熱延鋼板Hの温度と形状を適切に把握できることが分かった。
この温度計40と形状計41との測定箇所の位置ずれLの方向は、図8に示したように熱延鋼板Hの通板方向であってもよいし、熱延鋼板Hの板幅方向であってもよく、任意の方向である。なお、図8の例においては、温度計40が形状計41の上流側に配置されているが、逆に形状計41が温度計40の上流側に配置されていてもよい。
ここで、上記温度計40と形状計41との測定箇所の位置ずれLを50mm以内とすることが好ましい理由について説明する。表2は、本発明を実機に適用する際に、同一の上下熱伝達係数比率、急峻度、通板速度の条件下において、温度計40と形状計41との測定箇所の位置ずれLを、圧延方向に対して、−200〜+200mmの範囲で変化させた場合の、熱延鋼板Hの温度標準偏差と、各温度標準偏差と最小値(表2では最小値=10.0)との差分(最小値からの標準偏差の差分)との関係を示している。
なお、表2では、温度計40の温度測定箇所P1を基準として、その下流側に形状計41の形状測定箇所P2が設定されている場合の位置ずれLを正の値で示し、その上流側に形状計41の形状測定箇所P2が設定されている場合の位置ずれLを負の値で示している。また、温度計40の温度測定箇所P1と形状計41の形状測定箇所P2とが同一に設定された場合に、位置ずれLがゼロとなる。
この表2に示すように、温度計40と形状計41との測定箇所の位置ズレLが、正負に関わらず50mm以内であれば、最小値からの標準偏差の差分を+10℃以下に低減できることがわかる。
したがって、温度計40と形状計41との測定箇所の位置ずれLが50mm以内であれば、上記実施形態と同様に、温度標準偏差を小さくするための上側冷却能力と下側冷却能力の増減方向(制御方向)を決定することができ、上側冷却装置14aと下側冷却装置14bの冷却能力のフィードバック制御を行うことができる。
以上の実施形態において、図9に示すように、熱延鋼板Hが冷却される冷却区間を圧延方向に複数、例えば2つの分割冷却区間Z1、Z2に分割してもよい。各分割冷却区間Z1、Z2には、それぞれ冷却装置14が設けられている。また、各分割冷却区間Z1、Z2の境、すなわち分割冷却区間Z1、Z2の下流側には、温度計40と形状計41がそれぞれ設けられている。なお、本実施形態では、冷却区間を2つの分割冷却区間に分割したが、分割数はこれに限定されず任意に設定できる。例えば冷却区間を、1つ〜5つの分割冷却区間に分割してもよい。
この場合、各温度計40と各形状計41によって、分割冷却区間Z1とZ2の下流側の熱延鋼板Hの温度と波形状をそれぞれ測定する。そして、これらの測定結果に基づき、各分割冷却区間Z1、Z2における上側冷却装置14a及び下側冷却装置14bの冷却能力を制御する。このとき、熱延鋼板Hの温度標準偏差が許容範囲、例えば上述したように最小値から最小値+10℃以内の範囲に収まるように冷却能力が制御される。これにより、各分割冷却区間Z1、Z2における熱延鋼板Hの上面冷却抜熱量及び下面冷却抜熱量の少なくとも一方が調整される。
例えば、分割冷却区間Z1においては、その下流側における温度計40と形状計41の測定結果に基づいて、上側冷却装置14aと下側冷却装置14bの冷却能力がフィードバック制御され、上面冷却抜熱量及び下面冷却抜熱量の少なくとも一方が調整される。
また、分割冷却区間Z2においては、その下流側における温度計40と形状計41の測定結果に基づいて、上側冷却装置14aと下側冷却装置14bの冷却能力がフィードフォワード制御されてもよいし、或いはフィードバック制御されてもよい。いずれの場合においても、分割冷却区間Z2において、上面冷却抜熱量及び下面冷却抜熱量の少なくとも一方が調整される。
なお、温度計40と形状計41の測定結果に基づいて、上側冷却装置14aと下側冷却装置14bの冷却能力を制御する方法は、図4〜図7を用いて説明した上記実施形態と同様であるので詳細な説明を省略する。
この場合、各分割冷却区間Z1、Z2のそれぞれにおいて、熱延鋼板Hの上面冷却抜熱量及び下面冷却抜熱量の少なくとも一方が調整されるので、より細やかな制御が可能となる。したがって、熱延鋼板Hをより均一に冷却することができる。
以上の実施形態において、各分割冷却区間Z1、Z2のそれぞれにおいて、熱延鋼板Hの上面冷却抜熱量及び下面冷却抜熱量の少なくとも一方を調整する時に、温度計40と形状計41の測定結果に加えて、熱延鋼板Hの波形状の急峻度と熱延鋼板Hの通板速度の少なくとも一方を用いてもよい。例えばコイル毎に、熱延鋼板Hの急峻度や通板速度が一定でない場合もあるため、これら急峻度や通板速度も考慮する。
本願発明者らが調べたところ、例えば図10に示すように熱延鋼板Hの波形状の急峻度が大きくなれば、熱延鋼板Hの温度標準偏差が大きくなる。また、例えば図11に示すように熱延鋼板Hの通板速度が高速になると、熱延鋼板Hの温度標準偏差が大きくなる。
このように熱延鋼板Hの急峻度や通板速度が一定でない場合、上下熱伝達係数比率に対する温度標準偏差の変化を定性的に評価できるものの、定量的に正確に評価することができない。そこで、例えば熱延鋼板Hの急峻度や通板速度に応じた温度標準偏差を予め求めておき、熱延鋼板Hの少なくとも急峻度又は通板速度を測定して、温度標準偏差を補正する。そして、この補正された温度標準偏差に基づいて、各分割冷却区間Z1、Z2における熱延鋼板Hの上面冷却抜熱量及び下面冷却抜熱量を補正する。これにより、熱延鋼板Hをさらに均一に冷却することができる。
また、本実施形態によれば、熱延鋼板Hの板幅方向においても均一な形状や材質となるように仕上げることが可能となる。図12は、中伸びによって板幅方向に異なる振幅が生じている波形状の例を示している。このように、板幅方向に生じる振幅の異なる波形状に起因して温度標準偏差が発生する場合であっても、上述した本実施形態によれば、この板幅方向の温度標準偏差を低減することが可能となる。
ここで、本願発明者らが鋭意検討した結果、熱延鋼板Hの通板速度を、550m/min以上から機械的な限界速度以下の範囲内に設定することにより、熱延鋼板Hをより均一にできることが分かった。
熱延鋼板Hの通板速度を550m/min以上に設定すると、熱延鋼板Hに冷却水を噴射しても、熱延鋼板H上の乗り水の影響が顕著に少なくなることが分かった。このため、乗り水による熱延鋼板Hの不均一冷却も回避することができる。
図13は、他の実施形態における熱間圧延設備2の例を模式的に示している。この熱間圧延設備2は、加熱したスラブSをロールで上下に挟んで連続的に圧延し、最小1.2mmまで薄くしてこれを巻き取ることを目的とした設備である。
この熱間圧延設備2は、スラブSを加熱するための加熱炉111と、この加熱炉111において加熱されたスラブSを幅方向に圧延する幅方向圧延機116と、この幅方向に圧延されたスラブSを上下方向から圧延して粗バーにする粗圧延機112と、粗バーをさらに所定の厚みまで連続して熱間仕上圧延をする仕上圧延機113と、この仕上圧延機113により熱間仕上圧延された熱延鋼板Hを冷却水により冷却する冷却装置114と、冷却装置114により冷却された熱延鋼板Hをコイル状に巻き取る巻取装置115とを備えている。
加熱炉111には、装入口を介して外部から搬入されてきたスラブSに対して、火炎を吹き出すことによりスラブSを加熱するサイドバーナ、軸流バーナ、ルーフバーナが配設されている。加熱炉111に搬入されたスラブSは、各ゾーンにおいて形成される各加熱帯において順次加熱され、さらに最終ゾーンにおいて形成される均熱帯において、ルーフバーナを利用してスラブSを均等加熱することにより、最適温度で搬送できるようにするための保熱処理を行う。加熱炉111における加熱処理が全て終了すると、スラブSは加熱炉111外へと搬送され、粗圧延機112による圧延工程へと移行することになる。
粗圧延機112において、加熱炉111から搬送されてきたスラブSは、複数スタンドに亘って配設される円柱状の回転ロールの間隙を通過する。例えば、この粗圧延機112は、第1スタンドにおいて上下に配設されたワークロール112aのみによりスラブSを熱間圧延して粗バーとする。
次に、このワークロール112aを通過した粗バーをワークロールとバックアップロールとで構成される複数の4重圧延機112bにより、さらに連続的に圧延する。その結果、この粗圧延工程の終了時に、粗バーは、厚さ30〜60mm程度まで圧延され、仕上圧延機113へと搬送されることになる。なお、粗圧延機112の構成は本実施形態に記載したものに限定されず、ロール数等は任意に設定することが可能である。
仕上圧延機113は、粗圧延機112から搬送されてきた粗バーを、その厚さが数mm程度になるまで仕上げ圧延する。これら仕上圧延機113は、6〜7スタンドに亘って上下一直線に並べた仕上げ圧延ロール113aの間隙に粗バーを通過させ、これを徐々に圧下していく。この仕上圧延機113により仕上げ圧延された熱延鋼板Hは、搬送ロール132(図14参照)によって冷却装置114へ搬送される。なお、上述した上下一直線に並べた一対の仕上げ圧延ロール113aを備えた圧延機は、いわゆる圧延スタンドとも呼称される。
また、6〜7スタンドに亘って並べられた各圧延ロール113aの間(すなわち、圧延スタンド間)には、仕上げ圧延中におけるスタンド間冷却(補助冷却)を行う冷却装置142(補助冷却装置)が配置されている。この冷却装置142の装置構成等の詳細な説明については、図17を参照して後述する。なお、図13には、仕上圧延機113における2箇所に冷却装置142が配置されている場合を図示しているが、この冷却装置142は全ての圧延ロール113a間に設けられてもよく、一部にのみ設けられる構成でも良い。
冷却装置114は、仕上圧延機113から搬送される熱延鋼板Hに対してラミナーやスプレーによるノズル冷却を施すための設備である。この冷却装置114は、図14に示すように、ランナウトテーブルの搬送ロール132上を移動する熱延鋼板Hの上面に対して、上側の冷却口131から冷却水を噴射する上側冷却装置114aと、熱延鋼板Hの下面に対して、下側の冷却口131から冷却水を噴射する下側冷却装置114bとを備えている。
冷却口131は、上側冷却装置114a及び下側冷却装置114bのそれぞれについて複数個設けられている。また、冷却口131には、冷却ヘッダー(図示省略)が接続されている。この冷却口131の個数によって、上側冷却装置114a及び下側冷却装置114bの冷却能力が決定される。なお、この冷却装置114は、上下スプリットラミナー、パイプラミナー、スプレー冷却等の少なくとも一つで構成されていてもよい。
この冷却装置114において、上側冷却装置114aの冷却能力と下側冷却装置114bの冷却能力を調整する際には、例えば上側冷却装置114aの冷却口131に接続される冷却ヘッダーと下側冷却装置114bの冷却口131に接続される冷却ヘッダーとを、それぞれオンオフ制御してもよい。
あるいは、上側冷却装置114aと下側冷却装置114bにおける各冷却ヘッダーの操業パラメータを制御してもよい。即ち、各冷却口131から噴出される冷却水の水量密度、圧力、水温の少なくとも一つを調整してもよい。
また、上側冷却装置114aと下側冷却装置114bの冷却ヘッダー(冷却口131)を間引いて、上側冷却装置114aと下側冷却装置114bから噴射される冷却水の流量や圧力を調整してもよい。例えば、冷却ヘッダーを間引く前における上側冷却装置114aの冷却能力が、下側冷却装置114bの冷却能力よりも上回っている場合、上側冷却装置114aを構成する冷却ヘッダーを間引くことが好ましい。
巻取装置115は、図13に示すように、冷却装置114により冷却された熱延鋼板Hを所定の巻取温度で巻き取る。巻取装置115によりコイル状に巻き取られた熱延鋼板Hは、熱間圧延設備2外へと搬送されることになる。
以上のように構成された熱間圧延設備2の冷却装置114において、圧延方向に表面高さ(波高さ)が変動する波形状が形成されている熱延鋼板Hの冷却が行われる場合に、上述したように、上側冷却装置114aから噴射される冷却水と、下側冷却装置114bから噴射される冷却水の水量密度、圧力、水温等を適切に調整することで熱延鋼板Hを均一に冷却することができる。しかしながら、特に熱延鋼板Hの通板速度が遅い場合には、熱延鋼板Hと搬送ロール132やエプロン133とが局所的に接触する時間が長くなり、熱延鋼板Hの搬送ロール132やエプロン133との接触部分が接触抜熱により冷却され易くなることから、冷却が不均一となってしまう。この冷却の不均一性の要因について以下に図面を参照して説明する。
図15Aに示すように、熱延鋼板Hがその圧延方向に波形状を有する場合、この熱延鋼板Hの波形状の底部が、搬送ロール132と局所的に接触する可能性がある。また、図15Bに示すように、圧延方向に沿って隣り合う搬送ロール132同士の間に、熱延鋼板Hが落ち込むのを防止するためのサポートとしてエプロン133が設けられている場合がある。この場合、熱延鋼板Hの波形状の底部が、搬送ロール132及びエプロン133と局所的に接触する可能性がある。このように、熱延鋼板Hにおいて、搬送ロール132やエプロン133と局所的に接触する部分は、接触抜熱によって他の部分よりも冷却され易くなる。このため、熱延鋼板Hが不均一に冷却される。
特に、熱延鋼板Hの通板速度が低速の場合、その熱延鋼板Hが搬送ロール132やエプロン133と局所的に接触する時間が長くなる。その結果、図16Aに示すように、熱延鋼板Hが搬送ロール132やエプロン133と局所的に接触する部分(図16A中の点線で囲った部分)が他の部分より冷却され易くなり、熱延鋼板Hが不均一に冷却される。
一方、熱延鋼板Hの通板速度を高速にすると、上記接触時間が短くなる。しかも、通板速度が高速化すると、熱延鋼板Hと搬送ロール132やエプロン133との接触による反発によって、通板中の熱延鋼板Hが、これら搬送ロール132やエプロン133から浮いた状態になる。
また、熱延鋼板Hの通板速度を高速化すると、上記接触による反発によって熱延鋼板Hが搬送ロール132やエプロン133から浮いた状態となることに加え、熱延鋼板Hと搬送ロール132やエプロン133との接触時間や接触回数が減少するため、その接触による温度降下は無視できるほどに小さくなる。
従って、通板速度を高速化することで接触抜熱を抑制することができ、図16Bに示すように、熱延鋼板Hをより均一に冷却することができる。そして、前述した上下面抜熱量制御に加えて、この通板速度を550m/min以上に設定することにより、熱延鋼板Hを十分に均一に冷却できることを発明者らは見出した。
なお、このような知見は、波形状が形成された熱延鋼板Hにおける冷却について得られたものであるが、その波形状の高さに拘らず、熱延鋼板Hの最下点は、搬送ロール132やエプロン133と接触することになるため、波形状の高さに依らずに通板速度を高速化することは、均一な冷却を行うのに有効である。
また、熱延鋼板Hの通板速度を550m/min以上に設定すると、熱延鋼板Hが、搬送ロール132やエプロン133から浮いた状態になるため、この状態で熱延鋼板Hに冷却水を噴射しても、従来のように熱延鋼板H上には乗り水が存在しない。従って、乗り水が原因で熱延鋼板Hが不均一に冷却されることを回避することができる。
以上のように、冷却区間における熱延鋼板Hの通板速度を550m/min以上に設定すれば、圧延方向に周期的に波高さが変動する波形状を有する熱延鋼板Hをより均一に冷却できる。
なお、熱延鋼板Hの通板速度は、高速であるほど良いが、機械的な限界速度(例えば、1550m/min)を越えることは不可能である。従って、実質的に、冷却区間における熱延鋼板Hの通板速度は、550m/min以上から機械的な限界速度以下までの範囲内に設定されることになる。また、実操業時における通板速度の上限値(操業上限速度)が予め定められている場合には、熱延鋼板Hの通板速度を、550m/min以上から操業上限速度(例えば、1200m/min)以下までの範囲内に設定することが好ましい。
勿論、図3を用いて説明した熱延鋼板冷却装置を熱間圧延設備2に適用して、熱延鋼板Hの上面冷却抜熱量及び下面冷却抜熱量の制御と、通板速度の高速度設定(550m/min以上から機械的な限界速度以下までの範囲内に設定)とを組み合わせても良い。
また、一般的に、引張強度が大きい熱延鋼板H(特に、引張強度(TS)が800MPa以上であって、現実的には1400MPaを上限とする、いわゆるハイテンと呼ばれる鋼板など)である場合には、その熱延鋼板Hの硬度が高いことに起因して、熱間圧延設備2における圧延時に生じる加工発熱が大きくなることが知られている。従って、従来は、冷却装置114(つまり冷却区間)における熱延鋼板Hの通板速度を低く抑えることにより、冷却を十分に行うものとしていた。
しかしながら、冷却装置114における熱延鋼板Hの通板速度を低く抑えると、熱延鋼板Hに波形状が形成されている場合に、上述したように熱延鋼板Hと搬送ロール132やエプロン133との局所的な接触により、接触部分が接触抜熱により冷却され易くなり、不均一な冷却が行われてしまう。
そこで、本願発明者らは、熱間圧延設備2の仕上圧延機113において、例えば6〜7スタンドに亘って設けられる一対の仕上げ圧延ロール113a(即ち、圧延スタンド)同士の間で、冷却(いわゆるスタンド間冷却)を行うことにより、上記加工発熱を抑制し、冷却装置114における熱延鋼板Hの通板速度を550m/min以上に設定できることを見出した。以下では、図17を参照して、上記のスタンド間冷却について説明する。
図17は、スタンド間冷却を行うことが可能な仕上圧延機113の説明図であり、説明のため仕上圧延機113の一部を拡大し、3つの圧延スタンドについて図示したものである。なお、図17において、上記実施形態と同一の構成要素については同一の符号を付している。図17に示すように、仕上げ圧延機113には、上下一直線に並べた一対の仕上げ圧延ロール113a等を備える圧延スタンド140が複数(図17においては3つ)設けられている。各圧延スタンド140同士の間には、ラミナーやスプレーによるノズル冷却を施す設備である冷却装置142が設けられており、圧延スタンド140同士の間において、熱延鋼板Hに対してスタンド間冷却を行うことが可能となっている。
この冷却装置142は、図17に示すように、仕上げ圧延機113において搬送される熱延鋼板Hに対して冷却口146により上側から冷却水を噴出させる上側冷却装置142aと、熱延鋼板H下面に対して下側から冷却水を噴出させる下側冷却装置142bとを備えている。冷却口146は、上側冷却装置142a及び下側冷却装置142bのそれぞれについて複数個設けられている。また、冷却口146には、冷却ヘッダー(図示省略)が接続されている。なお、この冷却装置142は、上下スプリットラミナー、パイプラミナー、スプレー冷却等の少なくとも一つで構成されていてもよい。
図17に示す構成を有する仕上げ圧延機113において、特に熱延鋼板Hの引張強度(TS)が800MPa以上である場合に、スタンド間冷却を行うことで熱延鋼板Hの加工発熱が抑制される。これにより、冷却装置114における熱延鋼板Hの通板速度を550m/min以上に保つことが可能となる。従って、従来の低速な通板速度で冷却を行う場合に問題となっていた、熱延鋼板Hと搬送ロール132やエプロン133との局所的な接触により、接触部分が接触抜熱により冷却され易くなるといった点が解消され、熱延鋼板Hを十分に均一に冷却することができる。
以上の実施形態において、冷却装置114による熱延鋼板Hの冷却は、仕上圧延機出側温度から、その熱延鋼板Hの温度が600℃までの範囲で行われるのが好ましい。熱延鋼板Hの温度が600℃以上の温度領域は、いわゆる膜沸騰領域である。すなわち、この場合、いわゆる遷移沸騰領域を回避し、膜沸騰領域で熱延鋼板Hを水冷することができる。遷移沸騰領域では、熱延鋼板Hの表面に冷却水を噴射した際、その熱延鋼板Hの表面において、蒸気膜に覆われる部分と、冷却水が熱延鋼板Hに直接噴射される部分とが混在する。このため、熱延鋼板Hを均一に冷却することができない。
一方、膜沸騰領域では、熱延鋼板Hの表面全体が蒸気膜に覆われた状態で熱延鋼板Hの冷却が行われるので、熱延鋼板Hを均一に冷却することができる。したがって、本実施形態のように熱延鋼板Hの温度が600℃以上の範囲において、熱延鋼板Hをより均一に冷却することができる。
以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
本願発明者は、熱延鋼板の通板速度を550m/min以上に設定することで、熱延鋼板の冷却が均一に行われることを実証するため、実施例として熱延鋼板の冷却実験を行った。
(実施例1)
板厚2.5mm、幅1200mm、引張強度400MPa及び急峻度2%の中波が形成された熱延鋼板について、冷却装置での通板速度を変更して冷却を行った。具体的には、通板速度を400m/min、450m/min、500m/min、550m/min、600m/min、650m/minに変更し、各通板速度での熱延鋼板の冷却を20回ずつ行った。
そして、巻き取り時の熱延鋼板の温度を測定し、その温度測定結果を用いて温度変動の標準偏差の平均値(CT温度変動量)を算出した。その算出されたCT温度変動量について評価を行った結果を以下の表3に示す。なお、評価基準としては、CT温度変動量が25℃より大きい場合には、均一に冷却されていないと評価し、CT温度変動量が25℃以下の場合には、均一に冷却されていると評価した。
表3に示すように、通板速度が500m/min以下の場合には、CT温度変動量が十分に低減されておらず(25℃より高い)、熱延鋼板の均一な冷却が十分に行われていない。一方、通板速度が550m/min以上の場合には、CT温度変動量が25℃以下に抑えられており、熱延鋼板の均一な冷却が行われていることが分かった。なお、特に通板速度が600m/min以上の場合には、CT温度が10℃未満(8℃、6℃)まで抑えられていることから、この条件が熱延鋼板の均一な冷却を実現するに当たって、より好ましいことが分かった。
(実施例2)
板厚2.5mm、幅1200mm、引張強度800MPa及び急峻度2%の中波が形成された熱延鋼板について、仕上げ圧延の出口側温度が880℃となるようにスタンド間冷却を行い、冷却装置での通板速度を変更して冷却を行った。具体的には、通板速度を400m/min、450m/min、500m/min、550m/min、600m/min、650m/minに変更し、各通板速度での熱延鋼板の冷却を20回ずつ行った。
そして、巻き取り時の熱延鋼板の温度を測定し、その温度測定結果を用いて温度変動の標準偏差の平均値(CT温度変動量)を算出した。その算出されたCT温度変動量について評価を行った結果を以下の表4に示す。なお、評価基準については上記実施例1の場合と同様とし、通板速度400m/minの場合のみスタンド間冷却を行っていない。
表4に示すように、通板速度が500m/min以下の場合には、スタンド間冷却を行った場合でもCT温度変動量が十分に低減されておらず(25℃より高い)、熱延鋼板の均一な冷却が十分に行われていない。一方、通板速度が550m/min以上の場合には、CT温度変動量が25℃以下に抑えられており、熱延鋼板の均一な冷却が行われていることが分かった。
また、スタンド間冷却を行った場合(即ち、表4に示す場合)には、比較的硬度の高い(引張強度800MPa)熱延鋼板に対してもCT温度変動量が抑えられている。即ち、熱延鋼板の冷却時の通板速度を550m/min以上とすることに加え、仕上圧延機でのスタンド間圧延を実施することで、あらゆる鋼材、特に硬度の高い鋼材に対しても均一な冷却が可能となることが分かった。
本発明は、仕上圧延機で熱間圧延され、圧延方向に表面高さが変動する波形状が形成された熱延鋼板を冷却する際に有用である。
1、2 熱間圧延設備
11、111 加熱炉
12、112 粗圧延機
12a、112a ワークロール
12b、112b 4重圧延機
13、113 仕上圧延機
13a、113a 仕上げ圧延ロール
14、114 冷却装置
14a、114a 上側冷却装置
14b、114b 下側冷却装置
15、115 巻取装置
16、116 幅方向圧延機
31、131 冷却口
32、132 搬送ロール
40 温度計
41 形状計
50 制御装置
51 平均温度算出部
52 変動速度算出部
53 制御方向決定部
54 冷却抜熱量合計値調整部
H 熱延鋼板
S スラブ
Z1、Z2 分割冷却区間

Claims (5)

  1. 仕上圧延機で熱間圧延された熱延鋼板を、その通板経路上に設けられた冷却区間において冷却する熱延鋼板冷却装置であって、
    前記冷却区間の下流側における前記熱延鋼板の温度を測定する温度計と;
    前記冷却区間の下流側における前記熱延鋼板の形状を測定する形状計と;
    前記冷却区間において前記熱延鋼板の上面を冷却する上側冷却装置と;
    前記冷却区間において前記熱延鋼板の下面を冷却する下側冷却装置と;
    前記温度計から得られる前記熱延鋼板の温度測定結果と前記形状計から得られる前記熱延鋼板の形状測定結果とに基づいて、前記上側冷却装置及び前記下側冷却装置を制御することにより、前記冷却区間における前記熱延鋼板の上面冷却抜熱量と下面冷却抜熱量との少なくとも一方を制御する制御装置と;
    を備え、
    前記制御装置は、
    前記温度測定結果に基づいて前記冷却区間の下流側における前記熱延鋼板の温度の時系列平均値を平均温度として算出する平均温度算出部と;
    前記形状測定結果に基づいて前記冷却区間の下流側における前記熱延鋼板の変動速度を算出する変動速度算出部と;
    前記熱延鋼板の鉛直方向の上向きを正とした場合において、前記変動速度が正の領域で、前記熱延鋼板の波形状1周期以上の範囲の前記平均温度に対して前記熱延鋼板の温度が低い場合は、前記上面冷却抜熱量が減少する方向及び前記下面冷却抜熱量が増加する方向の少なくとも一方を制御方向として決定し、前記平均温度に対して前記熱延鋼板の温度が高い場合は、前記上面冷却抜熱量が増加する方向及び前記下面冷却抜熱量が減少する方向の少なくとも一方を前記制御方向として決定し、
    前記変動速度が負の領域で、前記平均温度に対して前記熱延鋼板の温度が低い場合は、前記上面冷却抜熱量が増加する方向及び前記下面冷却抜熱量が減少する方向の少なくとも一方を前記制御方向として決定し、前記平均温度に対して前記熱延鋼板の温度が高い場合は、前記上面冷却抜熱量が減少する方向及び前記下面冷却抜熱量が増加する方向の少なくとも一方を前記制御方向として決定する制御方向決定部と;
    前記制御方向決定部にて決定された前記制御方向に基づいて、前記冷却区間における前記熱延鋼板の前記上面冷却抜熱量と前記下面冷却抜熱量との合計値を調整する冷却抜熱量合計値調整部と;
    を含むことを特徴とする熱延鋼板冷却装置。
  2. 前記熱延鋼板上における前記温度計の温度測定箇所と前記形状計の形状測定箇所との位置ずれが50mm以内であることを特徴とする請求項1に記載の熱延鋼板冷却装置。
  3. 前記冷却区間における前記熱延鋼板の通板速度は、550m/min以上から機械的な限界速度以下の範囲内に設定されていることを特徴とする請求項1または2に記載の熱延鋼板冷却装置。
  4. 前記熱延鋼板の引張強度は800MPa以上であることを特徴とする請求項1〜の何れか一項に記載の熱延鋼板冷却装置。
  5. 前記仕上圧延機は複数の圧延スタンドから構成されており、
    互いに隣合う前記圧延スタンドの間に、前記熱延鋼板の補助冷却を行う補助冷却装置をさらに備えることを特徴とする請求項1〜4の何れか一項に記載の熱延鋼板冷却装置。
JP2013512286A 2012-12-06 2012-12-06 熱延鋼板冷却装置 Active JP5310966B1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/081659 WO2014087520A1 (ja) 2012-12-06 2012-12-06 熱延鋼板冷却装置

Publications (2)

Publication Number Publication Date
JP5310966B1 true JP5310966B1 (ja) 2013-10-09
JPWO2014087520A1 JPWO2014087520A1 (ja) 2017-01-05

Family

ID=49529544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013512286A Active JP5310966B1 (ja) 2012-12-06 2012-12-06 熱延鋼板冷却装置

Country Status (6)

Country Link
EP (1) EP2929949B1 (ja)
JP (1) JP5310966B1 (ja)
KR (1) KR101498843B1 (ja)
CN (1) CN103987469B (ja)
BR (1) BR112013028746B1 (ja)
WO (1) WO2014087520A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106734262A (zh) * 2016-12-14 2017-05-31 四川德胜集团钒钛有限公司 一种轧机的冷却装置
CN107876579A (zh) * 2017-12-06 2018-04-06 江阴戴勒姆动力设备有限公司 一种绕片高频焊进料装置
CN108687156A (zh) * 2018-05-03 2018-10-23 东莞市润华铝业有限公司 一种铝型材的冷却装置
CN110860567A (zh) * 2019-11-27 2020-03-06 西南铝业(集团)有限责任公司 一种料温测量方法、装置及计算机可读存储介质
CN115418474B (zh) * 2022-09-02 2023-08-08 福建三宝钢铁有限公司 一种hrb500e分段气雾冷却工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06328117A (ja) * 1993-05-18 1994-11-29 Nippon Steel Corp 連続熱間圧延のrot冷却における注水方法
JPH0763750B2 (ja) * 1988-12-28 1995-07-12 新日本製鐵株式会社 熱間圧延鋼板の冷却制御装置
JP2011073054A (ja) * 2009-10-02 2011-04-14 Nippon Steel Corp 熱延鋼板の冷却方法及び冷却装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729139B2 (ja) * 1988-12-28 1995-04-05 新日本製鐵株式会社 熱間圧延鋼板の冷却制御装置
JPH0761493B2 (ja) * 1988-12-28 1995-07-05 新日本製鐵株式会社 熱間圧延鋼板の冷却制御装置
JPH05337505A (ja) 1992-06-11 1993-12-21 Kawasaki Steel Corp 熱間圧延における被圧延材の冷却制御方法
JP4586314B2 (ja) 2001-07-31 2010-11-24 Jfeスチール株式会社 熱延鋼板の製造方法
JP3892834B2 (ja) 2003-08-29 2007-03-14 新日本製鐵株式会社 厚鋼板の冷却方法
JP2005271052A (ja) 2004-03-25 2005-10-06 Jfe Steel Kk 熱間圧延方法
KR100977373B1 (ko) * 2007-07-19 2010-08-20 신닛뽄세이테쯔 카부시키카이샤 냉각 제어 방법, 냉각 제어 장치, 냉각수량 계산 장치 및 컴퓨터 프로그램을 기록한 컴퓨터로 판독 가능한 기록 매체
EP2465620B1 (en) * 2009-12-16 2013-07-03 Nippon Steel & Sumitomo Metal Corporation Method for cooling hot-rolled steel strip
EP2361699A1 (de) * 2010-02-26 2011-08-31 Siemens Aktiengesellschaft Verfahren zur Kühlung eines Blechs mittels einer Kühlstrecke, Kühlstrecke und Steuer- und/oder Regeleinrichtung für eine Kühlstrecke
EP2546004B1 (en) * 2010-03-11 2016-03-02 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet manufacturing method and manufacturing device
JP7063750B2 (ja) 2018-07-10 2022-05-09 ファナック株式会社 温度推定装置、寿命評価装置、およびロボットシステム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763750B2 (ja) * 1988-12-28 1995-07-12 新日本製鐵株式会社 熱間圧延鋼板の冷却制御装置
JPH06328117A (ja) * 1993-05-18 1994-11-29 Nippon Steel Corp 連続熱間圧延のrot冷却における注水方法
JP2011073054A (ja) * 2009-10-02 2011-04-14 Nippon Steel Corp 熱延鋼板の冷却方法及び冷却装置

Also Published As

Publication number Publication date
WO2014087520A1 (ja) 2014-06-12
BR112013028746B1 (pt) 2022-08-09
CN103987469B (zh) 2015-11-25
KR20140100884A (ko) 2014-08-18
BR112013028746A2 (pt) 2017-01-24
KR101498843B1 (ko) 2015-03-04
JPWO2014087520A1 (ja) 2017-01-05
EP2929949A4 (en) 2016-07-06
CN103987469A (zh) 2014-08-13
EP2929949A1 (en) 2015-10-14
EP2929949B1 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
JP5310966B1 (ja) 熱延鋼板冷却装置
JP5310965B1 (ja) 熱延鋼板冷却方法
US9186710B2 (en) Method for cooling hot-rolled steel sheet
US9566625B2 (en) Apparatus for cooling hot-rolled steel sheet
JP2010234446A (ja) 熱間圧延鋼板の冷却方法
JP5626275B2 (ja) 熱延鋼板の冷却方法
JP6699688B2 (ja) 熱延鋼板の製造方法
JP5310964B1 (ja) 鋼板製造方法
JP3596460B2 (ja) 厚鋼板の熱処理方法およびその熱処理設備
TWI477328B (zh) 熱軋鋼板冷卻裝置
US9211574B2 (en) Method for manufacturing steel sheet
JP5673370B2 (ja) 熱延鋼板の冷却方法
JP5278580B2 (ja) 熱延鋼板の冷却装置及び冷却方法
JP6447836B2 (ja) 熱延鋼帯の製造方法および熱延鋼帯の製造設備
TWI515054B (zh) 熱軋鋼板冷卻方法
JP5644811B2 (ja) 熱延鋼板の冷却方法
JP2003025008A (ja) 熱間圧延における被圧延金属材の冷却制御方法
JP2003275805A (ja) 高炭素鋼の熱間圧延方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130617

R151 Written notification of patent or utility model registration

Ref document number: 5310966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350