WO2023013441A1 - 組成物およびフィラー混合物 - Google Patents

組成物およびフィラー混合物 Download PDF

Info

Publication number
WO2023013441A1
WO2023013441A1 PCT/JP2022/028465 JP2022028465W WO2023013441A1 WO 2023013441 A1 WO2023013441 A1 WO 2023013441A1 JP 2022028465 W JP2022028465 W JP 2022028465W WO 2023013441 A1 WO2023013441 A1 WO 2023013441A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermally conductive
conductive filler
composition
group
less
Prior art date
Application number
PCT/JP2022/028465
Other languages
English (en)
French (fr)
Inventor
彩子 藤井
淳 坂本
勲 正田
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to CN202280053758.4A priority Critical patent/CN117813354A/zh
Priority to KR1020247002679A priority patent/KR20240042413A/ko
Priority to JP2023540255A priority patent/JPWO2023013441A1/ja
Publication of WO2023013441A1 publication Critical patent/WO2023013441A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular

Definitions

  • One embodiment of the present invention relates to a composition or filler mixture.
  • thermal interface materials are a material that mitigates the thermal resistance of the path through which heat generated by a heat-generating body such as a semiconductor element escapes to a heat sink or housing, and various forms such as sheets, gels, and greases are used.
  • a thermal interface material is a resin composition in which a thermally conductive filler is dispersed in a resin such as silicone resin, and silica, alumina, aluminum nitride, or the like is used as the thermally conductive filler. In such a resin composition, it is desired to increase the content of the thermally conductive filler in order to increase the thermal conductivity, and attempts have been made to improve the fillability of the filler.
  • Patent Documents 1 to 4 describe compositions containing two or more fillers.
  • One embodiment of the present invention provides a composition that has high fluidity while having high thermal conductivity.
  • a configuration example of the present invention is as follows.
  • the particle size at 50% of cumulative volume (D50 (A)) is 0.05 ⁇ m or more and less than 1.0 ⁇ m, and the particle size at 90% of cumulative volume (D90 (A)) is 2.0 ⁇ m or less, a thermally conductive filler (A); a thermally conductive filler (B); A composition containing a binder component (C) and satisfying the following requirements (1) to (3).
  • Requirement (1) Cumulative pore volume of pores having a pore diameter of 0.5 ⁇ m or less calculated from the pore diameter distribution measured by a mercury porosimeter in the entire thermally conductive filler (B) used in the composition.
  • the ratio of the BET specific surface area SA [m 2 /g] to the D90 (A) [ ⁇ m] of the thermally conductive filler (A) is 4.0 or more.
  • SA ⁇ Density ratio Y which is the ratio of pressed bulk density [g/cm 3 ] to true density [g/cm 3 ] (pressed bulk density/true density) for (D90(A)-D50(A))
  • SA ⁇ Density ratio Y which is the ratio of pressed bulk density [g/cm 3 ] to true density [g/cm 3 ] (pressed bulk density/true density) for (D90(A)-D50(A))
  • thermally conductive filler (A) With respect to a total of 100% by volume of the thermally conductive filler (A), the thermally conductive filler (B) and the binder component (C), The amount of the thermally conductive filler (A) is 1 to 45% by volume, The amount of the thermally conductive filler (B) is 25 to 90% by volume, The composition according to any one of [1] to [7].
  • the thermally conductive filler (A) contains alumina
  • the thermally conductive filler (B) contains aluminum nitride or alumina, The composition according to any one of [1] to [8].
  • the particle size at 50% of cumulative volume (D50 (A)) is 0.05 ⁇ m or more and less than 1.0 ⁇ m, and the particle size at 90% of cumulative volume (D90 (A)) is 2.0 ⁇ m or less, a thermally conductive filler (A);
  • the particle size (D50(B)) of the entire thermally conductive filler (B) used in the filler mixture at 50% cumulative volume is 1.0 to 100 ⁇ m
  • the particle diameter (D10(B)) of the entire thermally conductive filler (B) used in the filler mixture is 0.6 ⁇ m or more at 10% of the cumulative volume.
  • the thermally conductive filler (A) contains alumina
  • the thermally conductive filler (B) contains aluminum nitride or alumina
  • FIG. 1 is an SEM image of a thermally conductive filler (A-1) used in the examples below.
  • FIG. 2 is an SEM image of the thermally conductive filler (A-3) used in the examples below.
  • FIG. 3 is an SEM image of the thermally conductive filler (A-4) used in the examples below.
  • composition is In the particle size distribution curve obtained by the laser diffraction method, the particle size (D50 (A)) at 50% of the cumulative volume is 0.05 ⁇ m or more and less than 1.0 ⁇ m, and the particle size at 90% of the cumulative volume (D90 (A) ) is 2.0 ⁇ m or less, and a thermally conductive filler (A), a thermally conductive filler (B); It contains a binder component (C) and satisfies the following requirements (1) to (3).
  • Requirement (1) Cumulative pore volume of pores having a pore diameter of 0.5 ⁇ m or less calculated from the pore diameter distribution measured by a mercury porosimeter in the entire thermally conductive filler (B) used in the present composition is 0.05 ml/g or less
  • a filler mixture according to one embodiment of the present invention (hereinafter also referred to as "this mixture") is In the particle size distribution curve obtained by the laser diffraction method, the particle size (D50 (A)) at 50% of the cumulative volume is 0.05 ⁇ m or more and less than 1.0 ⁇ m, and the particle size at 90% of the cumulative volume (D90 (A) ) is 2.0 ⁇ m or less, and a thermally conductive filler (A), It contains a thermally conductive filler (B) and satisfies the following requirements (4) to (6).
  • Requirement (4) The cumulative pore volume of pores having a pore diameter of 0.5 ⁇ m or less calculated from the pore diameter distribution measured by a mercury porosimeter in the entire thermally conductive filler (B) used in this mixture is 0.05 ml / g or less Requirement (5): The particle size (D50 (B)) of the entire thermally conductive filler (B) used in this mixture at 50% cumulative volume is 1.0 to 100 ⁇ m Requirement ( 6): The particle diameter (D10(B)) of the entire thermally conductive filler (B) used in the present mixture at 10% cumulative volume is 0.6 ⁇ m or more.
  • the mixture preferably consists of the thermally conductive filler (A) and the thermally conductive filler (B) only and satisfies the requirements (4) to (6).
  • This mixture is preferably used as a composition similar to this composition, further including the following binder component (C).
  • thermally conductive fillers (A) and (B) in the present composition and the present mixture are the thermally conductive fillers (A) and (B) used as raw materials for the preparation of the present composition and the present mixture. It refers to the particle size, pore volume, etc. D10, D50 and D90 in the present specification are particle sizes at which the volume accumulation is 10%, 50% and 90% respectively in the particle size distribution curve obtained by laser diffraction method. Measured by the method described.
  • the thermally conductive filler (A) has a particle size (D50 (A)) at 50% cumulative volume of 0.05 ⁇ m or more and less than 1.0 ⁇ m in a particle size distribution curve obtained by a laser diffraction method, and a cumulative volume of 90 % particle size (D90(A)) of 2.0 ⁇ m or less.
  • D50 (A) cumulative volume of 0.05 ⁇ m or more and less than 1.0 ⁇ m in a particle size distribution curve obtained by a laser diffraction method
  • D90(A) cumulative volume of 90 % particle size
  • One type of the thermally conductive filler (A) may be used, or two or more types having different types and particle sizes may be used.
  • the upper limit of D50(A) is less than 1.0 ⁇ m, preferably less than 0.8 ⁇ m, more preferably less than 0.6 ⁇ m, particularly preferably less than 0.4 ⁇ m, and the lower limit is 0.05 ⁇ m or more. , preferably 0.1 ⁇ m or more.
  • the thermally conductive filler (A) having D50 (A) in the above range can sufficiently fill the gaps between the thermally conductive fillers (B), so that it has high thermal conductivity and high fluidity. can be easily obtained.
  • the thermally conductive filler (A) having D50 (A) in the above range, furthermore, the particularly preferable range is present in the thermally conductive filler (B) in the present composition that satisfies the requirement (1).
  • the obtained pores can be sufficiently filled with the thermally conductive filler (A), and a decrease in fluidity due to penetration of the binder component (C) into the pores can be suppressed.
  • D50(A) is equal to or higher than the lower limit, it is possible to suppress an increase in the viscosity of the composition due to small particle size fillers.
  • the upper limit of D90 (A) is 2.0 ⁇ m or less, preferably 1.5 ⁇ m or less, more preferably 1.0 ⁇ m or less, and the lower limit is not particularly limited, but D50 (A) [ ⁇ m] or more.
  • the thermally conductive filler (A) having D90 (A) within the above range is considered to have a small content of aggregates in which the particles of the thermally conductive filler (A) aggregate and a small content of coarse particles. . Therefore, by using the thermally conductive filler (A) having D90 (A) in the above range, the gaps between the thermally conductive fillers (B) can be sufficiently filled, and the thermal conductivity is high. Also, a composition having high fluidity can be easily obtained.
  • the thermally conductive filler (A) preferably satisfies one or more of the following requirements (a1) to (a5), and more preferably satisfies all the requirements.
  • the particle size (D10(A)) of 10% of the cumulative volume of the thermally conductive filler (A) is preferably 0.50 ⁇ m or less, more preferably 0.30 ⁇ m or less, and still more preferably 0.20 ⁇ m or less, and the lower limit is Although not particularly limited, it is, for example, 0.02 ⁇ m or more.
  • D10(A) is within the above range, it is possible to easily obtain a composition having high fluidity while having high thermal conductivity.
  • the thermally conductive filler (A) having D10 (A) within the above range in the present composition that satisfies the requirement (1), converts pores that may exist in the thermally conductive filler (B) into the thermally conductive filler (B).
  • the filler (A) can be sufficiently filled, and the decrease in fluidity caused by the permeation of the binder component (C) into the pores can be suppressed.
  • D10(A) is at least the above lower limit, it is possible to suppress an increase in the viscosity of the composition due to the small particle size filler.
  • the ratio of the BET specific surface area SA [m 2 /g] to D90 (A) [ ⁇ m] of the thermally conductive filler (A) (SA/D90 (A)) is preferably 4.0 or more, more preferably 6 .0 or more, more preferably 30 or more, and the upper limit is not particularly limited, but is, for example, 50 or less.
  • the thermally conductive filler (A) having an SA/D90 (A) in the above range can sufficiently fill the gaps between the thermally conductive fillers (B), so it has a high thermal conductivity and a high A fluid composition can be easily obtained.
  • the SA can be measured by the method described in Examples below.
  • Y/D90 (A) is a parameter that is affected by the particle shape, and by using the thermally conductive filler (A) with Y/D90 (A) in the above range, high thermal conductivity can be obtained.
  • a composition having high fluidity can be easily obtained.
  • the pressurized bulk density can be measured by the method described in Examples below.
  • the true density can be measured using a dry automatic densitometer (eg Accupic series manufactured by Shimadzu Corporation).
  • alumina zinc oxide, magnesium oxide, titanium oxide, silicon nitride, aluminum nitride, boron nitride, aluminum hydroxide, magnesium hydroxide, silicon carbide, calcium carbonate, barium sulfate, talc, silica, diamond
  • the following true densities adopt the value of Alumina (3.98 g/cm 3 ), zinc oxide (5.67 g/cm 3 ), magnesium oxide (3.65 g/cm 3 ), titanium oxide (rutile type: 4.27 g/cm 3 , anatase type: 3.27 g/cm 3 ).
  • Ratio of the density ratio Y to the product of the specific surface area SA [m 2 /g] and D90 (A) [ ⁇ m] of the thermally conductive filler (A) is preferably 0.05 or more, more preferably 0.08 or more, still more preferably 0.09 or more, and particularly preferably 0.15 or more, and the upper limit is not particularly limited, but is, for example, 0.4 or less.
  • the Y/D90 relates to the shape of the thermally conductive filler (A).
  • the SA ⁇ D90 (A) is a parameter that qualitatively represents the surface unevenness of the thermally conductive filler (A). value tends to be large.
  • Y/(SA ⁇ D90 (A)) is a parameter that is affected by the particle shape and particle surface properties, and Y/(SA ⁇ D90 (A)) is within the range of the thermally conductive filler (A) By using, it is possible to easily obtain a composition having high fluidity while having high thermal conductivity.
  • the ratio of the density ratio Y (Y/(SA ⁇ (D90(A) ⁇ D50(A))) is preferably 0.08 or more, more preferably 0.14 or more, still more preferably 0.15 or more, especially It is preferably 0.40 or more, and although the upper limit is not particularly limited, it is, for example, 0.80 or less. It can be said that the smaller D90(A)-D50(A) is, the sharper the particle size distribution curve is (the less aggregation), and SA ⁇ (D90(A)-D50(A)) is the particle size and the particle size distribution (aggregation (presence or absence of particles) and the particle surface properties.
  • Y/(SA ⁇ (D90(A)-D50(A))) is a parameter that takes into account all of the particle size, particle size distribution (presence or absence of aggregation), particle shape and particle surface properties.
  • thermally conductive filler (A) is not particularly limited, but examples include alumina, zinc oxide, magnesium oxide, titanium oxide, silicon nitride, aluminum nitride, boron nitride, and aluminum hydroxide. , magnesium hydroxide, silicon carbide, calcium carbonate, barium sulfate, talc, silica, and diamond.
  • a filler obtained by combining a plurality of substances may be used as the thermally conductive filler (A).
  • the thermally conductive filler (A) is preferably alumina, silicon nitride, aluminum nitride, boron nitride, or diamond with high thermal conductivity. Alumina is more preferable because it is easy to use and is excellent in terms of cost.
  • the thermally conductive filler (A) may be a filler surface-treated with a surface treatment agent.
  • a surface treatment method any known method can be employed without any particular limitation, and it may be performed by a wet method or a dry method.
  • a known treatment agent such as a silane coupling agent can be used without particular limitation.
  • treating agent examples include alkoxysilanes (eg, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, trifluoropropyltrimethoxysilane, phenyltriethoxysilane, hexyltrimethoxysilane, , octyltriethoxysilane, decyltrimethoxysilane), silazanes (e.g. tetramethylsilazane, hexamethyldisilazane), cyclic siloxanes (e.g.
  • alkoxysilanes eg, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, trifluoropropyltrimethoxysilane, phenyltriethoxysilane, hex
  • the amount used is preferably 0.01 to 2 parts by mass with respect to 100 parts by mass of the filler before surface treatment.
  • the shape of the thermally conductive filler (A) is not particularly limited, but is preferably polyhedral spherical.
  • the polyhedral spherical shape refers to particles in which the thermally conductive filler (A) has at least two planes and the particle shape and size observed in an SEM image or the like are almost uniform. It refers to particles other than spherical particles that do not form, irregular particles that are observed in various shapes and sizes in SEM images, etc., and crushed particles that contain crushed powder (microparticles).
  • the thermally conductive filler (A) when alumina particles are used as the thermally conductive filler (A), the AA series and NXA series manufactured by Sumitomo Chemical Co., Ltd., which are polyhedral spherical fillers, are preferable, and among them, AA03F, NXA100, NXA150, etc., which have less aggregation, are more preferable. preferable.
  • the thermally conductive filler (A) has a polyhedral spherical shape, a flat surface exists on the particle surface, and the fillers can be in contact with each other through their flat portions. Since the contact area between them is large, thermal conductivity tends to be high, and a composition having high fluidity while having high thermal conductivity can be easily obtained.
  • the thermally conductive filler (B) is particularly useful if the thermally conductive filler (B) used in the present composition or the present mixture as a whole satisfies the following requirements (1) to (3) or the following requirements (4) to (6) Not restricted.
  • One type of the thermally conductive filler (B) may be used, or two or more types having different types, particle sizes, etc. may be used.
  • the composition satisfies requirement (1) below, and the mixture satisfies requirement (4) below.
  • Requirement (1) Cumulative pore volume of pores having a pore diameter of 0.5 ⁇ m or less calculated from the pore diameter distribution measured by a mercury porosimeter in the entire thermally conductive filler (B) used in the present composition is 0.05 ml/g or less
  • Requirement (4) The pore diameter of the entire thermally conductive filler (B) used in this mixture, calculated from the pore diameter distribution measured with a mercury porosimeter, is 0.5 ⁇ m or less Cumulative pore volume of a certain pore is 0.05 ml/g or less
  • the cumulative pore volume is preferably 0.04 ml/g or less, more preferably 0.03 ml/g or less, and the lower limit thereof is preferably 0 ml/g because the smaller the better.
  • the pores that may exist in the thermally conductive filler (B) can be sufficiently filled with the thermally conductive filler (A), and the pores are filled with the binder component (C). It is possible to suppress a decrease in fluidity due to permeation of such as.
  • a thermally conductive filler (B) V having a pore volume of y ml/g of pores having a pore diameter of 0.5 ⁇ m or less and a true density of ⁇ 1 g/cm 3 1 % by volume and 2 % by volume of a thermally conductive filler (B) V having a pore volume of zml/g with a pore diameter of 0.5 ⁇ m or less and a true density of ⁇ 2 g/cm 3
  • the cumulative pore volume is calculated by (y* V1 *[rho ]1 +z* V2 *[rho] 2 )/(V1 * [rho] 1 + V2 *[rho] 2 ).
  • the present composition or the present mixture uses three or more types of thermally conductive fillers (B) having pores with a pore diameter of 0.5 ⁇ m or less and different pore amounts, the same calculation is performed.
  • the composition satisfies requirement (2) below, and the mixture satisfies requirement (5) below.
  • Requirement (2) The particle diameter (D50 (B)) of the entire thermally conductive filler (B) used in the present composition at 50% cumulative volume is 1.0 to 100 ⁇ m
  • Requirement (5) Used in the present mixture The particle diameter (D50(B)) of the entire thermally conductive filler (B) at 50% volume cumulative is 1.0 to 100 ⁇ m
  • D50 (B) for the requirements (2) and (5) is preferably 3.0 ⁇ m or more, more preferably 6.0 ⁇ m or more, because a composition having high thermal conductivity can be easily obtained. , preferably 90 ⁇ m or less, more preferably 80 ⁇ m or less.
  • D50 (B) of the entire thermally conductive filler (B) used in the present composition or the present mixture is Heat conduction created by adding the apparent particle size distribution obtained by multiplying the raw data of the particle size distribution of each filler used as the thermally conductive filler (B) by the blending ratio (% by volume) of each filler 50% of the cumulative volume in the particle size distribution data of the entire synthetic filler (B).
  • the composition satisfies requirement (3) below, and the mixture satisfies requirement (6) below.
  • the lower limit of D10(B) for the requirements (3) and (6) is preferably 0.8 ⁇ m or more, more preferably 1.0 ⁇ m or more, and the upper limit is usually 30 ⁇ m or less, preferably 20 ⁇ m or less, and more It is preferably 10 ⁇ m or less.
  • the thermally conductive filler (A) can be Further fluidity and thermal conductivity improvement effect can be sufficiently exhibited when the is added.
  • D10 (B) of the entire thermally conductive filler (B) used in the present composition or the present mixture is It is calculated from the particle size distribution data of the entire thermally conductive filler (B).
  • the method for creating the particle size distribution data for the entire thermally conductive filler (B) is the same as for D50 (B).
  • thermally conductive filler (B) is not particularly limited, and examples include alumina, zinc oxide, magnesium oxide, titanium oxide, silicon nitride, aluminum nitride, boron nitride, aluminum hydroxide, magnesium hydroxide, silicon carbide, and calcium carbonate. , barium sulfate, talc, silica, and diamond.
  • a filler obtained by combining a plurality of substances may be used as the thermally conductive filler (B).
  • the thermally conductive filler (B) is preferably alumina, silicon nitride, aluminum nitride, boron nitride, or diamond with high thermal conductivity. , aluminum nitride is more preferred.
  • the thermally conductive filler (B) may be a filler surface-treated with a surface treatment agent, similar to the thermally conductive filler (A).
  • the method of surface treatment, the type of surface treatment agent, the amount of surface treatment agent used, etc. are the same as those described in the column for the thermally conductive filler (A).
  • the shape of the thermally conductive filler (B) is not particularly limited. From the viewpoint of fluidity, a spherical shape, a polyhedral spherical shape, an ellipsoidal shape, or a rounded shape is more preferable. Agglomerated, crushed, amorphous and platelet fillers may be used to increase thermal conductivity.
  • binder component (C) Specific examples include a component obtained by blending an additive with a resin, if necessary.
  • One type of the binder component (C) may be used, or two or more types may be used.
  • additives examples include curing agents, plasticizers, affinity agents, curing accelerators, anti-tarnishing agents, surfactants, dispersants, coupling agents, coloring agents, viscosity modifiers, and antibacterial agents.
  • Additives contained in the binder component (C) may be of one type or two or more types.
  • the resin is not particularly limited, and examples thereof include silicone resins, epoxy resins, acrylic resins, urethane resins, phenol resins, curable polyimide resins, curable modified PPE, and curable PPE.
  • the resin contained in the binder component (C) may be one kind, or two or more kinds.
  • the content of the resin in the binder component (C) is generally 50 to 100% by volume, more preferably 50 to 100% by volume, from the viewpoint of the mechanical properties of the composition and the durability when the composition is used as a thermal interface material. is 60 to 95% by volume.
  • the resin is preferably a silicone resin from the viewpoint that a composition having excellent heat resistance can be easily obtained.
  • the silicone resin may be a curable silicone resin or a non-curable silicone resin.
  • Curable silicone resins include, for example, addition reaction type silicone resins and condensation reaction type silicone resins.
  • Hydrolyzable silicone resins such as aluminum nitride are added to the thermally conductive filler (A) or the thermally conductive filler (B). When using the filler, it is desirable to use an addition reaction type silicone resin.
  • a polyorganosiloxane (a) having an alkenyl group and a polyorganosiloxane (b) having a hydrosilyl group are crosslinked by a hydrosilylation reaction using a catalyst (c).
  • Resins are preferred.
  • a compound selected from the group consisting of alkoxysilyl group-containing compounds and dimethylpolysiloxane can also be used as the silicone resin.
  • alkenyl group-containing polyorganosiloxane examples include polyorganosiloxanes represented by the average composition formula RxjRykSiO [4-(j+k)]/2 .
  • the polyorganosiloxane (a) may be used alone or in combination of two or more.
  • R x is an alkenyl group.
  • the alkenyl group is preferably a group having 2 to 8 carbon atoms, such as vinyl, allyl, 1-butenyl, and 1-hexenyl, preferably vinyl.
  • the number of alkenyl groups in one molecule of the polyorganosiloxane is preferably 1 or more, more preferably 2 or more.
  • the alkenyl group may be bonded to a silicon atom at the end of the molecular chain, bonded to a silicon atom in the middle of the molecular chain, or bonded to both.
  • the physical properties of the resulting cured product, etc. it is preferable to bond to at least the silicon atoms at the molecular chain terminals, particularly to the silicon atoms at both molecular chain terminals.
  • R y is a substituted or unsubstituted monovalent hydrocarbon group containing no aliphatic unsaturation.
  • R y preferably has 1 to 12 carbon atoms, more preferably 1 to 10 carbon atoms.
  • R y include alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, hexyl group, octyl group, decyl group and dodecyl group; cycloalkyl groups such as cyclopentyl group, cyclohexyl group and cyclobutyl group; Aryl groups such as phenyl group, tolyl group, xylyl group and naphthyl group; Aralkyl groups such as benzyl group, phenylethyl group and phenylpropyl group; Groups substituted with halogen atoms, cyano groups, etc., for example, halogenated hydrocarbons such as chlor
  • j and k are positive numbers satisfying 0 ⁇ j ⁇ 3, 0 ⁇ k ⁇ 3, 1 ⁇ j+k ⁇ 3, preferably 0.0005 ⁇ j ⁇ 1, 1.5 ⁇ k ⁇ 2.4, 1.5 ⁇ j+k ⁇ 2.5, more preferably a number satisfying 0.001 ⁇ j ⁇ 0.5, 1.8 ⁇ k ⁇ 2.1, and 1.8 ⁇ j+k ⁇ 2.2 .
  • the molecular structure of the polyorganosiloxane (a) may be linear, branched, cyclic or three-dimensional network, and the polyorganosiloxane (a) may be a mixture of these.
  • the viscosity of the polyorganosiloxane (a) at 23° C. is preferably 0.1 to 10 Pa ⁇ s from the viewpoint that a composition having desired physical properties can be obtained with good workability.
  • polyorganosiloxane (b) having a hydrosilyl group examples include polyorganosiloxanes represented by the average composition formula RzmHnSiO [4-(m+n)]/2 .
  • the polyorganosiloxane (b) may be used alone or in combination of two or more.
  • R z is a substituted or unsubstituted monovalent hydrocarbon group containing no aliphatic unsaturation.
  • R z include alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, hexyl group, cyclohexyl group and octyl group; aryl group; aralkyl group such as benzyl group and phenylethyl group; groups in which some or all of the hydrogen atoms of these groups are substituted with halogen atoms such as fluorine, chlorine and bromine or cyano groups, for example, chloromethyl group, A bromoethyl group, a trifluoropropyl group, and a cyanoethyl group can be mentioned.
  • an alkyl group is preferred, and a methyl group is more preferred, from the viewpoints of ease of synthesis
  • n and n are numbers satisfying 0.5 ⁇ m ⁇ 2, 0 ⁇ n ⁇ 2 and 0.5 ⁇ m+n ⁇ 3, preferably 0.6 ⁇ m ⁇ 1.9 and 0.01 ⁇ n It is a number that satisfies ⁇ 1.0 and 0.6 ⁇ m+n ⁇ 2.8.
  • the amount of the polyorganosiloxane (b) used is such that a composition that has desired physical properties and the physical properties of which do not easily change over time can be easily obtained.
  • the amount is such that there are 0.1 to 2.0, preferably 0.2 to 1.5, silicon-bonded hydrogen atoms per alkenyl group bonded to an atom.
  • ⁇ Catalyst (c) As the catalyst (c), known platinum-based catalysts and the like used for curing silicone resins can be used without limitation. Examples of the catalyst (c) include platinum black, platinic chloride, chloroplatinic acid, reaction products of chloroplatinic acid and monohydric alcohols, complexes of chloroplatinic acid with olefins or vinylsiloxanes, platinum bisacetate Acetate is mentioned. The catalyst (c) may be used alone or in combination of two or more.
  • the use amount of the catalyst (c) in terms of platinum element may be the amount necessary for curing, and may be adjusted appropriately according to the desired curing speed, etc.
  • Alkoxysilyl group-containing compound As the alkoxysilyl group-containing compound, at least an alkoxysilyl group represented by the following formula (I) in one molecule is used because a composition having excellent workability can be easily obtained. is preferred. - SiR 11 3-z (OR 12 ) z (I) (In formula (I), R 11 is an alkyl group having 1 to 6 carbon atoms, preferably a methyl group, R 12 is an alkyl group having 1 to 6 carbon atoms, preferably a methyl group, and z is 1, 2 or 3.)
  • Examples of the compound having an alkoxysilyl group represented by formula (I) include compounds represented by the following formula (1).
  • the repeating unit with the repeating unit number a, the repeating unit with the repeating unit number b, and the repeating unit with the repeating unit number c need not be arranged as shown in the following formula (1).
  • a repeating unit with a repeating unit number of c may be present between a repeating unit with a repeating unit number of a and a repeating unit with a repeating unit number of b.
  • R 1 is a group having an alkoxysilyl group having 1 to 4 carbon atoms
  • R 2 is a group having a siloxane unit represented by the following formula (2) or a group having 6 to 18 carbon atoms
  • each R 3 is independently a monovalent hydrocarbon group having 1 to 6 carbon atoms or a hydrogen atom
  • each X is independently a divalent hydrocarbon group having 2 to 10 carbon atoms.
  • a hydrocarbon group or a group having 2 to 10 carbon atoms containing an ester bond, a and b are each independently an integer of 1 or more, c is an integer of 0 or more, and a+b+c is an integer of 4 or more be.
  • each R 4 is independently a monovalent hydrocarbon group having 1 to 12 carbon atoms
  • Y is a group having an alkoxysilyl group having 1 to 4 carbon atoms or an unsaturated aliphatic group.
  • d is an integer of 2 to 500, preferably an integer of 4 to 400, more preferably an integer of 10 to 200, and particularly preferably an integer of 10 to 60.
  • alkoxysilyl group-containing compound examples include compounds represented by the following formula (3).
  • R21eR22fSi OR23 ) 4- (e + f) ( 3)
  • R 21 is independently an alkyl group having 6 to 15 carbon atoms
  • R 22 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms ( excluding alkyl groups of 6 to 12)
  • R 23 is independently an alkyl group having 1 to 6 carbon atoms
  • e is an integer of 0 to 3
  • f is 0 to 2 is an integer of
  • e+f is an integer of 1 to 3.
  • R 21 examples include hexyl group, octyl group, nonyl group, decyl group, dodecyl group and tetradecyl group.
  • the alkoxysilyl group-containing compound becomes liquid at room temperature and is easy to handle, and wettability with the thermally conductive fillers (A) and (B) tends to be good, which is preferable. .
  • R 22 includes alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group and tert-butyl group; cycloalkyl groups such as cyclopentyl group, cyclohexyl group and cyclobutyl group; vinyl group and allyl group; Aryl groups such as phenyl group, tolyl group, xylyl group and naphthyl group; Aralkyl groups such as benzyl group, 2-phenylethyl group, 2-methyl-2-phenylethyl group and phenylpropyl group.
  • R 23 examples include methyl group, ethyl group, propyl group, butyl group, pentyl group and hexyl group, preferably methyl group and ethyl group.
  • alkoxysilyl group-containing compound examples include dimethylpolysiloxane in which one end of the molecular chain represented by the following formula (4) is blocked with an alkoxysilyl group.
  • R 31 is —O— or —CH 2 CH 2 —.
  • R 32 is independently an unsubstituted or substituted monovalent hydrocarbon group, specifically, the above formula ( The same groups as those exemplified for R 22 in 3) can be mentioned, and among these, alkyl groups and aryl groups are preferred, and methyl groups and phenyl groups are more preferred.
  • alkoxysilyl group-containing compound examples include compounds in which one or more methyl groups in the formula (4) are substituted with a monovalent hydrocarbon group other than a methyl group.
  • substituent examples include groups having 1 to 10 carbon atoms, and specific examples thereof include alkyl groups such as ethyl, propyl, butyl, hexyl and octyl; cyclopentyl and cyclohexyl; Alkyl group; Aryl group such as phenyl group and tolyl group; Aralkyl group such as 2-phenylethyl group and 2-methyl-2-phenylethyl group; 3,3,3-trifluoropropyl group, 2-(nonafluorobutyl ) ethyl group, 2-(heptadecafluorooctyl)ethyl group, p-chlorophenyl group and other halogenated hydrocarbon groups.
  • alkoxysilyl group-containing compound examples include dimethylpolysiloxane in which both ends of the molecular chain represented by the following formula (5) are blocked with alkoxysilyl groups.
  • R 34 , R 35 , R 36 and q are each independently synonymous with R 31 , R 32 , R 33 and p in formula (4) above, and h is the formula (
  • the viscosity of the compound represented by 5) at 23° C. [viscosity measured at 23° C. using a rotational viscometer in accordance with JIS K 6249:2003] is 10 to 10,000 mPa s, more preferably It is an integer that is 20 to 5,000 mPa s.)
  • alkoxysilyl group-containing compound examples include compounds in which one or more methyl groups in the formula (5) are substituted with a monovalent hydrocarbon group other than a methyl group.
  • substituent examples include the same groups as those exemplified as the substituent capable of substituting the methyl group in formula (4).
  • Examples of the dimethylpolysiloxane whose molecular chain ends are blocked with alkoxysilyl groups represented by the formula (5) include both-end methyldimethoxy-group dimethylpolysiloxane and both-end trimethoxy-group dimethylpolysiloxane.
  • Dimethylpolysiloxane examples include linear dimethylpolysiloxane represented by the following formula (6).
  • i is the viscosity of the compound represented by the formula (6) at 23°C [in accordance with JIS K 6249:2003, viscosity measured at 23°C using a rotational viscometer ] is an integer of 10 to 10,000 mPa s, more preferably 20 to 5,000 mPa s.)
  • Examples of the dimethylpolysiloxane include compounds in which one or more methyl groups in the formula (6) are substituted with monovalent hydrocarbon groups other than methyl groups. provided that the substituted compound has at least one -(Si(CH 3 ) 2 -O)- structure.
  • Examples of the substituent include the same groups as those exemplified as the substituent capable of substituting the methyl group in formula (4).
  • the alkoxysilyl group-containing compound and dimethylpolysiloxane may be used together with the polyorganosiloxane (a), polyorganosiloxane (b) and catalyst (c).
  • composition of this composition and this mixture The amount of each of the thermally conductive filler (A), the thermally conductive filler (B) and the binder component (C) in the present composition is preferably within the following range, and the thermally conductive filler (A) and The blending amount of each of the thermally conductive fillers (B) is preferably within the following ranges.
  • the blending amount of the thermally conductive filler (A) in the present composition is such that the voids between the thermally conductive fillers (B) can be sufficiently filled, and the pores that may exist in the thermally conductive fillers (B) can be sufficiently filled with the thermally conductive filler (A), and a composition having high thermal conductivity and high fluidity can be easily obtained.
  • the content is preferably 45% by volume or less, more preferably 40% by volume or less, and even more preferably 30% by volume or less.
  • the blending amount of the thermally conductive filler (A) in the present mixture is such that the voids between the thermally conductive fillers (B) can be sufficiently filled, and pores that may exist in the thermally conductive fillers (B) can be eliminated.
  • the thermally conductive filler (A) can be sufficiently filled, and a composition having high thermal conductivity and high fluidity can be easily obtained. preferably 2% by volume or more, more preferably 3% by volume or more, still more preferably 4% by volume or more, and preferably 55% by volume or less, relative to the total 100% by volume of A) and the thermally conductive filler (B); It is more preferably 45% by volume or less, still more preferably 35% by volume or less.
  • the blending amount of the thermally conductive filler (B) in the present composition is such that a composition having high thermal conductivity and high fluidity can be easily obtained.
  • A) usually 25% by volume or more, preferably 30% by volume or more, more preferably 35% by volume or more, usually 90% by volume, based on the total 100% by volume of the thermally conductive filler (B) and the binder component (C) % or less, preferably 85 volume % or less, more preferably 80 volume % or less.
  • the amount of the binder component (C) in the present composition is such that the layer obtained from the present composition can sufficiently retain the thermally conductive fillers (A) and (B). , usually 3% by volume or more, preferably 5% by volume or more, more preferably 7% by volume or more, and usually 40% by volume or less, relative to the total 100% by volume of the thermally conductive filler (B) and the binder component (C) , preferably 37% by volume or less, more preferably 30% by volume or less.
  • the present composition can be prepared by mixing the thermally conductive filler (A), the thermally conductive filler (B) and the binder component (C) by a conventionally known method.
  • the mixture can be prepared by mixing the thermally conductive filler (A) and the thermally conductive filler (B), and optionally the binder component (C), in a conventionally known manner.
  • the mixing method is not particularly limited, and can be carried out using a general mixer such as a planetary mixer, a kneader such as Trimix, or a roll kneader such as a triple roll.
  • a general mixer such as a planetary mixer, a kneader such as Trimix, or a roll kneader such as a triple roll.
  • each component may be added to a mixer or the like at the same time and mixed, or each component may be added to a mixer or the like sequentially and mixed.
  • the order of addition at this time is not particularly limited.
  • the mixing may be carried out under heating, or under a controlled atmosphere such as an inert gas atmosphere, if necessary.
  • thermo interface materials for efficiently dissipating heat generated from semiconductor parts mounted in home appliances, automobiles, (notebook) personal computers, etc.
  • heat dissipation Examples include grease, heat dissipation gel, adhesive, semiconductor encapsulant, and underfill.
  • the present composition is suitably used for electrical and electronic equipment.
  • the electric/electronic device is not particularly limited, but includes, for example, secondary batteries such as cell type lithium ion electrode secondary batteries and cell stack type fuel cells; electronic circuit boards such as printed circuit boards; In addition to installed PCs/servers, electronic devices equipped with power modules, ultra-LSIs, optical components (e.g.
  • optical pickups LEDs, organic ELs, laser diodes, LED arrays
  • home appliances digital video discs, mobile electronic devices such as telephones, smart phones, and home-use game machines
  • industrial devices such as inverters and switching power supplies
  • heat removal heat dissipation
  • ECU electronice control units
  • the composition can be in the form of grease (paste), gel, rubber, or the like.
  • the present composition when used between a heat generating element such as a device and a heat radiating member such as a heat sink, the present composition may be used as it is between the heat generating element and the heat radiating member, and the binder component (C) is
  • a curable resin When a curable resin is contained, a cured product obtained by curing the present composition may be used between the heating element and the heat radiating member.
  • the composition may be cured after being placed between the heat generating element and the heat dissipating member, or after curing the composition, the resulting cured product may be placed between the heat generating element and the heat dissipating member. You may arrange
  • the present composition Since the present composition has excellent fluidity, even if there are small gaps or irregularities between the heating element and the heat dissipating member, the present composition can fill the gaps and irregularities, resulting in excellent heat dissipation. Parts can be easily obtained.
  • the cured product of the present composition is also excellent in fluidity (flexibility, followability to the object), even if the cured product is used, the cured product can fill the gaps and unevenness, and the heat dissipation is improved. An excellent member can be easily obtained.
  • thermally conductive fillers (A-1) to (A-4), thermally conductive fillers (cA-1) to (cA-2), thermally conductive fillers ( B-1) to (B-8) and binder components (C-1) to (C-2) were used.
  • thermally conductive fillers (A-1) to (A-4) and thermal conductive fillers (cA-1) to (cA-2) were used.
  • the physical properties of these fillers were measured by the following methods. Table 1 shows the results. The particle shape of these fillers was observed with a scanning electron microscope (SEM) (manufactured by Hitachi High-Technologies Corporation, S-5500).
  • Thermal conductive filler (A-1) Alumina powder AA03F (manufactured by Sumitomo Chemical Co., Ltd., particle shape: polyhedral spherical shape (shape shown in FIG. 1))
  • Thermal conductive filler (A-3) alumina powder AKP30 (manufactured by Sumitomo Chemical Co., Ltd., particle shape: irregular shape (shape shown in FIG.
  • Thermal conductive filler (A-4) Alumina powder ASFP20 (manufactured by Denka Co., Ltd., particle shape: spherical without plane (shape shown in FIG. 3))
  • Thermal conductive filler (cA-1) Alumina powder AA03 (manufactured by Sumitomo Chemical Co., Ltd., particle shape: polyhedral spherical)
  • Thermal conductive filler (cA-2) Alumina powder Tokuyama Co., Ltd. prepared product (particle shape: polyhedral spherical)
  • a sample was obtained by adding 50 mg of each filler to a solution prepared by adding 5 ml of a 5% sodium pyrophosphate aqueous solution to 90 ml of water, and dispersing the mixture with a homogenizer at an output of 200 mA for 3 minutes.
  • the particle size distribution of the obtained sample was measured using a laser diffraction particle size distribution analyzer (MICROTRACK-MT3300EXII manufactured by Microtrack Bell Co., Ltd.). D10, D50 and D90 of each filler were obtained from the obtained particle size distribution curve.
  • the specific surface area of each filler was determined by the BET method using N 2 adsorption using a fluidized surface area automatic measuring device (Shimadzu Corporation: Flowsorb 2300).
  • thermally conductive fillers (B-1) to (B-8) were used.
  • the D10 and D50 of these fillers were measured in the same manner as for the thermally conductive filler (A), and the pore volume of pores with a pore diameter of 0.5 ⁇ m or less was measured by the following method.
  • Thermally conductive filler (A-1) 21.14 parts by volume, thermally conductive filler (B-1) 5.03 parts by volume, thermally conductive filler (B-2) 52.36 parts by volume, binder component (C- 1) 2.92 parts by volume and 18.55 parts by volume of the binder component (C-2) were placed in a planetary mixer and kneaded at room temperature for 60 minutes to prepare a resin composition.
  • the thermal conductivity filler (A) has a specific gravity of 3.98 g/cm 3
  • the thermal conductivity filler (B) has a specific gravity of 3.26 g/cm 3
  • the binder component ( The specific gravity of C) was set to 0.98 g/cm 3 , and weight conversion was carried out so as to obtain the desired volume ratio.
  • thermal diffusivity ( ⁇ ), the density ( ⁇ ), and the specific heat (c) of the obtained sheet were measured by the following methods.
  • the density ( ⁇ ) of the sheet body was measured by the Archimedes method using an electronic balance (XS204V manufactured by Mettler Toledo KK).
  • specific heat (c) of the sheet body was measured using a differential scanning calorimeter (DSC8230 manufactured by Rigaku Corporation).

Abstract

本発明の一実施形態は、組成物またはフィラー混合物に関する。該組成物は、レーザー回折法で求めた粒度分布曲線における、体積累積50%の粒径(D50(A))が0.05μm以上1.0μm未満であり、かつ、体積累積90%の粒径(D90(A))が2.0μm以下である熱伝導性フィラー(A)と、熱伝導性フィラー(B)と、バインダー成分(C)とを含み、下記要件(1)~(3)を満たす。 要件(1):前記組成物に用いる熱伝導性フィラー(B)全体の、水銀ポロシメーターで測定した細孔直径分布から算出される細孔直径が0.5μm以下である細孔の累積細孔量が0.05ml/g以下である 要件(2):前記組成物に用いる熱伝導性フィラー(B)全体の、体積累積50%の粒径(D50(B))が1.0~100μmである 要件(3):前記組成物に用いる熱伝導性フィラー(B)全体の、体積累積10%の粒径(D10(B))が0.6μm以上である

Description

組成物およびフィラー混合物
 本発明の一実施形態は、組成物またはフィラー混合物に関する。
 近年、半導体素子の高出力化と実装密度の上昇に伴い、半導体素子から発生する熱を放熱するために、サーマルインターフェースマテリアルと呼ばれる一連の材料が多用されるようになってきている。サーマルインターフェースマテリアルとは、半導体素子等の発熱体から発生する熱をヒートシンクまたは筐体等に逃がす経路の熱抵抗を緩和するための材料であり、シート、ゲル、グリース等の多様な形態が用いられる。一般に、サーマルインターフェースマテリアルは、熱伝導性のフィラーを、シリコーン樹脂等の樹脂に分散した樹脂組成物であり、熱伝導性のフィラーとしては、シリカ、アルミナ、窒化アルミニウム等が用いられている。このような樹脂組成物においては、熱伝導率を高くするために熱伝導性フィラーの含有率を高めることが望まれており、フィラーの充填性を向上するための試みが行われてきている。
 樹脂組成物においてフィラーの充填性を向上させる手段としては、様々な粒径のフィラーを組み合わせて使用することが広く行われている。様々な粒径のフィラーを組み合わせた場合、粒径の大きな粒子の空隙に粒径の小さな粒子が入り込むことにより、高い充填性を得やすい。例えば、特許文献1~4には、2種類以上のフィラーを含む組成物が記載されている。
特開2017-014445号公報 特開2010-007039号公報 特開2009-164093号公報 国際公開第2018/131486号
 前記のとおり、高い熱伝導率を得るためには、熱伝導性フィラーの含有率を向上させることが考えられるが、単に熱伝導性フィラーの含有率を高めることにより熱伝導性を向上させると、樹脂組成物の流動性が低下してしまう。つまり、熱伝導率と流動性はトレードオフの関係にあると考えられる。
 サーマルインターフェースマテリアルは、デバイス等の発熱体とヒートシンク等の放熱部材との間に用いられることが多く、このような発熱体と放熱部材との間には、小さな隙間や凹凸が存在していることが多い。従って、発熱体と放熱部材との間に使用され、これらの間の熱抵抗を低減することが求められるサーマルインターフェースマテリアルには、該隙間や凹凸を埋めることができる(隙間や凹凸に追従できる)流動性が求められる。
 しかしながら、本発明者が鋭意検討したところ、前記特許文献1~4に記載の従来の組成物は、高い熱伝導率と高い流動性とのバランスの点で改良の余地があることが分かった。
 本発明の一実施形態は、高い熱伝導率を有しながらも、高い流動性を有する組成物を提供する。
 本発明者が研究を進めた結果、下記構成例によれば、前記課題を解決できることを見出した。本発明の構成例は、以下の通りである。
[1] レーザー回折法で求めた粒度分布曲線における、体積累積50%の粒径(D50(A))が0.05μm以上1.0μm未満であり、かつ、体積累積90%の粒径(D90(A))が2.0μm以下である熱伝導性フィラー(A)と、
 熱伝導性フィラー(B)と、
 バインダー成分(C)と
を含む、下記要件(1)~(3)を満たす組成物。
 要件(1):前記組成物に用いる熱伝導性フィラー(B)全体の、水銀ポロシメーターで測定した細孔直径分布から算出される細孔直径が0.5μm以下である細孔の累積細孔量が0.05ml/g以下である
 要件(2):前記組成物に用いる熱伝導性フィラー(B)全体の、体積累積50%の粒径(D50(B))が1.0~100μmである
 要件(3):前記組成物に用いる熱伝導性フィラー(B)全体の、体積累積10%の粒径(D10(B))が0.6μm以上である
[2] 前記熱伝導性フィラー(A)の、前記D90(A)[μm]に対するBET比表面積SA[m2/g]の比(SA/D90(A))が4.0以上である、[1]に記載の組成物。
[3] 前記熱伝導性フィラー(A)の、前記D90(A)[μm]に対する、真密度[g/cm3]に対する加圧嵩密度[g/cm3]の比(加圧嵩密度/真密度)である密度比Yの比(Y/D90(A))が0.5以上である、[1]または[2]に記載の組成物。
[4] 前記熱伝導性フィラー(A)の、BET比表面積SA[m2/g]と前記D90(A)[μm]との積に対する、真密度[g/cm3]に対する加圧嵩密度[g/cm3]の比(加圧嵩密度/真密度)である密度比Yの比(Y/(SA×D90(A)))が0.08以上である、[1]~[3]のいずれか1つに記載の組成物。
[5] 前記熱伝導性フィラー(A)が多面体球状である、[1]~[4]のいずれか1つに記載の組成物。
[6] 前記熱伝導性フィラー(A)のD50(A)が0.05μm以上0.6μm未満である、[1]~[5]のいずれか1つに記載の組成物。
[7] 前記熱伝導性フィラー(A)の、BET比表面積SA[m2/g]と、前記D90(A)[μm]および前記D50(A)[μm]の差との積(SA×(D90(A)-D50(A)))に対する、真密度[g/cm3]に対する加圧嵩密度[g/cm3]の比(加圧嵩密度/真密度)である密度比Yの比(Y/(SA×(D90(A)-D50(A))))が、0.14以上である、[1]~[6]のいずれか1つに記載の組成物。
[8] 前記熱伝導性フィラー(A)、熱伝導性フィラー(B)およびバインダー成分(C)の合計100体積%に対し、
 前記熱伝導性フィラー(A)の配合量が1~45体積%であり、
 前記熱伝導性フィラー(B)の配合量が25~90体積%である、
[1]~[7]のいずれか1つに記載の組成物。
[9] 前記熱伝導性フィラー(A)がアルミナを含有し、
 前記熱伝導性フィラー(B)が窒化アルミニウムまたはアルミナを含有する、
[1]~[8]のいずれか1つに記載の組成物。
[10] レーザー回折法で求めた粒度分布曲線における、体積累積50%の粒径(D50(A))が0.05μm以上1.0μm未満であり、かつ、体積累積90%の粒径(D90(A))が2.0μm以下である熱伝導性フィラー(A)と、
 熱伝導性フィラー(B)と
を含む、下記要件(4)~(6)を満たすフィラー混合物。
 要件(4):前記フィラー混合物に用いる熱伝導性フィラー(B)全体の、水銀ポロシメーターで測定した細孔直径分布から算出される細孔直径が0.5μm以下である細孔の累積細孔量が0.05ml/g以下である
 要件(5):前記フィラー混合物に用いる熱伝導性フィラー(B)全体の、体積累積50%の粒径(D50(B))が1.0~100μmである
 要件(6):前記フィラー混合物に用いる熱伝導性フィラー(B)全体の、体積累積10%の粒径(D10(B))が0.6μm以上である
[11] 前記熱伝導性フィラー(A)がアルミナを含有し、
 前記熱伝導性フィラー(B)が窒化アルミニウムまたはアルミナを含有する、
[10]に記載のフィラー混合物。
 本発明の一実施形態によれば、高い熱伝導率を有しながらも、高い流動性を有する組成物を提供することができる。
図1は、下記実施例で用いた熱伝導性フィラー(A-1)のSEM画像である。 図2は、下記実施例で用いた熱伝導性フィラー(A-3)のSEM画像である。 図3は、下記実施例で用いた熱伝導性フィラー(A-4)のSEM画像である。
 以下、本発明の実施形態を詳細に説明するが、本発明は下記の実施形態の構成に限定されない。
 なお、本明細書および特許請求の範囲では、数値範囲を示す「A~B」は、A以上B以下を示す。
 ≪組成物≫
 本発明の一実施形態に係る組成物(以下「本組成物」ともいう。)は、
 レーザー回折法で求めた粒度分布曲線における、体積累積50%の粒径(D50(A))が0.05μm以上1.0μm未満であり、かつ、体積累積90%の粒径(D90(A))が2.0μm以下である熱伝導性フィラー(A)と、
 熱伝導性フィラー(B)と、
 バインダー成分(C)と
を含み、下記要件(1)~(3)を満たす。
 要件(1):本組成物に用いる熱伝導性フィラー(B)全体の、水銀ポロシメーターで測定した細孔直径分布から算出される細孔直径が0.5μm以下である細孔の累積細孔量が0.05ml/g以下である
 要件(2):本組成物に用いる熱伝導性フィラー(B)全体の、体積累積50%の粒径(D50(B))が1.0~100μmである
 要件(3):本組成物に用いる熱伝導性フィラー(B)全体の、体積累積10%の粒径(D10(B))が0.6μm以上である
 ≪フィラー混合物≫
 本発明の一実施形態に係るフィラー混合物(以下「本混合物」ともいう。)は、
 レーザー回折法で求めた粒度分布曲線における、体積累積50%の粒径(D50(A))が0.05μm以上1.0μm未満であり、かつ、体積累積90%の粒径(D90(A))が2.0μm以下である熱伝導性フィラー(A)と、
 熱伝導性フィラー(B)と
を含み、下記要件(4)~(6)を満たす。
 要件(4):本混合物に用いる熱伝導性フィラー(B)全体の、水銀ポロシメーターで測定した細孔直径分布から算出される細孔直径が0.5μm以下である細孔の累積細孔量が0.05ml/g以下である
 要件(5):本混合物に用いる熱伝導性フィラー(B)全体の、体積累積50%の粒径(D50(B))が1.0~100μmである
 要件(6):本混合物に用いる熱伝導性フィラー(B)全体の、体積累積10%の粒径(D10(B))が0.6μm以上である
 本混合物は、前記熱伝導性フィラー(A)と、熱伝導性フィラー(B)とのみからなり、前記要件(4)~(6)を満たす混合物であることが好ましい。
 本混合物は、さらに下記バインダー成分(C)を含んで、本組成物と同様の組成物として使用することが好ましい。
 なお、本組成物や本混合物における熱伝導性フィラー(A)および(B)に関する規定は、本組成物や本混合物の調製の際に用いる原材料としての熱伝導性フィラー(A)および(B)が有している粒径、細孔量等のことをいう。
 本明細書におけるD10、D50およびD90はそれぞれ、レーザー回折法で求めた粒度分布曲線における、体積累積が10%、50%および90%となる粒径であり、具体的には、下記実施例に記載の方法で測定される。
 <熱伝導性フィラー(A)>
 熱伝導性フィラー(A)は、レーザー回折法で求めた粒度分布曲線における、体積累積50%の粒径(D50(A))が0.05μm以上1.0μm未満であり、かつ、体積累積90%の粒径(D90(A))が2.0μm以下であるフィラーである。
 熱伝導性フィラー(A)は、1種を用いてもよく、種類や粒径等の異なる2種以上を用いてもよい。
 前記D50(A)の上限は、1.0μm未満であり、好ましくは0.8μm未満、より好ましくは0.6μm未満、特に好ましくは0.4μm未満であり、下限は、0.05μm以上であり、好ましくは0.1μm以上である。
 D50(A)が前記範囲にある熱伝導性フィラー(A)は、熱伝導性フィラー(B)間の空隙を十分に埋めることができるため、高い熱伝導率を有しながらも、高い流動性を有する組成物を容易に得ることができる。特に、D50(A)が前記範囲、さらには、前記特に好ましい範囲にある熱伝導性フィラー(A)は、前記要件(1)を満たす本組成物において、熱伝導性フィラー(B)に存在し得る細孔を該熱伝導性フィラー(A)で十分に埋めることができ、この細孔にバインダー成分(C)が浸透することによる流動性の低下を抑制することができる。また、D50(A)が前記下限以上であることで、小粒径のフィラーによる組成物の粘度の上昇を抑制できる。
 前記D90(A)の上限は、2.0μm以下であり、好ましくは1.5μm以下、より好ましくは1.0μm以下であり、下限は特に制限されないが、D50(A)[μm]以上である。
 D90(A)が前記範囲にある熱伝導性フィラー(A)は、熱伝導性フィラー(A)の粒子が凝集した凝集体の含有量が少なく、かつ、粗粒の含有量も少ないと考えられる。このため、D90(A)が前記範囲にある熱伝導性フィラー(A)を用いることで、熱伝導性フィラー(B)間の空隙を十分に埋めることができ、高い熱伝導率を有しながらも、高い流動性を有する組成物を容易に得ることができる。
 熱伝導性フィラー(A)は、さらに、以下の要件(a1)~(a5)の1つ以上を満たすことが好ましく、全ての要件を満たすことがより好ましい。
 [要件(a1)]
 熱伝導性フィラー(A)の体積累積10%の粒径(D10(A))は、好ましくは0.50μm以下、より好ましくは0.30μm以下、さらに好ましくは0.20μm以下であり、下限は特に限定されないが、例えば0.02μm以上である。
 D10(A)が前記範囲にあると、高い熱伝導率を有しながらも、高い流動性を有する組成物を容易に得ることができる。特に、D10(A)が前記範囲にある熱伝導性フィラー(A)は、前記要件(1)を満たす本組成物において、熱伝導性フィラー(B)に存在し得る細孔を該熱伝導性フィラー(A)で十分に埋めることができ、この細孔にバインダー成分(C)が浸透することによる流動性の低下を抑制することができる。また、D10(A)が前記下限以上であると、小粒径のフィラーによる組成物の粘度の上昇を抑制できる。
 [要件(a2)]
 熱伝導性フィラー(A)の、D90(A)[μm]に対するBET比表面積SA[m2/g]の比(SA/D90(A))は、好ましくは4.0以上、より好ましくは6.0以上、さらに好ましくは30以上であり、上限は特に限定されないが、例えば50以下である。
 SA/D90(A)が前記範囲にある熱伝導性フィラー(A)は、熱伝導性フィラー(B)間の空隙を十分に埋めることができるため、高い熱伝導率を有しながらも、高い流動性を有する組成物を容易に得ることができる。
 該SAは、具体的には、下記実施例に記載の方法で測定できる。
 [要件(a3)]
 熱伝導性フィラー(A)の、前記D90(A)[μm]に対する、真密度[g/cm3]に対する加圧嵩密度[g/cm3]の比(加圧嵩密度/真密度)である密度比Yの比(Y/D90(A))は、好ましくは0.5以上、より好ましくは0.6以上、さらに好ましくは1.0以上であり、上限は特に限定されないが、例えば、4.0以下である。
 前記加圧嵩密度は、熱伝導性フィラー(A)に凝集体が少なく、非定形状粒子や破砕粉を有する破砕粒子が少ないと大きくなる。このため、前記加圧嵩密度の大きな熱伝導性フィラー(A)を用いて組成物を調製すると、組成物中で熱パスが形成されやすい。前記の通り、D90(A)は、凝集体の含有量が少ないほど小さい値になる。このため、Y/D90(A)は、粒子形状に影響を受けるパラメーターであり、Y/D90(A)が前記範囲にある熱伝導性フィラー(A)を用いることで、高い熱伝導率を有しながらも、高い流動性を有する組成物を容易に得ることができる。
 該加圧嵩密度は、具体的には、下記実施例に記載の方法で測定できる。
 なお、前記真密度は、乾式自動密度計(例:(株)島津製作所製のアキュピックシリーズ)を用いて測定することができ、本発明においては、フィラーの種類に応じて、具体的には、アルミナ、酸化亜鉛、酸化マグネシウム、酸化チタン、窒化ケイ素、窒化アルミニウム、窒化ホウ素、水酸化アルミニウム、水酸化マグネシウム、炭化ケイ素、炭酸カルシウム、硫酸バリウム、タルク、シリカ、ダイヤモンドの場合、以下の真密度の値を採用する。
 アルミナ(3.98g/cm3)、酸化亜鉛(5.67g/cm3)、酸化マグネシウム(3.65g/cm3)、酸化チタン(ルチル型:4.27g/cm3、アナターゼ型:3.91g/cm3)、窒化ケイ素(3.17g/cm3)、窒化アルミニウム(3.26g/cm3)、窒化ホウ素(h-BN:2.27g/cm3、c-BN:3.48g/cm3)、水酸化アルミニウム(2.42g/cm3)、水酸化マグネシウム(2.36g/cm3)、炭化ケイ素(3.16g/cm3)、炭酸カルシウム(カルサイト型:2.71g/cm3、アラゴナイト型:2.93g/cm3)、硫酸バリウム(4.50g/cm3)、タルク(2.7g/cm3)、シリカ(2.17g/cm3)、ダイヤモンド(3.52g/cm3)。
 [要件(a4)]
 熱伝導性フィラー(A)の、前記比表面積SA[m2/g]と前記D90(A)[μm]との積に対する、前記密度比Yの比(Y/(SA×D90(A)))は、好ましくは0.05以上、より好ましくは0.08以上、さらに好ましくは0.09以上、特に好ましくは0.15以上であり、上限は特に限定されないが、例えば0.4以下である。
 前記の通り、前記Y/D90は、熱伝導性フィラー(A)の形状に関する。また、前記SA×D90(A)は、熱伝導性フィラー(A)の表面凹凸を定性的に表すパラメーターであり、例えば、非定形状粒子や破砕粉を有する破砕粒子のSA×D90(A)の値は大きくなる傾向にある。このような非定形状粒子や破砕粉を有する破砕粒子は、熱伝導性フィラー(B)間の空隙をきれいに埋めることが容易ではないため、熱伝導率や流動性が低下する傾向にある。従って、Y/(SA×D90(A))は、粒子形状と粒子表面性状に影響を受けるパラメーターであり、Y/(SA×D90(A))が前記範囲にある熱伝導性フィラー(A)を用いることで、高い熱伝導率を有しながらも、高い流動性を有する組成物を容易に得ることができる。
 [要件(a5)]
 熱伝導性フィラー(A)の、前記比表面積SA[m2/g]と前記D90(A)とD50(A)との差(D90(A)-D50(A))との積に対する、前記密度比Yの比(Y/(SA×(D90(A)-D50(A))))は、好ましくは0.08以上、より好ましくは0.14以上、さらに好ましくは0.15以上、特に好ましくは0.40以上であり、上限は特に限定されないが、例えば0.80以下である。
 D90(A)-D50(A)が小さいほど、粒度分布曲線がシャープである(凝集が少ない)といえ、SA×(D90(A)-D50(A))は、粒径、粒度分布(凝集の有無)および粒子表面性状の影響を受けるパラメーターである。したがって、Y/(SA×(D90(A)-D50(A)))は、粒径、粒度分布(凝集の有無)、粒子形状および粒子表面性状の全てを加味したパラメーターとなる。Y/(SA×(D90(A)-D50(A)))が前記範囲にある熱伝導性フィラー(A)を用いることで、高い熱伝導率を有しながらも、高い流動性を有する組成物を容易に得ることができる。
 ・熱伝導性フィラー(A)の種類
 熱伝導性フィラー(A)の種類は特に限定されないが、例えば、アルミナ、酸化亜鉛、酸化マグネシウム、酸化チタン、窒化ケイ素、窒化アルミニウム、窒化ホウ素、水酸化アルミニウム、水酸化マグネシウム、炭化ケイ素、炭酸カルシウム、硫酸バリウム、タルク、シリカ、ダイヤモンドが挙げられる。熱伝導性フィラー(A)として複数の物質を組み合わせたフィラーを使用してもよい。
 本組成物や本混合物をサーマルインターフェースマテリアル等として使用する場合、熱伝導性フィラー(A)は、熱伝導率の高い、アルミナ、窒化ケイ素、窒化アルミニウム、窒化ホウ素、ダイヤモンドであることが好ましく、取り扱いが容易でコスト的に優れる点から、アルミナがより好ましい。
 熱伝導性フィラー(A)は、表面処理剤により表面処理が行われたフィラーであってもよい。該表面処理の方法としては、公知の方法を特に制限なく採用でき、湿式で行っても乾式で行ってもよい。
 前記表面処理剤としては、例えば、シランカップリング剤等の公知の処理剤が特に制限なく使用され得る。該処理剤の代表例としては、アルコキシシラン類(例:メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、トリフルオロプロピルトリメトキシシラン、フェニルトリエトキシシラン、ヘキシルトリメトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン)、シラザン類(例:テトラメチルシラザン、ヘキサメチルジシラザン)、環状シロキサン類(例:テトラメチルシクロテトラシロキサン、オクタメチルシクロテトラシロキサン、ヘキサメチルシクロトリシロキサン)が挙げられる。
 前記表面処理剤を使用する場合、その使用量は、表面処理前のフィラー100質量部に対して、好ましくは0.01~2質量部である。
 ・熱伝導性フィラー(A)の形状
 熱伝導性フィラー(A)の形状は特に制限されないが、好ましくは多面体球状である。なお、多面体球状とは、熱伝導性フィラー(A)が少なくとも2つの平面を有し、SEM画像等で観察される粒子形状や大きさがほぼ一様である粒子のことをいい、平面を有さない球状粒子、SEM画像等で様々な形状や大きさの粒子が観察される非定形状粒子、および、破砕粉(微小粒子)を有する破砕粒子以外の粒子のことをいう。例えば、熱伝導性フィラー(A)としてアルミナ粒子を用いる場合、多面体球状のフィラーである住友化学(株)製のAAシリーズやNXAシリーズが好ましく、その中でも凝集が少ないAA03FやNXA100、NXA150等がより好ましい。
 熱伝導性フィラー(A)が多面体球状であると、粒子表面に平面が存在し、フィラー同士が互いの平面部分を介して接触することができるため、点で接している粒子間に比べて粒子間の接触面積が大きいことから熱伝導性が高くなりやすく、さらに、高い熱伝導率を有しながらも、より高い流動性を有する組成物を容易に得ることができる。
 <熱伝導性フィラー(B)>
 熱伝導性フィラー(B)は、本組成物や本混合物に用いる熱伝導性フィラー(B)全体として、下記要件(1)~(3)または下記要件(4)~(6)を満たせば特に制限されない。
 熱伝導性フィラー(B)は、1種を用いてもよく、種類や粒径等の異なる2種以上を用いてもよい。
 本組成物は、下記要件(1)を満たし、本混合物は、下記要件(4)を満たす。
 要件(1):本組成物に用いる熱伝導性フィラー(B)全体の、水銀ポロシメーターで測定した細孔直径分布から算出される細孔直径が0.5μm以下である細孔の累積細孔量が0.05ml/g以下である
 要件(4):本混合物に用いる熱伝導性フィラー(B)全体の、水銀ポロシメーターで測定した細孔直径分布から算出される細孔直径が0.5μm以下である細孔の累積細孔量が0.05ml/g以下である
 前記累積細孔量は、好ましくは0.04ml/g以下、より好ましくは0.03ml/g以下であり、その下限は小さければ小さい方がよいため、好ましくは0ml/gである。
 累積細孔量が前記範囲にあると、熱伝導性フィラー(B)に存在し得る細孔を該熱伝導性フィラー(A)で十分に埋めることができ、この細孔にバインダー成分(C)等が浸透することによる流動性の低下を抑制することができる。
 例えば、本組成物や本混合物に、細孔直径が0.5μm以下である細孔の細孔量がyml/g、真密度がρ1g/cm3である熱伝導性フィラー(B)V1体積%と、細孔直径が0.5μm以下である細孔の細孔量がzml/g、真密度がρ2g/cm3である熱伝導性フィラー(B)V2体積%とを用いる場合、前記累積細孔量は、(y×V1×ρ1+z×V2×ρ2)/(V1×ρ1+V2×ρ2)で算出される。本組成物や本混合物が、細孔直径が0.5μm以下である細孔の細孔量の異なる3種以上の熱伝導性フィラー(B)を用いる場合も同様に算出する。
 本組成物は、下記要件(2)を満たし、本混合物は、下記要件(5)を満たす。
 要件(2):本組成物に用いる熱伝導性フィラー(B)全体の、体積累積50%の粒径(D50(B))が1.0~100μmである
 要件(5):本混合物に用いる熱伝導性フィラー(B)全体の、体積累積50%の粒径(D50(B))が1.0~100μmである
 前記要件(2)および(5)に関するD50(B)は、高い熱伝導率を有する組成物を容易に得ることができる等の点から、好ましくは3.0μm以上、より好ましくは6.0μm以上であり、好ましくは90μm以下、より好ましくは80μm以下である。
 本組成物や本混合物に、粒径の異なる2種以上の熱伝導性フィラー(B)を用いる場合、本組成物や本混合物に用いる熱伝導性フィラー(B)全体のD50(B)は、熱伝導性フィラー(B)として用いる各フィラーの粒度分布の各生データに、各フィラーの配合割合(体積%)を乗することにより得られたみかけの粒度分布を足し合わせることで作成した熱伝導性フィラー(B)全体の粒度分布データにおける体積累積50%の粒径とする。
 本組成物は、下記要件(3)を満たし、本混合物は、下記要件(6)を満たす。
 要件(3):本組成物に用いる熱伝導性フィラー(B)全体の、体積累積10%の粒径(D10(B))が0.6μm以上である
 要件(6):本混合物に用いる熱伝導性フィラー(B)全体の、体積累積10%の粒径(D10(B))が0.6μm以上である
 前記要件(3)および(6)に関するD10(B)の下限は、好ましくは0.8μm以上、より好ましくは1.0μm以上であり、上限は、通常30μm以下であり、好ましくは20μm以下、より好ましくは10μm以下である。
 本組成物もしくは本混合物に用いる熱伝導性フィラー(B)全体のD10(B)が前記範囲にあると、最密充填による熱伝導率と流動性を確保しながら、熱伝導性フィラー(A)を添加した時のさらなる流動性と熱伝導率向上効果を十分に発揮することができる。
 本組成物や本混合物に、粒径の異なる2種以上の熱伝導性フィラー(B)を用いる場合、本組成物や本混合物に用いる熱伝導性フィラー(B)全体のD10(B)は、熱伝導性フィラー(B)全体の粒度分布データから計算される。なお、熱伝導性フィラー(B)全体の粒度分布データの作成方法は、D50(B)と同様である。
 熱伝導性フィラー(B)の種類は特に限定されず、例えば、アルミナ、酸化亜鉛、酸化マグネシウム、酸化チタン、窒化ケイ素、窒化アルミニウム、窒化ホウ素、水酸化アルミニウム、水酸化マグネシウム、炭化ケイ素、炭酸カルシウム、硫酸バリウム、タルク、シリカ、ダイヤモンドが挙げられる。熱伝導性フィラー(B)として複数の物質を組み合わせたフィラーを使用してもよい。
 本組成物や本混合物をサーマルインターフェースマテリアル等として使用する場合、熱伝導性フィラー(B)は、熱伝導率の高い、アルミナ、窒化ケイ素、窒化アルミニウム、窒化ホウ素、ダイヤモンドであることが好ましく、アルミナ、窒化アルミニウムがより好ましい。
 熱伝導性フィラー(B)は、熱伝導性フィラー(A)と同様に、表面処理剤により表面処理が行われたフィラーであってもよい。表面処理の方法、表面処理剤の種類、表面処理剤の使用量等は、熱伝導性フィラー(A)の欄の記載と同様である。
 熱伝導性フィラー(B)の形状は特に制限されない。流動性の観点では、真球状や多面体球状、楕円体状、丸み状のものがより好ましい。熱伝導率を高くするために、凝集状や破砕状、非定形状、板状フィラーを使用してもよい。
 <バインダー成分(C)>
 バインダー成分(C)としては、具体的には、樹脂に必要に応じて添加剤を配合した成分が挙げられる。
 バインダー成分(C)は、1種を用いてもよく、2種以上を用いてもよい。
 前記添加剤としては、例えば、硬化剤、可塑剤、親和剤、硬化促進剤、変色防止剤、界面活性剤、分散剤、カップリング剤、着色剤、粘度調整剤、抗菌剤が挙げられる。バインダー成分(C)に含まれる添加剤はそれぞれ、1種でもよく、2種以上でもよい。
 前記樹脂は特に制限されず、例えば、シリコーン樹脂、エポキシ樹脂、アクリル樹脂、ウレタン樹脂、フェノール樹脂、硬化性ポリイミド樹脂、硬化型変性PPE、および硬化型PPEが挙げられる。バインダー成分(C)に含まれる樹脂は、1種でもよく、2種以上でもよい。
 バインダー成分(C)中の樹脂の含有量は、本組成物の機械物性、および、本組成物をサーマルインターフェースマテリアルとして用いた際の耐久性等の点から、通常50~100体積%、より好ましくは60~95体積%である。
 前記樹脂は、耐熱性に優れる組成物を容易に得ることができる等の点から、好ましくはシリコーン樹脂である。該シリコーン樹脂としては、硬化性のシリコーン樹脂であってもよく、非硬化性のシリコーン樹脂であってもよい。
 硬化性のシリコーン樹脂としては、例えば、付加反応型シリコーン樹脂、縮合反応型シリコーン樹脂が挙げられるが、熱伝導性フィラー(A)または熱伝導性フィラー(B)に窒化アルミニウムのような加水分解性のフィラーを使用する場合は、付加反応型シリコーン樹脂を用いることが望ましい。
 前記付加反応型シリコーン樹脂としては、例えば、アルケニル基を有するポリオルガノシロキサン(a)と、ヒドロシリル基を有するポリオルガノシロキサン(b)とを、触媒(c)を用いたヒドロシリル化反応にて架橋した樹脂が好ましい。
 また、シリコーン樹脂としてアルコキシシリル基含有化合物およびジメチルポリシロキサンからなる群より選択される化合物を使用することもできる。
 ・アルケニル基を有するポリオルガノシロキサン(a)
 前記アルケニル基を有するポリオルガノシロキサン(a)としては、例えば、平均組成式Rx jy kSiO[4-(j+k)]/2で表されるポリオルガノシロキサンが挙げられる。
 該ポリオルガノシロキサン(a)は、1種を用いてもよく、2種以上を用いてもよい。
 Rxは、アルケニル基である。アルケニル基は、炭素数が2~8の基であることが好ましく、例えば、ビニル基、アリル基、1-ブテニル基、1-ヘキセニル基が挙げられ、好ましくはビニル基である。
 前記ポリオルガノシロキサン1分子中のアルケニル基の数は、好ましくは1個以上、より好ましくは2個以上である。
 また、アルケニル基は、分子鎖末端のケイ素原子に結合していても、分子鎖途中のケイ素原子に結合していても、両者に結合していてもよいが、以下のように本組成物を硬化する場合の硬化速度、生成する硬化物の物性等の点から、少なくとも分子鎖末端のケイ素原子、特に分子鎖両末端のケイ素原子に結合していることが好ましい。
 Ryは、脂肪族不飽和結合を含まない置換または非置換の1価炭化水素基である。
 Ryの炭素数は、好ましくは1~12、より好ましくは1~10である。
 Ryとしては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ヘキシル基、オクチル基、デシル基、ドデシル基等のアルキル基;シクロペンチル基、シクロヘキシル基、シクロブチル基等のシクロアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基;これらの水素原子の一部または全部を塩素、フッ素、臭素等のハロゲン原子、シアノ基等で置換した基、例えば、クロロメチル基、トリフルオロプロピル基、クロロフェニル基、ブロモフェニル基、ジブロモフェニル基、テトラクロロフェニル基、フルオロフェニル基、ジフルオロフェニル基等のハロゲン化炭化水素基、α-シアノエチル基、β-シアノプロピル基、γ-シアノプロピル基等のシアノアルキル基が挙げられる。これらの中でも、好ましくは、アルキル基、アリール基であり、より好ましくは、メチル基、フェニル基である。
 jおよびkは、0<j<3、0<k<3、1<j+k<3を満足する正数であり、好ましくは0.0005≦j≦1、1.5≦k<2.4、1.5<j+k<2.5であり、より好ましくは0.001≦j≦0.5、1.8≦k≦2.1、1.8<j+k≦2.2を満足する数である。
 前記ポリオルガノシロキサン(a)の分子構造は、直鎖状、分岐状、環状あるいは三次元網状のいずれでもよく、前記ポリオルガノシロキサン(a)は、これらの混合物であってもよい。
 前記ポリオルガノシロキサン(a)の23℃における粘度は、所望の物性を有する組成物を作業性よく得ることができる等の点から、好ましくは0.1~10Pa・sである。
 ・ヒドロシリル基を有するポリオルガノシロキサン(b)
 前記ヒドロシリル基を有するポリオルガノシロキサン(b)としては、例えば、平均組成式Rz mnSiO[4-(m+n)]/2で表されるポリオルガノシロキサンが挙げられる。
 該ポリオルガノシロキサン(b)は、1種を用いてもよく、2種以上を用いてもよい。
 Rzは、脂肪族不飽和結合を含まない置換または非置換の1価炭化水素基である。
 Rzとしては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ヘキシル基、シクロヘキシル基、オクチル基等のアルキル基;フェニル基、トリル基等のアリール基;ベンジル基、フェニルエチル基等のアラルキル基;これらの基の水素原子の一部または全部を、フッ素、塩素、臭素等のハロゲン原子またはシアノ基で置換した基、例えば、クロロメチル基、ブロモエチル基、トリフルオロプロピル基、シアノエチル基が挙げられる。これらの中でも、合成のし易さやコスト等の点から、アルキル基が好ましく、メチル基がより好ましい。
 mおよびnは、0.5≦m≦2、0<n≦2、0.5<m+n≦3を満足する数であり、好ましくは0.6≦m≦1.9、0.01≦n≦1.0、0.6<m+n≦2.8を満足する数である。
 前記ポリオルガノシロキサン(b)の使用量は、所望の物性を有し、該物性が経時で変化し難い組成物を容易に得ることができる等の点から、前記ポリオルガノシロキサン(a)のケイ素原子に結合したアルケニル基1個に対して、ケイ素原子に結合した水素原子が0.1~2.0個、好ましくは0.2~1.5個となる量である。
 ・触媒(c)
 前記触媒(c)としては、シリコーン樹脂の硬化に用いられる公知の白金系触媒等を制限なく使用することができる。
 該触媒(c)としては、例えば、白金黒、塩化第二白金、塩化白金酸、塩化白金酸と一価アルコールとの反応物、塩化白金酸とオレフィン類やビニルシロキサンとの錯体、白金ビスアセトアセテートが挙げられる。
 該触媒(c)は、1種を用いてもよく、2種以上を用いてもよい。
 前記触媒(c)の白金元素換算の使用量は、硬化に必要な量であればよく、所望の硬化速度等に応じて適宜調整すればよいが、通常、前記ポリオルガノシロキサン(a)と(b)との合計100質量部に対し、好ましくは0.1~1000ppmである。
 ・アルコキシシリル基含有化合物
 前記アルコキシシリル基含有化合物としては、作業性に優れる組成物を容易に得ることができる等の点から、1分子中に少なくとも下記式(I)で表されるアルコキシシリル基を有する化合物が好ましい。
 -SiR11 3-z(OR12z   (I)
(式(I)中、R11は炭素数1~6のアルキル基であり、好ましくはメチル基であり、R12は炭素数1~6のアルキル基であり、好ましくはメチル基であり、zは1、2または3である。)
 前記式(I)で表されるアルコキシシリル基を有する化合物としては、例えば、下記式(1)で表される化合物が挙げられる。
 なお、下記式(1)では、繰り返し単位数aの繰り返し単位、繰り返し単位数bの繰り返し単位、繰り返し単位数cの繰り返し単位が下記式(1)で示される通りに配列している必要はなく、例えば、繰り返し単位数aの繰り返し単位と、繰り返し単位数bの繰り返し単位との間に、繰り返し単位数cの繰り返し単位が存在していてもよい。
Figure JPOXMLDOC01-appb-C000001
(式(1)中、R1は炭素数1~4のアルコキシシリル基を有する基であり、R2は下記式(2)で表されるシロキサン単位を有する基または炭素数6~18の1価の炭化水素基であり、R3はそれぞれ独立して、炭素数1~6の1価の炭化水素基または水素原子であり、Xはそれぞれ独立して、炭素数2~10の2価の炭化水素基またはエステル結合を含む炭素数2~10の基であり、aおよびbはそれぞれ独立して、1以上の整数であり、cは0以上の整数であり、a+b+cは4以上の整数である。)
Figure JPOXMLDOC01-appb-C000002
(式(2)中、R4はそれぞれ独立して、炭素数1~12の1価の炭化水素基であり、Yは、炭素数1~4のアルコキシシリル基を有する基または脂肪族不飽和基であり、dは2~500の整数であり、好ましくは4~400の整数、より好ましくは10~200の整数、特に好ましくは10~60の整数である。)
 前記アルコキシシリル基含有化合物としては、例えば、下記式(3)で表される化合物も挙げられる。
 R21 e22 fSi(OR234-(e+f)   (3)
(式(3)中、R21は独立に、炭素数6~15のアルキル基であり、R22は独立に、非置換または置換の炭素数1~12の1価の炭化水素基(炭素数6~12のアルキル基を除く)であり、R23は独立に、炭素数1~6のアルキル基であり、eは0~3の整数であり、好ましくは1であり、fは0~2の整数であり、e+fは1~3の整数である。)
 R21としては、例えば、ヘキシル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基が挙げられる。R21のアルキル基の炭素数が6~15であると、アルコキシシリル基含有化合物が常温で液状となり取扱いやすく、熱伝導性フィラー(A)や(B)との濡れ性が良好となりやすいため好ましい。
 R22としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基等のアルキル基;シクロペンチル基、シクロヘキシル基、シクロブチル基等のシクロアルキル基;ビニル基、アリル基等の脂肪族不飽和基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、2-フェニルエチル基、2-メチル-2-フェニルエチル基、フェニルプロピル基等のアラルキル基;これらの炭化水素基の水素原子の一部または全部を、塩素、フッ素、臭素等のハロゲン原子、シアノ基等で置換した基、例えば、クロロメチル基、トリフルオロプロピル基、3,3,3-トリフルオロプロピル基、2-(ノナフルオロブチル)エチル基、2-(ヘプタデカフルオロオクチル)エチル基、クロロフェニル基、ブロモフェニル基、ジブロモフェニル基、テトラクロロフェニル基、フルオロフェニル基、ジフルオロフェニル基等のハロゲン化炭化水素基や、α-シアノエチル基、β-シアノプロピル基、γ-シアノプロピル基等のシアノアルキル基が挙げられ、好ましくはメチル基、エチル基である。
 R23としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられ、好ましくはメチル基、エチル基である。
 前記式(3)において、eが1である化合物としては、例えば、C613Si(OCH33、C1021Si(OCH33、C1225Si(OCH33、C1225Si(OC253、C1021Si(CH3)(OCH32、C1021Si(C65)(OCH32、C1021Si(CH3)(OC252、C1021Si(CH=CH2)(OCH32、C1021Si(CH2CH2CF3)(OCH32が挙げられる。
 前記アルコキシシリル基含有化合物としては、例えば、下記式(4)で表される分子鎖片末端がアルコキシシリル基で封鎖されたジメチルポリシロキサンも挙げられる。
Figure JPOXMLDOC01-appb-C000003
(式(4)中、R31は-O-または-CH2CH2-である。R32は独立に、非置換または置換の一価炭化水素基であり、具体的には、前記式(3)のR22において例示した基と同様の基が挙げられ、これらの中でも好ましくは、アルキル基、アリール基であり、より好ましくはメチル基、フェニル基である。R33は独立に、炭素数1~6のアルキル基であり、好ましくは、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基である。gは5~100の整数であり、好ましくは5~70、特に好ましくは10~50の整数であり、pは1~3の整数であり、好ましくは2または3である。)
 なお、前記アルコキシシリル基含有化合物としては、前記式(4)中の1つ以上のメチル基が、メチル基以外の一価の炭化水素基で置換された化合物も挙げられる。
 該置換基としては、炭素数1~10の基が挙げられ、その具体例としては、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;フェニル基、トリル基等のアリール基;2-フェニルエチル基、2-メチル-2-フェニルエチル基等のアラルキル基;3,3,3-トリフルオロプロピル基、2-(ノナフルオロブチル)エチル基、2-(ヘプタデカフルオロオクチル)エチル基、p-クロロフェニル基等のハロゲン化炭化水素基が挙げられる。
 前記アルコキシシリル基含有化合物としては、例えば、下記式(5)で表される分子鎖両末端がアルコキシシリル基で封鎖されたジメチルポリシロキサンも挙げられる。
Figure JPOXMLDOC01-appb-C000004
(式(5)中、R34、R35、R36およびqはそれぞれ独立に、それぞれ前記式(4)のR31、R32、R33およびpと同義であり、hは、前記式(5)で表される化合物の23℃における粘度[JIS K 6249:2003に準拠して、回転粘度計を用いて23℃の条件で測定した粘度]が10~10,000mPa・s、より好ましくは20~5,000mPa・sとなるような整数である。)
 なお、前記アルコキシシリル基含有化合物としては、前記式(5)中の1つ以上のメチル基が、メチル基以外の一価の炭化水素基で置換された化合物も挙げられる。
 該置換基としては、前記式(4)のメチル基を置換可能な置換基として例示した基と同様の基が挙げられる。
 前記式(5)で表される分子鎖両末端がアルコキシシリル基で封鎖されたジメチルポリシロキサンとしては、例えば、両末端メチルジメトキシ基ジメチルポリシロキサン、両末端トリメトキシ基ジメチルポリシロキサンが挙げられる。
 ・ジメチルポリシロキサン
 前記ジメチルポリシロキサンとしては、例えば、下記式(6)で表される直鎖状のジメチルポリシロキサンが挙げられる。
Figure JPOXMLDOC01-appb-C000005
(式(6)中、iは、前記式(6)で表される化合物の23℃における粘度[JIS K 6249:2003に準拠して、回転粘度計を用いて23℃の条件で測定した粘度]が10~10,000mPa・s、より好ましくは20~5,000mPa・sとなるような整数である。)
 なお、前記ジメチルポリシロキサンとしては、前記式(6)中の1つ以上のメチル基が、メチル基以外の一価の炭化水素基で置換された化合物も挙げられる。但し、該置換された化合物は、少なくとも1つの-(Si(CH32-O)-の構造を有する。
 該置換基としては、前記式(4)のメチル基を置換可能な置換基として例示した基と同様の基が挙げられる。
 前記アルコキシシリル基含有化合物やジメチルポリシロキサンは、前記ポリオルガノシロキサン(a)、ポリオルガノシロキサン(b)や触媒(c)とともに用いてもよい。
 <本組成物および本混合物の組成>
 本組成物における熱伝導性フィラー(A)、熱伝導性フィラー(B)およびバインダー成分(C)それぞれの配合量は以下の範囲にあることが好ましく、本混合物における熱伝導性フィラー(A)および熱伝導性フィラー(B)それぞれの配合量は以下の範囲にあることが好ましい。
 本組成物における熱伝導性フィラー(A)の配合量は、熱伝導性フィラー(B)間の空隙を十分に埋めることができ、さらには、熱伝導性フィラー(B)に存在し得る細孔を該熱伝導性フィラー(A)で十分に埋めることができ、高い熱伝導率を有しながらも、高い流動性を有する組成物を容易に得ることができる等の点から、熱伝導性フィラー(A)、熱伝導性フィラー(B)およびバインダー成分(C)の合計100体積%に対し、好ましくは1体積%以上、より好ましくは2体積%以上、さらに好ましくは3体積%以上であり、好ましくは45体積%以下、より好ましくは40体積%以下、さらに好ましくは30体積%以下である。
 本混合物における熱伝導性フィラー(A)の配合量は、熱伝導性フィラー(B)間の空隙を十分に埋めることができ、さらには、熱伝導性フィラー(B)に存在し得る細孔を該熱伝導性フィラー(A)で十分に埋めることができ、高い熱伝導率を有しながらも、高い流動性を有する組成物を容易に得ることができる等の点から、熱伝導性フィラー(A)および熱伝導性フィラー(B)の合計100体積%に対し、好ましくは2体積%以上、より好ましくは3体積%以上、さらに好ましくは4体積%以上であり、好ましくは55体積%以下、より好ましくは45体積%以下、さらに好ましくは35体積%以下である。
 本組成物における熱伝導性フィラー(B)の配合量は、高い熱伝導率を有しながらも、高い流動性を有する組成物を容易に得ることができる等の点から、熱伝導性フィラー(A)、熱伝導性フィラー(B)およびバインダー成分(C)の合計100体積%に対し、通常25体積%以上、好ましくは30体積%以上、より好ましくは35体積%以上であり、通常90体積%以下、好ましくは85体積%以下、より好ましくは80体積%以下である。
 本組成物におけるバインダー成分(C)配合量は、本組成物から得られる層が、熱伝導性フィラー(A)および(B)を十分に保持できる等の点から、熱伝導性フィラー(A)、熱伝導性フィラー(B)およびバインダー成分(C)の合計100体積%に対し、通常3体積%以上、好ましくは5体積%以上、より好ましくは7体積%以上であり、通常40体積%以下、好ましくは37体積%以下、より好ましくは30体積%以下である。
 <本組成物および本混合物の調製方法>
 本組成物は、熱伝導性フィラー(A)、熱伝導性フィラー(B)およびバインダー成分(C)を従来公知の方法で混合することにより調製することができる。本混合物は、熱伝導性フィラー(A)および熱伝導性フィラー(B)、ならびに、任意に前記バインダー成分(C)を従来公知の方法で混合することにより調製することができる。
 前記混合方法としては特に制限されず、プラネタリーミキサー、トリミックス等のニーダー、三本ロール等のロール混練機等の一般的な混合機を用いて行うことができる。
 また、前記混合の際には、各成分を同時に混合機等に添加して混合してもよいし、各成分を順次混合機等に添加して混合してもよい。この際の添加順は特に制限されない。
 さらに、前記混合は、必要により、加熱下で行ってもよく、不活性ガス雰囲気等の雰囲気を調整した下で行ってもよい。
 <本組成物の用途等>
 本組成物の用途としては、家電製品、自動車、(ノート型)パーソナルコンピュータ等に搭載される半導体部品からの発熱を効率よく放熱するためのサーマルインターフェースマテリアル等が挙げられ、その具体例として、放熱グリース、放熱ゲル、接着剤、半導体封止剤、アンダーフィルが挙げられる。
 また、本組成物は、電気・電子機器にも好適に使用される。該電気・電子機器としては特に制限されないが、例えば、セル方式のリチウムイオン電極二次電池、セルスタック式の燃料電池等の二次電池;プリント基板等の電子回路基板;発熱量の多いCPUを搭載しているPC/サーバーの他、パワーモジュール、超LSI、光部品(例:光ピックアップやLED、有機EL、レーザーダイオード、LEDアレイ)を搭載した各電子機器;家電機器(デジタルビデオディスク、携帯電話、スマートフォン、家庭用ゲーム機等の電子機器)に使用されるCPU;インバーターやスイッチング電源等の産業用機器が挙げられる。特に、高集積密度で形成された高性能デジタル・スイッチング回路においては、集積回路の性能および信頼性に対して熱除去(放熱)が主要な要素となっているが、本組成物は、輸送機中のエンジン制御やパワー・トレーン系、エアコン制御等のパワー半導体用途に適用した場合にも、放熱性および取扱作業性に優れ、電子制御ユニット(ECU)等の車載電子部品に組み込まれて過酷な環境下で使用された場合にも、優れた熱伝導性を実現できる。
 本組成物は、グリース状(ペースト状)、ゲル状、ゴム状等の形態とすることができる。
 例えば、本組成物をデバイス等の発熱体とヒートシンク等の放熱部材との間に用いる場合、本組成物をそのまま発熱体と放熱部材との間に用いてもよく、前記バインダー成分(C)が硬化性の樹脂を含有する場合には、本組成物を硬化させた硬化物を発熱体と放熱部材との間に用いてもよい。後者の場合、本組成物を発熱体と放熱部材との間に配置した後、本組成物を硬化させてもよいし、本組成物を硬化させた後、得られた硬化物を発熱体と放熱部材との間に配置してもよい。
 本組成物は流動性に優れるため、発熱体と放熱部材との間に小さな隙間や凹凸が存在しても、該隙間や凹凸を本組成物が埋めることができ、結果として、放熱性に優れる部材を容易に得ることができる。また、本組成物の硬化物も流動性(柔軟性、対象への追従性)に優れるため、該硬化物を用いても、前記隙間や凹凸を該硬化物が埋めることができ、放熱性に優れる部材を容易に得ることができる。
 以下、本発明を実施例に基づいて更に具体的に説明するが、本発明はこれら実施例に限定されない。
 <原材料>
 実施例および比較例では、原材料として、以下の、熱伝導性フィラー(A-1)~(A-4)、熱伝導性フィラー(cA-1)~(cA-2)、熱伝導性フィラー(B-1)~(B-8)、バインダー成分(C-1)~(C-2)を用いた。
 <熱伝導性フィラー(A-1)~(A-4)および熱伝導性フィラー(cA-1)~(cA-2)>
 実施例および比較例では、以下の熱伝導性フィラー(A-1)~(A-4)および熱伝導性フィラー(cA-1)~(cA-2)を使用した。なお、これらのフィラーの物性は、以下の方法で測定した。結果を表1に示す。なお、これらのフィラーの粒子形状は、走査電子顕微鏡(SEM)(日立ハイテクノロジーズ製、S―5500)で観察した。
・「熱伝導性フィラー(A-1)」:アルミナ粉末 AA03F(住友化学(株)製、粒子形状:多面体球状(図1に示す形状))
・「熱伝導性フィラー(A-2)」:アルミナ粉末 NAX150(住友化学(株)製、粒子形状:多面体球状)
・「熱伝導性フィラー(A-3)」:アルミナ粉末 AKP30(住友化学(株)製、粒子形状:非定形状(図2に示す形状))
・「熱伝導性フィラー(A-4)」:アルミナ粉末 ASFP20(デンカ(株)製、粒子形状:平面を有さない球状(図3に示す形状))
・「熱伝導性フィラー(cA-1)」:アルミナ粉末 AA03(住友化学(株)製、粒子形状:多面体球状)
・「熱伝導性フィラー(cA-2)」:アルミナ粉末 (株)トクヤマ調製品(粒子形状:多面体球状)
 [粒度分布]
 前記各フィラー50mgを、水90mlに対し、5%ピロリン酸ソーダ水溶液を5ml加えた溶液の中に添加し、ホモジナイザーにて出力200mAで3分間分散させることで試料を得た。得られた試料の粒度分布を、レーザー回折型粒度分布測定装置(マイクロトラック・ベル(株)製:MICROTRACK-MT3300EXII)を用いて測定した。得られた粒度分布曲線から各フィラーのD10、D50およびD90を求めた。
 [BET比表面積]
 流動式表面積自動測定装置((株)島津製作所製:フローソーブ2300)を用いて、N2吸着によるBET法により、各フィラーの比表面積を求めた。
 [加圧嵩密度]
 上パンチ、下パンチ、および、ダイスからなるφ20mm穴径の金型に、測定対象のフィラー1.5gを秤量して入れ、200kgf/cm2で1分間加圧し、プレス体を得た。得られたプレス体の質量(w)を精密天秤で小数点4桁まで記録した。また、プレス体の円形の面において、円の中心を通る直線の、該円形の面の両端付近の2箇所において、プレス体の厚み(t1,t2)を、マイクロメーターを用いて1μm単位で測定した。その後、プレス体の質量(w)[g]と、厚み(t1,t2)[mm]とを用いて、以下の式から加圧嵩密度を算出した。
  加圧嵩密度[g/cm3]=20×w/((t1+t2)×π)で算出した。
 [真密度]
 前記フィラー(A-1)~(A-4)、(cA-1)、および(cA-2)の各々の真密度は、3.98[g/cm3]とした。
Figure JPOXMLDOC01-appb-T000006
 <熱伝導性フィラー(B-1)~(B-8)>
 実施例および比較例では、以下の熱伝導性フィラー(B-1)~(B-8)を使用した。なお、これらのフィラーのD10およびD50は、熱伝導性フィラー(A)と同様にして測定し、細孔直径0.5μm以下の細孔の細孔量は、以下の方法で測定した。
・「熱伝導性フィラー(B-1)」:窒化アルミニウム粉末(D10=0.6μm、D50=1μm、細孔直径0.5μm以下の細孔の細孔量=0.07ml/g)
・「熱伝導性フィラー(B-2)」:窒化アルミニウム粉末(D10=2.2μm、D50=9μm、細孔直径0.5μm以下の細孔の細孔量=0.01ml/g)
・「熱伝導性フィラー(B-3)」:窒化アルミニウム粉末(D10=19.4μm、D50=30μm、細孔直径0.5μm以下の細孔の細孔量=0.00ml/g)
・「熱伝導性フィラー(B-4)」:窒化アルミニウム粉末(D10=78.9μm、D50=120μm、細孔直径0.5μm以下の細孔の細孔量=0.00ml/g)
・「熱伝導性フィラー(B-5)」:窒化アルミニウム粉末(D10=0.6μm、D50=1μm、細孔直径0.5μm以下の細孔の細孔量=0.43ml/g)
・「熱伝導性フィラー(B-6)」:アルミナ粉末(D10=0.5μm、D50=1μm、細孔直径0.5μm以下の細孔の細孔量=0.05ml/g)
・「熱伝導性フィラー(B-7)」:アルミナ粉末(D10=4.7μm、D50=13μm、細孔直径0.5μm以下の細孔の細孔量=0.00ml/g)
・「熱伝導性フィラー(B-8)」:アルミナ粉末(D10=48μm、D50=75μm、細孔直径0.5μm以下の細孔の細孔量=0.00ml/g)
 [細孔の細孔量の測定]
 前処理として、測定対象のフィラーを120℃で4時間恒温乾燥した。その後、水銀ポロシメーター(micromeritics社製、オートポアV9620)を用いて、水銀圧入法により、細孔直径約0.0036~200μmの細孔分布を求めた。細孔直径はWashburnの式を用いて算出した。細孔直径0.5μm以下の細孔の細孔量は、フィラー1g当たりの、前記のようにして算出した細孔直径が0.5μm以下の細孔の体積を合計した値である。
  Washburnの式:P×D=-4σcosθ
〔Pは圧力であり、σは水銀の表面張力であり、Dは細孔直径であり、θは水銀とフィラーとの接触角である。なお、水銀の表面張力を480dynes/cmとし、水銀とフィラーとの接触角を140degreesとした。〕
 <バインダー成分(C-1)~(C-2)>
・「バインダー成分(C-1)」:デシルトリメトキシシラン
・「バインダー成分(C-2)」:両末端ビニルシリコーンとヒドロシリル基を有するポリオルガノシロキサンとを質量比で97:3の割合で混合して得られた混合物に対し、白金触媒(白金の1,2-ジビニルテトラメチルジシロキサン錯体)を白金元素換算で20ppm、1-エチニル-1-シクロヘキサノールを300ppm添加した混合物(粘度(25℃):100mPa・s)
 <実施例1>
 熱伝導性フィラー(A-1)21.14体積部、熱伝導性フィラー(B-1)5.03体積部、熱伝導性フィラー(B-2)52.36体積部、バインダー成分(C-1)2.92体積部、および、バインダー成分(C-2)18.55体積部をプラネタリーミキサーに入れ、室温で60分間混練することで樹脂組成物を調製した。なお、該樹脂組成物を調製する際には、熱伝導率フィラー(A)の比重を3.98g/cm3,熱伝導率フィラー(B)の比重を3.26g/cm3、バインダー成分(C)の比重を0.98g/cm3とし、所望の体積比となるように重量換算して計量を実施した。
 <実施例2~9、比較例1~6>
 用いる原材料の種類および量を表2に示す通りにした以外は、実施例1と同様にして、樹脂組成物を調製した。
 なお、表2において、樹脂組成物の欄の数値は、体積部を表す。
 [組成物の流動性]
 得られた樹脂組成物60gを、容量30ccのシリンジ(武蔵エンジニアリング(株)製、PSY-30F)に詰めて、25℃において、0.62MPaの圧力をピストンにかけることにより、1分間あたりに押し出された樹脂組成物の量(流動性[g/分])を計量した。
 なお、比較例4で得られた樹脂組成物は、固く、前記の方法で圧力をかけてもほとんど押し出されなかったため、流動性を測定できなかった。
 [シート体の形成]
 得られた樹脂組成物3gを、ナフロンシート(ニチアス(株)製)とSUS(ステンレス)板との間に配置することで得られた積層体を金型内に配置し、80℃で1時間にわたり、1トンの熱プレスを行うことにより、厚さ1mmのシート体を得た。
 [熱伝導率]
 熱伝導率を求めるために、得られたシート体を用いて、熱拡散率(α)、密度(ρ)、および、比熱(c)を以下の方法で測定した。
 得られたシート体について、熱拡散率測定装置((株)日立ハイテクサイエンス製、ai-Phase Mobile 2)を用いて、熱拡散率(α)を10回(N=10)測定し、その平均値を求めた。
 シート体の密度(ρ)を、電子天秤(メトラー・トレド(株)製、XS204V)を用いてアルキメデス法で測定した。
 さらに、示差走査熱量計((株)リガク製、DSC8230)を用いて、シート体の比熱(c)を測定した。
 熱拡散率(α)、密度(ρ)、および、比熱(c)を用いて、次式に従って熱伝導率(λ)を計算した。
  λ=α×ρ×c
Figure JPOXMLDOC01-appb-T000007
 樹脂組成物中のフィラー充填率が86.9体積%である実施例4~6および比較例4、5のいずれでも、熱伝導率は良好であるが、フィラー充填率が高いことから、いずれの樹脂組成物でも流動性は、フィラー充填率が約82.5体積%である実施例7より低くなった。しかしながら、実施例4、5のように多面体球状である熱伝導性フィラー(A-1)や(A-2)を用いた場合、フィラー充填率が著しく高い状況下でも流動性が高くなった。これは、熱伝導性フィラー(A-1)または(A-2)が、外力に応じて比較的滑らかに移動したためである、と推察される。

Claims (11)

  1.  レーザー回折法で求めた粒度分布曲線における、体積累積50%の粒径D50(A)が0.05μm以上1.0μm未満であり、かつ、体積累積90%の粒径D90(A)が2.0μm以下である熱伝導性フィラー(A)と、
     熱伝導性フィラー(B)と、
     バインダー成分(C)と
    を含む、下記要件(1)~(3)を満たす組成物。
     要件(1):前記組成物に用いる熱伝導性フィラー(B)全体の、水銀ポロシメーターで測定した細孔直径分布から算出される細孔直径が0.5μm以下である細孔の累積細孔量が0.05ml/g以下である
     要件(2):前記組成物に用いる熱伝導性フィラー(B)全体の、体積累積50%の粒径D50(B)が1.0~100μmである
     要件(3):前記組成物に用いる熱伝導性フィラー(B)全体の、体積累積10%の粒径D10(B)が0.6μm以上である
  2.  前記熱伝導性フィラー(A)の、前記D90(A)[μm]に対するBET比表面積SA[m2/g]の比SA/D90(A)が4.0以上である、請求項1に記載の組成物。
  3.  前記熱伝導性フィラー(A)の、前記D90(A)[μm]に対する、真密度[g/cm3]に対する加圧嵩密度[g/cm3]の比である密度比Yの比Y/D90(A)が0.5以上である、請求項1に記載の組成物。
  4.  前記熱伝導性フィラー(A)の、BET比表面積SA[m2/g]と前記D90(A)[μm]との積に対する、真密度[g/cm3]に対する加圧嵩密度[g/cm3]の比である密度比Yの比Y/(SA×D90(A))が0.08以上である、請求項1に記載の組成物。
  5.  前記熱伝導性フィラー(A)が多面体球状である、請求項1に記載の組成物。
  6.  前記熱伝導性フィラー(A)のD50(A)が0.05μm以上0.6μm未満である、請求項1に記載の組成物。
  7.  前記熱伝導性フィラー(A)の、BET比表面積SA[m2/g]と、前記D90(A)[μm]および前記D50(A)[μm]の差との積SA×(D90(A)-D50(A))に対する、真密度[g/cm3]に対する加圧嵩密度[g/cm3]の比である密度比Yの比Y/(SA×(D90(A)-D50(A)))が、0.14以上である、請求項1に記載の組成物。
  8.  前記熱伝導性フィラー(A)、熱伝導性フィラー(B)およびバインダー成分(C)の合計100体積%に対し、
     前記熱伝導性フィラー(A)の配合量が1~45体積%であり、
     前記熱伝導性フィラー(B)の配合量が25~90体積%である、
    請求項1に記載の組成物。
  9.  前記熱伝導性フィラー(A)がアルミナを含有し、
     前記熱伝導性フィラー(B)が窒化アルミニウムまたはアルミナを含有する、
    請求項1に記載の組成物。
  10.  レーザー回折法で求めた粒度分布曲線における、体積累積50%の粒径D50(A)が0.05μm以上1.0μm未満であり、かつ、体積累積90%の粒径D90(A)が2.0μm以下である熱伝導性フィラー(A)と、
     熱伝導性フィラー(B)と
    を含む、下記要件(4)~(6)を満たすフィラー混合物。
     要件(4):前記フィラー混合物に用いる熱伝導性フィラー(B)全体の、水銀ポロシメーターで測定した細孔直径分布から算出される細孔直径が0.5μm以下である細孔の累積細孔量が0.05ml/g以下である
     要件(5):前記フィラー混合物に用いる熱伝導性フィラー(B)全体の、体積累積50%の粒径D50(B)が1.0~100μmである
     要件(6):前記フィラー混合物に用いる熱伝導性フィラー(B)全体の、体積累積10%の粒径D10(B)が0.6μm以上である
  11.  前記熱伝導性フィラー(A)がアルミナを含有し、
     前記熱伝導性フィラー(B)が窒化アルミニウムまたはアルミナを含有する、
    請求項10に記載のフィラー混合物。
PCT/JP2022/028465 2021-08-05 2022-07-22 組成物およびフィラー混合物 WO2023013441A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280053758.4A CN117813354A (zh) 2021-08-05 2022-07-22 组合物及填料混合物
KR1020247002679A KR20240042413A (ko) 2021-08-05 2022-07-22 조성물 및 필러 혼합물
JP2023540255A JPWO2023013441A1 (ja) 2021-08-05 2022-07-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021129048 2021-08-05
JP2021-129048 2021-08-05

Publications (1)

Publication Number Publication Date
WO2023013441A1 true WO2023013441A1 (ja) 2023-02-09

Family

ID=85155612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028465 WO2023013441A1 (ja) 2021-08-05 2022-07-22 組成物およびフィラー混合物

Country Status (5)

Country Link
JP (1) JPWO2023013441A1 (ja)
KR (1) KR20240042413A (ja)
CN (1) CN117813354A (ja)
TW (1) TW202313815A (ja)
WO (1) WO2023013441A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009164093A (ja) 2007-12-14 2009-07-23 Sekisui Chem Co Ltd 絶縁シート及び積層構造体
JP2010007039A (ja) 2008-05-26 2010-01-14 Sekisui Chem Co Ltd 熱伝導シート
JP2012121793A (ja) * 2010-11-15 2012-06-28 Sumitomo Chemical Co Ltd アルミナ混合粉末及びアルミナ混合粉末含有樹脂組成物
JP2013049610A (ja) * 2011-08-31 2013-03-14 Asahi Kasei Chemicals Corp 成形体、被包体、成形体の製造方法及び断熱方法
JP2017014445A (ja) 2015-07-06 2017-01-19 株式会社トクヤマ 窒化アルミニウム複合フィラーおよびこれを含む樹脂組成物
JP2018082164A (ja) * 2016-11-04 2018-05-24 積水化学工業株式会社 硬化性材料及び積層体
WO2018131486A1 (ja) 2017-01-13 2018-07-19 デンカ株式会社 熱伝導性樹脂組成物、放熱シート、放熱部材及びその製造方法
WO2020138335A1 (ja) * 2018-12-27 2020-07-02 住友化学株式会社 放熱性樹脂組成物用無機粉体およびそれを用いた放熱性樹脂組成物、並びにそれらの製造方法
WO2020241716A1 (ja) * 2019-05-30 2020-12-03 デンカ株式会社 アルミナ粉末、樹脂組成物、放熱部品、及び被覆アルミナ粒子の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009164093A (ja) 2007-12-14 2009-07-23 Sekisui Chem Co Ltd 絶縁シート及び積層構造体
JP2010007039A (ja) 2008-05-26 2010-01-14 Sekisui Chem Co Ltd 熱伝導シート
JP2012121793A (ja) * 2010-11-15 2012-06-28 Sumitomo Chemical Co Ltd アルミナ混合粉末及びアルミナ混合粉末含有樹脂組成物
JP2013049610A (ja) * 2011-08-31 2013-03-14 Asahi Kasei Chemicals Corp 成形体、被包体、成形体の製造方法及び断熱方法
JP2017014445A (ja) 2015-07-06 2017-01-19 株式会社トクヤマ 窒化アルミニウム複合フィラーおよびこれを含む樹脂組成物
JP2018082164A (ja) * 2016-11-04 2018-05-24 積水化学工業株式会社 硬化性材料及び積層体
WO2018131486A1 (ja) 2017-01-13 2018-07-19 デンカ株式会社 熱伝導性樹脂組成物、放熱シート、放熱部材及びその製造方法
WO2020138335A1 (ja) * 2018-12-27 2020-07-02 住友化学株式会社 放熱性樹脂組成物用無機粉体およびそれを用いた放熱性樹脂組成物、並びにそれらの製造方法
WO2020241716A1 (ja) * 2019-05-30 2020-12-03 デンカ株式会社 アルミナ粉末、樹脂組成物、放熱部品、及び被覆アルミナ粒子の製造方法

Also Published As

Publication number Publication date
JPWO2023013441A1 (ja) 2023-02-09
TW202313815A (zh) 2023-04-01
KR20240042413A (ko) 2024-04-02
CN117813354A (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
JP5233325B2 (ja) 熱伝導性硬化物及びその製造方法
JP5664563B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
JP5418298B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
WO2018079215A1 (ja) 1液硬化型熱伝導性シリコーングリース組成物及び電子・電装部品
WO2014181657A1 (ja) 熱伝導性シリコーン組成物及びその硬化物
CN112867765B (zh) 导热性有机硅组合物及其固化物
JP5843364B2 (ja) 熱伝導性組成物
WO2020039761A1 (ja) 熱伝導性シリコーン組成物及び熱伝導性シリコーン硬化物
JP7303159B2 (ja) シリコーン組成物、及び高熱伝導性を有する熱伝導性シリコーン硬化物
EP3892685A1 (en) Cured product of thermally conductive silicone composition
WO2020129555A1 (ja) 熱伝導性シリコーン組成物及び半導体装置
CN114729193B (zh) 热传导性硅酮组合物和热传导性硅酮片材
WO2023013441A1 (ja) 組成物およびフィラー混合物
CN114901756B (zh) 导热性硅酮树脂组合物、硬化物及导热性硅酮散热片材
EP4095187A1 (en) Thermally conductive silicone composition and cured product thereof
EP4349916A1 (en) Thermally conductive silicone composition and cured object obtained therefrom
WO2020084868A1 (ja) 熱伝導性シリコーン組成物及びその硬化物
WO2019235042A1 (ja) 熱伝導性シリコーン低比重シート
JP7485634B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
JP7174197B1 (ja) 熱伝導性ポリシロキサン組成物
WO2022264715A1 (ja) 熱伝導性ポリシロキサン組成物
WO2020213348A1 (ja) 熱伝導性樹脂組成物及び熱伝導性樹脂硬化物
EP4349915A1 (en) Heat-conductive silicone composition
JP2024051534A (ja) 熱伝導性シリコーン組成物、熱伝導性シリコーン硬化物及び電気部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852865

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023540255

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022852865

Country of ref document: EP

Effective date: 20240305