WO2023013606A1 - 融着接続機 - Google Patents

融着接続機 Download PDF

Info

Publication number
WO2023013606A1
WO2023013606A1 PCT/JP2022/029550 JP2022029550W WO2023013606A1 WO 2023013606 A1 WO2023013606 A1 WO 2023013606A1 JP 2022029550 W JP2022029550 W JP 2022029550W WO 2023013606 A1 WO2023013606 A1 WO 2023013606A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
bending
holder
light source
fusion splicer
Prior art date
Application number
PCT/JP2022/029550
Other languages
English (en)
French (fr)
Inventor
慎太郎 毛利
壮一 遠藤
彰紀 木村
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to KR1020247003340A priority Critical patent/KR20240034199A/ko
Priority to JP2023540345A priority patent/JPWO2023013606A1/ja
Priority to EP22853025.9A priority patent/EP4382979A1/en
Priority to CN202280049900.8A priority patent/CN117642663A/zh
Publication of WO2023013606A1 publication Critical patent/WO2023013606A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2555Alignment or adjustment devices for aligning prior to splicing
    • G02B6/2557Alignment or adjustment devices for aligning prior to splicing using deformable flexure members, flexible hinges or pivotal arms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2553Splicing machines, e.g. optical fibre fusion splicer

Definitions

  • the present disclosure relates to fusion splicers. This application claims priority based on Japanese Application No. 2021-129081 dated August 5, 2021, and incorporates all the descriptions described in the Japanese Application.
  • Patent Document 1 describes a fusion splicing device.
  • the fusion splicing device includes a pair of V-groove bases on which the pair of optical fibers are placed, an LED lamp arranged on each side of the pair of optical fibers, and a first television for photographing the pair of optical fibers.
  • the LED lamp enters light into the optical fiber from the side of the optical fiber.
  • Light incident on the optical fiber from the side is emitted from the end surface of the optical fiber.
  • a first television camera and a second television camera capture an image of an end face of an optical fiber that emits light.
  • Patent Document 2 describes an optical fiber connection device.
  • a connection device connects a pair of photonic crystal fibers (PCFs) together.
  • the connection device includes two holding members that hold each of the two PCFs, a first driving section that moves each holding member, a mirror positioned between the two PCFs, and an image reflected on the mirror. and a camera that In the connection device, the PCF is illuminated by epi-illumination from the camera side. The core of the end surface can be observed in a state where the entire end surface of the PCF is illuminated by this light irradiation.
  • a fusion splicer includes an optical fiber holder that holds an optical fiber, a rotation mechanism that rotates the optical fiber holder around an axis extending along the optical fiber, and a bending section that bends the optical fiber.
  • a light source for applying light to the optical fiber bent by the bending portion from the side of the optical fiber; and a power supply portion for supplying power to the light source.
  • the tip of the optical fiber protrudes from the end of the optical fiber holder, and the rotation mechanism is arranged on the opposite side of the optical fiber holder from the end in the axial direction extending along the optical fiber.
  • the bending part and the light source are arranged on the opposite side of the optical fiber holder with respect to the rotation mechanism in the axial direction.
  • the bending section has a bending adjustment section that adjusts the amount of bending of the optical fiber.
  • FIG. 1 is a diagram schematically showing a fusion splicer according to an embodiment.
  • FIG. 2 is a side view schematically showing an optical fiber holder, a rotating mechanism, a bending section, and a light source of the fusion splicer according to the embodiment;
  • FIG. 3 is a perspective view schematically showing an optical fiber holder, a rotating mechanism, a bending section, and a light source of the fusion splicer according to the embodiment;
  • FIG. 4 is a diagram schematically showing a bending portion, a light source, and an optical fiber of the fusion splicer according to the embodiment;
  • FIG. 1 is a diagram schematically showing a fusion splicer according to an embodiment.
  • FIG. 2 is a side view schematically showing an optical fiber holder, a rotating mechanism, a bending section, and a light source of the fusion splicer according to the embodiment;
  • FIG. 3 is a perspective view schematically showing an optical fiber holder, a rotating
  • FIG. 5 is a diagram schematically showing a bending portion, a light source, and an optical fiber of the fusion splicer according to the embodiment
  • FIG. 6 is a diagram schematically showing a bending portion, a light source, and an optical fiber of the fusion splicer according to the embodiment
  • FIG. 7 is a side view schematically showing an optical fiber holder, a rotating mechanism, a bending section, and a light source of a fusion splicer according to a modification.
  • FIG. 8 is a perspective view schematically showing an optical fiber holder, a rotating mechanism, a bending section, and a light source of a fusion splicer according to a modification.
  • FIG. 9 is a schematic diagram of a bending portion, a light source, and an optical fiber of a fusion splicer according to a modification.
  • FIG. 10 is a schematic diagram of a bending portion, a light source, and an optical fiber of a fusion splicer according to a modification.
  • FIG. 11 is a schematic diagram of a bending portion, a light source, and an optical fiber of a fusion splicer according to a modification.
  • An object of the present disclosure is to provide a fusion splicer capable of suppressing the power of the light source and sufficiently illuminating the end face of the optical fiber.
  • a fusion splicer includes: (1) an optical fiber holder that holds an optical fiber; a rotation mechanism that rotates the optical fiber holder about an axis extending along the optical fiber; A bending portion for bending an optical fiber, a light source for applying light to the optical fiber bent by the bending portion from the side of the optical fiber, and a power supply portion for supplying power to the light source are provided.
  • the tip of the optical fiber protrudes from the end of the optical fiber holder, and the rotation mechanism is arranged on the opposite side of the optical fiber holder from the end in the axial direction extending along the optical fiber.
  • the bending part and the light source are arranged on the opposite side of the optical fiber holder with respect to the rotation mechanism in the axial direction.
  • the bending section has a bending adjustment section that adjusts the amount of bending of the optical fiber.
  • the optical fiber holder holds the optical fiber with the tip of the optical fiber protruding.
  • a rotating mechanism for rotating the optical fiber holder is arranged on the opposite side of the tip of the optical fiber holder.
  • a fusion splicer includes a bending portion that bends an optical fiber, and a light source that causes light to enter the optical fiber bent by the bending portion from the side of the optical fiber.
  • the light source receives power from the power supply unit and emits light.
  • Power supply refers to what supplies power to the light source, for example, the portion of the fusion splicer that is electrically connected to the light source.
  • the "power supply unit” is, for example, when the fusion splicer is driven by an AC power supply (when the fusion splicer does not have a battery or a battery), the fusion splicer connected to a power source (for example, a household power supply, an outlet). It may be a wiring part.
  • the "power supply unit” may be a wiring part inside the fusion splicer connected to the battery or the battery when the fusion splicer has the battery or the battery.
  • the fusion splicer may have its own battery or batteries connected to a power supply that powers the light source.
  • the bending portion for bending the optical fiber and the light source are arranged on the side opposite to the optical fiber holder when viewed from the rotating mechanism.
  • the bending section has a bending adjustment section that adjusts the amount of bending of the optical fiber.
  • the bending adjustment unit reduces the amount of bending, and when the power of the light source is weak and the amount of light on the end surface is too weak, the bending adjustment unit increases the amount of bending. Therefore, the amount of light on the end surface can be adjusted by adjusting the amount of bending according to the light source. Therefore, the end face of the optical fiber can be sufficiently illuminated even if the power of the light source is not strong. As a result, the position of the core can be specified with high accuracy.
  • the fusion splicer may further include a light source adjustment unit that adjusts power supplied to the light source.
  • a light source adjustment unit that adjusts power supplied to the light source.
  • the optical fiber holder may have a pressure adjusting section that adjusts the pressure applied to the optical fiber.
  • the pressure adjusting section by adjusting the pressure applied to the optical fiber by the pressure adjusting section, it is possible to adjust the amount of light to the end surface of the optical fiber holder. As a result, it is possible to widen the adjustment range of the amount of light to the end face.
  • the fusion splicer may include a reflector that reflects the light from the light source toward the optical fiber. In this case, since the light from the reflecting portion is incident on the optical fiber, even if the power of the light source is small, the end face can be sufficiently illuminated.
  • the fusion splicer may include a holder base on which the optical fiber holder is mounted.
  • the optical fiber holder may be removable with respect to the holder base.
  • the fusion splicer has a holder base, and the optical fiber holder is removable from the holder base. Since the optical fiber holder is detachable from the holder base, the optical fiber can be easily attached to and detached from the rotation mechanism.
  • FIG. 1 is a diagram for explaining an outline of a fusion splicer according to this embodiment.
  • a fusion splicer 1 fusion splices a pair of optical fibers F to each other.
  • a fusion splicer 1 has an optical fiber holder 10 having a V-groove 11 and a rotation mechanism 20 for rotating the optical fiber holder 10 .
  • the axes of the pair of optical fibers F are aligned with each other.
  • “Axis” indicates the centerline of the optical fiber passing through the center of the optical fiber and extending along the extension direction of the optical fiber.
  • the optical fiber holder 10 and the rotation mechanism 20 are arranged along the axial direction, which is the direction in which the axis of the optical fiber F extends.
  • the axial direction of the optical fiber F is the Z-axis direction.
  • the fusion splicer 1 comprises a pair of optical fiber holders 10 arranged along the Z-axis direction in which the pair of optical fibers F extend, and a pair of rotation mechanisms 20 arranged along the Z-axis direction.
  • An optical fiber F to be fusion-spliced is positioned in the V-groove 11 of each optical fiber holder 10 .
  • the optical fiber holder 10 is made of resin, for example.
  • the optical fiber holder 10 holds, for example, a coated portion of the optical fiber F.
  • FIG. The optical fiber holder 10 holds the tip F1 of the optical fiber F in a state of protruding in the Z-axis direction.
  • the optical fiber holder 10 has an end portion 10b from which the optical fiber F protrudes.
  • a tip F1 of the optical fiber F protrudes from the end portion 10b of the optical fiber holder 10.
  • the rotation mechanism 20 is arranged on the opposite side of the optical fiber holder 10 from the end portion 10b in the axial direction.
  • a pair of discharge electrodes 2 are arranged at positions where the tips F1 of the pair of optical fibers F face each other.
  • a pair of discharge electrodes 2 are arranged at positions facing each other along a direction intersecting the optical fiber F (for example, the X-axis direction).
  • the optical fiber holder 10 has, for example, a base 12 in which a V-groove 11 extending along the Z-axis direction is formed and an optical fiber F is mounted, and a lid 13 mounted on the base 12 .
  • the base 12 and the lid 13 are arranged, for example, along the Y-axis direction that intersects both the X-axis direction and the Z-axis direction.
  • the pair of discharge electrodes 2 fusion splice the tips F1 of the pair of optical fibers F by discharge.
  • the fusion splicer 1 has a control section 3 that controls each section of the fusion splicer 1 .
  • the control unit 3 controls the discharge current and the discharge time of the discharge electrode 2, so that the fusion splicing is performed under the fusion splicing conditions suitable for the type of the optical fiber F.
  • FIG. In the fusion splicer 1 alignment of the pair of optical fibers F is performed by the controller 3 .
  • the control unit 3 adjusts the position of each optical fiber F in the X-axis direction and the Y-axis direction, and aligns the axes of the pair of optical fibers F so that the pair of optical fibers F are aligned along the Z-axis direction. I do. That is, the control unit 3 aligns the pair of optical fibers F in the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • the control unit 3 controls the rotation mechanism 20 to rotate the optical fiber F around an axis extending along the center of the optical fiber F (which is the same as the Z-axis in the drawing), thereby achieving alignment in the ⁇ direction. I do.
  • the optical fiber F is, for example, an optical fiber that requires rotational alignment in the fusion splicer 1 .
  • the optical fiber F is an optical fiber in which the positions of the core, clad, marker, etc. in the ⁇ direction of the pair of optical fibers F need to be matched.
  • the optical fiber F is a multi-core optical fiber (MCF) or a polarization maintaining fiber (PMF).
  • FIG. 2 is a side view showing the optical fiber holder 10 and the rotation mechanism 20 of the fusion splicer 1.
  • FIG. FIG. 3 is a perspective view showing the optical fiber holder 10 and the rotation mechanism 20 of the fusion splicer 1.
  • the fusion splicer 1 according to the present embodiment includes a clamp section 30 that presses the tip F1 side portion of the optical fiber F held by the optical fiber holder 10, and a rotation mechanism 20. , a bending portion 50 for bending the optical fiber F, and a light source 60 .
  • the portion of the optical fiber F that is held down by the clamp portion 30 is, for example, the coated portion of the optical fiber F.
  • the portion held down by the clamp part 30 may be a portion from which the coating of the optical fiber F has been removed (for example, a portion where the glass of the optical fiber F is exposed).
  • the length of the portion of the optical fiber F that protrudes from the clamp section 30 is, for example, 5 mm or less.
  • the magnitude of the force with which the clamp portion 30 presses the optical fiber F is such that the rotation of the optical fiber F is not hindered.
  • the holder base 40 is made of metal, for example.
  • the holder base 40 has a mounting surface 41 on which the optical fiber holder 10 is mounted.
  • the optical fiber holder 10 is detachable from the holder base 40 .
  • the optical fiber holder 10 removed from the holder base 40 holds the optical fiber F, and the optical fiber holder 10 holding the optical fiber F can be mounted on the holder base 40 . It is possible to replace the optical fiber holder 10 with an optical fiber holder 10 having an appropriate V-groove 11 according to the diameter of the optical fiber F (coating diameter or glass diameter).
  • the holder base 40 extends from the rotation mechanism 20 in the Z-axis direction.
  • the rotation mechanism 20 is arranged on the side opposite to the tip F1 (end surface) when viewed from the optical fiber holder 10 .
  • the rotation mechanism 20 has, for example, a recess 20b into which the optical fiber F is inserted along the Y-axis direction.
  • the recessed portion 20b has a slit shape recessed from the outer peripheral surface 20c of the rotating mechanism 20 along the Y-axis direction.
  • the rotating mechanism 20 rotates the optical fiber F together with the holder base 40 and the optical fiber holder 10 about an axis extending along the center of the optical fiber F, that is, an axis parallel to the Z-axis.
  • the rotation mechanism 20 includes, for example, a motor (not shown) and gears (not shown).
  • the motor of the rotating mechanism 20 is driven and the rotational driving force of the motor is transmitted to the holder base 40 and the optical fiber holder 10 via the gears, thereby rotating the holder base 40 and the optical fiber holder 10 .
  • the optical fiber F is inserted into the recess 20b of the rotating mechanism 20 and held by the optical fiber holder 10. As shown in FIG. As the optical fiber holder 10 is rotated by the rotating mechanism 20, the optical fiber F is also rotated.
  • the clamp part 30 is provided to hold the optical fiber F protruding from the optical fiber holder 10 .
  • the clamp unit 30 includes, for example, a table 31 on which the optical fiber F is placed, and a lid 32 that covers the optical fiber F placed on the table 31 .
  • the clamp section 30 holds the optical fiber F by sandwiching the optical fiber F extending in the Z-axis direction from the optical fiber holder 10 between the base 31 and the lid 32 .
  • a V-groove 35 on which the optical fiber F is placed is formed on the base 31 , and the optical fiber F placed on the V-groove 35 is covered with the lid 32 .
  • the clamp part 30 includes a first extension part 33 extending from the table 31 in the Y-axis direction, and an end of the first extension part 33 opposite to the table 31 in the width direction (X-axis direction) of the holder table 40 . ).
  • the lid 32 is provided between the second extension 34 and the base 31 .
  • the fusion splicer 1 includes a bending section 50 that bends the optical fiber F, and a light source 60 that makes light incident on the optical fiber F bent by the bending section 50 from the side (for example, a direction intersecting the Z-axis direction).
  • the bending part 50 and the light source 60 are arranged on the side opposite to the optical fiber holder 10 when viewed from the rotation mechanism 20 .
  • the bend 50 and the light source 60 are positioned adjacent to the rotating mechanism 20 .
  • the bending portion 50 is a portion where the optical fiber F is bent.
  • the bending portion 50 may be a portion that presses the optical fiber F to bend the surface of the optical fiber F.
  • FIG. FIG. 4 is a diagram schematically showing the bent portion 50 and the light source 60. As shown in FIG. As shown in FIG. 4, the bending section 50 and the light source 60 are provided in a bending mechanism 70 that bends the optical fiber F, for example.
  • the bending mechanism 70 includes a support portion 71 on which the optical fiber F is placed, a bending portion 50, and a lid portion 73 that covers the optical fiber F placed on the bending portion 50.
  • the support portion 71 supports the optical fiber F to be bent.
  • the bent portion 50 has a convex surface 51 with a top portion 51b on which the optical fiber F is placed.
  • the convex surface 51 is, for example, a curved surface.
  • the bending portion 50 moves with respect to the support portion 71 while the optical fiber F is placed thereon.
  • the bending mechanism 70 has, for example, a pair of support portions 71 arranged along the Z-axis direction, and the bending portion 50 is provided between the pair of support portions 71 .
  • the pair of support portions 71 support both end portions of the bent portion of the optical fiber F in the Z-axis direction.
  • the bending portion 50 is movable along the Y-axis direction, for example.
  • the light source 60 is built in the bending portion 50.
  • the light source 60 is a light source for observing the end face of the tip F1 of the optical fiber F.
  • FIG. The light source 60 makes light enter the optical fiber F bent by the bending portion 50 from the side (for example, in a direction intersecting the Z-axis direction). Light from the light source 60 enters the bent portion of the optical fiber F from the side, so that the core on the end surface of the optical fiber F can be observed.
  • the light source 60 is an LED light source.
  • the fusion splicer 1 includes a power source 61, and the light source 60 receives power from the power source 61 via a power supply section 69 and emits light.
  • the bending mechanism 70 has a light source adjuster 65 that adjusts the power (eg, current) supplied to the light source 60 .
  • the light source adjustment unit 65 adjusts the power received from the power supply unit 69 and supplies the adjusted power to the light source 60 . Thereby, the power of the light source 60 can be adjusted. As a result, the intensity of light incident on the optical fiber F can be adjusted, and the amount of light reaching the end face of the optical fiber F can be adjusted more finely.
  • the lid portion 73 has a reflecting portion 74 that reflects the light from the light source 60 toward the optical fiber F.
  • the reflecting portion 74 is provided, for example, on a surface 73b of the lid portion 73 facing the bent portion 50 (light source 60).
  • the reflector 74 is, for example, a mirror attached to the surface 73b.
  • the reflecting portion 74 may be something other than a mirror, and may be, for example, a mirror-polished portion of the lid portion 73 .
  • the amount of bending indicates the amount by which the optical fiber is bent in a direction intersecting the extending direction of the optical fiber.
  • the bending amount A indicates the distance from the unbent portion of the optical fiber F to the end of the bent portion in the intersecting direction (the Y-axis direction in the examples of FIGS. 5 and 6).
  • the bending unit 50 has a bending adjustment unit 55 that adjusts the bending amount A of the optical fiber F. As shown in FIG. The bending adjustment part 55 moves the bending part 50 along the direction (Y-axis direction) to approach the lid part 73 and to separate from the lid part 73, for example.
  • FIGS. 5 and 6 show an example of a state in which the bend amount A of the optical fiber F is adjusted by the bend adjuster 55.
  • FIG. As shown in FIGS. 5 and 6 , the bending adjustment section 55 adjusts the bending amount A of the optical fiber F by moving the bending section 50 with respect to the support section 71 .
  • the bend adjuster 55 moves the bend 50 closer to the lid 73 to increase the bend amount A of the optical fiber F, and the bend adjuster 55 separates the bend 50 from the lid 73 to increase the amount of bending of the optical fiber F.
  • the bending amount A of is reduced.
  • the optical fiber holder 10 has a pressure adjusting section 15 that adjusts the pressure on the optical fiber F.
  • the pressure adjustment unit 15 adjusts the pressing force on the optical fiber F, for example.
  • the pressure adjuster 15 may be performed, for example, in the same manner as the bend adjuster 55, or may be performed by magnetic force.
  • the optical fiber F is placed in the clamp section 30 , the optical fiber holder 10 , the rotating mechanism 20 and the bending mechanism 70 . Then, the rotating mechanism 20 rotates the optical fiber F, the bending section 50 bends the optical fiber F, and the light source 60 causes the optical fiber F to receive light. The end face of the optical fiber F illuminated in this state is observed.
  • the end face of the optical fiber F may be observed by the following method. Specifically, the optical fiber holder 10 holds the optical fiber F, and the rotation mechanism 20 rotates the optical fiber F before the optical fiber F is bent by the bender 50 . After that, the bending unit 50 bends the optical fiber F, the light source 60 makes light enter the optical fiber F, and the pressure adjusting unit 15 weakens the pressing force on the optical fiber F. The end face of the optical fiber F that shines brightly as a result of weakening the pressure applied to the optical fiber F by the pressure adjusting unit 15 can be observed.
  • the optical fiber holder 10 holds the optical fiber F with the tip F1 of the optical fiber F projected.
  • a rotating mechanism 20 for rotating the optical fiber holder 10 is arranged on the opposite side of the tip F1 of the optical fiber holder 10 .
  • the fusion splicer 1 includes a bending section 50 that bends an optical fiber F, and a light source 60 that makes light incident on the optical fiber F bent by the bending section 50 from the side of the optical fiber F.
  • the bending portion 50 that bends the optical fiber F and the light source 60 are arranged on the opposite side of the optical fiber holder 10 when viewed from the rotation mechanism 20 .
  • the bending section 50 has a bending adjustment section 55 that adjusts the bending amount A of the optical fiber F. As shown in FIG. Therefore, when the power of the light source 60 is strong and the amount of light on the end surface of the optical fiber F is too strong, the bending adjustment unit 55 reduces the amount of bending A. The adjustment for increasing the bending amount A of the portion 55 becomes possible. By adjusting the amount of bending A according to the light source 60, the amount of light on the end surface can be adjusted. Therefore, even if the power of the light source 60 is not strong, the end face of the optical fiber F can be sufficiently illuminated. As a result, the position of the core can be specified with high accuracy.
  • the fusion splicer 1 may have a light source adjustment section 65 that adjusts power supplied to the light source 60 .
  • the power of the light source 60 can be adjusted by the light source adjusting section 65, the amount of light reaching the end face of the optical fiber F can be adjusted more finely.
  • the optical fiber holder 10 may have a pressure adjusting section 15 that adjusts the pressure on the optical fiber F.
  • the pressure adjusting unit 15 by adjusting the pressure applied to the optical fiber F by the pressure adjusting unit 15, the amount of light to the end surface of the optical fiber holder 10 can be adjusted. As a result, it is possible to widen the adjustment range of the amount of light to the end face.
  • the fusion splicer 1 may include a reflector 74 that reflects the light from the light source 60 toward the optical fiber F. In this case, since the light from the reflecting portion 74 is incident on the optical fiber F, even if the power of the light source 60 is small, the end face can be sufficiently illuminated.
  • the fusion splicer 1 may include a holder base 40 on which the optical fiber holder 10 is mounted.
  • the optical fiber holder 10 may be detachable from the holder base 40 .
  • the fusion splicer 1 has a holder base 40 and the optical fiber holder 10 is removable from the holder base 40 . Since the optical fiber holder 10 is detachable from the holder base 40, the optical fiber F can be easily attached/detached to/from the rotating mechanism 20.
  • FIG. 7 Since a part of the configuration of the fusion splicer 81 is the same as a part of the configuration of the fusion splicer 1 described above, the same description as the configuration of the fusion splicer 1 will be denoted by the same reference numerals. omitted as appropriate.
  • the fusion splicer 81 includes a clamp section 85 integrated with the holder base 40 instead of the clamp section 30 described above.
  • the length of the base 12 of the optical fiber holder 10 in the Z-axis direction is longer than the length of the lid 13 of the optical fiber holder 10 in the Z-axis direction.
  • the base 12 extends to the opposite side of the rotating mechanism 20 than the lid 13 .
  • the table 12 has a V-groove exposed portion 12b where a part of the V-groove 11 is exposed on the side opposite to the rotating mechanism 20. As shown in FIG. The clamp portion 85 presses the optical fiber F placed on the V-groove 11 exposed in the V-groove exposed portion 12b.
  • the rotation mechanism 20 rotates the optical fiber F together with the holder base 40, the optical fiber holder 10, and the clamp part 85, for example, about an axis extending along the center of the optical fiber F.
  • the clamping portion 85 includes, for example, a fixing portion 86 extending from the holder base 40 in the Y-axis direction, and an extending portion 87 extending in the width direction of the holder base 40 from the end of the fixing portion 86 opposite to the holder base 40 . and a lid portion 88 interposed between the extension portion 87 and the base 12 .
  • the lid portion 88 covers the optical fiber F placed on the V-groove 11 of the base 12 .
  • the fusion splicer 81 has been described above. Since the fusion splicer 81 includes the bending portion 50 and the light source 60, the fusion splicer 81 can provide the same effects as the fusion splicer 1 described above.
  • FIG. 1 The fusion splicer according to the second modification includes a bending portion 90 and a bending mechanism 95 that are different from the bending portion 50 and the bending mechanism 70 .
  • the bending mechanism 95 includes a support portion 71 and a placement portion 92 on which the optical fiber F is placed.
  • the bending portion 90 is a lid portion that covers the optical fiber F placed on the placing portion 92 .
  • the bent portion 90 is movable along the Y-axis direction, for example.
  • the bent portion 90 has a reflecting portion 74 like the lid portion 73 described above.
  • the bending section 90 has a bending adjustment section 93 for adjusting the bending amount of the optical fiber F.
  • the bending adjustment part 93 moves the bending part 90 along the direction of approaching the placing part 92 and separating from the placing part 92 .
  • the bending adjustment unit 93 adjusts the amount of bending of the optical fiber F by adjusting the pressing force from the bending unit 90 to the optical fiber F placed on the mounting unit 92 .
  • the bending adjustment unit 93 increases the amount of bending on the surface of the optical fiber F by increasing the pressing force from the bending unit 90 to the optical fiber F, and decreases the amount of bending on the surface of the optical fiber F by weakening the pressing force. do.
  • the optical fiber F is bent by pressing the optical fiber F with the bending portion 90 that is the lid portion.
  • the amount of bending of the optical fiber F by the bending section 90 is adjusted by the bending adjustment section 93, so that the amount of light on the end face can be adjusted by adjusting the amount of bending according to the light source 60.
  • each part of the fusion splicer can be changed as appropriate within the scope of the above gist.
  • the shape, size, number, material, and layout of each part of the fusion splicer according to the present disclosure are not limited to the above-described embodiments or modifications, and can be changed as appropriate.
  • the fusion splicer according to the present disclosure may be a combination of a plurality of the embodiments, the first modification, and the second modification described above.
  • the optical fiber holder 10 is attachable to and detachable from the holder base 40 .
  • the optical fiber holder does not have to be detachable from the holder base.
  • the fusion splicer may not have the holder base 40 .
  • a fusion splicer in which the optical fiber holder 10 is fixed to the rotating mechanism 20 may be used.
  • the fusion splicer may further include a reflector on the lid 13 or V-groove 11 of the optical fiber holder 10 .

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

一実施形態に係る融着接続機(1)は、光ファイバ(F)を保持する光ファイバホルダ(10)と、光ファイバ(F)に沿って延在する軸線を中心軸として光ファイバホルダ(10)を回転させる回転機構(20)と、光ファイバ(F)を曲げる曲げ部(50)と、曲げ部(50)によって曲げられた光ファイバ(F)に光ファイバ(F)の側方から光を入射する光源(60)と、光源(60)に電力を供給する電力供給部(69)と、を備える。光ファイバホルダ(10)の端部(10b)から光ファイバ(F)の先端が突出し、回転機構(20)は、光ファイバ(F)に沿って延在する軸線方向において光ファイバホルダ(10)における当該端部(10b)とは反対側に配置されている。曲げ部(50)及び光源(60)は、軸線方向において回転機構(20)を挟んで光ファイバホルダ(10)とは反対側に配置されている。曲げ部(50)は、光ファイバ(F)に対する曲げ量を調整する曲げ調整部(55)を有する。

Description

融着接続機
 本開示は、融着接続機に関する。
 本出願は、2021年8月5日の日本出願第2021-129081号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 特許文献1には、融着接続装置が記載されている。融着接続装置は、一対の光ファイバのそれぞれが載せられる一対のV溝台と、一対の光ファイバのそれぞれの側方に配置されるLEDランプと、一対の光ファイバを撮影する第1のテレビカメラ及び第2のテレビカメラとを備える。LEDランプは光ファイバの側方から光ファイバに光を入射する。側方から光ファイバに入射した光は光ファイバの端面から放射される。第1のテレビカメラ及び第2のテレビカメラは、光を放射する光ファイバの端面の像を撮像する。
 特許文献2には、光ファイバの接続装置が記載されている。接続装置は、一対のフォトニッククリスタルファイバ(PCF)を互いに接続する。接続装置は、2本のPCFのそれぞれを保持する2つの保持部材と、各保持部材を移動させる第1の駆動部と、2本のPCFの間に位置する鏡と、鏡に映る像を撮影するカメラとを備える。接続装置では、カメラの方から落射照明によってPCFに光が照射される。この光の照射によってPCFの端面全体を光らせた状態で当該端面のコアが観察される。
国際公開第2013/077002号 特開2004-53625号公報
 本開示に係る融着接続機は、光ファイバを保持する光ファイバホルダと、光ファイバに沿って延在する軸線を中心軸として光ファイバホルダを回転させる回転機構と、光ファイバを曲げる曲げ部と、曲げ部によって曲げられた光ファイバに光ファイバの側方から光を入射する光源と、光源に電力を供給する電力供給部と、を備える。光ファイバホルダの端部から光ファイバの先端が突出し、回転機構は、光ファイバに沿って延在する軸線方向において光ファイバホルダにおける当該端部とは反対側に配置されている。曲げ部及び光源は、軸線方向において回転機構を挟んで光ファイバホルダとは反対側に配置されている。曲げ部は、光ファイバに対する曲げ量を調整する曲げ調整部を有する。
図1は、実施形態に係る融着接続機を模式的に示す図である。 図2は、実施形態に係る融着接続機の光ファイバホルダ、回転機構、曲げ部及び光源を模式的に示す側面図である。 図3は、実施形態に係る融着接続機の光ファイバホルダ、回転機構、曲げ部及び光源を模式的に示す斜視図である。 図4は、実施形態に係る融着接続機の曲げ部、光源及び光ファイバを模式的に示す図である。 図5は、実施形態に係る融着接続機の曲げ部、光源及び光ファイバを模式的に示す図である。 図6は、実施形態に係る融着接続機の曲げ部、光源及び光ファイバを模式的に示す図である。 図7は、変形例に係る融着接続機の光ファイバホルダ、回転機構、曲げ部及び光源を模式的に示す側面図である。 図8は、変形例に係る融着接続機の光ファイバホルダ、回転機構、曲げ部及び光源を模式的に示す斜視図である。 図9は、変形例に係る融着接続機の曲げ部、光源及び光ファイバを模式的に示す図である。 図10は、変形例に係る融着接続機の曲げ部、光源及び光ファイバを模式的に示す図である。 図11は、変形例に係る融着接続機の曲げ部、光源及び光ファイバを模式的に示す図である。
 前述した落射照明等の光源が光ファイバを照射して光ファイバの端面を光らせる方法では、コア、クラッド、マーカの位置を精度よく特定することが難しい場合がある。光ファイバの端面を光らせる場合には、光源のパワーを強くしなければコア、クラッド、マーカの位置の特定に必要な光量が得られず、光ファイバの端面を十分に光らせることができないことがある。
 本開示は、光源のパワーを抑えることができると共に光ファイバの端面を十分に光らせることができる融着接続機を提供することを目的とする。
[本開示の実施形態の説明]
 最初に本開示の実施形態の内容を列記して説明する。本開示の一実施形態に係る融着接続機は、(1)光ファイバを保持する光ファイバホルダと、光ファイバに沿って延在する軸線を中心軸として光ファイバホルダを回転させる回転機構と、光ファイバを曲げる曲げ部と、曲げ部によって曲げられた光ファイバに光ファイバの側方から光を入射する光源と、光源に電力を供給する電力供給部と、を備える。光ファイバホルダの端部から光ファイバの先端が突出し、回転機構は、光ファイバに沿って延在する軸線方向において光ファイバホルダにおける当該端部とは反対側に配置されている。曲げ部及び光源は、軸線方向において回転機構を挟んで光ファイバホルダとは反対側に配置されている。曲げ部は、光ファイバに対する曲げ量を調整する曲げ調整部を有する。
 この融着接続機では、光ファイバホルダは光ファイバの先端を突出させた状態で光ファイバを保持する。光ファイバホルダの当該先端の反対側には、光ファイバホルダを回転させる回転機構が配置されている。融着接続機は、光ファイバを曲げる曲げ部と、曲げ部によって曲げられた光ファイバに光ファイバの側方から光を入射する光源とを備える。光源は電力供給部からの電力を受けて発光する。「電力供給部」とは、光源に電力を供給するものを示しており、例えば、光源に電気的に接続されている融着接続機の部分を示している。「電力供給部」は、例えばAC電源によって駆動する場合(融着接続機がバッテリ又は電池を有しない場合)には、電源(一例として家庭用電源、コンセント)に接続される融着接続機の配線部分であってもよい。「電力供給部」は、融着接続機がバッテリ又は電池を有する場合、当該バッテリ又は電池に接続される融着接続機の内部の配線部分であってもよい。融着接続機は、光源に電力を供給する電力供給部が接続された専用のバッテリ又は電池を有していてもよい。光ファイバを曲げる曲げ部及び光源は、回転機構から見て光ファイバホルダとは反対側に配置されている。曲げ部は、光ファイバに対する曲げ量を調整する曲げ調整部を有する。光源のパワーが強く、光ファイバの端面の光量が強すぎるときには曲げ調整部が曲げ量を低減し、光源のパワーが弱く、端面の光量が弱すぎるときに曲げ調整部が曲げ量を増大する調整が可能となるので、光源に応じた曲げ量の調整によって端面の光量の調整が可能となる。よって、光源のパワーが強くなくても光ファイバの端面を十分に光らせることができる。その結果、コアの位置を精度よく特定することができる。
 (2)上記(1)において、融着接続機は、光源に供給される電力を調整する光源調整部を更に有してもよい。この場合、光源調整部によって光源のパワーを調整できるので、光ファイバの端面へ到達する光量をより細かく調整できる。
 (3)上記(1)又は(2)において、光ファイバホルダは、光ファイバに加える圧力を調整する圧力調整部を有してもよい。この場合、圧力調整部が光ファイバへの圧力を調整することにより、光ファイバホルダにおいて端面への光量を調整することが可能となる。その結果、端面への光量の調整幅を広げることができる。
 (4)上記(1)から(3)のいずれかにおいて、融着接続機は、光源からの光を光ファイバに向けて反射する反射部を備えてもよい。この場合、反射部からの光が光ファイバに入射するので、光源のパワーが小さくても端面をより十分に光らせることができる。
 (5)上記(1)から(4)のいずれかにおいて、融着接続機は、光ファイバホルダを搭載するホルダ台を備えてもよい。光ファイバホルダは、ホルダ台に対して取り外し可能とされていてもよい。この場合、融着接続機がホルダ台を備えており、光ファイバホルダはホルダ台に対して取り外し可能とされている。ホルダ台から光ファイバホルダが着脱可能とされているので、回転機構に対する光ファイバの着脱を容易に行うことができる。
[本開示の実施形態の詳細]
 本開示の実施形態に係る融着接続機の具体例について説明する。図面の説明において同一又は相当する要素には同一の符号を付し、重複する説明を適宜省略する。また、図面は、理解の容易化のため、一部を簡略化又は誇張して描いている場合があり、寸法比率等は図面に記載のものに限定されない。
 最初に、本実施形態に係る融着接続機の構成について図1を参照しながら説明する。図1は、本実施形態に係る融着接続機の概要を説明するための図である。図1に示されるように、融着接続機1は、一対の光ファイバFを互いに融着接続する。融着接続機1は、V溝11を有する光ファイバホルダ10と、光ファイバホルダ10を回転させる回転機構20とを有する。一対の光ファイバFの軸線は、互いに一致する。「軸線」は、光ファイバの中心を通り且つ光ファイバの延在方向に沿って延びる光ファイバの中心線を示している。
 光ファイバホルダ10及び回転機構20は、光ファイバFの軸線が延びる方向である軸線方向に沿って並んでいる。XYZ三次元直交座標系を設定し、光ファイバの軸線をZ軸とした場合、光ファイバFの軸線方向はZ軸方向である。融着接続機1は、一対の光ファイバFのそれぞれが延在する方向であるZ軸方向に沿って並ぶ一対の光ファイバホルダ10と、Z軸方向に沿って並ぶ一対の回転機構20とを備える。各光ファイバホルダ10のV溝11には、融着接続の対象の光ファイバFが位置決めされる。光ファイバホルダ10は、一例として、樹脂製である。光ファイバホルダ10は、例えば、光ファイバFの被覆がある部分を保持する。光ファイバホルダ10は、光ファイバFの先端F1をZ軸方向に突出させた状態で保持する。光ファイバホルダ10は光ファイバFが突出する端部10bを有する。光ファイバホルダ10の端部10bから光ファイバFの先端F1が突出している。回転機構20は、軸線方向において光ファイバホルダ10における端部10bとは反対側に配置されている。
 一対の光ファイバFの先端F1が互いに対向する位置には、一対の放電電極2が配置されている。一対の放電電極2は、光ファイバFと交差する方向(例えばX軸方向)に沿って互いに対向する位置に配置される。光ファイバホルダ10は、例えば、Z軸方向に沿って延びるV溝11が形成されており光ファイバFが載置される台12と、台12に載せられる蓋13とを有する。台12及び蓋13は、例えば、X軸方向及びZ軸方向の双方に交差するY軸方向に沿って並ぶように配置される。
 一対の放電電極2は、一対の光ファイバFの先端F1同士を放電によって融着接続させる。例えば、融着接続機1は融着接続機1の各部を制御する制御部3を有する。制御部3が放電電極2の放電電流及び放電時間を制御することにより、光ファイバFの種類に合った融着条件で融着接続が行われる。融着接続機1では、制御部3によって一対の光ファイバFに対する位置合わせが行われる。
 制御部3は、各光ファイバFのX軸方向及びY軸方向における位置を調整すると共に、一対の光ファイバFがZ軸方向に沿って一直線上に並ぶように一対の光ファイバFの軸合わせを行う。すなわち、制御部3は、一対の光ファイバFのX軸方向、Y軸方向及びZ軸方向における調心を行う。制御部3は、回転機構20を制御して光ファイバFの中心に沿って延在する軸線(図中ではZ軸と同じ)を中心として光ファイバFを回転させることにより、θ方向の調心を行う。
 光ファイバFは、例えば、融着接続機1において回転調心が必要な光ファイバである。光ファイバFは、一対の光ファイバFのθ方向におけるコア、クラッド、マーカ等の位置を一致させることが必要な光ファイバである。例えば、光ファイバFは、マルチコア光ファイバ(MCF:Multi Core Fiber)、又は偏波保持ファイバ(PMF:Polarization Maintaining Fiber)である。
 図2は、融着接続機1の光ファイバホルダ10及び回転機構20を示す側面図である。図3は、融着接続機1の光ファイバホルダ10及び回転機構20を示す斜視図である。図2及び図3に示されるように、本実施形態に係る融着接続機1は、光ファイバホルダ10に保持された光ファイバFの先端F1側の部分を押さえるクランプ部30と、回転機構20に固定されたホルダ台40と、光ファイバFを曲げる曲げ部50と、光源60とを備える。
 クランプ部30によって押さえられる光ファイバFの部分は、例えば、光ファイバFの被覆付きの部分である。この場合、光ファイバFにおけるクランプ部30から突出する部分のみが、被覆が除去された部分である。しかしながら、クランプ部30によって押さえられる部分は光ファイバFの被覆が除去された部分(例えば光ファイバFのガラスが露出した部分)であってもよい。光ファイバFにおけるクランプ部30から突出する部分の長さは、例えば、5mm以下である。クランプ部30が光ファイバFを押さえる力の大きさは、光ファイバFの回転を阻害しない程度の大きさである。
 ホルダ台40は、例えば、金属製である。ホルダ台40は、光ファイバホルダ10を搭載する搭載面41を有する。例えば、光ファイバホルダ10はホルダ台40から着脱自在とされている。この場合、ホルダ台40から取り外された光ファイバホルダ10が光ファイバFを保持し、光ファイバFが保持された光ファイバホルダ10をホルダ台40に搭載することが可能となる。光ファイバFの直径(被覆径又はガラス径)に応じて適切なV溝11を有する光ファイバホルダ10に交換することが可能となる。
 ホルダ台40は、回転機構20からZ軸方向に延び出している。回転機構20は、光ファイバホルダ10から見て先端F1(端面)とは反対側に配置されている。回転機構20は、例えば、光ファイバFがY軸方向に沿って挿入される凹部20bを有する。凹部20bは、回転機構20の外周面20cからY軸方向に沿って窪むスリット状を呈する。回転機構20は、例えば、光ファイバFの中心に沿って延在する軸線、すなわち、Z軸と平行な軸を中心軸としてホルダ台40及び光ファイバホルダ10と共に光ファイバFを回転させる。
 回転機構20は、例えば、モータ(不図示)及びギア(不図示)を備える。この場合、回転機構20のモータが駆動してギアを介してモータの回転駆動力がホルダ台40及び光ファイバホルダ10に伝達することにより、ホルダ台40及び光ファイバホルダ10が回転する。光ファイバFは、回転機構20の凹部20bに挿入されており、且つ光ファイバホルダ10に保持されている。回転機構20による光ファイバホルダ10の回転に伴って光ファイバFも回転する。
 クランプ部30は、光ファイバホルダ10から突出する光ファイバFを保持するために設けられる。クランプ部30は、例えば、光ファイバFが載せられる台31と、台31に載せられた光ファイバFを覆う蓋32とを備える。クランプ部30は、光ファイバホルダ10からZ軸方向に延び出す光ファイバFを台31と蓋32の間に挟み込むことによって光ファイバFを保持する。
 台31には光ファイバFが載せられるV溝35が形成されており、V溝35に載せられた光ファイバFが蓋32に覆われる。例えば、クランプ部30は、台31からY軸方向に延びる第1延在部33と、第1延在部33の台31とは反対側の端部からホルダ台40の幅方向(X軸方向)に延びる第2延在部34とを備える。蓋32は、第2延在部34と台31の間に設けられる。
 融着接続機1は、光ファイバFを曲げる曲げ部50と、曲げ部50によって曲げられた光ファイバFに対して側方(例えばZ軸方向に交差する方向)から光を入射する光源60とを備える。曲げ部50及び光源60は、回転機構20から見て光ファイバホルダ10とは反対側に配置されている。曲げ部50及び光源60は回転機構20の隣接位置に配置される。
 曲げ部50は、光ファイバFを曲げる部位である。曲げ部50は、光ファイバFを押圧して光ファイバFの表面を曲げる部位であってもよい。図4は、曲げ部50及び光源60を模式的に示す図である。図4に示されるように、曲げ部50及び光源60は、例えば、光ファイバFを曲げる曲げ機構70に設けられる。
 曲げ機構70は、光ファイバFが載せられる支持部71と、曲げ部50と、曲げ部50に載せられた光ファイバFを覆う蓋部73とを備える。支持部71は、曲げられる光ファイバFを支持する。一例として、曲げ部50は光ファイバFが載せられる頂部51bが形成された凸面51を有する。凸面51は、例えば、湾曲面である。例えば、曲げ部50は、光ファイバFが載せられると共に支持部71に対して移動する。曲げ機構70は、例えば、Z軸方向に沿って並ぶ一対の支持部71を有し、一対の支持部71の間に曲げ部50が設けられる。一対の支持部71は、光ファイバFの曲げられる部分におけるZ軸方向の両端側の部分を支持する。曲げ部50は、例えば、Y軸方向に沿って移動可能とされている。
 例えば、光源60は曲げ部50に内蔵されている。光源60は、光ファイバFの先端F1の端面観察用の光源である。光源60は、曲げ部50によって曲げられた光ファイバFに対して側方(例えばZ軸方向に交差する方向)から光を入射する。光ファイバFの曲げられた部分に光源60から光が側方入射することにより、光ファイバFの端面におけるコアを観察可能となる。
 一例として、光源60はLED光源である。例えば、融着接続機1は電源61を備え、光源60は電源61から電力供給部69を介して電力を受けて発光する。例えば、曲げ機構70は、光源60に供給される電力(例えば電流)を調整する光源調整部65を有する。光源調整部65は、例えば、電力供給部69から受ける電力を調整し、調整した電力を光源60に供給する。これにより、光源60のパワーを調整することができる。その結果、光ファイバFに入射する光の強度を調整することができ、光ファイバFの端面へ到達する光量をより細かく調整できる。
 蓋部73は、光源60からの光を光ファイバFに向けて反射する反射部74を有する。反射部74は、例えば、蓋部73の曲げ部50(光源60)に対向する面73bに設けられる。反射部74は、例えば、面73bに貼り付けられたミラーである。しかしながら、反射部74は、ミラー以外のものであってもよく、例えば、蓋部73の鏡面研磨された部位であってもよい。このように反射部74が設けられることにより、光ファイバFへの光の結合効率を高めることができる。ところで、光ファイバFに側方入射する光の光量は、光ファイバFの曲げ量A(図5、図6参照)が大きいほど大きくなる。曲げ量とは、光ファイバの延在方向に交差する方向に光ファイバが曲げられる量を示している。例えば、曲げ量Aは、光ファイバFの曲げられていない部分から、曲げられた部分の当該交差する方向(図5及び図6の例ではY軸方向)の端部までの距離を示している。本実施形態に係る曲げ部50は、光ファイバFに対する曲げ量Aを調整する曲げ調整部55を有する。曲げ調整部55は、例えば、蓋部73に接近、及び蓋部73から離隔する方向(Y軸方向)に沿って曲げ部50を移動させる。
 図5及び図6は、曲げ調整部55によって光ファイバFの曲げ量Aが調整される状態の例を示している。図5及び図6に示されるように、曲げ調整部55は、曲げ部50を支持部71に対して移動させることにより、光ファイバFに対する曲げ量Aを調整する。例えば、曲げ調整部55が曲げ部50を蓋部73に接近させることによって光ファイバFの曲げ量Aを大きくし、曲げ調整部55が曲げ部50を蓋部73から離隔させることによって光ファイバFの曲げ量Aを小さくする。
 例えば、図2に示されるように、光ファイバホルダ10は、光ファイバFに対する圧力を調整する圧力調整部15を有する。圧力調整部15は、例えば、光ファイバFに対する押圧力を調整する。光ファイバホルダ10では、光ファイバFに対する押圧力が小さくなると、漏れ光が低減して光ファイバFの端面がより明るくなる。圧力調整部15による光ファイバFへの押圧力の調整は、例えば曲げ調整部55と同様に行われてもよいし、磁力によって行われてもよい。
 次に、曲げ部50及び光源60を用いて光ファイバFの端面を観察する方法の例について説明する。まず、光ファイバFがクランプ部30、光ファイバホルダ10、回転機構20及び曲げ機構70に配置される。そして、回転機構20が光ファイバFを回転し、曲げ部50が光ファイバFを曲げると共に光源60が光ファイバFに光を入射する。この状態で光った光ファイバFの端面が観察される。
 光ファイバホルダ10が圧力調整部15を有する場合には、以下の方法で光ファイバFの端面が観察されてもよい。具体的には、光ファイバホルダ10が光ファイバFを保持し、曲げ部50によって光ファイバFが曲げられる前に回転機構20が光ファイバFを回転する。その後、曲げ部50が光ファイバFを曲げ、光源60が光ファイバFに光を入射すると共に、圧力調整部15が光ファイバFへの押圧力を弱める。圧力調整部15が光ファイバFへの押圧力を弱めることによって明るく光った光ファイバFの端面が観察される。
 次に、本実施形態に係る融着接続機1から得られる作用効果について説明する。融着接続機1では、光ファイバホルダ10は光ファイバFの先端F1を突出させた状態で光ファイバFを保持する。光ファイバホルダ10の先端F1の反対側には、光ファイバホルダ10を回転させる回転機構20が配置されている。融着接続機1は、光ファイバFを曲げる曲げ部50と、曲げ部50によって曲げられた光ファイバFに光ファイバFの側方から光を入射する光源60とを備える。
 光ファイバFを曲げる曲げ部50及び光源60は、回転機構20から見て光ファイバホルダ10とは反対側に配置されている。曲げ部50は、光ファイバFに対する曲げ量Aを調整する曲げ調整部55を有する。従って、光源60のパワーが強く、光ファイバFの端面の光量が強すぎるときに曲げ調整部55が曲げ量Aを低減し、光源60のパワーが弱く、端面の光量が弱すぎるときに曲げ調整部55が曲げ量Aを増大する調整が可能となる。光源60に応じた曲げ量Aの調整によって端面の光量の調整が可能となる。よって、光源60のパワーが強くなくても光ファイバFの端面を十分に光らせることができる。その結果、コアの位置を精度よく特定することができる。
 融着接続機1は、光源60に供給される電力を調整する光源調整部65を有してもよい。この場合、光源調整部65によって光源60のパワーを調整できるので、光ファイバFの端面へ到達する光量をより細かく調整できる。
 光ファイバホルダ10は、光ファイバFに対する圧力を調整する圧力調整部15を有してもよい。この場合、圧力調整部15が光ファイバFへの圧力を調整することにより、光ファイバホルダ10において端面への光量を調整することが可能となる。その結果、端面への光量の調整幅を広げることができる。
 融着接続機1は、光源60からの光を光ファイバFに向けて反射する反射部74を備えてもよい。この場合、反射部74からの光が光ファイバFに入射するので、光源60のパワーが小さくても端面をより十分に光らせることができる。
 融着接続機1は、光ファイバホルダ10を搭載するホルダ台40を備えてもよい。光ファイバホルダ10は、ホルダ台40に対して取り外し可能とされていてもよい。この場合、融着接続機1がホルダ台40を備えており、光ファイバホルダ10はホルダ台40に対して取り外し可能とされている。ホルダ台40から光ファイバホルダ10が着脱可能とされているので、回転機構20に対する光ファイバFの着脱を容易に行うことができる。
 次に、第1変形例に係る融着接続機81について図7及び図8を参照しながら説明する。融着接続機81の一部の構成は、前述した融着接続機1の一部の構成と同一であるため、以下では融着接続機1の構成と同一の説明を同一の符号を付して適宜省略する。融着接続機81は、前述したクランプ部30に代えて、ホルダ台40と一体化されたクランプ部85を備える。
 例えば、光ファイバホルダ10の台12のZ軸方向の長さは、光ファイバホルダ10の蓋13のZ軸方向の長さよりも長い。例えば、台12は、蓋13よりも回転機構20の反対側に伸び出している。この場合、台12は、回転機構20とは反対側においてV溝11の一部が露出するV溝露出部12bを有する。V溝露出部12bに露出したV溝11に載せられた光ファイバFがクランプ部85に押さえられる。
 回転機構20は、例えば、光ファイバFの中心に沿って延在する軸を中心としてホルダ台40、光ファイバホルダ10及びクランプ部85と共に光ファイバFを回転させる。クランプ部85は、例えば、ホルダ台40からY軸方向に延びる固定部86と、固定部86のホルダ台40とは反対側の端部からホルダ台40の幅方向に延在する延在部87と、延在部87及び台12の間に介在する蓋部88とを有する。蓋部88は、台12のV溝11に載せられた光ファイバFを覆う。以上、融着接続機81について説明した。融着接続機81は曲げ部50及び光源60を備えるので、融着接続機81からは前述の融着接続機1と同様の作用効果が得られる。
 続いて、第2変形例に係る融着接続機について図9、図10及び図11を参照しながら説明する。第2変形例に係る融着接続機は、曲げ部50及び曲げ機構70とは異なる曲げ部90及び曲げ機構95を備える。曲げ機構95は、支持部71と、光ファイバFが載せられる載置部92とを備える。曲げ部90は、載置部92に載せられた光ファイバFを覆う蓋部である。曲げ部90は、例えば、Y軸方向に沿って移動可能とされている。
 例えば、曲げ部90は、前述した蓋部73と同様、反射部74を有する。曲げ部90は光ファイバFに対する曲げ量を調整する曲げ調整部93を有する。曲げ調整部93は、載置部92に接近、及び載置部92から離隔する方向に沿って曲げ部90を移動させる。曲げ調整部93は、載置部92に載せられた光ファイバFへの曲げ部90からの押圧力を調整することによって光ファイバFに対する曲げ量を調整する。曲げ調整部93は、曲げ部90から光ファイバFへの押圧力を強めることによって光ファイバFの表面における曲げ量を大きくし、当該押圧力を弱めることによって光ファイバFの表面における曲げ量を小さくする。
 以上、第2変形例に係る融着接続機では、蓋部である曲げ部90が光ファイバFを押圧することによって光ファイバFが曲げられる。この融着接続機では、曲げ部90による光ファイバFの曲げ量が曲げ調整部93によって調整されるので、光源60に応じた曲げ量の調整によって端面の光量の調整が可能となる。光源60のパワーが強くなくても光ファイバFの端面を十分に光らせることができるので、前述した融着接続機1と同様の作用効果が得られる。
 以上、実施形態及び種々の変形例に係る融着接続機について説明した。しかしながら、本発明は、前述した実施形態又は変形例に限られるものではない。すなわち、本発明が請求の範囲に記載された要旨の範囲内において種々の変形及び変更が可能であることは、当業者によって容易に認識される。融着接続機の各部の構成は上記の要旨の範囲内において適宜変更可能である。本開示に係る融着接続機の各部の形状、大きさ、数、材料及び配置態様は、前述した実施形態又は変形例に限られず、適宜変更可能である。本開示に係る融着接続機は、前述した実施形態、第1変形例及び第2変形例のうちの複数が組み合わされたものであってもよい。
 例えば、前述の実施形態では、ホルダ台40に対して光ファイバホルダ10が着脱可能である例について説明した。しかしながら、光ファイバホルダはホルダ台に対して着脱可能でなくてもよい。また、融着接続機は、ホルダ台40を有しなくてもよい。この場合、回転機構20に光ファイバホルダ10が固定された融着接続機であってもよい。
 前述の実施形態では、曲げ機構70、95の蓋部73や曲げ部90に反射部を設けた例について説明した。しかしながら、融着接続機は、更に光ファイバホルダ10の蓋13やV溝11に反射部を備えてもよい。これらの部分に反射部が設けられることにより、光ファイバFからの漏れ光を再度光ファイバFに入射させることができるため、より効率よく端面を光らせることができる。
1…融着接続機
2…放電電極
3…制御部
10…光ファイバホルダ
10b…端部
11…V溝
12…台
12b…V溝露出部
13…蓋
15…圧力調整部
20…回転機構
20b…凹部
20c…外周面
30…クランプ部
31…台
32…蓋
33…第1延在部
34…第2延在部
35…V溝
40…ホルダ台
41…搭載面
50…曲げ部
51…凸面
51b…頂部
55…曲げ調整部
60…光源
61…電源
65…光源調整部
69…電力供給部
70…曲げ機構
71…支持部
73…蓋部
73b…面
74…反射部
81…融着接続機
85…クランプ部
86…固定部
87…延在部
88…蓋部
90…曲げ部
92…載置部
93…曲げ調整部
95…曲げ機構
A…曲げ量
F…光ファイバ
F1…先端

 

Claims (5)

  1.  光ファイバを保持する光ファイバホルダと、
     前記光ファイバに沿って延在する軸線を中心軸として前記光ファイバホルダを回転させる回転機構と、
     前記光ファイバを曲げる曲げ部と、
     前記曲げ部によって曲げられた前記光ファイバに前記光ファイバの側方から光を入射する光源と、
     前記光源に電力を供給する電力供給部と、
    を備え、
     前記光ファイバホルダの端部から前記光ファイバの先端が突出し、
     前記回転機構は、前記光ファイバに沿って延在する軸線方向において前記光ファイバホルダにおける前記端部とは反対側に配置されており、
     前記曲げ部及び前記光源は、前記軸線方向において前記回転機構を挟んで前記光ファイバホルダとは反対側に配置されており、
     前記曲げ部は、前記光ファイバに対する曲げ量を調整する曲げ調整部を有する、
    融着接続機。
  2.  前記光源に供給される電力を調整する光源調整部を更に有する、
    請求項1に記載の融着接続機。
  3.  前記光ファイバホルダは、前記光ファイバに加える圧力を調整する圧力調整部を有する、
    請求項1又は2に記載の融着接続機。
  4.  前記光源からの光を前記光ファイバに向けて反射する反射部を備える、
    請求項1から請求項3のいずれか一項に記載の融着接続機。
  5.  前記光ファイバホルダを搭載するホルダ台を備え、
     前記光ファイバホルダは、前記ホルダ台に対して取り外し可能とされている、
    請求項1から請求項4のいずれか一項に記載の融着接続機。

     
PCT/JP2022/029550 2021-08-05 2022-08-01 融着接続機 WO2023013606A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020247003340A KR20240034199A (ko) 2021-08-05 2022-08-01 융착 접속기
JP2023540345A JPWO2023013606A1 (ja) 2021-08-05 2022-08-01
EP22853025.9A EP4382979A1 (en) 2021-08-05 2022-08-01 Fusion splicer
CN202280049900.8A CN117642663A (zh) 2021-08-05 2022-08-01 熔接机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021129081 2021-08-05
JP2021-129081 2021-08-05

Publications (1)

Publication Number Publication Date
WO2023013606A1 true WO2023013606A1 (ja) 2023-02-09

Family

ID=85155609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029550 WO2023013606A1 (ja) 2021-08-05 2022-08-01 融着接続機

Country Status (5)

Country Link
EP (1) EP4382979A1 (ja)
JP (1) JPWO2023013606A1 (ja)
KR (1) KR20240034199A (ja)
CN (1) CN117642663A (ja)
WO (1) WO2023013606A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116165745A (zh) * 2023-02-14 2023-05-26 浙江康阔光智能科技有限公司 侧向光纤注光器及其应用的光纤熔接工艺

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221712A (ja) * 1984-04-18 1985-11-06 Nippon Telegr & Teleph Corp <Ntt> 光フアイバと光信号素子との結合方法
JPS61270706A (ja) * 1985-05-24 1986-12-01 Sumitomo Electric Ind Ltd 光フアイバへのロ−カル入射方法
JP2003315595A (ja) * 2002-04-19 2003-11-06 Fujikura Ltd 光ファイバ処理装置
JP2004053625A (ja) 2002-07-16 2004-02-19 Mitsubishi Cable Ind Ltd 光ファイバの接続方法及び光ファイバの接続装置
JP2005164985A (ja) * 2003-12-03 2005-06-23 Furukawa Electric Co Ltd:The 光ファイバの回転装置及び融着接続装置
US20100074582A1 (en) * 2007-04-26 2010-03-25 Kossat Rainer M Splicing device for optical fibers and method for operating a splicing device for optical fibers
JP2012242599A (ja) * 2011-05-19 2012-12-10 Fujikura Ltd 光ファイバ判別方法及び光ファイバの融着接続方法
WO2013077002A1 (ja) 2011-11-21 2013-05-30 株式会社フジクラ 光ファイバの融着接続方法
JP2017021190A (ja) * 2015-07-10 2017-01-26 三菱電線工業株式会社 マルチコア光ファイバの接続方法
JP2017097200A (ja) * 2015-11-25 2017-06-01 株式会社フジクラ 側方入射装置及び側方入射方法
JP2021129081A (ja) 2020-02-17 2021-09-02 パナソニックIpマネジメント株式会社 蓋開閉機構および蓋開閉機構を備えた電子機器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221712A (ja) * 1984-04-18 1985-11-06 Nippon Telegr & Teleph Corp <Ntt> 光フアイバと光信号素子との結合方法
JPS61270706A (ja) * 1985-05-24 1986-12-01 Sumitomo Electric Ind Ltd 光フアイバへのロ−カル入射方法
JP2003315595A (ja) * 2002-04-19 2003-11-06 Fujikura Ltd 光ファイバ処理装置
JP2004053625A (ja) 2002-07-16 2004-02-19 Mitsubishi Cable Ind Ltd 光ファイバの接続方法及び光ファイバの接続装置
JP2005164985A (ja) * 2003-12-03 2005-06-23 Furukawa Electric Co Ltd:The 光ファイバの回転装置及び融着接続装置
US20100074582A1 (en) * 2007-04-26 2010-03-25 Kossat Rainer M Splicing device for optical fibers and method for operating a splicing device for optical fibers
JP2012242599A (ja) * 2011-05-19 2012-12-10 Fujikura Ltd 光ファイバ判別方法及び光ファイバの融着接続方法
WO2013077002A1 (ja) 2011-11-21 2013-05-30 株式会社フジクラ 光ファイバの融着接続方法
JP2017021190A (ja) * 2015-07-10 2017-01-26 三菱電線工業株式会社 マルチコア光ファイバの接続方法
JP2017097200A (ja) * 2015-11-25 2017-06-01 株式会社フジクラ 側方入射装置及び側方入射方法
JP2021129081A (ja) 2020-02-17 2021-09-02 パナソニックIpマネジメント株式会社 蓋開閉機構および蓋開閉機構を備えた電子機器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116165745A (zh) * 2023-02-14 2023-05-26 浙江康阔光智能科技有限公司 侧向光纤注光器及其应用的光纤熔接工艺
CN116165745B (zh) * 2023-02-14 2023-09-22 浙江康阔光智能科技有限公司 侧向光纤注光器及其应用的光纤熔接工艺

Also Published As

Publication number Publication date
CN117642663A (zh) 2024-03-01
KR20240034199A (ko) 2024-03-13
EP4382979A1 (en) 2024-06-12
JPWO2023013606A1 (ja) 2023-02-09

Similar Documents

Publication Publication Date Title
US9513439B2 (en) Optical fiber fusion splicer and optical fiber fusion splicing apparatus provided with same
WO2023013606A1 (ja) 融着接続機
US20140036256A1 (en) Method for distinguishing optical fiber and method for fusion-splicing optical fibers
EP1882964B1 (en) Optical connecting parts and optical connecting structure
CN205465163U (zh) 一种微米级的轴与孔的装配装置
WO2022244843A1 (ja) 融着接続機
JP2015155998A (ja) 光ファイバ切替装置および光ファイバ切替方法
WO2013077002A1 (ja) 光ファイバの融着接続方法
US20240230999A1 (en) Fusion splicing machine
WO2012101736A1 (ja) 融着接続装置及び融着接続方法
JP2007279291A (ja) 光ファイバ構造体及びその製造装置、並びに、それに用いられるブロック状チップ
WO2022239809A1 (ja) 融着接続機
WO2011061805A1 (ja) ファイバークランプ機構
KR102064838B1 (ko) 광섬유 융착접속기
JP2014123157A (ja) 光ファイバ判別方法及び光ファイバの融着接続方法
CN210465755U (zh) 一种光纤熔端机的成像结构及光纤熔端机
WO2023085332A1 (ja) 光ファイバの融着接続方法、及び、光ファイバの融着接続装置
JP3273489B2 (ja) 光ファイバのコア軸合せ方法
WO2023032506A1 (ja) 光ファイバの調芯方法、調芯装置および接続装置
JP3007827B2 (ja) 光ファイバアレーの組立方法
JP2005017662A (ja) 光ファイバ融着接続装置及び融着接続方法
JP3345848B2 (ja) 光ファイバ融着接続方法とその装置
JP2000019340A (ja) 光ファイバ融着接続機の光ファイバ押え機構および光ファイバ融着接続機における光ファイバ押え方法
JPH085859A (ja) 光ファイバ融着接続方法とその装置
JPH01205108A (ja) 光ファイバの融着接続装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22853025

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023540345

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280049900.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247003340

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022853025

Country of ref document: EP

Effective date: 20240305