WO2023033111A1 - 単結晶の製造方法及び単結晶製造装置 - Google Patents

単結晶の製造方法及び単結晶製造装置 Download PDF

Info

Publication number
WO2023033111A1
WO2023033111A1 PCT/JP2022/032979 JP2022032979W WO2023033111A1 WO 2023033111 A1 WO2023033111 A1 WO 2023033111A1 JP 2022032979 W JP2022032979 W JP 2022032979W WO 2023033111 A1 WO2023033111 A1 WO 2023033111A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
melt
image
camera
mirror image
Prior art date
Application number
PCT/JP2022/032979
Other languages
English (en)
French (fr)
Inventor
一平 下崎
啓一 高梨
建 濱田
太郎 西出
Original Assignee
株式会社Sumco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Sumco filed Critical 株式会社Sumco
Priority to CN202280059231.2A priority Critical patent/CN117940619A/zh
Priority to KR1020247006063A priority patent/KR20240041348A/ko
Publication of WO2023033111A1 publication Critical patent/WO2023033111A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • C30B15/26Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal using television detectors; using photo or X-ray detectors
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/292Light, e.g. infrared or ultraviolet

Definitions

  • the present invention relates to a single crystal manufacturing method and a single crystal manufacturing apparatus, and more particularly to a method for measuring the liquid level of a melt during the single crystal pulling process by the Czochralski method (CZ method).
  • CZ method Czochralski method
  • the CZ method is known as a method for manufacturing silicon single crystals for semiconductor devices.
  • a polycrystalline silicon raw material in a quartz crucible is heated and melted, and a seed crystal immersed in the obtained silicon melt is gradually pulled up while being relatively rotated, so that a large Grow a single crystal.
  • the CZ method it is possible to manufacture high-quality silicon single crystals with a high yield.
  • Patent Document 1 discloses that the crystal diameter and the crystal center position are calculated from a high-luminance portion called a fusion ring generated at the solid-liquid interface, and the liquid level is calculated from the crystal center position. The calculation method is described.
  • Patent Document 2 describes a method of calculating the liquid surface position of the silicon melt with respect to the heat shield from the distance between the real image including the circular opening of the heat shield and the mirror image of the heat shield reflected on the melt surface.
  • Patent Document 3 describes a method of attaching a quartz rod above the melt surface and judging that the melt surface is at a reference position when the tip of the quartz rod comes into contact with the melt surface.
  • Patent Document 4 describes a method of measuring the crystal diameter and calculating the height position of the silicon melt surface using a plurality of cameras.
  • Patent Document 5 a cylindrical furnace member called a purge tube is installed above a heat shield while the inside of the chamber is set to a high pressure state, and the purge gas is introduced into the furnace using the purge tube A method for suppressing evaporation of dopants in a silicon melt by rectifying is described. Furthermore, in Patent Document 6, a cylindrical cooling body is installed above the heat shield, and the PvPi margin is reduced by controlling the residence time of the silicon single crystal pulled up from the silicon melt in a predetermined temperature range. A method of enlargement to increase the yield of defect-free crystals is described.
  • the center of the width direction of the shooting range is set at the center of the single crystal so that the entire diameter direction of the single crystal can be captured. That is, the optical axis of the camera is set in the plane containing the crystal pulling axis.
  • reactor internals such as purge tubes and water cooling bodies are installed above the thermal shield and the field of view of the camera is blocked by the reactor internals, it is possible to photograph the real and mirror images of the thermal shield. There is a problem that the liquid level against the heat shield cannot be measured.
  • an object of the present invention is to provide a single crystal manufacturing method and a single crystal manufacturing apparatus capable of stably measuring the liquid level regardless of the internal structure of the furnace.
  • a method for producing a single crystal according to the present invention is a method for producing a single crystal by the Czochralski method, in which a single crystal is pulled from a melt in a crucible, and the pulling route of the single crystal is removed.
  • a heat shield is installed to cover the top of the crucible, and a real image of the heat shield and a mirror image of the heat shield reflected on the liquid surface of the melt are photographed with a first camera, and are taken with respect to the pulling axis of the single crystal.
  • a detection line extending in an oblique direction that is neither parallel nor perpendicular to the thermal shield and intersecting both the real image edge and the mirror image edge of the thermal shield; and the mirror image edge to the second intersection (distance between the real image and the mirror image on the detection line) to obtain a gap value, which is the distance between the lower end of the thermal shield and the melt surface.
  • the present invention it is possible to photograph the real image and the mirror image of the thermal shield, which could not be photographed from the photographing direction of the diameter measurement camera because it was hidden behind the shield. Therefore, the liquid level can be stably measured regardless of the structure inside or outside the furnace.
  • the optical axis of the first camera is not on the same plane as the pulling axis of the single crystal, but is in a twisted positional relationship. In this way, by shifting the center of the imaging range of the first camera in the width direction from the center of the single crystal, it is possible to photograph a real image and a mirror image of the heat shield, thereby facilitating the setting of the detection line. Also, the distance from the first intersection of the detection line and the real image edge to the second intersection of the detection line and the mirror image edge can be increased, which is the distance between the lower end of the thermal shield and the melt surface. The gap value can be calculated more accurately.
  • the optical axis of the second camera is on the same plane as the pulling axis and is at a position where it intersects.
  • a relationship is preferred.
  • a substantially cylindrical shield is installed above the lower end of the heat shield to surround the pulling path, and the field of view of the second camera is blocked by the shield.
  • a reactor internal structure such as a purge tube
  • the main camera for diameter measurement cannot observe the real image and the mirror image of the heat shield.
  • the gap value must be reliably measured by installing a camera in a position where the real and mirror images of the thermal shield can be observed without obstruction of the field of view by the shield, and by photographing the real and mirror images of the thermal shield. can be done.
  • the center of the imaging range of the camera in the width direction is displaced from the center of the single crystal, so the real image and the mirror image of the thermal shield can be observed through a slight gap between the lower edge of the shield and the thermal shield. becomes possible.
  • the present invention is a conversion showing the relationship between the gap value and the distance between the real image and the mirror image on the detection line when the crucible is moved up and down before the start of crystal pulling to arbitrarily change the liquid surface level of the melt. It is preferable to prepare a table or a conversion formula in advance, and to calculate the gap value using the actually measured distance between the real image and the mirror image and the conversion table or the conversion formula during the crystal pulling process. Thereby, the gap value can be calculated accurately.
  • a reference liquid level is obtained by observing contact between a measuring pin placed above the melt and the melt surface, and the conversion table or the conversion formula is calculated based on the reference liquid level. preferably created. Thereby, the gap value can be calculated accurately.
  • a single crystal manufacturing apparatus includes a crucible for supporting a melt, a crucible drive mechanism for rotating and vertically driving the crucible, a heater for heating the melt in the crucible, and a single crystal pulling path.
  • a cylindrical heat shield disposed above the crucible excluding the crucible, a first camera that captures a real image of the heat shield and a mirror image of the heat shield reflected on the liquid surface of the melt, an image processing unit that processes an image captured by a camera and obtains a gap value between the lower end of the heat shield and the melt surface; a controller for controlling a liquid level, wherein the image processor extends in an oblique direction that is neither parallel nor perpendicular to the pulling axis of the single crystal to form a real image edge and a mirror image edge of the heat shield.
  • a detection line that intersects both is set in the captured image, and a distance on the detection line that is a distance from a first intersection of the detection line and the real image edge to a second intersection of the detection line and the mirror image edge is A gap value, which is the distance between the lower end of the heat shield and the melt surface, is obtained from the distance between the real image and the mirror image.
  • the optical axis of the first camera is not on the same plane as the pulling axis of the single crystal, but is in a twisted positional relationship. In this way, by shifting the center of the imaging range of the first camera in the width direction from the center of the single crystal, it is possible to photograph a real image and a mirror image of the heat shield, thereby facilitating the setting of the detection line. Also, the distance from the first intersection of the detection line and the real image edge to the second intersection of the detection line and the mirror image edge can be increased, which is the distance between the lower end of the thermal shield and the melt surface. The gap value can be calculated more accurately.
  • the present invention further includes a second camera that captures a real image of the heat shield and a mirror image of the heat shield reflected on the surface of the melt, and the image processing unit uses the second camera to capture the image of the unit. It is preferred to measure the diameter of the crystal.
  • the image processing unit controls the gap value and the distance between the real image and the mirror image on the detection line when the crucible is moved up and down to arbitrarily change the liquid surface level of the melt before the start of crystal pulling. It is preferable that a conversion table or a conversion formula showing the relationship between is prepared in advance, and the gap value is calculated using the actually measured distance between the real image and the mirror image and the conversion table or the conversion formula during the crystal pulling process.
  • a measurement pin is further provided above the melt, and the image processing unit obtains a reference liquid level by observing contact between the tip of the measurement pin and the melt surface, and determines the reference liquid level. It is preferable to create the conversion table or the conversion formula based on.
  • the present invention it is possible to provide a single crystal manufacturing method and a single crystal manufacturing apparatus capable of stably measuring the liquid level regardless of the structure inside the furnace.
  • FIG. 1 is a side cross-sectional view schematically showing the configuration of a single crystal manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram for explaining the installation positions of the two cameras.
  • 3A and 3B are schematic diagrams of an image 30A captured by the main camera 20A (diameter measuring camera), in which (a) is a diagram without the outline of the single crystal, and (b) is the outline of the single crystal with auxiliary lines. It is the displayed figure.
  • FIG. 4 is a schematic diagram of an image captured by a sub-camera for gap measurement.
  • FIG. 5 is a schematic diagram showing a method of measuring a reference liquid level using a measuring pin.
  • FIG. 6 is a flow chart showing a manufacturing process of a silicon single crystal.
  • FIG. 1 is a side cross-sectional view schematically showing the configuration of a single crystal manufacturing apparatus according to an embodiment of the present invention.
  • a single crystal manufacturing apparatus 1 includes a water-cooled chamber 10, a quartz crucible 11 holding a silicon melt 2 in the chamber 10, a graphite crucible 12 holding the quartz crucible 11, and a graphite crucible. 12, a crucible driving mechanism 14 for rotating and lifting the quartz crucible 11 via the rotating shaft 13 and the graphite crucible 12, a heater 15 arranged around the graphite crucible 12, and the outside of the heater 15.
  • a heat insulating material 16 arranged along the inner surface of the chamber 10, a heat shield 17 arranged above the quartz crucible 11, and a heat shield 17 arranged above the quartz crucible 11 and coaxially with the rotating shaft 13.
  • the chamber 10 is composed of a main chamber 10a and an elongated cylindrical pull chamber 10b connected to the upper opening of the main chamber 10a. It is provided in the chamber 10a.
  • the pull chamber 10b is provided with a gas introduction port 10c for introducing an inert gas (purge gas) such as argon gas or a dopant gas into the chamber 10.
  • an inert gas purge gas
  • the atmospheric gas in the chamber 10 is provided.
  • a gas outlet 10d for discharging is provided.
  • a first viewing window 10e1 and a second viewing window 10e2 are provided in the upper part of the main chamber 10a, so that the state of growth of the silicon single crystal 3 can be observed.
  • the quartz crucible 11 is a quartz glass container having a cylindrical side wall and a curved bottom.
  • the graphite crucible 12 is held in close contact with the outer surface of the quartz crucible 11 so as to wrap the quartz crucible 11 .
  • the quartz crucible 11 and the graphite crucible 12 form a double structure crucible that supports the silicon melt 2 in the chamber 10 .
  • the graphite crucible 12 is fixed to the upper end of the rotating shaft 13 , and the lower end of the rotating shaft 13 penetrates the bottom of the chamber 10 and is connected to the crucible drive mechanism 14 provided outside the chamber 10 .
  • the graphite crucible 12 , rotating shaft 13 and crucible driving mechanism 14 constitute a rotating mechanism and a lifting mechanism for the quartz crucible 11 .
  • the rotation and elevation of the quartz crucible 11 driven by the crucible drive mechanism 14 are controlled by the controller 22 .
  • the heater 15 is used to melt the silicon raw material filled in the quartz crucible 11 to generate the silicon melt 2 and to maintain the melted state of the silicon melt 2 .
  • the heater 15 is a resistance heating heater made of carbon, and is provided so as to surround the quartz crucible 11 inside the graphite crucible 12 . Further, a heat insulating material 16 is provided outside the heater 15 so as to surround the heater 15, thereby increasing heat retention in the chamber 10. As shown in FIG. The output of the heater 15 is controlled by the controller 22 .
  • the heat shield 17 suppresses temperature fluctuations of the silicon melt 2 to provide an appropriate heat distribution in the vicinity of the crystal growth interface, and prevents heating of the silicon single crystal 3 by radiant heat from the heater 15 and the quartz crucible 11.
  • the heat shield 17 is a substantially cylindrical member made of graphite, and is provided so as to cover the area above the silicon melt 2 excluding the pulling path of the silicon single crystal 3 .
  • the diameter of the opening at the lower end of the heat shield 17 is larger than the diameter of the silicon single crystal 3, thereby securing a pulling path for the silicon single crystal 3.
  • the outer diameter of the lower end of the heat shield 17 is smaller than the diameter of the quartz crucible 11 , and the lower end of the heat shield 17 is located inside the quartz crucible 11 .
  • the heat shield 17 does not interfere with the quartz crucible 11 even if the heat shield 17 is raised above the lower end of the .
  • the quartz crucible 11 should be raised so that the gap (gap value h G ) between the melt surface and the heat shield 17 becomes constant. Thereby, the temperature fluctuation of the silicon melt 2 is suppressed, and the flow rate of the gas flowing near the melt surface is kept constant to control the amount of dopant evaporated from the silicon melt 2 .
  • gap control can improve the stability of the crystal defect distribution, the oxygen concentration distribution, the resistivity distribution, and the like in the pulling axis direction of the silicon single crystal 3 .
  • FIG. 1 shows a state in which a silicon single crystal 3 in the process of growing is suspended from a wire 18 .
  • the silicon single crystal 3 is pulled, the silicon single crystal 3 is grown by gradually pulling up the wire 18 while rotating the quartz crucible 11 and the silicon single crystal 3 .
  • the cameras 20A and 20B are installed outside the chamber 10 .
  • the cameras 20A and 20B are, for example, CCD cameras, and photograph the inside of the chamber 10 through first and second viewing windows 10e 1 and 10e 2 formed in the chamber 10 .
  • the cameras 20A and 20B are installed at a predetermined angle with respect to the vertical direction, and the cameras 20A and 20B have optical axes tilted with respect to the pulling axis of the silicon single crystal 3 . That is, the cameras 20A and 20B photograph the upper surface region of the quartz crucible 11 including the circular opening of the heat shield 17 and the surface of the silicon melt 2 from obliquely above.
  • Cameras 20A and 20B are connected to image processing section 21 , and image processing section 21 is connected to control section 22 .
  • the image processing unit 21 calculates the crystal diameter in the vicinity of the solid-liquid interface from the contour pattern of the single crystal captured by the camera 20A.
  • the image processing unit 21 calculates the distance (gap value h G ) from the position of the mirror image of the heat shield 17 reflected on the melt surface in the captured images of the cameras 20A and 20B to the position of the liquid surface from the heat shield 17. calculate.
  • the method of calculating the gap value hG from the position of the mirror image of the heat shield 17 is not particularly limited. During the crystal pulling process, the gap can be determined by substituting the mirror image position of the heat shield 17 into this conversion table or equation. It is also possible to geometrically calculate the gap from the positional relationship between the real image and the mirror image of the heat shield 17 appearing in the photographed image.
  • the control unit 22 controls the crystal diameter by controlling the crystal pulling speed based on the crystal diameter data obtained from the captured image of the camera 20A. Specifically, when the measured value of the crystal diameter is larger than the target diameter, the crystal pulling speed is increased, and when it is smaller than the target diameter, the crystal pulling speed is decreased. Further, the control unit 22 operates based on the crystal length data of the silicon single crystal 3 obtained from the sensor of the crystal pulling mechanism 19 and the gap value (liquid level) obtained from the image captured by at least one of the cameras 20A and 20B. , the amount of movement of the quartz crucible 11 (crucible rising speed) is controlled so as to obtain a predetermined gap value. At this time, in addition to the case where the gap value is controlled to be maintained at a constant value, when the gap value is controlled to gradually decrease as the single crystal pulling progresses, the control is performed so that the gap value increases conversely. Sometimes.
  • a cylindrical shield 23 surrounding the crystal pulling axis is provided above the heat shield 17 .
  • This shield 23 may be a structure called a purge tube, or a cooling body that promotes cooling of the pulled silicon single crystal 3 .
  • the purge tube is provided to control the flow of purge gas.
  • the silicon melt may be doped with impurities (dopants) such as arsenic (As) and antimony (Sb). These dopants have low boiling points and are easy to evaporate.
  • dopants such as arsenic (As) and antimony (Sb). These dopants have low boiling points and are easy to evaporate.
  • a purge gas such as Ar is flowed in a pulling furnace under reduced pressure, the dopant evaporated from the silicon melt 2 volatilizes on the purge gas and contaminates the inside of the furnace.
  • the heat shield 17 provided in the furnace accelerates the flow velocity of the purge gas flowing near the surface of the silicon melt 2, further promoting the evaporation of the dopant from the silicon melt 2.
  • FIG. 1 when a purge tube is provided, the pressure inside the chamber is set to a high pressure state, the purge tube is provided above the heat shield 17, and the purge gas introduced into the pulling furnace is rectified so that the silicon melt is Evaporation of the dopant inside can be suppressed.
  • the cooling body is provided to control the time for the silicon single crystal pulled up from the silicon melt 2 to pass through a predetermined temperature range.
  • the type and distribution of crystal defects contained in the silicon single crystal manufactured by the CZ method are determined by the growth rate (pulling rate) V of the silicon single crystal and the crystal growth in the direction of the pulling axis near the crystal growth interface from the melting point to 1300 ° C. It is known to depend on the ratio V/G to the temperature gradient G. Strict control of V/G makes it possible to produce single crystals that do not contain COPs (Crystal Originated Particles) or dislocation clusters.
  • the crystal diameter increases, the central portion of the crystal becomes more difficult to cool than the peripheral portion of the crystal, and the temperature gradient G within the cross section of the silicon single crystal perpendicular to the direction of the pulling axis tends to become non-uniform.
  • the allowable range of V/G that allows the entire surface of the silicon single crystal cross section perpendicular to the pulling axis direction to become a defect-free region becomes extremely narrow, and the control of the crystal pulling speed V suddenly becomes difficult.
  • the crystal pulling speed V is allowed to make the entire cross section of the silicon single crystal perpendicular to the pulling axis direction a defect-free region.
  • FIG. 2 is a schematic diagram for explaining the installation positions of the two cameras 20A and 20B.
  • the single crystal manufacturing apparatus 1 includes a sub-camera 20B (first camera) for gap measurement in addition to a main camera 20A (second camera) for diameter measurement.
  • a main camera 20A for diameter measurement is provided so as to directly face the silicon single crystal, and the optical axis of the main camera 20A is on the same plane as the crystal pulling axis and has a positional relationship that intersects the crystal pulling axis.
  • the sub-camera 20B photographs the silicon single crystal from an oblique direction, and the optical axis of the sub-camera 20B is set obliquely neither parallel nor perpendicular to the crystal pulling axis.
  • 3A and 3B are schematic diagrams of an image 30A captured by the main camera 20A (diameter measuring camera), in which (a) is a diagram without the outline of the single crystal, and (b) is the outline of the single crystal with auxiliary lines. It is the displayed figure.
  • the main camera 20A photographs the silicon single crystal 3 obliquely from above.
  • the optical axis of the main camera 20A is set within a plane containing the crystal pulling axis (crystal center axis 3z), and the center of the imaging range in the width direction is aligned with the center of the silicon single crystal so that the whole diameter direction can be captured. is set to Dotted lines and dashed-dotted lines in the drawing are auxiliary lines for explanation, and do not exist in an actual captured image.
  • the main camera 20A can capture a real image 17R and a mirror image 17M of the heat shield 17.
  • the heat shield 17 and the shield 23 appear dark, but the melt surface 2a appears bright due to the radiant light or its reflected light.
  • the field of view of the main camera 20A is blocked by the shield 23, so a real image 17R and a mirror image 17M of the heat shield 17 are captured. Can not do it.
  • the shield 23 in the photographed image 30A looks dark like the heat shield 17 and the like, so most of the photographed image is completely dark, and the bright area is the real image of the shield 23 and the heat shield 17. Only a very small part of the single crystal near the solid-liquid interface and the melt surface 2a that can be seen through a slight gap between the 17R. For convenience of explanation, part of the real image edge E R and the mirror image edge E M of the heat shield 17 are shown by dashed lines, but nothing is actually visible.
  • FIG. 4 is a schematic diagram of an image 30B captured by the sub-camera 20B (gap measurement camera).
  • the sub-camera 20B also photographs the silicon single crystal from obliquely above. It is oriented in a direction that intersects the plane containing the crystal pulling axis.
  • the sub-camera 20B locally photographs the vicinity of the solid-liquid interface on the right side (or left side) of the crystal pulling axis (the crystal center axis 3z), as shown in the drawing. Therefore, a mirror image of the heat shield 17 reflected on the melt surface 2a can be observed through a small gap between the lower end of the shield 23 and the heat shield 17.
  • a detection line L1 that intersects the real image edge E R and the mirror image edge E M of the thermal shield 17 is set in the captured image 30B. do.
  • the detection line L1 has been set in a horizontal direction perpendicular to the crystal pulling axis (crystal central axis 3z), but in this embodiment, it is set in an oblique direction.
  • the gap value hG When obtaining the gap value hG from the real image-mirror image distance D, it can be obtained using a conversion table or a conversion formula prepared in advance before starting the crystal pulling process.
  • the conversion table or conversion formula shows the relative change in the gap value hG when the quartz crucible 11 is moved up and down to arbitrarily change the liquid surface level of the silicon melt 2, and the difference between the real image and the mirror image on the detection line L1 . It can be obtained from the relationship with the distance D.
  • the reference value (absolute value) of the gap value hG can be obtained by a method of measuring the reference liquid level using, for example, a measurement pin (quartz rod) made of quartz.
  • FIG. 5 is a schematic diagram showing a method of measuring the reference liquid level using a measuring pin.
  • a measuring pin 24 having a predetermined length Lp is attached to the lower end of the heat shield 17 covering the upper part of the melt surface 2a, and the quartz crucible is 11, the melt surface 2a is gradually raised, and the state of contact between the tip of the measuring pin 24 and the melt surface 2a is observed.
  • FIG. 6 is a flow chart showing the manufacturing process of a silicon single crystal.
  • a polycrystalline silicon raw material prefilled in a quartz crucible 11 is heated by a heater 15 to generate a silicon melt 2 (step S11).
  • the liquid surface position (gap value h G ) of the silicon melt 2 viewed from the thermal shield 17 is measured (step S12).
  • the seed crystal attached to the tip of the wire 18 is lowered and brought into contact with the silicon melt 2 (step S13). The drop amount of the seed crystal at this time is determined based on the previously measured gap value hG .
  • step S14 seed drawing
  • step S15 in order to obtain a single crystal with a required diameter
  • step S15 in order to obtain a single crystal with a required diameter
  • step S15 in order to obtain a single crystal with a required diameter
  • step S15 in order to obtain a single crystal with a required diameter
  • step S15 in order to obtain a single crystal with a required diameter
  • step S15 in order to obtain a single crystal with a required diameter
  • step S15 shoulder part whose diameter gradually widens
  • step S16 body part whose diameter is kept constant is grown.
  • tail drawing tail drawing
  • the diameter of the silicon single crystal 3 and the liquid surface position of the silicon melt 2 are controlled.
  • the control unit 22 controls the pulling conditions such as the pulling speed of the wire 18 and the power of the heater 15 so that the diameter of the silicon single crystal 3 becomes the target diameter.
  • the control unit 22 also controls the vertical position of the quartz crucible 11 so that the gap value hG corresponding to the liquid surface position becomes a predetermined value.
  • the sub-camera 20B for gap measurement is provided separately from the main camera 20A for diameter measurement, and the sub-camera 20B is used to capture the real image of the heat shield 17. and a mirror image, even if the field of view of the main camera 20A is blocked by a shield 23 such as a purge tube, the real image and the mirror image of the heat shield 17 can be photographed, and the gap value hG can be stably measured. can do.
  • the detection line L1 is drawn not in the horizontal direction but in the oblique direction, and the intersection point P of this detection line L1 and the real image edge E R and the mirror image edge E M Since the gap value hG is calculated from 1 and P2 , the measurement accuracy of the gap value hG can be improved.
  • the case where the field of view of the diameter measuring camera is blocked by a shield is taken as an example. Even if not, it is possible to measure the gap using a gap measurement camera in addition to the diameter measurement camera. Thereby, gap measurement accuracy and reliability can be improved. Also, it is possible to provide a gap measurement camera independently without providing a diameter measurement camera. Furthermore, the present invention is not limited to the use of the gap measurement camera together with the diameter measurement camera, and it is also possible to use the gap measurement camera alone.
  • the method for producing a silicon single crystal has been described, but it is possible to apply the CZ method to various methods for producing single crystals to which it is applicable.

Abstract

【課題】炉内構造によらず液面レベルを安定的に計測することが可能な単結晶の製造方法及び装置を提供する。 【解決手段】本発明は、ルツボ内の融液から単結晶を引き上げるチョクラルスキー法による単結晶の製造方法であって、単結晶の引き上げ経路を除いたルツボの上方を覆う熱遮蔽体を設置し、熱遮蔽体の実像17R及び融液面2aに映る熱遮蔽体の鏡像17Mを第1カメラで撮影し、単結晶の引き上げ軸に対して斜め方向に延在して熱遮蔽体の実像エッジE及び鏡像エッジEの両方と交差する検出ラインLを設定し、検出ラインLと実像エッジEとの第1交点Pから検出ラインLと鏡像エッジEとの第2交点Pまでの距離である検出ラインL上の実像-鏡像間距離Dから熱遮蔽体の下端と融液面2aとの間の距離であるギャップ値を求める。

Description

単結晶の製造方法及び単結晶製造装置
 本発明は、単結晶の製造方法及び単結晶製造装置に関し、特に、チョクラルスキー法(CZ法)による単結晶の引き上げ工程中に融液の液面レベルを計測する方法に関するものである。
 半導体デバイス用シリコン単結晶の製造方法としてCZ法が知られている。CZ法では、石英ルツボ内の多結晶シリコン原料を加熱して溶融し、得られたシリコン融液に浸漬させた種結晶を相対的に回転させながら徐々に引き上げることにより、種結晶の下端に大きな単結晶を成長させる。CZ法によれば、高品質のシリコン単結晶を高い歩留まりで製造することが可能である。
 CZ法では単結晶の歩留まり及び結晶品質の向上のため結晶直径及び液面レベルの精密な計測及び制御が行われている。結晶直径及び液面レベルの計測方法に関し、例えば特許文献1には、固液界面に発生するフュージョンリングと呼ばれる高輝度部から結晶直径及び結晶中心位置を算出し、結晶中心位置から液面レベルを算出する方法が記載されている。また特許文献2には、熱遮蔽体の円形の開口を含む実像と融液面に映った熱遮蔽体の鏡像との間隔から熱遮蔽体に対するシリコン融液の液面位置を算出する方法が記載されている。特許文献3には、融液面の上方に石英棒を取り付け、石英棒の先端が融液面に接触したとき融液面が基準位置にあるものと判断する方法が記載されている。特許文献4には、複数のカメラを用いて結晶直径の計測及びシリコン融液面の高さ位置の算出を行う方法が記載されている。
 また、特許文献5には、チャンバー内を高圧状態にすると共に、熱遮蔽体の上方にパージチューブと呼ばれる円筒状の炉内部材を設置し、パージチューブを用いて引き上げ炉内に導入されるパージガスを整流することにより、シリコン融液中のドーパントの蒸発を抑制する方法が記載されている。さらに、特許文献6には、熱遮蔽体の上方に円筒状の冷却体を設置し、シリコン融液から引き上げられたシリコン単結晶の所定の温度域の滞在時間を制御することにより、PvPiマージンを拡大して無欠陥結晶の歩留まりを高める方法が記載されている。
特開2019-85299号公報 特開2013-216505号公報 特開昭62-87481号公報 特開2013-170097号公報 特開2011-246341号公報 特開2021-98629号公報
 通常、炉内を撮影するカメラは一つであり、単結晶の直径方向の全体が写るように撮影範囲の幅方向中央が単結晶の中心に設定される。すなわち、カメラの光軸は結晶引き上げ軸を含む平面内に設定される。しかし、熱遮蔽体の上方にパージチューブや水冷体などの炉内構造物が設置され、カメラの視野が炉内構造物によって遮られる場合には、熱遮蔽体の実像及び鏡像を撮影することができず、熱遮蔽体に対する液面レベルを計測できないという問題がある。
 したがって、本発明の目的は、炉内構造によらず液面レベルを安定的に計測することが可能な単結晶の製造方法及び単結晶製造装置を提供することにある。
 上記課題を解決するため、本発明による単結晶の製造方法は、ルツボ内の融液から単結晶を引き上げるチョクラルスキー法による単結晶の製造方法であって、前記単結晶の引き上げ経路を除いた前記ルツボの上方を覆う熱遮蔽体を設置し、前記熱遮蔽体の実像及び前記融液の液面に映る前記熱遮蔽体の鏡像を第1カメラで撮影し、前記単結晶の引き上げ軸に対して平行でも垂直でもない斜め方向に延在して前記熱遮蔽体の実像エッジ及び鏡像エッジの両方と交差する検出ラインを設定し、前記検出ラインと前記実像エッジとの第1交点から前記検出ラインと前記鏡像エッジとの第2交点までの距離(検出ライン上の実像-鏡像間距離)から前記熱遮蔽体の下端と融液面との間の距離であるギャップ値を求めることを特徴とする。
 本発明によれば、これまで直径計測用カメラの撮影方向からでは遮蔽物に隠れて撮影することができなかった熱遮蔽体の実像及び鏡像を撮影することが可能となる。したがって、炉内又は炉外の構造によらず液面レベルを安定的に計測することができる。
 本発明において、第1カメラの光軸は前記単結晶の引き上げ軸と同じ平面になく、ねじれの位置関係にあることが好ましい。このように、第1カメラの撮影範囲の幅方向中央を単結晶の中心からずらすことにより、熱遮蔽体の実像及び鏡像を撮影することができ、検出ラインの設定が容易になる。また、検出ラインと実像エッジとの第1交点から検出ラインと鏡像エッジとの第2交点までの距離を長くすることができ、前記熱遮蔽体の下端と融液面との間の距離であるギャップ値をより正確に算出することができる。
 本発明は、前記第1カメラとは別に用意した第2カメラを用いて前記単結晶の直径を計測することが好ましく、第2カメラの光軸は前記引き上げ軸と同じ平面にあり、交差する位置関係にあることが好ましい。このように、直径計測用の第2カメラとは別にギャップ計測用の第1カメラを設けることにより、前記熱遮蔽体の下端と融液面との間の距離であるギャップ値を安定的に測定することができる。
 本発明は、前記熱遮蔽体の下端よりも上方に前記引き上げ経路を取り囲む略円筒状の遮蔽物を設置し、前記第2カメラの視野は前記遮蔽物によって遮られていることが好ましい。ルツボの上方に熱遮蔽体とは別にパージチューブなどの炉内構造物が設置されている場合、直径計測用メインカメラから熱遮蔽体の実像及び鏡像を観察することができない。しかし、遮蔽物によって視野が遮られることなく熱遮蔽体の実像及び鏡像を観察可能な位置にカメラを設置して熱遮蔽体の実像及び鏡像を撮影することにより、ギャップ値を確実に測定することができる。この場合、カメラの撮影範囲の幅方向中央は単結晶の中心からずれているので、遮蔽物の下端と熱遮蔽体との間のわずかな隙間から、熱遮蔽体の実像及び鏡像を観察することが可能となる。
 本発明は、結晶引上げ開始前に前記ルツボを昇降させて前記融液の液面レベルを任意に変化させたときの前記ギャップ値と前記検出ライン上の実像-鏡像間距離との関係を示す換算テーブル又は換算式を予め作成しておき、結晶引上げ工程中は実際に測定した実像-鏡像間距離及び前記換算テーブル又は前記換算式を用いて前記ギャップ値を算出することが好ましい。これによりギャップ値を正確に算出することができる。
 本発明は、前記融液の上方に設置された測定ピンと前記融液面との接触を観察することにより基準液面レベルを求め、前記基準液面レベルに基づいて前記換算テーブル又は前記換算式を作成することが好ましい。これによりギャップ値を正確に算出することができる。
 また、本発明による単結晶製造装置は、融液を支持するルツボと、前記ルツボを回転及び昇降駆動するルツボ駆動機構と、前記ルツボ内の前記融液を加熱するヒータと、単結晶の引き上げ経路を除いた前記ルツボの上方に配置された筒状の熱遮蔽体と、前記熱遮蔽体の実像及び前記融液の液面に映る前記熱遮蔽体の鏡像を撮影する第1カメラと、前記第1カメラの撮影画像を処理して前記熱遮蔽体の下端と融液面との間のギャップ値を求める画像処理部と、前記画像処理部による前記撮影画像の処理結果に基づいて前記融液の液面レベルを制御する制御部とを備え、前記画像処理部は、前記単結晶の引き上げ軸に対して平行でも垂直でもない斜め方向に延在して前記熱遮蔽体の実像エッジ及び鏡像エッジの両方と交差する検出ラインを前記撮影画像中に設定し、前記検出ラインと前記実像エッジとの第1交点から前記検出ラインと前記鏡像エッジとの第2交点までの距離である前記検出ライン上の実像-鏡像間距離から前記熱遮蔽体の下端と融液面との間の距離であるギャップ値を求めることを特徴とする。
 本発明において、前記第1カメラの光軸は前記単結晶の引き上げ軸は同じ平面になく、ねじれの位置関係にあることが好ましい。このように、第1カメラの撮影範囲の幅方向中央を単結晶の中心からずらすことにより、熱遮蔽体の実像及び鏡像を撮影することができ、検出ラインの設定が容易になる。また、検出ラインと実像エッジとの第1交点から検出ラインと鏡像エッジとの第2交点までの距離を長くすることができ、前記熱遮蔽体の下端と融液面との間の距離であるギャップ値をより正確に算出することができる。
 本発明は、前記熱遮蔽体の実像及び前記融液の液面に映る前記熱遮蔽体の鏡像を撮影する第2カメラをさらに備え、前記画像処理部は、前記第2カメラを用いて前記単結晶の直径を計測することが好ましい。
 本発明において、前記画像処理部は、結晶引上げ開始前に前記ルツボを昇降させて前記融液の液面レベルを任意に変化させたときの前記ギャップ値と前記検出ライン上の実像-鏡像間距離との関係を示す換算テーブル又は換算式を予め作成し、結晶引上げ工程中は実際に測定した実像-鏡像間距離及び前記換算テーブル又は前記換算式を用いて前記ギャップ値を算出することが好ましい。
 融液の上方に設置された測定ピンをさらに備え、前記画像処理部は、前記測定ピンの先端と前記融液面との接触を観察することにより基準液面レベルを求め、前記基準液面レベルに基づいて前記換算テーブル又は前記換算式を作成することが好ましい。
 本発明によれば、炉内構造によらず液面レベルを安定的に計測することが可能な単結晶の製造方法及び単結晶製造装置を提供することができる。
図1は、本発明の実施の形態による単結晶製造装置の構成を模式的に示す側面断面図である。 図2は、2台のカメラの設置位置を説明するための模式図である。 図3は、メインカメラ20A(直径計測カメラ)の撮影画像30Aの模式図であって、(a)は単結晶の輪郭を表示していない図、(b)は単結晶の輪郭を補助線で表示した図である。 図4は、ギャップ計測用のサブカメラの撮影画像の模式図である。 図5は、測定ピンを用いた基準液面レベルの測定方法を示す模式図である。 図6は、シリコン単結晶の製造工程を示すフローチャートである。
 以下、添付図面を参照しながら、本発明の好ましい実施の形態について詳細に説明する。
 図1は、本発明の実施の形態による単結晶製造装置の構成を模式的に示す側面断面図である。
 図1に示すように、単結晶製造装置1は、水冷式のチャンバー10と、チャンバー10内でシリコン融液2を保持する石英ルツボ11と、石英ルツボ11を保持する黒鉛ルツボ12と、黒鉛ルツボ12を支持する回転シャフト13と、回転シャフト13及び黒鉛ルツボ12介して石英ルツボ11を回転及び昇降駆動するルツボ駆動機構14と、黒鉛ルツボ12の周囲に配置されたヒータ15と、ヒータ15の外側であってチャンバー10の内面に沿って配置された断熱材16と、石英ルツボ11の上方に配置された熱遮蔽体17と、石英ルツボ11の上方であって回転シャフト13と同軸上に配置された引き上げワイヤー18と、チャンバー10の上方に配置された結晶引き上げ機構19と、チャンバー10内を撮影する2台のカメラ20A,20Bと、カメラ20A,20Bの撮影画像を処理する画像処理部21と、単結晶製造装置1の各部を制御する制御部22とを備えている。
 チャンバー10は、メインチャンバー10aと、メインチャンバー10aの上部開口に連結された細長い円筒状のプルチャンバー10bとで構成されており、石英ルツボ11、黒鉛ルツボ12、ヒータ15及び熱遮蔽体17はメインチャンバー10a内に設けられている。プルチャンバー10bにはチャンバー10内にアルゴンガス等の不活性ガス(パージガス)やドーパントガスを導入するためのガス導入口10cが設けられており、メインチャンバー10aの下部にはチャンバー10内の雰囲気ガスを排出するためのガス排出口10dが設けられている。また、メインチャンバー10aの上部には第1の覗き窓10e及び第2の覗き窓10eが設けられており、シリコン単結晶3の育成状況を観察可能である。
 石英ルツボ11は、円筒状の側壁部と湾曲した底部とを有する石英ガラス製の容器である。黒鉛ルツボ12は、加熱によって軟化した石英ルツボ11の形状を維持するため、石英ルツボ11の外表面に密着して石英ルツボ11を包むように保持する。石英ルツボ11及び黒鉛ルツボ12はチャンバー10内においてシリコン融液2を支持する二重構造のルツボを構成している。
 黒鉛ルツボ12は回転シャフト13の上端部に固定されており、回転シャフト13の下端部はチャンバー10の底部を貫通してチャンバー10の外側に設けられたルツボ駆動機構14に接続されている。黒鉛ルツボ12、回転シャフト13及びルツボ駆動機構14は石英ルツボ11の回転機構及び昇降機構を構成している。ルツボ駆動機構14によって駆動される石英ルツボ11の回転及び昇降動作は制御部22によって制御される。
 ヒータ15は、石英ルツボ11内に充填されたシリコン原料を融解してシリコン融液2を生成すると共に、シリコン融液2の溶融状態を維持するために用いられる。ヒータ15はカーボン製の抵抗加熱式ヒータであり、黒鉛ルツボ12内の石英ルツボ11を取り囲むように設けられている。さらにヒータ15の外側には断熱材16がヒータ15を取り囲むように設けられており、これによりチャンバー10内の保温性が高められている。ヒータ15の出力は制御部22によって制御される。
 熱遮蔽体17は、シリコン融液2の温度変動を抑制して結晶成長界面近傍に適切な熱分布を与えると共に、ヒータ15及び石英ルツボ11からの輻射熱によるシリコン単結晶3の加熱を防止するために設けられている。熱遮蔽体17は略円筒状の黒鉛製の部材であり、シリコン単結晶3の引き上げ経路を除いたシリコン融液2の上方の領域を覆うように設けられている。
 熱遮蔽体17の下端の開口の直径はシリコン単結晶3の直径よりも大きく、これによりシリコン単結晶3の引き上げ経路が確保されている。また熱遮蔽体17の下端部の外径は石英ルツボ11の口径よりも小さく、熱遮蔽体17の下端部は石英ルツボ11の内側に位置するので、石英ルツボ11のリム上端を熱遮蔽体17の下端よりも上方まで上昇させても熱遮蔽体17が石英ルツボ11と干渉することはない。
 シリコン単結晶3の成長と共に石英ルツボ11内の融液量は減少するが、融液面と熱遮蔽体17との間隔(ギャップ値h)が一定になるように石英ルツボ11を上昇させることにより、シリコン融液2の温度変動を抑制すると共に、融液面近傍を流れるガスの流速を一定にしてシリコン融液2からのドーパントの蒸発量を制御する。このようなギャップ制御により、シリコン単結晶3の引き上げ軸方向の結晶欠陥分布、酸素濃度分布、抵抗率分布等の安定性を向上させることができる。
 石英ルツボ11の上方には、シリコン単結晶3の引き上げ軸であるワイヤー18と、ワイヤー18を巻き取ることによってシリコン単結晶3を引き上げる結晶引き上げ機構19が設けられている。結晶引き上げ機構19はワイヤー18と共にシリコン単結晶3を回転させる機能を有している。結晶引き上げ機構19は制御部22によって制御される。結晶引き上げ機構19はプルチャンバー10bの上方に配置されており、ワイヤー18は結晶引き上げ機構19からプルチャンバー10b内を通って下方に延びており、ワイヤー18の先端部はメインチャンバー10aの内部空間まで達している。図1には、育成途中のシリコン単結晶3がワイヤー18に吊設された状態が示されている。シリコン単結晶3の引き上げ時には石英ルツボ11とシリコン単結晶3とをそれぞれ回転させながらワイヤー18を徐々に引き上げることによりシリコン単結晶3を成長させる。
 チャンバー10の外側には2台のカメラ20A,20Bが設置されている。カメラ20A,20Bは例えばCCDカメラであり、チャンバー10に形成された第1及び第2の覗き窓10e,10eを介してチャンバー10内を撮影する。カメラ20A,20Bの設置角度は鉛直方向に対して所定の角度をなしており、カメラ20A,20Bはシリコン単結晶3の引き上げ軸に対して傾斜した光軸を有する。すなわち、カメラ20A,20Bは、熱遮蔽体17の円形の開口及びシリコン融液2の液面を含む石英ルツボ11の上面領域を斜め上方から撮影する。
 カメラ20A,20Bは、画像処理部21に接続されており、画像処理部21は制御部22に接続される。画像処理部21は、カメラ20Aの撮影画像に写る単結晶の輪郭パターンから固液界面近傍における結晶直径を算出する。また画像処理部21は、カメラ20A,20Bの撮影画像中の融液面に映り込んだ熱遮蔽体17の鏡像の位置から熱遮蔽体17から液面位置までの距離(ギャップ値h)を算出する。ノイズの影響を除去するため、実際のギャップ制御に用いるギャップ計測値としては複数の計測値の移動平均値を用いることが好ましい。
 熱遮蔽体17の鏡像の位置からギャップ値hを算出する方法は特に限定されないが、例えば熱遮蔽体17の鏡像の位置とギャップとの関係を示す換算テーブル又は換算式を予め用意しておき、結晶引き上げ工程中はこの換算テーブル又は換算式に熱遮蔽体17の鏡像の位置を代入することによりギャップを求めることができる。また、撮影画像に写る熱遮蔽体17の実像と鏡像との位置関係からギャップを幾何学的に算出することも可能である。
 制御部22は、カメラ20Aの撮影画像から得られた結晶直径データに基づいて結晶引き上げ速度を制御することにより結晶直径を制御する。具体的には、結晶直径の計測値が狙いの直径よりも大きい場合には結晶引き上げ速度を大きくし、狙いの直径よりも小さい場合には引き上げ速度を小さくする。また制御部22は、結晶引き上げ機構19のセンサから得られたシリコン単結晶3の結晶長データと、カメラ20A及び20Bの少なくとも一方の撮影画像から得られたギャップ値(液面レベル)に基づいて、所定のギャップ値になるように石英ルツボ11の移動量(ルツボ上昇速度)を制御する。このとき、ギャップ値を一定値に維持するように制御する場合の他、単結晶の引上げの進行に伴って、ギャップ値が徐々に小さくなるように制御する場合、逆に大きくなるように制御する場合がある。
 熱遮蔽体17の上方には結晶引き上げ軸を取り囲む円筒状の遮蔽物23が設けられている。この遮蔽物23は、パージチューブと呼ばれる構造体であってもよく、引き上げられたシリコン単結晶3の冷却を促進させる冷却体であってもよい。
 パージチューブは、パージガスの流れを制御するために設けられるものである。半導体デバイスの特性に合わせてシリコン単結晶の抵抗率を調整するため、シリコン融液中に砒素(As)、アンチモン(Sb)等の不純物(ドーパント)をドープする場合がある。これらのドーパントは沸点が低く、蒸発しやすい。CZ法による一般的な結晶引き上げでは、減圧下の引上げ炉内にAr等のパージガスを流しているため、シリコン融液2から蒸発したドーパントはパージガスに乗って揮散し、炉内を汚染する。さらに、炉内に設けられた熱遮蔽体17がシリコン融液2の表面近傍を流れるパージガスの流速を加速させ、シリコン融液2からのドーパントの蒸発がさらに促進される。しかし、パージチューブを設けた場合には、チャンバー内を高圧状態にすると共に、熱遮蔽体17の上方にパージチューブを設置し、引き上げ炉内に導入されるパージガスを整流することにより、シリコン融液中のドーパントの蒸発を抑制することができる。
 冷却体は、シリコン融液2から引き上げられたシリコン単結晶が所定の温度域を通過する時間を制御するために設けられるものである。CZ法により製造されるシリコン単結晶に含まれる結晶欠陥の種類や分布は、シリコン単結晶の成長速度(引き上げ速度)Vと、融点から1300℃までの結晶成長界面近傍における引き上げ軸方向の結晶内温度勾配Gとの比V/Gに依存することが知られている。V/Gを厳密に制御することにより、COP(Crystal Originated Particle)や転位クラスターを含まない単結晶を製造することが可能である。ここで、結晶直径が大きくなると、結晶外周部に比べて結晶中心部が冷えにくくなり、引き上げ軸方向と直交するシリコン単結晶の断面内の温度勾配Gが不均一になりやすい。これにより、引き上げ軸方向と直交するシリコン単結晶の断面内の全面を無欠陥領域にすることができるV/Gの許容幅が非常に狭くなり、結晶引き上げ速度Vの制御が急激に難しくなる。しかし、熱遮蔽体17の上方に円筒状の冷却体を設置した場合には、引き上げ軸方向と直交するシリコン単結晶の断面内の全面を無欠陥領域にすることができる結晶引き上げ速度Vの許容幅(PvPiマージン)を拡大してCOPおよび転位クラスターを含まない大口径シリコン単結晶の製造歩留まりを高めることができる。
 図2は、2台のカメラ20A,20Bの設置位置を説明するための模式図である。
 図2に示すように、本実施形態による単結晶製造装置1は、直径計測用のメインカメラ20A(第2カメラ)とは別にギャップ計測用のサブカメラ20B(第1カメラ)を備えている。直径計測用のメインカメラ20Aはシリコン単結晶と正対するように設けられ、メインカメラ20Aの光軸は結晶引き上げ軸と同じ平面にあり、結晶引き上げ軸と交差する位置関係を有している。一方、サブカメラ20Bはシリコン単結晶を斜め方向から撮影するものであり、サブカメラ20Bの光軸は結晶引き上げ軸に対して平行でも垂直でもない斜め方向に設定されており、結晶引き上げ軸とねじれの位置関係を有している。そのため、たとえメインカメラ20Aの視野が遮蔽物23によって遮られたとしても、遮蔽物23の下端と熱遮蔽体17との間のわずかな隙間から融液面に映る熱遮蔽体17の鏡像エッジを観察可能である。
 図3は、メインカメラ20A(直径計測カメラ)の撮影画像30Aの模式図であって、(a)は単結晶の輪郭を表示していない図、(b)は単結晶の輪郭を補助線で表示した図である。
 図3(a)及び(b)に示すように、メインカメラ20Aはシリコン単結晶3を斜め上方から撮影する。特に、メインカメラ20Aの光軸は結晶引き上げ軸(結晶中心軸3z)を含む平面内に設定され、その撮影範囲の幅方向中央をシリコン単結晶の中心に合わせてその直径方向の全体が写るように設定される。なお図中の点線及び一点鎖線は説明用の補助線であり、実際の撮影画像には存在しない線である。
 熱遮蔽体17の上方にパージチューブや水冷体などの遮蔽物23が設置されていない場合、メインカメラ20Aは熱遮蔽体17の実像17R及び鏡像17Mを撮影可能である。撮影画像30A中、熱遮蔽体17や遮蔽物23は暗く見えるが、融液面2aは輻射光又はその反射光によって明るく見える。しかし、図示のように、熱遮蔽体17の上方に遮蔽物23が設置されている場合、メインカメラ20Aの視野が遮蔽物23によって遮られるため、熱遮蔽体17の実像17R及び鏡像17Mを撮影することができない。図示のように、撮影画像30A中の遮蔽物23は熱遮蔽体17等と同様に暗く見えるため、撮影画像の大部分は真っ暗であり、明るく見える領域は遮蔽物23と熱遮蔽体17の実像17Rとの間のわずかな隙間から覗き見える融液面2aや固液界面近傍の単結晶の極一部だけである。説明の便宜上、熱遮蔽体17の実像エッジE及び鏡像エッジEの一部を破線で示しているが、実際には何も見えない。
 図4は、サブカメラ20B(ギャップ計測カメラ)の撮影画像30Bの模式図である。
 図4に示すように、サブカメラ20Bもシリコン単結晶を斜め上方から撮影するが、その撮影範囲の幅方向中央はシリコン単結晶の中心と一致しておらず、サブカメラ20Bの光軸はシリコン結晶引き上げ軸を含む平面と交差する方向を向いている。サブカメラ20Bは、図示のように、結晶引き上げ軸(結晶中心軸3z)よりも右側(又は左側)の固液界面近傍を局所的に撮影する。そのため、遮蔽物23の下端と熱遮蔽体17との間のわずかな隙間から融液面2aに映る熱遮蔽体17の鏡像を観察可能である。
 こうして得られたサブカメラ20Bの撮影画像30Bからギャップ値hを求める場合、まず熱遮蔽体17の実像エッジE及び鏡像エッジEとそれぞれ交差する検出ラインLを撮影画像30B中に設定する。これまで、検出ラインLは結晶引き上げ軸(結晶中心軸3z)と直交する水平方向に設定していたが、本実施形態では斜め方向に設定する。特に、2つの交点間の距離(画素数)が最大となるように検出ラインLを引くことが好ましく、遮蔽物23のエッジの延在方向と略平行に検出ラインLを引くことが好ましい。このようにすることで、2つの交点間の距離を十分に確保してギャップ値の計測精度を高めることができる。
 次に、検出ラインLと実像エッジEとの交点P(第1交点)及び検出ラインLと鏡像エッジEとの交点P(第2交点)の座標をそれぞれ求め、第1交点Pから第2交点Pまでの距離(検出ラインL上の実像-鏡像間距離D)を求め、この実像-鏡像間距離Dから熱遮蔽体17の下端と融液面2aとの間のギャップ値hを求める。なお図中の破線は説明用の補助線であり、実際の撮影画像30Bには存在しない線である。
 実像-鏡像間距離Dからギャップ値hを求める際は、結晶引上げ工程を開始する前に予め作成しておいた換算テーブル又は換算式を用いて求めることができる。換算テーブル又は換算式は、石英ルツボ11を昇降させてシリコン融液2の液面レベルを任意に変化させたときのギャップ値hの相対的な変化と検出ラインL上の実像-鏡像間距離Dとの関係から求めることができる。さらに、ギャップ値hの基準値(絶対値)は、例えば石英製の測定ピン(石英棒)を用いた基準液面レベルの測定方法により求めることができる。
 図5は、測定ピンを用いた基準液面レベルの測定方法を示す模式図である。
 図5に示すように、測定ピンを用いた基準液面レベルの測定では、融液面2aの上方を覆う熱遮蔽体17の下端部に既定の長さLpの測定ピン24を取り付け、石英ルツボ11と共に融液面2aを徐々に上昇させながら測定ピン24の先端と融液面2aとの接触状態を観察する。そして、測定ピン24の先端が融液面2aに接触したとき、融液面が基準液面レベルに到達したものと判断する。すなわち、測定ピン24が融液面2aに接触したとき、ギャップ値hが測定ピン24の長さLpと一致している(Lp=h)と判断する。この方法は液面レベルの測定精度が高いことから、ギャップ値hの真値として参照することができる。
 図6は、シリコン単結晶の製造工程を示すフローチャートである。
 図6に示すように、シリコン単結晶3の製造では、石英ルツボ11内に予め充填された多結晶シリコン原料をヒータ15で加熱してシリコン融液2を生成する(ステップS11)。次に、熱遮蔽体17から見たシリコン融液2の液面位置(ギャップ値h)を測定する(ステップS12)。その後、ワイヤー18の先端部に取り付けられた種結晶を降下させてシリコン融液2に着液させる(ステップS13)。このときの種結晶の降下量は、予め測定したギャップ値hに基づいて決定される。
 次に、シリコン融液2との接触状態を維持したまま種結晶を徐々に引き上げてシリコン単結晶3を育成する結晶引き上げ工程を開始する。結晶引き上げ工程では、まず単結晶を無転位化するためダッシュネック法によるシード絞り(ステップS14)を行う。次に、必要な直径の単結晶を得るために直径が徐々に広がったショルダー部を育成し(ステップS15)、単結晶が所望の直径になったところで直径が一定に維持されたボディー部を育成する(ステップS16)。ボディー部を所定の長さまで育成した後、無転位の状態で単結晶をシリコン融液2から切り離すためにテイル絞り(テイル部の育成、ステップS17)を行なう。
 単結晶の引き上げ工程中は、シリコン単結晶3の直径およびシリコン融液2の液面位置を制御する。制御部22は、シリコン単結晶3の直径が目標直径となるようにワイヤー18の引き上げ速度、ヒータ15のパワー等の引き上げ条件を制御する。また制御部22は、液面位置に対応するギャップ値hが所定の値となるように石英ルツボ11の上下方向の位置を制御する。
 以上説明したように、本実施形態によるシリコン単結晶の製造方法は、直径計測用のメインカメラ20Aとは別にギャップ計測用のサブカメラ20Bを設け、サブカメラ20Bを用いて熱遮蔽体17の実像及び鏡像を撮影するので、メインカメラ20Aの視野がパージチューブなどの遮蔽物23によって遮られる場合でも、熱遮蔽体17の実像及び鏡像を撮影することができ、ギャップ値hを安定的に計測することができる。また、サブカメラ20Bの撮影画像からギャップ値hを求める際、検出ラインLを水平方向ではなく斜め方向に引き、この検出ラインLと実像エッジE及び鏡像エッジEそれぞれの交点P,Pからギャップ値hを算出するので、ギャップ値hの計測精度を高めることができる。
 本発明は、上記実施の形態に限定されることなく、本発明の趣旨を逸脱しない範囲で種々の変更を加えることが可能であり、それらも本発明の範囲に包含されるものであることは言うまでもない。
 例えば、上記実施形態においては、直径計測カメラの視野が遮蔽物によって遮られる場合を例に挙げたが、本発明はこのような場合に限定されず、直径計測カメラの視野を遮る遮蔽物が設けられていない場合においても、直径計測カメラとは別にギャップ計測カメラを用いてギャップを計測することも可能である。これにより、ギャップ計測精度及び信頼性の向上を図ることができる。また、直径計測カメラを設けずにギャップ計測カメラを単独で設けることも可能である。さらに、本発明はギャップ計測カメラを直径計測カメラと併用する場合に限定されるものではなく、ギャップ計測カメラを単独で使用することも可能である。
 また、上記実施形態においては、シリコン単結晶の製造方法について説明したが、CZ法を適用可能な種々の単結晶の製造方法に適用することが可能である。
1  単結晶製造装置
2  シリコン融液
2a  融液面
3  シリコン単結晶
3z  結晶中心軸(結晶引き上げ軸)
10  チャンバー
10a  メインチャンバー
10b  プルチャンバー
10c  ガス導入口
10d  ガス排出口
10e  第1の覗き窓
10e  第2の覗き窓
11  石英ルツボ
12  黒鉛ルツボ
13  回転シャフト
14  ルツボ駆動機構
15  ヒータ
16  断熱材
17  熱遮蔽体
17M  熱遮蔽体の鏡像
17R  熱遮蔽体の実像
18  ワイヤー
19  結晶引き上げ機構
20A  メインカメラ(直径計測カメラ)
20B  サブカメラ(ギャップ計測カメラ)
21  画像処理部
22  制御部
23  遮蔽物(炉内構造物)
24  測定ピン
30A  メインカメラの撮影画像
30B  サブカメラの撮影画像
  熱遮蔽体の鏡像エッジ
  熱遮蔽体の実像エッジ
  検出ライン
  検出ラインと実像エッジとの交点(第1交点)
  検出ラインと鏡像エッジとの交点(第2交点)

Claims (10)

  1.  ルツボ内の融液から単結晶を引き上げるチョクラルスキー法による単結晶の製造方法であって、
     前記単結晶の引き上げ経路を除いた前記ルツボの上方を覆う熱遮蔽体を設置し、
     前記熱遮蔽体の実像及び前記融液の液面に映る前記熱遮蔽体の鏡像を第1カメラで撮影し、
     前記単結晶の引き上げ軸に対して平行でも垂直でもない斜め方向に延在して前記熱遮蔽体の実像エッジ及び鏡像エッジの両方と交差する検出ラインを設定し、
     前記検出ラインと前記実像エッジとの第1交点から前記検出ラインと前記鏡像エッジとの第2交点までの距離である前記検出ライン上の実像-鏡像間距離から前記熱遮蔽体の下端と融液面との間の距離であるギャップ値を求めることを特徴とする単結晶の製造方法。
  2.  前記第1カメラの光軸は前記単結晶の引き上げ軸と同じ平面になく、ねじれの位置関係にある、請求項1に記載の単結晶の製造方法。
  3.  前記第1カメラとは別に用意した第2カメラの撮影画像を用いて前記単結晶の直径を計測する、請求項1又は2に記載の単結晶の製造方法。
  4.  結晶引上げ開始前に前記ルツボを昇降させて前記融液の液面レベルを任意に変化させたときの前記ギャップ値と前記検出ライン上の実像-鏡像間距離との関係を示す換算テーブル又は換算式を予め作成しておき、結晶引上げ工程中は実際に測定した実像-鏡像間距離及び前記換算テーブル又は前記換算式を用いて前記ギャップ値を算出する、請求項1乃至3のいずれか一項に記載の単結晶の製造方法。
  5.  前記融液の上方に設置された測定ピンと前記融液面との接触を観察することにより基準液面レベルを求め、前記基準液面レベルに基づいて前記換算テーブル又は前記換算式を作成する、請求項4に記載の単結晶の製造方法。
  6.  融液を支持するルツボと、
     前記ルツボを回転及び昇降駆動するルツボ駆動機構と、
     前記ルツボ内の前記融液を加熱するヒータと、
     単結晶の引き上げ経路を除いた前記ルツボの上方に配置された筒状の熱遮蔽体と、
     前記熱遮蔽体の実像及び前記融液の液面に映る前記熱遮蔽体の鏡像を撮影する第1カメラと、
     前記第1カメラの撮影画像を処理して前記熱遮蔽体の下端と融液面との間のギャップ値を求める画像処理部と、
     前記画像処理部による前記撮影画像の処理結果に基づいて前記融液の液面レベルを制御する制御部とを備え、
     前記画像処理部は、
     前記単結晶の引き上げ軸に対して平行でも垂直でもない斜め方向に延在して前記熱遮蔽体の実像エッジ及び鏡像エッジの両方と交差する検出ラインを前記撮影画像中に設定し、
     前記検出ラインと前記実像エッジとの第1交点から前記検出ラインと前記鏡像エッジとの第2交点までの距離である前記検出ライン上の実像-鏡像間距離から前記熱遮蔽体の下端と融液面との間の距離であるギャップ値を求めることを特徴とする単結晶製造装置。
  7.  前記第1カメラの光軸は前記単結晶の引き上げ軸と同じ平面になく、ねじれの位置関係にある、請求項6に記載の単結晶製造装置。
  8.  前記熱遮蔽体の実像及び前記融液の液面に映る前記熱遮蔽体の鏡像を撮影する第2カメラをさらに備え、
     前記画像処理部は、前記第2カメラの撮影画像を用いて前記単結晶の直径を計測する、請求項6又は7に記載の単結晶製造装置。
  9.  前記画像処理部は、結晶引上げ開始前に前記ルツボを昇降させて前記融液の液面レベルを任意に変化させたときの前記ギャップ値と前記検出ライン上の実像-鏡像間距離との関係を示す換算テーブル又は換算式を予め作成し、結晶引上げ工程中は実際に測定した実像-鏡像間距離及び前記換算テーブル又は前記換算式を用いて前記ギャップ値を算出する、請求項6乃至8のいずれか一項に記載の単結晶製造装置。
  10.  融液の上方に設置された測定ピンをさらに備え、
     前記画像処理部は、前記測定ピンの先端と前記融液面との接触を観察することにより基準液面レベルを求め、前記基準液面レベルに基づいて前記換算テーブル又は前記換算式を作成する、請求項9に記載の単結晶製造装置。
PCT/JP2022/032979 2021-09-06 2022-09-01 単結晶の製造方法及び単結晶製造装置 WO2023033111A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280059231.2A CN117940619A (zh) 2021-09-06 2022-09-01 单晶的制造方法及单晶制造装置
KR1020247006063A KR20240041348A (ko) 2021-09-06 2022-09-01 단결정의 제조 방법 및 단결정 제조 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021144871A JP2023038005A (ja) 2021-09-06 2021-09-06 単結晶の製造方法及び単結晶製造装置
JP2021-144871 2021-09-06

Publications (1)

Publication Number Publication Date
WO2023033111A1 true WO2023033111A1 (ja) 2023-03-09

Family

ID=85412371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032979 WO2023033111A1 (ja) 2021-09-06 2022-09-01 単結晶の製造方法及び単結晶製造装置

Country Status (5)

Country Link
JP (1) JP2023038005A (ja)
KR (1) KR20240041348A (ja)
CN (1) CN117940619A (ja)
TW (1) TWI828140B (ja)
WO (1) WO2023033111A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005187291A (ja) * 2003-12-26 2005-07-14 Sumitomo Mitsubishi Silicon Corp 単結晶引上げ装置の融液表面位置検出装置及びその単結晶引上げ装置
JP2008195545A (ja) * 2007-02-08 2008-08-28 Shin Etsu Handotai Co Ltd 遮熱部材下端面と原料融液面との間の距離の測定方法、及びその距離の制御方法
JP2013216505A (ja) * 2012-04-04 2013-10-24 Sumco Corp シリコン単結晶の製造装置、シリコン単結晶の製造方法
JP2017105654A (ja) * 2015-12-07 2017-06-15 株式会社Sumco シリコン単結晶の製造方法
JP2018090451A (ja) * 2016-12-02 2018-06-14 株式会社Sumco 単結晶の製造方法
JP2020189766A (ja) * 2019-05-21 2020-11-26 株式会社Sumco 単結晶引き上げ装置の評価システム及び評価方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2467826C (en) * 2001-10-23 2012-03-13 Visto Corporation System and method for merging remote and local data in a single user interface
JP5181178B2 (ja) * 2007-09-12 2013-04-10 Sumco Techxiv株式会社 半導体単結晶製造装置における位置計測装置および位置計測方法
JP5708171B2 (ja) * 2010-04-26 2015-04-30 株式会社Sumco シリコン単結晶引き上げ装置及びシリコン単結晶の製造方法
JP6428372B2 (ja) * 2015-02-26 2018-11-28 株式会社Sumco 原料融液液面と種結晶下端との間隔測定方法、種結晶の予熱方法、および単結晶の製造方法
KR20190085299A (ko) 2018-01-10 2019-07-18 이병호 피팅 연결구
KR102333779B1 (ko) 2020-02-03 2021-12-03 주식회사 큐라젠 산화질소 플라즈마를 이용한 돌출형 폴리우레탄 드레싱폼 및 그 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005187291A (ja) * 2003-12-26 2005-07-14 Sumitomo Mitsubishi Silicon Corp 単結晶引上げ装置の融液表面位置検出装置及びその単結晶引上げ装置
JP2008195545A (ja) * 2007-02-08 2008-08-28 Shin Etsu Handotai Co Ltd 遮熱部材下端面と原料融液面との間の距離の測定方法、及びその距離の制御方法
JP2013216505A (ja) * 2012-04-04 2013-10-24 Sumco Corp シリコン単結晶の製造装置、シリコン単結晶の製造方法
JP2017105654A (ja) * 2015-12-07 2017-06-15 株式会社Sumco シリコン単結晶の製造方法
JP2018090451A (ja) * 2016-12-02 2018-06-14 株式会社Sumco 単結晶の製造方法
JP2020189766A (ja) * 2019-05-21 2020-11-26 株式会社Sumco 単結晶引き上げ装置の評価システム及び評価方法

Also Published As

Publication number Publication date
CN117940619A (zh) 2024-04-26
TWI828140B (zh) 2024-01-01
TW202311580A (zh) 2023-03-16
JP2023038005A (ja) 2023-03-16
KR20240041348A (ko) 2024-03-29

Similar Documents

Publication Publication Date Title
TWI596243B (zh) 單結晶的製造方法及裝置
TWI675131B (zh) 單結晶的製造方法及裝置
JP6465008B2 (ja) シリコン単結晶の製造方法
CN115461500B (zh) 单晶制造装置及单晶的制造方法
KR20110085992A (ko) 단결정 직경의 검출방법, 이를 이용한 단결정의 제조방법 및 단결정 제조장치
TWI615513B (zh) 單晶的製造方法及製造裝置
JP6645406B2 (ja) 単結晶の製造方法
JP6939714B2 (ja) 融液面と種結晶の間隔測定方法、種結晶の予熱方法、及び単結晶の製造方法
JP6477356B2 (ja) 単結晶の製造方法および製造装置
WO2023033111A1 (ja) 単結晶の製造方法及び単結晶製造装置
WO2022075061A1 (ja) 単結晶の製造方法
TWI762268B (zh) 單結晶製造裝置及單結晶的製造方法
WO2023195217A1 (ja) シリコン単結晶の製造方法及び装置並びにシリコンウェーハの製造方法
JP7318738B2 (ja) 単結晶製造システム及び単結晶製造方法
JP2024038702A (ja) シリコン単結晶の製造システム及び製造方法
JP2024039192A (ja) 単結晶製造装置
JP2019064843A (ja) シリコン単結晶の製造方法
UA47988A (uk) Спосіб вирощування монокристала та пристрій для його здійснення

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864693

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247006063

Country of ref document: KR

Kind code of ref document: A