WO2023022213A1 - エベロリムスの製造方法 - Google Patents

エベロリムスの製造方法 Download PDF

Info

Publication number
WO2023022213A1
WO2023022213A1 PCT/JP2022/031301 JP2022031301W WO2023022213A1 WO 2023022213 A1 WO2023022213 A1 WO 2023022213A1 JP 2022031301 W JP2022031301 W JP 2022031301W WO 2023022213 A1 WO2023022213 A1 WO 2023022213A1
Authority
WO
WIPO (PCT)
Prior art keywords
everolimus
solvent
heptane
ethyl acetate
silica gel
Prior art date
Application number
PCT/JP2022/031301
Other languages
English (en)
French (fr)
Inventor
泰之介 栗栖
和浩 日比野
泰寿 神田
裕 西村
Original Assignee
日本マイクロバイオファーマ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本マイクロバイオファーマ株式会社 filed Critical 日本マイクロバイオファーマ株式会社
Publication of WO2023022213A1 publication Critical patent/WO2023022213A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/436Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a six-membered ring having oxygen as a ring hetero atom, e.g. rapamycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/32Bonded phase chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/12Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D498/18Bridged systems

Definitions

  • the present invention relates to a method for producing everolimus of high purity (99% or more), and more specifically to the above-mentioned production method, which is characterized by a step of purifying crude everolimus using normal phase chromatography.
  • Everolimus which is used as an immunosuppressant and anticancer agent, is a macrolide antibiotic produced by Streptomyces hygroscopicus. It is obtained by successively carrying out lithography, crystallization by adding seed crystals, and precipitation.
  • Chromatography in pharmaceutical manufacturing is generally divided into normal-phase chromatography, which uses an organic solvent as the eluent, and reverse-phase chromatography, which uses a water-containing eluent.
  • normal-phase chromatography which uses an organic solvent as the eluent
  • reverse-phase chromatography which uses a water-containing eluent.
  • the carrier is usually discarded as sludge. This is because a part of the highly polar target substance or impurities is adsorbed on the carrier, and it is expected that the separation performance is lowered.
  • Patent No. 6574173 Patent No. 5165199 CN102464668B CN102174053B
  • the present invention provides high-purity, i.e., purity of 99% or more, from crude everolithm through a chromatographic treatment step using reusable silica gel and an inexpensive organic solvent whose safety has been confirmed. It is an object or problem to provide a method for efficiently obtaining everolimus.
  • the present inventors used so-called diol silica gel as the stationary phase, in which the silanol groups on the surface of the silica gel as a carrier are moderately modified with diol groups, while ethyl acetate and heptane were used as the mobile phases. It was found that highly pure everolimus can be efficiently obtained from crude everolimus by using an eluent whose polarity is adjusted by adding a certain organic solvent in addition to the mixed solvent of .
  • Aspect 1 A step of purifying crude everolimus using normal phase chromatography, wherein the normal phase chromatography uses diol silica gel as a stationary phase, and an eluent of a mixed solvent of ethyl acetate and heptane with a hydrophilic solvent added.
  • a method for producing everolimus characterized in that it is carried out using
  • Aspect 2 The production method according to Aspect 1, wherein the stationary phase used for normal phase chromatography is diol silica gel having a particle size of 5 to 250 ⁇ m.
  • Aspect 3 Aspect 1, wherein the ethyl acetate/heptane mixed solvent in the eluent used for normal phase chromatography has a solvent composition in the range of 20/80 to 50/50 on a volume basis.
  • a hydrophilic solvent selected from acetonitrile, acetone, methanol, ethanol, 1-propanol, and 2-propanol is 0.5 to 1 relative to the ethyl acetate/heptane mixed solvent in the eluent used for normal phase chromatography. .5 v/v % is added, the production method according to aspect 1.
  • Aspect 5 After the step of purifying crude everolimus using normal phase chromatography, the step of substituting the everolimus-containing fraction obtained in the above step with an ester solvent while concentrating under reduced pressure; to the non-polar solvent to precipitate everolimus.
  • Aspect 6 Aspect characterized in that the ester solvent is selected from methyl formate, ethyl formate, methyl acetate, ethyl acetate, propyl acetate and butyl acetate, and the non-polar solvent is selected from pentane, hexane, heptane and octane. 5. The manufacturing method according to 5.
  • the diol silica gel used in the chromatographic step can be reused as stationary phase or separation carrier, and is based on a mixed solvent of ethyl acetate and heptane, with minor amounts of other organic solvents.
  • the mobile phase or separation liquid combined with is confirmed to be safe to use, and can be easily constructed from relatively inexpensive materials.
  • highly pure everolimus can be efficiently obtained from crude everolimus.
  • a step of purifying crude everolimus using normal phase chromatography is disclosed, which can obtain highly pure everolimus from the crude everolimus.
  • "Crude” in “crude everolimus” is used as a concept opposite to "high purity” in “high-purity everolimus”. less than 70%, 75% or more, 80% or more, 85% or more, 90% or more. Crude everolimus within these purity ranges can be obtained high-purity everolimus of interest by performing the purification step only once.
  • Crude everolimus is not limited by its origin, but generally includes starting materials, reactants, reaction accelerators, by-products, etc., resulting from the chemical conversion reaction of rapamycin to everolimus and certain purification processing steps.
  • rapamycin to everolimus includes the steps of introducing rapamycin-protected ethylene glycol and deprotecting the ethylene glycol protecting group. may be provided to the crude everolimus purification step using said normal phase chromatography.
  • the purity mentioned above represents the peak area percentage of everolimus obtained by liquid chromatograph analysis under the following conditions. That is, the purity is derived by the formula of (everolimus peak area)/(sum of all peak 20 areas) and is expressed as a % value.
  • Liquid chromatograph conditions are the two analysis systems (Impurity A, Related substances) described in the European Pharmacopoeia listed test methods for everolimus.
  • the normal phase chromatography referred to in the present invention means a separation system in which the polarity of the stationary phase is higher than the polarity of the eluent. Separation and purification are carried out through the process of adsorption-desorption by using an eluent having a polarity lower than that of the diol silica gel surface.
  • the eluent solvent for the chromatography using silica gel heptane is used as a low-polarity solvent and a mixed solvent of ethyl acetate is used as a high-polarity solvent.
  • a solvent having a higher polarity than ethyl acetate preferably a hydrophilic highly polar organic solvent, more preferably an aprotic and hydrophilic highly polar solvent, is added to the mixed solvent at 0.5 to 1.5 v/v%.
  • the degree of separation here is the degree that indicates how much a peak is separated from adjacent peaks, and in the Japanese Pharmacopoeia and Japanese Industrial Standards General Rules for High Performance Liquid Chromatography, the degree of separation is defined by the formula shown below. It is
  • R is the resolution
  • t R1 and t R2 are the retention times of the respective peaks
  • W 0.5h1 and W 0.5h2 are the half widths of the respective peaks.
  • the Japanese Pharmacopoeia defines complete separation of peaks as "meaning a degree of separation of 1.5 or more.”
  • nitrile silica gel supporting nitrile groups is specifically used as a regenerable neutral silica gel used as a stationary phase or carrier for normal phase chromatography.
  • diisopropyl ether which is used as a non-polar solvent, has not been confirmed to be safe to use. is a solvent that should be used sparingly.
  • the amount of everolimus injected into the nitrile silica gel ie, the amount of everolimus injected into the nitrile silica gel, is relatively lower than in the case of the diol silica gel. Therefore, it can be understood that the combination of the diol silica gel used as the stationary phase in the present invention, the separation liquid, and the mixed solvent system used provides unique effects.
  • the diol silica gel particles used in the normal phase chromatography used in the present invention may have a size of 5 ⁇ m to 250 ⁇ m. It is convenient to use the latter because of its availability. In general, the smaller the particle size, the higher the number of theoretical plates and the higher the separation performance. Become.
  • diol silica gel becomes more expensive as the particle size decreases. Therefore, it is necessary to set an appropriate particle size in consideration of the purpose of purification, the impurities to be removed, the pressure resistance of the equipment and column to be used, the amount of treatment, the treatment time, and the like.
  • the particle size is preferably 5 ⁇ m to 200 ⁇ m, more preferably 20 ⁇ m to 110 ⁇ m.
  • Diol silica gel is an electrically neutral silica gel prepared by chemically modifying the silanol groups on the surface of ordinary silica gel with 1,2-dihydroxy-3-propoxypropyl groups.
  • the modification rate of silica gel is not limited as long as the object of the present invention is met, it is preferably 100 to 600 ⁇ mol/m 2 , more preferably 200 to 400 ⁇ mol/m 2 .
  • the hydrophilic solvent added to the ethyl acetate/heptane mixed solvent is generally selected from acetonitrile, acetone, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, tetrahydrofuran, and 2-methyltetrahydrofuran. , acetone, methanol, ethanol, 1-propanol and 2-propanol are preferred, and acetonitrile and 1-propanol are particularly preferred.
  • the mixing volume ratio of ethyl acetate and heptane and the hydrophilic solvent to be added are determined under appropriate conditions depending on the column volume, treatment amount, treatment time, amount of diol silica gel used, particle size, modification rate of dihydroxypropyl groups on the silica gel surface, etc. must be selected.
  • the amount of diol silica gel and the amount of crude everolimus used for separation depend on the desired purity and recovery rate. For example, when eluting diol silica gel with a particle size of 110 ⁇ m using an eluent with a mixed volume ratio of ethyl acetate and heptane of 30:70 and acetonitrile as a 1 vol% additive solvent, 4.0 g to 4.0 g per 1 L of column head volume 7.0 g of raw material is subjected to separation. For example, 400 mg to 700 mg for a 4.5 cm inner diameter, 9.0 cm long column, and 4.0 g to 7.0 g for a 4.0 cm inner diameter, 75.0 cm long column provide the desired high purity. of everolimus can be obtained. At this time, the flow rate of the developing solvent is in the range of space velocity 5 S.V. to 50 S.V., so that the target product can be obtained stably.
  • the fractionated solution containing high-purity everolimus obtained by normal phase chromatography is then concentrated under reduced pressure to a concentration of 100 g/L to 600 g/L, preferably 250 g/L to 400 g/L, The solution is added dropwise to a cooled low-polarity solvent with stirring over 30 minutes, and the resulting slurry is subjected to vacuum filtration or pressure filtration to obtain everolimus powder.
  • the vacuum concentration of the fractionated solution containing highly pure everolimus is preferably carried out at an atmospheric pressure of 50 hPa to 100 hPa and a temperature of 30 to 40°C.
  • a highly polar solvent such as ethyl acetate may be used for rinsing and cleaning of pipes.
  • Examples of highly polar solvents used for washing include alcohol solvents, ester solutions, and ether solvents, but ethyl acetate is particularly preferred for everolimus.
  • Examples of the low-polarity solvent used for precipitation include alkyl-based solvents and ether-based solvents, and heptane is particularly preferred for everolimus.
  • the temperature of the reaction solution was raised to 60° C., and the amount of raw material, target substance, and impurities was confirmed by HPLC at each elapsed time. After 20 hours, the reaction solution was allowed to cool to room temperature and then pyridine (3.0 g, 3.1 mL, 38.3 mmol) was added. After the reaction solution was filtered under reduced pressure, the filter cake was washed with toluene (30 mL). Subsequently, the solution was diluted with ethyl acetate (400 mL), and the organic layer was washed with 1M aqueous citric acid (400 mL) and water (400 mL). The organic layer (370 mL) was concentrated under reduced pressure to obtain 28.0 g of everolimus-TBS crude/toluene solution.
  • the mobile phase when using diol silica gel as a carrier was examined by HPLC.
  • Everolimus containing 8% Isomer C was dissolved in acetonitrile to prepare 0.5 mg/mL in an HPLC column (Inertsil, Diol, 5 ⁇ m, 4.6 x 150 mm).
  • the degree of separation was confirmed using a mixed solvent of ethyl acetate/heptane added at 1.5 v/v % as a mobile phase.
  • the polar solvents used were methanol, ethanol, 2-propanol, acetonitrile and acetone. Table 1 shows the results.
  • the solution was concentrated to an everolimus concentration of 33 wt%, and the concentrated liquid was added dropwise to 600 mL of cooled heptane to obtain a precipitate.
  • the precipitate was filtered under reduced pressure while washing with heptane, and dried under reduced pressure to obtain 100 mg of high-purity everolimus powder (yield: 21%).
  • the solution was concentrated to an everolimus concentration of 33 wt%, and the concentrated liquid was added dropwise to 600 mL of cooled heptane to obtain a precipitate.
  • the precipitate was filtered under reduced pressure while washing with heptane, and dried under reduced pressure to obtain 102 mg of high-purity everolimus powder (yield: 21%).
  • the solution was concentrated until the everolimus concentration reached 33 wt%, and the concentrated liquid was added dropwise to 100 mL of cooled heptane to obtain a precipitate.
  • the precipitate was filtered under reduced pressure while washing with heptane, and dried under reduced pressure to obtain 55 mg (yield 55%) of high-purity everolimus powder.
  • the solution was concentrated until the everolimus concentration reached 33 wt%, and the concentrated liquid was added dropwise to 100 mL of cooled heptane to obtain a precipitate.
  • the precipitate was filtered under reduced pressure while washing with heptane, and dried under reduced pressure to obtain 80 mg of high-purity everolimus powder (80% yield).
  • the solution was concentrated to an everolimus concentration of 33 wt%, and the concentrated liquid was slowly added dropwise to 100 mL of cooled heptane to obtain a precipitate.
  • the precipitate was filtered under reduced pressure while washing with heptane, and dried under reduced pressure to obtain 79 mg of high-purity everolimus powder (yield 79%).

Abstract

【課題】高純度エベロリムスの製造方法において、粗エベロリムスから高純度エベロリムスを効率よく取得でき、安全性が確認された安価な精製ステップを提供可能とする。 【解決手段】粗エベロリムスの精製ステップを、固定相としてジオールシリカゲルを用い、溶離液として酢酸エチルとヘプタンの混合溶液を用い、さらに溶離液への添加溶媒として親水性溶媒を用いて実施する。

Description

エベロリムスの製造方法
 本発明は高純度(99%以上)のエベロリムスの製造方法に関し、より具体的には、順相クロマトグラフィーを用いる粗エベロリムスの精製ステップに特徴を有する、前記製造方法に関する。
 免疫抑制剤・抗がん剤として利用されるエベロリムスは、ストレプトマイセス・ハイグロスコーピカス(Streptomyces hygroscopicus)から生産されるマクロライド系抗生物質であるラパマイシンに対して化学変換を施した後、シリカゲルクロマトグラフィー、種晶を添加する晶析、沈殿化を順次実施することで得られる。
 先発メーカーであるノバルティス社は、tert-ブチルジメチルシリル(TBS)基で保護されたエチレングリコールのトリフラート体を立体障害の大きいアミンで調製後、ラパマイシンに対して求核置換反応し、その後フッ化水素/ピリジン(テトラヒドロフラン溶媒下)にてTBS基を除去することで粗エベロリムスを取得した後、酢酸エチル/ヘプタンを溶離液としたシリカゲルクロマトグラフィーで粗精製し、晶析することでエベロリムスを得る方法を提案している(特許文献1)。
 晶析工程では、粗エベロリムスが酢酸エチルに溶解され、30℃に加熱して得られる溶液にヘプタンが滴下され、次いで、種晶が添加された後、冷却されることでエベロリムス結晶が析出されている。さらに、得られたエベロリムス結晶がエタノールに溶解され、ジブチルヒドロキシトルエンが添加されている。こうして得られた混合物が0℃に冷却した水にゆっくりと滴下され、安定化されたエベロリムスが得られている(特許文献2)。
 しかしながら、ノバルティス社のエベロリムス製法では、クロマトグラフィー工程において、廃シリカゲルが大量に発生する。また、種晶を添加する煩雑な晶析工程を経ること、晶析工程により収率が低下することなどに課題がある。
 医薬品製造におけるクロマトグラフィーは、一般的に有機溶媒を溶離液として使用する順相クロマトグラフィーと含水の溶離液を使用する逆相クロマトグラフィーに大別される。このうち、表面がシラノール基である標準的なシリカゲルを担体に使用した順相クロマトグラフィー処理又は操作後は、担体は汚泥として廃棄されるのが通常である。これは、担体に極性の高い目的物あるいは不純物が一部吸着し、分離能の低下が予測されるためである。
 このようなクロマトグラフィー処理では、精製の都度、新たなシリカゲルを充填する必要があるため、大量の廃シリカゲル排出とコスト増大が課題として挙げられる。
 こうした課題を解決するべく、再利用可能なシリカゲルを使用した精製方法によって、廃シリカゲルの発生を抑えた製法が報告されている。
 例えば、再利用可能なオクタデシルシリルシリカゲルを担体として用いる粗エベロリムスの精製ステップを含む、高純度エベロリムスの製造方法に関する報告がある(特許文献3)。しかしながら、この製造方法におけるクロマトグラフィーは、所謂、逆相の系が用いられるために、水に不溶なエベロリムスをアプライできる量が順相クロマトグラフィーと比べて少ない点に問題がある。また、表面がニトリル基でキャップされた再利用可能なシリカゲルを担体として用いた精製ステップを含む、高純度エベロリムスの製造方法に関する報告もある(特許文献4)。この精製ステップでは、溶離液として有機溶媒が使用されるために一度に処理できるエベロリムス量が多いことが利点であるが、安全性が未確認かつ高価な有機溶媒を使用する点に課題がある。
特許第6574173号公報 特許第5165199号公報 CN102464668B CN102174053B
 上述した背景の下、本発明は、再利用可能なシリカゲルと、安全性が確認された、安価な有機溶媒を用いるクロマトグラフィー処理ステップを経ることで、粗エベロリスムから高純度、すなわち純度99%以上のエベロリムスを効率よく取得できる方法を提供することを目的又は課題とする。
 本発明者らは、クロマトグラフィー処理ステップにおいて、担体としてのシリカゲル表面のシラノール基が適度にジオール基で修飾された、所謂、ジオールシリカゲルを固定相として用い、一方、移動相として、酢酸エチルとヘプタンの混合溶媒に加え、一定の他の有機溶媒を添加することにより極性を調節した溶離液を用いると、効率よく粗エベロリムスから高純度エベロリムスが得られることを見出した。
 したがって、限定されるものでないが、本明細書で開示される本発明の特徴又は態様は、次のとおりである。
態様1:順相クロマトグラフィーを用いる粗エベロリムスの精製ステップを含み、前記順相クロマトグラフィーが、固定相としてジオールシリカゲルを用い、酢酸エチルとヘプタンの混合溶媒に、親水性溶媒が添加された溶離液を用いて実施されること、を特徴とするエベロリムス製造方法。
 
様態2:順相クロマトグラフィーに用いる固定相の粒径が、5~250 μmのジオールシリカゲルであることを特徴とする、様態1に記載の製造方法。
 
様態3:順相クロマトグラフィーに用いる溶離液中の酢酸エチル/ヘプタン混合溶媒が、体積基準で、20/80~50/50の溶媒組成の範囲にあることを特徴とする、様態1に記載の製造方法。
 
様態4:順相クロマトグラフィーに用いる溶離液中の酢酸エチル/ヘプタン混合溶媒に対して、アセトニトリル、アセトン、メタノール、エタノール、1-プロパノール、2-プロパノールから選ばれる親水性溶媒が0.5~1.5v/v%添加されることを特徴とする、様態1に記載の製造方法。
 
様態5:順相クロマトグラフィーを用いる粗エベロリムスの精製ステップの後、さらに、前記ステップで取得されたエベロリムス含有画分を減圧濃縮しながらエステル性溶媒に置換するステップと、エステル性溶媒のエベロリムス含有溶液を非極性溶媒へ添加してエベロリムスを沈殿化させるステップとを含むことを特徴とする、様態1に記載の製造方法。
 
様態6:エステル性溶媒が、ギ酸メチル、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチルから選ばれ、非極性溶媒がペンタン、ヘキサン、ヘプタン、オクタンから選ばれることを特徴とする、様態5に記載の製造方法。
 本発明によれば、クロマトグラフィー処理ステップにおいて用いられるジオールシリカゲルは、固定相又は分離用担体として再利用が可能であり、また、酢酸エチルとヘプタンの混合溶媒をベースとし、他の少量の有機溶媒を組み合わせた、移動相又は分離液は、使用安全性が確認され、比較的安価なものから容易に構成できる。くわえて、これらの固定相又は担体と移動相又は溶離液を用いると、粗エベロリムスから高純度エベロリムスを効率よく取得できる。
 本明細書によれば、粗エベロリムスから高純度エベロリムスを取得できる、順相クロマトグラフィーを用いる粗エベロリムスの精製ステップが開示される。「粗エベロリムス」にいう、「粗」は、「高純度エベロリムス」にいう「高純度」に対向する概念として用いており、本発明の目的に沿う限り、限定されるものでないが、純度99%未満であって、一般的に、70%以上、75%以上、80%以、85%以上、90%以上である純度を有するものと理解している。これらの純度範囲内にある粗エベロリムスは、前記精製ステップを一回実施するだけで、目的とする高純度エベロリムスを取得することができる。粗エベロリムスは、その由来により限定されるものでないが、一般的に、ラパマイシンからエベロリムスへの化学変換反応、一定の精製処理ステップを通してもたらされる、出発原料、反応体、反応促進剤、副産物、等を含む中間又は最終的な精製処理が施された処理物であってよい。このような処理物は、例えば、特許文献1~4,さらには、WO 94/09010 A1、WO 2012/066502 A1、WO 2012/103959 A1、WO 2014/203185 A1、WO 2016/207205 A1等に開示されたものが挙げられる。本発明によれば、後述する<参考例1>に示され、概括的には、ラパマイシンに保護されたエチレングリコールを導入するステップ、エチレングリコールの保護基を脱保護するステップを含むラパマイシンからエベロリムスへの化学変換方法で得られる粗エベロリムスを、前記順相クロマトグラフィーを用いる粗エベロリムスの精製ステップに提供してもよい。
 さらに上記にいう純度とは、下記条件の液体クロマトグラフで分析して得られるエベロリムスのピーク面積百分率を表す。すなわち、純度は、(エベロリムスピーク面積)/(全てのピーク20面積の総和)という計算式で導かれ、%値で表される。液体クロマトグラフの条件は、欧州薬局法収載試験法のエベロリムスの項に記載の2種の分析系(Impurity A, Related substances)である。
 本発明にいう、順相クロマトグラフィーは、固定相の極性が溶離液の極性より高い分離系を意味し、固定相にはジオールシリカゲルを用い、分離されるべき試料分子がそれぞれジオール基に吸着し、ジオールシリカゲル表面の極性より低い極性を有する溶離液を用いることによる、吸-脱着の過程を経て分離精製が行われる。このシリカゲルを使用したクロマトグラフィーの溶離液の溶離溶媒には、低極性溶媒としてヘプタンが用いられ、高極性溶媒として酢酸エチルの混合溶媒が用いられる。
 また、本発明では、酢酸エチルよりも高極性な溶媒、好ましくは親水性の高極性有機溶媒、さらに好ましくは非プロトン性かつ親水性の高極性溶媒を前記混合溶媒に0.5~1.5v/v%添加した溶離液を用いることで、エベロリムスと前記化学変換又は精製処理中に生じ得るIsomer Cに代表される類縁副生物又は不純物との分離度を向上させることができる。
 ここでいう分離度は,あるピークが隣接するピークからどの程度分離しているかを示す度合いであり、日本薬局方および日本工業規格の高速液体クロマトグラフィー通則では、分離度は以下に示す式で定義されている。
Figure JPOXMLDOC01-appb-I000001
 ここで、Rは分離度、tR1、tR2(tR1≦tR2)は各ピークの保持時間、W0.5h1、W0.5h2は各ピークの半値幅である。日本薬局方においてピークの完全分離とは、「分離度1.5 以上を意味する」とされている。
 なお、特許文献4によると、順相クロマトグラフィーの固定相又は担体として使用される再生可能な中性のシリカゲルとしてニトリル基が担持されたニトリルシリカゲルが具体的に用いられている。ところが、特許文献4のニトリルシリカゲルを使用した実施例に記載の溶離液のうち、非極性溶媒として使用されているジイソプロピルエーテルは、使用安全性が確認されておらず、原薬製造の精製終盤においては、使用を控えるべき溶媒である。ニトリルシリカゲルを使用して粗エベロリムスをアプライ後、前記文献に記載されている、テトラヒドロフラン/イソプロピルエーテルの溶媒系に代えて、使用安全性が確認されている、例えば酢酸エチル/ヘプタン/1-プロパノール=20/80/1の組成の溶離液で溶出を試みたところ、エベロリムスはニトリルシリカゲルに吸着せず、望む分離を示さないことが確認された(参考例2参照)。この結果より、ニトリルシリカゲルを使用してエベロリムスを精製するには、酢酸エチルや親水性溶媒の組成をより低くする必要があるものの、それに伴ってエベロリムスは溶離液に難溶となり、一度に精製可能なエベロリムス量、すなわちニトリルシリカゲルへの注入エベロリムス量はジオールシリカゲルの場合と比べて相対的に少なくなる。従って、本発明で固定相として使用するジオールシリカゲルと分離液と使用する混合溶媒系の組み合わせによって、特有の作用効果がもたらされることが理解できる。
 本発明に使用される順相クロマトグラフィーに使用されるジオールシリカゲルの粒子は、5 μm~250 μmであってもよいが、粒径5 μm~200 μm程度のものが市販されており、容易に入手できる点で、後者を使用することが便宜である。一般的に粒径が小さくなるほど理論段数が向上し、分離性能は向上するが、それに伴って分離液又は展開液の流速に対する抵抗が大きくなってカラム圧力が高くなり、流速を上げることが困難となる。
 また、粒子径が小さくなるにつれてジオールシリカゲルは高価となることが知られている。従って、精製目的や除去するべき不純物、使用する機器やカラムの耐圧、処理量や処理時間などをすべて考慮し、適切な粒子径を設定する必要がある。
 エベロリムスの場合を精製する場合は、粒子径は5 μm~200 μmが好ましく、20 μm~110 μmがより好ましい。
 ジオールシリカゲルは通常のシリカゲル表面のシラノール基に対して、1,2-ジヒドロキシ-3-プロポキシプロピル基などを化学修飾することにより調製おされる電気的中性のシリカゲルである。本発明の目的に沿う限り、シリカゲルの修飾率は限定されないが、100~600 μmol/m2であることが好ましく、200~400 μmol/m2であることがより好ましい。
 本発明の順相クロマトグラフィーに用いる高極性溶媒である酢酸エチルと、低極性溶媒であるヘプタンの混合体積比率は、一般的には酢酸エチル:ヘプタン=5:95から100:0の範囲から選択され、酢酸エチル:ヘプタン=20:80から50:50の範囲であることが好ましく、また酢酸エチル:ヘプタン=20:80から35:65がさらに好ましく、また酢酸エチル:ヘプタン=30:70から35:65が特に好ましい。
 酢酸エチル/ヘプタン混合溶媒に添加する親水性溶媒としては、一般的にはアセトニトリル、アセトン、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、テトラヒドロフラン、2-メチルテトラヒドロフランから選択され、アセトニトリル、アセトン、メタノール、エタノール、1-プロパノール、2-プロパノールが好ましく、さらにアセトニトリル、1-プロパノールが特に好ましい。
 なお、酢酸エチルとヘプタンの混合体積比率と添加する親水性溶媒は、カラム容積、処理量、処理時間、ジオールシリカゲルの使用量、粒子径、シリカゲル表面のジヒドロキシプロピル基の修飾率などによって適切な条件を選択する必要がある。
 本発明の順相クロマトグラフィーにより精製する予定の粗エベロリムスを溶解させ、シリカゲルにアプライする際に使用される溶媒としては、ジクロロメタン、クロロホルムなどに代表されるハロメタン系溶媒や、体積比率が酢酸エチル:ヘプタン=15:85の混合溶媒であることが好ましい。
 ジオールシリカゲルの量と分離に供する粗エベロリムスの量は、目的とする純度と回収率に依存する。例えば、粒子径110μmのジオールシリカゲルを、酢酸エチルとヘプタンの混合体積比率が30:70、1vol%添加溶媒としてアセトニトリルを選択した溶離液を用いて溶出させる場合、カラムヘッド容積1 Lあたり4.0 g~7.0 gの原料が分離に供される。例えば、内径4.5 cm、長さ9.0 cmのカラムでは400 mg~700 mg、内径4.0 cm、長さ75.0 cmのカラムでは、4.0 g~7.0 gの原料を分離に供することによって、目的とする高純度のエベロリムスを得ることができる。このときの展開溶媒の流速は空間速度5 S.V.~50 S.V.の範囲とすることで安定的に目的物を取得することができる。
 順相クロマトグラフィーで得られる高純度のエベロリムスを含んだ分画溶液は、その後100 g/L~600 g/L、好ましくは250 g/L~400 g/Lの濃度になるまで減圧濃縮し、その溶液を、攪拌しながら冷却していた低極性溶媒に30分で滴下し、得られたスラリーを減圧ろ過あるいは加圧ろ過することでエベロリムス粉末を取得することができる。
 高純度のエベロリムスを含んだ分画溶液の減圧濃縮は、気圧50 hPa~100 hPa、温度30℃~40℃で濃縮することが好ましい。また、洗い込みや配管洗浄に酢酸エチルなどの高極性溶媒を使用しても良い。
 洗い込みに使用する高極性溶媒としては、例えばアルコール系溶媒やエステル性溶液、エーテル系溶媒などが挙げられるが、エベロリムスにおいては特に酢酸エチルが好ましい。沈殿化に使用する低極性溶媒としては、例えばアルキル系溶媒やエーテル系溶媒が挙げられるが、エベロリムスにおいては特にヘプタンが好ましい。
 以下、本発明をさらに具体的に説明するため、特定の具体例を挙げるが、本発明の範囲は、これらにより限定されるものでない。
<参考例1> 粗エベロリムスの調製例
 TBS基で保護されたエチレングリコール(10.6 g, 11.8 mL, 60.1 mmol)のトルエン(63.7mL)溶液に、ジイソプロピルエチルアミン( 8.1 g, 11.1 mL, 62.4 mmol)を添加した。次いで、その透明な溶液を-20℃に冷却し、トリフルオロメタンスルホン酸無水物( 17.0 g,9.9 mL, 60.2 mmol)をシリンジポンプで20.0 mL/minの速度でゆっくりと添加した。トルエン(5.8 mL)にてフラスコ内壁を洗浄後、0℃に昇温した。昇温後30分が経過したら、ジイソプロピルエチルアミン( 8.1 g, 11.1 mL, 62.4 mmol)を添加し、その後ラパマイシン(10.0 g, 10.9 mmol)を添加後、トルエン(24.8 mL)で洗浄した。反応液を60℃まで昇温し、経過時間ごとに原料、目的物、不純物量をHPLCにて確認した。20時間後に反応溶液を室温まで成り行きで冷却し、その後ピリジン(3.0 g, 3.1 mL, 38.3 mmol)を添加した。反応溶液を減圧ろ過した後、ろ物をトルエン(30 mL)で洗浄した。続いて溶液を酢酸エチル(400 mL)で希釈し、さらに1M クエン酸水(400 mL)、水(400 mL)で有機層を洗浄した。有機層(370 mL)を減圧濃縮し、エベロリムス-TBS粗体/トルエン溶液を28.0 g得た。
 その後、得られた溶液に対して、アセトニトリル(37.4 mL)、水(3.9 mL)を加えた後、0℃まで冷却した。その後、75%オルトリン酸で溶液をpH1.7に調製後、さらに1M 塩酸をゆっくりと滴下し、pHを1.8になるまで調整し、その後4時間攪拌した。エベロリムスを含む有機層を分離後、飽和重曹水(400 mL)、水(400 mL)で洗浄した。その後有機層を減圧濃縮することで、粗エベロリムスを13.1 g得た。
<参考例2> 比較固定相の使用例
 富士シリシア社製の、表面がニトリル基でキャップされたニトリルシリカゲル(CN SMB100-20/45)20 gを充填した可動栓カラムを調製後、純度80%のエベロリムスを125 mgアプライし、酢酸エチル/ヘプタン/1-プロパノール=20/80/1混合溶媒を溶離液として展開したところ、エベロリムスはニトリルシリカゲルに吸着しなかった。
 ジオールシリカゲルを担体として使用する際の移動相を、HPLCで検討した。HPLCカラム(Inertsil, Diol, 5 μm, 4.6×150 mm)にIsomer Cを8%含有したエベロリムスをアセトニトリルに溶解させて0.5 mg/mLに調製後、その溶液を5μLアプライし、各種極性溶媒0.5~1.5v/v%添加した酢酸エチル/ヘプタン混合溶媒を移動相として分離度を確認した。使用した極性溶媒は、メタノール、エタノール、2-プロパノール、アセトニトリル、アセトンとした。結果を表1に示す。
Figure JPOXMLDOC01-appb-I000002
 富士シリシア社製ジオールシリカゲル(DIOL MB100-75/200)50 gを充填した可動栓カラムを調製後、純度80%のエベロリムスをジクロロメタンに溶解させて600 mgアプライし、酢酸エチル/ヘプタン/1-プロパノール=20/80/1混合溶媒を開始時の溶離液、酢酸エチル/ヘプタン/1-プロパノール=30/70/1混合溶媒を終了時の溶離液として勾配変化させ、展開した。
 各画分について、欧州薬局法収載試験法のHPLC分析系にて分析を行い、エベロリムス純度が99%以上となる画分を回収し、エバポレーターにて減圧濃縮した。その際、酢酸エチルを添加しながら減圧濃縮することで、エベロリムスの沈殿析出を抑えた。
 その後エベロリムス濃度が33wt%になるまで溶液を濃縮し、冷却したヘプタン600 mLに濃縮液を滴下し、沈殿物を得た。沈殿物をヘプタン洗浄しながら減圧ろ過し、減圧乾燥することで高純度エベロリムス粉体を100 mg(収率21%)取得した。
 富士シリシア社製ジオールシリカゲル(DIOL MB100-75/200)50 gを充填した可動栓カラムを調製後、純度80%のエベロリムスをジクロロメタンに溶解させて600 mgアプライし、酢酸エチル/ヘプタン/アセトニトリル=25/75/1混合溶媒を開始時の溶離液、酢酸エチル/ヘプタン/アセトニトリル=35/65/1混合溶媒を終了時の溶離液として勾配変化させ、展開した。
 各画分について、欧州薬局法収載試験法のHPLC分析系にて分析を行い、エベロリムス純度が99%以上となる画分を回収し、エバポレーターにて減圧濃縮した。その際、酢酸エチルを添加しながら減圧濃縮することで、エベロリムスの沈殿析出を抑えた。
 その後エベロリムス濃度が33wt%になるまで溶液を濃縮し、冷却したヘプタン600 mLに濃縮液を滴下し、沈殿物を得た。沈殿物をヘプタン洗浄しながら減圧ろ過し、減圧乾燥することで高純度エベロリムス粉体を102 mg(収率21%)取得した。
 富士シリシア社製ジオールシリカゲル(DIOL SMB100-20/45)20 gを充填した可動栓カラムを調製後、純度80%のエベロリムスをジクロロメタンに溶解させて125 mgアプライし、酢酸エチル/ヘプタン/1-プロパノール=20/80/1混合溶媒を開始時の溶離液、酢酸エチル/ヘプタン/1-プロパノール=30/70/1混合溶媒を終了時の溶離液として勾配変化させ、展開した。
 各画分について、欧州薬局法収載試験法のHPLC分析系にて分析を行い、エベロリムス純度が99%以上となる画分を回収し、エバポレーターにて減圧濃縮した。その際、酢酸エチルを添加しながら減圧濃縮することで、エベロリムスの沈殿析出を抑えた。
 その後エベロリムス濃度が33wt%になるまで溶液を濃縮し、冷却したヘプタン100 mLに濃縮液を滴下し、沈殿物を得た。沈殿物をヘプタン洗浄しながら減圧ろ過し、減圧乾燥することで高純度エベロリムス粉体を55 mg(収率55%)取得した。
 富士シリシア社製ジオールシリカゲル(DIOL SMB100-20)20 gを充填した可動栓カラムを調製後、純度80%のエベロリムスをジクロロメタンに溶解させて125 mgアプライし、酢酸エチル/ヘプタン/1-プロパノール=25/75/1混合溶媒を開始時の溶離液、酢酸エチル/ヘプタン/1-プロパノール=35/65/1混合溶媒を終了時の溶離液として勾配変化させ、展開した。
 各画分について、欧州薬局法収載試験法のHPLC分析系にて分析を行い、エベロリムス純度が99%以上となる画分を回収し、エバポレーターにて減圧濃縮した。その際、酢酸エチルを添加しながら減圧濃縮することで、エベロリムスの沈殿析出を抑えた。
 その後エベロリムス濃度が33wt%になるまで溶液を濃縮し、冷却したヘプタン100 mLに濃縮液を滴下し、沈殿物を得た。沈殿物をヘプタン洗浄しながら減圧ろ過し、減圧乾燥することで高純度エベロリムス粉体を80 mg(収率80%)取得した。
 富士シリシア社製ジオールシリカゲル(DIOL SMB100-20)20 gを充填した可動栓カラムを調製後、純度80%のエベロリムスをジクロロメタンに溶解させて125 mgアプライし、酢酸エチル/ヘプタン/アセトニトリル=25/75/1混合溶媒を開始時の溶離液、酢酸エチル/ヘプタン/アセトニトリル=35/65/1混合溶媒を終了時の溶離液として勾配変化させ、展開した。
 各画分について、欧州薬局法収載試験法のHPLC分析系にて分析を行い、エベロリムス純度が99%以上となる画分を回収し、エバポレーターにて減圧濃縮した。その際、酢酸エチルを添加しながら減圧濃縮することで、エベロリムスの沈殿析出を抑えた。
 その後エベロリムス濃度が33wt%になるまで溶液を濃縮し、冷却したヘプタン100 mLに濃縮液をゆっくりと滴下し、沈殿物を得た。沈殿物をヘプタン洗浄しながら減圧ろ過し、減圧乾燥することで高純度エベロリムス粉体を79 mg(収率79%)取得した。

Claims (6)

  1. 順相クロマトグラフィーを用いる粗エベロリムスの精製ステップを含み、前記順相クロマトグラフィーが、固定相としてジオールシリカゲルを用い、酢酸エチルとヘプタンの混合溶媒に、親水性溶媒が添加された溶離液を用いて実施されること、を特徴とするエベロリムス製造方法。
  2. 順相クロマトグラフィーに用いる固定相の粒径が、5~250 μmのシリカゲルであることを特徴とする、請求項1に記載の製造方法。
  3. 順相クロマトグラフィーに用いる溶離液中の酢酸エチル/ヘプタン混合溶媒が、体積基準で、20/80~50/50の溶媒組成の範囲にあることを特徴とする、請求項1に記載の製造方法。
  4. 順相クロマトグラフィーに用いる溶離液中の酢酸エチル/ヘプタン混合溶媒に対して、アセトニトリル、アセトン、メタノール、エタノール、1-プロパノール、2-プロパノールから選ばれる親水性溶媒が0.5~1.5v/v%添加されることを特徴とする、請求項1に記載の製造方法。
  5. 順相クロマトグラフィーを用いる粗エベロリムスの精製ステップの後、さらに、前記ステップで取得されたエベロリムス含有画分を減圧濃縮しながらエステル性溶媒に置換するステップと、エステル性溶媒のエベロリムス含有溶液を非極性溶媒へ添加してエベロリムスを沈殿化させるステップとを含むことを特徴とする、請求項1に記載の製造方法。
  6. エステル性溶媒が、ギ酸メチル、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチルから選ばれ、非極性溶媒がペンタン、ヘキサン、ヘプタン、オクタンから選ばれることを特徴とする、請求項5に記載の製造方法。
PCT/JP2022/031301 2021-08-19 2022-08-19 エベロリムスの製造方法 WO2023022213A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021134190A JP2023028473A (ja) 2021-08-19 2021-08-19 エベロリムスの製造方法
JP2021-134190 2021-08-19

Publications (1)

Publication Number Publication Date
WO2023022213A1 true WO2023022213A1 (ja) 2023-02-23

Family

ID=85239831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031301 WO2023022213A1 (ja) 2021-08-19 2022-08-19 エベロリムスの製造方法

Country Status (2)

Country Link
JP (1) JP2023028473A (ja)
WO (1) WO2023022213A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002531527A (ja) * 1998-12-07 2002-09-24 ノバルティス アクチエンゲゼルシャフト マクロライドの安定化
CN102174053A (zh) * 2011-03-09 2011-09-07 成都雅途生物技术有限公司 依维莫司的纯化方法
CN102464668A (zh) * 2010-11-17 2012-05-23 浙江海正药业股份有限公司 雷帕霉素或其衍生物的制备色谱纯化方法
CN104086564A (zh) * 2014-07-30 2014-10-08 江苏奥赛康药业股份有限公司 一种高纯度坦罗莫司的制备方法
JP2016523246A (ja) * 2013-06-20 2016-08-08 ノバルティス アーゲー アルキルフルオロアルキルスルホネートによるアルキル化
WO2020194209A1 (en) * 2019-03-26 2020-10-01 Novartis Ag Isothiazolidine 1,1-dioxide and 1,4-butan sultone containing rapamycin derivatives and uses thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002531527A (ja) * 1998-12-07 2002-09-24 ノバルティス アクチエンゲゼルシャフト マクロライドの安定化
CN102464668A (zh) * 2010-11-17 2012-05-23 浙江海正药业股份有限公司 雷帕霉素或其衍生物的制备色谱纯化方法
CN102174053A (zh) * 2011-03-09 2011-09-07 成都雅途生物技术有限公司 依维莫司的纯化方法
JP2016523246A (ja) * 2013-06-20 2016-08-08 ノバルティス アーゲー アルキルフルオロアルキルスルホネートによるアルキル化
CN104086564A (zh) * 2014-07-30 2014-10-08 江苏奥赛康药业股份有限公司 一种高纯度坦罗莫司的制备方法
WO2020194209A1 (en) * 2019-03-26 2020-10-01 Novartis Ag Isothiazolidine 1,1-dioxide and 1,4-butan sultone containing rapamycin derivatives and uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Inertsil NH2; Inertsil Diol", GENERAL CATALOG 31, GL SCIENCES INC, JP, no. 31, 28 February 2019 (2019-02-28), JP, pages 169 - 170, XP009544093 *

Also Published As

Publication number Publication date
JP2023028473A (ja) 2023-03-03

Similar Documents

Publication Publication Date Title
JP5456321B2 (ja) O−アルキル化ラパマイシン誘導体の製造方法およびo−アルキル化ラパマイシン誘導体
JP6460366B2 (ja) アミノ基を一つ有するポリエチレングリコールの精製方法
CN107501045B (zh) 一种利用大孔吸附树脂从发酵液中分离提纯丁三醇的方法
JP4236463B2 (ja) 光学活性な(3r,5s,6e)−7−[2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル]−3,5−ジヒドロキシ−6−ヘプテン酸エチルの製造方法
JP2008518984A (ja) タクロリムスの精製方法
RU2317991C1 (ru) Способ выделения и очистки макролидов
JP2007521013A (ja) マクロライドの精製方法
WO2023022213A1 (ja) エベロリムスの製造方法
JP4314337B2 (ja) ミルベマイシン類及びアベルメクチン類の精製法
JP2009502993A (ja) 植物由来の担体上のタクロリムスの精製
KR20010050635A (ko) 고순도 아카보스 제조방법
JP2009084275A (ja) ウルソデオキシコール酸の製造方法
CN111547718A (zh) 复合型活性炭及其在纯化他克莫司中的应用
JP3883525B2 (ja) プラバスタチンナトリウムの精製方法
WO1996033162A1 (en) Compounds containing a substantially planar, fused ring system with at least 4 aromatic rings and their use as a chiral stationary phase in enantiomeric separation
CN110741006A (zh) 将粗子囊霉素转化为纯化的吡美莫司的方法
CN114516884B (zh) 一种高纯度他克莫司的提纯方法
JP6894945B2 (ja) ルビプロストン結晶およびその調製方法
JP2021107533A (ja) ポリエチレングリコール化合物の精製方法
CN111148730B (zh) 用于制备和纯化米索前列醇的方法
JP2971128B2 (ja) マイトマイシンcの精製法
CN113402533A (zh) 一种7β-甲氧基头孢美唑的分离纯化方法
AU7572600A (en) Methods of obtaining 2-methoxyestradiol of high purity
KR20190061526A (ko) 크로마토그래피에 의한 조영제의 정제 방법
CN111491921A (zh) 精制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE