WO2023024724A1 - 一种光热固化的树脂组合物及其制备方法和应用 - Google Patents

一种光热固化的树脂组合物及其制备方法和应用 Download PDF

Info

Publication number
WO2023024724A1
WO2023024724A1 PCT/CN2022/104492 CN2022104492W WO2023024724A1 WO 2023024724 A1 WO2023024724 A1 WO 2023024724A1 CN 2022104492 W CN2022104492 W CN 2022104492W WO 2023024724 A1 WO2023024724 A1 WO 2023024724A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
parts
composition according
weight
preparation
Prior art date
Application number
PCT/CN2022/104492
Other languages
English (en)
French (fr)
Inventor
张佳新
李洪文
段光远
邢林林
Original Assignee
爱迪特(秦皇岛)科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 爱迪特(秦皇岛)科技股份有限公司 filed Critical 爱迪特(秦皇岛)科技股份有限公司
Publication of WO2023024724A1 publication Critical patent/WO2023024724A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/10Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers containing more than one epoxy radical per molecule
    • C08F283/105Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers containing more than one epoxy radical per molecule on to unsaturated polymers containing more than one epoxy radical per molecule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/025Other specific inorganic materials not covered by A61L27/04 - A61L27/12
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/10Ceramics or glasses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/006Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers provided for in C08G18/00
    • C08F283/008Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers provided for in C08G18/00 on to unsaturated polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/40Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/12Materials or treatment for tissue regeneration for dental implants or prostheses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2272Ferric oxide (Fe2O3)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention belongs to the technical field of resin materials, and in particular relates to a photothermally cured resin composition and a preparation method and application thereof.
  • Temporary crowns and bridges are temporary crowns or bridges that are used in the field of oral implantology and restoration before the patient wears the final crown.
  • the traditional method of making temporary crowns and bridges is mainly to mix the tray powder and tray water by hand and then shape it.
  • the molding is generally divided into intraoral molding or extraoral molding. Since the residual methacrylic resin has a great irritating and acrid odor, the treatment experience brought by the patient is very bad.
  • some processing factories use cutting technology to make PMMA temporary crowns and bridges. PMMA has realized digital processing and increased processing efficiency. However, this technology has a low utilization rate of materials, serious waste of materials, and dust generated during the cutting process, which is relatively environmentally friendly. Difference.
  • 3D printing is an additive manufacturing process that can complete the processing of fine or hollow workpieces that are difficult to cut, especially suitable for personalized data production such as temporary crowns and bridges.
  • the utilization rate of additive manufacturing materials is high and can save costs; Therefore, the application of 3D printing technology in dentistry is the key to realize the digitization of dentistry.
  • the 3D printing materials used in dental applications are generally photosensitive resins, which are solidified and accumulated layer by layer by laser surface forming or light spot forming on 3D printing equipment with a certain emission wavelength, and finally form the required printing workpiece.
  • Chinese patent CN106947034A discloses a thermal post-curable 3D printing photosensitive resin and its preparation method and application.
  • the photosensitive resin includes: a prepolymer, a diluent, a photoinitiator, and a thermal initiator, wherein the decomposition temperature of the thermal initiator is greater than or equal to 100°C when its half-life is one hour; the parts by weight of each component are as follows: 50-70 parts of compound, 30-50 parts of diluent, 1-5 parts of photoinitiator, and 0.5-5 parts of thermal initiator; the 3D printing photosensitive resin obtained in this invention can be post-cured after photocuring 3D printing.
  • the obtained thermal post-curing 3D printing photosensitive resin expands the application in opaque samples, samples with complex shapes, ultra-thick samples and colored samples, etc., and makes the samples more Excellent mechanical properties.
  • the curing after printing and forming of the above-mentioned prior art is only thermal curing, without further photocuring, so that the degree of completion of the photocuring part in the resin system is low, and the overall performance is poor, and the resin composition does not contain inorganic fillers, which will make The finally obtained resin composition had stress shrinkage and low hardness.
  • Chinese patent CN110128773A discloses a method of photo/thermal dual-curing 3D printing and its products, including the following steps: mixing the raw materials, performing photo-curing 3D printing, and then heating and curing to obtain 3D printed products;
  • the raw materials include: polyurethane Acrylate, diluent, initiator, epoxy resin and thermotropic curing agent;
  • polyurethane acrylate is obtained by reacting isocyanate with polyol, and then blocked by acrylate containing hydroxyl group, and the molecular weight of polyol is not less than 1000 polyester polyol or polyether polyol.
  • Chinese patent CN108948280A discloses a light/thermal dual-curing 3D printing resin composition, which includes the following components in parts by weight: 66-86 parts of free radical photosensitive resin, 9-29 parts of heat-curable epoxy resin , 1 to 4 parts of free radical photoinitiator, 1 to 3 parts of latent thermal curing agent.
  • the 3D printing resin composition obtained in this invention needs to be irradiated with ultraviolet light with a wavelength of 365-500nm, so that the acrylic resin in it can be polymerized by free radicals under the action of a photoinitiator. Place it at 80-120°C and keep it warm for 1-2 hours, so that the epoxy resin in it can be post-cured under the action of latent thermosetting agent. It can not only speed up the speed of light curing, but also reduce the volume shrinkage of the product, and at the same time enhance the physical and mechanical properties of the product through post-thermal curing.
  • thermosetting system that both mainly adopt is epoxy curing system, and epoxy resin system is brittle, and cost is high and and There may be compatibility problems in the acrylic resin system; the added isobornyl ester has a relatively large odor and poor environmental protection; and the resin compositions provided by both do not add inorganic component fillers, and the wear resistance and strength are difficult. Meet actual needs.
  • the purpose of the present invention is to provide a photothermally curable resin composition and its preparation method and application
  • the resin composition includes a specific number of prepolymers, monomers, photoinitiators, Thermal initiator, fumed silica and glass powder, through the combination of the above substances, the obtained resin composition has a high curing reaction completion rate, high hardness and wear resistance, which can meet the requirements of temporary crowns and bridges for resin materials. requirements.
  • the present invention provides a photothermally curable resin composition, which includes the following components in parts by weight:
  • the prepolymer is preferably 51 parts by weight, 52 parts by weight, 53 parts by weight, 54 parts by weight, 55 parts by weight, 56 parts by weight, 57 parts by weight, 58 parts by weight or 59 parts by weight.
  • the monomer is preferably 10 parts by weight, 15 parts by weight, 20 parts by weight, 25 parts by weight, 30 parts by weight, 35 parts by weight, 40 parts by weight or 45 parts by weight.
  • the photoinitiator is preferably 0.05 parts by weight, 0.1 parts by weight, 0.5 parts by weight, 1 parts by weight, 1.5 parts by weight, 2 parts by weight, 2.5 parts by weight, 3 parts by weight, 3.5 parts by weight, 4 parts by weight parts or 4.5 parts by weight.
  • the thermal initiator is preferably 0.05 parts by weight, 0.1 parts by weight, 0.5 parts by weight, 1 parts by weight, 1.5 parts by weight, 2 parts by weight, 2.5 parts by weight, 3 parts by weight, 3.5 parts by weight, 4 parts by weight parts or 4.5 parts by weight.
  • the fumed silica is preferably 0.05 parts by weight, 1 part by weight, 5 parts by weight, 10 parts by weight, 15 parts by weight, 20 parts by weight, 25 parts by weight, 30 parts by weight or 35 parts by weight.
  • the glass powder is preferably 0.05 parts by weight, 1 part by weight, 5 parts by weight, 10 parts by weight, 15 parts by weight, 20 parts by weight, 25 parts by weight, 30 parts by weight or 35 parts by weight.
  • the photothermally curable resin composition provided by the present invention includes prepolymer, monomer, photoinitiator, thermal initiator, fumed silica and glass frit of specific parts, and the photoinitiator of specific parts is added in the system
  • thermal initiator use photoinitiator and thermal initiator to initiate the system, make the curing more fully, improve the completion rate of curing reaction, and make the monomer residue in the final resin composition meet the standard requirements of temporary crowns and bridges
  • the present invention also adds specific parts of fumed silica and barium-containing glass powder in the system to enhance the hardness, strength and wear resistance of the material, so that the resulting resin composition can be printed into a temporary crown and bridge after 3D With high hardness and wear resistance, it fully meets the requirements of oral restoration materials or oral implant materials.
  • the prepolymer comprises urethane acrylate, urethane dimethacrylate, bisphenol A-glycidyl dimethacrylate, ethoxylated bisphenol A dimethacrylate or bisphenol A acrylic acid Any one or a combination of at least two of triol dimethacrylates.
  • the monomer includes any one or a combination of at least two of triethylene glycol dimethacrylate, hydroxyethyl methacrylate or hydroxypropyl methacrylate.
  • both the monomer and the prepolymer are acrylic resins, so that the monomer and the prepolymer have good compatibility, and then the mechanical properties of the prepared resin composition are more excellent .
  • the thermal initiator includes any one or a combination of at least two of dibenzoyl peroxide, azobisisobutyronitrile or tert-dibutyl peroxide.
  • the photoinitiator comprises 2,4,6-trimethylbenzoyl-ethoxy-phenylphosphorous oxide, 2,4,6-trimethylbenzoyl-diphenylphosphorous oxide or Any one or a combination of at least two of bis(2,4,6-trimethylbenzoyl)phenylphosphine oxides.
  • the fumed silica is fumed silica after lipophilic treatment; the fumed silica is fumed silica R711.
  • the particle diameter of the fumed silica is 10-30nm, and the particle diameter of the fumed silica is preferably 12nm, 14nm, 16nm, 18nm, 20nm, 22nm, 24nm, 26nm or 28nm.
  • the glass powder is barium-containing glass powder.
  • the glass powder includes glass powder with a particle size of 0.6-0.8 ⁇ m and glass powder with a particle size of 0.3-0.5 ⁇ m;
  • the particle size of the glass powder with a particle size of 0.6-0.8 ⁇ m is preferably 0.62 ⁇ m, 0.64 ⁇ m, 0.66 ⁇ m, 0.68 ⁇ m, 0.7 ⁇ m, 0.72 ⁇ m, 0.74 ⁇ m, 0.76 ⁇ m or 0.78 ⁇ m;
  • the particle size of the glass powder with a particle size of 0.3-0.5 ⁇ m is 0.32 ⁇ m, 0.34 ⁇ m, 0.36 ⁇ m, 0.38 ⁇ m, 0.4 ⁇ m, 0.42 ⁇ m, 0.44 ⁇ m, 0.46 ⁇ m or 0.48 ⁇ m.
  • fumed silica with a particle size of 10-30 nm and glass powder with a particle size of 0.6-0.8 ⁇ m and a particle size of 0.3-0.5 ⁇ m are used together as fillers, which is more conducive to improving the bulk resin.
  • the mass ratio of the glass powder with a particle size of 0.6-0.8 ⁇ m to the glass powder with a particle size of 0.3-0.5 ⁇ m is (1-3):1; the glass powder with a particle size of 0.6-0.8 ⁇ m
  • the mass ratio to the glass frit with a particle size of 0.3-0.5 ⁇ m is preferably 1.2:1, 1.4:1, 1.6:1, 1.8:1, 2:1, 2.2:1, 2.4:1, 2.6:1 or 2.8 :1.
  • the resin composition also includes any one or a combination of at least two of catalysts, dispersants, defoamers, colorants or polymerization inhibitors.
  • the content of the catalyst in the resin composition is 0.05-0.2 parts by weight, preferably 0.07 parts by weight, 0.09 parts by weight, 0.11 parts by weight, 0.13 parts by weight, 0.15 parts by weight, 0.17 parts by weight or 0.19 parts by weight.
  • the catalyst comprises dimethylaminoethyl methacrylate.
  • the content of the dispersant in the resin composition is 0.01 to 5 parts by weight, preferably 0.05 parts by weight, 0.1 parts by weight, 0.5 parts by weight, 1 part by weight, 1.5 parts by weight, 2 parts by weight, 2.5 parts by weight, 3 parts by weight, 3.5 parts by weight, 4 parts by weight or 4.5 parts by weight.
  • the dispersant includes any one or a combination of at least two of zinc stearate, sodium stearate or stearic acid.
  • the content of the defoamer in the resin composition is 0.01 to 5 parts by weight, preferably 0.05 parts by weight, 0.1 parts by weight, 0.5 parts by weight, 1 part by weight, 1.5 parts by weight, 2 parts by weight, 2.5 parts by weight , 3 parts by weight, 3.5 parts by weight, 4 parts by weight or 4.5 parts by weight.
  • the defoamer includes any one or a combination of at least two of polymer defoamers, silicone defoamers or silicone/polymer composite defoamers; the silicone defoamer Agents include defoamer BYK-067A.
  • the content of the colorant in the resin composition is 0-5 parts by weight and not equal to 0, preferably 0.05 parts by weight, 0.1 parts by weight, 0.5 parts by weight, 1 part by weight, 1.5 parts by weight, 2 parts by weight, 2.5 parts by weight, 3 parts by weight, 3.5 parts by weight, 4 parts by weight or 4.5 parts by weight.
  • the coloring material includes any one or a combination of at least two of titanium oxide, iron oxide yellow, iron oxide red, iron oxide black or carbon black.
  • the content of the polymerization inhibitor in the resin composition is 0.005-0.1 parts by weight, preferably 0.007 parts by weight, 0.009 parts by weight, 0.01 parts by weight, 0.03 parts by weight, 0.06 parts by weight or 0.09 parts by weight.
  • the polymerization inhibitor includes any one or a combination of at least two of 2,6-di-tert-butyl-p-cresol, tert-butylcatechol or p-phenol monobutyl ether.
  • the present invention provides a method for preparing the resin composition as described in the first aspect, the preparation method comprising the steps of:
  • step (2) mixing the mixed monomer and prepolymer obtained in step (1) to obtain a mixed resin
  • step (3) Mixing the mixed resin obtained in step (2), fumed silica and glass powder to obtain the resin composition.
  • the mixing temperature in step (1) to step (3) is independently 40 to 80°C, independently preferably 45°C, 50°C, 55°C, 60°C, 65°C, 70°C or 75°C °C.
  • the mixing time in step (1) to step (3) is each independently 0.5 to 4h, preferably 0.8h, 1h, 1.5h, 2h, 2.5h, 3h or 3.5h independently.
  • the present invention provides a 3D printed temporary crown and bridge, wherein the preparation raw materials for the 3D printed temporary crown and bridge include the resin composition as described in the first aspect.
  • the 3D printed temporary crown and bridge provided by the present invention is not irritating to oral tissue mucosa, is a biocompatible material, and its water absorption value, dissolution value and cytotoxicity are all qualified, meeting the industry standard requirements of YY0268-2008; and due to the use of Inorganic fumed silicon dioxide and barium-containing glass powder are added to the resin composition, so that the 3D printed temporary crown and bridge have better wear resistance than traditional materials and PMMA materials.
  • the present invention provides a method for preparing a 3D printed temporary crown and bridge as described in the third aspect, the preparation method comprising: 3D printing and post-curing the resin composition as described in the first aspect to obtain The 3D printed temporary crown and bridge.
  • 3D printing technology does not produce scraps, which greatly increases the utilization rate of materials, which reduces the cost a lot, and also greatly reduces the operation time of users, and requires less skill for operators.
  • the post-curing includes light curing and thermal curing.
  • the light curing wavelength is 355-410nm, preferably 360nm, 365nm, 370nm, 375nm, 380nm, 385nm, 390nm, 395nm, 400nm or 405nm.
  • the thermal curing temperature is 30-100°C, preferably 35°C, 40°C, 45°C, 50°C, 55°C, 60°C, 70°C, 80°C or 90°C.
  • the step of filtering the resin composition is also included before the 3D printing.
  • the filtering is passing the resin composition through a filter screen with a pore size of 40-100 mesh, and the pore size of the filter screen is preferably 50 mesh, 60 mesh, 70 mesh, 80 mesh or 90 mesh.
  • the steps of washing and drying are also included before post-curing.
  • the steps of grinding and polishing are also included after the post-curing.
  • the preparation method includes: filtering the resin composition as described in the first aspect through a 40-100-mesh filter screen, then performing 3D printing, washing and drying, and passing through 355-410nm ultraviolet light curing and thermal curing at 30-100° C., grinding and polishing to obtain the 3D printed temporary crown and bridge.
  • the preparation method of the crown and bridge resin provided by the present invention is to 3D print the resin composition as described in the first aspect, and the formed crown and bridge are cured by irradiation in an ultraviolet light box with a wavelength of 355-450nm with a heating function.
  • the simultaneous reaction during thermal curing gives the material stronger physical properties.
  • the present invention provides an application of the 3D printed temporary crown and bridge as described in the third aspect as an oral restorative material or an oral implant material.
  • the present invention has the following beneficial effects:
  • the photothermally curable resin composition provided by the present invention includes prepolymer of specific parts, monomer, photoinitiator, thermal initiator, fumed silica and glass powder; Add specific parts of Photoinitiator and thermal initiator, use photoinitiator and thermal initiator to initiate the system, improve the completion rate of curing reaction, make the curing more sufficient, and then the monomer residual amount in the final resin composition meets the industry requirements, and A specific number of fumed silica and barium-containing glass powder are also added to the system as fillers to enhance the hardness, strength and wear resistance of the material, so that the obtained resin composition has a high Excellent hardness and wear resistance, fully meet the requirements of oral restoration materials or oral implant materials.
  • the viscosity of the photothermally cured resin combination obtained in the present invention is 3076-3355 mPa ⁇ s
  • the monomer residue of the 3D printing temporary crown and bridge prepared by using the resin composition is 0.43-0.95 mg/ kg
  • Vickers hardness 2.0 is 20.2 ⁇ 21.8HV2/10
  • water absorption value is 12 ⁇ 39 ⁇ g/mm 3
  • dissolution value is 2.6 ⁇ 3.2 ⁇ g/mm 3
  • bending strength is 105 ⁇ 121MPa
  • bending modulus is 2200 ⁇ 2760MPa.
  • a photothermally curable resin composition the resin composition comprises the following components in parts by weight:
  • Triethylene glycol dimethacrylate, phenyl bis(2,4,6-trimethylbenzoyl) phosphine oxide, dibenzoyl peroxide, defoamer BYK-067A, stearic acid Mix zinc, iron oxide red, iron oxide yellow and titanium dioxide at 50°C for 2 hours to obtain a mixed monomer;
  • step (2) mixing the mixed monomers obtained in step (1), urethane dimethacrylate and bisphenol A-glycidyl dimethacrylate at 50° C. for 2 hours to obtain a mixed resin;
  • step (3) The mixed resin obtained in step (2), fumed silica R711, barium-containing glass powder Nano with a particle size of 0.4 ⁇ m 0.4 and 0.7 ⁇ m barium-containing glass powder Nano 0.7 Mix at 50° C. for 2 hours to obtain the resin composition.
  • a photothermally curable resin composition the resin composition comprises the following components in parts by weight:
  • the preparation method of the resin composition provided in this example is the same as that in Example 1.
  • a photothermally curable resin composition the resin composition comprises the following components in parts by weight:
  • the preparation method of the resin composition provided in this example is the same as that in Example 1.
  • a kind of photothermal curing resin composition does not add barium-containing glass powder Nano 0.4, barium glass powder Nano
  • the addition amount of 0.7 is 33.5 parts by weight, and other components, consumption and preparation method are all identical with embodiment 1.
  • a kind of photothermal curing resin composition does not add barium-containing glass powder Nano 0.7, barium glass powder Nano
  • the addition amount of 0.4 is 33.5 weight parts, and other components, consumption and preparation method are all identical with embodiment 1.
  • a photothermally curable resin composition the only difference between it and Example 1 is that no dibenzoyl peroxide, phenyl bis (2,4,6-trimethylbenzoyl) phosphine oxide peroxide
  • the addition amount is 0.35 parts by weight, and other components, consumption and preparation method are all the same as in Example 1.
  • a photothermally curable resin composition the only difference from Example 1 is that no fumed silica R711, barium glass powder Nano
  • the addition amount of 0.4 is 19.5 parts by weight, and other components, consumption and preparation method are all identical with embodiment 1.
  • a kind of photothermal curing resin composition its difference with embodiment 1 is only, do not add barium glass powder Nano 0.4 and barium glass powder Nano 0.7, the addition amount of fumed silica R711 is 41.55 parts by weight, other components, dosage and preparation method are the same as in Example 1.
  • a 3D printing temporary crown and bridge the preparation method of which comprises: filtering the resin composition obtained in Example 1 through a 40-100-mesh filter screen, then performing 3D printing, cleaning and drying, curing with 355-410nm ultraviolet light for 20 minutes and Heat curing at 60° C. for 20 minutes, grinding and polishing, to obtain the 3D printed temporary crown and bridge.
  • a 3D printed temporary crown and bridge the only difference from Application Example 1 is that the resin composition obtained in Example 1 is replaced with the resin composition obtained in Example 2-5, and other conditions and steps are the same as Application Example 1 .
  • a 3D printed temporary crown and bridge which differs from Application Example 1 only in that the resin composition obtained in Example 1 is replaced with the resin composition obtained in Comparative Examples 1-3, and other conditions and steps are the same as Application Example 1 .
  • Viscosity Test according to "GB/T10248-2008 Viscosity Measurement Method"
  • the viscosity of the photothermally cured resin combination obtained in Examples 1-5 is 3076-3355 mPa ⁇ s
  • the monomer residue of the 3D printed temporary crown and bridge obtained in Application Examples 1-5 is 0.43 ⁇ 0.95mg/kg
  • Vickers hardness 2.0 is 20.2 ⁇ 21.8HV2/10
  • water absorption value is 12 ⁇ 39 ⁇ g/mm 3
  • dissolution value is 2.6 ⁇ 3.2 ⁇ g/mm 3
  • flexural strength is 105 ⁇ 121MPa and flexural modulus 2200 ⁇ 2760MPa;
  • the present invention illustrates a photothermally curable resin composition and its preparation method and application through the above examples, but the present invention is not limited to the above examples, that is, it does not mean that the present invention must rely on the above examples can be implemented.
  • Those skilled in the art should understand that any improvement of the present invention, the equivalent replacement of each raw material of the product of the present invention, the addition of auxiliary components, the selection of specific methods, etc., all fall within the scope of protection and disclosure of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dermatology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Dental Preparations (AREA)

Abstract

本发明提供一种光热固化的树脂组合物及其制备方法和应用,所述树脂组合物包括特定份数的预聚物、单体、光引发剂、热引发剂、气相二氧化硅和玻璃粉的组合,通过添加特定份数的光引发剂搭配热引发剂,提高了固化反应的完成率,使所述树脂组合物固化更加充分,固化后的单体残留率更低;且还添加特定份数的气相二氧化硅和含钡玻璃粉作为填料,有效增强了所述树脂组合物的硬度、强度和耐磨性,使最终得到的树脂组合物经3D打印后得到的产品完全满足作为临时冠桥的要求。

Description

一种光热固化的树脂组合物及其制备方法和应用
本申请要求于2021年08月26日提交中国专利局、申请号为CN202110985937.9、发明名称为“一种光热固化的树脂组合物及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于树脂材料技术领域,具体涉及一种光热固化的树脂组合物及其制备方法和应用。
背景技术
临时冠桥是一种用于口腔种植和修复领域,在患者配戴最终牙冠之前佩戴的临时性牙冠或者桥体。传统的制作临时冠桥的方法,主要是将牙托粉和牙托水经过手工混合后成型,成型一般分为口内成型或者口外成型。由于残留的甲基丙烯酸树脂具有很大的刺激性和辛辣气味,因此给患者带来的治疗体验感很不好。目前,有些加工厂采用切削技术制作PMMA临时冠桥,PMMA实现了数字化加工,增加了加工效率,但是这种技术对材料利用率很低,材料浪费严重,并且切削过程中产生粉尘,环保性较差。
3D打印是一种增材制造过程,能够完成切削很难制作的精细或者镂空工件的加工,尤其适用于临时冠桥这样的个性化数据制作,增材制造材料利用率很高,能够节约成本;因此,3D打印技术在齿科的应用是实现齿科数字化的关键。在齿科应用的3D打印材料一般为光敏树脂,利用在一定发射波长的3D打印设备上,通过激光面成形或者光斑点成形的方式逐层固化累积,最终形成所需打印工件。
利用3D打印的方式制作临时冠桥时只需要获取数据和佩戴临时冠两个步骤,操作简单,因此能够大大降低操作时间。随着增材制造技术的飞速发展,3D打印临时冠桥是一种新的方向,但用于3D打印临时冠桥的树脂不仅要求固化后材料具有较高的生物相容性,还要求较高的机械性能,利用单纯的光固化体系3D打印得到的临时冠桥树脂,其性能不满足 临时牙冠的使用,且打印成形后体系中的光固化部分完成度低,整体性能差,并会存在应力收缩的问题。
中国专利CN106947034A公开了一种可热后固化的3D打印光敏树脂及其制备方法和应用。所述光敏树脂包括:预聚物、稀释剂、光引发剂、热引发剂,其中热引发剂在其半衰期为一小时时的分解温度大于或等于100℃;各组分重量份如下:预聚物50~70份,稀释剂30~50份,光引发剂1~5份,热引发剂0.5~5份;该发明得到的3D打印光敏树脂,在光固化3D打印成型后,后固化方式可选择烘箱等稳定的恒温加热设备进行热后固化,得到的热后固化的3D打印光敏树脂,扩展了在不透明样品、形状复杂样品、超厚样品及有色样品等中的应用,并且使样品具有更加优异的力学性能。但是,上述现有技术的打印成形后的固化只是热固化,没有再进行光固化,这样树脂体系中的光固化部分完成度低,整体性能差,并且树脂组合物中不含有无机填料,会使得最终得到的树脂组合物存在应力收缩,硬度低。
中国专利CN110128773A公开了一种光/热双重固化3D打印的方法及其产品,包括如下步骤:将原料混合后进行光固化3D打印,再经过加热固化得到3D打印制品;所述的原料包括:聚氨酯丙烯酸酯、稀释剂、引发剂、环氧树脂和热致型固化剂;其中,聚氨酯丙烯酸酯为异氰酸酯与多元醇反应后,再经过含羟基的丙烯酸酯封端得到,多元醇为分子量不小于1000的聚酯多元醇或聚醚多元醇。本发明方法避免了环氧树脂热固化致使聚合产物变脆的现象,实现了环氧树脂双重固化产品基本的韧性,满足在工业制造中的应用。中国专利CN108948280A公开了一种光/热双固化的3D打印树脂组合物,按照重量份计,包括以下组分:自由基型光敏树脂66~86份,可热固化的环氧树脂9~29份,自由基型光引发剂1~4份,潜伏型热固化剂1~3份。该发明得到的3D打印树脂组合物,需先照射波长为365~500nm的紫外光,使其中的丙烯酸类树脂在光引发剂的作用下进行自由基引发的聚合,待其成型后,再将其放在80~120℃下保温1~2h,使其中的环氧树脂在潜伏型热固化剂作用下进行后固化。既能加快光固化的速度,又能降低产品的体积收缩率,同时还可以通过后期热固化增强产品的物理力学性能。虽然上述两种现有技术对聚氨酯丙烯酸酯的合成 方法和多元醇的分子量进行了限定,但二者主要采用的热固化体系均为环氧固化体系,环氧树脂体系较脆、成本高且和丙烯酸树脂体系可能存在相容性问题;另外添加的异冰片酯具有比较大的气味、环保性较差;且二者提供的树脂组合物中均未添加无机成分填料,耐磨性和强度很难满足实际需求。
因此,开发一种固化反应完成率高同时兼具较高硬度和耐磨性的树脂组合物,是本领域亟需解决的技术问题。
发明内容
针对现有技术的不足,本发明的目的在于提供一种光热固化的树脂组合物及其制备方法和应用,所述树脂组合物包括特定份数的预聚物、单体、光引发剂、热引发剂、气相二氧化硅和玻璃粉,通过上述物质的组合搭配,使得到的树脂组合物的固化反应完成率高、具有较高的硬度和耐磨性,可以满足临时冠桥对于树脂材料的要求。
为达此目的,本发明采用以下技术方案:
第一方面,本发明提供一种光热固化的树脂组合物,所述树脂组合物按照重量份包括如下组分:
Figure PCTCN2022104492-appb-000001
在本发明中,所述预聚物优选为51重量份、52重量份、53重量份、54重量份、55重量份、56重量份、57重量份、58重量份或59重量份。
在本发明中,所述单体优选为10重量份、15重量份、20重量份、25重量份、30重量份、35重量份、40重量份或45重量份。
在本发明中,所述光引发剂优选为0.05重量份、0.1重量份、0.5重量份、1重量份、1.5重量份、2重量份、2.5重量份、3重量份、3.5重量份、4重量份或4.5重量份。
在本发明中,所述热引发剂优选为0.05重量份、0.1重量份、0.5重量份、1重量份、1.5重量份、2重量份、2.5重量份、3重量份、3.5重量份、4重量份或4.5重量份。
在本发明中,所述气相二氧化硅优选为0.05重量份、1重量份、5重量份、10重量份、15重量份、20重量份、25重量份、30重量份或35重量份。
在本发明中,所述玻璃粉优选为0.05重量份、1重量份、5重量份、10重量份、15重量份、20重量份、25重量份、30重量份或35重量份。
现有技术中提供的3D打印临时冠桥用树脂组合物大多是首先利用丙烯酸酯内的不饱和键和光引发剂作为光固化组分,通过3D打印机的紫外光引发固化,得到初形状的临时冠桥,再利用环氧树脂和对应的固化剂作为热固化组分,使得初形状的临时冠桥在恒温热固化箱内进行热固化,使得到的临时冠桥具有一定的机械性能。现有方法存在的问题主要是在3D打印机中进行光反应,光引发固化反应是不充分的,固化结束后依然会存在很大一部分单体没有进行光引发,因此会在体系中存在很多单体残余物,即使环氧树脂及其固化剂在后期的灯箱内进行热固化,但光引发体系在热环境下也很难反应,无法弥补光固化不充分的问题,会导致最终得到的临时冠桥因其中单体残留物较多而无法应用;另外,环氧树脂价格昂贵,环氧树脂及其固化剂体系和丙烯酸酯体系的相容性也较差;由于不含有无机填料导致得到的临时冠桥的耐磨性和硬度存在局限性,适用范围有限。
本发明提供的光热固化的树脂组合物包括特定份数的预聚物、单体、光引发剂、热引发剂、气相二氧化硅和玻璃粉,在体系中添加特定份数的光引发剂和热引发剂,利用光引发剂和热引发剂对体系进行引发,使固化更加充分,提高了固化反应完成率,使最终得到的树脂组合物中单体残留量能够满足临时冠桥的标准要求;并且本发明在体系中还添加特定份数的气相二氧化硅和含钡玻璃粉作为填料来增强材料的硬度、强度和耐磨性,使得到的树脂组合物在3D打印成临时冠桥后具有较高的硬度和耐磨性,完全满足作为口腔修复材料或口腔种植材料的要求。
优选地,所述预聚物包括聚氨酯丙烯酸酯、二甲基丙烯酸氨基甲酸酯、双酚A-二甲基丙烯酸缩水甘油酯、乙氧基双酚A双甲基丙烯酸酯或双酚 A丙三醇双甲基丙烯酸酯中的任意一种或至少两种的组合。
优选地,所述单体包括三乙二醇二甲基丙烯酸酯、甲基丙烯酸羟乙酯或甲基丙烯酸羟丙酯中的任意一种或至少两种的组合。
作为本发明的优选技术方案,所述单体和预聚物均为丙烯酸树脂,使得单体和预聚物具有很好的相容性,进而使得制备得到的树脂组合物的机械性能更为优异。
优选地,所述热引发剂包括过氧化二苯甲酰、偶氮二异丁腈或过氧化特二丁基中的任意一种或至少两种的组合。
优选地,所述光引发剂包括2,4,6-三甲基苯甲酰基-乙氧基-苯基氧化磷、2,4,6-三甲基苯甲酰基-二苯基氧化磷或双(2,4,6-三甲基苯甲酰基)苯基氧化磷中的任意一种或至少两种的组合。
优选地,所述气相二氧化硅为亲油处理后的气相二氧化硅;所述气相二氧化硅为气相二氧化硅R711。
优选地,所述气相二氧化硅的粒径为10~30nm,所述气相二氧化硅的粒径优选为12nm、14nm、16nm、18nm、20nm、22nm、24nm、26nm或28nm。
优选地,所述玻璃粉为含钡玻璃粉。
优选地,所述玻璃粉包括粒径为0.6~0.8μm的玻璃粉和粒径为0.3~0.5μm的玻璃粉;所述粒径为0.6~0.8μm的玻璃粉的粒径优选为0.62μm、0.64μm、0.66μm、0.68μm、0.7μm、0.72μm、0.74μm、0.76μm或0.78μm;所述粒径为0.3~0.5μm的玻璃粉的粒径为0.32μm、0.34μm、0.36μm、0.38μm、0.4μm、0.42μm、0.44μm、0.46μm或0.48μm。
作为本发明的优选技术方案,采用粒径为10~30nm的气相二氧化硅搭配粒径为0.6~0.8μm和粒径为0.3~0.5μm的玻璃粉共同作为填料,更加有助于提升体树脂组合物的硬度、强度和耐磨性能。
优选地,所述粒径为0.6~0.8μm的玻璃粉和粒径为0.3~0.5μm的玻璃粉的质量比为(1~3):1;所述粒径为0.6~0.8μm的玻璃粉和粒径为0.3~0.5μm的玻璃粉的质量比为优选为1.2:1、1.4:1、1.6:1、1.8:1、2:1、2.2:1、2.4:1、2.6:1或2.8:1。
优选地,所述树脂组合物中还包括催化剂、分散剂、消泡剂、色料或 阻聚剂中的任意一种或至少两种的组合。
优选地,所述树脂组合物中催化剂的含量为0.05~0.2重量份,优选为0.07重量份、0.09重量份、0.11重量份、0.13重量份、0.15重量份、0.17重量份或0.19重量份。
优选地,所述催化剂包括甲基丙烯酸二甲氨基乙酯。
优选地,所述树脂组合物中分散剂的含量为0.01~5重量份,优选为0.05重量份、0.1重量份、0.5重量份、1重量份、1.5重量份、2重量份、2.5重量份、3重量份、3.5重量份、4重量份或4.5重量份。
优选地,所述分散剂包括硬脂酸锌、硬脂酸钠或硬脂酸中的任意一种或至少两种的组合。
优选地,所述树脂组合物中消泡剂的含量为0.01~5重量份,优选为0.05重量份、0.1重量份、0.5重量份、1重量份、1.5重量份、2重量份、2.5重量份、3重量份、3.5重量份、4重量份或4.5重量份。
优选地,所述消泡剂包括聚合物型消泡剂、有机硅消泡剂或有机硅/聚合物复合型消泡剂中的任意一种或至少两种的组合;所述有机硅消泡剂包括消泡剂BYK-067A。
优选地,所述树脂组合物中色料的含量为0~5重量份且不等于0,优选为0.05重量份、0.1重量份、0.5重量份、1重量份、1.5重量份、2重量份、2.5重量份、3重量份、3.5重量份、4重量份或4.5重量份。
优选地,所述色料包括氧化钛、氧化铁黄、氧化铁红、氧化铁黑或炭黑中的任意一种或至少两种的组合。
优选地,所述树脂组合物中阻聚剂的含量为0.005~0.1重量份,优选为0.007重量份、0.009重量份、0.01重量份、0.03重量份、0.06重量份或0.09重量份。
优选地,所述阻聚剂包括2,6-二叔丁基对甲酚、叔丁基邻苯二酚或对苯酚单丁醚中的任意一种或至少两种的组合。
第二方面,本发明提供一种如第一方面所述树脂组合物的制备方法,所述制备方法包括如下步骤:
(1)将单体、光引发剂、热引发剂、任选地分散剂、任选地催化剂、任选地消泡剂和任选地色料混合,得到混合单体;
(2)将步骤(1)得到的混合单体和预聚物混合,得到混合树脂;
(3)将步骤(2)得到的混合树脂、气相二氧化硅和玻璃粉混合,得到所述树脂组合物。
优选地,所述步骤(1)~步骤(3)中混合的温度各自独立地为40~80℃,独立地优选为45℃、50℃、55℃、60℃、65℃、70℃或75℃。
优选地,所述步骤(1)~步骤(3)中混合的时间各自独立地为0.5~4h,独立地优选为0.8h、1h、1.5h、2h、2.5h、3h或3.5h。
第三方面,本发明提供一种3D打印临时冠桥,所述3D打印临时冠桥的制备原料包括如第一方面所述的树脂组合物。
本发明提供的3D打印临时冠桥对口腔组织黏膜没有刺激性,是一种生物相容性材料,其吸水值、溶解值以及细胞毒性均合格,满足YY0268-2008的行业标准要求;且因采用的树脂组合物中添加了无机成分的气相二氧化硅和含钡玻璃粉,使得所述3D打印临时冠桥比传统材料以及PMMA材料具有更好的耐磨性。
第四方面,本发明提供的一种如第三方面所述3D打印临时冠桥的制备方法,所述制备方法包括:将如第一方面所述的树脂组合物进行3D打印和后固化,得到所述3D打印临时冠桥。
3D打印技术不产生边角料,很大的增加了材料的利用率,这样使得成本降低很多,同时也大大减少了使用者的操作时间,对操作者的技能要求也较低。
优选地,所述后固化包括光固化和热固化。
优选地,所述光固化的波长为355~410nm,优选为360nm、365nm、370nm、375nm、380nm、385nm、390nm、395nm、400nm或405nm。
优选地,所述热固化的温度为30~100℃,优选为35℃、40℃、45℃、50℃、55℃、60℃、70℃、80℃或90℃。
优选地,所述3D打印前还包括对树脂组合物进行过滤的步骤。
优选地,所述过滤为将树脂组合物通过孔径为40~100目的滤网,所述滤网的孔径优选为50目、60目、70目、80目或90目。
优选地,所述后固化前还包括清洗和干燥的步骤。
优选地,所述后固化后还包括打磨和抛光的步骤。
作为本发明的优选技术方案,所述制备方法包括:将如第一方面所述的树脂组合物通过40~100目的滤网进行过滤,然后进行3D打印,清洗干燥,经过355~410nm的紫外光固化以及在30~100℃下进行热固化,打磨和抛光,得到所述3D打印临时冠桥。
本发明提供的冠桥树脂的制备方法,将如第一方面所述的树脂组合物进行3D打印,成形后的冠桥经具有加热功能的波长在355~450nm的紫外灯箱中光照固化,在此过程中热固化同时反应给予材料更强的物理性能。
第五方面,本发明提供一种如第三方面所述的3D打印临时冠桥作为口腔修复材料或口腔种植材料的应用。
相对于现有技术,本发明具有以下有益效果:
(1)本发明提供的光热固化的树脂组合物包括特定份数的预聚物、单体、光引发剂、热引发剂、气相二氧化硅和玻璃粉;在体系中添加特定份数的光引发剂和热引发剂,利用光引发剂和热引发剂对体系进行引发,提高了固化反应完成率,使固化更加充分,进而最终得到的树脂组合物中单体残留量满足行业要求,且还在体系中添加特定份数的气相二氧化硅和含钡玻璃粉作为填料来增强材料的硬度、强度和耐磨性,使得到的树脂组合物在3D打印机打印成临时冠桥后具有较高的硬度和耐磨性,完全满足作为口腔修复材料或口腔种植材料的要求。
(2)具体而言,本发明得到的光热固化的树脂组合的粘度为3076~3355mPa·s,采用所述树脂组合物制备得到的3D打印临时冠桥的单体残留为0.43~0.95mg/kg,维氏硬度2.0为20.2~21.8HV2/10,吸水值为12~39μg/mm 3,溶解值为2.6~3.2μg/mm 3,弯曲强度为105~121MPa,弯曲模量为2200~2760MPa。
具体实施方式
下面通过具体实施方式来进一步说明本发明的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。
实施例1
一种光热固化的树脂组合物,所述树脂组合物按照重量份包括如下组分:
Figure PCTCN2022104492-appb-000002
本实施例提供的树脂组合物的制备方法包括如下步骤:
(1)三乙二醇二甲基丙烯酸酯、苯基双(2,4,6-三甲基苯甲酰基)氧化膦、过氧化二苯甲酰、消泡剂BYK-067A、硬脂酸锌、氧化铁红、氧化铁黄和钛白粉在50℃下混合2h,得到混合单体;
(2)将步骤(1)得到的混合单体、二甲基丙烯酸氨基甲酸酯和双酚A-二甲基丙烯酸缩水甘油酯在50℃下混合2h,得到混合树脂;
(3)将步骤(2)得到的得到混合树脂、气相二氧化硅R711、粒径为0.4μm的含钡玻璃粉Nano
Figure PCTCN2022104492-appb-000003
0.4和粒径为0.7μm的含钡玻璃粉Nano
Figure PCTCN2022104492-appb-000004
0.7在50℃下混合2h,得到所述树脂组合物。
实施例2
一种光热固化的树脂组合物,所述树脂组合物按照重量份包括如下组分:
Figure PCTCN2022104492-appb-000005
Figure PCTCN2022104492-appb-000006
本实施例提供的树脂组合物的制备方法与实施例1相同。
实施例3
一种光热固化的树脂组合物,所述树脂组合物按照重量份包括如下组分:
Figure PCTCN2022104492-appb-000007
本实施例提供的树脂组合物的制备方法与实施例1相同。
实施例4
一种光热固化的树脂组合物,其与实施例1的区别仅在于,不添加含钡玻璃粉Nano
Figure PCTCN2022104492-appb-000008
0.4,含钡玻璃粉Nano
Figure PCTCN2022104492-appb-000009
0.7的添加量为33.5重量份,其他组分、用量和制备方法均与实施例1相同。
实施例5
一种光热固化的树脂组合物,其与实施例1的区别仅在于,不添加含钡玻璃粉Nano
Figure PCTCN2022104492-appb-000010
0.7,含钡玻璃粉Nano
Figure PCTCN2022104492-appb-000011
0.4的添加量为33.5重量份,其他组分、用量和制备方法均与实施例1相同。
对比例1
一种光热固化的树脂组合物,其与实施例1的区别仅在于,不添加过氧化二苯甲酰,苯基双(2,4,6-三甲基苯甲酰基)氧化膦过的添加量为0.35重量份,其它组分、用量和制备方法均与实施例1相同。
对比例2
一种光热固化的树脂组合物,其与实施例1的区别仅在于,不添加气相二氧化硅R711,钡玻璃粉Nano
Figure PCTCN2022104492-appb-000012
0.4的添加量为19.5重量份,其它组分、用量和制备方法均与实施例1相同。
对比例3
一种光热固化的树脂组合物,其与实施例1的区别仅在于,不添加钡玻璃粉Nano
Figure PCTCN2022104492-appb-000013
0.4和含钡玻璃粉Nano
Figure PCTCN2022104492-appb-000014
0.7,气相二氧化硅R711的添加量为41.55重量份,其它组分、用量和制备方法均与实施例1相同。
应用例1
一种3D打印临时冠桥,其制备方法包括:将实施例1得到的树脂组合物通过40~100目的滤网进行过滤,然后进行3D打印,清洗干燥,经过355~410nm的紫外光固化20min以及在60℃下进行热固化20min,打磨和抛光,得到所述3D打印临时冠桥。
应用例2~5
一种3D打印临时冠桥,其与应用例1的区别仅在于,分别采用实施例2~5得到的树脂组合物替换实施例1得到的树脂组合物,其他条件和步骤均与应用例1相同。
对比应用例1~3
一种3D打印临时冠桥,其与应用例1的区别仅在于,分别采用对比例1~3得到的树脂组合物替换实施例1得到的树脂组合物,其他条件和步骤均与应用例1相同。
性能测试:
(1)粘度:按照《GB/T10248-2008粘度测量方法》进行测试;
(2)单体残留:按照《SN_T 3342-2012丙烯酸树脂中残余单体含量的测定》中的气相色谱-质谱法进行测试;
(3)维氏硬度:按照《GB/T4340.1-2009维氏硬度》中第一部分的试验方法进行测试;
(4)弯曲模量和弯曲强度:按照《YY0710-2009牙科学聚合物基冠桥材料》进行测试;
(5)溶解值和吸水值:按照《YY0710-2009牙科学聚合物基冠桥材料》进行测试。
按照上述测试方法(1)对实施例1~5和对比例1~3提供的树脂组合物进行测试,得到测试结果如表1所示:
表1实施例1~5和对比例1~3提供的树脂组合物的粘度
Figure PCTCN2022104492-appb-000015
按照上述测试方法(2)~(5)对应用例1~5和对比应用例1~3提供的3D打印临时冠桥进行测试,得到测试结果如表2所示:
表2应用例1~5和对比应用例1~3提供的3D打印临时冠桥的性能参数
Figure PCTCN2022104492-appb-000016
Figure PCTCN2022104492-appb-000017
根据表1和表2数据可以看出:实施例1~5得到的光热固化的树脂组合的粘度为3076~3355mPa·s,应用例1~5得到的3D打印临时冠桥的单体残留为0.43~0.95mg/kg,维氏硬度2.0为20.2~21.8HV2/10,吸水值为12~39μg/mm 3,溶解值为2.6~3.2μg/mm 3,弯曲强度为105~121MPa以及弯曲模量为2200~2760MPa;
比较应用例1和对比应用例1可以看出,只添加光引发剂,没有添加热引发剂得到的树脂组合物制备得到的3D打印临时冠桥的吸水值为45μg/mm 3,溶解值为8.3μg/mm 3,相较于应用例1都有大幅升高,因此不满足《YY0710-2009牙科学聚合物基冠桥材料》的要求(要求吸水值和溶解值分别小于40μg/mm 3和7.5μg/mm 3);且对比应用例1得到的3D打印临时冠桥的单体残留高达35.8mg/kg。
比较应用例1和对比应用例2可以发现,没有添加气相二氧化硅得到的树脂组合物由于缺少了纳米级无机填料的填充作用,导致其制备得到的3D打印临时冠桥的吸水值、溶解值都较高,并且弯曲强度和弯曲模量以及表面硬度都有所下降。
比较应用例1和对比应用例3可以发现,树脂组合物中的填料全部使用了气相二氧化硅,并没有添加钡玻璃粉;由于气相二氧化硅是纳米级填 料,比表面积远大于钡玻璃粉的比表面积;因此会使得树脂组合物的吸油量明显增加,粘度增高,在3D打印机上的成型很困难,并且大的吸油量对树脂交联产生了明显影响,导致有机组分反应很不完全,单体残留高、吸水值和溶解值很高,且弯曲强度和模量性能很低。
进一步比较应用例1和应用例4~5可以发现,只添加一种粒径的含钡玻璃粉得到的树脂组合物制备得到的3D打印临时冠桥的单体残留较高,且弯曲强度和弯曲模量均有所下降。
申请人声明,本发明通过上述实施例来说明一种光热固化的树脂组合物及其制备方法和应用,但本发明并不局限于上述实施例,即不意味着本发明必须依赖上述实施例才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (31)

  1. 一种光热固化的树脂组合物,其特征在于,所述树脂组合物按照重量份包括如下组分:
    Figure PCTCN2022104492-appb-100001
  2. 根据权利要求1所述的树脂组合物,其特征在于,所述预聚物包括聚氨酯丙烯酸酯、二甲基丙烯酸氨基甲酸酯、双酚A-二甲基丙烯酸缩水甘油酯、乙氧基双酚A双甲基丙烯酸酯或双酚A丙三醇双甲基丙烯酸酯中的任意一种或至少两种的组合。
  3. 根据权利要求1所述的树脂组合物,其特征在于,所述单体包括三乙二醇二甲基丙烯酸酯、甲基丙烯酸羟乙酯或甲基丙烯酸羟丙酯中的任意一种或至少两种的组合。
  4. 根据权利要求1所述的树脂组合物,其特征在于,所述热引发剂包括过氧化二苯甲酰、偶氮二异丁腈或过氧化特二丁基中的任意一种或至少两种的组合。
  5. 根据权利要求1所述的树脂组合物,其特征在于,所述光引发剂包括2,4,6-三甲基苯甲酰基-乙氧基-苯基氧化磷、2,4,6-三甲基苯甲酰基-二苯基氧化磷或双(2,4,6-三甲基苯甲酰基)苯基氧化磷中的任意一种或至少两种的组合。
  6. 根据权利要求1所述的树脂组合物,其特征在于,所述气相二氧化硅为亲油处理后的气相二氧化硅。
  7. 根据权利要求1或6所述的树脂组合物,其特征在于,所述气相二氧化硅的粒径为10~30nm。
  8. 根据权利要求1所述的树脂组合物,其特征在于,所述玻璃粉为含钡玻璃粉。
  9. 根据权利要求1或8所述的树脂组合物,其特征在于,所述玻璃粉包括粒径为0.6~0.8μm的玻璃粉和粒径为0.3~0.5μm的玻璃粉。
  10. 根据权利要求9所述的树脂组合物,其特征在于,所述粒径为0.6~0.8μm的玻璃粉和粒径为0.3~0.5μm的玻璃粉的质量比为(1~3):1。
  11. 根据权利要求1任一项所述的树脂组合物,其特征在于,所述树脂组合物中还包括催化剂、分散剂、消泡剂、色料和阻聚剂中的任意一种或至少两种的组合。
  12. 根据权利要求11所述的树脂组合物,其特征在于,所述树脂组合物中催化剂的含量为0.05~0.2重量份。
  13. 根据权利要求11或12所述的树脂组合物,其特征在于,所述催化剂包括甲基丙烯酸二甲氨基乙酯。
  14. 根据权利要求11所述的树脂组合物,其特征在于,所述树脂组合物中分散剂的含量为0.01~5重量份。
  15. 根据权利要求11或14所述的树脂组合物,其特征在于,所述分散剂包括硬脂酸锌、硬脂酸钠和硬脂酸中的任意一种或至少两种的组合。
  16. 根据权利要求11所述的树脂组合物,其特征在于,所述树脂组合物中消泡剂的含量为0.01~5重量份。
  17. 根据权利要求11或16所述的树脂组合物,其特征在于,所述消泡剂包括聚合物型消泡剂、有机硅消泡剂或有机硅/聚合物复合型消泡剂中的任意一种或至少两种的组合。
  18. 根据权利要求11所述的树脂组合物,其特征在于,所述树脂组合物中色料的含量为0~5重量份且不等于0。
  19. 根据权利要求11或18所述的树脂组合物,其特征在于,所述色料包括氧化钛、氧化铁红、氧化铁黄、氧化铁黑或炭黑中的任意一种或至少两种的组合。
  20. 根据权利要求11所述的树脂组合物,其特征在于,所述树脂组合物中阻聚剂的含量为0.005~0.1重量份。
  21. 根据权利要求11或20所述的树脂组合物,其特征在于,所述阻聚剂包括2,6-二叔丁基对甲酚、叔丁基邻苯二酚或对苯酚单丁醚中的任意一种或至少两种的组合。
  22. 一种如权利要求1~21任一项所述树脂组合物的制备方法,其特征在于,所述制备方法包括如下步骤:
    (1)将单体、光引发剂、热引发剂、任选地分散剂、任选地消泡剂、任选地催化剂和任选地色料混合,得到混合单体;
    (2)将步骤(1)得到的混合单体和预聚物混合,得到混合树脂;
    (3)将步骤(2)得到的混合树脂、气相二氧化硅和玻璃粉混合,得到所述树脂组合物。
  23. 根据权利要求22所述的制备方法,其特征在于,所述步骤(1)~步骤(3)中混合的温度各自独立地为40~80℃;
    所述步骤(1)~步骤(3)中混合的时间各自独立地为0.5~4h。
  24. 一种3D打印临时冠桥,其特征在于,所述3D打印临时冠桥的制备原料包括如权利要求1~21任一项所述的树脂组合物或如权利要求22或23所述制备方法制备得到的树脂组合物。
  25. 一种如权利要求24所述3D打印临时冠桥的制备方法,其特征在于,所述制备方法包括:将如权利要求1~21任一项所述的树脂组合物或如权利要求22或23所述制备方法制备得到的树脂组合物进行3D打印、后固化,得到所述3D打印临时冠桥。
  26. 根据权利要求25所述的制备方法,其特征在于,所述后固化包括光固化和热固化的组合;
  27. 根据权利要求26所述的制备方法,其特征在于,所述光固化的波长为355~410nm。
  28. 根据权利要求26所述的制备方法,其特征在于,所述热固化的温度为30~100℃。
  29. 根据权利要求25~28任一项所述的制备方法,其特征在于,所述后固化前还包括清洗和干燥的步骤;
    所述后固化后还包括打磨和抛光的步骤。
  30. 根据权利要求25所述的制备方法,其特征在于,所述3D打印前还包括对树脂组合物进行过滤的步骤;
    所述过滤为将树脂组合物通过40~100目的滤网。
  31. 一种如权利要求24所述的3D打印临时冠桥或权利要求25~30 任一项所述制备方法制备得到的3D打印临时冠桥作为口腔修复材料或口腔种植材料的应用。
PCT/CN2022/104492 2021-08-26 2022-07-08 一种光热固化的树脂组合物及其制备方法和应用 WO2023024724A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110985937.9 2021-08-26
CN202110985937.9A CN113717330B (zh) 2021-08-26 2021-08-26 一种光热固化的树脂组合物及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023024724A1 true WO2023024724A1 (zh) 2023-03-02

Family

ID=78677975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104492 WO2023024724A1 (zh) 2021-08-26 2022-07-08 一种光热固化的树脂组合物及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN113717330B (zh)
WO (1) WO2023024724A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113717330B (zh) * 2021-08-26 2023-05-05 爱迪特(秦皇岛)科技股份有限公司 一种光热固化的树脂组合物及其制备方法和应用
CN114478912B (zh) * 2022-01-28 2023-09-05 上海新世纪齿科材料有限公司 一种光固化固位材料及其用途

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4264489A (en) * 1980-01-14 1981-04-28 Den-Mat, Inc. Provisional crown-and-bridge resin containing tetrahydrofuryl methacrylate
CN1212865A (zh) * 1997-09-26 1999-04-07 北京医科大学口腔医学研究所 含有固位力外形无机填料的合成树脂牙材料及其制造方法
CN106947034A (zh) 2017-03-09 2017-07-14 中国科学院福建物质结构研究所 一种可热后固化的3d打印光敏树脂及其制备方法
CN108014021A (zh) * 2016-11-29 2018-05-11 北京安泰生物医用材料有限公司 一种牙齿填充修复材料及其制备方法
CN108912287A (zh) * 2018-07-17 2018-11-30 深圳摩方新材科技有限公司 一种改善打印层纹的双引发固化体系及其制备方法
CN108948280A (zh) 2018-05-29 2018-12-07 武汉纺织大学 一种光-热双固化的3d打印树脂组合物
CN110128773A (zh) 2019-05-07 2019-08-16 杭州师范大学 一种光-热双重固化3d打印的方法及其产品
US20200199267A1 (en) * 2018-02-14 2020-06-25 Mighty Buildings, Inc. Dual-mediated polymerizable composite for additive manufacturing
US20200253838A1 (en) * 2019-02-07 2020-08-13 Ivoclar Vivadent Ag Dental Materials With Improved Setting Behaviour
WO2020209505A1 (ko) * 2019-04-10 2020-10-15 오스템임플란트 주식회사 3d 프린팅용 경화용 수지 조성물 및 이로부터 제조된 성형물
WO2021030512A1 (en) * 2019-08-14 2021-02-18 Mighty Buildings, Inc. 3d printing of a composite material via sequential dual-curing polymerization
CN113717330A (zh) * 2021-08-26 2021-11-30 爱迪特(秦皇岛)科技股份有限公司 一种光热固化的树脂组合物及其制备方法和应用

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4264489A (en) * 1980-01-14 1981-04-28 Den-Mat, Inc. Provisional crown-and-bridge resin containing tetrahydrofuryl methacrylate
CN1212865A (zh) * 1997-09-26 1999-04-07 北京医科大学口腔医学研究所 含有固位力外形无机填料的合成树脂牙材料及其制造方法
CN108014021A (zh) * 2016-11-29 2018-05-11 北京安泰生物医用材料有限公司 一种牙齿填充修复材料及其制备方法
CN106947034A (zh) 2017-03-09 2017-07-14 中国科学院福建物质结构研究所 一种可热后固化的3d打印光敏树脂及其制备方法
US20200199267A1 (en) * 2018-02-14 2020-06-25 Mighty Buildings, Inc. Dual-mediated polymerizable composite for additive manufacturing
CN108948280A (zh) 2018-05-29 2018-12-07 武汉纺织大学 一种光-热双固化的3d打印树脂组合物
CN108912287A (zh) * 2018-07-17 2018-11-30 深圳摩方新材科技有限公司 一种改善打印层纹的双引发固化体系及其制备方法
US20200253838A1 (en) * 2019-02-07 2020-08-13 Ivoclar Vivadent Ag Dental Materials With Improved Setting Behaviour
WO2020209505A1 (ko) * 2019-04-10 2020-10-15 오스템임플란트 주식회사 3d 프린팅용 경화용 수지 조성물 및 이로부터 제조된 성형물
CN110128773A (zh) 2019-05-07 2019-08-16 杭州师范大学 一种光-热双重固化3d打印的方法及其产品
WO2021030512A1 (en) * 2019-08-14 2021-02-18 Mighty Buildings, Inc. 3d printing of a composite material via sequential dual-curing polymerization
CN113717330A (zh) * 2021-08-26 2021-11-30 爱迪特(秦皇岛)科技股份有限公司 一种光热固化的树脂组合物及其制备方法和应用

Also Published As

Publication number Publication date
CN113717330B (zh) 2023-05-05
CN113717330A (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
WO2023024724A1 (zh) 一种光热固化的树脂组合物及其制备方法和应用
CA1127591A (en) Manufacture of denture base
US11472905B2 (en) Polymer-based burn-out material for the lost-wax technique
US20120010066A1 (en) Light-curing ceramic slips for the stereolithographic preparation of high-strength ceramics
WO2017061446A1 (ja) 光硬化性組成物、義歯床及び有床義歯
JP5868853B2 (ja) 歯科切削加工用成形体及びその製造方法
JPS63179907A (ja) (メタ)アクリル酸エステルを基礎とする重合性物質、その製造法および該物質からなる歯科用材料
JP2007314484A (ja) 歯科用有機無機複合フィラー、該フィラーを用いた歯科用修復材組成物及びそれらの製造方法
US11649345B2 (en) Burn-out dental modelling material
CN116438081A (zh) 光硬化性树脂组合物、硬化物、树脂造形物及铸模的制造方法
KR100739935B1 (ko) 광중합형의 치과용 고분자 나노수복재 조성물
JP2023537297A (ja) 三次元印刷オブジェクト用の付加製造用組成物
JP2011068596A (ja) 歯科用修復材組成物
WO2023055046A1 (ko) 세라믹 인공치아용 3d 프린팅 조성물
JP4148334B2 (ja) 光硬化性歯科用修復材料
JP2013151440A (ja) 自動切削装置での切削に適した歯科用組成物
CN115105416A (zh) 一种丙烯酸酯复合树脂组合物及其制备方法和用途
JP4798680B2 (ja) 歯科用硬化性組成物
US20230142551A1 (en) Light-curing composition for the production of dental components with matt surfaces
JP4148332B2 (ja) 光硬化性歯科用修復材料
JP2012187357A (ja) 歯科切削加工用レジン材料及び歯科補綴物
CN114478912B (zh) 一种光固化固位材料及其用途
KR102412504B1 (ko) 완전연소 및 체적안정성을 가지는 치과 3d 프린터용 주조성 레진 조성물
AlSarraf Mechanical and optical properties of machined, printed, and conventional dental polymers
TW202411053A (zh) 用於陶瓷及包模鑄造之光化輻射可固化氰基丙烯酸酯組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860070

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022860070

Country of ref document: EP

Effective date: 20240229

NENP Non-entry into the national phase

Ref country code: DE