WO2020213348A1 - 熱伝導性樹脂組成物及び熱伝導性樹脂硬化物 - Google Patents

熱伝導性樹脂組成物及び熱伝導性樹脂硬化物 Download PDF

Info

Publication number
WO2020213348A1
WO2020213348A1 PCT/JP2020/012697 JP2020012697W WO2020213348A1 WO 2020213348 A1 WO2020213348 A1 WO 2020213348A1 JP 2020012697 W JP2020012697 W JP 2020012697W WO 2020213348 A1 WO2020213348 A1 WO 2020213348A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermally conductive
resin composition
boron nitride
specific gravity
cured product
Prior art date
Application number
PCT/JP2020/012697
Other languages
English (en)
French (fr)
Inventor
裕也 廣中
晃洋 遠藤
靖久 石原
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2020213348A1 publication Critical patent/WO2020213348A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular

Definitions

  • the present invention relates to a thermally conductive resin composition and a cured product of a thermally conductive resin.
  • the heat dissipation member has a large specific gravity.
  • the conventional composition having a high thermal conductivity has a large amount of the heat conductive filler and a large specific gravity of the composition. Therefore, the weight of the heat radiating member becomes large, the total weight of the vehicle body also becomes large, and the fuel consumption increases. Therefore, there is a demand for a technique for reducing the specific gravity of the heat radiating member.
  • One method is to use a filler with a low specific gravity and high thermal conductivity.
  • a thermally conductive sheet in which aggregated secondary particles of boron nitride are dispersed in a resin to improve thermal conductivity has been developed.
  • the filling rate of boron nitride is high, and the specific gravity of the composition is large.
  • Patent Document 2 describes a method of combining agglomerated particles of boron nitride and aluminum oxide.
  • the filling rate of each filler is not clearly specified, and the fluidity and processability of the composition are not described.
  • Patent Document 3 a method of reducing the specific gravity of the resin by adding hollow particles having a small specific gravity to the resin is shown.
  • many of the hollow particles have low pressure resistance, and it is difficult to reduce the specific gravity of the resin because the hollow particles burst by a manufacturing method in which the resin is pumped.
  • the conventional composition having a high thermal conductivity has a large amount of the heat conductive filler, so that the specific gravity of the composition is large. Further, when a material having a low pressure resistance such as hollow particles was used in an attempt to reduce the specific gravity, a resin composition having a desired specific gravity could not be obtained.
  • JP-A-2010-157563 Japanese Unexamined Patent Publication No. 2011-144234 Japanese Unexamined Patent Publication No. 2012-119674
  • the present invention has been made in view of the above circumstances, and stably provides a highly thermally conductive resin composition and a highly thermally conductive resin cured product, which have high thermal conductivity and low specific gravity and are effective as a heat-dissipating material.
  • the purpose is to do.
  • thermosetting resin component 50 to 80% by volume of a thermosetting resin component, 5 to 20% by volume of boron nitride, and 10 to 45% by volume of a thermally conductive filler other than the boron nitride.
  • a thermally conductive filler other than the boron nitride.
  • Such a thermally conductive resin composition is a highly thermally conductive resin composition having high thermal conductivity and low specific gravity.
  • the boron nitride is preferably secondary particles in which scaly boron nitride primary particles are radially aggregated.
  • Scale-like boron nitride has a layered crystal structure and exhibits anisotropic thermal conductivity due to a remarkable difference in thermal conductivity between the plane direction and the stacking direction of the crystal.
  • the secondary particles in which the primary particles of scaly boron nitride are radially aggregated have isotropic thermal conductivity, stable heat is stable regardless of the molding method or usage form when the thermally conductive resin composition is used. Shows conductivity.
  • the specific gravity of the thermally conductive filler is preferably 2.0 to 6.0.
  • the specific gravity of the heat conductive filler is 2.0 to 6.0, the specific gravity of the heat conductive resin composition becomes smaller.
  • thermosetting resin which is a cured product of the above-mentioned thermosetting resin composition.
  • This thermosetting resin cured product is a highly thermally conductive resin cured product having high thermal conductivity and low specific gravity, which is effective as a heat radiating material.
  • the thermal conductivity of this cured thermosetting resin is preferably 1.0 W / (m ⁇ K) or more. Such a thermal conductivity is preferable because the heat from the heating element can be sufficiently transferred to the cooling portion.
  • the specific gravity of the cured thermosetting resin is preferably 2.0 or less. Such a specific gravity is preferable because the effect of lowering the specific gravity is sufficiently obtained.
  • the hardness of the cured product of the thermosetting resin of the present invention measured by the Asker C hardness tester is preferably 60 or less. Such hardness of the cured product is preferable because it can adhere to micro-concavities and convexities existing in heat-generating parts and cooling parts, the thermal resistance does not become too large, and heat can be efficiently discharged. ..
  • both the heat conductive resin composition and the thermosetting resin cured product of the present invention achieve both high heat conductivity and low specific gravity, the high heat conductive resin composition and the high heat conductive resin effective as a heat radiating material. It becomes a cured product.
  • thermosetting resin composition and the cured thermosetting resin have a large amount of thermosetting resin component as a base material of 50 to 80% by volume, and the filling rate of the thermally conductive filler other than boron nitride and boron nitride is increased.
  • the flowability and processability of the resin composition are improved, and a thermosetting resin composition and a thermosetting resin cured product showing stable thermal conductivity regardless of the molding method and usage mode are provided. To do.
  • thermosetting resin component as a base material, 5 to 20% by volume of boron nitride, and thermal conductivity other than boron nitride. It has been found that a resin composition containing 10 to 45% by volume of a filler and a cured product thereof become a high thermal conductive resin composition having a small specific gravity and a cured product thereof, and are suitable as a heat radiating member.
  • the thermally conductive filler select secondary particles in which primary particles of scaly boron nitride are radially aggregated
  • an inorganic filler having a specific gravity of 2.0 to 6.0.
  • the present invention is a thermally conductive resin composition containing 50 to 80% by volume of a thermosetting resin component, 5 to 20% by volume of boron nitride, and 10 to 45% by volume of a thermally conductive filler other than the above boron nitride. is there.
  • Thermal Conductive Resin Composition (Boron Nitride]
  • the boron nitride contained in the thermally conductive resin composition of the present invention is preferably secondary particles in which primary particles of scaly boron nitride are radially aggregated. Since particles having such a form have isotropic thermal conductivity, stable thermal conductivity is exhibited regardless of the molding method or usage form when the thermally conductive resin composition is used.
  • the secondary particle size of boron nitride is not particularly limited, but is preferably 10 to 200 ⁇ m. Boron nitride having such a secondary particle size is easily dispersed in the resin and easily mixed. Further, in the case of producing a heat conductive sheet, if the aggregated secondary particles of boron nitride are too large, the tack on the surface is impaired, the adhesion to the base material is deteriorated, and heat cannot be efficiently discharged. Therefore, the aggregated secondary particles of boron nitride are preferably 80% or less of the thickness of the heat conductive resin layer.
  • boron nitride in order to increase the thermal conductivity in the resin composition, it is necessary to contain 5 to 20% by volume of boron nitride, preferably 5 to 15% by volume. If the amount of boron nitride is less than 5% by volume, the thermal conductivity of the thermally conductive resin composition and the cured product of the thermally conductive resin becomes insufficient. On the other hand, when boron nitride exceeds 20% by volume, the flowability and moldability of the thermally conductive resin composition are lowered.
  • Thermal conductive filler other than boron nitride contained in the heat conductive resin composition of the present invention, inorganic particles having a specific gravity of 2.0 to 6.0 are preferable.
  • metals such as aluminum and silicon, metal oxides such as aluminum oxide, silicon oxide, magnesium oxide, titanium oxide and zinc oxide, metal nitrides such as aluminum nitride and silicon nitride, metals such as aluminum hydroxide and magnesium hydroxide. Hydroxide, graphite, artificial diamond, silicon carbide and the like can be used.
  • aluminum hydroxide and aluminum oxide are suitable as the heat conductive filler because they have a light specific gravity and are excellent in filling property into a resin.
  • These thermally conductive fillers may be used alone or in combination of two or more.
  • aluminum hydroxide or aluminum oxide having a particularly light specific gravity and excellent filling property into a resin is preferable.
  • the thermal conductive filler in order to increase the thermal conductivity in the resin composition, it is necessary to contain the thermal conductive filler in an amount of 10 to 45% by volume, preferably 10 to 25% by volume. If the amount of the heat conductive filler is less than 10% by volume, the heat conductivity of the heat conductive resin composition and the cured product of the heat conductive resin becomes insufficient. Further, when the heat conductive filler exceeds 45% by volume, the specific gravity of the heat conductive resin composition and the cured heat conductive resin becomes large. In addition, the flowability and moldability of the thermally conductive resin composition are reduced.
  • thermosetting resin component The thermosetting resin used as the base material of the heat conductive resin composition of the present invention is not particularly limited, and for example, silicone resin, phenol resin, urea resin, melamine resin, unsaturated polyester resin, epoxy resin, polyurethane. A resin, a polyimide resin, or the like can be used. Silicone resin is particularly suitable because it has a simple curing method.
  • the thermosetting resin component of the present invention can contain general raw materials for thermosetting resins such as raw materials for these resins before curing, curing agents, and catalysts.
  • thermosetting resin composition of the present invention contains 50 to 80% by volume of a thermosetting resin component.
  • a thermosetting resin component When the thermosetting resin component is less than 50% by volume, the flowability and moldability of the thermosetting resin composition are lowered. If the thermosetting resin component exceeds 80% by volume, the thermal conductivity of the thermosetting resin composition and the cured thermosetting resin becomes insufficient.
  • the silicone resin component will be described in detail below, but the present invention is not limited thereto.
  • the organopolysiloxane component used as a base material is not particularly limited, and examples thereof include a component used as a base material of the silicone composition.
  • it is an organopolysiloxane used as a main polymer of an addition-curable silicone composition, and in particular, an organopolysiloxane having at least two alkenyl groups in one molecule (A-1) is preferable.
  • the component (A-1) include organopolysiloxane having a structure represented by the following general formula (1) and having at least two alkenyl groups in one molecule.
  • R 1 a SiO (4-a) / 2 (1)
  • R 1 represents a monovalent hydrocarbon group having 1 to 18, preferably 1 to 8 carbon atoms independently substituted or unsubstituted, and a is 1.90 to 2.05.
  • the component (A-1), particularly the organopolysiloxane having the structure shown in (1) above, preferably has a degree of polymerization of 20 to 12,000, more preferably 50 to 10,000.
  • R 1 examples include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, and decyl groups and octadecyl groups; cyclopentyl and cyclohexyl groups Cycloalkyl groups such as phenyl group, trill group, aryl group such as xylyl group and naphthyl group; aralkyl group such as benzyl group, phenethyl group and 3-phenylpropyl group; 3,3,3-trifluoropropyl group and 3 -Alkyl halide group such as chloropropyl group; alkenyl group such as vinyl group, allyl group, butenyl group, pentenyl group and hexenyl group can be mentioned.
  • the thermally conductive silicone composition of the present invention further comprises the following (A-1).
  • A-2) Organohydrogenpolysiloxane having at least two or more hydrogen atoms directly bonded to silicon atoms, (A-3) platinum-based curing catalyst, and (A-4) addition reaction control agent can be included.
  • Organohydrogenpolysiloxane having at least two hydrogen atoms directly bonded to the silicon atom of the component (A-2) reacts with the component (A-1) and acts as a cross-linking agent, and its molecular structure
  • various conventionally manufactured ones such as linear, annular, branched, and three-dimensional network structures (resin-like) can be used, but two or more, preferably 3 in one molecule.
  • the blending amount of the component (A-2) is such that the number of moles of the hydrogen atom directly bonded to the silicon atom is 0.1 to 5.0 times the number of moles of the alkenyl group derived from the component (A-1). It is preferable to do so.
  • the R 2 is an unsubstituted monovalent hydrocarbon group bonded to a silicon atom having 1 to 10 carbon atoms, excluding an aliphatic unsaturated bond such as an alkenyl group, and is an unsubstituted monovalent group in this R 2 .
  • hydrocarbon group examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, cyclohexyl group, octyl group, nonyl group and decyl.
  • Examples thereof include an alkyl group such as an alkyl group, a phenyl group, a trill group, an aryl group such as a xsilyl group and a naphthyl group, and an aralkyl group such as a benzyl group, a phenylethyl group and a phenylpropyl group.
  • b is 0.7 to 2.1
  • c is 0.001 to 1.0
  • b + c is a positive number satisfying 0.8 to 3.0, preferably b is 1.0 to 1.0.
  • 2.0 and c are 0.01 to 1.0, and b + c is 1.5 to 2.5.
  • the platinum-based curing catalyst of the component (A-3) is a catalyst for promoting the hydrosilylation addition reaction between the alkenyl group in the component (A-1) and the Si—H group in the component (A-2). .
  • this addition reaction catalyst include platinum black, second platinum chloride, platinum chloride acid, a reaction product of platinum chloride acid and monovalent alcohol, a complex of platinum chloride acid and olefins, and a platinum-based catalyst such as platinum bisacetoacetate. , Platinum group metal catalysts such as palladium catalysts and rhodium catalysts.
  • the blending amount of this addition reaction catalyst can be a catalytic amount, but usually, as a platinum group metal, 0.5 to 1,000 ppm, particularly about 1 to 500 ppm, is blended with respect to the component (A-1). Is preferable.
  • the addition reaction control agent for the component (A-4) is not particularly limited as long as it is a compound having a curing reaction inhibitory effect on the addition reaction catalyst for the component (A-3), and conventionally known ones should be used. Can be done. Specific examples thereof include phosphorus-containing compounds such as triphenylphosphine; compounds containing nitrogen atoms such as tributylamine, tetramethylethylenediamine and benzotriazole; compounds containing sulfur atoms; acetylene compounds such as acetylene alcohols; alkenyl. Examples thereof include compounds containing two or more groups; hydroperoxy compounds; maleic acid derivatives and the like.
  • the amount of the addition reaction control agent to be blended is preferably adjusted to the optimum amount for each addition reaction control agent to be used because the degree of the curing reaction suppressing action of the addition reaction control agent differs depending on its chemical structure.
  • the thermally conductive resin composition becomes excellent in long-term storage stability and curability at room temperature.
  • silanol group-containing silanes such as diphenylsilanediol and silanol group-blocking organosiloxane oligomers at both ends of the molecular chain and / or siloxane oligomers are used.
  • siloxane oligomer polysiloxane having an average degree of polymerization of 10 to 100 is preferable.
  • the amount of the wetter to be blended is preferably 0 to 150 parts by mass, more preferably 5 to 130 parts by mass, and further preferably 10 to 100 parts by mass with respect to 100 parts by mass of (A-1) organopolysiloxane.
  • the blending amount can be in the range of parts.
  • the thermal conductivity of the thermally conductive resin composition is preferably 1.0 W / (m ⁇ K) or more, more preferably 1.2 W / (m ⁇ K) or more, and further preferably 1.4 W / mK. That is all.
  • the thermal conductivity is 1.0 W / (m ⁇ K) or more, the heat from the heating element can be sufficiently transferred to the cooling portion, which is preferable.
  • the thermal conductivity is a value measured in accordance with ISO22007-2, and the apparatus used is, for example, TPS-2500S manufactured by Kyoto Electronics.
  • the specific gravity of the thermally conductive resin composition is preferably 2.0 or less, more preferably 1.7 or less, and further preferably 1.5 or less. When the specific gravity is 2.0 or less, the effect of lowering the specific gravity is sufficient, and the weight reduction of the cured product of the thermosetting resin, which is the cured product of the thermosetting resin composition, is sufficiently achieved, which is preferable.
  • the specific gravity is a value measured in accordance with JIS K 6249.
  • Thermosetting Resin Cured Product provides a thermosetting resin cured product which is a cured product of the above-mentioned thermosetting resin composition.
  • the curing conditions are not particularly limited, but it is preferable that the heat conductive resin composition is heated in a temperature range of 100 to 300 ° C. for 10 seconds to 1 hour.
  • the thermal conductivity of the cured resin is preferably 1.0 W / (m ⁇ K) or more, more preferably 1.2 W / (m ⁇ K) or more, and even more preferably 1.4 W / mK. That is all.
  • the upper limit of the thermal conductivity is not particularly limited, but may be, for example, 3.0 W / (m ⁇ K).
  • the thermal conductivity is a value measured in accordance with ISO22007-2, and the apparatus used is, for example, TPS-2500S manufactured by Kyoto Electronics.
  • the specific gravity of the cured thermosetting resin is preferably 2.0 or less, more preferably 1.7 or less, and further preferably 1.5 or less. When the specific gravity is 2.0 or less, the effect of lowering the specific gravity is sufficient, and the weight reduction of the cured thermosetting resin is sufficiently achieved, which is preferable.
  • the lower limit of the specific gravity is not particularly limited, but may be, for example, 1.2.
  • the specific gravity is a value measured in accordance with JIS K 6249.
  • the hardness of the cured thermosetting resin as measured by the Asuka-C hardness tester is preferably 60 or less, more preferably 40 or less and 1 or more. If the hardness of the thermosetting resin cured product is Asuka-C60 or less, it can adhere to the micro unevenness existing in the heat generating part and the cooling part, the thermal resistance does not become too large, and heat is efficiently discharged. It is preferable because it can be used.
  • the thickness of the cured product of the thermosetting resin of the present invention is preferably 0.35 mm or more, more preferably 0.75 mm or more.
  • the thermosetting resin cured product can absorb the tolerance of members such as heat-generating parts and cooling parts, and the adhesion can be maintained.
  • the silicone resin component (A) is composed of (A-1) to (A-7).
  • (A-3) Component: 0.4 parts by mass of a 5 mass% 2-ethylhexanol chloride solution as a platinum-based curing catalyst, (A-4) Ingredients: 0.1 part by mass of ethynylmethyldencarbinol as an addition reaction control agent,
  • Component (A-6) 19 parts by mass of dimethylpolysiloxane, which was sealed at both ends with a trimethyl group represented by the following formula as a wetter.
  • Component (A-7) 24 parts by mass of dimethylpolysiloxane having one end sealed with a trimethoxysilyl group represented by the following formula as a wetter
  • B Component: Boron Nitride (B-1) Aggregated Boron Nitride: Particle Size Distribution 30-80 ⁇ m, Average Particle Size 60 ⁇ m, Shape: Scale-like Aggregate (B-2) Aggregate Boron Nitride: Particle Size Distribution 30-60 ⁇ m, Average Particle size 40 ⁇ m, shape: scaly aggregate
  • the components (A) to (C) were kneaded with a planetary mixer at the contents shown in Tables 1 and 2 for 60 minutes to obtain a thermally conductive silicone composition. Then, various physical properties were evaluated according to the following evaluation methods.
  • the thermally conductive silicone composition was measured at 25 ° C. using a rheometer (HAAKE RheoStress 6000), and the flowability was evaluated based on whether the shear viscosity was 10 s -1 or less and the viscosity was 75 Pa ⁇ s or less.
  • the heat conductive silicone composition was poured into a 6 mm thick mold, defoamed for 1 hour, and then heat-cured at 110 ° C. for 10 minutes.
  • the moldability was evaluated based on whether or not there was foaming in the heat conductive low specific gravity sheet. did.
  • the case where the flowability and moldability met the criteria was evaluated as ⁇ , and the case where either one or both of the flowability and moldability were not satisfied was evaluated as x.
  • the heat conductive silicone composition was poured into a mold having a thickness of 2 mm and heat-cured at 110 ° C. for 10 minutes, and the specific gravity of the obtained heat conductive low specific gravity sheet was measured by an underwater substitution method.
  • the obtained thermally conductive silicone composition was sandwiched between Teflon (registered trademark) sheets and heat-cured at 110 ° C./10 minutes.
  • the thermal conductivity of the obtained thermally conductive silicone cured product was measured with TPS-2500S, and the Asker C hardness was measured with an Asker C hardness tester.
  • Examples 1 to 5 Comparative Examples 1 to 6
  • Tables 1 and 2 The results of Examples 1 to 5 and Comparative Examples 1 to 6 are shown in Tables 1 and 2.
  • boron nitride As boron nitride, agglutinated boron nitride having an average particle size of 60 ⁇ m was used in Example 1, and agglutinated boron nitride having an average particle size of 40 ⁇ m was used in Examples 2 to 5.
  • the heat conductive filler aluminum hydroxide was used in Examples 1 to 3, aluminum oxide was used in Example 4, and zinc oxide was used in Example 5.
  • Comparative Example 1 the silicone resin component was blended in an amount of 90% by volume and boron nitride in a proportion of 10% by volume.
  • the specific gravity of the heat conductive low specific gravity sheet is suppressed to very low at 1.10, but the thermal conductivity of the cured heat conductive silicone is 0.58 W / (m ⁇ K), which is insufficient.
  • Comparative Example 2 the silicone resin component was blended in an amount of 75% by volume and the boron nitride content was blended in an amount of 25% by volume. After blending, the silicone resin composition was not in the form of a paste, but in the form of a solid in which the silicone resin component and boron nitride were separated, and it was not possible to prepare a sheet having stable thermal conductivity.
  • the one-time thermal conductivity was 2.05 W / (m ⁇ K).
  • Comparative Example 3 the silicone resin component was blended in an amount of 54% by volume, and aluminum hydroxide as a heat conductive filler was blended in an amount of 46% by volume.
  • Thermal conductivity The specific gravity of the low specific gravity sheet is suppressed to as low as 1.61, but the thermal conductivity of the cured silicone product is 0.89 W / (m ⁇ K), which is insufficient thermal conductivity.
  • Comparative Example 4 the silicone resin component was blended at 65% by volume, boron nitride at 25% by volume, and aluminum hydroxide as a heat conductive filler at 10% by volume. Similar to Comparative Example 2, the silicone resin component and boron nitride were separated into a solid composition, and a sheet having stable thermal conductivity could not be produced. The one-time thermal conductivity was 3.92 W / (m ⁇ K). If the amount of boron nitride is too large as described above, a resin composition having high thermal conductivity can be obtained, but it is difficult to make the resin composition into a paste, and a resin composition having stable physical properties and a cured product thereof can be obtained. The purpose cannot be achieved.
  • the silicone resin component was blended in an amount of 40% by volume, boron nitride in 10% by volume, and aluminum hydroxide as a thermally conductive filler in an amount of 50% by volume. Similar to Comparative Example 2 and Comparative Example 4, the silicone resin component and boron nitride were separated into a solid resin composition, and a sheet having stable thermal conductivity could not be produced. The one-time thermal conductivity was 2.72 W / (m ⁇ K). Even if the amount of the thermally conductive filler is too large as described above, it becomes difficult to make the resin composition into a paste.
  • the silicone resin component was blended in an amount of 82% by volume, boron nitride in 10% by volume, and silver as a thermally conductive filler in an amount of 8% by volume.
  • Thermal conductivity The specific gravity of the low specific gravity sheet is 1.84, but the thermal conductivity of the cured silicone product is 0.82 W / (m ⁇ K), which means that the thermal conductivity is insufficient.
  • the low specific gravity heat conductive resin composition obtained by blending a predetermined amount of boron nitride and a heat conductive filler other than boron nitride with the thermosetting resin component has good moldability and is a mobile device. It was found that it can also contribute to the weight reduction of heat dissipation members such as automobiles and automobiles.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an example, and any object having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect and effect is the present invention. Is included in the technical scope of.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、熱硬化性樹脂成分50~80体積%、窒化ホウ素5~20体積%、及び前記窒化ホウ素以外の熱伝導性フィラー10~45体積%を含有する。好ましい窒化ホウ素は鱗片状窒化ホウ素の一次粒子が放射状に凝集した二次粒子である。好ましい熱伝導性フィラーの比重は2.0~6.0である熱伝導性樹脂組成物である。本発明は、この熱伝導性樹脂組成物の硬化物である。これにより、熱伝導性が高く、かつ、比重が小さい、放熱材料として有効な高熱伝導性樹脂組成物及び高熱伝導性樹脂硬化物が安定的に提供される。

Description

熱伝導性樹脂組成物及び熱伝導性樹脂硬化物
 本発明は、熱伝導性樹脂組成物及び熱伝導性樹脂硬化物に関する。
 パーソナルコンピューター、携帯電話等の電子機器に使用されるCPU、ドライバICやメモリー等の電子部品は、小型化や高集積化に伴い、それ自身の発熱密度が急激に増加している。電子部品に熱が蓄積されると、電子部品の温度が上昇し、動作不良や故障などを引き起こす可能性がある。電子部品から発生した熱をヒートシンクなどの冷却部材に効率的に逃がすために、熱伝導性の高い放熱部材を使用する方法が提案されている。
 近年、車載用リチウムイオンバッテリーの放熱部材の需要が増えている。具体的な使用箇所は、バッテリーセルとセル筐体の界面やバッテリーモジュールとバッテリー筐体の界面である。バッテリーセルなどに負荷をかけすぎると動作不良の原因となるので、放熱部材には柔軟性が要求される。また、車載用途では、寒冷地の最低温度である-40℃付近、発熱部材の温度150℃以上の高温までの長期信頼性が要求される。さらに、難燃性、電気絶縁性などの特性が要求される場合も多い。これらの特性をすべて満たすものとしてシリコーンが好適であり、シリコーンと熱伝導性のフィラーを配合した熱伝導性シリコーン組成物またはその硬化物が放熱部材として多用されている。
 自動車の燃費規制が世界中で強化される中、エンジンの小型化や高出力化、空気抵抗の低減など燃費を向上する取り組みがなされている。さらに、自動車の重量化に伴って燃費が悪くなるため、搭載される部品重量を減少させることも望まれている。特に、ハイブリット車や電気自動車においては、使用されるリチウムイオンバッテリーの規模が大きく、車体には更なる軽量化が求められている。また、リチウムイオンバッテリーの放熱に使用される放熱部材の使用量も非常に大きいことから、放熱部材の軽量化も望まれている。
 しかし、一般的に放熱部材は比重が大きい。特に、従来の高い熱伝導率を有する組成物は熱伝導性フィラーの配合量が多く、組成物の比重が大きい。そのため、放熱部材の重量が大きくなり、車体の総重量も大きくなってしまい、燃料消費量が増加してしまう。そこで、放熱部材の比重を小さくする技術が求められている。
 一つの方法として比重が小さく、かつ熱伝導性の高いフィラーを使用することが挙げられる。特許文献1や特許文献2に記載されているように、窒化ホウ素の凝集二次粒子を樹脂中に分散して熱伝導性を向上させた熱伝導性シートが開発されている。しかし、窒化ホウ素の充填率が高く、組成物の比重は大きい。また、特許文献2では、窒化ホウ素の凝集粒子と酸化アルミニウムを組み合わせる方法が記載されている。しかし、各フィラーの充填率が明確に指定されておらず、組成物の流動性や加工性に関して記載されていない。
 一方、特許文献3に記載されているように、比重の小さい中空粒子を樹脂に添加することで樹脂の比重を小さくする方法が示されている。しかし、中空粒子は耐圧強度が低いものが多く、樹脂を圧送するような製造方法では中空粒子が破裂し、樹脂の比重を小さくすることは難しい。
 このように、従来の高い熱伝導率を有する組成物は熱伝導性フィラーの配合量が多いため、組成物の比重が大きかった。また、比重を小さくしようとして中空粒子のような耐圧強度が低いものを使用すると、目的とした比重の樹脂組成物を得ることができなかった。
特開2010-157563号公報 特開2011-144234号公報 特開2012-119674号公報
 本発明は、上記事情に鑑みてなされたものであり、熱伝導性が高く、かつ、比重が小さい、放熱材料として有効な高熱伝導性樹脂組成物及び高熱伝導性樹脂硬化物を安定的に提供することを目的とする。
 上記課題を達成するために、本発明では、熱硬化性樹脂成分50~80体積%、窒化ホウ素5~20体積%、及び前記窒化ホウ素以外の熱伝導性フィラー10~45体積%を含有する熱伝導性樹脂組成物を提供する。
 このような熱伝導性樹脂組成物であれば、熱伝導性が高く、かつ比重が小さい高熱伝導性樹脂組成物となる。
 前記窒化ホウ素は鱗片状窒化ホウ素の一次粒子が放射状に凝集した二次粒子であることが好ましい。
 鱗片状窒化ホウ素は層状の結晶構造を有し、結晶の面方向と積層方向の熱伝導性に顕著な相違があるために、異方的な熱伝導性を示す。一方、鱗片状窒化ホウ素の一次粒子が放射状に凝集した二次粒子は等方的な熱伝導性を有するため、熱伝導性樹脂組成物とした場合に成型方法や使用形態によらず安定した熱伝導性を示す。
 前記熱伝導性フィラーの比重は2.0~6.0であることが好ましい。
 前記熱伝導性フィラーの比重が2.0~6.0であると、熱伝導性樹脂組成物の比重がより小さくなる。
 本発明では、上記熱伝導性樹脂組成物の硬化物である熱伝導性樹脂硬化物を提供する。
 この熱伝導性樹脂硬化物は、熱伝導性が高く、かつ比重が小さい、放熱材料として有効な高熱伝導性樹脂硬化物である。
 この熱伝導性樹脂硬化物の熱伝導率は1.0W/(m・K)以上であることが好ましい。
 このような熱伝導率であれば、発熱体からの熱を十分冷却部位に伝える事ができるために好ましい。
 また、この熱伝導性樹脂硬化物の比重は2.0以下であることが好ましい。
 このような比重であれば、低比重化の効果が十分に得られたものであるために好ましい。
 本発明の熱伝導性樹脂硬化物のアスカーC硬度計で測定された硬度は60以下であることが好ましい。
 このような硬化物の硬度であれば、発熱部品や冷却部品に存在するミクロの凹凸に密着することができ、熱抵抗が大きくなりすぎず、熱を効率的に排出することができるために好ましい。
 本発明の熱伝導性樹脂組成物及び熱伝導性樹脂硬化物は、高熱伝導性、及び、低比重の両方が達成されるため、放熱材料として有効な高熱伝導性樹脂組成物及び高熱伝導性樹脂硬化物となる。
 また、前記熱伝導性樹脂組成物及び熱伝導性樹脂硬化物は母材となる熱硬化性樹脂成分が50~80体積%と多く、窒化ホウ素と窒化ホウ素以外の熱伝導性フィラーの充填率を制限することで、樹脂組成物の流れ性や加工性を良好なものとし、成型方法や使用形態によらず安定した熱伝導性を示す熱伝導性樹脂組成物及び熱伝導性樹脂硬化物を提供する。
 上述のように、熱伝導性が高く、かつ、比重が小さい、放熱材料として有効な高熱伝導性樹脂組成物及び高熱伝導性樹脂硬化物の開発が求められていた。
 本発明者らは、上記目的を達成するため鋭意検討を行った結果、母材となる熱硬化性樹脂成分50~80体積%、窒化ホウ素5~20体積%、及び窒化ホウ素以外の熱伝導性フィラー10~45体積%を含有する樹脂組成物及びその硬化物が、比重が小さい高熱伝導性樹脂組成物及びその硬化物となり、放熱部材として好適であることを見出した。また、前記窒化ホウ素には鱗片状窒化ホウ素の一次粒子が放射状に凝集した二次粒子を選択し、前記熱伝導性フィラーには比重が2.0~6.0である無機フィラーを選択して配合することにより、高熱伝導性樹脂組成物及びその硬化物の比重がより小さく、かつ、熱伝導性がより高くなることを見出し、本発明の好ましい実施形態を完成させた。
 即ち、本発明は、熱硬化性樹脂成分50~80体積%、窒化ホウ素5~20体積%、及び前記窒化ホウ素以外の熱伝導性フィラー10~45体積%を含有する熱伝導性樹脂組成物である。
 以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。
熱伝導性樹脂組成物
[窒化ホウ素]
 本発明の熱伝導性樹脂組成物に含まれる窒化ホウ素としては、鱗片状窒化ホウ素の一次粒子が放射状に凝集した二次粒子であることが好ましい。このような形態の粒子であれば、等方的な熱伝導性を有するため、熱伝導性樹脂組成物とした場合に成型方法や使用形態によらず安定した熱伝導性を示す。
 窒化ホウ素の二次粒子径については、特に限定されるものではないが、10~200μmの粒子径であることが好ましい。このような二次粒子径の窒化ホウ素であれば、樹脂中に分散させやすく、混合しやすい。また、熱伝導性シートを製造する場合、窒化ホウ素の凝集二次粒子が大きすぎると表面のタックが損なわれ、基材への密着性が悪くなり、熱を効率的に排出することができない。そのため、窒化ホウ素の凝集二次粒子は熱伝導性樹脂層の厚みの80%以下であることが好ましい。
 本発明において、樹脂組成物内で熱伝導性を高くするためには、窒化ホウ素を5~20体積%含有することを要し、好ましくは5~15体積%である。窒化ホウ素が5体積%未満だと、熱伝導性樹脂組成物及び熱伝導性樹脂硬化物の熱伝導性が不十分となる。また、窒化ホウ素が20体積%を超えると、熱伝導性樹脂組成物の流れ性と成形性が低下する。
[窒化ホウ素以外の熱伝導性フィラー]
 本発明の熱伝導性樹脂組成物に含まれる窒化ホウ素以外の熱伝導性フィラーとしては、比重が2.0~6.0の無機粒子が好ましい。例えば、アルミニウム、ケイ素等の金属、酸化アルミニウム、酸化ケイ素、酸化マグネシウム、酸化チタン、酸化亜鉛等の金属酸化物、窒化アルミニウム、窒化ケイ素等の金属窒化物、水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物、グラファイト、人工ダイヤモンド、炭化珪素等を使用することができる。特に、水酸化アルミニウム、酸化アルミニウムは、比重が軽く、樹脂への充填性が優れているため、前記熱伝導性フィラーとして好適である。これらの熱伝導性フィラーは、単独で使用しても2種以上を組み合わせて使用してもよい。
 本発明においては、これらの中でも特に比重が軽く、樹脂への充填性が優れる水酸化アルミニウム、または酸化アルミニウムが好適である。
 本発明において、樹脂組成物内で熱伝導性を高くするためには、前記熱伝導性フィラーを10~45体積%含有することを要し、好ましくは10~25体積%である。前記熱伝導性フィラーが10体積%未満だと、熱伝導性樹脂組成物及び熱伝導性樹脂硬化物の熱伝導性が不十分となる。また、前記熱伝導性フィラーが45体積%を超えると、熱伝導性樹脂組成物及び熱伝導性樹脂硬化物の比重が大きくなる。また、熱伝導性樹脂組成物の流れ性と成形性が低下する。
[熱硬化性樹脂成分]
 本発明の熱伝導性樹脂組成物の母材となる熱硬化性樹脂は特に限定されることはなく、例えば、シリコーン樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、ポリウレタン樹脂、ポリイミド樹脂などを用いることができる。特にシリコーン樹脂は硬化方法が簡便であるため好適である。本発明の熱硬化性樹脂成分は、硬化前のこれらの樹脂の原料、硬化剤、触媒等の熱硬化性樹脂の一般的な原料を含有することができる。
 本発明の熱伝導性樹脂組成物は熱硬化性樹脂成分を50~80体積%含有する。熱硬化性樹脂成分が50体積%未満であると、熱伝導性樹脂組成物の流れ性と成形性が低下する。また、熱硬化性樹脂成分が80体積%を超えると、熱伝導性樹脂組成物及び熱伝導性樹脂硬化物の熱伝導性が不十分となる。
 以下にシリコーン樹脂成分について詳しく説明するが、本発明はこれに限定されるものではない。
[オルガノポリシロキサン成分]
 母材となるオルガノポリシロキサン成分としては、特に限定されないが、シリコーン組成物の母材となる成分が挙げられる。例えば、付加硬化型のシリコーン組成物の主ポリマーとして用いられるオルガノポリシロキサンであり、特には、(A-1)1分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサンが好ましい。該(A-1)成分としては、下記一般式(1)で示される構造を有し、1分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサンが挙げられる。
SiO(4-a)/2     (1)
(式中、Rは独立して置換または非置換の炭素原子数1~18、好ましくは1~8の1価炭化水素基を表わし、aは1.90~2.05である。)
 (A-1)成分、特に上記(1)で示される構造を有するオルガノポリシロキサンは、好ましくは、重合度が20~12,000、より好ましくは50~10,000である。
 前記Rとしては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基およびオクタデシル基等のアルキル基;シクロペンチル基およびシクロヘキシル基等のシクロアルキル基;フェニル基、トリル基、キシリル基およびナフチル基等のアリール基;ベンジル基、フェネチル基および3-フェニルプロピル基等のアラルキル基;3,3,3-トリフルオロプロピル基および3-クロロプロピル基等のハロゲン化アルキル基;ビニル基、アリル基、ブテニル基、ペンテニル基およびヘキセニル基等のアルケニル基等が挙げられる。
 前記母材となるオルガノポリシロキサン成分が(A-1)1分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサンである場合、更に、本発明の熱伝導性シリコーン組成物は、以下の(A-2)ケイ素原子に直接結合した水素原子を少なくとも2つ以上有するオルガノハイドロジェンポリシロキサン、(A-3)白金系硬化触媒、(A-4)付加反応制御剤を含むものとすることができる。
 (A-2)成分のケイ素原子に直接結合した水素原子を少なくとも2つ以上有するオルガノハイドロジェンポリシロキサンは、(A-1)成分と反応し、架橋剤として作用するものであり、その分子構造に特に制限はなく、従来製造されている例えば線状、環状、分岐状、三次元網状構造(樹脂状)等各種のものが使用可能であるが、1分子中に2個以上、好ましくは3個以上の珪素原子に結合した水素原子(Si-Hで表されるヒドロシリル基)を有する必要があり、通常、2~300個、好ましくは3~200個、より好ましくは4~100個程度のSi-H基を有することが望ましい。
 (A-2)成分の配合量は、ケイ素原子に直接結合した水素原子のモル数が(A-1)成分由来のアルケニル基のモル数の0.1~5.0倍量となる量とすることが好ましい。
 このような(A-2)成分としては、下記一般式(2)で示されるものが好ましい。
SiO(4-b-c)/2    (2)
 上記Rとしては、アルケニル基等の脂肪族不飽和結合を除く、好ましくは炭素数1~10の珪素原子に結合した非置換の1価炭化水素基であり、このRにおける非置換1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基、フェニル基、トリル基、キシリル基、ナフチル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基等が挙げられる。Rの非置換1価炭化水素基としては、好ましくはアルキル基、アリール基であり、特にはメチル基、フェニル基であることが難燃性の点から望ましい。また、bは0.7~2.1、cは0.001~1.0で、かつb+cが0.8~3.0を満足する正数であり、好ましくは、bは1.0~2.0、cは0.01~1.0、b+cが1.5~2.5である。
 (A-3)成分の白金系硬化触媒は、(A-1)成分中のアルケニル基と(A-2)成分中のSi-H基とのヒドロシリル化付加反応を促進するための触媒である。この付加反応触媒としては、白金黒、塩化第2白金、塩化白金酸、塩化白金酸と1価アルコールとの反応物、塩化白金酸とオレフィン類との錯体、白金ビスアセトアセテート等の白金系触媒、パラジウム系触媒、ロジウム系触媒等の白金族金属触媒が挙げられる。なお、この付加反応触媒の配合量は触媒量とすることができるが、通常、白金族金属として(A-1)成分に対して0.5~1,000ppm、特に1~500ppm程度配合することが好ましい。
 (A-4)成分の付加反応制御剤は、上記(A-3)成分の付加反応触媒に対して硬化反応抑制作用を有する化合物であれば特に限定されず、従来から公知のものを用いることができる。その具体例としては、トリフェニルホスフィン等のリン含有化合物;トリブチルアミン、テトラメチルエチレンジアミン、ベンゾトリアゾール等の窒素原子を含有する化合物;硫黄原子を含有する化合物;アセチレンアルコール類等のアセチレン系化合物;アルケニル基を2個以上含む化合物;ハイドロパーオキシ化合物;マレイン酸誘導体等が挙げられる。付加反応制御剤の配合量は、付加反応制御剤の有する硬化反応抑制作用の度合いがその化学構造により異なるため、使用する付加反応制御剤ごとの最適な量に調整することが好ましい。最適な量の反応制御剤を配合することにより、熱伝導性樹脂組成物は室温での長期貯蔵安定性および硬化性に優れたものとなる。
[ウエッター]
 ウエッターとしては、ジフェニルシランジオールや分子鎖両末端シラノール基封鎖オルガノシロキサンオリゴマー等のシラノール基含有シラン及び/又はシロキサンオリゴマーなどが用いられる。シロキサンオリゴマーとしては、平均重合度10~100のポリシロキサンが好ましい。また、ウエッターの配合量としては、(A-1)オルガノポリシロキサン100質量部に対し、0~150質量部とすることが好ましく、より好ましくは5~130質量部、更に好ましくは10~100質量部の範囲の配合量とすることができる。
[熱伝導性樹脂組成物の熱伝導率]
 熱伝導性樹脂組成物の熱伝導率は好ましくは1.0W/(m・K)以上であり、より好ましくは1.2W/(m・K)以上であり、更に好ましくは1.4W/mK以上である。前記熱伝導率が1.0W/(m・K)以上であれば、発熱体からの熱を十分冷却部位に伝える事ができるために好ましい。本発明において熱伝導率はISO22007-2に準拠して測定した値であり、用いる装置は例えば京都電子製TPS-2500Sである。
[熱伝導性樹脂組成物の比重]
 熱伝導性樹脂組成物の比重は好ましくは2.0以下であり、より好ましく1.7以下であり、更に好ましくは1.5以下である。前記比重が2.0以下であれば、低比重化の効果が十分であり、熱伝導性樹脂組成物の硬化物である熱伝導性樹脂硬化物の軽量化も十分達成され好ましい。比重はJIS K 6249に準拠して測定した値である。
熱伝導性樹脂硬化物
 本発明では、上記熱伝導性樹脂組成物の硬化物である熱伝導性樹脂硬化物を提供する。硬化条件としては、特に限定されないが、上記熱伝導性樹脂組成物が100~300℃の温度範囲で、10秒~1時間加熱されることが好ましい。
[熱伝導性樹脂硬化物の熱伝導率]
 熱伝導性樹脂硬化物の熱伝導率は好ましくは1.0W/(m・K)以上であり、より好ましくは1.2W/(m・K)以上であり、更に好ましくは1.4W/mK以上である。前記熱伝導率が1.0W/(m・K)以上であれば、発熱体からの熱を十分冷却部位に伝える事ができるために好ましい。前記熱伝導率の上限については、特に制限はないが、例えば3.0W/(m・K)とすることができる。本発明において熱伝導率はISO22007-2に準拠して測定した値であり、用いる装置は例えば京都電子製TPS-2500Sである。
[熱伝導性樹脂硬化物の比重]
 熱伝導性樹脂硬化物の比重は好ましくは2.0以下であり、より好ましくは1.7以下であり、更に好ましくは1.5以下である。比重が2.0以下であれば、低比重化の効果が十分であり、熱伝導性樹脂硬化物の軽量化が十分達成され好ましい。前記比重の下限については、特に制限はないが、例えば1.2とすることができる。比重はJIS K 6249に準拠して測定した値である。
[熱伝導性樹脂硬化物の硬度]
 熱伝導性樹脂硬化物のアスカ―C硬度計で測定された硬度は60以下であることが好ましく、より好ましくは40以下1以上である。熱伝導性樹脂硬化物の硬度がアスカ―C60以下であれば、発熱部品や冷却部品に存在するミクロの凹凸に密着することができ、熱抵抗が大きくなりすぎず、熱を効率的に排出することができるために好ましい。
[熱伝導性樹脂硬化物の厚み]
 本発明の熱伝導性樹脂硬化物の厚みは0.35mm以上が好ましく、より好ましくは0.75mm以上である。前記厚みが0.35mm以上であれば、熱伝導性樹脂硬化物が発熱部品、冷却部品など部材の公差を吸収することができ、密着性を維持することができる。
 以下、実施例及び比較例を示し、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
 下記実施例および比較例に用いられている(A)~(C)成分を下記に示す。
 シリコーン樹脂成分(A)は(A-1)~(A-7)で構成される。
(A-1)成分:主ポリマーとなる下記式で示されるオルガノポリシロキサン成分(ジメチルビニル基で両末端封止したジメチルポリシロキサン、n=190)100質量部、
Figure JPOXMLDOC01-appb-C000001
(A-2)成分:架橋剤となる下記式で示されるオルガノハイドロジェンポリシロキサン(o=27、p=2)17質量部、
Figure JPOXMLDOC01-appb-C000002
(A-3)成分:白金系硬化触媒として5質量%塩化白金酸2-エチルヘキサノール溶液0.4質量部、
(A-4)成分:付加反応制御剤としてエチニルメチリデンカルビノール0.1質量部、
(A-5)成分:離型剤として下記式で示されるジメチルジフェニルポリシロキサン(j=8、k=4)8質量部、
Figure JPOXMLDOC01-appb-C000003
(A-6)成分:ウエッターとして下記式で示されるトリメチル基で両末端封鎖されたジメチルポリシロキサン19質量部、
Figure JPOXMLDOC01-appb-C000004
(A-7)成分:ウエッターとして下記式で示される片末端がトリメトキシシリル基で封鎖されたジメチルポリシロキサン24質量部
Figure JPOXMLDOC01-appb-C000005
(B)成分:窒化ホウ素
(B-1)凝集窒化ホウ素:粒度分布30~80μm、平均粒径60μm、形状:鱗片状の凝集体
(B-2)凝集窒化ホウ素:粒度分布30~60μm、平均粒径40μm、形状:鱗片状の凝集体
(C)成分:熱伝導性フィラー
(C-1)下記(C-1-1):(C-1-2):(C-1-3)=1:2:2(質量比)で構成される水酸化アルミニウム
(C-1-1)水酸化アルミニウム:平均粒径:50μm、形状:不定形
(C-1-2)水酸化アルミニウム:平均粒径:8μm、形状:不定形
(C-1-3)水酸化アルミニウム:平均粒径:2μm、形状:不定形
(C-2)下記(C-2-1):(C-2-2):(C-2-3)=1:2:4(質量比)で構成される酸化アルミニウム
(C-2-1)酸化アルミニウム:平均粒径:20μm、形状:不定形
(C-2-2)酸酸化アルミニウム:平均粒径:5μm、形状:不定形
(C-2-3)酸酸化アルミニウム:平均粒径:1μm、形状:不定形
(C-3)酸化亜鉛:平均粒径:0.5μm、形状:不定形
(C-4)銀:平均粒径:10μm、形状:不定形
 (A)から(C)成分を表1及び2に示す含有量でプラネタリーミキサーにより60分間混練し熱伝導性シリコーン組成物を得た。その後、各種物性を下記評価方法に従って評価した。
(評価方法)
[流れ性・成形性]
 熱伝導性シリコーン組成物をレオメーター(HAAKE RheoStress 6000)を用いて25℃で測定し、せん断粘度が10s-1以下、粘度が75Pa・s以下であるかを基準として流れ性を評価した。
 熱伝導性シリコーン組成物を6mm厚の金型に流し込み、1時間脱泡した後、110℃/10分で加熱硬化させた熱伝導性低比重シートに発泡がないかを基準として成形性を評価した。
 流れ性及び成形性が基準を満たす場合を○、流れ性、成形性のどちらか一方又はどちらの基準も満たさない場合を×と評価した。
[比重]
 熱伝導性シリコーン組成物を2mm厚の金型に流し込み、110℃/10分で加熱硬化させて得られた熱伝導性低比重シートの比重を水中置換法で測定した。
[熱伝導率・アスカーC硬度]
 得られた熱伝導性シリコーン組成物をテフロン(登録商標)シートに挟み込み、110℃/10分で加熱硬化させた。得られた熱伝導性シリコーン硬化物の熱伝導率をTPS-2500Sで、アスカーC硬度をアスカーC硬度計で測定した。
(実施例1~5、比較例1~6)
 実施例1~5及び比較例1~6の結果を表1及び2に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 窒化ホウ素として実施例1では平均粒径60μmの凝集窒化ホウ素を用い、実施例2~5では平均粒径40μmの凝集窒化ホウ素を用いた。熱伝導性フィラーとしては実施例1~3で水酸化アルミニウムを用い、実施例4では酸化アルミニウムを用い、実施例5では酸化亜鉛を用いた。実施例1~5のように、シリコーン樹脂成分に窒化ホウ素及び熱伝導性フィラーを配合することで、低比重、高熱伝導性のシリコーン樹脂組成物とその硬化物を安定して得ることができる。
 比較例1では、シリコーン樹脂成分が90体積%、窒化ホウ素が10体積%になるように配合した。熱伝導性低比重シートの比重は1.10と非常に低く抑えられるが、熱伝導性シリコーン硬化物の熱伝導率は0.58W/(m・K)と熱伝導性が不十分となる。比較例2では、シリコーン樹脂成分が75体積%、窒化ホウ素が25体積%になるように配合した。配合した後のシリコーン樹脂組成物はペースト状ではなく、シリコーン樹脂成分と窒化ホウ素が分離した固体状になってしまい、熱伝導性の安定したシートを作ることができなかった。尚、一回性の熱伝導率は2.05W/(m・K)を示した。
 比較例3ではシリコーン樹脂成分が54体積%、熱伝導性フィラーとした水酸化アルミニウムが46体積%となるように配合した。熱伝導性低比重シートの比重は1.61と低く抑えられるが、シリコーン硬化物の熱伝導率は0.89W/(m・K)と熱伝導性が不十分となる。
 比較例4では、シリコーン樹脂成分が65体積%、窒化ホウ素が25体積%、熱伝導性フィラーとした水酸化アルミニウムが10体積%となるように配合した。比較例2と同様にシリコーン樹脂成分と窒化ホウ素が分離した固体状の組成物になってしまい、熱伝導性の安定したシートを作ることができなかった。尚、一回性の熱伝導率は3.92W/(m・K)を示した。このように窒化ホウ素が多すぎると、熱伝導性の高い樹脂組成物は得られが、樹脂組成物をペースト状にすることが困難であり、物性の安定した樹脂組成物とその硬化物を得るという目的を達成することができない。
 比較例5では、シリコーン樹脂成分が40体積%、窒化ホウ素が10体積%、熱伝導性フィラーとした水酸化アルミニウムが50体積%となるように配合した。比較例2や比較例4と同様にシリコーン樹脂成分と窒化ホウ素が分離した固体状の樹脂組成物になってしまい、熱伝導性の安定したシートを作ることができなかった。尚、一回性の熱伝導率としては、2.72W/(m・K)を示した。このように熱伝導性フィラーが多すぎても、樹脂組成物をペースト状にすることが困難となる。
 比較例6では、シリコーン樹脂成分が82体積%、窒化ホウ素が10体積%、熱伝導性フィラーとした銀が8体積%となるように配合した。熱伝導性低比重シートの比重は1.84であるが、シリコーン硬化物の熱伝導率は0.82W/(m・K)と熱伝導性が不十分となる。このように熱伝導性樹脂組成物の比重を下げようとした場合、銀のように比重が重い熱伝導性フィラーの配合量を少なくする必要があるが、熱伝導性フィラーの樹脂に対する充填率が下がってしまい、熱伝導性は大きく低下してしまう。
 以上のように、熱硬化性樹脂成分に所定量の窒化ホウ素と窒化ホウ素以外の熱伝導性フィラーを配合して得られる低比重熱伝導性樹脂組成物は、成形性が良好であり、モバイル機器や自動車などの放熱部材の軽量化にも貢献できることが判った。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (7)

  1.  熱硬化性樹脂成分50~80体積%、窒化ホウ素5~20体積%、及び前記窒化ホウ素以外の熱伝導性フィラー10~45体積%を含有するものであることを特徴とする熱伝導性樹脂組成物。
  2.  前記窒化ホウ素は鱗片状窒化ホウ素の一次粒子が放射状に凝集した二次粒子であることを特徴とする請求項1に記載の熱伝導性樹脂組成物。
  3.  前記熱伝導性フィラーの比重が2.0~6.0であることを特徴とする請求項1又は請求項2に記載の熱伝導性樹脂組成物。
  4.  請求項1から請求項3のいずれか1項に記載の熱伝導性樹脂組成物の硬化物であることを特徴とする熱伝導性樹脂硬化物。
  5.  熱伝導率が1.0W/(m・K)以上であることを特徴とする請求項4に記載の熱伝導性樹脂硬化物。
  6.  比重が2.0以下であることを特徴とする請求項4又は請求項5に記載の熱伝導性樹脂硬化物。
  7.  アスカーC硬度計で測定された硬度が60以下であることを特徴とする請求項4から請求項6のいずれか1項に記載の熱伝導性樹脂硬化物。
PCT/JP2020/012697 2019-04-18 2020-03-23 熱伝導性樹脂組成物及び熱伝導性樹脂硬化物 WO2020213348A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-079153 2019-04-18
JP2019079153A JP2020176201A (ja) 2019-04-18 2019-04-18 熱伝導性樹脂組成物及び熱伝導性樹脂硬化物

Publications (1)

Publication Number Publication Date
WO2020213348A1 true WO2020213348A1 (ja) 2020-10-22

Family

ID=72837201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012697 WO2020213348A1 (ja) 2019-04-18 2020-03-23 熱伝導性樹脂組成物及び熱伝導性樹脂硬化物

Country Status (3)

Country Link
JP (1) JP2020176201A (ja)
TW (1) TW202104403A (ja)
WO (1) WO2020213348A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102636A (en) * 1979-01-31 1980-08-06 Hitachi Cable Ltd Highly heat-conductive resin composition
JP2001110963A (ja) * 1999-10-14 2001-04-20 Denki Kagaku Kogyo Kk 放熱スペーサーの製造方法
JP2002138205A (ja) * 2000-11-02 2002-05-14 Polymatech Co Ltd 熱伝導性成形体
JP2010155870A (ja) * 2007-04-20 2010-07-15 Denki Kagaku Kogyo Kk 熱伝導性コンパウンドおよびその製造方法
JP2011021069A (ja) * 2009-07-14 2011-02-03 Sakai Chem Ind Co Ltd 放熱性フィラー組成物、樹脂組成物、放熱性グリース及び放熱性塗料組成物
JP2013241321A (ja) * 2011-11-29 2013-12-05 Mitsubishi Chemicals Corp 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子を含有する組成物、及び該組成物からなる層を有する三次元集積回路
WO2016103784A1 (ja) * 2014-12-26 2016-06-30 リンテック株式会社 熱伝導性接着シート、その製造方法及びそれを用いた電子デバイス
JP2018159062A (ja) * 2017-03-22 2018-10-11 株式会社豊田中央研究所 熱伝導性複合材料、熱伝導性フィラー及びそれらの製造方法
JP2019172935A (ja) * 2018-03-29 2019-10-10 Jnc株式会社 2成分型熱伝導樹脂組成物、熱伝導シート、金属製品、電子機器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3654743B2 (ja) * 1997-07-01 2005-06-02 電気化学工業株式会社 放熱スペーサー
JP6650736B2 (ja) * 2015-11-12 2020-02-19 デンカ株式会社 高熱伝導性、高絶縁性放熱シート
CN109997423B (zh) * 2016-09-30 2021-02-02 电化株式会社 具有高耐负荷性及高导热性的散热片
JP6866799B2 (ja) * 2017-08-01 2021-04-28 東洋インキScホールディングス株式会社 熱伝導性絶縁シートおよび複合部材

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102636A (en) * 1979-01-31 1980-08-06 Hitachi Cable Ltd Highly heat-conductive resin composition
JP2001110963A (ja) * 1999-10-14 2001-04-20 Denki Kagaku Kogyo Kk 放熱スペーサーの製造方法
JP2002138205A (ja) * 2000-11-02 2002-05-14 Polymatech Co Ltd 熱伝導性成形体
JP2010155870A (ja) * 2007-04-20 2010-07-15 Denki Kagaku Kogyo Kk 熱伝導性コンパウンドおよびその製造方法
JP2011021069A (ja) * 2009-07-14 2011-02-03 Sakai Chem Ind Co Ltd 放熱性フィラー組成物、樹脂組成物、放熱性グリース及び放熱性塗料組成物
JP2013241321A (ja) * 2011-11-29 2013-12-05 Mitsubishi Chemicals Corp 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子を含有する組成物、及び該組成物からなる層を有する三次元集積回路
WO2016103784A1 (ja) * 2014-12-26 2016-06-30 リンテック株式会社 熱伝導性接着シート、その製造方法及びそれを用いた電子デバイス
JP2018159062A (ja) * 2017-03-22 2018-10-11 株式会社豊田中央研究所 熱伝導性複合材料、熱伝導性フィラー及びそれらの製造方法
JP2019172935A (ja) * 2018-03-29 2019-10-10 Jnc株式会社 2成分型熱伝導樹脂組成物、熱伝導シート、金属製品、電子機器

Also Published As

Publication number Publication date
TW202104403A (zh) 2021-02-01
JP2020176201A (ja) 2020-10-29

Similar Documents

Publication Publication Date Title
JP6269511B2 (ja) 熱伝導性シリコーン組成物及び硬化物並びに複合シート
JP5233325B2 (ja) 熱伝導性硬化物及びその製造方法
US8221645B2 (en) Heat dissipating material and semiconductor device using same
JP6202475B2 (ja) 熱伝導性複合シリコーンゴムシート
JP5418298B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
WO2016017495A1 (ja) 熱伝導性シリコーン組成物及び熱伝導性シリコーン成型物
JP7303159B2 (ja) シリコーン組成物、及び高熱伝導性を有する熱伝導性シリコーン硬化物
KR102660031B1 (ko) 열전도성 조성물 및 그 제조 방법
WO2020039761A1 (ja) 熱伝導性シリコーン組成物及び熱伝導性シリコーン硬化物
KR20210098991A (ko) 열전도성 실리콘 조성물의 경화물
JP2018053260A (ja) 熱伝導性シリコーン組成物及び硬化物並びに複合シート
JP5131648B2 (ja) 熱伝導性シリコーン組成物およびそれを用いた熱伝導性シリコーン成形物
JP2021088621A (ja) 窒化ホウ素凝集粉を用いた熱伝導性樹脂組成物及び熱伝導性樹脂硬化物
CN114729193B (zh) 热传导性硅酮组合物和热传导性硅酮片材
WO2020213348A1 (ja) 熱伝導性樹脂組成物及び熱伝導性樹脂硬化物
WO2021131681A1 (ja) 熱伝導性シリコーン樹脂組成物
JP2021095569A (ja) 熱伝導性組成物、熱伝導性シート及びその製造方法
WO2019235042A1 (ja) 熱伝導性シリコーン低比重シート
TW202016219A (zh) 熱傳導性矽氧組成物及其硬化物
JP7485634B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
JP2024051534A (ja) 熱伝導性シリコーン組成物、熱伝導性シリコーン硬化物及び電気部品
JP2024083695A (ja) 熱伝導性シリコーンポッティング組成物およびその硬化物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20790549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20790549

Country of ref document: EP

Kind code of ref document: A1