WO2019235042A1 - 熱伝導性シリコーン低比重シート - Google Patents
熱伝導性シリコーン低比重シート Download PDFInfo
- Publication number
- WO2019235042A1 WO2019235042A1 PCT/JP2019/014446 JP2019014446W WO2019235042A1 WO 2019235042 A1 WO2019235042 A1 WO 2019235042A1 JP 2019014446 W JP2019014446 W JP 2019014446W WO 2019235042 A1 WO2019235042 A1 WO 2019235042A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat
- specific gravity
- conductive silicone
- sheet
- component
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/06—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
- C08J9/10—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
Definitions
- the present invention relates to a thermally conductive silicone low specific gravity sheet.
- Patent Documents 1 and 2 are characterized by being a composite sheet of a heat conductive foam sheet and a normal heat conductive sheet, but the manufacturing method becomes complicated and poor versatility.
- the thickness of the thermally conductive foam sheet is specified to be 0.3 mm or less.
- the component tolerance of the in-vehicle lithium ion battery is required when the sheet thickness is 0.3 mm or less. Cannot be absorbed sufficiently.
- acrylic resin is used as a base polymer, but acrylic resin is poor in heat resistance, cold resistance, and long-term reliability.
- Patent Documents 6-8 a silicone rubber sponge is examined, and it is reported that a silicone rubber sponge can be obtained by adding a chemical foaming agent to the silicone composition.
- a silicone rubber sponge can be obtained by adding a chemical foaming agent to the silicone composition.
- JP 2017-183617 A Japanese Patent No. 5951159 JP 2014-209537 A Japanese Patent No. 5068919 Japanese Patent No. 4531354 JP 2007-302827 A JP 2006-77099 A Japanese Patent Laid-Open No. 10-182972
- a heat-cured cured product of a sheet-like curable thermally conductive silicone composition comprising an organopolysiloxane as a base polymer and an azo compound as a thermally conductive filler and a chemical foaming agent.
- a heat conductive silicone low specific gravity sheet characterized in that, when the specific gravity of the thermally conductive silicone composition before heat curing is 1, the specific gravity of the heat foamed cured product is 0.7 or less.
- the specific gravity of the thermally conductive silicone composition before heat curing when the specific gravity of the thermally conductive silicone composition before heat curing is set to 1, it is essential that the specific gravity of the heat-foamed cured product is 0.7 or less. If the specific gravity of the heat-cured cured product is 0.7 or less, a heat conductive silicone low specific gravity sheet capable of achieving both low specific gravity and thermal conductivity is obtained. On the other hand, if the specific gravity of the heat-cured cured product exceeds 0.7, the effect of reducing the specific gravity is small and does not contribute to the weight reduction of the heat conductive sheet.
- the thermal conductivity of the curable thermally conductive silicone composition is preferably 0.7 W / m ⁇ K or more.
- the heat from the heat generating component can be sufficiently transmitted to the cooling component.
- the curable thermally conductive silicone composition may be cured by an addition reaction with a platinum catalyst, or may be cured by a peroxide.
- the present invention provides the heat conductive silicone low specific gravity sheet in which the heat conductive silicone low specific gravity sheet is mounted between a heat generating component and a cooling component, and the voids in the heated foam cured product are crushed by compression. Also provided is a method of using a heat conductive silicone low specific gravity sheet characterized in that heat is released from a heat-generating component by using.
- the method of using the heat conductive silicone low specific gravity sheet of the present invention can achieve both low specific gravity and heat conductivity, and can smoothly transfer heat from the heat generating component to the cooling component.
- the heat conductive silicone low specific gravity sheet of the present invention is a sponge having fine voids in the heat conductive sheet, the specific gravity can be reduced and the necessary heat conductivity can be obtained. Can have. And by compressing the said heat conductive silicone low specific gravity sheet using sufficient pressure, when mounting the heat conductive silicone low specific gravity sheet of this invention in the interface of a heat-generating component (heating element) and the cooling part of a cooling component, Since the minute gaps are crushed, the heat from the heat generating component can be smoothly transferred to the cooling component and efficiently radiated from the heat generating component.
- the present inventors have found that the specific gravity can be reduced by providing a fine gap in the thermally conductive sheet and forming a sponge, thereby completing the present invention. I let you.
- the present invention comprises a heat-cured cured product of a sheet-like curable thermally conductive silicone composition comprising an organopolysiloxane as a base polymer, and a thermally conductive filler and an azo compound as a chemical foaming agent.
- the heat conductive silicone low specific gravity sheet is characterized in that, when the specific gravity of the heat conductive silicone composition is 1, the specific gravity of the heated foam cured product is 0.7 or less.
- the curable thermally conductive silicone composition of the present invention comprises an organopolysiloxane as a base polymer, an azo compound as a thermally conductive filler and a chemical foaming agent, and has a sheet-like form.
- an organopolysiloxane as a base polymer
- an azo compound as a thermally conductive filler and a chemical foaming agent
- the curable thermally conductive silicone composition of the present invention contains an organopolysiloxane as a base polymer.
- the organopolysiloxane is further divided into (A) component, (C) component, and (G) component.
- (C) component and (G) component are components which can be included in the base polymer as necessary.
- the component (A) is an alkenyl group-containing organopolysiloxane.
- the alkenyl group-containing organopolysiloxane is an organopolysiloxane having two or more alkenyl groups bonded to a silicon atom in one molecule, and is a main component of the base polymer of the present invention.
- the main chain part is generally composed of repeating diorganosiloxane units, but this may be a part of the molecular structure containing a branched structure or cyclic. It may be a body.
- the component (A) is, for example, an organopolysiloxane represented by the following formula.
- R 1 independently represents a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10, preferably 1 to 8, carbon atoms, a is 1.90 to 2.05, and one molecule
- the polymerization degree of the component (A) is preferably 20 to 12,000, more preferably 50 to 10,000.
- R 1 examples include alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl and octadecyl; cyclopentyl and cyclohexyl Cycloalkyl groups such as phenyl groups, tolyl groups, xylyl groups and naphthyl groups; aralkyl groups such as benzyl groups, phenethyl groups and 3-phenylpropyl groups; 3,3,3-trifluoropropyl groups and 3 -Halogenated alkyl groups such as chloropropyl group; alkenyl groups such as vinyl group, allyl group, butenyl group, pentenyl group and hexenyl group.
- alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl, h
- Component (C) is an organopolysiloxane as a surface treatment agent.
- the base polymer of the present invention is prepared by hydrophobizing the thermally conductive filler as the component (B) at the time of preparing the composition to improve the wettability with the organopolysiloxane as the component (A).
- a surface treatment agent of the component (C) can be blended.
- the component (C) the following components (C-1) and (C-2) are particularly preferable.
- Component (C-1) the following general formula (1) R 2 a R 3 b Si (OR 4 ) 4-ab (1) Wherein R 2 is independently an alkyl group having 6 to 15 carbon atoms, R 3 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and R 4 is independently An alkyl group having 1 to 6 carbon atoms, a is an integer of 1 to 3, b is an integer of 0 to 2, provided that a + b is an integer of 1 to 3). It is.
- examples of the alkyl group represented by R 2 include a hexyl group, an octyl group, a nonyl group, a decyl group, a dodecyl group, and a tetradecyl group.
- the number of carbon atoms of the alkyl group represented by R 2 satisfies the range of 6 to 15, the wettability of the component (A) is sufficiently improved, the handleability is good, and the low temperature characteristics of the composition are good. Become.
- Examples of the unsubstituted or substituted monovalent hydrocarbon group represented by R 3 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a pentyl group, a neopentyl group, Hexyl, heptyl, octyl, nonyl, decyl, dodecyl and other alkyl groups, cyclopentyl, cyclohexyl, cycloheptyl and other cycloalkyl groups, phenyl, tolyl, xylyl, naphthyl, biphenylyl An aryl group such as a group, an aralkyl group such as a benzyl group, a phenylethyl group, a phenylpropyl group, and a methylbenzyl group, and
- Component (C-2) the following general formula (2) (Wherein R 5 is independently an alkyl group having 1 to 6 carbon atoms, and c is an integer of 5 to 100, preferably 5 to 70, particularly 10 to 50) Is a dimethylpolysiloxane in which one end of a molecular chain represented by is blocked with a trialkoxysilyl group.
- R 5 is independently an alkyl group having 1 to 6 carbon atoms, and c is an integer of 5 to 100, preferably 5 to 70, particularly 10 to 50
- the alkyl group represented by R 5 is the same type as the alkyl group represented by R 4 in the general formula (1).
- component (C) As the surface treatment agent for component (C), either one of component (C-1) or component (C-2) or a combination of both can be blended.
- the component (C) can be 0.01 to 50 parts by mass, particularly preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the component (A).
- Component (G) is an organohydrogenpolysiloxane, which is a component for addition reaction curing.
- the organohydrogenpolysiloxane of component (G) is an organohydrogenpolysiloxane having an average of 2 or more, preferably 2 to 100, hydrogen atoms (Si—H groups) directly bonded to silicon atoms in one molecule. It is a component that acts as a crosslinking agent for component (A). That is, a three-dimensional network having a crosslinked structure is added by adding a Si—H group in component (G), an alkenyl group in component (A), and a hydrosilylation reaction promoted by a platinum catalyst of component (D) described later. Give structure.
- organohydrogenpolysiloxane one represented by the following average structural formula (3) can be used, but is not limited thereto.
- R 6 independently represents an unsubstituted or substituted monovalent hydrocarbon group or hydrogen atom that does not contain an aliphatic unsaturated bond, but at least two are hydrogen atoms, and n is an integer of 1 or more. is there.
- examples of the unsubstituted or substituted monovalent hydrocarbon group that does not contain an aliphatic unsaturated bond other than hydrogen of R 6 include, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl Group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group and other alkyl groups, cyclopentyl group, cyclohexyl group, cycloheptyl group and other cycloalkyl groups, Carbon groups are bonded to aryl groups such as phenyl, tolyl, xylyl, naphthyl, and biphenylyl, aralkyl groups such as benzyl, phenylethyl, phenylpropyl,
- halogen atoms such as fluorine, chlorine and bromine, cyano groups, etc.
- Groups such as chloromethyl, 2-bromoethyl, 3-chloropropyl, 3,3,3-trifluoropropyl, chlorophenyl, fluorophenyl, cyanoethyl, 3,3,4,4,5 5,6,6,6-nonafluorohexyl group and the like, typical ones having 1 to 10 carbon atoms, particularly typical ones having 1 to 6 carbon atoms, preferably C1-C3 unsubstituted or substituted alkyl and phenyl groups such as methyl, ethyl, propyl, chloromethyl, bromoethyl, 3,3,3-trifluoropropyl, cyanoethyl, and chlorophenyl Group, an unsubstituted or substituted phenyl group such as a fluorophenyl group.
- R 6 is not
- Component (G) is added in such an amount that the Si—H group derived from component (G) is 0.1 to 5.0 moles per mole of alkenyl group derived from component (A), preferably 0.3
- the amount is from 2.0 to 2.0 mol, more preferably from 0.5 to 1.0 mol.
- Thermally conductive fillers are non-magnetic metals such as copper and aluminum, metal oxides such as alumina, silica, magnesia, bengara, beryllia, titania, zirconia, aluminum nitride, silicon nitride, boron nitride
- a material generally used as a heat conductive filler such as a metal nitride such as aluminum hydroxide or magnesium hydroxide, artificial diamond or silicon carbide can be used.
- the particle diameter (average particle diameter) may be 0.1 to 200 ⁇ m, and one or two or more may be used in combination.
- the average particle diameter is a value of a volume-based cumulative average particle diameter (median diameter), and can be measured by, for example, Microtrac MT3300EX, which is a particle size analyzer manufactured by Nikkiso Co., Ltd.
- the blending amount of the component (B) can be 200 to 2,500 parts by mass, preferably 300 to 1,500 parts by mass with respect to 100 parts by mass of the component (A).
- [Chemical foaming agent] When the chemical foaming agent (component (H)) is heated, a gas is generated under a normal pressure and high temperature environment.
- the azo compound used in the present invention generates nitrogen by thermal decomposition and has good foaming efficiency.
- Examples of the azo compound include dimethyl 1,1′-azobis (1-cyclohexanecarboxylate), azodicarbonamide, azobisisobutyronitrile, azocyclohexylnitrile, azodiaminobenzene, 2,2′-azobis-2.
- sulfur compounds that inhibit the curing of silicone rubber, phosphates, organic azo compounds having no strong amines in the molecule such as dimethyl 1,1′-azobis (1-cyclohexanecarboxylate), Azobisisobutyronitrile, 2,2'-azobis-2-methylbutyronitrile, 2,2'-azobis-2,4-dimethylvaleronitrile, 1,1'-azobis (1-acetoxy-1-phenyl) Ethane), 1,1′-azobis (cyclohexane-1-methylcarboxylate), 1,1′-azobis (cyclohexane-1-carbonitrile), 2,2′-azobis [N- (2-propenyl) -2 -Methylpropionamide] and the like are more preferable.
- organic azo blowing agents may be used alone or in combination of two or more.
- the compounding amount of the chemical foaming agent (component (H)) can be 0.5 to 50 parts by mass, preferably 1.0 to 20 parts by mass with respect to 100 parts by mass of the component (A). If the blending amount is 0.5 parts by mass or more, the amount of generated gas is sufficient, and the resulting cured product tends to be in a sponge state, and if it is 50 parts by mass or less, the component (H) is sufficiently mixed with other components. In addition, the amount of gas generated at the time of heat foaming and curing is sufficient.
- the curable thermally conductive silicone composition may further contain an optional component in order to obtain a desired thermally conductive low specific gravity sheet.
- Optional components include, for example, a platinum catalyst (component (D)) that is a component for addition reaction curing, an addition reaction control agent (component (E)), and a component for curing by peroxide.
- An oxide (component (F)) can be given.
- the components (D) to (F) will be described.
- a component is a platinum catalyst.
- the platinum catalyst is a catalyst for accelerating the addition reaction of the alkenyl group derived from the component (A) and the Si—H group derived from the component (G).
- a platinum catalyst known as a catalyst used in the hydrosilylation reaction is used. Can be mentioned.
- the amount of component (D) used may be a so-called catalytic amount, and can be about 0.1 to 1,000 ppm in terms of mass of platinum atoms relative to component (A).
- a component is a reaction control agent.
- An addition reaction control agent can be used as the component (E).
- the addition reaction control agent all known addition reaction control agents used in ordinary addition reaction curable silicone compositions can be used. Examples thereof include acetylene compounds such as 1-ethynyl-1-hexanol and 3-butyn-1-ol, various nitrogen compounds, organic phosphorus compounds, oxime compounds, and organic chloro compounds.
- the amount used is preferably about 0.01 to 1 part by weight per 100 parts by weight of component (A).
- a component is an organic peroxide.
- the organic peroxide is a vulcanizing agent used for curing the component (A).
- An organic peroxide may be used individually by 1 type, or may be used in combination of 2 or more type. Examples of the organic peroxide include benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, p-methylbenzoyl peroxide, o-methylbenzoyl peroxide, 2,4-dicumyl peroxide, 2,5-dimethyl.
- the addition amount of the organic peroxide may be an effective amount as a vulcanizing agent.
- it is preferably 0.1 to 15 parts by mass, particularly preferably 0.2 to 10 parts by mass with respect to 100 parts by mass of the component (A). is there. If the addition amount is within this range, the curing rate tends to improve as the addition amount increases, so that it tends to be economically advantageous, and the uncured product and decomposition residue are shortened from the resulting cured product. Easy to remove in time.
- the heat conductive silicone low specific gravity sheet of the present invention uses an organopolysiloxane (component (A) above) as a base polymer, a heat conductive filler (component (B)) and a chemical foaming agent (component (H)).
- component (A) above a base polymer
- component (B) a heat conductive filler
- component (H) a chemical foaming agent
- a heat-cured cured product of a sheet-like curable thermally conductive silicone composition obtained by molding a composition containing an azo compound into a sheet, and the specific gravity of the thermally conductive silicone composition before heat-curing is 1
- the specific gravity of the heated foamed cured product is 0.7 or less.
- the heat conductive silicone low specific gravity sheet of the present invention has a low specific gravity by providing fine voids in the heat conductive sheet to form a sponge.
- the thermally conductive silicone composition containing the chemical foaming agent is heat-cured, and at the same time, the gas generated by the thermal decomposition of the chemical foaming agent forms fine voids inside the thermal conductive sheet, resulting in a low specific gravity of the thermal conductive silicone.
- a sheet is obtained. And by compressing the thermally conductive silicone low specific gravity sheet with sufficient pressure when mounting at the interface between the heating element and the cooling part, the fine gaps are crushed and the heat from the heating element is smoothly transferred to the cooling part I can tell you.
- the specific gravity of the heat conductive low specific gravity sheet is such that the specific gravity of the heat-cured cured product is 0.7 or less and 0.6 or less when the specific gravity of the curable thermally conductive silicone composition before heat curing is 1. Preferably there is. If it exceeds 0.7, the effect of reducing the specific gravity is small, so it does not contribute to weight reduction of the heat conductive sheet.
- the specific gravity of the heat-foamed cured product may be 0.4 or more. The specific gravity was measured according to JIS K 6249.
- the thermal conductivity was measured according to ISO22007-2.
- the apparatus used is TPA-501 made by Kyoto Electronics.
- the thermal conductivity of the curable thermally conductive silicone composition before chemical foaming is preferably 0.7 W / m ⁇ K or more. More preferably, it is 1.0 W / m ⁇ K or more, and more preferably 1.2 W / m ⁇ K or more and 8 W / m ⁇ K or less. If it is 0.7 W / m ⁇ K or more, the heat from the heating element can be sufficiently transmitted to the cooling part.
- the hardness of the heat conductive low specific gravity sheet is preferably 50 or less, more preferably 40 or less and 1 or more in Asker C. Since the heat conductive low specific gravity sheet of the present invention is compressed and exhibits excellent heat conductivity, if the hardness of the heat conductive low specific gravity sheet is less than Asker C50, a large stress is applied to the heat-generating component for compression. It won't take.
- the thickness of the heat conductive low specific gravity sheet is preferably 0.35 mm or more, and more preferably 0.75 mm or more. If it is 0.35 mm or more, tolerances of members such as heat-generating parts and cooling parts can be absorbed, so that adhesion can be maintained.
- the curing method of the curable thermally conductive silicone composition used in the present invention needs to be cured by heating, but there is no particular limitation on the curing mechanism. Preferably, it is heat-cured with addition reaction curing or peroxide curing.
- the thermally conductive silicone low specific gravity sheet of the present invention is obtained by molding a composition containing an organopolysiloxane as a base polymer, a thermally conductive filler, and an azo compound as a chemical foaming agent into a sheet. It can be obtained by heating and foaming / curing the curable thermally conductive silicone composition. In this way, by adding a chemical foaming agent to the thermally conductive silicone composition and curing it by heating, gas is generated by decomposition of the chemical foaming agent by heat and fine voids are formed inside the thermally conductive sheet. A sponge-like heat conductive silicone low specific gravity sheet is obtained.
- the heat conductive silicone low specific gravity sheet of the present invention has a low specific gravity by forming fine voids in the heat conductive sheet to form a sponge, and the heat conductive silicone composition containing a chemical foaming agent is heated. Simultaneously with the curing, the gas generated by the thermal decomposition of the chemical foaming agent is obtained by forming fine voids inside the heat conductive sheet. For this reason, the heat conductive silicone low specific gravity sheet of the present invention can sufficiently contain a heat conductive filler in a portion other than the voids, although it has a low specific gravity by making it into a sponge. It has thermal conductivity that can sufficiently dissipate heat from the body.
- the thermally conductive silicone low specific gravity sheet of the present invention has both low specific gravity and thermal conductivity.
- the heat conductive silicone low specific gravity sheet of the present invention is mounted on the interface between the heating element and the cooling part, and by compressing with sufficient pressure, the fine voids are crushed and the heat from the heating element is smoothly transferred to the cooling part. Can be used to dissipate heat. That is, the heat conductive silicone low specific gravity sheet of the present invention exhibits excellent performance in applications where heat is radiated from heat-generating components.
- (A) component Dimethylpolysiloxane having an average degree of polymerization of 8000 and having both ends sealed with dimethylvinyl groups
- Component (C) Dimethylpolysiloxane in which one end having an average polymerization degree of 30 represented by the following chemical formula (4) is blocked with a trimethoxysilyl group
- (E) component Ethynylmethylidenecarbinol as addition reaction control agent
- (F) component C-23N as a peroxide curing agent (manufactured by Shin-Etsu Chemical)
- a predetermined amount of the components (A) to (H) was kneaded for 60 minutes with a kneader to obtain a heat conductive silicone composition.
- thermal conductivity of thermally conductive silicone composition The thermal conductivity of the obtained composition was measured using TAP-501 (manufactured by Kyoto Electronics).
- -Specific gravity of the thermally conductive silicone composition The specific gravity of the obtained composition was measured.
- Thickness of heat conductive low specific gravity sheet The thickness of the heat conductive low specific gravity sheet (heated foam cured product) obtained by heat-curing the heat-conductive silicone composition cold-pressed to 2 mm thickness was measured using a thickness gauge.
- -Specific gravity of the heat conductive low specific gravity sheet The specific gravity of a heat conductive low specific gravity sheet (heated foam cured product) obtained by heat curing a heat-conductive silicone composition cold-pressed to a thickness of 2 mm was measured.
- ⁇ Hardness of heat conductive low specific gravity sheet The heat conductive low specific gravity sheets were stacked up to 10 mm and measured using an Asuka-C hardness meter.
- ⁇ Thermal conductivity of heat conductive low specific gravity sheet The obtained heat conductive low specific gravity sheet was measured using TIM-Tester in accordance with ASTM D5470, and the thermal conductivity was calculated by dividing the sheet thickness at that time by the thermal resistance. The measurement conditions are 50 ° C. and 100 psi (0.69 MPa).
- Examples 1 to 5 Comparative Examples 1 to 3
- the curable thermally conductive silicone compositions of Examples 1 to 5 and Comparative Examples 1 to 3 were prepared by blending the components (A) to (H).
- Tables 1 and 2 show the evaluation results of the thermally conductive silicone composition and its heat-cured and cured foam (thermally conductive silicone low specific gravity sheet).
- the amounts of the components (A) to (H) are expressed in parts by mass.
- a chemical foaming agent is added to a heat conductive silicone composition containing a heat conductive filler, and is cured by heating, and the chemical foaming agent is foamed, so that the inside of the heat conductive silicone sheet is fine.
- New voids can be formed and the specific gravity can be reduced.
- the desired thermal conductivity can be obtained by compressing the fine voids.
- Comparative Example 1 As in Comparative Example 1, if no chemical foaming agent is added, fine voids are not formed inside the thermally conductive silicone sheet and the specific gravity is not reduced. In Comparative Example 2, an attempt was made to reduce the specific gravity by reducing the addition amount of the heat conductive filler, but the specific gravity was not changed and the thermal conductivity was lowered, so that sufficient thermal conductivity could not be provided. In Comparative Example 3, when chemical foaming was performed without adding a heat conductive filler, the specific gravity was successfully reduced. However, since the heat conductivity was lost, the necessary heat dissipation effect could not be obtained.
- the heat-foamed cured product of the sheet-like curable heat-conductive silicone composition containing organopolysiloxane as the base polymer and the azo compound as the heat-conductive filler and chemical foaming agent is a chemical foaming agent during heat-curing. Foaming produces fine voids in the cured product, and the specific gravity becomes smaller than that of the sheet-like composition before heating, resulting in a thermally conductive silicone low specific gravity sheet.
- the thermally conductive silicone low specific gravity sheet of the present invention has both low specific gravity and thermal conductivity, and can contribute to heat dissipation and weight reduction of electronic devices.
- the heat conductive silicone low specific gravity sheet of the present invention can be widely used for cooling (heat radiation) of heat-generating components such as electronic components by heat conduction.
- heat radiation heat radiation
- the present invention is not limited to the above embodiment.
- the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Thermal Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
本発明は、オルガノポリシロキサンをベースポリマーとし、熱伝導性充填材と化学発泡剤としてアゾ化合物を含むシート状の硬化性熱伝導性シリコーン組成物の加熱発泡硬化物からなり、加熱硬化前の前記熱伝導性シリコーン組成物の比重を1とした場合に、前記加熱発泡硬化物の比重が0.7以下であることを特徴とする熱伝導性シリコーン低比重シートである。これにより、低比重と熱伝導性を両立できる熱伝導性シリコーン低比重シートが提供される。
Description
本発明は、熱伝導性シリコーン低比重シートに関する。
パーソナルコンピューター、携帯電話等の電子機器に使用されるCPU、ドライバICやメモリー等の電子部品は、高性能化・高速化・小型化・高集積化に伴い、それ自身が大量の熱を発生するようになり、その熱によるチップの温度上昇はチップの動作不良、破壊を引き起こす。そのため、動作中のチップの温度上昇を抑制するための多くの熱放散方法及びそれに使用する熱放散部材が提案されている。
近年、特に車載用リチウムイオンバッテリーの熱放散部材の需要が増えている。具体的な使用箇所は、バッテリーセルとセル筐体の界面やバッテリーモジュールとバッテリー筐体の界面である。熱放散部材にはシートタイプやグリースタイプがあるが、実装のし易さなどからシートタイプが好んで使用されている場合が多い。また使用環境温度が-40℃から70℃とされており、幅広い温度環境に曝されるため、熱伝導性シートのベースポリマーとしてはシリコーンが用いられる事が多い。また、電気自動車などに用いられるリチウムイオンバッテリーの車体に占める割合は大きいため必然的にリチウムイオンバッテリーの放熱に使用される放熱シートの使用量も非常に大きくなるところ、一般的に放熱シートは比重が大きいため全体重量に対して占める割合が大きく、電気自動車などの軽量化を進めるうえで問題となっている。
そこで、放熱シートが全体重量に対して占める割合を低減するために放熱シートの比重を小さくする技術が検討されており、例えば、発泡技術を用いた熱伝導性シートがいくつか検討されている。特許文献1、2では、熱伝導性発泡シートと通常の熱伝導性シートとの複合シートであることが特徴となっているが、製造方法が煩雑になり、汎用性に乏しい。
特許文献3では、熱伝導性発泡シートの厚みが0.3mm以下と規定しているが、リチウムイオンバッテリーなどを想定した場合、0.3mm以下のシート厚みでは、車載用リチウムイオンバッテリーの部品公差を十分に吸収できない。
特許文献4、5では、ベースポリマーとしてアクリル系樹脂が用いられているが、アクリル系樹脂は耐熱性、耐寒性、長期信頼性に乏しい。
一方、特許文献6-8では、シリコーンゴムスポンジについて検討しており、シリコーン組成物に化学発泡剤を添加することで、シリコーンゴムスポンジが得られることが報告されている。しかし、上記特許文献では実際に熱伝導性を付与した実施例等の記載はなく、また用途に関する詳細な記載もない。
その他の放熱シートの比重を小さくする技術として放熱シートに用いる熱伝導性充填材の充填量を減らすことが挙げられる。しかし熱伝導性フィラーの充填量を減らせば放熱シートの比重は小さくなるが、熱伝導性を犠牲にしてしまう。また、用いる熱伝導性充填材として、水酸化アルミニウムのような比重の小さいものを用いることも考えられるが、低比重化の効果は小さい。
本発明は、上記問題を解決するためになされたものであり、低比重と熱伝導性を両立できる熱伝導性シリコーン低比重シートを提供することを目的とする。また、本発明は、前記熱伝導性シリコーン低比重シートを用いることにより発熱部品から放熱させる熱伝導性シリコーン低比重シートの使用方法を提供することも目的とする。
上記課題を解決するために、本発明では、オルガノポリシロキサンをベースポリマーとし、熱伝導性充填材と化学発泡剤としてアゾ化合物を含むシート状の硬化性熱伝導性シリコーン組成物の加熱発泡硬化物からなり、加熱硬化前の前記熱伝導性シリコーン組成物の比重を1とした場合に、前記加熱発泡硬化物の比重が0.7以下であることを特徴とする熱伝導性シリコーン低比重シートを提供する。
本発明では、加熱硬化前の熱伝導性シリコーン組成物の比重を1とした場合に、加熱発泡硬化物の比重が0.7以下であることを必須条件とする。加熱発泡硬化物の比重が0.7以下であれば、低比重と熱伝導性を両立できる熱伝導性シリコーン低比重シートとなる。一方、前記加熱発泡硬化物の比重が0.7を超えると低比重化の効果が小さく熱伝導性シートの軽量化に貢献しない。
この場合、前記硬化性熱伝導性シリコーン組成物の熱伝導率が0.7W/m・K以上であることが好ましい。
0.7W/m・K以上であれば、発熱部品からの熱を十分冷却部品に伝えることができる。
本発明では、前記硬化性熱伝導性シリコーン組成物が白金触媒による付加反応によって硬化するものであっても、また、過酸化物によって硬化するものであってもよい。
また、本発明は、前記熱伝導性シリコーン低比重シートを発熱部品と冷却部品の間に実装し、圧縮することで前記加熱発泡硬化物内の空隙が潰された前記熱伝導性シリコーン低比重シートを用いることにより発熱部品から放熱させることを特徴とする熱伝導性シリコーン低比重シートの使用方法も提供する。
本発明の熱伝導性シリコーン低比重シートの使用方法であれば、低比重と熱伝導性を両立できるうえ、発熱部品からの熱を冷却部品にスムーズに伝えることができる。
以上のように、本発明の熱伝導性シリコーン低比重シートであれば、熱伝導性シート中に微細な空隙を有するスポンジ状であるため比重を小さくすることができ、かつ必要な熱伝導性を有することができる。そして発熱部品(発熱体)と冷却部品の冷却部位の界面に本発明の熱伝導性シリコーン低比重シートを実装させる際に十分な圧力を用いて前記熱伝導性シリコーン低比重シートを圧縮する事で、微細な空隙が潰されるため発熱部品からの熱が冷却部品にスムーズに伝わって前記発熱部品から効率よく放熱させることができる。
上述のように、低比重と熱伝導性を両立できる熱伝導性シリコーン低比重シートの開発が求められていた。
本発明者らは、上記課題について鋭意検討を重ねた結果、熱伝導性シート中に微細な空隙を設けて、スポンジ状にすることで、比重を小さくすることができることを見出し、本発明を完成させた。
即ち、本発明は、オルガノポリシロキサンをベースポリマーとし、熱伝導性充填材と化学発泡剤としてアゾ化合物を含むシート状の硬化性熱伝導性シリコーン組成物の加熱発泡硬化物からなり、加熱硬化前の前記熱伝導性シリコーン組成物の比重を1とした場合に、前記加熱発泡硬化物の比重が0.7以下であることを特徴とする熱伝導性シリコーン低比重シートである。
以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。
[硬化性熱伝導性シリコーン組成物]
本発明の硬化性熱伝導性シリコーン組成物は、オルガノポリシロキサンをベースポリマーとし、熱伝導性充填材と化学発泡剤としてアゾ化合物を含み、シート状の形態を有するものである。以下、本発明の硬化性熱伝導性シリコーン組成物の構成成分について説明する。
本発明の硬化性熱伝導性シリコーン組成物は、オルガノポリシロキサンをベースポリマーとし、熱伝導性充填材と化学発泡剤としてアゾ化合物を含み、シート状の形態を有するものである。以下、本発明の硬化性熱伝導性シリコーン組成物の構成成分について説明する。
[オルガノポリシロキサン]
本発明の硬化性熱伝導性シリコーン組成物は、オルガノポリシロキサンをベースポリマーとして含む。前記オルガノポリシロキサンはさらに(A)成分、(C)成分、(G)成分に分けられる。なお、(C)成分と(G)成分は前記ベースポリマーに必要に応じて含めることができる成分である。
本発明の硬化性熱伝導性シリコーン組成物は、オルガノポリシロキサンをベースポリマーとして含む。前記オルガノポリシロキサンはさらに(A)成分、(C)成分、(G)成分に分けられる。なお、(C)成分と(G)成分は前記ベースポリマーに必要に応じて含めることができる成分である。
[(A)成分]
(A)成分は、アルケニル基含有オルガノポリシロキサンである。前記アルケニル基含有オルガノポリシロキサンは、ケイ素原子に結合したアルケニル基を1分子中に2個以上有するオルガノポリシロキサンであり、本発明のベースポリマーの主成分となるものである。通常は主鎖部分が基本的にジオルガノシロキサン単位の繰り返しからなるのが一般的であるが、これは分子構造の一部に分枝状の構造を含んだものであってもよく、また環状体であってもよい。
(A)成分は、アルケニル基含有オルガノポリシロキサンである。前記アルケニル基含有オルガノポリシロキサンは、ケイ素原子に結合したアルケニル基を1分子中に2個以上有するオルガノポリシロキサンであり、本発明のベースポリマーの主成分となるものである。通常は主鎖部分が基本的にジオルガノシロキサン単位の繰り返しからなるのが一般的であるが、これは分子構造の一部に分枝状の構造を含んだものであってもよく、また環状体であってもよい。
前記(A)成分は例えば以下の式で表されるオルガノポリシロキサンである。
R1 aSiO(4-a)/2
式中、R1は独立して、置換または非置換の炭素原子数1~10、好ましくは1~8の1価炭化水素基を表わし、aは1.90~2.05であり、1分子中に少なくとも2個の、ケイ素原子に結合したアルケニル基を有するオルガノポリシロキサンである。(A)成分の重合度は、好ましくは20~12,000、より好ましくは50~10,000である。
R1 aSiO(4-a)/2
式中、R1は独立して、置換または非置換の炭素原子数1~10、好ましくは1~8の1価炭化水素基を表わし、aは1.90~2.05であり、1分子中に少なくとも2個の、ケイ素原子に結合したアルケニル基を有するオルガノポリシロキサンである。(A)成分の重合度は、好ましくは20~12,000、より好ましくは50~10,000である。
上記R1としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基およびオクタデシル基等のアルキル基;シクロペンチル基およびシクロヘキシル基等のシクロアルキル基;フェニル基、トリル基、キシリル基およびナフチル基等のアリール基;ベンジル基、フェネチル基および3-フェニルプロピル基等のアラルキル基;3,3,3-トリフルオロプロピル基および3-クロロプロピル基等のハロゲン化アルキル基;ビニル基、アリル基、ブテニル基、ペンテニル基およびヘキセニル基等のアルケニル基等が挙げられる。
[(C)成分]
(C)成分は、表面処理剤としてのオルガノポリシロキサンである。
(C)成分は、表面処理剤としてのオルガノポリシロキサンである。
本発明のベースポリマーには、組成物調製時に(B)成分である熱伝導性充填材を疎水化処理し、(A)成分であるオルガノポリシロキサンとの濡れ性を向上させ、(B)成分である熱伝導性充填材を(A)成分からなるマトリックス中に均一に分散させることを目的として、(C)成分の表面処理剤を配合することができる。前記(C)成分としては、特に下記に示す(C-1)成分及び(C-2)成分が好ましい。
(C-1)成分:下記一般式(1)
R2 aR3 bSi(OR4)4-a-b (1)
(式中、R2は独立に炭素原子数6~15のアルキル基であり、R3は独立に非置換又は置換の炭素原子数1~10の1価炭化水素基であり、R4は独立に炭素原子数1~6のアルキル基であり、aは1~3の整数、bは0~2の整数であり、但しa+bは1~3の整数である。)で表されるアルコキシシラン化合物である。
R2 aR3 bSi(OR4)4-a-b (1)
(式中、R2は独立に炭素原子数6~15のアルキル基であり、R3は独立に非置換又は置換の炭素原子数1~10の1価炭化水素基であり、R4は独立に炭素原子数1~6のアルキル基であり、aは1~3の整数、bは0~2の整数であり、但しa+bは1~3の整数である。)で表されるアルコキシシラン化合物である。
上記一般式(1)において、R2で表されるアルキル基としては、例えば、ヘキシル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基等が挙げられる。このR2で表されるアルキル基の炭素原子数が6~15の範囲を満たすと(A)成分の濡れ性が十分に向上し、取り扱い性がよく、組成物の低温特性が良好なものとなる。
R3で表される非置換又は置換の1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基などのアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基、並びにこれらの基に炭素原子が結合している水素原子の一部又は全部が、フッ素、塩素、臭素等のハロゲン原子、シアノ基などで置換された基、例えば、クロロメチル基、2-ブロモエチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、クロロフェニル基、フルオロフェニル基、シアノエチル基、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル基等が挙げられ、代表的なものは炭素原子数が1~10、特に代表的なものは炭素原子数が1~6のものであり、好ましくはメチル基、エチル基、プロピル基、クロロメチル基、ブロモエチル基、3,3,3-トリフルオロプロピル基、シアノエチル基等の炭素原子数1~3の非置換又は置換のアルキル基及びフェニル基、クロロフェニル基、フルオロフェニル基等の非置換又は置換のフェニル基が挙げられる。
(C-2)成分:下記一般式(2)
(式中、R5は独立に炭素原子数1~6のアルキル基であり、cは5~100、好ましくは5~70、特に10~50の整数である。)
で表される分子鎖片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサンである。上記一般式(2)において、R5で表されるアルキル基は、上記一般式(1)中のR4で表されるアルキル基と同種のものである。
で表される分子鎖片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサンである。上記一般式(2)において、R5で表されるアルキル基は、上記一般式(1)中のR4で表されるアルキル基と同種のものである。
(C)成分の表面処理剤として、(C-1)成分と(C-2)成分のいずれか一方又は両者を組み合わせて配合することができる。(C)成分としては、(A)成分100質量部に対して0.01~50質量部とすることができ、特に0.1~30質量部であることが好ましい。
[(G)成分]
(G)成分はオルガノハイドロジェンポリシロキサンであって、付加反応硬化をするための成分である。
(G)成分はオルガノハイドロジェンポリシロキサンであって、付加反応硬化をするための成分である。
(G)成分のオルガノハイドロジェンポリシロキサンは、1分子中に平均で2個以上、好ましくは2~100個のケイ素原子に直接結合する水素原子(Si-H基)を有するオルガノハイドロジェンポリシロキサンであり、(A)成分の架橋剤として作用する成分である。即ち、(G)成分中のSi-H基と(A)成分中のアルケニル基と後述の(D)成分の白金触媒により促進されるヒドロシリル化反応により付加して、架橋構造を有する3次元網目構造を与える。
オルガノハイドロジェンポリシロキサンとしては、下記平均構造式(3)で示されるものを用いることができるが、これに限定されるものではない。
(式中、R6は独立に脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基あるいは水素原子であるが、少なくとも2個は水素原子であり、nは1以上の整数である。)
式(3)中、R6の水素以外の脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基などのアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基、並びにこれらの基に炭素原子が結合している水素原子の一部又は全部が、フッ素、塩素、臭素等のハロゲン原子、シアノ基などで置換された基、例えば、クロロメチル基、2-ブロモエチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、クロロフェニル基、フルオロフェニル基、シアノエチル基、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル基等が挙げられ、代表的なものは炭素原子数が1~10、特に代表的なものは炭素原子数が1~6のものであり、好ましくはメチル基、エチル基、プロピル基、クロロメチル基、ブロモエチル基、3,3,3-トリフルオロプロピル基、シアノエチル基等の炭素原子数1~3の非置換又は置換のアルキル基及びフェニル基、クロロフェニル基、フルオロフェニル基等の非置換又は置換のフェニル基である。また、R6は全てが同一であることに限定されない。
(G)成分の添加量は、(G)成分由来のSi-H基が(A)成分由来のアルケニル基1モルに対して0.1~5.0モルとなる量、望ましくは0.3~2.0モル、更に好ましくは0.5~1.0モルとなる量である。
[熱伝導性充填材]
熱伝導性充填材((B)成分)は、非磁性の銅やアルミニウム等の金属、アルミナ、シリカ、マグネシア、ベンガラ、ベリリア、チタニア、ジルコニア等の金属酸化物、窒化アルミニウム、窒化ケイ素、窒化硼素等の金属窒化物、水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物、人工ダイヤモンドあるいは炭化珪素等一般に熱伝導充填材とされる物質を用いることができる。また粒径(平均粒径)は0.1~200μmを用いることができ、1種または2種以上を複合して用いても良い。この場合、異種の熱伝導性充填材どうしを複合してもよく、同種で平均粒径の異なる熱伝導性充填材どうしを複合してもよい。なお、上記平均粒径は、体積基準の累積平均粒径(メディアン径)の値であり、例えば、日機装(株)製の粒度分析計であるマイクロトラックMT3300EXにより測定できる。
熱伝導性充填材((B)成分)は、非磁性の銅やアルミニウム等の金属、アルミナ、シリカ、マグネシア、ベンガラ、ベリリア、チタニア、ジルコニア等の金属酸化物、窒化アルミニウム、窒化ケイ素、窒化硼素等の金属窒化物、水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物、人工ダイヤモンドあるいは炭化珪素等一般に熱伝導充填材とされる物質を用いることができる。また粒径(平均粒径)は0.1~200μmを用いることができ、1種または2種以上を複合して用いても良い。この場合、異種の熱伝導性充填材どうしを複合してもよく、同種で平均粒径の異なる熱伝導性充填材どうしを複合してもよい。なお、上記平均粒径は、体積基準の累積平均粒径(メディアン径)の値であり、例えば、日機装(株)製の粒度分析計であるマイクロトラックMT3300EXにより測定できる。
(B)成分の配合量は、(A)成分100質量部に対して200~2,500質量部であることができ、好ましくは300~1,500質量部である。
[化学発泡剤]
化学発泡剤((H)成分)は、加熱すると常圧高温環境下で気体が発生する。本発明で用いるアゾ化合物は熱分解によって窒素を発生し、発泡効率がよい。アゾ化合物としては、例えば、ジメチル1,1’-アゾビス(1-シクロヘキサンカルボキシレート)、アゾジカルボンアミド、アゾビスイソブチロニトリル、アゾシクロへキシルニトリル、アゾジアミノベンゼン、2,2’-アゾビス-2-メチルブチロニトリル、2,2’-アゾビス-2,4-ジメチルバレロニトリル、1,1’-アゾビス(1-アセトキシ-1-フェニルエタン)、バリウムアゾジカルボキシレート、1,1’-アゾビス(シクロヘキサン-1-メチルカルボキシレート)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス〔N-(2-プロペニル)-2-メチルプロピオンアミド〕等が挙げられる。これらの中でも特に、分子内にシリコーンゴムの硬化を阻害する硫黄化合物、リン酸塩類、強いアミン類などを持たない有機アゾ化合物、例えば、ジメチル1,1’-アゾビス(1-シクロヘキサンカルボキシレート)、アゾビスイソブチロニトリル、2,2’-アゾビス-2-メチルブチロニトリル、2,2’-アゾビス-2,4-ジメチルバレロニトリル、1,1’-アゾビス(1-アセトキシ-1-フェニルエタン)、1,1’-アゾビス(シクロヘキサン-1-メチルカルボキシレート)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス〔N-(2-プロペニル)-2-メチルプロピオンアミド〕等を使用することがより好ましい。これらの有機アゾ発泡剤は、単独で使用しても2種以上を組み合わせて使用してもよい。
化学発泡剤((H)成分)は、加熱すると常圧高温環境下で気体が発生する。本発明で用いるアゾ化合物は熱分解によって窒素を発生し、発泡効率がよい。アゾ化合物としては、例えば、ジメチル1,1’-アゾビス(1-シクロヘキサンカルボキシレート)、アゾジカルボンアミド、アゾビスイソブチロニトリル、アゾシクロへキシルニトリル、アゾジアミノベンゼン、2,2’-アゾビス-2-メチルブチロニトリル、2,2’-アゾビス-2,4-ジメチルバレロニトリル、1,1’-アゾビス(1-アセトキシ-1-フェニルエタン)、バリウムアゾジカルボキシレート、1,1’-アゾビス(シクロヘキサン-1-メチルカルボキシレート)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス〔N-(2-プロペニル)-2-メチルプロピオンアミド〕等が挙げられる。これらの中でも特に、分子内にシリコーンゴムの硬化を阻害する硫黄化合物、リン酸塩類、強いアミン類などを持たない有機アゾ化合物、例えば、ジメチル1,1’-アゾビス(1-シクロヘキサンカルボキシレート)、アゾビスイソブチロニトリル、2,2’-アゾビス-2-メチルブチロニトリル、2,2’-アゾビス-2,4-ジメチルバレロニトリル、1,1’-アゾビス(1-アセトキシ-1-フェニルエタン)、1,1’-アゾビス(シクロヘキサン-1-メチルカルボキシレート)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス〔N-(2-プロペニル)-2-メチルプロピオンアミド〕等を使用することがより好ましい。これらの有機アゾ発泡剤は、単独で使用しても2種以上を組み合わせて使用してもよい。
化学発泡剤((H)成分)の配合量は、(A)成分の100質量部に対して、0.5~50質量部、好ましくは1.0~20質量部とすることができる。配合量が0.5質量部以上であれば発生ガスの量が十分となり、得られる硬化物がスポンジ状態となりやすく、50質量部以下であれば、(H)成分を他の成分と十分に混合することができ、また加熱発泡硬化時に発生するガス量も十分となる。
[任意成分]
本発明では、所望の熱伝導性低比重シートを得るために硬化性熱伝導性シリコーン組成物がさらに任意成分を含むことができる。任意成分としては、例えば、付加反応硬化をするための成分である白金触媒((D)成分)、付加反応制御剤((E)成分)、過酸化物による硬化をするための成分である過酸化物((F)成分)を挙げることができる。以下、(D)~(F)成分について説明する。
本発明では、所望の熱伝導性低比重シートを得るために硬化性熱伝導性シリコーン組成物がさらに任意成分を含むことができる。任意成分としては、例えば、付加反応硬化をするための成分である白金触媒((D)成分)、付加反応制御剤((E)成分)、過酸化物による硬化をするための成分である過酸化物((F)成分)を挙げることができる。以下、(D)~(F)成分について説明する。
[(D)成分]
(D)成分は、白金触媒である。前記白金触媒は、(A)成分由来のアルケニル基と、(G)成分由来のSi-H基の付加反応を促進するための触媒であり、ヒドロシリル化反応に用いられる触媒として周知の白金触媒が挙げられる。その具体例としては、例えば、白金単体(白金黒を含む)、H2PtCl4・nH2O、H2PtCl6・nH2O、NaHPtCl6・nH2O、KHPtCl6・nH2O、Na2PtCl6・nH2O、K2PtCl4・nH2O、PtCl4・nH2O、PtCl2、Na2HPtCl4・nH2O(但し、式中、nは0~6の整数であり、好ましくは0又は6である。)等の塩化白金、塩化白金酸及び塩化白金酸塩、アルコール変性塩化白金酸(米国特許第3,220,972号明細書参照)、塩化白金酸とオレフィンとのコンプレックス(米国特許第3,159,601号明細書、同第3,159,662号明細書、同第3,775,452号明細書参照)、白金をアルミナ、シリカ、カーボン等の担体に担持させたもの、塩化白金、塩化白金酸又は塩化白金酸塩とビニル基含有シロキサン、特にビニル基含有環状シロキサンとのコンプレックスなどが挙げられる。
(D)成分は、白金触媒である。前記白金触媒は、(A)成分由来のアルケニル基と、(G)成分由来のSi-H基の付加反応を促進するための触媒であり、ヒドロシリル化反応に用いられる触媒として周知の白金触媒が挙げられる。その具体例としては、例えば、白金単体(白金黒を含む)、H2PtCl4・nH2O、H2PtCl6・nH2O、NaHPtCl6・nH2O、KHPtCl6・nH2O、Na2PtCl6・nH2O、K2PtCl4・nH2O、PtCl4・nH2O、PtCl2、Na2HPtCl4・nH2O(但し、式中、nは0~6の整数であり、好ましくは0又は6である。)等の塩化白金、塩化白金酸及び塩化白金酸塩、アルコール変性塩化白金酸(米国特許第3,220,972号明細書参照)、塩化白金酸とオレフィンとのコンプレックス(米国特許第3,159,601号明細書、同第3,159,662号明細書、同第3,775,452号明細書参照)、白金をアルミナ、シリカ、カーボン等の担体に担持させたもの、塩化白金、塩化白金酸又は塩化白金酸塩とビニル基含有シロキサン、特にビニル基含有環状シロキサンとのコンプレックスなどが挙げられる。
(D)成分の使用量は、いわゆる触媒量でよく、(A)成分に対する白金原子の質量換算で0.1~1,000ppm程度とすることができる。
[(E)成分]
(E)成分は、反応制御剤である。前記(E)成分として付加反応制御剤を使用することができる。付加反応制御剤は、通常の付加反応硬化型シリコーン組成物に用いられる公知の付加反応制御剤を全て用いることができる。例えば、1-エチニル-1-ヘキサノール、3-ブチン-1-オールなどのアセチレン化合物や各種窒素化合物、有機リン化合物、オキシム化合物、有機クロロ化合物等が挙げられる。使用量としては、(A)成分100質量部に対して0.01~1質量部程度が望ましい。
(E)成分は、反応制御剤である。前記(E)成分として付加反応制御剤を使用することができる。付加反応制御剤は、通常の付加反応硬化型シリコーン組成物に用いられる公知の付加反応制御剤を全て用いることができる。例えば、1-エチニル-1-ヘキサノール、3-ブチン-1-オールなどのアセチレン化合物や各種窒素化合物、有機リン化合物、オキシム化合物、有機クロロ化合物等が挙げられる。使用量としては、(A)成分100質量部に対して0.01~1質量部程度が望ましい。
[(F)成分]
(F)成分は、有機過酸化物である。前記有機過酸化物は前記(A)成分を硬化させるために使用する加硫剤である。有機過酸化物は一種単独で使用しても二種以上を組み合わせて使用してもよい。有機過酸化物としては、例えば、ベンゾイルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、p-メチルベンゾイルパーオキサイド、o-メチルベンゾイルパーオキサイド、2,4-ジクミルパーオキサイド、2,5-ジメチル-ビス(2,5-t-ブチルパーオキシ)ヘキサン、ジ-t-ブチルパーオキサイド、t-ブチルパーベンゾエート、1,6-ヘキサンジオール-ビス-t-ブチルパーオキシカーボネート等が挙げられる。
(F)成分は、有機過酸化物である。前記有機過酸化物は前記(A)成分を硬化させるために使用する加硫剤である。有機過酸化物は一種単独で使用しても二種以上を組み合わせて使用してもよい。有機過酸化物としては、例えば、ベンゾイルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、p-メチルベンゾイルパーオキサイド、o-メチルベンゾイルパーオキサイド、2,4-ジクミルパーオキサイド、2,5-ジメチル-ビス(2,5-t-ブチルパーオキシ)ヘキサン、ジ-t-ブチルパーオキサイド、t-ブチルパーベンゾエート、1,6-ヘキサンジオール-ビス-t-ブチルパーオキシカーボネート等が挙げられる。
有機過酸化物の添加量は加硫剤としての有効量でよく、例えば(A)成分100質量部に対して好ましくは0.1~15質量部、特に好ましくは0.2~10質量部である。該添加量がこの範囲内にあると、該添加量の増加に応じて硬化速度が向上しやすいので、経済的に有利となりやすく、また、得られる硬化物から未反応物や分解残査を短時間で除去しやすい。
[熱伝導性シリコーン低比重シート]
本発明の熱伝導性シリコーン低比重シートは、オルガノポリシロキサン(上記(A)成分など)をベースポリマーとし、熱伝導性充填材((B)成分)と化学発泡剤((H)成分)としてアゾ化合物を含む組成物をシート状に成形したシート状の硬化性熱伝導性シリコーン組成物の加熱発泡硬化物からなり、加熱硬化前の前記熱伝導性シリコーン組成物の比重を1とした場合に、前記加熱発泡硬化物の比重が0.7以下である。
本発明の熱伝導性シリコーン低比重シートは、オルガノポリシロキサン(上記(A)成分など)をベースポリマーとし、熱伝導性充填材((B)成分)と化学発泡剤((H)成分)としてアゾ化合物を含む組成物をシート状に成形したシート状の硬化性熱伝導性シリコーン組成物の加熱発泡硬化物からなり、加熱硬化前の前記熱伝導性シリコーン組成物の比重を1とした場合に、前記加熱発泡硬化物の比重が0.7以下である。
本発明の熱伝導性シリコーン低比重シートは、熱伝導性シート中に微細な空隙を設けてスポンジ状にすることで低比重化している。化学発泡剤を含む熱伝導性シリコーン組成物が加熱硬化すると同時に、化学発泡剤の熱による分解で発生した気体が熱伝導性シート内部に微細な空隙を形成することで、熱伝導性シリコーン低比重シートが得られる。そして発熱体と冷却部位の界面に実装させる際に十分な圧力を用いて熱伝導性シリコーン低比重シートを圧縮する事で、微細な空隙が潰されて発熱体からの熱を冷却部位にスムーズに伝える事ができる。
[熱伝導性低比重シートの比重]
熱伝導性低比重シートの比重は、加熱硬化前の硬化性熱伝導性シリコーン組成物の比重を1とした場合に、加熱発泡硬化物の比重が0.7以下であり、0.6以下であることが好ましい。0.7を超えると低比重化の効果が小さいため熱伝導性シートの軽量化に貢献しない。また、加熱発泡硬化物の比重は0.4以上であればよい。なお、比重はJIS K 6249に準拠して測定した。
熱伝導性低比重シートの比重は、加熱硬化前の硬化性熱伝導性シリコーン組成物の比重を1とした場合に、加熱発泡硬化物の比重が0.7以下であり、0.6以下であることが好ましい。0.7を超えると低比重化の効果が小さいため熱伝導性シートの軽量化に貢献しない。また、加熱発泡硬化物の比重は0.4以上であればよい。なお、比重はJIS K 6249に準拠して測定した。
[熱伝導率]
熱伝導率はISO22007-2に準拠して測定した。用いた装置は京都電子製TPA-501である。化学発泡させる前の硬化性熱伝導性シリコーン組成物の熱伝導率は0.7W/m・K以上が好ましい。より好ましくは1.0W/m・K以上であり、1.2W/m・K以上8W/m・K以下がより一層好ましい。0.7W/m・K以上であれば発熱体からの熱を十分冷却部位に伝えることができる。
熱伝導率はISO22007-2に準拠して測定した。用いた装置は京都電子製TPA-501である。化学発泡させる前の硬化性熱伝導性シリコーン組成物の熱伝導率は0.7W/m・K以上が好ましい。より好ましくは1.0W/m・K以上であり、1.2W/m・K以上8W/m・K以下がより一層好ましい。0.7W/m・K以上であれば発熱体からの熱を十分冷却部位に伝えることができる。
[熱伝導性低比重シートの硬度]
熱伝導性低比重シートの硬度は、アスカ―Cで50以下が好ましく、より好ましくは40以下1以上である。本発明の熱伝導性低比重シートは圧縮されて優れた熱伝導性を発揮するので、熱伝導性低比重シートの硬度がアスカ―C50以下であれば、圧縮するために発熱部品に大きな応力が掛かかることはない。
熱伝導性低比重シートの硬度は、アスカ―Cで50以下が好ましく、より好ましくは40以下1以上である。本発明の熱伝導性低比重シートは圧縮されて優れた熱伝導性を発揮するので、熱伝導性低比重シートの硬度がアスカ―C50以下であれば、圧縮するために発熱部品に大きな応力が掛かかることはない。
[熱伝導性低比重シートの厚み]
熱伝導性低比重シートの厚みは0.35mm以上が好ましく、より好ましくは0.75mm以上である。0.35mm以上であれば発熱部品、冷却部品など部材の公差を吸収できるため密着性を維持できる。
熱伝導性低比重シートの厚みは0.35mm以上が好ましく、より好ましくは0.75mm以上である。0.35mm以上であれば発熱部品、冷却部品など部材の公差を吸収できるため密着性を維持できる。
[硬化方法]
本発明に用いる硬化性熱伝導性シリコーン組成物の硬化方法は、加熱硬化させることが必要であるが、硬化機構について特に限定はない。好ましくは、付加反応硬化や過酸化物による硬化を伴って加熱硬化させる。
本発明に用いる硬化性熱伝導性シリコーン組成物の硬化方法は、加熱硬化させることが必要であるが、硬化機構について特に限定はない。好ましくは、付加反応硬化や過酸化物による硬化を伴って加熱硬化させる。
[熱伝導性シリコーン低比重シートの製造方法]
本発明の熱伝導性シリコーン低比重シートは、ベースポリマーとしてのオルガノポリシロキサン、熱伝導性充填材、及び化学発泡剤としてアゾ化合物を含む組成物をシート状に成形し、得られたシート状の硬化性熱伝導性シリコーン組成物を加熱して発泡・硬化することにより得ることができる。このように化学発泡剤を熱伝導性シリコーン組成物に添加して、加熱硬化させると同時に、化学発泡剤の熱による分解で気体を発生し熱伝導性シート内部に微細な空隙を形成させることで、スポンジ状の熱伝導性シリコーン低比重シートが得られる。
本発明の熱伝導性シリコーン低比重シートは、ベースポリマーとしてのオルガノポリシロキサン、熱伝導性充填材、及び化学発泡剤としてアゾ化合物を含む組成物をシート状に成形し、得られたシート状の硬化性熱伝導性シリコーン組成物を加熱して発泡・硬化することにより得ることができる。このように化学発泡剤を熱伝導性シリコーン組成物に添加して、加熱硬化させると同時に、化学発泡剤の熱による分解で気体を発生し熱伝導性シート内部に微細な空隙を形成させることで、スポンジ状の熱伝導性シリコーン低比重シートが得られる。
本発明の熱伝導性シリコーン低比重シートは、熱伝導性シート中に微細な空隙を形成してスポンジ状にすることで低比重化しており、化学発泡剤を含む熱伝導性シリコーン組成物が加熱硬化すると同時に、化学発泡剤の熱による分解で発生した気体が熱伝導性シート内部に微細な空隙を形成することで得られる。このため本発明の熱伝導性シリコーン低比重シートは、スポンジ状にすることで低比重化しているにもかかわらず、上記空隙以外の部分に熱伝導性充填材を十分に含むことができ、発熱体からの放熱を十分に行うことができる熱伝導性を備えるものとなっている。すなわち、本発明の熱伝導性シリコーン低比重シートは低比重と熱伝導性を両立している。そして発熱体と冷却部位の界面に本発明の熱伝導性シリコーン低比重シートを実装し、十分な圧力を用いて圧縮することにより微細な空隙が潰されて発熱体からの熱を冷却部位にスムーズに伝えて放熱することができる。すなわち本発明の熱伝導性シリコーン低比重シートは発熱部品から放熱させる用途において優れた性能を発揮する。
以下、実施例及び比較例を用いて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
[組成物の調製]
下記実施例および比較例に用いられている(A)~(H)成分を下記に示す。
下記実施例および比較例に用いられている(A)~(H)成分を下記に示す。
(A)成分:
平均重合度8000の、ジメチルビニル基で両末端封止したジメチルポリシロキサン
平均重合度8000の、ジメチルビニル基で両末端封止したジメチルポリシロキサン
(B)成分:
(B-1)平均粒径:10μm:水酸化アルミニウム
(B-2)平均粒径:1μm:水酸化アルミニウム
(B-3)平均粒径:1μm:アルミナ
(B-1)平均粒径:10μm:水酸化アルミニウム
(B-2)平均粒径:1μm:水酸化アルミニウム
(B-3)平均粒径:1μm:アルミナ
(D)成分:
5%塩化白金酸2-エチルヘキサノール溶液
5%塩化白金酸2-エチルヘキサノール溶液
(E)成分:
付加反応制御剤としてのエチニルメチリデンカルビノール
付加反応制御剤としてのエチニルメチリデンカルビノール
(F)成分:
過酸化物系硬化剤としてのC-23N(信越化学工業製)
過酸化物系硬化剤としてのC-23N(信越化学工業製)
(H)成分:
1,1-アゾビス(シクロヘキサンー1-メチルカルボキシレート)
1,1-アゾビス(シクロヘキサンー1-メチルカルボキシレート)
(A)から(H)成分の所定量をニーダーで60分間混練し熱伝導性シリコーン組成物を得た。
[成形方法]
得られた硬化性熱伝導性シリコーン組成物をテフロン(登録商標)シートに挟み込み、所定の厚みになるまでコールドプレスしてシート状の硬化性熱伝導性シリコーン組成物を得た。このシート状組成物を190℃/5分で加熱硬化させて熱伝導性シリコーン低比重シートを得た。
得られた硬化性熱伝導性シリコーン組成物をテフロン(登録商標)シートに挟み込み、所定の厚みになるまでコールドプレスしてシート状の硬化性熱伝導性シリコーン組成物を得た。このシート状組成物を190℃/5分で加熱硬化させて熱伝導性シリコーン低比重シートを得た。
[評価方法]
・熱伝導性シリコーン組成物の熱伝導率:
得られた組成物の熱伝導率をTAP-501(京都電子製)を用いて測定した。
・熱伝導性シリコーン組成物の比重:
得られた組成物の比重を測定した。
・熱伝導性低比重シートの厚み:
熱伝導性シリコーン組成物を2mm厚にコールドプレスしたものを加熱硬化させた熱伝導性低比重シート(加熱発泡硬化物)の厚みをシックネスゲージを用いて測定した。
・熱伝導性低比重シートの比重:
熱伝導性シリコーン組成物を2mm厚にコールドプレスしたものを加熱硬化させた熱伝導性低比重シート(加熱発泡硬化物)の比重を測定した。
・熱伝導性低比重シートの硬度:
熱伝導性低比重シートを10mmなるまで重ねて、アスカ―C硬度計を用いて測定した。
・熱伝導性低比重シートの熱伝導率:
得られた熱伝導性低比重シートをASTM D5470に準拠しTIM-Testerを用いて測定し、その時のシートの厚みを熱抵抗で割ることで熱伝導率を算出した。測定条件は50℃、100psi(0.69MPa)である。
・熱伝導性シリコーン組成物の熱伝導率:
得られた組成物の熱伝導率をTAP-501(京都電子製)を用いて測定した。
・熱伝導性シリコーン組成物の比重:
得られた組成物の比重を測定した。
・熱伝導性低比重シートの厚み:
熱伝導性シリコーン組成物を2mm厚にコールドプレスしたものを加熱硬化させた熱伝導性低比重シート(加熱発泡硬化物)の厚みをシックネスゲージを用いて測定した。
・熱伝導性低比重シートの比重:
熱伝導性シリコーン組成物を2mm厚にコールドプレスしたものを加熱硬化させた熱伝導性低比重シート(加熱発泡硬化物)の比重を測定した。
・熱伝導性低比重シートの硬度:
熱伝導性低比重シートを10mmなるまで重ねて、アスカ―C硬度計を用いて測定した。
・熱伝導性低比重シートの熱伝導率:
得られた熱伝導性低比重シートをASTM D5470に準拠しTIM-Testerを用いて測定し、その時のシートの厚みを熱抵抗で割ることで熱伝導率を算出した。測定条件は50℃、100psi(0.69MPa)である。
[実施例1~5、比較例1~3]
表1、2に示すように(A)~(H)成分を配合して実施例1~5、比較例1~3の硬化性熱伝導性シリコーン組成物を作製した。前記熱伝導性シリコーン組成物とその加熱発泡硬化物(熱伝導性シリコーン低比重シート)の評価結果を表1、2に示す。なお、表1,2では(A)~(H)成分の量を質量部で表す。
表1、2に示すように(A)~(H)成分を配合して実施例1~5、比較例1~3の硬化性熱伝導性シリコーン組成物を作製した。前記熱伝導性シリコーン組成物とその加熱発泡硬化物(熱伝導性シリコーン低比重シート)の評価結果を表1、2に示す。なお、表1,2では(A)~(H)成分の量を質量部で表す。
実施例のように、熱伝導性充填材を配合した熱伝導性シリコーン組成物に化学発泡剤を添加し、加熱硬化させるとともに前記化学発泡剤を発泡させることで、熱伝導性シリコーンシート内部に微細な空隙を形成し、低比重化させることができる。また微細な空隙が圧縮されることで、目的の熱伝導性を得ることができる。
比較例1のように、化学発泡剤を添加しないと熱伝導性シリコーンシート内部に微細な空隙が形成されず低比重化しない。比較例2では、熱伝導性充填材の添加量を減らして低比重化を試みたが、比重が変わらないうえ熱伝導率が低下してしまい、十分な熱伝導性を与えることができない。比較例3では熱伝導性フィラーを添加せずに化学発泡させたところ、低比重化には成功したが、熱伝導性が失われたため、必要な放熱効果が得られない。
このように、オルガノポリシロキサンをベースポリマーとし、熱伝導性充填材と化学発泡剤としてアゾ化合物を含むシート状の硬化性熱伝導性シリコーン組成物の加熱発泡硬化物は、加熱硬化時に化学発泡剤が発泡することで硬化物に微細な空隙を生じ、加熱前のシート状組成物に比べて比重が小さくなり熱伝導性シリコーン低比重シートとなる。本発明の熱伝導性シリコーン低比重シートは、低比重と熱伝導性を両立しており、電子機器の放熱と軽量化に貢献することができる。このように本発明の熱伝導性シリコーン低比重シートは、熱伝導による電子部品など発熱部品の冷却(放熱)のために広く用いることができ、例えば発熱性電子部品の熱境界面とヒートシンク又は回路基板などの冷却部品の界面に介在し得る熱伝達材料となって、電子機器の軽量化に大きく貢献するものである。
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
Claims (5)
- オルガノポリシロキサンをベースポリマーとし、熱伝導性充填材と化学発泡剤としてアゾ化合物を含むシート状の硬化性熱伝導性シリコーン組成物の加熱発泡硬化物からなり、加熱硬化前の前記熱伝導性シリコーン組成物の比重を1とした場合に、前記加熱発泡硬化物の比重が0.7以下であることを特徴とする熱伝導性シリコーン低比重シート。
- 前記硬化性熱伝導性シリコーン組成物の熱伝導率が0.7W/m・K以上であることを特徴とする請求項1に記載の熱伝導性シリコーン低比重シート。
- 前記硬化性熱伝導性シリコーン組成物が白金触媒による付加反応によって硬化するものであることを特徴とする請求項1又は請求項2に記載の熱伝導性シリコーン低比重シート。
- 前記硬化性熱伝導性シリコーン組成物が過酸化物によって硬化するものであることを特徴とする請求項1又は請求項2に記載の熱伝導性シリコーン低比重シート。
- 請求項1から請求項4のいずれか1項に記載の熱伝導性シリコーン低比重シートを発熱部品と冷却部品の間に実装し、圧縮することで前記加熱発泡硬化物内の空隙が潰された前記熱伝導性シリコーン低比重シートを用いることにより発熱部品から放熱させることを特徴とする熱伝導性シリコーン低比重シートの使用方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-110683 | 2018-06-08 | ||
JP2018110683A JP2019210442A (ja) | 2018-06-08 | 2018-06-08 | 熱伝導性シリコーン低比重シート |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019235042A1 true WO2019235042A1 (ja) | 2019-12-12 |
Family
ID=68770246
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/014446 WO2019235042A1 (ja) | 2018-06-08 | 2019-04-01 | 熱伝導性シリコーン低比重シート |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2019210442A (ja) |
TW (1) | TW202000762A (ja) |
WO (1) | WO2019235042A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022239221A1 (ja) * | 2021-05-14 | 2022-11-17 | 信越ポリマー株式会社 | 熱伝導部材、熱伝導部材の製造方法およびバッテリー |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006133576A (ja) * | 2004-11-08 | 2006-05-25 | Canon Inc | 熱伝導弾性部材および定着部材 |
JP2007302829A (ja) * | 2006-05-12 | 2007-11-22 | Shin Etsu Chem Co Ltd | 導電性シリコーンゴム組成物及び導電性シリコーンゴムスポンジ |
JP2008129171A (ja) * | 2006-11-17 | 2008-06-05 | Shin Etsu Chem Co Ltd | シリコーンゴムスポンジ、その製造方法及びそれを用いた定着ロール、並びに、該定着ロールを用いた電子写真式画像形成装置 |
US20100243949A1 (en) * | 2007-12-04 | 2010-09-30 | National Taipei University Of Technology | Thermally Conductive Silicone Composition |
JP2012102263A (ja) * | 2010-11-11 | 2012-05-31 | Kitagawa Ind Co Ltd | 熱伝導性樹脂組成物 |
JP2012251041A (ja) * | 2011-06-01 | 2012-12-20 | Kaneka Corp | 変成シリコ−ン樹脂発泡体の製造方法 |
JP2017183617A (ja) * | 2016-03-31 | 2017-10-05 | 積水化学工業株式会社 | 発泡複合シート |
JP2017206624A (ja) * | 2016-05-19 | 2017-11-24 | 富士高分子工業株式会社 | 常温熱伝導性かつ高温断熱性組成物 |
WO2018003811A1 (ja) * | 2016-06-30 | 2018-01-04 | 信越化学工業株式会社 | ミラブル型シリコーンゴム組成物、ミラブル型シリコーンゴムスポンジ及び該スポンジの製造方法 |
JP2018053020A (ja) * | 2016-09-27 | 2018-04-05 | 信越化学工業株式会社 | 高連泡シリコーンゴムスポンジの製造方法及び高連泡シリコーンゴムスポンジ用液状シリコーンゴム組成物並びにシリコーンゴムスポンジ |
-
2018
- 2018-06-08 JP JP2018110683A patent/JP2019210442A/ja active Pending
-
2019
- 2019-04-01 WO PCT/JP2019/014446 patent/WO2019235042A1/ja active Application Filing
- 2019-04-09 TW TW108112253A patent/TW202000762A/zh unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006133576A (ja) * | 2004-11-08 | 2006-05-25 | Canon Inc | 熱伝導弾性部材および定着部材 |
JP2007302829A (ja) * | 2006-05-12 | 2007-11-22 | Shin Etsu Chem Co Ltd | 導電性シリコーンゴム組成物及び導電性シリコーンゴムスポンジ |
JP2008129171A (ja) * | 2006-11-17 | 2008-06-05 | Shin Etsu Chem Co Ltd | シリコーンゴムスポンジ、その製造方法及びそれを用いた定着ロール、並びに、該定着ロールを用いた電子写真式画像形成装置 |
US20100243949A1 (en) * | 2007-12-04 | 2010-09-30 | National Taipei University Of Technology | Thermally Conductive Silicone Composition |
JP2012102263A (ja) * | 2010-11-11 | 2012-05-31 | Kitagawa Ind Co Ltd | 熱伝導性樹脂組成物 |
JP2012251041A (ja) * | 2011-06-01 | 2012-12-20 | Kaneka Corp | 変成シリコ−ン樹脂発泡体の製造方法 |
JP2017183617A (ja) * | 2016-03-31 | 2017-10-05 | 積水化学工業株式会社 | 発泡複合シート |
JP2017206624A (ja) * | 2016-05-19 | 2017-11-24 | 富士高分子工業株式会社 | 常温熱伝導性かつ高温断熱性組成物 |
WO2018003811A1 (ja) * | 2016-06-30 | 2018-01-04 | 信越化学工業株式会社 | ミラブル型シリコーンゴム組成物、ミラブル型シリコーンゴムスポンジ及び該スポンジの製造方法 |
JP2018053020A (ja) * | 2016-09-27 | 2018-04-05 | 信越化学工業株式会社 | 高連泡シリコーンゴムスポンジの製造方法及び高連泡シリコーンゴムスポンジ用液状シリコーンゴム組成物並びにシリコーンゴムスポンジ |
Also Published As
Publication number | Publication date |
---|---|
TW202000762A (zh) | 2020-01-01 |
JP2019210442A (ja) | 2019-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5304588B2 (ja) | 熱伝導性シリコーン組成物及びその硬化物 | |
JP4993611B2 (ja) | 放熱材及びそれを用いた半導体装置 | |
JP5418298B2 (ja) | 熱伝導性シリコーン組成物及びその硬化物 | |
JP6202475B2 (ja) | 熱伝導性複合シリコーンゴムシート | |
JP2013147600A (ja) | 熱伝導性シリコーン組成物及びその硬化物 | |
JP5155033B2 (ja) | 熱伝導性シリコーン組成物 | |
EP3872135B1 (en) | Thermally conductive silicone composition and cured product thereof | |
KR20160084808A (ko) | 열전도성 실리콘 조성물 및 경화물, 및 복합 시트 | |
WO2020217634A1 (ja) | 熱伝導性シリコーン組成物及びその製造方法、並びに熱伝導性シリコーン硬化物 | |
JP2020002236A (ja) | 熱伝導性シリコーン組成物、熱伝導性シリコーンシート及びその製造方法 | |
JP2020128463A (ja) | 熱伝導性粘着層を有する熱伝導性シリコーンゴムシート | |
KR20210098991A (ko) | 열전도성 실리콘 조성물의 경화물 | |
WO2021256391A1 (ja) | シリコーン組成物、及び高熱伝導性を有する熱伝導性シリコーン硬化物 | |
WO2020039761A1 (ja) | 熱伝導性シリコーン組成物及び熱伝導性シリコーン硬化物 | |
WO2021225059A1 (ja) | 熱伝導性シリコーン組成物及びその硬化物 | |
JP2018053260A (ja) | 熱伝導性シリコーン組成物及び硬化物並びに複合シート | |
CN114729193B (zh) | 热传导性硅酮组合物和热传导性硅酮片材 | |
WO2019181713A1 (ja) | シリコーン組成物 | |
WO2019235042A1 (ja) | 熱伝導性シリコーン低比重シート | |
CN112714784B (zh) | 导热性有机硅组合物及其固化物 | |
JP7485634B2 (ja) | 熱伝導性シリコーン組成物及びその硬化物 | |
EP4082970A1 (en) | Thermally conductive silicone resin composition | |
JP2023049417A (ja) | 熱伝導性シリコーン組成物の製造方法 | |
WO2020213348A1 (ja) | 熱伝導性樹脂組成物及び熱伝導性樹脂硬化物 | |
JP2024051534A (ja) | 熱伝導性シリコーン組成物、熱伝導性シリコーン硬化物及び電気部品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19815261 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19815261 Country of ref document: EP Kind code of ref document: A1 |