WO2020073406A1 - 一种基于相控阵超声波探伤仪的闸门检测装置及检测方法 - Google Patents

一种基于相控阵超声波探伤仪的闸门检测装置及检测方法 Download PDF

Info

Publication number
WO2020073406A1
WO2020073406A1 PCT/CN2018/114766 CN2018114766W WO2020073406A1 WO 2020073406 A1 WO2020073406 A1 WO 2020073406A1 CN 2018114766 W CN2018114766 W CN 2018114766W WO 2020073406 A1 WO2020073406 A1 WO 2020073406A1
Authority
WO
WIPO (PCT)
Prior art keywords
phased array
gate
ultrasonic
flaw detector
detection device
Prior art date
Application number
PCT/CN2018/114766
Other languages
English (en)
French (fr)
Inventor
陈达
娄保东
范雨婷
廖迎娣
欧阳峰
Original Assignee
河海大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河海大学 filed Critical 河海大学
Priority to GB2105078.6A priority Critical patent/GB2592770B/en
Publication of WO2020073406A1 publication Critical patent/WO2020073406A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/262Arrangements for orientation or scanning by relative movement of the head and the sensor by electronic orientation or focusing, e.g. with phased arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids

Definitions

  • the invention belongs to the technical field of gate detection, and particularly relates to a gate detection device and a detection method based on a phased array ultrasonic flaw detector.
  • Sluice gate leakage is a relatively common phenomenon in hydraulic structures. From large reservoirs and river gates to small reservoirs and culvert gates, there are almost no doors and no leaks. So everyone has the view that there are "no leaking gates.” Sluice gate leakage is also commonplace and not paid enough attention. However, the damage and loss caused by the gate leakage is far greater than people's general imagination, and even endangers the hydraulic structure and flood control safety.
  • the domestic and foreign gate leakage detection is still judged by the traditional patrol inspection combined with the gate appearance detection.
  • patrol inspection and appearance inspection it is basically possible to find out the cause of the water leakage of the gate, but this conventional method still has many drawbacks.
  • the water stop device under the water leaks it is difficult to detect it, and it is impossible to determine the degree of leakage and The specific location of the water leak, when the inspector finds the water leak, usually the water leak is very serious.
  • the water stop device has been damaged and cannot stop the water normally. The water stop device must be replaced again, which will bring great losses to the normal operation of the gate .
  • the water leakage of the ship lock will affect the filling and discharging time of the lock chamber, prolong the navigation time, and reduce the navigation efficiency.
  • the overhaul will be suspended, which will affect the normal navigation and cause greater economic losses.
  • the main objective of the present invention is to provide a gate detection device and a detection method based on a phased array ultrasonic flaw detector, which solves the gate detection device in the prior art, with only one detection probe, low detection efficiency and detection accuracy Low technical problems.
  • a gate detection device based on a phased array ultrasonic flaw detector includes a host computer and a detection mechanism.
  • the detection mechanism includes a bracket.
  • a guide wheel and two driving wheels are provided at the bottom of the bracket.
  • the driving wheel is driven by a first motor.
  • the bracket is provided with a controller and an ultrasonic phased array flaw detector.
  • the bracket is provided with a rotating platform, the rotating platform is driven by a second motor, a screw is provided in the horizontal direction on the rotating platform, the screw is driven by a third motor, a slider is sleeved on the screw, the slider and the screw Thread connection; the ultrasonic phased array matrix probe is fixed on the slider, and the matrix probe and the ultrasonic phased array flaw detector are connected by wires.
  • Two ultrasonic sensors are installed at the bottom of the bracket. The two ultrasonic sensors are arranged vertically. One is used to measure the distance from the detection device to the side of the gate, and the other is used to measure the distance from the detection device to the bottom of the gate.
  • the first motor, the second motor, the third motor, the two ultrasonic sensors and the ultrasonic phased array flaw detector are connected to the controller through a wire, the controller and the host computer are connected through a cable, and serial communication is used; Waterproof treatment.
  • a phased array is a phase compensation (or delay compensation) array, which can be used for both reception and transmission. Its working principle is to appropriately phase shift (or delay) the signals of the array elements arranged according to a certain rule to obtain the deflection of the array beam, and perform phase (or delay) compensation in different directions at the same time. Obtain multiple beams.
  • Ultrasonic phased array is a combination of ultrasonic probe wafers, which are arranged by a plurality of piezoelectric wafers according to a certain regular distribution, and then each wafer is excited according to a predetermined delay time, and the ultrasonic waves emitted by all wafers form a whole wave front, which can effectively
  • the shape and direction of the transmitted ultrasonic beam (wavefront) can be controlled to realize the ultrasonic beam scanning, deflection and focusing. It provides greater capability than single or multiple probe devices to determine the shape, size and direction of discontinuities.
  • the detection device uses phased array ultrasound technology, which has high detection efficiency and high detection accuracy.
  • the bracket is provided with a fan-shaped through hole
  • the base of the rotating platform is connected to the output shaft of the second motor through a coupling, and the rotating platform is rotatably connected to the bracket through a bearing;
  • the second motor drives the rotating platform to rotate, driving The lead screws rotate together, the lead screws are located above the fan-shaped through holes, and the ultrasonic phased array matrix probe is located in the fan-shaped through holes.
  • the arc-shaped slide grooves are formed on the edges of the two arc-shaped side walls of the fan-shaped through hole, the two ends of the screw are rotatably connected to the rotating arm through bearings, and the rotating arm is fixed on the rotating platform; the rotating arm is provided with Two rollers, which are respectively movably snapped into corresponding chutes, improve the stability of the rotation of the arm.
  • both ends of the arc-shaped chute and both ends of the rotating arm are provided with limit switches, and the limit switches are electrically connected with the controller to prevent the slider and the rotating arm from impacting and affecting the detection result.
  • the rotating arm is provided with a sliding rod, the sliding rod is arranged in parallel with the lead screw, the slider is provided with a through hole, and the slider is movably sleeved on the sliding rod through the through hole.
  • a removal mechanism which includes a shovel plate and a brush assembly, where the shovel plate is set at the front of the bracket and is set obliquely to remove sludge and moss on the gate to prevent the sludge and moss from generating test results influences.
  • the brush assembly includes a fourth motor, a rotating shaft, a turntable, and a brush.
  • the fourth motor is fixedly mounted on the bracket.
  • the output shaft of the fourth motor is connected to the rotating shaft through a coupling, and the other end of the rotating shaft is fixed to the turntable.
  • the brush is connected to the turntable, and the controller controls the second motor to drive the shaft to change the chassis to rotate, so that the brush rotates with the turntable and brushes the surface of the gate.
  • the shovel plate is hinged to the bracket, the upper surface of the shovel plate is connected to one end of a spring, the lower surface of the shovel plate is connected to one end of a spring, the other ends of the two springs are connected to the bracket, the spring is in tension State, play a buffering role.
  • the driving wheel is driven by a turbine worm
  • the turbine worm is installed in the casing
  • the casing is fixed at the bottom of the bracket
  • the output shaft of the first motor is connected to the worm through a coupling
  • the two ends of the turbine's rotating shaft extend out of the casing Connect with the corresponding drive wheels respectively.
  • Turbine worm assembly smooth operation and low noise.
  • the detection method of the gate detection device based on the phased array ultrasonic flaw detector includes the following steps:
  • Step 1 Place the gate detection device at a vertex at the upper end of the gate to be inspected.
  • the distance between the robot and the other side of the gate is measured by two ultrasonic sensors, and the distance from the robot to the bottom of the gate is the size of the entire gate.
  • the calculation module in the controller uses the vertex as the coordinate origin, the width direction of the gate as the X axis, and the height direction of the gate as the Y axis to establish a rectangular coordinate system;
  • Step 2 The calculation module in the controller plans the detection walking route of the detection device, and controls the robot to move up in layers along the gate height direction for detection according to the set route; during the detection process, the second motor drives the rotating platform to rotate, The rotating arm is driven to rotate in the area above the fan-shaped through hole; at the same time, the third motor drives the screw to rotate, and the slider and the ultrasonic phased array matrix probe are moved along the length of the screw; that is, the ultrasonic phased array matrix probe is along the gate
  • the gate can be detected at a large area at the same time; the ultrasonic phased array flaw detector and the detection signal are transmitted to the controller, and the controller is based on the data measured by the two ultrasonic sensors at this time To obtain the specific location of the detection device, that is, the specific location of the defect, and transmit the defect information and the defect location information to the host computer.
  • the second motor drives the rotating platform to rotate, which drives the arm to rotate in the area above the fan-shaped through hole; at the same time, the third motor drives the screw to rotate, which drives the slider and the ultrasonic phased array matrix probe along the length of the screw Mobile; that is, when the ultrasonic phased array matrix probe moves along the width direction of the gate, it sweeps at a certain angle at the same time, then the gate can be detected at a large area; the ultrasonic phased array flaw detector and the detection signal are transmitted to the controller to control Based on the data measured by the two ultrasonic sensors at this time, the device obtains the specific location of the detection device, that is, the specific location of the defect, and transmits the defect information and the defect location information to the host computer.
  • the detection device uses phased array ultrasound technology, high detection efficiency and high detection accuracy.
  • FIG. 1 is a schematic structural diagram of an embodiment of a gate detection device
  • FIG. 2 is a top view of a gate monitoring device according to an embodiment.
  • a gate detection device based on a phased array ultrasonic flaw detector includes a host computer (not shown in the figure) and a detection mechanism.
  • the detection mechanism includes a bracket 1, a guide wheel 2 and two driving wheels 6 are provided at the bottom of the bracket, the driving wheel 6 is driven by a first motor 3, and a controller (not shown) and an ultrasonic phase are provided on the bracket 1 Controlled array flaw detector 8.
  • the bracket 1 is provided with a rotating platform 5, which is driven by a second motor 4 and can rotate along the central axis of the rotating platform.
  • a screw 10 is provided on the rotating platform 5 in the horizontal direction, and the screw 10 is passed through a third motor 7 drive, a slider 11 is sleeved on the screw 10, and the slider 11 is screwed to the screw 10; an ultrasonic phased array matrix probe is fixedly arranged on the slider 11, the matrix probe and the ultrasonic phased array flaw detector 8 are connected by a wire .
  • Two ultrasonic sensors 17 are installed at the bottom of the bracket 1. The two ultrasonic sensors are arranged vertically.
  • the first motor 3, the second motor 4, the third motor 7, the two ultrasonic sensors 17 and the ultrasonic phased array flaw detector 8 are connected to the controller through a wire, the controller and the host computer are connected by a cable, and serial communication is used ; Waterproofing the detection device.
  • a phased array is a phase compensation (or delay compensation) array, which can be used for both reception and transmission. Its working principle is to appropriately phase shift (or delay) the signals of the array elements arranged according to a certain rule to obtain the deflection of the array beam, and perform phase (or delay) compensation in different directions at the same time. Obtain multiple beams.
  • Ultrasonic phased array is a combination of ultrasonic probe wafers, which are arranged by a plurality of piezoelectric wafers according to a certain regular distribution, and then each wafer is excited according to a predetermined delay time, and the ultrasonic waves emitted by all wafers form a whole wave front, which can effectively
  • the shape and direction of the transmitted ultrasonic beam (wavefront) can be controlled to realize the ultrasonic beam scanning, deflection and focusing. It provides greater capability than single or multiple probe devices to determine the shape, size and direction of discontinuities.
  • the detection device uses phased array ultrasound technology, which has high detection efficiency and high detection accuracy.
  • the cleaning mechanism includes a shovel plate 12 and a brush assembly.
  • the shovel plate 12 is disposed at the front end of the bracket 1 and is inclinedly arranged. Moss etc. have an impact on the test results.
  • the brush assembly includes a fourth motor 14, a rotating shaft 15, a turntable, and a brush 16.
  • the fourth motor 14 is fixedly disposed on the bracket 1, and the output shaft of the fourth motor 14 is connected to the rotating shaft through a coupling, and the rotating shaft The other end is fixedly connected to the turntable, the brush is connected to the turntable, and the controller controls the second motor to drive the shaft to change the chassis to rotate, so that the brush rotates with the turntable and brushes the surface of the gate.
  • the shovel plate 12 is hinged to the bracket 1, the upper surface of the shovel plate is connected to one end of a spring 13, the lower surface of the shovel plate is connected to one end of a spring, and the other ends of both springs are connected to the bracket Connected, the spring is in a stretched state and acts as a buffer.
  • the driving wheel 6 is driven by a turbine worm
  • the turbine worm is installed in a housing
  • the housing is fixed at the bottom of the bracket
  • the output shaft of the first motor is connected to the worm through a coupling
  • both ends of the rotating shaft of the turbine After protruding from the shell, they are respectively connected with corresponding driving wheels.
  • the bracket 1 is provided with a fan-shaped through hole, the base of the rotating platform 5 and the output shaft of the second motor 4 are connected by a coupling, and the rotating platform 5 is connected to the bracket 1 through bearings Rotating connection; the second motor 4 drives the rotating platform 5 to rotate, driving the screw 10 to rotate together, the screw 10 is located above the fan-shaped through hole, and the ultrasonic phased array matrix probe is located in the fan-shaped through hole.
  • edges of the two arc-shaped side walls of the fan-shaped through hole are provided with arc-shaped slide grooves 19, and both ends of the lead screw 10 are rotatably connected to the rotating arm 9 through bearings, and the rotating arm 9 is fixed on the rotating platform
  • a limit switch (not shown in the figure) is provided at both ends of the arc-shaped chute and the two ends of the swing arm, and the limit switch and the controller are electrically connected to prevent the slider and the swing arm An impact occurs, affecting the test results.
  • the rotating arm is provided with a sliding rod 18, and the sliding rod 18 is arranged parallel to the lead screw 10, a through hole is opened on the slider, and the slider is movably sleeved on the sliding rod through the through hole.
  • the detection method of the gate detection device based on the phased array ultrasonic flaw detector includes the following steps:
  • Step 1 Place the robot at a vertex at the upper end of the gate to be detected, and measure the distance from the robot to the other side of the gate and the distance from the robot to the bottom of the gate through two ultrasonic sensors 17, that is, measure the size of the entire gate, and Send this information to the controller.
  • the calculation module in the controller uses the vertex as the coordinate origin, the width direction of the gate as the X axis, and the height direction of the gate as the Y axis to establish a rectangular coordinate system;
  • Step 2 The calculation module in the controller plans the detection walking route of the detection device, and controls the robot to move up in layers along the gate height direction for detection according to the set route; during the detection process, the second motor drives the rotating platform to rotate, The rotating arm is driven to rotate in the area above the fan-shaped through hole; at the same time, the third motor drives the screw to rotate, and the slider and the ultrasonic phased array matrix probe are moved along the length of the screw; that is, the ultrasonic phased array matrix probe is along the gate
  • the gate can be detected at a large area at the same time; the ultrasonic phased array flaw detector transmits the detection signal to the controller, and the controller based on the data measured by the two ultrasonic sensors at this time To obtain the specific location of the detection device, that is, the specific location of the defect, and transmit the defect information and the defect location information to the host computer.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

本发明公开了一种基于相控阵超声波探伤仪的闸门检测装置及检测方法,检测装置包括检测机构,检测机构包括支架,支架底部设置有导向轮和两个驱动轮,驱动轮通过第一电机驱动,支架上设置有控制器、超声波相控阵探伤仪。在检测过程中,第二电机驱动转动平台转动,带动转臂在扇形通孔上方上形区域中转动;同时,第三电机驱动丝杠转动带动,带动滑块和超声波相控阵矩阵探头沿丝杠长度方向移动;即超声波相控阵矩阵探头在沿闸门宽度方向移动时,同时在一定角度内扫射,则同时可以对闸门进行大面积的检测;超声波相控阵探伤仪检测信号传给控制器。本发明采用相控阵超声技术,检测效率高,检测精度高。

Description

一种基于相控阵超声波探伤仪的闸门检测装置及检测方法 技术领域
本发明属于闸门检测技术领域,尤其涉及一种基于相控阵超声波探伤仪的闸门检测装置及检测方法。
背景技术
闸门漏水是水工建筑物中比较常见的现象,大到大型水库、河闸,小到小水库、小涵闸,几乎无门不漏,于是大家有了“没有不漏水的闸门”的看法,导致对闸门漏水也习以为常,不够重视,然而闸门漏水造成的危害和损失,远远大于人们的一般想象,甚至危及水工建筑物和防洪安全。
目前国内外闸门漏水检测还是采用传统的巡视检查结合闸门外观状况检测来进行判断。通过巡视检查和外观状况检测,基本可以找出闸门漏水的原因,但是这一常规方法仍然存在诸多弊端,如位于水下的止水装置发生漏水,则很难检测出来,更无法确定漏水程度和具体的漏水位置,待检查人员发现漏水时,通常是漏水很严重,止水装置已经被破坏无法正常止水了,必须重新更换止水装置,将会给闸门的正常运行带来很大的损失。且船闸出现漏水则会影响闸室充放水时间,延长通航时间,降低通航效率,漏水严重需要进行维修时,需停航大修,影响正常通航,造成较大的经济损失。
针对上述问题,出现了多种多样的检测装置,如射线探伤、磁粉探伤等,由于射线探伤容易对人体造成伤害,而磁粉探伤和超声探伤效率较低并且又有污染,同时,现有检测装置的检测探头只有一个,检测效率低、检测精度低等。
发明内容
目的:针对上述问题,本发明的主要目的在于提供一种基于相控阵超声波探伤仪的闸门检测装置及检测方法,解决现有技术中闸门检测装置,检测探头只有一个,检测效率低、检测精度低的技术问题。
技术方案:为解决上述技术问题,本发明采用的技术方案为:
一种基于相控阵超声波探伤仪的闸门检测装置,包括上位机和检测机构‘’所述检测机构包括支架,支架底部设置有一个导向轮和两个驱动轮,驱动轮通过第一电机驱动,支架上设置有控制器、超声波相控阵探伤仪。
所述支架上设置有转动平台,转动平台通过第二电机驱动,转动平台上沿水平方向 设置有丝杠,丝杠通过第三电机驱动,丝杠上套设有滑块,滑块与丝杠螺纹连接;滑块上固定设置超声波相控阵矩阵探头,矩阵探头与超声波相控阵探伤仪通过导线连接。所述支架底部安装有两个超声波传感器,两个超声波传感器垂直设置,一个用于测量检测装置到闸门侧边的距离,另一个用于测量检测装置到闸门底部的距离。第一电机、第二电机、第三电机、两个超声波传感器和超声波相控阵探伤仪通过导线与控制器连接,控制器与上位机之间通过电缆连接,并采用串口通信;对检测装置进行了防水处理。
相控阵即相位补偿(或延时补偿)基阵,它既可用以接收,也可用以发射。其工作原理是对按一定规律排列的基阵阵元的信号均加以适当的移相(或延时)以获得阵波束的偏转,在不同方位上同时进行相位(或延时)补偿,即可获得多波束。超声相控阵是超声探头晶片的组合,由多个压电晶片按一定的规律分布排列,然后逐次按预先规定的延迟时间激发各个晶片,所有晶片发射的超声波形成一个整体波阵面,能有效地控制发射超声束(波阵面)的形状和方向,能实现超声波的波束扫描、偏转和聚焦。它为确定不连续性的形状、大小和方向提供出比单个或多个探头装置更大的能力。
该检测装置采用相控阵超声技术,检测效率高,检测精度高。
进一步改进,所述支架上开设有扇形通孔,转动平台的底座与第二电机的输出轴通过联轴器连接,转动平台通过轴承与支架转动连接;所述第二电机驱动转动平台转动,带动丝杠一起转动,丝杠位于扇形通孔上方,超声波相控阵矩阵探头位于扇形通孔中。
进一步改进,所述扇形通孔两个弧形侧壁的边缘均开设有弧形滑槽,丝杠的两端通过轴承与转臂转动连接,转臂固定在转动平台上;转臂上设置有两个滚轮,两个滚轮分别活动式卡设在对应的滑槽中,提高转臂转动的稳定性。
进一步改进,所述弧形滑槽两端和转臂的两端均设置有限位开关,限位开关与控制器之间电连接,防止滑块、转臂发生撞击,影响检测结果。
进一步改进,所述转臂上设置有滑杆,滑杆与丝杠平行设置,滑块上开设有通孔,滑块通过通孔活动式套设在滑杆上。提高结构稳定性,防止滑块在沿丝杠移动的过程中发生偏转等,而影响检测精度。
进一步改进,还包括清除机构,清除机构包括铲板和毛刷组件,其中铲板设置在支架前端,倾斜设置,用于铲除闸门上的污泥、苔藓,防止污泥、苔藓等对检测结果产生影响。
所述毛刷组件包括第四电机、转动轴、转盘和毛刷,第四电机固定设置在支架上, 第四电机的输出轴通过联轴器与转动轴连接,转动轴的另一端与转盘固连,毛刷连接在转盘上,控制器控制第二电机驱动轴换底盘转动,使毛刷随转盘转动,对闸门表面进行刷洗。
进一步改进,所述铲板与支架铰接,铲板的上表面与一个弹簧的一端连接,铲板的下表面与一个弹簧的一端连接,两个弹簧的另一端均与支架连接,弹簧处于拉伸状态,起到缓冲作用。
进一步改进,所述驱动轮通过涡轮蜗杆驱动,涡轮蜗杆安装在壳体中,壳体固定在支架底部,第一电机的输出轴通过联轴器与蜗杆连接,涡轮的转轴两端伸出壳体后分别与对应的驱动轮连接。涡轮蜗杆组件,运行平稳,噪音低。
采用基于相控阵超声波探伤仪的闸门检测装置的检测方法,包括如下步骤:
步骤一、将闸门检测装置放置在待检测闸门的上端一个顶点处,通过两个超声波传感器测得机器人到闸门另一侧边的距离,和机器人到闸门底部的距离,即测得整个闸门的尺寸,并将该信息发给控制器,控制器中的计算模块以该顶点为坐标原点,以闸门的宽度方向为X轴,以闸门的高度方向为Y轴,建立直角坐标系;
步骤二、控制器中的计算模块规划出检测装置的检测行走路线,并控制机器人按照设定的路线沿闸门高度方向逐层向上移动进行检测;在检测过程中,第二电机驱动转动平台转动,带动转臂在扇形通孔上方区域中转动;同时,第三电机驱动丝杠转动带动,带动滑块和超声波相控阵矩阵探头沿丝杠长度方向移动;即超声波相控阵矩阵探头在沿闸门宽度方向移动时,同时在一定角度内扫射,则同时可以对闸门进行大面积的检测;超声波相控阵探伤仪并检测信号传给控制器,控制器根据此时两个超声波传感器测得的数据,得出检测装置的具体位置,即缺陷的具体位置,并将缺陷信息和缺陷位置信息传递给上位机。
与现有技术相比,本方案具有如下有益效果:
在检测过程中,第二电机驱动转动平台转动,带动转臂在扇形通孔上方区域中转动;同时,第三电机驱动丝杠转动,带动滑块和超声波相控阵矩阵探头沿丝杠长度方向移动;即超声波相控阵矩阵探头在沿闸门宽度方向移动时,同时在一定角度内扫射,则同时可以对闸门进行大面积的检测;超声波相控阵探伤仪并检测信号传给控制器,控制器根据此时两个超声波传感器测得的数据,得出检测装置的具体位置,即缺陷的具体位置,并将缺陷信息和缺陷位置信息传递给上位机。该检测装置采用相控阵超声技术,检测效率 高,检测精度高。
附图说明
图1为一实施例闸门检测装置的结构示意图;
图2为一实施例闸门监测装置的俯视图。
图中:1-支架,2-导向轮,3-第一电机,4-第二电机,5-转动平台,6-驱动轮,7-第三电机,8-超声波相控阵探伤仪,9-转臂,10-丝杠,11-滑块,12-铲板,13-弹簧,14-第四电机,15-转动轴,16-毛刷,17-超声波传感器,18-滑杆,19-滑槽。
具体实施方式
下面结合具体实施例对本发明作更进一步的说明。
实施例一:
如图1、图2所示,一种基于相控阵超声波探伤仪的闸门检测装置,包括上位机(图中未示出)和检测机构。所述检测机构包括支架1,支架底部设置有一个导向轮2和两个驱动轮6,驱动轮6通过第一电机3驱动,支架1上设置有控制器(图中未示出)和超声波相控阵探伤仪8。
所述支架1上设置有转动平台5,转动平台5通过第二电机4驱动,能够沿转动平台的中心轴转动,转动平台5上沿水平方向设置有丝杠10,丝杠10通过第三电机7驱动,丝杠10上套设有滑块11,滑块11与丝杠10螺纹连接;滑块11上固定设置超声波相控阵矩阵探头,矩阵探头与超声波相控阵探伤仪8通过导线连接。所述支架1底部安装有两个超声波传感器17,两个超声波传感器垂直设置,一个用于测量检测装置到闸门侧边的距离,另一测量检测装置到闸门底部的距离。第一电机3、第二电机4、第三电机7、两个超声波传感器17和超声波相控阵探伤仪8通过导线与控制器连接,控制器与上位机之间通过电缆连接,并采用串口通信;对检测装置进行了防水处理。
相控阵即相位补偿(或延时补偿)基阵,它既可用以接收,也可用以发射。其工作原理是对按一定规律排列的基阵阵元的信号均加以适当的移相(或延时)以获得阵波束的偏转,在不同方位上同时进行相位(或延时)补偿,即可获得多波束。超声相控阵是超声探头晶片的组合,由多个压电晶片按一定的规律分布排列,然后逐次按预先规定的延迟时间激发各个晶片,所有晶片发射的超声波形成一个整体波阵面,能有效地控制发射超声束(波阵面)的形状和方向,能实现超声波的波束扫描、偏转和聚焦。它为确定不连续性的形状、大小和方向提供出比单个或多个探头装置更大的能力。
该检测装置采用相控阵超声技术,检测效率高,检测精度高。
在本实施例中,还包括清除机构,清除机构包括铲板12和毛刷组件,其中铲板12设置在支架1前端,倾斜设置,用于铲除闸门上的污泥、苔藓,防止污泥、苔藓等对检测结果产生影响。
所述毛刷组件包括第四电机14、转动轴15、转盘和毛刷16,第四电机14固定设置在支架1上,第四电机14的输出轴通过联轴器与转动轴连接,转动轴的另一端与转盘固连,毛刷连接在转盘上,控制器控制第二电机驱动轴换底盘转动,使毛刷随转盘转动,对闸门表面进行刷洗。
在本实施例中,所述铲板12与支架1铰接,铲板的上表面与一个弹簧13的一端连接,铲板的下表面与一个弹簧的一端连接,两个弹簧的另一端均与支架连接,弹簧处于拉伸状态,起到缓冲作用。
在本实施例中,所述驱动轮6通过涡轮蜗杆驱动,涡轮蜗杆安装在壳体中,壳体固定在支架底部,第一电机的输出轴通过联轴器与蜗杆连接,涡轮的转轴两端伸出壳体后分别与对应的驱动轮连接。
如图2所示,在本实施例中,所述支架1上开设有扇形通孔,转动平台5的底座与第二电机4的输出轴通过联轴器连接,转动平台5通过轴承与支架1转动连接;所述第二电机4驱动转动平台5转动,带动丝杠10一起转动,丝杠10位于扇形通孔上方,超声波相控阵矩阵探头位于扇形通孔中。
在本实施例中,所述扇形通孔两个弧形侧壁的边缘均开设有弧形滑槽19,丝杠10的两端通过轴承与转臂9转动连接,转臂9固定在转动平台上;转臂9上设置有两个滚轮,两个滚轮分别活动式卡设在对应的滑槽19中,提高转臂转动的稳定性。
在本实施例中,所述弧形滑槽两端和转臂的两端均设置有限位开关(图中未示出),限位开关与控制器之间电连接,防止滑块、转臂发生撞击,影响检测结果。
在本实施例中,所述转臂上设置有滑杆18,滑杆18与丝杠10平行设置,滑块上开设有通孔,滑块通过通孔活动式套设在滑杆上。
实施例二:
采用基于相控阵超声波探伤仪的闸门检测装置的检测方法,包括如下步骤:
步骤一、将机器人放置在待检测闸门的上端一个顶点处,通过两个超声波传感器17测得机器人到闸门另一侧边的距离以及机器人到闸门底部的距离,即测得整个闸门的尺 寸,并将该信息发给控制器,控制器中的计算模块以该顶点为坐标原点,以闸门的宽度方向为X轴,以闸门的高度方向为Y轴,建立直角坐标系;
步骤二、控制器中的计算模块规划出检测装置的检测行走路线,并控制机器人按照设定的路线沿闸门高度方向逐层向上移动进行检测;在检测过程中,第二电机驱动转动平台转动,带动转臂在扇形通孔上方区域中转动;同时,第三电机驱动丝杠转动带动,带动滑块和超声波相控阵矩阵探头沿丝杠长度方向移动;即超声波相控阵矩阵探头在沿闸门宽度方向移动时,同时在一定角度内扫射,则同时可以对闸门进行大面积的检测;超声波相控阵探伤仪将检测信号传给控制器,控制器根据此时两个超声波传感器测得的数据,得出检测装置的具体位置,即缺陷的具体位置,并将缺陷信息和缺陷位置信息传递给上位机。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为便于描述本发明和简化描述,而不是指示或暗指所指的装置或元件必须具有特定的方位、为特定的方位构造和操作,因而不能理解为对本发明保护内容的限制。
以上所述仅为本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和修饰,这些改进和修饰也应视为本发明的保护范围。

Claims (10)

  1. 一种基于相控阵超声波探伤仪的闸门检测装置,其特征在于:包括支架,支架底部设置有导向轮和驱动轮,驱动轮通过第一电机驱动,支架上设置有控制器、超声波相控阵探伤仪;
    所述支架上设置有转动平台,转动平台通过第二电机驱动,转动平台上沿水平方向设置有丝杠,丝杠通过第三电机驱动,丝杠上套设有滑块,滑块与丝杠螺纹连接;滑块上固定设置超声波相控阵矩阵探头,矩阵探头与超声波相控阵探伤仪信号连接;
    所述支架上安装有两个超声波传感器,两个超声波传感器垂直设置,一个用于测量检测装置到闸门侧边的距离,另一个用于测量检测装置到闸门底部的距离;
    第一电机、第二电机、第三电机、两个超声波传感器和超声波相控阵探伤仪均与控制器信号连接。
  2. 根据权利要求1所述的基于相控阵超声波探伤仪的闸门检测装置,其特征在于:所述支架上开设有扇形通孔,转动平台的底座与第二电机的输出轴通过联轴器连接,转动平台通过轴承与支架转动连接;
    所述第二电机驱动转动平台转动,带动丝杠一起转动,丝杠位于扇形通孔上方,超声波相控阵矩阵探头位于扇形通孔中。
  3. 根据权利要求2所述的基于相控阵超声波探伤仪的闸门检测装置,其特征在于:所述扇形通孔两个弧形侧壁的边缘均开设有弧形滑槽,丝杠的两端通过轴承与转臂转动连接,转臂固定在转动平台上;转臂上设置有两个滚轮,两个滚轮分别活动式卡设在对应的滑槽中。
  4. 根据权利要求3所述的基于相控阵超声波探伤仪的闸门检测装置,其特征在于:所述弧形滑槽两端和转臂的两端均设置有限位开关,限位开关与控制器之间信号连接。
  5. 根据权利要求3所述的基于相控阵超声波探伤仪的闸门检测装置,其特征在于:所述转臂上设置有滑杆,滑杆与丝杠平行设置,滑块上开设有通孔,滑块通过通孔活动式套设在滑杆上。
  6. 根据权利要求1所述的基于相控阵超声波探伤仪的闸门检测装置,其特征在于:还包括清除机构,清除机构包括铲板和毛刷组件,其中铲板设置在支架前端,倾斜设置,用于铲除闸门上的污泥、苔藓;
    所述毛刷组件包括第四电机、转动轴、转盘和毛刷,第四电机固定设置在支架上,第四电机的输出轴通过联轴器与转动轴连接,转动轴的另一端与转盘固连,毛刷连接在 转盘上。
  7. 根据权利要求1所述的基于相控阵超声波探伤仪的闸门检测装置,其特征在于:所述铲板与支架铰接,铲板的上表面与一个弹簧的一端连接,铲板的下表面与一个弹簧的一端连接,两个弹簧的另一端均与支架连接。
  8. 根据权利要求1所述的基于相控阵超声波探伤仪的闸门检测装置,其特征在于:还包括上位机,控制器与上位机之间通过电缆连接,并采用串口通信。
  9. 根据权利要求1所述的基于相控阵超声波探伤仪的闸门检测装置,其特征在于:所述驱动轮通过涡轮蜗杆驱动,涡轮蜗杆安装在壳体中,壳体固定在支架底部,第一电机的输出轴通过联轴器与蜗杆连接,涡轮的转轴两端伸出壳体后分别与对应的驱动轮连接。
  10. 根据权利要求1-9任一项所述的基于相控阵超声波探伤仪的闸门检测装置的检测方法,其特征在于,包括:
    将闸门检测装置放置在待检测闸门的上端一个顶点处,通过两个超声波传感器测得机器人到闸门另一侧边的距离和机器人到闸门底部的距离,即测得整个闸门的尺寸,并将该信息发给控制器,控制器中的计算模块以该顶点为坐标原点,以闸门的宽度方向为X轴,以闸门的高度方向为Y轴,建立直角坐标系;
    控制器中的计算模块规划出检测装置的检测行走路线,并控制机器人按照设定的路线沿闸门高度方向逐层向上移动进行检测;在检测过程中,第二电机驱动转动平台转动,带动转臂在扇形通孔上方区域中转动;同时,第三电机驱动丝杠转动带动,带动滑块和超声波相控阵矩阵探头沿丝杠长度方向移动;即超声波相控阵矩阵探头在沿闸门宽度方向移动时,同时在一定角度内扫射,则同时对闸门进行大面积的检测;超声波相控阵探伤仪检测信号传给控制器,控制器根据此时两个超声波传感器测得的数据,得出检测装置的具体位置,即缺陷的具体位置,并将缺陷信息和缺陷位置信息传递给上位机。
PCT/CN2018/114766 2018-10-09 2018-11-09 一种基于相控阵超声波探伤仪的闸门检测装置及检测方法 WO2020073406A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2105078.6A GB2592770B (en) 2018-10-09 2018-11-09 Ultrasonic phased array flaw detector-based gate inspection apparatus and inspection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811172523.9 2018-10-09
CN201811172523.9A CN109324121B (zh) 2018-10-09 2018-10-09 一种基于相控阵超声波探伤仪的闸门检测装置及检测方法

Publications (1)

Publication Number Publication Date
WO2020073406A1 true WO2020073406A1 (zh) 2020-04-16

Family

ID=65261642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114766 WO2020073406A1 (zh) 2018-10-09 2018-11-09 一种基于相控阵超声波探伤仪的闸门检测装置及检测方法

Country Status (3)

Country Link
CN (1) CN109324121B (zh)
GB (1) GB2592770B (zh)
WO (1) WO2020073406A1 (zh)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111380959A (zh) * 2020-04-25 2020-07-07 南京肯纳检测技术有限公司 高精度超声波探伤设备及其探伤方法
CN111906055A (zh) * 2020-09-05 2020-11-10 双威大昌锻造(安徽)有限公司 用于轴套表面缺陷检测的电磁感应探伤机及其操作方法
CN112229913A (zh) * 2020-10-18 2021-01-15 安徽恩大阀门机械有限公司 一种阀门生产用超声波探伤装置
CN112415099A (zh) * 2020-11-17 2021-02-26 江西省钢结构网架质量检验中心 一种基于无线信息传递的便携式钢材无损检测装置
CN112858487A (zh) * 2021-02-07 2021-05-28 北京申士丰禾检测技术有限公司 一种超声检测模块化水槽
CN112986401A (zh) * 2021-02-07 2021-06-18 北京申士丰禾检测技术有限公司 一种超声检测浮动探头盘
CN113074674A (zh) * 2021-03-23 2021-07-06 陕西泰诺特检测技术有限公司 一种智能超声内检测装置及其方法
CN113075288A (zh) * 2021-03-23 2021-07-06 陕西泰诺特检测技术有限公司 一种智能涡流内检测装置及其方法
CN113219059A (zh) * 2021-05-18 2021-08-06 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 一种电站汽轮机厚壁隔板相控阵检测工艺方法
CN113358747A (zh) * 2021-06-04 2021-09-07 泉州市德源轴承实业有限公司 一种外球面轴承圈的超声波检测装置
CN113589077A (zh) * 2021-07-28 2021-11-02 苏州工业园区爱特福自动化设备有限公司 一种汽电部件生产用性能测试装置及其方法
CN113740094A (zh) * 2021-09-14 2021-12-03 武汉胜浪工程有限公司 一种拼装式铝合金防洪墙挡江水试验装置及方法
CN113775941A (zh) * 2021-08-28 2021-12-10 周攀 一种市政排水管检漏用轨道式智能巡检装置
CN113916550A (zh) * 2021-10-08 2022-01-11 安徽理工大学 一种多路况下汽车电机控制器检测装置及其使用方法
CN114002333A (zh) * 2022-01-04 2022-02-01 山东科捷工程检测有限公司 一种油气管道相控阵超声检测自动扫查装置
CN114062238A (zh) * 2021-11-19 2022-02-18 华南理工大学 一种试样架及其用于光伏组件老化测试的紫外老化试验箱
CN114166751A (zh) * 2021-12-07 2022-03-11 广德缔威真空设备有限公司 一种真空泵生产的检测平台
CN114216969A (zh) * 2021-12-30 2022-03-22 连云港市九洲电控设备有限公司 一种火车轮轴自动超探设备及方法
CN114235969A (zh) * 2021-12-21 2022-03-25 一重集团大连核电石化有限公司 一种石化产品对接焊缝相控阵扫查辅助器装置
CN114487107A (zh) * 2022-01-17 2022-05-13 山东润鲁建筑材料检测技术服务有限公司 一种相控阵超声波混凝土钢筋锈蚀检测装置
CN114544666A (zh) * 2022-01-26 2022-05-27 哈尔滨理工大学 一种用于轴承烧伤检测的外观检测台
CN114932098A (zh) * 2022-05-13 2022-08-23 重庆市计量质量检测研究院 一种卫生陶瓷半成品检测线
CN115753804A (zh) * 2022-12-06 2023-03-07 广东壹信智能科技有限公司 一种工业陶瓷外壁裂纹检测装置
CN116879398A (zh) * 2023-07-17 2023-10-13 吉林亚泰建筑工程有限公司 一种装配式构件注浆孔质量检测方法
CN117907651A (zh) * 2024-03-19 2024-04-19 山东泰开电力开关有限公司 一种252kV的GIS组合电器检测装置
CN118641635A (zh) * 2024-08-16 2024-09-13 浙江省特种设备科学研究院 一种气瓶超声相控阵水浸自动检测系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110243460B (zh) * 2019-05-16 2021-02-09 西安交通大学 一种超声声场的测量装置及方法
CN111927072A (zh) * 2020-09-03 2020-11-13 陕西正通煤业有限责任公司 一种煤矿tbm超大硐室施工操作平台
WO2022156192A1 (zh) 2021-01-19 2022-07-28 山东大学 用于涵闸隐蔽缺陷快速无损检测的爬壁机器人系统及方法
CN113109452A (zh) * 2021-05-11 2021-07-13 西安热工研究院有限公司 一种锅炉受热面用超声相控阵检测小车及其工作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5890572B1 (ja) * 2015-09-18 2016-03-22 株式会社計測工業 水中用検査装置および方法
CN106442738A (zh) * 2016-11-10 2017-02-22 中国计量大学 一种可移动的超声相控阵检测装置及其检测方法
CN106814135A (zh) * 2017-01-26 2017-06-09 吉林大学 电弧塞焊接头的相控阵超声自动检测系统及方法
CN207351966U (zh) * 2017-10-11 2018-05-11 中国商用飞机有限责任公司 金属板材的自动化超声检测设备及系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5890572U (ja) * 1981-12-15 1983-06-18 キヤノン株式会社 記録媒体の容器
JP4644907B2 (ja) * 2000-04-27 2011-03-09 株式会社Ihi ダイヤフラム検査装置
CN104149083B (zh) * 2014-06-21 2016-03-02 广东电网公司电力科学研究院 一种电力金属部件清扫探伤机器人
CN104502451B (zh) * 2014-12-15 2017-02-01 中国兵器科学研究院宁波分院 一种钢板缺陷识别方法
CN205809004U (zh) * 2016-06-20 2016-12-14 江苏赛福探伤设备制造有限公司 一种相控阵超声波自动探伤装置
CN106950286B (zh) * 2017-02-28 2020-11-06 河海大学 钢桥面板顶板焊缝超声检测自走小车
CN107817296A (zh) * 2017-10-24 2018-03-20 武汉理工大学 一种环件自动化多频阵列超声无损检测装置及方法
CN108562645A (zh) * 2018-03-09 2018-09-21 广东省特种设备检测研究院珠海检测院 一种应用激光定位的焊缝检测用自动扫查器的检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5890572B1 (ja) * 2015-09-18 2016-03-22 株式会社計測工業 水中用検査装置および方法
CN106442738A (zh) * 2016-11-10 2017-02-22 中国计量大学 一种可移动的超声相控阵检测装置及其检测方法
CN106814135A (zh) * 2017-01-26 2017-06-09 吉林大学 电弧塞焊接头的相控阵超声自动检测系统及方法
CN207351966U (zh) * 2017-10-11 2018-05-11 中国商用飞机有限责任公司 金属板材的自动化超声检测设备及系统

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111380959A (zh) * 2020-04-25 2020-07-07 南京肯纳检测技术有限公司 高精度超声波探伤设备及其探伤方法
CN111380959B (zh) * 2020-04-25 2023-03-10 南京肯纳检测技术有限公司 高精度超声波探伤设备及其探伤方法
CN111906055A (zh) * 2020-09-05 2020-11-10 双威大昌锻造(安徽)有限公司 用于轴套表面缺陷检测的电磁感应探伤机及其操作方法
CN112229913A (zh) * 2020-10-18 2021-01-15 安徽恩大阀门机械有限公司 一种阀门生产用超声波探伤装置
CN112415099A (zh) * 2020-11-17 2021-02-26 江西省钢结构网架质量检验中心 一种基于无线信息传递的便携式钢材无损检测装置
CN112415099B (zh) * 2020-11-17 2023-08-29 江西省钢结构网架质量检验中心 一种基于无线信息传递的便携式钢材无损检测装置
CN112986401A (zh) * 2021-02-07 2021-06-18 北京申士丰禾检测技术有限公司 一种超声检测浮动探头盘
CN112858487A (zh) * 2021-02-07 2021-05-28 北京申士丰禾检测技术有限公司 一种超声检测模块化水槽
CN112986401B (zh) * 2021-02-07 2023-02-10 阿塔米智能装备(北京)有限公司 一种超声检测浮动探头盘
CN112858487B (zh) * 2021-02-07 2023-02-10 阿塔米智能装备(北京)有限公司 一种超声检测模块化水槽
CN113074674A (zh) * 2021-03-23 2021-07-06 陕西泰诺特检测技术有限公司 一种智能超声内检测装置及其方法
CN113075288A (zh) * 2021-03-23 2021-07-06 陕西泰诺特检测技术有限公司 一种智能涡流内检测装置及其方法
CN113075288B (zh) * 2021-03-23 2024-03-05 陕西泰诺特检测技术有限公司 一种智能涡流内检测装置及其方法
CN113219059A (zh) * 2021-05-18 2021-08-06 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 一种电站汽轮机厚壁隔板相控阵检测工艺方法
CN113219059B (zh) * 2021-05-18 2023-04-07 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 一种电站汽轮机厚壁隔板相控阵检测工艺方法
CN113358747A (zh) * 2021-06-04 2021-09-07 泉州市德源轴承实业有限公司 一种外球面轴承圈的超声波检测装置
CN113589077B (zh) * 2021-07-28 2024-04-26 苏州艾特福电气科技有限公司 一种汽电部件生产用性能测试装置及其方法
CN113589077A (zh) * 2021-07-28 2021-11-02 苏州工业园区爱特福自动化设备有限公司 一种汽电部件生产用性能测试装置及其方法
CN113775941A (zh) * 2021-08-28 2021-12-10 周攀 一种市政排水管检漏用轨道式智能巡检装置
CN113740094A (zh) * 2021-09-14 2021-12-03 武汉胜浪工程有限公司 一种拼装式铝合金防洪墙挡江水试验装置及方法
CN113916550B (zh) * 2021-10-08 2023-11-24 安徽理工大学 一种多路况下汽车电机控制器检测装置及其使用方法
CN113916550A (zh) * 2021-10-08 2022-01-11 安徽理工大学 一种多路况下汽车电机控制器检测装置及其使用方法
CN114062238A (zh) * 2021-11-19 2022-02-18 华南理工大学 一种试样架及其用于光伏组件老化测试的紫外老化试验箱
CN114166751B (zh) * 2021-12-07 2023-11-21 广德缔威真空设备有限公司 一种真空泵生产的检测平台
CN114166751A (zh) * 2021-12-07 2022-03-11 广德缔威真空设备有限公司 一种真空泵生产的检测平台
CN114235969A (zh) * 2021-12-21 2022-03-25 一重集团大连核电石化有限公司 一种石化产品对接焊缝相控阵扫查辅助器装置
CN114216969B (zh) * 2021-12-30 2022-10-04 连云港市九洲电控设备有限公司 一种火车轮轴自动超声探伤设备及方法
CN114216969A (zh) * 2021-12-30 2022-03-22 连云港市九洲电控设备有限公司 一种火车轮轴自动超探设备及方法
CN114002333A (zh) * 2022-01-04 2022-02-01 山东科捷工程检测有限公司 一种油气管道相控阵超声检测自动扫查装置
CN114487107A (zh) * 2022-01-17 2022-05-13 山东润鲁建筑材料检测技术服务有限公司 一种相控阵超声波混凝土钢筋锈蚀检测装置
CN114544666A (zh) * 2022-01-26 2022-05-27 哈尔滨理工大学 一种用于轴承烧伤检测的外观检测台
CN114932098A (zh) * 2022-05-13 2022-08-23 重庆市计量质量检测研究院 一种卫生陶瓷半成品检测线
CN115753804A (zh) * 2022-12-06 2023-03-07 广东壹信智能科技有限公司 一种工业陶瓷外壁裂纹检测装置
CN116879398B (zh) * 2023-07-17 2024-01-19 吉林亚泰建筑工程有限公司 一种装配式构件注浆孔质量检测方法
CN116879398A (zh) * 2023-07-17 2023-10-13 吉林亚泰建筑工程有限公司 一种装配式构件注浆孔质量检测方法
CN117907651A (zh) * 2024-03-19 2024-04-19 山东泰开电力开关有限公司 一种252kV的GIS组合电器检测装置
CN117907651B (zh) * 2024-03-19 2024-05-31 山东泰开电力开关有限公司 一种252kV的GIS组合电器检测装置
CN118641635A (zh) * 2024-08-16 2024-09-13 浙江省特种设备科学研究院 一种气瓶超声相控阵水浸自动检测系统

Also Published As

Publication number Publication date
GB202105078D0 (en) 2021-05-26
GB2592770A (en) 2021-09-08
CN109324121B (zh) 2020-07-17
CN109324121A (zh) 2019-02-12
GB2592770B (en) 2022-08-10

Similar Documents

Publication Publication Date Title
WO2020073406A1 (zh) 一种基于相控阵超声波探伤仪的闸门检测装置及检测方法
WO2020073407A1 (zh) 一种基于巨磁电阻元件的闸门检测机器人及检测方法
CN106226013B (zh) 风电叶片超声无损检测装置
CN101368932A (zh) 适合多管径管道焊缝的全自动检测装置
BR112015023421B1 (pt) Método de inspecionar retomatamente uma pá de turbina eólica no local
CN103680648A (zh) 核电站反应堆压力容器主螺栓的超声检测装置
WO2023035377A1 (zh) 一种具有直径测量功能的管道检测机器人及其检测方法
CN109975156A (zh) 一种模拟柔性管线冲刷和涡激振动的实验装置和方法
CN102954935A (zh) 一种既有玻璃幕墙结构胶力学性能现场检测装置
CN113267565A (zh) 超厚壁钢管超声波探伤装置
CN106840710A (zh) 轮胎噪声测试装置和轮胎噪声数据采集系统
CN209784261U (zh) 一种探伤检测装置
CN110542507A (zh) 一种x射线应力测定仪检测装置的检测方法
CN106595984B (zh) 一种组合电器法兰灌胶密封检测方法
CN103698917B (zh) 隔垫物检测装置及方法
CN210400679U (zh) 一种x射线应力测定仪检测装置
CN106353409A (zh) 用于水浸超声检测的检测探头方向自动调整装置及调整方法
CN216978938U (zh) 超厚壁钢管超声波探伤装置
CN103901433B (zh) 一种基于超声感应的涉水工程局部冲刷监测系统及方法
JP3567583B2 (ja) 水中移動ロボットの位置決め方法
CN214472961U (zh) 钻杆磁记忆在线检测系统
CN109780989A (zh) 基于变基线及磁场梯度的桥梁冲刷监测系统及监测方法
CN209894757U (zh) 桥梁索鞍摩擦板焊缝超声相控阵探伤装置
CN206906319U (zh) 一种用于模具加工的内部探伤装置
CN110361450A (zh) 一种高精度自动化在线检测小径管的无损测量方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936717

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202105078

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20181109

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18936717

Country of ref document: EP

Kind code of ref document: A1