WO2023035377A1 - 一种具有直径测量功能的管道检测机器人及其检测方法 - Google Patents

一种具有直径测量功能的管道检测机器人及其检测方法 Download PDF

Info

Publication number
WO2023035377A1
WO2023035377A1 PCT/CN2021/126358 CN2021126358W WO2023035377A1 WO 2023035377 A1 WO2023035377 A1 WO 2023035377A1 CN 2021126358 W CN2021126358 W CN 2021126358W WO 2023035377 A1 WO2023035377 A1 WO 2023035377A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipeline
robot
rotating
measurement function
diameter measurement
Prior art date
Application number
PCT/CN2021/126358
Other languages
English (en)
French (fr)
Inventor
李辉
袁荣小
陆宜东
Original Assignee
南京蹑波物联网科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京蹑波物联网科技有限公司 filed Critical 南京蹑波物联网科技有限公司
Publication of WO2023035377A1 publication Critical patent/WO2023035377A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/10Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring diameters
    • G01B21/14Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring diameters internal diameters

Definitions

  • the invention belongs to the technical field of pipeline detection, in particular to a pipeline detection robot with a diameter measurement function and a detection method thereof.
  • the patent No. CN109751478B discloses a pipeline inspection robot, which uses a controller to activate the first hydraulic support rod and the second hydraulic support rod, so that the rotating support rod drives the support slider to move along the track chute, so that the hydraulic support The plate moves vertically, driving the supporting connecting plate to move along the track plate, so that the moving wheel contacts the inner wall of the pipe, starts the stepping motor to make the driving gear rotate, and drives the driven gear to rotate through the meshing transmission, drives the signal antenna to extend, and starts the rotating motor
  • the detector adjust the angle of the detector through the turntable and connecting rod, fully detect the inside of the pipeline, and transmit the detection result to the intelligent host, and alarm through the siren, output through the signal antenna, start the drive motor, and make the movement wheel rotate , so that the robot moves to complete the inspection of the entire pipeline.
  • a pipe detection robot with diameter measurement function and a detection method thereof are provided to overcome the above-mentioned technical problems existing in the related art.
  • a pipeline detection robot with a diameter measurement function which includes a housing, a fixing seat is provided on the top of the housing, a rotating device is provided on the top of the fixing seat, and a distance measuring sensor is provided at one end of the rotating device.
  • the side of the rotating device away from the distance measuring sensor is provided with a first fixed plate, and the bottom end of the first fixed plate is arranged on the top of the casing, the middle part of the first fixed plate is provided with an electric push rod, and the axis of the electric push rod line and the axis line of the rotating device are on the same horizontal line, and the side of the housing away from the rotating device is provided with a mounting plate, the side of the mounting plate is provided with an adjusting device, the adjusting device is provided with a detector, and the inner wall of the housing is provided with two sets of A telescopic device, wherein a first motor is provided on one side of the telescopic device, a connecting shaft is provided on the other side of the telescopic device, and the other end of the connecting shaft is provided on the side of the other telescopic device, and a plurality of electric wheels are arranged on the telescopic device, and the casing A controller is arranged in the middle part of the other side of the controller, and the distance measuring sensor,
  • the rotating device in order to enable the distance measuring sensor to rotate ° for reverse measurement, so that the robot can effectively measure the diameter of the pipeline, and thus ensure the accuracy of the robot's measurement data, the rotating device includes an outer surface arranged on the top of the fixed seat One end of the outer ring is fitted with a pressing mechanism, the inside of the pressing mechanism is set with a rotating rod, and the distance measuring sensor is arranged at one end of the rotating rod, and a first spring is arranged between one end of the pressing mechanism and the rotating rod.
  • the mechanism includes a pressing column that is sleeved on one end of the outer ring. A spring groove is opened on the outer wall of the pressing column.
  • a spring is arranged inside the spring groove, and a moving column is arranged at the other end of the spring.
  • Two first track grooves are arranged symmetrically on the top, and a second track groove is connected between the two first track grooves, and the second track groove is a symmetrical X-shaped structure.
  • the tops of the two first track grooves are inclined.
  • the bottoms of the two track grooves are arranged obliquely.
  • the adjustment device in order to enable the detector to be adjusted from multiple angles, so that the robot can more comprehensively detect the internal conditions of the pipeline, thereby effectively improving the accuracy and comprehensiveness of the detection results of the detector, the adjustment device includes a The second fixed plate and the third fixed plate on the side of the installation plate, and the second fixed plate and the third fixed plate are vertically arranged, the side of the second fixed plate is provided with a second motor, and the output end of the second motor is provided with a rotating member, The side of the third fixed plate is provided with a third motor, the output end of the third motor is provided with a first rotating member, the other end of the first rotating member is provided with a connecting member, and the connecting member is provided with a second rotating member, and The second rotating part is located at the other end side of the first rotating part, the inner wall of the rotating part and the other end of the second rotating part are provided with detectors, the first rotating part is arranged on the outside of the second rotating part, and the first rotating part It is vertically arranged with the second rotating member,
  • the device includes a fixed plate arranged on the inner wall of the housing, the side of the fixed plate is provided with a first gear, and one side of the first gear is provided at the output end of the first motor, and the other side of the first gear is provided with a connecting shaft, And the other end of the connecting shaft is arranged on the side of another first gear, the first gear is provided with a meshing second gear, and the middle part of the second gear is movably connected with the center of the side of the fixed plate, and the second gear is provided with a There are a number of fixing holes, inside the fixing holes are all equipped with fixing rods, the fixing rods are arranged on the fixing disc, and the fixing rods are connected with the fixing discs, the other end of the fixing rods is provided with electric wheels, and the fixing rods include a mating connection on the fixed disc.
  • the sliding column inside the hole, the bottom end of the sliding column is provided with a sliding rod, the other end of the sliding rod is provided with an electric wheel, the fixed plate is provided with a sliding groove matching the sliding rod, and the cross-sectional area of the sliding groove is T-shaped structure.
  • a detection method of a pipeline detection robot with a diameter measurement function includes the following steps:
  • S2 Use the controller to start a number of electric wheels for walking, and use the detector to detect the internal conditions of the pipeline;
  • the robot can effectively measure the diameter of the pipeline, the robot can more comprehensively detect the internal conditions of the pipeline, and the robot can be positioned at the position of the pipeline. The middle position, thereby ensuring the accuracy of the robot measurement data, and can effectively improve the accuracy and comprehensiveness of the detection results of the detector.
  • the ranging sensor can be rotated 180° for reverse measurement, so that the robot can effectively measure the diameter of the pipeline, thereby ensuring the accuracy of the robot's measurement data.
  • the detector can be adjusted from multiple angles, so that the robot can more comprehensively detect the internal conditions of the pipeline, thereby effectively improving the accuracy and comprehensiveness of the detection results of the detector.
  • Fig. 1 is one of the perspective views of a pipe detection robot with diameter measurement function according to an embodiment of the present invention
  • Fig. 2 is the second perspective view of a pipeline inspection robot with a diameter measurement function according to an embodiment of the present invention
  • Fig. 3 is a partial enlarged view of place A in Fig. 1;
  • FIG. 4 is a schematic diagram of the internal structure of a pipeline detection robot with a diameter measurement function according to an embodiment of the present invention
  • Fig. 5 is one of the exploded views of the rotating device of a pipeline detection robot with a diameter measurement function according to an embodiment of the present invention
  • Fig. 6 is the second exploded view of the rotation device of a pipeline inspection robot with a diameter measurement function according to an embodiment of the present invention
  • Fig. 7 is a schematic diagram of the outer ring structure of a pipeline detection robot with a diameter measurement function according to an embodiment of the present invention
  • Fig. 8 is a schematic diagram of the expanded structure of the outer ring of a pipeline inspection robot with a diameter measurement function according to an embodiment of the present invention
  • Fig. 9 is a schematic structural view of a fixed rod of a pipeline detection robot with a diameter measurement function according to an embodiment of the present invention.
  • a pipe detection robot with a diameter measurement function and a detection method thereof are provided.
  • a pipe detection robot with a diameter measurement function includes a housing 1, a fixing seat 2 is provided on the top of the housing 1, and a rotating Device 3, one end of the rotating device 3 is provided with a distance measuring sensor 4, the side of the rotating device 3 away from the distance measuring sensor 4 is provided with a first fixed plate 5, and the bottom end of the first fixed plate 5 is arranged on the top of the housing 1 , the middle part of the first fixed plate 5 is provided with an electric push rod 6, and the axis line of the electric push rod 6 is on the same level as the axis line of the rotating device 3, and the side of the housing 1 away from the rotating device 3 is provided with a mounting plate 7.
  • An adjustment device 8 is provided on the side of the mounting plate 7, a detector 9 is provided on the adjustment device 8, two sets of telescopic devices 10 are provided on the inner wall of the housing 1, and a first motor 11 is provided on the side of one of the telescopic devices 10,
  • the other side of telescopic device 10 is provided with connecting shaft 12, and the other end of connecting shaft 12 is arranged on the side of another telescopic device 10, and telescopic device 10 is provided with several electric wheels 13, and the middle part of the other side of shell 1 is provided with control wheel.
  • the device 14, and the distance measuring sensor 4, the electric push rod 6, the adjustment device 8, the first motor 11 and the electric wheel 13 are all electrically connected to the controller 14.
  • the ranging sensor 4 can be rotated 180° for reverse measurement, so that the robot can effectively measure the diameter of the pipeline, thereby ensuring the accuracy of the robot measurement data property; by setting the adjustment device 8, the detector 9 can be adjusted from multiple angles, so that the robot can more comprehensively detect the internal conditions of the pipeline, thereby effectively improving the accuracy and comprehensiveness of the detection results of the detector 9; by setting The first motor 11 and the telescopic device 10 enable the electric wheels 13 to move equidistantly, so that the robot is located in the middle of the pipeline, so that the robot can detect the situation inside the pipeline, thereby improving the accuracy and comprehensiveness of the detection results of the robot. sex.
  • the rotating device 3 includes an outer ring 301 arranged on the top of the fixed seat 2, and one end of the outer ring 301 is fitted with a pressing Mechanism 302, the inside of the pressing mechanism 302 is provided with a rotating rod 303, and the distance measuring sensor 4 is arranged on one end of the rotating rod 303, and a first spring 304 is arranged between one end of the pressing mechanism 302 and the rotating rod 303, and the pressing mechanism 302 includes Cooperate with the pressing column 30201 sleeved on one end of the outer ring 301, the outer wall of the pressing column 30201 is provided with a spring groove 30202, the inside of the spring groove 30202 is provided with a spring 30203, the other end of the spring 30203 is provided with a moving column 30204, and the moving column 30204 is connected to the
  • the outer ring 301 is arranged in cooperation, and the outer ring 301 is symmetrically provided with two first track grooves
  • the working principle of the rotating device 3 is as follows: when it is necessary to measure the diameter of the pipeline, the distance of the lower part of the pipeline is first measured by the distance measuring sensor 4, and then the electric push rod 6 is activated by the controller 14 to elongate, thereby pushing the pressing column 30201 Press to the left, thereby pressing the first spring 304 to compress to the left, and at the same time, the moving column 30204 moves from left to right along the first track groove 30101.
  • the moving column 30204 Since the top of the first track groove 30101 is inclined, the moving column 30204 The compression spring 30203 moves forward, and then moves the moving column 30204 obliquely upward along the second track groove 30102, so that the rotating rod 303 rotates 180°, so that the distance measuring sensor 4 can detect in reverse, and then, by measuring The distance sensor 4 measures the upper part of the pipeline, and finally adds the distance between the two detection points known during design, so that the robot can accurately measure the diameter of the pipeline.
  • the adjusting device 8 includes a second fixing plate 801 and a third fixing plate 802 arranged on the side of the mounting plate 7, and the second fixing plate 801 and the third fixed plate 802 are vertically arranged, the side of the second fixed plate 801 is provided with a second motor 803, the output end of the second motor 803 is provided with a rotating member 804, and the side of the third fixed plate 802 is provided with a third motor 805 , the output end of the third motor 805 is provided with a first rotating member 806, the other end of the first rotating member 806 is provided with a connecting member 807, and the connecting member 807 is provided with a second rotating member 808, and the second rotating member 808 Located on the other end side of the first rotating part 806, the inner wall of the rotating part 804 and the other end of the second rotating part 808 are provided with a detector 9, the first rotating part 806 is arranged on the outside of the second rotating part 808, and the
  • the working principle of the adjusting device 8 rotating device 3 is as follows: when the angle of the detector 9 is adjusted, the controller 14 starts the second motor 803 to rotate, thereby driving the rotating member 804 to rotate, so that the detector 9 can be adjusted to rotate up and down for detection, and at the same time , the controller 14 starts the third motor 805 to rotate, thereby driving the first rotating member 806 to rotate, thus driving the second rotating member 808 to rotate, so that the detector 9 can be adjusted to rotate left and right for detection, and then the robot can perform detection on the detector 9
  • the multi-angle adjustment enables the robot to detect the internal conditions of the pipeline more comprehensively, thereby effectively improving the accuracy and comprehensiveness of the detection results of the detector 9 .
  • the telescopic device 10 includes a fixed plate 1001 arranged on the inner wall of the casing 1, and the side of the fixed plate 1001 is provided with a second A gear 1002, and one side of the first gear 1002 is arranged on the output end of the first motor 11, the other side of the first gear 1002 is provided with a connecting shaft 12, and the other end of the connecting shaft 12 is arranged on another first gear
  • the first gear 1002 is provided with a meshing second gear 1003
  • the middle part of the second gear 1003 is movably connected with the center of the side of the fixed plate 1001, and the second gear 1003 is provided with several fixing holes 1004,
  • the inside of the fixing hole 1004 is provided with a fixed rod 1005, the fixed rod 1005 is arranged on the fixed disk 1001, and the fixed rod 1005 is connected with the fixed disk 1001, and the other end of the fixed rod 1005 is provided with an electric
  • the working principle of the telescopic device 10 rotating device 3 is as follows: the controller 14 starts the first motor 11 to rotate, thereby driving the first gear 1002 to rotate, so that the first gear 1002 drives another first gear 1002 to rotate through the connecting shaft 12, thereby Make the two first gears 1002 drive the two second gears 1003 at the same time respectively, so that several fixed rods 1005 move outwards simultaneously along the fixed holes 1004, thereby stretching several electric wheels 13 to act on the inner wall of the pipeline, thereby making the robot Centrally located inside the pipe.
  • the robot when the robot needs to perform pipeline inspection, first put the robot into the pipeline, and start the first motor 11 to rotate through the controller 14, thereby driving the first gear 1002 to rotate, so that the first gear 1002 is driven by the connecting shaft 12 Another first gear 1002 rotates, so that two first gears 1002 drive two second gears 1003 at the same time, so that several fixed rods 1005 move outwards along the fixed holes 1004 at the same time, thereby extending the action of several electric wheels 13
  • the controller 14 starts a plurality of electric wheels 13 to walk, and at the same time, the controller 14 starts the second motor 803 to rotate, thereby driving the rotating member 804 to rotate.
  • the detector 9 can be adjusted to rotate up and down for detection, and at the same time, the controller 14 starts the third motor 805 to rotate, thereby driving the first rotating member 806 to rotate, thereby driving the second rotating member 808 to rotate, thereby adjusting the detector 9 to rotate left and right Detecting, thereby enabling the robot to adjust the detector 9 from multiple angles, thereby enabling the robot to more comprehensively detect the internal conditions of the pipeline, thereby effectively improving the accuracy and comprehensiveness of the detection results of the detector 9;
  • a detection method of a pipeline detection robot with a diameter measurement function comprising the following steps:
  • S3 start the adjustment device 8 through the controller 14 to adjust the detection angle of the detector 9, and then comprehensively detect the internal conditions of the pipeline;
  • the ranging sensor 4 can be rotated 180° for reverse measurement, so that the robot can effectively measure the diameter of the pipeline, and then Ensure the accuracy of the measurement data of the robot; by setting the adjustment device 8, the detector 9 can be adjusted from multiple angles, so that the robot can more comprehensively detect the internal conditions of the pipeline, thereby effectively improving the accuracy of the detection results of the detector 9 and comprehensiveness; by setting the first motor 11 and the telescopic device 10, a plurality of electric wheels 13 can be moved equidistantly, so that the robot is located in the middle of the pipeline, thereby facilitating the robot to detect the situation inside the pipeline, thereby improving the detection of the robot The accuracy and comprehensiveness of the results.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manipulator (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

一种具有直径测量功能的管道检测机器人及其检测方法,该管道检测机器人包括外壳(1),外壳(1)的顶端设置有固定座(2),固定座(2)的顶部设置有转动装置(3),转动装置(3)的一端设置有测距传感器(4),转动装置(3)的一侧设置有第一固定板(5),第一固定板(5)的中部设置有电动推杆(6),外壳(1)的侧面设置有安装板(7),安装板(7)的侧面设置有调节装置(8),调节装置(8)上设置有检测仪(9),外壳(1)的内壁上设置有两组伸缩装置(10),伸缩装置(10)的侧面设置有第一电机,伸缩装置(10)的侧面设置有连接轴(12),连接轴(12)的一端设置在另一个伸缩装置(10)的侧面,伸缩装置(10)上设置有若干电动轮(13)。该管道检测机器人及其检测方法能够保证机器人测量数据的准确性,以及能够有效的提高检测仪(9)检测结果的准确性和全面性。

Description

一种具有直径测量功能的管道检测机器人及其检测方法 技术领域
本发明属于管道检测技术领域,尤其是一种具有直径测量功能的管道检测机器人及其检测方法。
背景技术
随着人民生活水平的提高,暖气已经成为我国北方过冬的必备,而管道就是暖气运输的方式和途径,但是由于管道老化和人为破坏而引起的暖气管道泄漏,已经影响到了居民的正常地供暖。人工检测耗费大量的人力物力并且不能准确的发现险情而进行抢修。所以研制出的这个暖气管道检测机器人将会代替人工检测,具有准确检测是否泄漏,智能化自动报警,自动定位等功能。目前,国内的研究的主要方向还是在管道清洗上,然而在管道的检测上投入太少,导致国内的管道检测技术还不是很成熟,大多是由声纳或超声波进行检测由于地下的结构复杂,还不能很准确地探测出结果,和确定泄漏的位置,这一方面有待改善。
例如,专利号为CN109751478B公开了一种管道检测机器人,采用了通过控制器启动第一液压支撑杆和第二液压支撑杆,使得转动支撑杆带动支撑滑块沿着轨道滑槽运动,使得液压支撑板垂直运动,带动支撑连接板沿着轨道板运动,从而使运动轮与管道内壁接触,启动步进电机使得主动齿轮转动,通过啮合传动使得从动齿轮转动,带动信号天线伸出,启动转动电机和检测仪,通过转盘和连杆使得检测仪进行角度调整,全面检测管道内部,并将检测结果传输至智能主机,并通过警报器报警,通过信号天线输出,启动驱动电机,使得运动轮进行转动,使得机器人进行运动,完成整个管道的检测,但是,由于通过转盘和连杆来调节检测仪的角度,从而不能使得检测仪进行多角度调节,进而不能更全面的检测管道内部的情况,由于采用多个第一液压支撑杆和第二液压支撑杆同时启动来调节运动轮,从而不能稳定的保证两侧运动轮到机器人中间的距离相同,进而不能更好的检测管道内部情况。
针对相关技术中的问题,目前尚未提出有效的解决方案。
技术问题
提供一种具有直径测量功能的管道检测机器人及其检测方法,以克服现有相关技术所存在的上述技术问题。
技术解决方案
根据本发明的一个方面,提供了一种具有直径测量功能的管道检测机器人,包括外壳,外壳的顶端设置有固定座,固定座的顶部设置有转动装置,转动装置的一端设置有测距传感器,转动装置且远离测距传感器的一侧设置有第一固定板,且第一固定板的底端设置在外壳的顶端,第一固定板的中部设置有电动推杆,且电动推杆的轴心线与转动装置的轴心线在同一水平线上,外壳且远离转动装置的侧面设置有安装板,安装板的侧面设置有调节装置,调节装置上设置有检测仪,外壳的内壁上设置有两组伸缩装置,其中一个伸缩装置的侧面设置有第一电机,伸缩装置的另一侧面设置有连接轴,连接轴的另一端设置在另一个伸缩装置的侧面,伸缩装置上设置有若干电动轮,外壳的另一侧面中部设置有控制器,且测距传感器、电动推杆、调节装置、第一电机及电动轮均与控制器电连接。
在进一步的实施例中,为了使得测距传感器能够转动°进行反向测量,从而使得机器人能够有效的测量管道的直径,进而保证机器人测量数据的准确性,转动装置包括设置在固定座顶部的外圈,外圈的一端配合套设有按压机构,按压机构的内部套设有转动杆,且测距传感器设置在转动杆的一端,按压机构的一端与转动杆之间设置有第一弹簧,按压机构包括配合套设在外圈一端的按压柱,按压柱的外壁上开设有弹簧槽,弹簧槽的内部设置有弹簧,弹簧的另一端设置有移动柱,且移动柱与外圈配合设置,外圈上对称开设有两个第一轨道槽,两个第一轨道槽之间连接有第二轨道槽,且第二轨道槽为对称的X形结构,两个第一轨道槽的顶部倾斜设置,第二轨道槽的底部倾斜设置。
在进一步的实施例中,为了使得检测仪能够多角度进行调节,从而使得机器人能够更全面的检测管道的内部情况,进而有效的提高检测仪检测结果的准确性和全面性,调节装置包括设置在安装板侧面的第二固定板和第三固定板,且第二固定板与第三固定板垂直设置,第二固定板的侧面设置有第二电机,第二电机的输出端设置有旋转件,第三固定板的侧面设置有第三电机,第三电机的输出端设置有第一转动件,第一转动件的另一端配合设置有连接件,连接件上配合设置有第二转动件,且第二转动件位于第一转动件的另一端一侧,旋转件的内壁和第二转动件的另一端设置有检测仪,第一转动件设置在第二转动件的外部,且第一转动件与第二转动件垂直设置,旋转件的横截面积为U形结构。
在进一步的实施例中,为了使得若干电动轮能够等距离的进行移动,从而使得机器人位于管道的中间位置,从而便于机器人检测管道内部的情况,进而提高机器人检测结果的准确性和全面性,伸缩装置包括设置在外壳的内壁上的固定盘,固定盘的侧面设置有第一齿轮,且第一齿轮的一侧设置在第一电机的输出端,第一齿轮的另一侧面设置有连接轴,且连接轴的另一端设置在另一个第一齿轮的侧面上,第一齿轮上设置有相啮合的第二齿轮,且第二齿轮的中部与固定盘的侧面中心活动连接,第二齿轮上开设有若干个固定孔,固定孔的内部均设置有固定杆,固定杆设置在固定盘上,且固定杆与固定盘配合连接,固定杆的另一端设置有电动轮,固定杆包括配合连接在固定孔内部的滑动柱,滑动柱的底端设置有滑动杆,滑动杆的另一端设置有电动轮,固定盘上开设有与滑动杆相配合的滑动槽,且滑动槽的横截面积为T形结构。
根据本发明的另一方面,提供了一种具有直径测量功能的管道检测机器人的检测方法,该一种具有直径测量功能的管道检测机器人的检测方法包括以下步骤:
S1:将机器人放入管道,通过控制器启动第一电机带动两组伸缩装置,从而同时伸长若干电动轮作用于管道内壁上,使机器人位于管道的中部;
S2:通过控制器启动若干电动轮进行行走,并通过检测仪进行检测管道内部情况;
S3:通过控制器启动调节装置进行调节检测仪的检测角度,进而全面检测管道内部情况;
S4:通过测距传感器测量下部距离,再通过控制器启动电动推杆推动转动装置,从而使得测距传感器转动180°测量上部距离,进而测量管道的直径。
有益效果
1、通过设置转动装置、电动推杆、调节装置、第一电机及伸缩装置,从而使得机器人能够有效的测量管道的直径,机器人能够更全面的检测管道的内部情况,以及能够使得机器人位于管道的中间位置,进而保证机器人测量数据的准确性,以及能够有效的提高检测仪检测结果的准确性和全面性。
2、通过设置转动装置和电动推杆,从而使得测距传感器能够转动180°进行反向测量,从而使得机器人能够有效的测量管道的直径,进而保证机器人测量数据的准确性。
3、通过设置调节装置,从而使得检测仪能够多角度进行调节,从而使得机器人能够更全面的检测管道的内部情况,进而有效的提高检测仪检测结果的准确性和全面性。
4、通过设置第一电机和伸缩装置,从而使得若干电动轮能够等距离的进行移动,从而使得机器人位于管道的中间位置,从而便于机器人检测管道内部的情况,进而提高机器人检测结果的准确性和全面性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明实施例的一种具有直径测量功能的管道检测机器人的立体图之一;
图2是根据本发明实施例的一种具有直径测量功能的管道检测机器人的立体图之二;
图3是图1中A处的局部放大图;
图4是根据本发明实施例的一种具有直径测量功能的管道检测机器人的内部结构示意图;
图5是根据本发明实施例的一种具有直径测量功能的管道检测机器人的转动装置爆炸图之一;
图6是根据本发明实施例的一种具有直径测量功能的管道检测机器人的转动装置爆炸图之二;
图7是根据本发明实施例的一种具有直径测量功能的管道检测机器人的外圈结构示意图;
图8是根据本发明实施例的一种具有直径测量功能的管道检测机器人的外圈展开结构示意图;
图9是根据本发明实施例的一种具有直径测量功能的管道检测机器人的固定杆结构示意图。
图中:
1、外壳;2、固定座;3、转动装置;301、外圈;30101、第一轨道槽;30102、第二轨道槽;302、按压机构;30201、按压柱;30202、弹簧槽;30203、弹簧;30204、移动柱;303、转动杆;304、第一弹簧;4、测距传感器;5、第一固定板;6、电动推杆;7、安装板;8、调节装置;801、第二固定板;802、第三固定板;803、第二电机;804、旋转件;805、第三电机;806、第一转动件;807、连接件;808、第二转动件;9、检测仪;10、伸缩装置;1001、固定盘;1002、第一齿轮;1003、第二齿轮;1004、固定孔;1005、固定杆;100501、滑动柱;100502、滑动杆; 11、第一电机;12、连接轴;13、电动轮;14、控制器。
本发明的实施方式
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本发明可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。
根据本发明的实施例,提供了一种具有直径测量功能的管道检测机器人及其检测方法。
如图1-2及图4所示,根据本发明实施例的一种具有直径测量功能的管道检测机器人,包括外壳1,外壳1的顶端设置有固定座2,固定座2的顶部设置有转动装置3,转动装置3的一端设置有测距传感器4,转动装置3且远离测距传感器4的一侧设置有第一固定板5,且第一固定板5的底端设置在外壳1的顶端,第一固定板5的中部设置有电动推杆6,且电动推杆6的轴心线与转动装置3的轴心线在同一水平线上,外壳1且远离转动装置3的侧面设置有安装板7,安装板7的侧面设置有调节装置8,调节装置8上设置有检测仪9,外壳1的内壁上设置有两组伸缩装置10,其中一个伸缩装置10的侧面设置有第一电机11,伸缩装置10的另一侧面设置有连接轴12,连接轴12的另一端设置在另一个伸缩装置10的侧面,伸缩装置10上设置有若干电动轮13,外壳1的另一侧面中部设置有控制器14,且测距传感器4、电动推杆6、调节装置8、第一电机11及电动轮13均与控制器14电连接。
借助于上述技术方案,通过设置转动装置3和电动推杆6,从而使得测距传感器4能够转动180°进行反向测量,从而使得机器人能够有效的测量管道的直径,进而保证机器人测量数据的准确性;通过设置调节装置8,从而使得检测仪9能够多角度进行调节,从而使得机器人能够更全面的检测管道的内部情况,进而有效的提高检测仪9检测结果的准确性和全面性;通过设置第一电机11和伸缩装置10,从而使得若干电动轮13能够等距离的进行移动,从而使得机器人位于管道的中间位置,从而便于机器人检测管道内部的情况,进而提高机器人检测结果的准确性和全面性。
如图2及图5-8所示,在一个实施例中,对于上述转动装置3来说,转动装置3包括设置在固定座2顶部的外圈301,外圈301的一端配合套设有按压机构302,按压机构302的内部套设有转动杆303,且测距传感器4设置在转动杆303的一端,按压机构302的一端与转动杆303之间设置有第一弹簧304,按压机构302包括配合套设在外圈301一端的按压柱30201,按压柱30201的外壁上开设有弹簧槽30202,弹簧槽30202的内部设置有弹簧30203,弹簧30203的另一端设置有移动柱30204,且移动柱30204与外圈301配合设置,外圈301上对称开设有两个第一轨道槽30101,两个第一轨道槽30101之间连接有第二轨道槽30102,且第二轨道槽30102为对称的X形结构,两个第一轨道槽30101的顶部倾斜设置,第二轨道槽30102的底部倾斜设置,从而使得测距传感器4能够转动180°进行反向测量,从而使得机器人能够有效的测量管道的直径,进而保证机器人测量数据的准确性。
转动装置3的工作原理如下:当需要对管道进行直径测量时,首先通过测距传感器4进行测量管道的下部分的距离,然后通过控制器14启动电动推杆6伸长,从而推动按压柱30201向左进行按压,从而按压第一弹簧304向左进行压缩,同时,移动柱30204沿着第一轨道槽30101从左向右移动,由于第一轨道槽30101的顶部倾斜设置,此时移动柱30204压缩弹簧30203进进行移动,再沿着第二轨道槽30102使移动柱30204向斜上方进行移动,从而使得转动杆303转动180°,从而使得测距传感器4能够反向进行检测,然后,通过测距传感器4对管道的上部进行测量,最后加上设计时已知的两个检测点之间的距离,从而使得机器人能够准确的测量出管道的直径。
如图2-3所示,在一个实施例中,对于上述调节装置8来说,调节装置8包括设置在安装板7侧面的第二固定板801和第三固定板802,且第二固定板801与第三固定板802垂直设置,第二固定板801的侧面设置有第二电机803,第二电机803的输出端设置有旋转件804,第三固定板802的侧面设置有第三电机805,第三电机805的输出端设置有第一转动件806,第一转动件806的另一端配合设置有连接件807,连接件807上配合设置有第二转动件808,且第二转动件808位于第一转动件806的另一端一侧,旋转件804的内壁和第二转动件808的另一端设置有检测仪9,第一转动件806设置在第二转动件808的外部,且第一转动件806与第二转动件808垂直设置,旋转件804的横截面积为U形结构,从而使得检测仪9能够多角度进行调节,从而使得机器人能够更全面的检测管道的内部情况,进而有效的提高检测仪9检测结果的准确性和全面性。
调节装置8转动装置3的工作原理如下:当调节检测仪9的角度时,通过控制器14启动第二电机803转动,从而带动旋转件804转动,从而能够调节检测仪9上下转动进行检测,同时,通过控制器14启动第三电机805转动,从而带动第一转动件806转动,从而带动第二转动件808转动,从而能够调节检测仪9左右转动进行检测,进而使得机器人能够对检测仪9进行多角度的调节,进而使得机器人能够更全面的检测管道的内部情况,进而有效的提高检测仪9检测结果的准确性和全面性。
如图1、图4及图9所示,在一个实施例中,对于上述伸缩装置10来说,伸缩装置10包括设置在外壳1的内壁上的固定盘1001,固定盘1001的侧面设置有第一齿轮1002,且第一齿轮1002的一侧设置在第一电机11的输出端,第一齿轮1002的另一侧面设置有连接轴12,且连接轴12的另一端设置在另一个第一齿轮1002的侧面上,第一齿轮1002上设置有相啮合的第二齿轮1003,且第二齿轮1003的中部与固定盘1001的侧面中心活动连接,第二齿轮1003上开设有若干个固定孔1004,固定孔1004的内部均设置有固定杆1005,固定杆1005设置在固定盘1001上,且固定杆1005与固定盘1001配合连接,固定杆1005的另一端设置有电动轮13,固定杆1005包括配合连接在固定孔1004内部的滑动柱100501,滑动柱100501的底端设置有滑动杆100502,滑动杆100502的另一端设置有电动轮13,固定盘1001上开设有与滑动杆100502相配合的滑动槽,且滑动槽的横截面积为T形结构,从而使得若干电动轮13能够等距离的进行移动,从而使得机器人位于管道的中间位置,从而便于机器人检测管道内部的情况,进而提高机器人检测结果的准确性和全面性。
伸缩装置10转动装置3的工作原理如下:通过控制器14启动第一电机11转动,从而带动第一齿轮1002转动,从而使得第一齿轮1002通过连接轴12带动另一个第一齿轮1002转动,从而使得两个第一齿轮1002分别同时驱动两个第二齿轮1003,从而使得若干固定杆1005沿着固定孔1004同时向外移动,从而伸长若干电动轮13作用在管道的内壁上,进而使得机器人位于管道内部的中心位置。
为了方便理解本发明的上述技术方案,以下就本发明在实际过程中的工作原理或者操作方式进行详细说明。
在实际应用时,当机器人需要进行管道检测时,首先将机器人放入管道,通过控制器14启动第一电机11转动,从而带动第一齿轮1002转动,从而使得第一齿轮1002通过连接轴12带动另一个第一齿轮1002转动,从而使得两个第一齿轮1002分别同时驱动两个第二齿轮1003,从而使得若干固定杆1005沿着固定孔1004同时向外移动,从而伸长若干电动轮13作用在管道的内壁上,此时机器人位于管道内部的中心位置,然后,通过控制器14启动若干电动轮13进行行走,同时,通过控制器14启动第二电机803转动,从而带动旋转件804转动,从而能够调节检测仪9上下转动进行检测,同时,通过控制器14启动第三电机805转动,从而带动第一转动件806转动,从而带动第二转动件808转动,从而能够调节检测仪9左右转动进行检测,进而使得机器人能够对检测仪9进行多角度的调节,进而使得机器人能够更全面的检测管道的内部情况,进而有效的提高检测仪9检测结果的准确性和全面性;
当需要对管道进行直径测量时,首先通过测距传感器4进行测量管道的下部分的距离,然后通过控制器14启动电动推杆6伸长,从而推动按压柱30201向左进行按压,从而按压第一弹簧304向左进行压缩,同时,移动柱30204沿着第一轨道槽30101从左向右移动,由于第一轨道槽30101的顶部倾斜设置,此时移动柱30204压缩弹簧30203进进行移动,再沿着第二轨道槽30102使移动柱30204向斜上方进行移动,从而使得转动杆303转动180°,从而使得测距传感器4能够反向进行检测,然后,通过测距传感器4对管道的上部进行测量,最后加上设计时已知的两个检测点之间的距离,从而使得机器人能够准确的测量出管道的直径。
根据本发明的另一个实施例,还提供了一种具有直径测量功能的管道检测机器人的检测方法,该检测方法包括以下步骤:
S1:将机器人放入管道,通过控制器14启动第一电机11带动两组伸缩装置10,从而同时伸长若干电动轮13作用于管道内壁上,使机器人处于管道的中部;
S2:通过控制器14启动若干电动轮13进行行走,并通过检测仪9进行检测管道内部情况;
S3:通过控制器14启动调节装置8进行调节检测仪9的检测角度,进而全面检测管道内部情况;
S4:通过测距传感器4测量下部距离,再通过控制器14启动电动推杆6推动转动装置3,从而使得测距传感器4转动180°测量上部距离,进而测量管道的直径。
综上,借助于本发明的上述技术方案,通过设置转动装置3和电动推杆6,从而使得测距传感器4能够转动180°进行反向测量,从而使得机器人能够有效的测量管道的直径,进而保证机器人测量数据的准确性;通过设置调节装置8,从而使得检测仪9能够多角度进行调节,从而使得机器人能够更全面的检测管道的内部情况,进而有效的提高检测仪9检测结果的准确性和全面性;通过设置第一电机11和伸缩装置10,从而使得若干电动轮13能够等距离的进行移动,从而使得机器人位于管道的中间位置,从而便于机器人检测管道内部的情况,进而提高机器人检测结果的准确性和全面性。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种具有直径测量功能的管道检测机器人,包括外壳(1),其特征在于:
    所述外壳(1)的顶端设置有固定座(2),所述固定座(2)的顶部设置有转动装置(3),所述转动装置(3)的一端设置有测距传感器(4),所述转动装置(3)且远离所述测距传感器(4)的一侧设置有第一固定板(5),且所述第一固定板(5)的底端设置在所述外壳(1)的顶端,所述第一固定板(5)的中部设置有电动推杆(6),且所述电动推杆(6)的轴心线与所述转动装置(3)的轴心线在同一水平线上;
    所述外壳(1)且远离所述转动装置(3)的侧面设置有安装板(7),所述安装板(7)的侧面设置有调节装置(8),所述调节装置(8)上设置有检测仪(9);
    所述外壳(1)的内壁上设置有两组伸缩装置(10),其中一个所述伸缩装置(10)的侧面设置有第一电机(11),所述伸缩装置(10)的另一侧面设置有连接轴(12),所述连接轴(12)的另一端设置在另一个所述伸缩装置(10)的侧面,所述伸缩装置(10)上设置有若干电动轮(13);
    所述外壳(1)的另一侧面中部设置有控制器(14),且所述测距传感器(4)、所述电动推杆(6)、所述调节装置(8)、所述第一电机(11)及所述电动轮(13)均与所述控制器(14)电连接。
  2. 根据权利要求1所述的一种具有直径测量功能的管道检测机器人,其特征在于,所述转动装置(3)包括设置在所述固定座(2)顶部的外圈(301),所述外圈(301)的一端配合套设有按压机构(302),所述按压机构(302)的内部套设有转动杆(303),且所述测距传感器(4)设置在所述转动杆(303)的一端,所述按压机构(302)的一端与所述转动杆(303)之间设置有第一弹簧(304)。
  3. 根据权利要求1所述的一种具有直径测量功能的管道检测机器人,其特征在于,所述调节装置(8)包括设置在所述安装板(7)侧面的第二固定板(801)和第三固定板(802),且所述第二固定板(801)与所述第三固定板(802)垂直设置,所述第二固定板(801)的侧面设置有第二电机(803),所述第二电机(803)的输出端设置有旋转件(804);
    所述第三固定板(802)的侧面设置有第三电机(805),所述第三电机(805)的输出端设置有第一转动件(806),所述第一转动件(806)的另一端配合设置有连接件(807),所述连接件(807)上配合设置有第二转动件(808),且所述第二转动件(808)位于所述第一转动件(806)的另一端一侧,所述旋转件(804)的内壁和所述第二转动件(808)的另一端设置有所述检测仪(9)。
  4. 根据权利要求1所述的一种具有直径测量功能的管道检测机器人,其特征在于,所述伸缩装置(10)包括设置在所述外壳(1)的内壁上的固定盘(1001),所述固定盘(1001)的侧面设置有第一齿轮(1002),且所述第一齿轮(1002)的一侧设置在所述第一电机(11)的输出端,所述第一齿轮(1002)的另一侧面设置有所述连接轴(12),且所述连接轴(12)的另一端设置在另一个所述第一齿轮(1002)的侧面上,所述第一齿轮(1002)上设置有相啮合的第二齿轮(1003),且所述第二齿轮(1003)的中部与所述固定盘(1001)的侧面中心活动连接;
    所述第二齿轮(1003)上开设有若干个固定孔(1004),所述固定孔(1004)的内部均设置有固定杆(1005),所述固定杆(1005)设置在所述固定盘(1001)上,且所述固定杆(1005)与所述固定盘(1001)配合连接,所述固定杆(1005)的另一端设置有所述电动轮(13)。
  5. 根据权利要求2所述的一种具有直径测量功能的管道检测机器人,其特征在于,所述按压机构(302)包括配合套设在所述外圈(301)一端的按压柱(30201),所述按压柱(30201)的外壁上开设有弹簧槽(30202),所述弹簧槽(30202)的内部设置有弹簧(30203),所述弹簧(30203)的另一端设置有移动柱(30204),且所述移动柱(30204)与所述外圈(301)配合设置。
  6. 根据权利要求2或5所述的一种具有直径测量功能的管道检测机器人,其特征在于,所述外圈(301)上对称开设有两个第一轨道槽(30101),两个所述第一轨道槽(30101)之间连接有第二轨道槽(30102),且所述第二轨道槽(30102)为对称的X形结构。
  7. 根据权利要求6所述的一种具有直径测量功能的管道检测机器人,其特征在于,两个所述第一轨道槽(30101)的顶部倾斜设置,所述第二轨道槽(30102)的底部倾斜设置。
  8. 根据权利要求4所述的一种具有直径测量功能的管道检测机器人,其特征在于,所述固定杆(1005)包括配合连接在所述固定孔(1004)内部的滑动柱(100501),所述滑动柱(100501)的底端设置有滑动杆(100502),所述滑动杆(100502)的另一端设置有所述电动轮(13),所述固定盘(1001)上开设有与所述滑动杆(100502)相配合的滑动槽,且所述滑动槽的横截面积为T形结构。
  9. 根据权利要求3所述的一种具有直径测量功能的管道检测机器人,其特征在于,所述第一转动件(806)设置在所述第二转动件(808)的外部,且所述第一转动件(806)与所述第二转动件(808)垂直设置,所述旋转件(804)的横截面积为U形结构。
  10. 根据权利要求1所述的一种具有直径测量功能的管道检测机器人的检测方法,用于权利要求1-9中任意一项所述的具有直径测量功能的管道检测机器人的检测,其特征在于,该方法包括以下步骤:
    S1:将机器人放入管道,通过所述控制器(14)启动所述第一电机(11)带动两组所述伸缩装置(10),从而同时伸长若干所述电动轮(13)作用于管道内壁上,使机器人处于管道的中部;
    S2:通过所述控制器(14)启动若干所述电动轮(13)进行行走,并通过所述检测仪(9)进行检测管道内部情况;
    S3:通过所述控制器(14)启动所述调节装置(8)进行所述调节检测仪(9)的检测角度,进而全面检测管道内部情况;
    S4:通过所述测距传感器(4)测量下部距离,再通过所述控制器(14)启动所述电动推杆(6)推动所述转动装置(3),从而使得所述测距传感器(4)转动180°测量上部距离,进而测量管道的直径。
PCT/CN2021/126358 2021-09-09 2021-10-26 一种具有直径测量功能的管道检测机器人及其检测方法 WO2023035377A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111056617.1A CN113834458A (zh) 2021-09-09 2021-09-09 一种具有直径测量功能的管道检测机器人及其检测方法
CN202111056617.1 2021-09-09

Publications (1)

Publication Number Publication Date
WO2023035377A1 true WO2023035377A1 (zh) 2023-03-16

Family

ID=78958811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126358 WO2023035377A1 (zh) 2021-09-09 2021-10-26 一种具有直径测量功能的管道检测机器人及其检测方法

Country Status (2)

Country Link
CN (1) CN113834458A (zh)
WO (1) WO2023035377A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116773437A (zh) * 2023-08-22 2023-09-19 成都汉度科技有限公司 一种电力输送线缆损伤检测装置
CN117299589A (zh) * 2023-11-30 2023-12-29 常州金纬片板设备制造有限公司 一种切边机检测装置
CN117367354A (zh) * 2023-12-05 2024-01-09 天津及时测控技术有限公司 一种管道变径检测装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116951261B (zh) * 2023-09-19 2023-12-15 江天科技有限公司 一种数字化智能气井井口数据采集装置
CN117128912B (zh) * 2023-10-26 2024-01-12 深圳市博铭维技术股份有限公司 管道内径测量装置及其测量方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106323153A (zh) * 2016-08-04 2017-01-11 南京航空航天大学 用于管道内孔质量检测的微型移动机器人及其控制方法
CN106439387A (zh) * 2016-12-07 2017-02-22 中国计量大学 一种自适应管径的管道机器人
CN106903120A (zh) * 2017-05-11 2017-06-30 中国矿业大学 一种单驱双向蠕行式管道清理机器人
CN107218474A (zh) * 2017-06-13 2017-09-29 江苏科技大学 一种管道检测机器人及其检测方法
CN109751478A (zh) * 2019-02-16 2019-05-14 李聪聪 一种管道检测机器人
CN210219051U (zh) * 2019-07-26 2020-03-31 郑州大学 一种管道检测机器人
CN110985812A (zh) * 2019-12-28 2020-04-10 陕西泰诺特检测技术有限公司 管道变形检测装置及方法
CN210690523U (zh) * 2019-07-25 2020-06-05 王志春 一种石油管道检测装置
CN111350901A (zh) * 2020-03-20 2020-06-30 北京理工大学 一种长管道内壁尺寸精度与内壁表面缺陷的测量装置
CN211145774U (zh) * 2019-11-26 2020-07-31 四川大学 内壁检测机器人和管道检测系统
CN111505120A (zh) * 2020-05-09 2020-08-07 温州市推木科技有限公司 一种金属管道内壁探伤机器人
CN212178258U (zh) * 2020-04-24 2020-12-18 水立通建设(江苏)有限公司 一种非开挖排水管道排查的检测装置
CN212207153U (zh) * 2020-06-16 2020-12-22 保定金迪地下管线探测工程有限公司 一种管道检测多功能探头
WO2021028591A1 (en) * 2019-08-14 2021-02-18 Bahman Robotics Ltd Inspection robot
CN212723355U (zh) * 2020-06-20 2021-03-16 沈阳海润机器人有限公司 一种用于水下机器人的水下测距装置
CN112595205A (zh) * 2020-11-26 2021-04-02 浙江工业大学之江学院 一种基于全自动控制的管道检测装置

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106323153A (zh) * 2016-08-04 2017-01-11 南京航空航天大学 用于管道内孔质量检测的微型移动机器人及其控制方法
CN106439387A (zh) * 2016-12-07 2017-02-22 中国计量大学 一种自适应管径的管道机器人
CN106903120A (zh) * 2017-05-11 2017-06-30 中国矿业大学 一种单驱双向蠕行式管道清理机器人
CN107218474A (zh) * 2017-06-13 2017-09-29 江苏科技大学 一种管道检测机器人及其检测方法
CN109751478A (zh) * 2019-02-16 2019-05-14 李聪聪 一种管道检测机器人
CN210690523U (zh) * 2019-07-25 2020-06-05 王志春 一种石油管道检测装置
CN210219051U (zh) * 2019-07-26 2020-03-31 郑州大学 一种管道检测机器人
WO2021028591A1 (en) * 2019-08-14 2021-02-18 Bahman Robotics Ltd Inspection robot
CN211145774U (zh) * 2019-11-26 2020-07-31 四川大学 内壁检测机器人和管道检测系统
CN110985812A (zh) * 2019-12-28 2020-04-10 陕西泰诺特检测技术有限公司 管道变形检测装置及方法
CN111350901A (zh) * 2020-03-20 2020-06-30 北京理工大学 一种长管道内壁尺寸精度与内壁表面缺陷的测量装置
CN212178258U (zh) * 2020-04-24 2020-12-18 水立通建设(江苏)有限公司 一种非开挖排水管道排查的检测装置
CN111505120A (zh) * 2020-05-09 2020-08-07 温州市推木科技有限公司 一种金属管道内壁探伤机器人
CN212207153U (zh) * 2020-06-16 2020-12-22 保定金迪地下管线探测工程有限公司 一种管道检测多功能探头
CN212723355U (zh) * 2020-06-20 2021-03-16 沈阳海润机器人有限公司 一种用于水下机器人的水下测距装置
CN112595205A (zh) * 2020-11-26 2021-04-02 浙江工业大学之江学院 一种基于全自动控制的管道检测装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116773437A (zh) * 2023-08-22 2023-09-19 成都汉度科技有限公司 一种电力输送线缆损伤检测装置
CN116773437B (zh) * 2023-08-22 2023-11-03 成都汉度科技有限公司 一种电力输送线缆损伤检测装置
CN117299589A (zh) * 2023-11-30 2023-12-29 常州金纬片板设备制造有限公司 一种切边机检测装置
CN117299589B (zh) * 2023-11-30 2024-02-06 常州金纬片板设备制造有限公司 一种切边机检测装置
CN117367354A (zh) * 2023-12-05 2024-01-09 天津及时测控技术有限公司 一种管道变径检测装置
CN117367354B (zh) * 2023-12-05 2024-03-22 唐山市古冶燃气有限公司 一种管道变径检测装置

Also Published As

Publication number Publication date
CN113834458A (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
WO2023035377A1 (zh) 一种具有直径测量功能的管道检测机器人及其检测方法
WO2020073406A1 (zh) 一种基于相控阵超声波探伤仪的闸门检测装置及检测方法
CN109027513A (zh) 一种管道检测机器人
CN208672714U (zh) 一种平面材料表面电阻检测装置
CN110823169B (zh) 一种建筑工程质量平面度检测装置
CN105973986A (zh) 用于大容积平底容器底板缺陷全方位检测的机器人及检测方法
CN207408352U (zh) 一种建筑工程用空鼓检测装置
CN109373106A (zh) 可调式管道全向窥测装置
CN104864832B (zh) 一种用于排水管道沉积淤泥的压力传感器测厚装置
CN112034003A (zh) 一种建筑外墙保温检测系统
CN112212979A (zh) 一种基于ai的人脸测温通道
CN116518912B (zh) 一种市政施工用管道平直度检测装置
CN109751478A (zh) 一种管道检测机器人
CN116989709A (zh) 一种管材测量装置、系统
CN209263908U (zh) 一种全自动钢筋直径检测设备
CN215060444U (zh) 一种基于无线声影检测的管道泄漏检测球
CN110007005A (zh) 一种建筑混凝土损伤检测设备
CN114878472A (zh) 一种便携式地质勘查用岩石样品参数测量设备
CN212780651U (zh) 一种金属管无损检测装置
CN112728286B (zh) 一种基于无线声影检测的管道泄漏检测球
CN207992019U (zh) 一种管桩低应变检测仪
CN205497459U (zh) 能够自降温的水冷壁测距爬壁机器人
CN220930557U (zh) 一种密封管道巡检机器人
CN216483693U (zh) 一种压力开关检测装置
CN220920309U (zh) 一种管道无损检测设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE