WO2020084868A1 - 熱伝導性シリコーン組成物及びその硬化物 - Google Patents

熱伝導性シリコーン組成物及びその硬化物 Download PDF

Info

Publication number
WO2020084868A1
WO2020084868A1 PCT/JP2019/030982 JP2019030982W WO2020084868A1 WO 2020084868 A1 WO2020084868 A1 WO 2020084868A1 JP 2019030982 W JP2019030982 W JP 2019030982W WO 2020084868 A1 WO2020084868 A1 WO 2020084868A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
component
conductive silicone
mass
parts
Prior art date
Application number
PCT/JP2019/030982
Other languages
English (en)
French (fr)
Inventor
俊晴 森村
晃洋 遠藤
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to CN201980060877.0A priority Critical patent/CN112714784B/zh
Priority to KR1020217006906A priority patent/KR20210080351A/ko
Publication of WO2020084868A1 publication Critical patent/WO2020084868A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Definitions

  • the present invention relates to a heat conductive silicone composition and a cured product thereof.
  • heat sinks that use metal plates with high thermal conductivity, such as aluminum and copper, have been used to suppress the temperature rise of chips during operation.
  • the heat sink conducts the heat generated by the chip and radiates the heat from the surface due to the temperature difference between the heat sink and the outside air.
  • the sheet is easier to handle than grease, and thermal conductive sheets made of thermally conductive silicone rubber (thermally conductive silicone rubber sheets) are used in various fields.
  • Patent Document 1 100 to 800 parts by mass of at least one metal oxide selected from beryllium oxide, aluminum oxide, hydrated aluminum oxide, magnesium oxide and zinc oxide is mixed with 100 parts by mass of synthetic rubber such as silicone rubber. Insulating compositions are disclosed.
  • a method is used in which a natural cooling type or forced cooling type heat dissipation component is installed near the integrated circuit device and the heat generated by the device is transmitted to the heat dissipation component. If the element and the heat dissipation component are directly contacted by this method, heat transfer will be poor due to the unevenness of the surface, and the flexibility of the heat dissipation insulation sheet will be slightly inferior even if the heat dissipation insulation sheet is attached via the heat dissipation insulation sheet. Stress may be applied between the substrate and the substrate, resulting in damage.
  • a method of combining several elements into a single heat dissipation component may be adopted.
  • a BGA type CPU used in a notebook type personal computer has a lower height and a larger heat generation amount than other elements, and thus it is necessary to sufficiently consider a cooling method.
  • Patent Document 2 discloses a sheet formed by molding a silicone resin mixed with a heat conductive material such as a metal oxide, which is soft and easily deformed on a silicone resin layer having strength required for handling.
  • a sheet in which a silicone layer is laminated is disclosed.
  • Patent Document 3 discloses a thermal conductivity obtained by combining a silicone rubber layer containing a thermally conductive filler and having an Asker C hardness of 5 to 50 and a porous reinforcing material layer having pores with a diameter of 0.3 mm or more.
  • Composite sheets are disclosed.
  • Patent Document 4 discloses a sheet in which the skeleton lattice surface of a flexible three-dimensional network or foam is coated with a heat conductive silicone rubber.
  • Patent Document 5 a thermally conductive composite silicone having a reinforcing sheet or cloth built therein, at least one surface of which has an adhesive property and an Asker C hardness of 5 to 50 and a thickness of 0.4 mm or less A sheet is disclosed.
  • Patent Document 6 discloses a heat dissipation spacer containing an addition reaction type liquid silicone rubber and a heat conductive insulating ceramic powder, and a cured product thereof having an Asker C hardness of 25 or less and a thermal resistance of 3.0 ° C./W or less. It is disclosed.
  • thermally conductive silicone cured products are often required to have insulating properties as well, aluminum oxide (alumina) is mainly used as the thermally conductive filler when the thermal conductivity is in the range of 0.5 to 6 W / m ⁇ K. Often used for.
  • alumina aluminum oxide
  • Alumina is generally roughly classified into amorphous powder and spherical powder, but each has its own strengths and weaknesses.
  • the amorphous alumina has a higher effect of improving the thermal conductivity than the spherical alumina, but has a drawback that the filling property with respect to silicone is poor and the material viscosity increases due to the filling, resulting in poor processability.
  • Alumina has a Mohs hardness of 9 as used for an abrasive, which is extremely hard. Therefore, in particular, the heat conductive silicone composition using amorphous alumina having a particle diameter of 10 ⁇ m or more has a problem that the inner wall of the stirring vessel and the stirring blades are scraped off when a share is applied during the production.
  • the components of the stirring pot and the stirring blade are mixed in the heat conductive silicone composition, and the insulating properties of the heat conductive silicone composition and a cured product using the same decrease.
  • the clearance between the agitator and the agitating blades is widened, and the agitation efficiency is reduced, so that a certain quality cannot be obtained even if the agitator is manufactured under the same conditions.
  • Heavy calcium carbonate is mentioned as a filler that meets the above requirements. Heavy calcium carbonate has a specific gravity of about 2.7, which is lower than that of alumina, and the price is low. The Mohs hardness is as low as about 2, and the insulation is not deteriorated.
  • the present invention has been made in view of the above circumstances, and uses heavy calcium carbonate which gives a heat conductive resin molded body (heat conductive silicone cured product) excellent in compressibility, insulation, heat conductivity, and workability.
  • the present invention aims to provide a thermally conductive silicone composition and a cured product thereof.
  • a heat-conductive silicone composition which is an organopolysiloxane having at least two or more alkenyl groups in one molecule as the component (A): 100 parts by mass, ( Organohydrogenpolysiloxane having at least two hydrogen atoms directly bonded to silicon atoms as component B): The number of moles of hydrogen atoms directly bonded to silicon atoms is the number of moles of the alkenyl group derived from component (A).
  • heavy calcium carbonate filler containing 0.1 to 2,000 ppm in terms of mass of platinum group metal element and the component (C) has (C-1) an average particle diameter of 12 to 50 ⁇ m: 40 To 2,000 parts by mass, and (C-2) a heavy calcium carbonate filler having an average particle size of 0.4 to 10 ⁇ m: 0.1 to 1,500 parts by mass, and (C-1) And a total amount of the above (C-2) is 700 to 2,500 parts by mass, to provide a heat conductive silicone composition.
  • the heat conductive silicone composition further comprises (E-1) an alkoxysilane compound represented by the following general formula (1) and (E-2) a general formula (2) below.
  • E-1) an alkoxysilane compound represented by the following general formula (1)
  • E-2) a general formula (2) below.
  • One or both of the dimethylpolysiloxanes having one end of the molecular chain blocked with a trialkoxysilyl group may be contained in an amount of 0.01 to 300 parts by mass based on 100 parts by mass of the component (A). .
  • R 1 a R 2 b Si (OR 3 ) 4-ab (1)
  • R 1 is independently an alkyl group having 6 to 15 carbon atoms
  • R 2 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms
  • R 3 is independently Is an alkyl group having 1 to 6 carbon atoms
  • a is an integer of 1 to 3
  • b is an integer of 0 to 2
  • a + b is an integer of 1 to 3.
  • R 4 is independently an alkyl group having 1 to 6 carbon atoms
  • c is an integer of 5 to 100.
  • the heat conductive silicone composition further comprises the following general formula (3) as the component (F).
  • R 5 is independently a monovalent hydrocarbon group having 1 to 12 carbon atoms and containing no aliphatic unsaturated bond, and d is an integer of 5 to 2,000.
  • the organopolysiloxane having a kinematic viscosity at 23 ° C. of 10 to 100,000 mm 2 / s represented by the formula (1) can be contained in an amount of 0.1 to 100 parts by mass based on 100 parts by mass of the component (A).
  • the above-mentioned thermally conductive silicone composition preferably has a viscosity at 23 ° C. of 800 Pa ⁇ s or less.
  • the present invention also provides a thermally conductive silicone cured product which is a cured product of the above thermally conductive silicone composition.
  • Such a thermally conductive silicone cured product has excellent compressibility, insulation, thermal conductivity, and processability.
  • the heat conductive silicone cured product preferably has a heat conductivity of 0.7 W / m ⁇ K or more.
  • thermally conductive silicone cured product is preferably used as, for example, a thermally conductive resin molded body that is installed between a heat generating component and a heat radiating component in an electronic device and used for heat radiation.
  • the hardness of the thermally conductive silicone cured product is preferably 60 or less on an Asker C hardness tester.
  • the thermally conductive silicone cured product has a dielectric breakdown voltage of 10 kV / mm or more.
  • the present invention also provides a method for producing the above-mentioned thermally conductive silicone composition, which comprises the above-mentioned components (A), (C) and (D), and if any, (E), (F). ) A first mixing step of mixing the components, and then a second mixing step of adding the component (B) to the obtained mixture and further mixing to obtain the heat conductive silicone composition.
  • the method for producing the above composition is characterized by mixing by performing vacuum defoaming stirring in 1.
  • the composition has sufficient wettability in the mixing (kneading) step, and a paste-like uniform composition can be obtained.
  • the heavy calcium carbonate having an average particle diameter of 12 to 50 ⁇ m and the heavy calcium carbonate having an average particle diameter of 0.4 to 10 ⁇ m have a specific ratio.
  • a thermally conductive silicone cured product having excellent compressibility, insulating properties, thermal conductivity, and processability and having high thermal conductivity.
  • a cured product having a thermal conductivity of 0.7 W / m ⁇ K or more and for example, a heat conductive resin molded body that is installed between a heat generating component and a heat radiating component in an electronic device and used for heat radiation.
  • It is preferably used as (cured product of heat conductive silicone). Specifically, it is useful as a heat transfer material to be interposed at the interface between the heat boundary surface of the heat-generating electronic component and the heat radiation member such as the heat sink or the circuit board, in particular for cooling the electronic component by heat conduction.
  • the present inventors have identified heavy calcium carbonate having an average particle diameter of 12 to 50 ⁇ m and heavy calcium carbonate having an average particle diameter of 0.4 to 10 ⁇ m. It was found that the above problems can be solved by using them together in a ratio. That is, by adding a large amount of heavy calcium carbonate having a small particle diameter and a large specific surface area, it was possible to achieve high thermal conductivity and prevent curing inhibition, and completed the present invention.
  • the present invention is a thermally conductive silicone composition
  • the component (C) is (C-1) Heavy calcium carbonate filler having an average particle size of 12 to 50 ⁇ m: 400 to 2,000 parts by mass, and (C-2) Heavy calcium carbonate filler having an average particle size of 0.4 to 10 ⁇ m: 0.1 to 1,500 parts by mass, and
  • the heat conductive silicone composition is characterized in that the total amount of (C-1) and (C-2) is 700 to 2,500 parts by mass.
  • the thermally conductive silicone composition of the present invention comprises (A) an organopolysiloxane having at least two alkenyl groups in one molecule as a component, and (B) at least 2 hydrogen atoms directly bonded to a silicon atom as a component.
  • Organohydrogenpolysiloxane having each of them, a thermally conductive filler as the component (C), and a platinum group metal-based curing catalyst as the component (D) are contained as essential components.
  • the above components will be described below.
  • the alkenyl group-containing organopolysiloxane as the component (A) is an organopolysiloxane having two or more alkenyl groups bonded to silicon atoms in one molecule, and is the main ingredient of the heat conductive silicone composition of the present invention.
  • the main chain part is basically composed of repeating diorganosiloxane units, but this may include a branched structure in a part of the molecular structure. Although it may be a body, a linear diorganopolysiloxane is preferable from the viewpoint of physical properties such as mechanical strength of the cured product.
  • the functional group other than the alkenyl group bonded to the silicon atom is an unsubstituted or substituted monovalent hydrocarbon group, and examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and a tert-butyl group.
  • a halogen atom such as fluorine, chlorine and bromine
  • a group substituted with a cyano group For example, chloromethyl group, 2-bromoethyl group, 3-chloropropyl group, 3,3,3-trifluoropropyl group, chlorophenyl group, fluorophenyl group, cyanoethyl group, 3,3,4,4,5,5. 6,6,6-nonafluorohexyl group and the like are mentioned, a typical one has 1 to 10 carbon atoms, and a typical one has 1 to 6 carbon atoms, preferably a methyl group.
  • the functional groups other than the alkenyl group bonded to the silicon atom are not limited to being the same.
  • the alkenyl group includes, for example, vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, hexenyl group, cyclohexenyl group and the like, which usually has about 2 to 8 carbon atoms, and among them vinyl A lower alkenyl group such as a group and an allyl group is preferable, and a vinyl group is particularly preferable. It is necessary that two or more alkenyl groups are present in the molecule, but in order to obtain a cured product having good flexibility, it may be present only by being bonded to the silicon atom at the end of the molecular chain. preferable.
  • the kinematic viscosity of this organopolysiloxane at 23 ° C. is preferably in the range of 10 to 100,000 mm 2 / s, particularly preferably 500 to 50,000 mm 2 / s. If the kinematic viscosity is 10 mm 2 / s or more, the storage stability of the obtained composition will be good, and if it is 100,000 mm 2 / s or less, the extensibility of the composition will be good.
  • the kinematic viscosity is a value measured using an Ostwald viscometer (hereinafter the same).
  • the organopolysiloxane as the component (A) may be used alone or in combination of two or more having different viscosities.
  • the component (B), an organohydrogenpolysiloxane, is an organohydrogenpolysiloxane having at least 2, preferably 2 to 100, hydrogen atoms (Si—H groups) directly bonded to silicon atoms in one molecule.
  • (A) is a component that acts as a crosslinking agent. That is, the Si—H group in the component (B) is added to the alkenyl group in the component (A) by a hydrosilylation reaction promoted by the platinum group metal-based curing catalyst of the component (D) described later to give a crosslinked structure. Gives a three-dimensional network structure with. When the number of Si-H groups in the component (B) is less than 2, it does not cure.
  • organohydrogenpolysiloxane those represented by the following average structural formula (4) are used, but the organohydrogenpolysiloxane is not limited thereto.
  • R ′ is independently a hydrogen atom or an unsubstituted or substituted monovalent hydrocarbon group containing no aliphatic unsaturated bond, but at least two, preferably 2 to 10 are hydrogen atoms, e is an integer of 1 or more, preferably an integer of 10 to 200.
  • examples of the unsubstituted or substituted monovalent hydrocarbon group containing no aliphatic unsaturated bond other than the hydrogen atom of R ′ include a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group.
  • halogen atoms such as fluorine, chlorine and bromine, and cyano groups.
  • Groups such as chloromethyl group, 2-bromoethyl group, 3-chloropropyl group, 3,3,3-trifluoropropyl group, chlorophenyl group, fluorophenyl group, cyanoethyl group, 3,3,4,4,5 , 5,6,6,6-nonafluorohexyl group and the like, typical ones having 1 to 10 carbon atoms, particularly typical ones having 1 to 6 carbon atoms, preferably Is an unsubstituted or substituted alkyl group having 1 to 3 carbon atoms such as methyl group, ethyl group, propyl group, chloromethyl group, bromoethyl group, 3,3,3-trifluoropropyl group, cyanoethyl group, and phenyl group An unsubstituted or substituted phenyl group such as a chloromethyl group, 2-bromoe
  • the amount of the component (B) added is such that the Si—H group derived from the component (B) is 0.1 to 5.0 moles relative to 1 mole of the alkenyl group derived from the component (A) (that is, in the silicon atom).
  • An amount in which the number of moles of hydrogen atoms directly bonded is 0.1 to 5.0 times the number of moles of the alkenyl group derived from component (A)), preferably 0.3 to 2.0 moles, and more preferably Is 0.5 to 1.0 mol.
  • the amount of the Si—H group derived from the component (B) is less than 0.1 mol with respect to 1 mol of the alkenyl group derived from the component (A), curing does not occur, or the strength of the cured product is insufficient and a molded article is obtained. The shape may not be retained and may not be handled. On the other hand, if it exceeds 5.0 mols, the cured product loses flexibility and the cured product becomes brittle.
  • the thermally conductive filler as the component (C) mainly contains heavy calcium carbonate and is composed of the following components (C-1) to (C-2).
  • the average particle size is It is a value of a volume-based cumulative average particle diameter (median diameter) measured by Microtrac MT3300EX which is a particle size analyzer manufactured by Nikkiso Co., Ltd.
  • the heavy calcium carbonate filler as the component (C-1) can significantly improve the thermal conductivity.
  • the average particle size of the ground calcium carbonate is 12 to 50 ⁇ m, and particularly preferably 15 to 25 ⁇ m. If the average particle size is less than 12 ⁇ m, the effect of improving the thermal conductivity is reduced, and the viscosity of the composition is increased, resulting in poor processability. If the average particle size exceeds 50 ⁇ m, the particle size becomes too large, resulting in poor moldability.
  • the heavy calcium carbonate filler as the component (C-1) one kind or a combination of two or more kinds may be used.
  • the average particle size is 0.4 to 10 ⁇ m, and particularly preferably 0.8 to 9 ⁇ m. When the average particle size is less than 0.4 ⁇ m, the particle size is too small to be handled easily, the effect of improving the thermal conductivity is lowered, the viscosity of the composition is increased, and the processability is deteriorated.
  • the effect of improving the thermal conductivity and fluidity of the composition by combining with the component (C-1) and the effect of preventing the sedimentation of the filler are impaired.
  • the heavy calcium carbonate filler as the component (C-2) one kind or a combination of two or more kinds may be used.
  • the compounding amount of the component (C-1) is 400 to 2,000 parts by mass, preferably 800 to 1,500 parts by mass, relative to 100 parts by mass of the component (A). If it is too small, it is difficult to improve the thermal conductivity, and if it is too large, the fluidity of the composition is lost and the moldability is impaired.
  • the blending amount of the component (C-2) is 0.1 to 1,500 parts by mass, preferably 200 to 800 parts by mass, relative to 100 parts by mass of the component (A). If it is less than 0.1 part by mass, it is difficult to improve the thermal conductivity and fluidity, and there is a concern that the filler may precipitate. When it exceeds 1,500 parts by mass, the fluidity of the composition is lost and the moldability is impaired.
  • the blending amount of the component (C) (that is, the total blending amount of the above (C-1) and (C-2)) is 700 to 2,500 parts by mass with respect to 100 parts by mass of the component (A). It is necessary, and preferably 1,200 to 1,600 parts by mass.
  • the blending amount of this component (C) is less than 700 parts by mass, the thermal conductivity of the resulting composition is poor, and the viscosity of the composition is extremely low, resulting in poor storage stability. If the amount exceeds the range, the composition has poor extensibility, high hardness, and weak strength.
  • the heavy calcium carbonate filler (C-1) having an average particle diameter of 12 to 50 ⁇ m and the heavy calcium carbonate filler (C-2) having an average particle diameter of 0.4 to 10 ⁇ m are provided in the above-mentioned specific ratio.
  • the component (C) comprising (C-1) and (C-2)
  • the above-mentioned effects of the present invention can be more advantageously and reliably exhibited.
  • the platinum group metal-based curing catalyst of the component (D) is not particularly limited as long as it is a catalyst for promoting the addition reaction of the alkenyl group derived from the component (A) and the Si—H group derived from the component (B).
  • Well-known catalysts can be used as the catalyst used in the hydrosilylation reaction. Specific examples thereof include platinum (including platinum black), platinum group metal simple substances such as rhodium and palladium, H 2 PtCl 4 .nH 2 O, H 2 PtCl 6 .nH 2 O, NaHPtCl 6 .nH 2 O.
  • n is an integer of 0 to 6, preferably 0 or 6.
  • platinum chloride such as platinum chloride, chloroplatinic acid and chloroplatinate, alcohol-modified chloroplatinic acid (US Pat. No. 3,220,972) ), A complex of chloroplatinic acid and an olefin (see US Pat. Nos.
  • the amount of component (D) used is 0.1 to 2,000 ppm, preferably 50 to 1,000 ppm, in terms of mass of platinum group metal element based on component (A). If it is less than 0.1 ppm, sufficient catalytic activity cannot be obtained, and if it exceeds 2,000 ppm, the effect of accelerating the addition reaction does not improve, resulting in cost increase and insulation remaining because the catalyst remains in the cured product. May occur.
  • the heat conductive filler which is the component (C) is hydrophobized at the time of preparing the composition to improve the wettability with the organopolysiloxane which is the component (A),
  • a surface treatment agent as the component (E) can be blended.
  • the component (E) can coat the surface of the component (C) and suppress inhibition of curing.
  • the following components (E-1) and (E-2) are particularly preferable.
  • the component (E-1) is an alkoxysilane compound represented by the following general formula (1).
  • R 1 a R 2 b Si (OR 3 ) 4-ab (1)
  • R 1 is independently an alkyl group having 6 to 15 carbon atoms
  • R 2 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms
  • R 3 is independently Is an alkyl group having 1 to 6 carbon atoms
  • a is an integer of 1 to 3
  • b is an integer of 0 to 2
  • examples of the alkyl group represented by R 1 include a hexyl group, an octyl group, a nonyl group, a decyl group, a dodecyl group, and a tetradecyl group.
  • the number of carbon atoms of the alkyl group represented by R 1 is in the range of 6 to 15, the wettability of the component (A) is sufficiently improved, the handleability is good, and the low temperature characteristics of the composition are good. Become.
  • Examples of the unsubstituted or substituted monovalent hydrocarbon group represented by R 2 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, Alkyl group such as hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group, cycloalkyl group such as cyclopentyl group, cyclohexyl group, cycloheptyl group, phenyl group, tolyl group, xylyl group, naphthyl group, biphenylyl group Aryl groups such as groups, benzyl groups, phenylethyl groups, phenylpropyl groups, aralkyl groups such as methylbenzyl groups, and some or all of the hydrogen atoms to which the carbon
  • the component (E-2) is a dimethylpolysiloxane in which one end of the molecular chain represented by the following general formula (2) is blocked with a trialkoxysilyl group.
  • R 4 is independently an alkyl group having 1 to 6 carbon atoms, and c is an integer of 5 to 100, preferably an integer of 5 to 70, and particularly preferably an integer of 10 to 50.
  • one or both of the component (E-1) and the component (E-2) may be combined and combined.
  • the blending amount is preferably 0.01 to 300 parts by mass, particularly 0.1 to 200 parts by mass, relative to 100 parts by mass of the component (A). If the mixing ratio of this component is within the above range, oil separation will not be induced.
  • the heat conductive silicone composition of the present invention has the following general formula (3) as the component (F) for the purpose of imparting properties such as viscosity adjustment of the heat conductive silicone composition.
  • R 5 is independently a monovalent hydrocarbon group having 1 to 12 carbon atoms and containing no aliphatic unsaturated bond, and d is an integer of 5 to 2,000.
  • An organopolysiloxane having a kinematic viscosity at 23 ° C. of 10 to 100,000 mm 2 / s represented by can be added.
  • the component (F) one type may be used alone, or two or more types may be used in combination.
  • R 5 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms and containing no aliphatic unsaturated bond.
  • R 5 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group.
  • Alkyl groups such as dodecyl group, cycloalkyl groups such as cyclopentyl group, cyclohexyl group and cycloheptyl group, aryl groups such as phenyl group, tolyl group, xylyl group, naphthyl group and biphenylyl group, benzyl group, phenylethyl group, phenylpropy Groups, aralkyl groups such as methylbenzyl groups, and groups in which some or all of the hydrogen atoms to which the carbon atoms of these groups are bonded are replaced by halogen atoms such as fluorine, chlorine, bromine, and cyano groups.
  • halogen atoms such as fluorine, chlorine, bromine, and cyano groups.
  • chloromethyl group, 2-bromoethyl group, 3-chloropropyl group, 3,3,3-to Rifluoropropyl group, chlorophenyl group, fluorophenyl group, cyanoethyl group, 3,3,4,4,5,5,6,6,6-nonafluorohexyl group and the like can be mentioned.
  • Typical examples are the number of carbon atoms.
  • Is 1 to 10 particularly typical is one having 1 to 6 carbon atoms, preferably methyl group, ethyl group, propyl group, chloromethyl group, bromoethyl group, 3,3,3-trifluoropropyl Group, an unsubstituted or substituted alkyl group having 1 to 3 carbon atoms such as a cyanoethyl group, and an unsubstituted or substituted phenyl group such as a phenyl group, a chlorophenyl group, a fluorophenyl group, and the like. Particularly, a methyl group, a phenyl group Groups are preferred. From the viewpoint of required viscosity, the above d is preferably an integer of 5 to 2,000, particularly preferably an integer of 10 to 1,000.
  • kinematic viscosity at 23 ° C. of component (F) is 10 ⁇ 100,000mm 2 / s, is preferably 100 ⁇ 10,000mm 2 / s.
  • the cured product of the obtained composition hardly causes oil bleeding.
  • the kinematic viscosity is 100,000 mm 2 / s or less, the flexibility of the resulting heat conductive silicone composition will be suitable.
  • the amount is 0.1 to 100 parts by mass, preferably 1 to 50 parts by mass, relative to 100 parts by mass of the component (A).
  • the amount added is in this range, it is easy to maintain good fluidity and workability in the thermally conductive silicone composition before curing, and the composition is filled with the thermally conductive filler of the component (C). Is easy.
  • an addition reaction control agent can be further used as the component (G).
  • the addition reaction control agent all known addition reaction control agents used in ordinary addition reaction-curable silicone compositions can be used. Examples thereof include acetylene compounds such as 1-ethynyl-1-hexanol, 3-butyn-1-ol, and ethynylmethylidenecarbinol, various nitrogen compounds, organic phosphorus compounds, oxime compounds, and organic chloro compounds.
  • the amount of component (G) used in the composition is preferably 0.01 to 1 part by mass, more preferably 0.1 to 0.8 part by mass, per 100 parts by mass of component (A). With such a blending amount, the curing reaction will proceed sufficiently and the molding efficiency will not be impaired.
  • the heat conductive silicone composition of the present invention may further contain other components, if necessary.
  • a heat resistance improver such as iron oxide or cerium oxide
  • a viscosity modifier such as silica
  • a coloring agent such as a coloring agent
  • the viscosity of the heat conductive silicone composition of the present invention is 800 Pa ⁇ s or less, preferably 700 Pa ⁇ s or less at 23 ° C. With such a viscosity, moldability is not impaired.
  • the lower limit value is not particularly limited, but may be, for example, 60 Pa ⁇ s or more.
  • this viscosity is based on the measurement by a B-type viscometer.
  • the curing conditions for molding the thermally conductive silicone composition may be the same as those of known addition reaction-curable silicone rubber compositions. For example, it is sufficiently cured at room temperature, but may be heated if necessary. It is preferable to carry out addition curing at 100 to 120 ° C. for 8 to 12 minutes. Such a silicone cured product of the present invention has excellent thermal conductivity.
  • the measured value at 25 ° C. measured by the hot disk method is 0.7 W / m ⁇ K or more, particularly 0.9 W / m. ⁇ It is desirable to be K or more.
  • the upper limit value is not particularly limited, but can be set to 1.4 W / m ⁇ K or less, for example.
  • the measured value when the dielectric breakdown voltage of the molded body having a thickness of 1 mm is measured according to JIS K 6249 is 10 kV or more, more preferably 13 kV or more. It is preferable. If the sheet has a dielectric breakdown voltage of 10 kV / mm or more, stable insulation can be secured during use.
  • the upper limit value is not particularly limited, but may be 20 kV / mm or less, for example. Note that such a breakdown voltage can be adjusted by adjusting the type and purity of the filler.
  • the value measured at 25 ° C. by an Asker C hardness meter is 60 or less, preferably 40 or less, more preferably 30 or less, and 5 or more. It is preferable.
  • the hardness is 60 or less, the heat dissipating body is deformed so as to follow the shape of the heat dissipating body, and it becomes easy to exhibit good heat dissipation characteristics without applying stress to the heat dissipating body. It should be noted that such hardness can be adjusted by changing the ratio of the component (A) and the component (B) to adjust the crosslinking density.
  • the heat-conductive silicone composition of the present invention can be prepared by uniformly mixing the above-mentioned components according to a conventional method.
  • the heat-conductive silicone composition is obtained by adding the component (E) and the component (F), if any, to the first mixing step, and then adding the component (B) to the resulting mixture and further mixing. It is preferable to mix by performing vacuum defoaming stirring in the first mixing step including the second mixing step of obtaining.
  • the composition has sufficient wettability, and a paste-like uniform composition can be obtained. .
  • the mixing method in the second mixing step is not particularly limited as long as uniform mixing is possible, but mixing (kneading) can be performed by performing vacuum defoaming stirring as in the first mixing step. In the present specification, such mixing may be referred to as “kneading”.
  • the heat conductive silicone composition of the present invention contains the above-mentioned (A) to (D) as essential components, and in particular, the heavy calcium carbonate having an average particle diameter of 12 to 50 ⁇ m as the (C) component.
  • the filler (C-1) and the heavy calcium carbonate filler (C-2) having an average particle size of 0.4 to 10 ⁇ m are mixed in a specific ratio, and the component (C) ((C- 1) and (C-2)) are used. Then, by combining such heavy calcium carbonates having different average particle diameters in a specific ratio, it is possible to cure a thermally conductive silicone having a high thermal conductivity, which is excellent in compressibility, insulation, thermal conductivity, and processability. You can provide things.
  • a cured product having a thermal conductivity of 0.7 W / m ⁇ K or more and for example, a thermally conductive resin molding that is installed between a heat-generating component and a heat-radiating component in an electronic device and used for heat radiation. It is preferably used as a body (cured product of thermally conductive silicone). Specifically, it is useful as a heat transfer material to be interposed at the interface between the heat boundary surface of the heat-generating electronic component and the heat radiation member such as the heat sink or the circuit board, in particular for cooling the electronic component by heat conduction.
  • the kinematic viscosity was measured at 23 ° C. with an Ostwald viscometer.
  • the average particle diameter is a volume-based cumulative average particle diameter (median diameter) measured by Microtrac MT3300EX, which is a particle size analyzer manufactured by Nikkiso Co., Ltd.
  • the components (A) to (G) used in the following examples and comparative examples are shown below.
  • (A) component An organopolysiloxane represented by the following formula (5).
  • X is a vinyl group
  • f is a number giving the following kinematic viscosity.
  • Kinematic viscosity 600 mm 2 / s
  • (B) component An organohydrogenpolysiloxane represented by the following formula (6). (In the formula, g is 28 and h is 2.)
  • Component (C) A heavy calcium carbonate filler having an average particle size as described below.
  • C-1 Heavy calcium carbonate filler having an average particle diameter of 16.6 ⁇ m
  • C-2a Heavy calcium carbonate filler having an average particle diameter of 6.9 ⁇ m
  • C-2b Heavy calcium carbonate having an average particle diameter of 2.9 ⁇ m
  • C-2c Heavy calcium carbonate filler
  • D component having an average particle size of 10 ⁇ m: 5 mass% 2-ethylhexanol chloroplatinate solution.
  • Component (E) Component (E-2) A dimethylpolysiloxane represented by the following formula (7) having an average degree of polymerization of 30 and having one end blocked with a trimethoxysilyl group.
  • Component (F) A dimethylpolysiloxane represented by the following formula (8) as a plasticizer. (In the formula, j is 80.)
  • Example 1 to 3 and Comparative Examples 1 to 2 the components (A) to (G) and other components (internal release agent) were used in the amounts shown in Table 1 in the following compositions.
  • Example 1 to 3 and Comparative Examples 1 and 2 the components (A) to (G) and other components (internal release agent) were used in the amounts shown in Table 1 in the following compositions.
  • the results are also shown in Table 1.
  • "H / Vi” is the ratio of the number of moles of hydrogen atoms (Si-H groups) directly bonded to a silicon atom to the number of alkenyl groups derived from the component (A).
  • compositions Components (A) and (C) to (F) are added in predetermined amounts shown in Examples 1 to 3 and Comparative Examples 1 and 2 in Table 1 below, and as an internal release agent for promoting mold release from the separator.
  • the components (B) and (G) were added thereto in the predetermined amounts shown in Examples 1 to 3 and Comparative Examples 1 and 2 in Table 1 below, and kneaded for 30 minutes to obtain a composition.
  • composition viscosity The viscosities of the compositions obtained in Examples 1 to 3 and Comparative Examples 1 and 2 were measured in a 23 ° C. environment with a B type viscometer. Whether hardening inhibition occurs: With respect to the compositions obtained in Examples 1 to 3 and Comparative Examples 1 and 2, the presence or absence of curing inhibition was determined by heating the compositions.
  • Thermal conductivity The compositions obtained in Examples 1 to 3 and Comparative Examples 1 and 2 were cured using a press molding machine at 120 ° C. for 10 minutes into a sheet having a thickness of 6 mm, and two sheets were used.
  • the thermal conductivity of the sheet was measured with a thermal conductivity meter (trade name: TPS-2500S, manufactured by Kyoto Electronics Manufacturing Co., Ltd.).
  • hardness The compositions obtained in Examples 1 to 3 and Comparative Examples 1 and 2 were cured into a sheet having a thickness of 6 mm in the same manner as above, and two sheets were stacked and measured with an Asker C hardness meter.
  • Breakdown voltage The compositions obtained in Examples 1 to 3 and Comparative Examples 1 and 2 were cured into a sheet having a thickness of 1 mm at 120 ° C. for 10 minutes using a press molding machine, and insulation was performed according to JIS K 6249. The breakdown voltage was measured.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiments are merely examples, and the present invention has substantially the same configuration as the technical idea described in the scope of claims of the present invention, and has any similar effects to the present invention. It is included in the technical scope of.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Glass Compositions (AREA)

Abstract

本発明は、(A)1分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン:100質量部、(B)Si-H基を少なくとも2個有するオルガノハイドロジェンポリシロキサン:Si-H基数が前記(A)由来のアルケニル基数の0.1~5.0倍となる量、(C)熱伝導性充填材:700~2,500質量部、(D)白金族金属系硬化触媒:(A)に対して金属元素質量換算で0.1~2,000ppmを含み、前記(C)成分が、(C-1)平均粒径12~50μmである重質炭酸カルシウムフィラー:400~2,000質量部、及び、(C-2)平均粒径0.4~10μmである重質炭酸カルシウムフィラー:0.1~1,500質量部からなることを特徴とする熱伝導性シリコーン組成物である。これにより、圧縮性、絶縁性、熱伝導性、加工性に優れた熱伝導性樹脂成形体を与える熱伝導性シリコーン組成物及びその硬化物を提供する。

Description

熱伝導性シリコーン組成物及びその硬化物
 本発明は、熱伝導性シリコーン組成物及びその硬化物に関する。
 パーソナルコンピューター、デジタルビデオディスク、携帯電話等の電子機器に使用されるCPU、ドライバICやメモリー等のLSIチップは、高性能化・高速化・小型化・高集積化に伴い、それ自身が大量の熱を発生するようになり、その熱によるチップの温度上昇はチップの動作不良、破壊を引き起こす。そのため、動作中のチップの温度上昇を抑制するための多くの熱放散方法及びそれに使用する熱放散部材が提案されている。
 従来、電子機器等においては、動作中のチップの温度上昇を抑えるために、アルミニウムや銅等の熱伝導率の高い金属板を用いたヒートシンクが使用されている。このヒートシンクは、そのチップが発生する熱を伝導し、その熱を外気との温度差によって表面から放出する。
 チップから発生する熱をヒートシンクに効率よく伝えるために、ヒートシンクをチップに密着させる必要があるが、各チップの高さの違いや組み付け加工による公差があるため、柔軟性を有するシートや、グリースをチップとヒートシンクとの間に介装させ、このシート又はグリースを介してチップからヒートシンクへの熱伝導を実現している。
 シートはグリースに比べ、取り扱い性に優れており、熱伝導性シリコーンゴム等で形成された熱伝導シート(熱伝導性シリコーンゴムシート)は様々な分野に用いられている。
 特許文献1には、シリコーンゴム等の合成ゴム100質量部に酸化ベリリウム、酸化アルミニウム、水和酸化アルミニウム、酸化マグネシウム、酸化亜鉛から選ばれる少なくとも1種以上の金属酸化物を100~800質量部配合した絶縁性組成物が開示されている。
 一方、パーソナルコンピューター、ワードプロセッサ、CD-ROMドライブ等の電子機器の高集積化が進み、装置内のLSI,CPU等の集積回路素子の発熱量が増加したため、従来の冷却方法では不十分な場合がある。特に、携帯用のノート型のパーソナルコンピューターの場合、機器内部の空間が狭いため大きなヒートシンクや冷却ファンを取り付けることができない。更に、これらの機器では、プリント基板上に集積回路素子が搭載されており、基板の材質に熱伝導性の悪いガラス補強エポキシ樹脂やポリイミド樹脂が用いられるので、従来のように放熱絶縁シートを介して基板に熱を逃がすことができない。
 そこで、集積回路素子の近傍に自然冷却タイプあるいは強制冷却タイプの放熱部品を設置し、素子で発生した熱を放熱部品に伝える方式が用いられる。この方式で素子と放熱部品を直接接触させると、表面の凹凸のため熱の伝わりが悪くなり、更に放熱絶縁シートを介して取り付けても放熱絶縁シートの柔軟性がやや劣るため、熱膨張により素子と基板との間に応力がかかり、破損するおそれがある。
 また、各回路素子に放熱部品を取り付けようとすると余分なスペースが必要となり、機器の小型化が難しくなるので、いくつかの素子をひとつの放熱部品に組み合わせて冷却する方式が採られることもある。
 特にノート型のパーソナルコンピューターで用いられているBGAタイプのCPUは、高さが他の素子に比べて低く発熱量が大きいため、冷却方式を十分考慮する必要がある。
 そこで、素子ごとに高さが異なることにより生じる種々の隙間を埋めることができる低硬度の高熱伝導性材が必要になる。このような課題に対して、熱伝導性に優れ、柔軟性があり、種々の隙間に対応できる熱伝導性シートが要望される。
 この場合、特許文献2には、シリコーン樹脂に金属酸化物等の熱伝導性材料を混入したものを成形したシートで、取り扱いに必要な強度を持たせたシリコーン樹脂層の上に柔らかく変形し易いシリコーン層が積層されたシートが開示されている。また、特許文献3には、熱伝導性充填材を含有し、アスカーC硬度が5~50であるシリコーンゴム層と直径0.3mm以上の孔を有する多孔性補強材層を組み合わせた熱伝導性複合シートが開示されている。特許文献4には、可とう性の三次元網状体又はフォーム体の骨格格子表面を熱伝導性シリコーンゴムで被覆したシートが開示されている。特許文献5には、補強性を有したシートあるいはクロスを内蔵し、少なくとも一方の面が粘着性を有してアスカーC硬度が5~50である厚さ0.4mm以下の熱伝導性複合シリコーンシートが開示されている。特許文献6には、付加反応型液状シリコーンゴムと熱伝導性絶縁性セラミック粉末を含有し、その硬化物のアスカーC硬度が25以下で熱抵抗が3.0℃/W以下である放熱スペーサーが開示されている。
 これら熱伝導性シリコーン硬化物は、絶縁性も要求されることが多いため、熱伝導率が0.5~6W/m・Kの範囲では、熱伝導性充填材として酸化アルミニウム(アルミナ)が主に用いられることが多い。
 アルミナは一般的に不定形粉と球状粉に大別されるが、それぞれに長所・短所を有する。不定形のアルミナは球状のアルミナに比べ、熱伝導率を向上させる効果が高いが、シリコーンに対する充填性が悪く、充填により材料粘度が上昇し、加工性が悪くなるという欠点がある。また、アルミナは研磨剤に用いられるようにモース硬度が9と、非常に硬い。そのために、特に粒子径が10μm以上である不定形アルミナを用いた熱伝導性シリコーン組成物は、製造時にシェアがかかると、撹拌釜の内壁や撹拌羽を削ってしまうという問題があった。すると、熱伝導性シリコーン組成物に撹拌釜や撹拌羽の成分が混入し、熱伝導性シリコーン組成物、及びこれを用いた硬化物の絶縁性が低下する。また、撹拌釜と撹拌羽のクリアランスが広がり、撹拌効率が落ちてしまい、同条件で製造しても一定の品質が得られなくなる。またそれを防ぐためには部品を頻繁に交換する必要がある、というような問題があった。
 この問題を解決するために、球状アルミナ粉のみを使用する方法もあるが、不定形粉に比べて価格が高いため、コストが上がるという問題が発生する。さらに、アルミナは理論比重が3.98と非常に重いので、組成物及び硬化物の比重が上昇する。近年、電子機器の小型化、軽量化が進んでおり、電子機器全体の軽量化のためには部材単位で見るとグラム又はミリグラム単位で、性能を維持しながらより軽量なものが求められている。アルミナの使用は軽量化、コストの観点からも不利である。
 上記要求を満たすフィラーとしては、重質炭酸カルシウムが挙げられる。重質炭酸カルシウムは比重が約2.7とアルミナに比べ低く、価格も安価である。モース硬度も2程度と低く、絶縁性の低下も発生しない。
 しかしながら、重質炭酸カルシウムはシリコーンに対する充填性が低く、高熱伝導化が困難であるという問題があった。さらに、重質炭酸カルシウムを付加硬化型シリコーンに充填した場合、硬化阻害が発生し、低硬度の熱伝導性シートを得ることができないという問題があった。
特開昭47-32400号公報 特開平2-196453号公報 特開平7-266356号公報 特開平8-238707号公報 特開平9-1738号公報 特開平9-296114号公報
 本発明は、上記事情に鑑みなされたもので、圧縮性、絶縁性、熱伝導性、加工性に優れた熱伝導性樹脂成形体(熱伝導性シリコーン硬化物)を与える重質炭酸カルシウムを用いた熱伝導性シリコーン組成物及びその硬化物を提供することを目的とする。
 上記課題を解決するために、本発明では、熱伝導性シリコーン組成物であって、(A)成分としての1分子中に少なくとも2個以上のアルケニル基を有するオルガノポリシロキサン:100質量部、(B)成分としてのケイ素原子に直接結合した水素原子を少なくとも2個以上有するオルガノハイドロジェンポリシロキサン:ケイ素原子に直接結合した水素原子のモル数が前記(A)成分由来のアルケニル基のモル数の0.1~5.0倍となる量、(C)成分としての熱伝導性充填材:700~2,500質量部、(D)成分としての白金族金属系硬化触媒:(A)成分に対して白金族金属元素質量換算で0.1~2,000ppmを含み、前記(C)成分が、(C-1)平均粒径12~50μmである重質炭酸カルシウムフィラー:400~2,000質量部、及び、(C-2)平均粒径0.4~10μmである重質炭酸カルシウムフィラー:0.1~1,500質量部からなり、かつ、前記(C-1)と前記(C-2)の合計量が700~2,500質量部であることを特徴とする熱伝導性シリコーン組成物を提供する。
 このような熱伝導性シリコーン組成物であれば、圧縮性、絶縁性、熱伝導性、加工性に優れた熱伝導性樹脂成形体を与えることができる。
 前記熱伝導性シリコーン組成物は、更に、(E)成分として、(E-1)下記一般式(1)で表されるアルコキシシラン化合物、及び、(E-2)下記一般式(2)で表される分子鎖片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサンのいずれか一方又は両方を(A)成分100質量部に対し0.01~300質量部含有するものであることができる。
  R Si(OR4-a-b     (1)
(式中、Rは独立に炭素原子数6~15のアルキル基であり、Rは独立に非置換又は置換の炭素原子数1~12の1価炭化水素基であり、Rは独立に炭素原子数1~6のアルキル基であり、aは1~3の整数、bは0~2の整数であり、但しa+bは1~3の整数である。)
Figure JPOXMLDOC01-appb-C000003
(式中、Rは独立に炭素原子数1~6のアルキル基であり、cは5~100の整数である。)
 このような熱伝導性シリコーン組成物であれば、圧縮性、絶縁性、熱伝導性、加工性により優れた熱伝導性樹脂成形体を与えることができる。
 前記熱伝導性シリコーン組成物は、更に、(F)成分として、下記一般式(3)
Figure JPOXMLDOC01-appb-C000004
(式中、Rは独立に炭素原子数1~12の脂肪族不飽和結合を含まない1価炭化水素基、dは5~2,000の整数である。)
で表される23℃における動粘度が10~100,000mm/sのオルガノポリシロキサンを(A)成分100質量部に対し0.1~100質量部含有するものであることができる。
 このような熱伝導性シリコーン組成物であれば、圧縮性、絶縁性、熱伝導性、加工性により一層優れた熱伝導性樹脂成形体を与えることができる。
 上記熱伝導性シリコーン組成物は、23℃における粘度が800Pa・s以下であることが好ましい。
 このような熱伝導性シリコーン組成物であれば、成形性に優れる。
 また、本発明は、上記熱伝導性シリコーン組成物の硬化物である熱伝導性シリコーン硬化物を提供する。
 このような熱伝導性シリコーン硬化物であれば、圧縮性、絶縁性、熱伝導性、加工性に優れる。
 前記熱伝導性シリコーン硬化物は、熱伝導率が0.7W/m・K以上のものであることが好ましい。
 このような熱伝導性シリコーン硬化物であれば、例えば電子機器内の発熱部品と放熱部品の間に設置されて放熱に用いられる熱伝導性樹脂成形体として好適に用いられる。
 また、前記熱伝導性シリコーン硬化物は、硬度がアスカーC硬度計で60以下のものであることが好ましい。
 このような熱伝導性シリコーン硬化物であれば、被放熱体の形状に沿うように変形し、被放熱体に応力をかけることなく良好な放熱特性を示すことができる。
 また、前記熱伝導性シリコーン硬化物は、絶縁破壊電圧が10kV/mm以上のものであることが好ましい。
 このような熱伝導性シリコーン硬化物であれば、使用時に安定的に絶縁を確保することができる。
 本発明は、また、上記熱伝導性シリコーン組成物の製造方法であって、前記(A)成分、(C)成分及び(D)成分、並びに、存在する場合には(E)成分、(F)成分を混合する第1混合工程と、次いで得られた混合物に(B)成分を加えてさらに混合することにより上記熱伝導性シリコーン組成物を得る第2混合工程を含み、前記第1混合工程において真空脱泡撹拌を行うことにより混合することを特徴とする上記組成物の製造方法を提供する。
 このような熱伝導性シリコーン組成物の製造方法であれば、混合(混練)工程において組成物の濡れ性が十分であり、ペースト状の均一な組成物を得ることができる。
 以上のように、本発明の熱伝導性シリコーン組成物であれば、平均粒径が12~50μmの重質炭酸カルシウムと、平均粒径が0.4~10μmの重質炭酸カルシウムとを特定割合で併用することで、圧縮性、絶縁性、熱伝導性、加工性に優れた、高い熱伝導率を有する熱伝導性シリコーン硬化物を提供することができる。特に0.7W/m・K以上の熱伝導率を有する硬化物を提供することができ、例えば電子機器内の発熱部品と放熱部品の間に設置されて放熱に用いられる熱伝導性樹脂成形体(熱伝導性シリコーン硬化物)として好適に用いられる。具体的には、特に熱伝導による電子部品の冷却のために、発熱性電子部品の熱境界面とヒートシンク又は回路基板等の放熱部材との界面に介在させる熱伝達材料として有用である。
 上述のように、圧縮性、絶縁性、熱伝導性、加工性に優れた熱伝導性シリコーン硬化物(熱伝導性樹脂成形体)及び該硬化物を与える熱伝導性シリコーン組成物の開発が求められていた。特に、重質炭酸カルシウムフィラーは、電子機器の小型化、軽量化、コストダウンの要求を満たすものの、シリコーンに対する充填性が低く、0.5W/m・Kを超える高熱伝導化が困難であるという問題、さらには、これを付加硬化型シリコーンに充填した場合、硬化阻害が発生し、所望硬度の熱伝導性シートを得ることができないという問題があった。
 本発明者らは、上記目的を達成するため鋭意検討を行った結果、平均粒径が12~50μmの重質炭酸カルシウムと、平均粒径が0.4~10μmの重質炭酸カルシウムとを特定割合で併用することで上記問題を解決することができることを見出した。即ち、比表面積が小さい大粒径の重質炭酸カルシウムを多く配合することで、高熱伝導化を達成することが可能であり、かつ、硬化阻害を防止できることを見出し、本発明を完成させた。
 即ち、本発明は、熱伝導性シリコーン組成物であって、
(A)成分としての1分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン:100質量部、
(B)成分としてのケイ素原子に直接結合した水素原子を少なくとも2個有するオルガノハイドロジェンポリシロキサン:ケイ素原子に直接結合した水素原子のモル数が前記(A)成分由来のアルケニル基のモル数の0.1~5.0倍となる量、
(C)成分としての熱伝導性充填材:700~2,500質量部、
(D)成分としての白金族金属系硬化触媒:(A)成分に対して白金族金属元素質量換算で0.1~2,000ppmを含み、
 前記(C)成分が、
(C-1)平均粒径12~50μmである重質炭酸カルシウムフィラー:400~2,000質量部、及び、
(C-2)平均粒径0.4~10μmである重質炭酸カルシウムフィラー:0.1~1,500質量部からなり、かつ、
前記(C-1)と前記(C-2)の合計量が700~2,500質量部であることを特徴とする熱伝導性シリコーン組成物である。
 以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。
 本発明の熱伝導性シリコーン組成物は、(A)成分としての1分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン、(B)成分としてのケイ素原子に直接結合した水素原子を少なくとも2個有するオルガノハイドロジェンポリシロキサン、(C)成分としての熱伝導性充填材、及び(D)成分としての白金族金属系硬化触媒を必須成分として含有する。以下、上記成分について説明する。
[(A)成分:アルケニル基含有オルガノポリシロキサン]
 (A)成分であるアルケニル基含有オルガノポリシロキサンは、ケイ素原子に結合したアルケニル基を1分子中に2個以上有するオルガノポリシロキサンであり、本発明の熱伝導性シリコーン組成物の主剤となるものである。通常は主鎖部分が基本的にジオルガノシロキサン単位の繰り返しからなるのが一般的であるが、これは分子構造の一部に分枝状の構造を含んだものであってもよく、また環状体であってもよいが、硬化物の機械的強度等、物性の点から直鎖状のジオルガノポリシロキサンが好ましい。
 ケイ素原子に結合するアルケニル基以外の官能基としては、非置換又は置換の1価炭化水素基であり、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等のアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基、並びにこれらの基の炭素原子が結合している水素原子の一部又は全部が、フッ素、塩素、臭素等のハロゲン原子、シアノ基等で置換された基、例えば、クロロメチル基、2-ブロモエチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、クロロフェニル基、フルオロフェニル基、シアノエチル基、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル基等が挙げられ、代表的なものは炭素原子数が1~10、特に代表的なものは炭素原子数が1~6のものであり、好ましくはメチル基、エチル基、プロピル基、クロロメチル基、ブロモエチル基、3,3,3-トリフルオロプロピル基、シアノエチル基等の炭素原子数1~3の非置換又は置換のアルキル基、及びフェニル基、クロロフェニル基、フルオロフェニル基等の非置換又は置換のフェニル基である。また、ケイ素原子に結合したアルケニル基以外の官能基は全てが同一であることに限定されない。
 また、アルケニル基としては、例えば、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基等の通常炭素原子数が2~8程度のものが挙げられ、中でもビニル基、アリル基等の低級アルケニル基が好ましく、特に好ましくはビニル基である。なお、アルケニル基は、分子中に2個以上存在することが必要であるが、得られる硬化物の柔軟性がよいものとするため、分子鎖末端のケイ素原子にのみ結合して存在することが好ましい。
 このオルガノポリシロキサンの23℃における動粘度は、好ましくは10~100,000mm/s、特に好ましくは500~50,000mm/sの範囲である。前記動粘度が10mm/s以上であれば、得られる組成物の保存安定性が良くなり、また100,000mm/s以下であれば、得られる組成物の伸展性が良くなる。なお、動粘度はオストワルド粘度計を用いて測定した場合の値である(以下、同じ)。
 この(A)成分のオルガノポリシロキサンは、1種単独でも、粘度が異なる2種以上を組み合わせて用いてもよい。
 [(B)成分:オルガノハイドロジェンポリシロキサン]
 (B)成分のオルガノハイドロジェンポリシロキサンは、1分子中に少なくとも2個、好ましくは2~100個のケイ素原子に直接結合した水素原子(Si-H基)を有するオルガノハイドロジェンポリシロキサンであり、(A)成分の架橋剤として作用する成分である。即ち、(B)成分中のSi-H基が(A)成分中のアルケニル基に、後述する(D)成分の白金族金属系硬化触媒により促進されるヒドロシリル化反応により付加して、架橋構造を有する3次元網目構造を与える。なお、(B)成分中のSi-H基の数が2個未満の場合、硬化しない。
 オルガノハイドロジェンポリシロキサンとしては、下記平均構造式(4)で示されるものが用いられるが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000005
(式中、R’は独立に水素原子又は脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基であるが、少なくとも2個、好ましくは2~10個は水素原子であり、eは1以上の整数、好ましくは10~200の整数である。)
 式(4)中、R’の水素原子以外の脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等のアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基、並びにこれらの基の炭素原子が結合している水素原子の一部又は全部が、フッ素、塩素、臭素等のハロゲン原子、シアノ基等で置換された基、例えば、クロロメチル基、2-ブロモエチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、クロロフェニル基、フルオロフェニル基、シアノエチル基、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル基等が挙げられ、代表的なものは炭素原子数が1~10、特に代表的なものは炭素原子数が1~6のものであり、好ましくはメチル基、エチル基、プロピル基、クロロメチル基、ブロモエチル基、3,3,3-トリフルオロプロピル基、シアノエチル基等の炭素原子数1~3の非置換又は置換のアルキル基、及びフェニル基、クロロフェニル基、フルオロフェニル基等の非置換又は置換のフェニル基である。また、R’は全てが同一であることに限定されない。
 (B)成分の添加量は、(B)成分由来のSi-H基が(A)成分由来のアルケニル基1モルに対して0.1~5.0モルとなる量(すなわち、ケイ素原子に直接結合した水素原子のモル数が(A)成分由来のアルケニル基のモル数の0.1~5.0倍となる量)、好ましくは0.3~2.0モルとなる量、更に好ましくは0.5~1.0モルとなる量である。(B)成分由来のSi-H基の量が(A)成分由来のアルケニル基1モルに対して0.1モル未満であると硬化しない、又は硬化物の強度が不十分で成形体としての形状を保持できず取り扱えない場合がある。また5.0モルを超えると硬化物の柔軟性がなくなり、硬化物が脆くなる。
[(C)成分:熱伝導性充填材]
 (C)成分である熱伝導性充填材は、主に重質炭酸カルシウムを含有するもので、下記(C-1)~(C-2)成分からなるものである。
(C-1)平均粒径12~50μmである重質炭酸カルシウムフィラー
(C-2)平均粒径0.4~10μmである重質炭酸カルシウムフィラー
 なお、本発明において、上記平均粒径は、日機装(株)製の粒度分析計であるマイクロトラックMT3300EXにより測定した体積基準の累積平均粒径(メディアン径)の値である。
 (C-1)成分の重質炭酸カルシウムフィラーは、熱伝導率を優位に向上させることができる。重質炭酸カルシウムの平均粒径は12~50μmであり、特に15~25μmであることが好ましい。平均粒径が12μm未満であると、熱伝導性を向上させる効果が低くなり、また、組成物粘度が上昇し、加工性が悪くなる。平均粒径が50μmを超えると、粒径が大きすぎるため成形性が悪くなる。(C-1)成分の重質炭酸カルシウムフィラーとしては1種又は2種以上を複合して用いてもよい。
 (C-2)成分の重質炭酸カルシウムフィラーは、(C-1)成分の重質炭酸カルシウムフィラーと組み合わせることで、組成物の熱伝導率及び流動性を向上させ、またフィラーの沈降を防ぐ。平均粒径は0.4~10μmであり、特に0.8~9μmであることが好ましい。平均粒径が0.4μm未満であると、粒径が小さすぎて取り扱い難くなるうえ、熱伝導性を向上させる効果も低くなり、また、組成物粘度が上昇し、加工性が悪くなる。平均粒径が10μmを超えると、(C-1)成分と組み合わせることによる組成物の熱伝導率及び流動性の向上と、フィラーの沈降防止の効果が損なわれる。(C-2)成分の重質炭酸カルシウムフィラーとしては1種又は2種以上を複合して用いてもよい。
 (C-1)成分の配合量は、(A)成分100質量部に対して400~2,000質量部であり、好ましくは800~1,500質量部である。少なすぎると熱伝導率の向上が困難であり、多すぎると組成物の流動性が失われ、成形性が損なわれる。
 (C-2)成分の配合量は、(A)成分100質量部に対して0.1~1,500質量部であり、好ましくは200~800質量部である。0.1質量部未満では熱伝導率及び流動性の向上が困難であり、フィラー沈降の懸念がある。1,500質量部を超えると組成物の流動性が失われ、成形性が損なわれる。
 更に、(C)成分の配合量(即ち、上記(C-1)と(C-2)の合計配合量)は、(A)成分100質量部に対して700~2,500質量部であることが必要であり、好ましくは1,200~1,600質量部である。この(C)成分配合量が700質量部未満の場合には、得られる組成物の熱伝導率が悪い上、組成物粘度が極めて低粘度となり、保存安定性が乏しいものとなり、2,500質量部を超える場合には、組成物の伸展性が乏しく、硬度が高く、また強度が弱い成形物となる。
 このように、平均粒径が12~50μmの重質炭酸カルシウムフィラー(C-1)と、平均粒径が0.4~10μmの重質炭酸カルシウムフィラー(C-2)とを上記特定割合で配合するとともに、上記配合割合で(C)成分((C-1)及び(C-2)からなる)を用いることで、上記した本発明の効果がより有利にかつ確実に発揮される。
[(D)成分:白金族金属系硬化触媒]
 (D)成分の白金族金属系硬化触媒は、(A)成分由来のアルケニル基と、(B)成分由来のSi-H基の付加反応を促進するための触媒であれば特に限定されないが、ヒドロシリル化反応に用いられる触媒として周知の触媒が挙げられる。その具体例としては、例えば、白金(白金黒を含む)、ロジウム、パラジウム等の白金族金属単体、HPtCl・nHO、HPtCl・nHO、NaHPtCl・nHO、KHPtCl・nHO、NaPtCl・nHO、KPtCl・nHO、PtCl・nHO、PtCl、NaHPtCl・nHO(但し、式中、nは0~6の整数であり、好ましくは0又は6である。)等の塩化白金、塩化白金酸及び塩化白金酸塩、アルコール変性塩化白金酸(米国特許第3,220,972号明細書参照)、塩化白金酸とオレフィンとのコンプレックス(米国特許第3,159,601号明細書、同第3,159,662号明細書、同第3,775,452号明細書参照)、白金黒、パラジウム等の白金族金属をアルミナ、シリカ、カーボン等の担体に担持させたもの、ロジウム-オレフィンコンプレックス、クロロトリス(トリフェニルフォスフィン)ロジウム(ウィルキンソン触媒)、塩化白金、塩化白金酸又は塩化白金酸塩とビニル基含有シロキサン、特にビニル基含有環状シロキサンとのコンプレックス等が挙げられる。
 (D)成分の使用量は、(A)成分に対する白金族金属元素の質量換算で0.1~2,000ppmであり、好ましくは50~1,000ppmである。0.1ppm未満では十分な触媒活性が得られず、2,000ppmを超えても付加反応を促進する効果は向上せず、コストアップになるうえ、硬化物に触媒が残留するため絶縁性が低下するおそれがある。
[(E)成分:表面処理剤]
 本発明の熱伝導性シリコーン組成物には、組成物調製時に(C)成分である熱伝導性充填材を疎水化処理し、(A)成分であるオルガノポリシロキサンとの濡れ性を向上させ、(C)成分である熱伝導性充填材を(A)成分からなるマトリックス中に均一に分散させることを目的として、(E)成分の表面処理剤を配合することができる。また(E)成分は(C)成分の表面を被覆し硬化阻害を抑制することができる。該(E)成分としては、特に下記に示す(E-1)成分及び(E-2)成分が好ましい。
 (E-1)成分は、下記一般式(1)で表されるアルコキシシラン化合物である。
  R Si(OR4-a-b          (1)
(式中、Rは独立に炭素原子数6~15のアルキル基であり、Rは独立に非置換又は置換の炭素原子数1~12の1価炭化水素基であり、Rは独立に炭素原子数1~6のアルキル基であり、aは1~3の整数、bは0~2の整数であり、但しa+bは1~3の整数である。)
 上記一般式(1)において、Rで表されるアルキル基としては、例えば、ヘキシル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基等が挙げられる。このRで表されるアルキル基の炭素原子数が6~15の範囲を満たすと(A)成分の濡れ性が十分に向上し、取り扱い性がよく、組成物の低温特性が良好なものとなる。
 Rで表される非置換又は置換の1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等のアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基、並びにこれらの基の炭素原子が結合している水素原子の一部又は全部が、フッ素、塩素、臭素等のハロゲン原子、シアノ基等で置換された基、例えば、クロロメチル基、2-ブロモエチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、クロロフェニル基、フルオロフェニル基、シアノエチル基、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル基等が挙げられ、代表的なものは炭素原子数が1~10、特に代表的なものは炭素原子数が1~6のものであり、好ましくはメチル基、エチル基、プロピル基、クロロメチル基、ブロモエチル基、3,3,3-トリフルオロプロピル基、シアノエチル基等の炭素原子数1~3の非置換又は置換のアルキル基、及びフェニル基、クロロフェニル基、フルオロフェニル基等の非置換又は置換のフェニル基が挙げられる。Rとしては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基等が挙げられる。
 (E-2)成分は、下記一般式(2)で表される分子鎖片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサンである。
Figure JPOXMLDOC01-appb-C000006
(式中、Rは独立に炭素原子数1~6のアルキル基であり、cは5~100の整数、好ましくは5~70の整数、特に好ましくは10~50の整数である。)
 (E)成分の表面処理剤としては、(E-1)成分と(E-2)成分のいずれか一方でも両者を組み合わせて配合してもよい。
 (E)成分を配合する場合の配合量としては、(A)成分100質量部に対して0.01~300質量部、特に0.1~200質量部であることが好ましい。本成分の配合割合が上記範囲であれば、オイル分離を誘発することはない。
[(F)成分:特性付与剤]
 本発明の熱伝導性シリコーン組成物には、熱伝導性シリコーン組成物の粘度調整等の特性付与を目的として、(F)成分として、下記一般式(3)
Figure JPOXMLDOC01-appb-C000007
(式中、Rは独立に炭素原子数1~12の脂肪族不飽和結合を含まない1価炭化水素基、dは5~2,000の整数である。)
で表される23℃における動粘度が10~100,000mm/sのオルガノポリシロキサンを添加することができる。(F)成分は、1種単独で用いても、2種以上を併用してもよい。
 上記一般式(3)において、Rは独立に非置換又は置換の炭素原子数1~12の脂肪族不飽和結合を含まない1価炭化水素基である。Rとしては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等のアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基、並びにこれらの基の炭素原子が結合している水素原子の一部又は全部が、フッ素、塩素、臭素等のハロゲン原子、シアノ基等で置換された基、例えば、クロロメチル基、2-ブロモエチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、クロロフェニル基、フルオロフェニル基、シアノエチル基、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル基等が挙げられ、代表的なものは炭素原子数が1~10、特に代表的なものは炭素原子数が1~6のものであり、好ましくはメチル基、エチル基、プロピル基、クロロメチル基、ブロモエチル基、3,3,3-トリフルオロプロピル基、シアノエチル基等の炭素原子数1~3の非置換又は置換のアルキル基、及びフェニル基、クロロフェニル基、フルオロフェニル基等の非置換又は置換のフェニル基が挙げられるが、特にメチル基、フェニル基が好ましい。
 上記dは要求される粘度の観点から、好ましくは5~2,000の整数で、特に好ましくは10~1,000の整数である。
 また、(F)成分の23℃における動粘度は、10~100,000mm2/sであり、100~10,000mm2/sであることが好ましい。動粘度が10mm2/s以上であれば、得られる組成物の硬化物がオイルブリードを発生し難くなる。動粘度が100,000mm2/s以下であれば、得られる熱伝導性シリコーン組成物の柔軟性が好適なものとなる。
 (F)成分を本発明の熱伝導性シリコーン組成物に添加する場合、(A)成分100質量部に対して、0.1~100質量部、好ましくは1~50質量部である。添加量がこの範囲にあると、硬化前の熱伝導性シリコーン組成物に良好な流動性、作業性を維持し易く、また(C)成分の熱伝導性充填材を該組成物に充填するのが容易である。
[(G)成分:反応制御剤]
 本発明の熱伝導性シリコーン組成物には、更に(G)成分として付加反応制御剤を使用することができる。付加反応制御剤は、通常の付加反応硬化型シリコーン組成物に用いられる公知の付加反応制御剤を全て用いることができる。例えば、1-エチニル-1-ヘキサノール、3-ブチン-1-オール、エチニルメチリデンカルビノール等のアセチレン化合物や各種窒素化合物、有機リン化合物、オキシム化合物、有機クロロ化合物等が挙げられる。
 (G)成分を配合する場合の使用量としては、(A)成分100質量部に対して0.01~1質量部、特に0.1~0.8質量部程度が望ましい。このような配合量であれば、十分に硬化反応が進み、成形効率が損なわれることがない。
[その他の成分]
 本発明の熱伝導性シリコーン組成物には、必要に応じて、更に他の成分を配合してもよい。例えば、酸化鉄、酸化セリウム等の耐熱性向上剤;シリカ等の粘度調整剤;着色剤;離型剤等の任意成分を配合することができる。
[組成物の粘度]
 本発明の熱伝導性シリコーン組成物の粘度は、23℃において800Pa・s以下、好ましくは700Pa・s以下である。このような粘度であれば成形性が損なわれない。下限値は、特に限定されないが、例えば、60Pa・s以上とすることができる。なお、本発明において、この粘度はB型粘度計による測定に基づく。
[熱伝導性シリコーン硬化物の製造方法]
 熱伝導性シリコーン組成物を成形する硬化条件としては、公知の付加反応硬化型シリコーンゴム組成物と同様でよく、例えば、常温でも十分硬化するが、必要に応じて加熱してもよい。好ましくは100~120℃で8~12分で付加硬化させるのがよい。このような本発明のシリコーン硬化物は熱伝導性に優れる。
[熱伝導性樹脂成形体の熱伝導率]
 本発明における熱伝導性樹脂成形体(熱伝導性シリコーン硬化物)の熱伝導率は、ホットディスク法により測定した25℃における測定値が0.7W/m・K以上、特に0.9W/m・K以上であることが望ましい。上限値は、特に限定されないが、例えば、1.4W/m・K以下とすることができる。
[熱伝導性樹脂成形体の絶縁破壊電圧]
 本発明における熱伝導性樹脂成形体の絶縁破壊電圧は、1mm厚の成形体の絶縁破壊電圧をJIS K 6249に準拠して測定したときの測定値が、10kV以上、より好ましくは13kV以上であることが好ましい。絶縁破壊電圧が10kV/mm以上のシートであれば、使用時に安定的に絶縁を確保することができる。上限値は、特に限定されないが、例えば、20kV/mm以下とすることができる。なお、このような絶縁破壊電圧は、フィラーの種類や純度を調整することにより、調整することができる。
[熱伝導性樹脂成形体の硬度]
 本発明における熱伝導性樹脂成形体の硬度は、アスカーC硬度計で測定した25℃における測定値が60以下、好ましくは40以下、より好ましくは30以下であることが好ましく、また5以上であることが好ましい。硬度が60以下であれば、被放熱体の形状に沿うように変形し、被放熱体に応力をかけることなく良好な放熱特性を示すことが容易になる。なお、このような硬度は、(A)成分と(B)成分の比率を変えて、架橋密度を調整することにより、調整することができる。
[熱伝導性シリコーン組成物の製造方法]
 本発明の熱伝導性シリコーン組成物は、上述した各成分を常法に準じて均一に混合することにより調製することができるが、上記(A)成分、(C)成分及び(D)成分、並びに、存在する場合には(E)成分、(F)成分を混合する第1混合工程と、次いで得られた混合物に(B)成分を加えてさらに混合することにより熱伝導性シリコーン組成物を得る第2混合工程を含み、第1混合工程において真空脱泡撹拌を行うことにより混合することが好ましい。上記特定の成分をあらかじめ真空脱泡撹拌を行うことにより混合(混練)する(第1混合工程)ことにより組成物の濡れ性が十分なものとなり、ペースト状の均一な組成物を得ることができる。第2混合工程における混合方法は、均一に混合することができれば特に限定されないが、第1混合工程と同様に真空脱泡撹拌を行うことで混合(混練)することができる。なお、本明細書ではこのような混合を「混練」ということもある。
 以上のように、本発明の熱伝導性シリコーン組成物は、上記(A)~(D)を必須成分として含有し、特に、(C)成分として平均粒径が12~50μmの重質炭酸カルシウムフィラー(C-1)と、平均粒径が0.4~10μmの重質炭酸カルシウムフィラー(C-2)とを特定割合で配合するとともに、特定の配合割合で(C)成分((C-1)及び(C-2)からなる)を用いることを特徴とする。そして、このような平均粒径の異なる重質炭酸カルシウムを特定割合で併用することで、圧縮性、絶縁性、熱伝導性、加工性に優れた、高い熱伝導率を有する熱伝導性シリコーン硬化物を提供することができる。特に、0.7W/m・K以上の熱伝導率を有する硬化物を提供することができ、例えば電子機器内の発熱部品と放熱部品の間に設置されて放熱に用いられる熱伝導性樹脂成形体(熱伝導性シリコーン硬化物)として好適に用いられる。具体的には、特に熱伝導による電子部品の冷却のために、発熱性電子部品の熱境界面とヒートシンク又は回路基板等の放熱部材との界面に介在させる熱伝達材料として有用である。
 以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、動粘度は23℃においてオストワルド粘度計により測定した。また、平均粒径は日機装(株)製の粒度分析計であるマイクロトラックMT3300EXにより測定した体積基準の累積平均粒径(メディアン径)の値である。
 下記実施例及び比較例に用いられる(A)~(G)成分を下記に示す。
(A)成分:
 下記式(5)で示されるオルガノポリシロキサン。
Figure JPOXMLDOC01-appb-C000008
(式中、Xはビニル基であり、fは下記動粘度を与える数である。)
  動粘度:600mm/s
(B)成分:
 下記式(6)で示されるオルガノハイドロジェンポリシロキサン。
Figure JPOXMLDOC01-appb-C000009
(式中、gは28、hは2である。)
(C)成分:
 平均粒径が下記の通りである重質炭酸カルシウムフィラー。
(C-1)平均粒径が16.6μmの重質炭酸カルシウムフィラー
(C-2a)平均粒径が6.9μmの重質炭酸カルシウムフィラー
(C-2b)平均粒径が2.9μmの重質炭酸カルシウムフィラー
(C-2c)平均粒径が10μmの重質炭酸カルシウムフィラー
(D)成分:
 5質量%塩化白金酸2-エチルヘキサノール溶液。
(E)成分:(E-2)成分
 下記式(7)で示される平均重合度が30の片末端がトリメトキシシリル基で封鎖されたジメチルポリシロキサン。
Figure JPOXMLDOC01-appb-C000010
(F)成分
 可塑剤として、下記式(8)で示されるジメチルポリシロキサン。
Figure JPOXMLDOC01-appb-C000011
(式中、jは80である。)
(G)成分:
 付加反応制御剤として、エチニルメチリデンカルビノール。
[実施例1~3、比較例1~2]
 実施例1~3及び比較例1~2において、上記(A)~(G)成分、その他の成分(内添離型剤)を表1に示す所定の量を用いて下記のように組成物を調製し、成形硬化させ、下記評価方法に従って組成物の粘度、硬化阻害発生の有無、硬化物の熱伝導率、硬度、絶縁破壊電圧、比重を観察した。結果を表1に併記する。なお、表1中、「H/Vi」は、ケイ素原子に直接結合した水素原子(Si-H基)のモル数の(A)成分由来のアルケニル基のモル数に対する比率である。
[組成物の調製]
 (A)、(C)~(F)成分を下記表1の実施例1~3及び比較例1~2に示す所定の量で加え、更にセパレータとの離型を促す内添離型剤として、信越化学工業(株)製のフェニル変性シリコーンオイルであるKF-54を有効量加え、プラネタリーミキサーで真空脱泡しながら90分間混練した。
 そこに(B)と(G)成分を下記表1の実施例1~3及び比較例1~2に示す所定の量を加え、30分間混練し、組成物を得た。
[成形硬化方法]
 実施例1~3及び比較例1~2で得られた組成物を60mm×60mm×6mmの金型に流し込み、プレス成形機を用い、120℃,10分間の条件で成形硬化した。
[評価方法]
組成物の粘度:
 実施例1~3及び比較例1~2で得られた組成物の粘度を、B型粘度計にて、23℃環境下で測定した。
硬化阻害発生の有無:
 実施例1~3及び比較例1~2で得られた組成物について硬化阻害発生の有無を組成物を加熱処理して判定した。
熱伝導率:
 実施例1~3及び比較例1~2で得られた組成物を、プレス成形機を用い、120℃,10分間の条件で6mm厚のシート状に硬化させ、そのシートを2枚用いて、熱伝導率計(商品名:TPS-2500S、京都電子工業(株)製)により該シートの熱伝導率を測定した。
硬度:
 実施例1~3及び比較例1~2で得られた組成物を上記と同様に6mm厚のシート状に硬化させ、そのシートを2枚重ねてアスカーC硬度計で測定した。
絶縁破壊電圧:
 実施例1~3及び比較例1~2で得られた組成物を、プレス成形機を用い、120℃,10分間の条件で1mm厚のシート状に硬化させ、JIS K 6249に準拠して絶縁破壊電圧を測定した。
比重:
 実施例1~3及び比較例1~2で得られた組成物を、プレス成形機を用い、120℃,10分間の条件で1mm厚のシート状に硬化させ、硬化物の比重を水中置換法により測定した。
Figure JPOXMLDOC01-appb-T000012
 比較例1のように熱伝導性充填材の総質量部が(A)成分100質量部に対し2,500質量部を超えると、組成物の濡れ性が不足し、ペースト状の均一な組成物を得ることができなかった。比較例2のように(C-1)成分の量が400質量部未満で、高熱伝導化のために(C-2)成分を高充填化した場合、硬化阻害が発生した。なお、比較例1では組成物がペースト状にならなかったため硬化阻害の有無以降の評価ができず、比較例2では硬化阻害が発生したため熱伝導率以降の評価ができなかった。
 これに対し、実施例のように、(C-1)と(C-2)を特定の比率で配合した(C)成分を用いた場合、組成物の粘度、硬化物の熱伝導率、硬度、比重、絶縁破壊電圧とも良好な結果となった。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (9)

  1.  熱伝導性シリコーン組成物であって、
    (A)成分としての1分子中に2個以上のアルケニル基を有するオルガノポリシロキサン:100質量部、
    (B)成分としてのケイ素原子に直接結合した水素原子を2個以上有するオルガノハイドロジェンポリシロキサン:ケイ素原子に直接結合した水素原子のモル数が前記(A)成分由来のアルケニル基のモル数の0.1~5.0倍となる量、
    (C)成分としての熱伝導性充填材:700~2,500質量部、
    (D)成分としての白金族金属系硬化触媒:(A)成分に対して白金族金属元素質量換算で0.1~2,000ppm
    を含み、
     前記(C)成分が、
    (C-1)平均粒径12~50μmである重質炭酸カルシウムフィラー:400~2,000質量部、及び、
    (C-2)平均粒径0.4~10μmである重質炭酸カルシウムフィラー:0.1~1,500質量部からなり、かつ、
    前記(C-1)と前記(C-2)の合計量が700~2,500質量部であることを特徴とする熱伝導性シリコーン組成物。
  2.  更に、(E)成分として、
    (E-1)下記一般式(1)
      R Si(OR4-a-b     (1)
    (式中、Rは独立に炭素原子数6~15のアルキル基であり、Rは独立に非置換又は置換の炭素原子数1~12の1価炭化水素基であり、Rは独立に炭素原子数1~6のアルキル基であり、aは1~3の整数、bは0~2の整数であり、但しa+bは1~3の整数である。)
    で表されるアルコキシシラン化合物、及び
    (E-2)下記一般式(2)
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは独立に炭素原子数1~6のアルキル基であり、cは5~100の整数である。)
    で表される分子鎖片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサンのいずれか一方又は両方を(A)成分100質量部に対し0.01~300質量部含有するものであることを特徴とする請求項1に記載の熱伝導性シリコーン組成物。
  3.  更に、(F)成分として、下記一般式(3)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは独立に炭素原子数1~12の脂肪族不飽和結合を含まない1価炭化水素基、dは5~2,000の整数である。)
    で表される23℃における動粘度が10~100,000mm/sのオルガノポリシロキサンを(A)成分100質量部に対し0.1~100質量部含有するものであることを特徴とする請求項1又は請求項2に記載の熱伝導性シリコーン組成物。
  4.  23℃における粘度が800Pa・s以下のものであることを特徴とする請求項1から請求項3のいずれか1項に記載の熱伝導性シリコーン組成物。
  5.  請求項1から請求項4のいずれか1項に記載の熱伝導性シリコーン組成物の硬化物であることを特徴とする熱伝導性シリコーン硬化物。
  6.  熱伝導率が0.7W/m・K以上のものであることを特徴とする請求項5に記載の熱伝導性シリコーン硬化物。
  7.  硬度がアスカーC硬度計で60以下のものであることを特徴とする請求項5又は請求項6に記載の熱伝導性シリコーン硬化物。
  8.  絶縁破壊電圧が10kV/mm以上のものであることを特徴とする請求項5から請求項7のいずれか1項に記載の熱伝導性シリコーン硬化物。
  9.  請求項1から請求項4のいずれか1項に記載の熱伝導性シリコーン組成物の製造方法であって、
     前記(A)成分、(C)成分及び(D)成分、並びに、存在する場合には(E)成分、(F)成分を混合する第1混合工程と、次いで得られた混合物に(B)成分を加えてさらに混合することにより前記熱伝導性シリコーン組成物を得る第2混合工程を含み、前記第1混合工程において真空脱泡撹拌を行うことにより混合することを特徴とする熱伝導性シリコーン組成物の製造方法。
PCT/JP2019/030982 2018-10-23 2019-08-06 熱伝導性シリコーン組成物及びその硬化物 WO2020084868A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980060877.0A CN112714784B (zh) 2018-10-23 2019-08-06 导热性有机硅组合物及其固化物
KR1020217006906A KR20210080351A (ko) 2018-10-23 2019-08-06 열전도성 실리콘 조성물 및 그의 경화물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018199530A JP6957435B2 (ja) 2018-10-23 2018-10-23 熱伝導性シリコーン組成物及びその硬化物
JP2018-199530 2018-10-23

Publications (1)

Publication Number Publication Date
WO2020084868A1 true WO2020084868A1 (ja) 2020-04-30

Family

ID=70330478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030982 WO2020084868A1 (ja) 2018-10-23 2019-08-06 熱伝導性シリコーン組成物及びその硬化物

Country Status (5)

Country Link
JP (1) JP6957435B2 (ja)
KR (1) KR20210080351A (ja)
CN (1) CN112714784B (ja)
TW (1) TWI813738B (ja)
WO (1) WO2020084868A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162636A1 (ja) * 2022-02-28 2023-08-31 信越化学工業株式会社 熱伝導性シリコーン組成物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007161806A (ja) * 2005-12-12 2007-06-28 Shin Etsu Chem Co Ltd 熱伝導性シリコーンゴム組成物
JP2013222836A (ja) * 2012-04-17 2013-10-28 Shin Etsu Chem Co Ltd 放熱性及びリワーク性に優れる電子装置及びその製造方法
JP2014084403A (ja) * 2012-10-23 2014-05-12 Shin Etsu Chem Co Ltd 熱伝導性シリコーングリース組成物
JP2014105283A (ja) * 2012-11-28 2014-06-09 Shin Etsu Chem Co Ltd 熱伝導性シリコーングリース組成物
WO2018180997A1 (ja) * 2017-03-31 2018-10-04 バンドー化学株式会社 熱伝導性シート

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4732400Y1 (ja) 1968-04-23 1972-09-29
JP2536120B2 (ja) 1989-01-25 1996-09-18 日本電気株式会社 電子部品の冷却構造
JP2938340B2 (ja) 1994-03-29 1999-08-23 信越化学工業株式会社 熱伝導性複合シート
JP3075132B2 (ja) 1995-03-06 2000-08-07 信越化学工業株式会社 放熱シート
JP3498823B2 (ja) 1996-04-30 2004-02-23 電気化学工業株式会社 放熱スペーサーおよびその用途
JP3718350B2 (ja) * 1998-08-10 2005-11-24 富士高分子工業株式会社 熱伝導性・電気絶縁性シリコーンゴム組成物およびシリコーンゲル組成物
JP2002069300A (ja) * 2000-08-31 2002-03-08 Dow Corning Toray Silicone Co Ltd 防振性シリコーンコンパウンド
JP4438937B2 (ja) * 2004-02-05 2010-03-24 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物
US20080269405A1 (en) * 2004-04-01 2008-10-30 Toshihiko Okamoto Single-Component Curable Composition
JP2009256400A (ja) * 2008-04-11 2009-11-05 Shin Etsu Chem Co Ltd 半導体素子用シリコーン接着剤
US10030122B2 (en) * 2015-02-09 2018-07-24 Wacker Chemical Corporation Curable compositions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007161806A (ja) * 2005-12-12 2007-06-28 Shin Etsu Chem Co Ltd 熱伝導性シリコーンゴム組成物
JP2013222836A (ja) * 2012-04-17 2013-10-28 Shin Etsu Chem Co Ltd 放熱性及びリワーク性に優れる電子装置及びその製造方法
JP2014084403A (ja) * 2012-10-23 2014-05-12 Shin Etsu Chem Co Ltd 熱伝導性シリコーングリース組成物
JP2014105283A (ja) * 2012-11-28 2014-06-09 Shin Etsu Chem Co Ltd 熱伝導性シリコーングリース組成物
WO2018180997A1 (ja) * 2017-03-31 2018-10-04 バンドー化学株式会社 熱伝導性シート

Also Published As

Publication number Publication date
CN112714784B (zh) 2022-12-27
TWI813738B (zh) 2023-09-01
JP2020066670A (ja) 2020-04-30
KR20210080351A (ko) 2021-06-30
CN112714784A (zh) 2021-04-27
JP6957435B2 (ja) 2021-11-02
TW202016219A (zh) 2020-05-01

Similar Documents

Publication Publication Date Title
JP5664563B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
JP5304588B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
JP5418298B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
TWI822954B (zh) 導熱性矽氧組成物及其製造方法、以及導熱性矽氧硬化物
JP6075261B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
JP7033047B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
JP7285231B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
JP2020002236A (ja) 熱伝導性シリコーン組成物、熱伝導性シリコーンシート及びその製造方法
JP2018053260A (ja) 熱伝導性シリコーン組成物及び硬化物並びに複合シート
JP5047505B2 (ja) 放熱性に優れる電子装置およびその製造方法
JP7136065B2 (ja) 熱伝導性シリコーン組成物及び熱伝導性シリコーンシート
TWI813738B (zh) 熱傳導性矽氧組成物及其硬化物
JP7264850B2 (ja) 熱伝導性シリコーン組成物、その硬化物、及び放熱シート
JP7165647B2 (ja) 熱伝導性シリコーン樹脂組成物
JP7485634B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
JP7496800B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
WO2022249754A1 (ja) 熱伝導性シリコーン組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19876671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19876671

Country of ref document: EP

Kind code of ref document: A1