WO2023008783A1 - 리튬-황 전지용 전해질 및 이를 포함하는 리튬-황 전지 - Google Patents

리튬-황 전지용 전해질 및 이를 포함하는 리튬-황 전지 Download PDF

Info

Publication number
WO2023008783A1
WO2023008783A1 PCT/KR2022/010129 KR2022010129W WO2023008783A1 WO 2023008783 A1 WO2023008783 A1 WO 2023008783A1 KR 2022010129 W KR2022010129 W KR 2022010129W WO 2023008783 A1 WO2023008783 A1 WO 2023008783A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
sulfur
electrolyte
sulfur battery
solvent
Prior art date
Application number
PCT/KR2022/010129
Other languages
English (en)
French (fr)
Inventor
이규태
한동협
양홍선
손권남
김윤경
김동민
Original Assignee
주식회사 엘지에너지솔루션
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션, 서울대학교산학협력단 filed Critical 주식회사 엘지에너지솔루션
Priority to CN202280006969.2A priority Critical patent/CN116325272A/zh
Priority to JP2023525601A priority patent/JP2023548096A/ja
Priority to US18/032,754 priority patent/US20230395865A1/en
Priority to EP22849759.0A priority patent/EP4207424A4/en
Publication of WO2023008783A1 publication Critical patent/WO2023008783A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/164Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/168Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte for a lithium-sulfur battery and a lithium-sulfur battery including the same.
  • lithium secondary batteries As the scope of application of lithium secondary batteries is expanded not only to portable electronic devices and communication devices, but also to electric vehicles (EV) and electric storage systems (ESS), there is an interest in the high capacity of lithium secondary batteries used as their power sources. Demand is rising.
  • EV electric vehicles
  • ESS electric storage systems
  • a lithium-sulfur battery uses a sulfur-based material containing a sulfur-sulfur bond as a cathode active material, and a carbon-based material or lithium in which lithium metal or lithium ions are intercalated/deintercalated. It is a battery system that uses silicon or tin, which form an alloy with, as an anode active material.
  • Sulfur the main material of a cathode active material in a lithium-sulfur battery, has a low weight per atom, is easy to supply and demand due to abundant resources, is inexpensive, non-toxic, and is an environmentally friendly material.
  • the lithium-sulfur battery has a theoretical discharge capacity of 1,672 mAh/g from the conversion reaction of lithium ions and sulfur (S 8 +16Li + +16e - ⁇ 8Li 2 S) at the cathode, and lithium metal ( Theoretical discharge capacity: 3,860 mAh/g) shows a theoretical energy density of 2,600 Wh/kg.
  • Li-MH battery 450 Wh/kg
  • Li-FeS battery 480 Wh/kg
  • Li-MnO 2 battery 1,000 Wh/kg
  • Na-S battery 800 Wh/kg
  • lithium ion battery 250 Wh/kg
  • lithium metal gives up electrons at the negative electrode and is oxidized in the form of lithium cations, and sulfur accepts electrons at the positive electrode and is reduced to the form of sulfur anions.
  • Sulfur used as a positive electrode active material in a lithium-sulfur battery has low electrical conductivity, so it is difficult to secure reactivity with electrons and lithium ions in a solid state form. Therefore, in order to improve the reactivity of sulfur, a liquid phase reaction is induced through lithium polysulfide, an intermediate product generated during the discharging process of a lithium-sulfur battery. It is mainly used.
  • Korean Patent Laid-open Publication No. 2016-0037084 uses a carbon nanotube aggregate with a three-dimensional structure coated with graphene as a carbon material to block the melting of lithium polysulfide and improve the conductivity of the sulfur-carbon nanotube composite. It shows that it can be improved.
  • Republic of Korea Patent No. 1379716 treats graphene with hydrofluoric acid to form pores on the graphene surface, and uses a graphene composite containing sulfur as a cathode active material prepared through a method of growing sulfur particles in the pores. It is disclosed that the reduction in capacity of the battery can be minimized by suppressing the elution of lithium polysulfide through.
  • lithium-sulfur secondary battery including graphene composite positive electrode containing sulfur and manufacturing method thereof
  • the present inventors have conducted various studies to solve the above problems, and as a result, when the electrolyte for a lithium-sulfur battery includes two specific compounds as non-aqueous organic solvents, the elution of lithium polysulfide is suppressed while excellent lithium ion conduction properties
  • the present invention was completed by confirming that the capacity and lifespan characteristics of a lithium-sulfur battery could be improved.
  • an object of the present invention is to provide an electrolyte for a lithium-sulfur battery capable of realizing a lithium-sulfur battery with excellent performance and driving stability.
  • Another object of the present invention is to provide a lithium-sulfur battery including the electrolyte.
  • the present invention includes a lithium salt and a non-aqueous organic solvent, wherein the non-aqueous organic solvent includes a first solvent containing a benzene compound and a second solvent containing 1,3-dioxolane. It provides an electrolyte for a lithium-sulfur battery comprising
  • the benzene-based compound is benzene, 1,4-difluorobenzene, 1,3,5-trifluorobenzene, 1,2,4,5-tetrafluorobenzene and hexane It may include one or more selected from the group consisting of fluorobenzene.
  • the volume ratio of the first solvent and the second solvent may be 1:0.5 to 1:4.
  • the lithium salt is LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiC 4 BO 8 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) 2 NLi, (SO 2 F) 2 NLi, (CF 3 SO 2 ) 3 CLi, chloroborane lithium, lower aliphatic carboxylic acid lithium having 4 or less carbon atoms, tetraphenyl borate lithium, and at least one selected from the group consisting of lithium imide.
  • the molar ratio of the second solvent and the lithium salt may be 4:1 or more.
  • the present invention provides a lithium-sulfur battery including the electrolyte for a lithium-sulfur battery.
  • the electrolyte for a lithium-sulfur battery according to the present invention contains a non-aqueous organic solvent containing two specific compounds, thereby suppressing the elution of lithium polysulfide, thereby maximizing the capacity development of the positive electrode and improving the capacity characteristics of the lithium-sulfur battery. and stable life characteristics can be secured.
  • Example 1 is a photograph showing the dissolution of lithium polysulfide in electrolytes prepared in Examples and Comparative Examples ((a): Example 1, (b): Example 2, (c): Example 3, (d) : Example 4, (e): Example 6, (f): Comparative Example 1)
  • Figure 2 is a graph showing the results of evaluating the lithium polysulfide solubility of the electrolyte according to Example 4.
  • composite refers to a material that exhibits more effective functions while forming a physically and chemically different phase by combining two or more materials.
  • Lithium-sulfur batteries are in the limelight as next-generation secondary batteries due to their high theoretical discharge capacity and high theoretical energy density, as well as low unit cost, abundant reserves, and environmental friendliness of sulfur used as a cathode active material.
  • lithium polysulfide which is an intermediate product of the sulfur discharging reaction, has high solubility in the electrolyte, specifically the solvent contained therein, and diffuses out of the reaction region of the anode through the electrolyte in the form of neutral molecules or anions to form a negative electrode.
  • the loss of sulfur occurs due to the elution of lithium polysulfide, the amount of sulfur participating in the electrochemical reaction at the positive electrode decreases, so that only up to 70% of the theoretical discharge capacity can be realized, resulting in a decrease in capacity.
  • the eluted lithium polysulfide causes a side reaction with lithium metal, which is the negative electrode, or a so-called shuttle phenomenon that moves between the positive electrode and the negative electrode, and in this process, insoluble lithium sulfide is fixed on the electrode surface, forming a passivation layer.
  • the reactivity of the electrode is lowered and the overall resistance of the battery is increased, thereby further deteriorating the capacity and lifespan characteristics of the battery.
  • the electrolyte used in the lithium-sulfur battery contains two specific compounds as non-aqueous organic solvents to suppress the elution of lithium polysulfide, thereby improving the capacity and life characteristics of the lithium-sulfur battery. - Discloses an electrolyte for a sulfur battery.
  • the electrolyte for a lithium-sulfur battery includes a lithium salt and a non-aqueous organic solvent, wherein the non-aqueous organic solvent includes a first solvent containing a benzene-based compound and a second containing 1,3-dioxolane. It is characterized in that it contains 2 solvents.
  • the electrolyte for a lithium-sulfur battery suppresses dissolution of lithium polysulfide into the electrolyte by including a benzene-based compound as a first solvent in the non-aqueous organic solvent and using 1,3-dioxolane as a second solvent.
  • the dissolution of the lithium salt can be promoted. Accordingly, since the elution of lithium polysulfide is suppressed, problems such as loss of sulfur, shuttle phenomenon, passivation of the electrode, etc. do not occur, thereby maximizing the expression of the capacity of the positive electrode active material to have excellent capacity, output, and lifespan characteristics. can be implemented.
  • An electrolyte for a lithium-sulfur battery according to the present disclosure may include a first solvent including a benzene-based compound.
  • the benzene-based compound included as the first solvent exhibits non-polar characteristics due to its molecular structure, it serves to suppress the dissolution of lithium polysulfide by reducing the solubility of lithium polysulfide in the electrolyte.
  • the benzene-based compound is benzene; and fluorobenzene, 1,2-difluorobenzene, 1,4-difluorobenzene, 1,2,3-trifluorobenzene (1,2,3-trifluorobenzene), 1,3,5-trifluorobenzene (1,3,5-trifluorobenzene), 1,2,3,4-tetrafluorobenzene (1,2,3,4 -tetrafluorobenzene), 1,2,4,5-tetrafluorobenzene (1,2,4,5-tetrafluorobenzene), pentafluorobenzene (pentaflurorobenzene), and hexafluorobenzene (hexafluorobenzene), etc.
  • the benzene-based compound is 1,4-difluorobenzene, 1,3,5-trifluorobenzene, 1,2,4,5-tetrafluorobenzene and hexafluoro It may be at least one selected from the group consisting of benzene, preferably at least one selected from the group consisting of benzene and 1,4-difluorobenzene.
  • the content of the first solvent containing such a benzene-based compound is 20 to 70 vol based on the total 100 vol% of the non-aqueous organic solvent (ie, the first solvent + the second solvent) included in the electrolyte for a lithium-sulfur battery. %, preferably 30 to 70% by volume, more preferably 50 to 60% by volume. If the content of the first solvent is less than the above range, the elution of lithium polysulfide cannot be suppressed and the desired effect cannot be obtained. Conversely, if the content of the first solvent exceeds the above range, it is impossible to manufacture an electrolyte. there is
  • An electrolyte for a lithium-sulfur battery according to the present disclosure may include a second solvent including 1,3-dioxolane (DOL).
  • DOL 1,3-dioxolane
  • 1,3-dioxolane included as the second solvent dissolves the lithium salt so that the electrolyte including the same has lithium ion conductivity so that the electrochemical reaction can proceed smoothly.
  • the 1,3-dioxolane serves as a lithium ion chelating agent (complexing agent) to dissolve the lithium salt into the non-polar first solvent.
  • the content of the second solvent including the aforementioned 1,3-dioxolane is 30% based on the total 100% by volume of the non-aqueous organic solvent (ie, the first solvent + the second solvent) included in the electrolyte for a lithium-sulfur battery. to 80% by volume, preferably 30 to 70% by volume, more preferably 40 to 50% by volume. If the content of the second solvent is less than the above range, the lithium salt may not be sufficiently dissolved, resulting in a decrease in lithium ion conductivity. Conversely, if the content of the second solvent exceeds the above range, lithium polysulfide is eluted. As the amount of sulfur lost increases or the shuttle phenomenon becomes severe, a problem in that the capacity and lifespan of the battery may decrease.
  • the electrolyte for a lithium-sulfur battery according to the present disclosure contains the first solvent and the second solvent in a ratio of 1:0.5 to 1:4, preferably 1:0.5 to 1:2, more preferably 1:0.67 to 1 : It can be included in a volume ratio of 1.
  • the volume ratio corresponds to the ratio of “volume% of the first solvent”: “volume% of the second solvent”.
  • volume ratio of the first solvent and the second solvent is less than the above range, there is a concern that the electrolyte may not be produced, and conversely, if the volume ratio exceeds the above range, the effect of preventing the dissolution of lithium polysulfide cannot be secured.
  • the electrolyte for a lithium-sulfur battery according to the present disclosure may include a lithium salt as an electrolyte salt used to exhibit lithium ion conductivity.
  • the lithium salt may be used without limitation as long as it is commonly usable for lithium secondary batteries.
  • the lithium salt is LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiC 4 BO 8 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , LiSO 3 CH 3 , LiSO 3 CF 3 , LiSCN, LiC(CF 3 SO 2 ) 3 , LiN(CF 3 SO 2 ) 2 (lithium bis(trifluoromethanesulfonyl)imide; LiTFSI), LiN(C 2 F 5 SO 2 ) 2 , LiN(SO 2 F) 2 (lithium bis(fluorosulfonyl)imide; LiFSI), lithium chloro borane, lithium lower aliphatic carbonate, lithium tetraphenyl borate, and at least one selected from the group consisting of lithium imide.
  • the lithium salt preferably includes LiN(CF 3 SO 2 ) 2 (
  • the concentration of the lithium salt may be appropriately determined in consideration of various factors known in the field of lithium secondary batteries, such as the composition of the electrolyte, the solubility of the lithium salt, the conductivity of the dissolved lithium salt, and the charging and discharging conditions of the battery.
  • the concentration of the lithium salt may be 0.2 to 4 M, specifically 0.6 to 2 M, and more specifically 0.7 to 1.7 M. If the concentration of the lithium salt is less than 0.2 M, the conductivity of the electrolyte may be lowered, resulting in deterioration in electrolyte performance, and if the concentration exceeds 4 M, the viscosity of the electrolyte may increase and the mobility of lithium ions may decrease.
  • the molar ratio of the second solvent and the lithium salt is 4:1 or more, preferably 4.5:1 to 8:1, more preferably 5.5:1 to 7:1.
  • the molar ratio corresponds to the ratio of "the number of moles of the second solvent” : “the number of moles of the lithium salt”.
  • the electrolyte for a lithium-sulfur battery according to the present disclosure may further include nitric acid or a nitrite-based compound in addition to the above-described composition.
  • the nitric acid or nitrous acid-based compound has an effect of forming a stable film on the negative electrode and improving charge/discharge efficiency.
  • the nitric acid or nitrite-based compound is lithium nitrate (LiNO 3 ), potassium nitrate (KNO 3 ), cesium nitrate (CsNO 3 ), barium nitrate (Ba(NO 3 ) 2 ), ammonium nitrate (NH 4 NO 3 ) , lithium nitrite (LiNO 2 ), potassium nitrite (KNO 2 ), cesium nitrite (CsNO 2 ), ammonium nitrite (NH 4 NO 2 ), inorganic nitric acid or nitrous acid compounds;
  • Organic nitric acids such as methyl nitrate, dialkyl imidazolium nitrate, guanidine nitrate, imidazolium nitrate, pyridinium nitrate, ethyl nitrite, propyl nitrite, butyl nitrite, pentyl nitrite, and octyl nitrite
  • the content of the nitric acid or nitrite-based compound may be 1 to 10% by weight, preferably 2 to 8% by weight, more preferably 2.5 to 6% by weight based on 100% by weight of the total electrolyte for a lithium-sulfur battery. .
  • the nitric acid or nitrous acid-based compound is contained within the above range, the Coulombic efficiency may rapidly decrease. Conversely, when the content exceeds the above range, the viscosity of the electrolyte may increase, making it difficult to operate the battery.
  • the electrolyte for a lithium-sulfur battery according to the present disclosure may further include other additives for the purpose of improving charge/discharge characteristics, flame retardancy, and the like.
  • the additives include pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazoli Dinon, N,N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol, aluminum trichloride, fluoroethylene carbonate (FEC), propene sultone (PRS), vinylene carbonate ( VC), etc.
  • FEC fluoroethylene carbonate
  • PRS propene sultone
  • VC vinylene carbonate
  • the present invention discloses a lithium-sulfur battery including the electrolyte for a lithium-sulfur battery.
  • a lithium-sulfur battery according to the present disclosure includes a positive electrode; It includes a negative electrode and an electrolyte interposed therebetween, and the electrolyte for a lithium-sulfur battery according to the present disclosure is included as the electrolyte.
  • the positive electrode may include a positive electrode current collector and a positive electrode active material layer coated on one or both surfaces of the positive electrode current collector.
  • the cathode current collector supports the cathode active material and is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • copper, stainless steel, aluminum, nickel, titanium, palladium, calcined carbon, copper or stainless steel surface treated with carbon, nickel, silver, etc., aluminum-cadmium alloy, etc. may be used.
  • the cathode current collector may form fine irregularities on its surface to enhance bonding strength with the cathode active material, and various forms such as films, sheets, foils, meshes, nets, porous materials, foams, and nonwoven fabrics may be used.
  • the positive electrode active material layer includes a positive electrode active material, and may further include a conductive material, a binder, and an additive.
  • the cathode active material includes sulfur, and specifically, may include one or more selected from the group consisting of elemental sulfur (S 8 ) and a sulfur compound.
  • the cathode active material may be inorganic sulfur.
  • sulfur included in the cathode active material does not have electrical conductivity alone, it is used in combination with a conductive material such as a carbon material. Accordingly, the sulfur is included in the form of a sulfur-carbon complex, and preferably, the cathode active material may be a sulfur-carbon complex.
  • the carbon included in the sulfur-carbon composite is a porous carbon material and provides a skeleton to which the sulfur can be uniformly and stably fixed, and complements the low electrical conductivity of sulfur so that the electrochemical reaction can proceed smoothly.
  • the porous carbon material may be generally prepared by carbonizing various carbon precursors.
  • the porous carbon material includes irregular pores therein, the average diameter of the pores is in the range of 1 to 200 nm, and the porosity or porosity may be in the range of 10 to 90% of the total volume of the porous carbon material. If the average diameter of the pores is less than the above range, the pore size is only at the molecular level, and sulfur impregnation is impossible. Not desirable.
  • the shape of the porous carbon material is spherical, rod-shaped, needle-shaped, plate-shaped, tubular, or bulk, and may be used without limitation as long as it is commonly used in lithium-sulfur batteries.
  • the porous carbon material may have a porous structure or a high specific surface area and may be any one commonly used in the art.
  • the porous carbon material includes graphite; graphene; Carbon black, such as Denka black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; carbon nanotubes (CNTs) such as single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs); carbon fibers such as graphite nanofibers (GNF), carbon nanofibers (CNF), and activated carbon fibers (ACF); mesoporous carbon; It may be at least one selected from the group consisting of natural graphite, artificial graphite, graphite such as expanded graphite, and activated carbon, but is not limited thereto.
  • the porous carbon material may be carbon nanotubes.
  • the sulfur-carbon composite may include 60 to 90% by weight, preferably 65 to 85% by weight, more preferably 70 to 80% by weight of sulfur based on 100% by weight of the total sulfur-carbon composite.
  • the content of sulfur is less than the above range, as the content of the porous carbon material in the sulfur-carbon composite is relatively increased, the specific surface area increases, and thus the content of the binder increases during the manufacture of the positive electrode.
  • An increase in the amount of the binder may eventually increase the sheet resistance of the positive electrode and act as an insulator to prevent electron pass, thereby degrading battery performance.
  • the sulfur is located on at least one of the inner and outer surfaces of the porous carbon material described above, and in this case, less than 100% of the total inner and outer surfaces of the porous carbon material, preferably 1 to 95% , More preferably, it may be present in the 60 to 90% area.
  • the sulfur is present on the inner and outer surfaces of the porous carbon material within the above range, the maximum effect may be exhibited in terms of electron transfer area and wettability with the electrolyte.
  • the electron transfer contact area may be increased during the charge/discharge process.
  • the sulfur is located on 100% of the entire inner and outer surface of the porous carbon material, the carbon material is completely covered with sulfur, reducing wettability to the electrolyte and reducing contact with the conductive material included in the electrode, thereby preventing electron transfer. cannot participate in the electrochemical reaction.
  • the manufacturing method of the sulfur-carbon composite is not particularly limited in the present invention, and a method commonly used in the art may be used. As an example, a method of simply mixing the sulfur and the porous carbon material and then heat-treating the composite material may be used.
  • the cathode active material may further include one or more additives selected from transition metal elements, group IIIA elements, group IVA elements, sulfur compounds of these elements, and alloys of these elements and sulfur.
  • the transition metal elements include Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Os, Ir, Pt, Au or Hg and the like are included, the IIIA group elements include Al, Ga, In, Tl, and the like, and the IVA group elements may include Ge, Sn, Pb, and the like.
  • the cathode active material may be included in an amount of 40 to 95 wt%, preferably 45 to 90 wt%, and more preferably 60 to 90 wt% based on 100 wt% of the total amount of the cathode active material layer.
  • content of the positive electrode active material is less than the above range, it is difficult to sufficiently exhibit the electrochemical reaction of the positive electrode, and on the contrary, when the content exceeds the above range, the resistance of the positive electrode increases due to the relatively insufficient content of the conductive material and binder described later, There is a problem that the physical properties of the anode are deteriorated.
  • the cathode active material layer may optionally further include a conductive material for smoothly moving electrons in the cathode (specifically, the cathode active material) and a binder for well attaching the cathode active material to the current collector.
  • the conductive material serves as a path for electrons to move from a current collector to the positive electrode active material by electrically connecting the electrolyte and the positive electrode active material, and any conductive material may be used without limitation.
  • the conductive material may include graphite such as natural graphite and artificial graphite; carbon blacks such as Super-P, Denka Black, Acetylene Black, Ketjen Black, Channel Black, Furnace Black, Lamp Black, and Summer Black; carbon derivatives such as carbon nanotubes and fullerenes; conductive fibers such as carbon fibers and metal fibers; fluorinated carbon; A metal powder such as aluminum or nickel powder or a conductive polymer such as polyaniline, polythiophene, polyacetylene, or polypyrrole may be used alone or in combination.
  • graphite such as natural graphite and artificial graphite
  • carbon blacks such as Super-P, Denka Black, Acetylene Black, Ketjen Black, Channel Black, Furnace Black, Lamp Black, and Summer Black
  • carbon derivatives such as carbon nanotubes and fullerenes
  • conductive fibers such as carbon fibers and metal fibers
  • fluorinated carbon A metal powder such as aluminum or nickel powder or a conductive
  • the conductive material may be included in an amount of 1 to 10% by weight, preferably 4 to 7% by weight, based on 100% by weight of the entire cathode active material layer.
  • the content of the conductive material is less than the above range, electron transfer between the positive electrode active material and the current collector is not easy, so voltage and capacity are reduced.
  • the content exceeds the above range, the proportion of the positive electrode active material may relatively decrease, and thus the total energy (charge amount) of the battery may decrease. Therefore, it is preferable to determine an appropriate content within the above range.
  • the binder maintains the positive electrode active material in the positive electrode current collector and organically connects the positive electrode active materials to further increase the bonding strength between them, and all binders known in the art may be used.
  • the binder may be a fluororesin-based binder including polyvinylidene fluoride (PVdF) or polytetrafluoroethylene (PTFE); rubber-based binders including styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber, and styrene-isoprene rubber; cellulosic binders including carboxyl methyl cellulose (CMC), starch, hydroxypropyl cellulose, and regenerated cellulose; polyalcohol-based binder; polyolefin binders including polyethylene and polypropylene; polyimide-based binders; polyester-based binder; And a silane-based binder; one selected from the group consisting of, two or more mixtures or copolymers may be used.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • rubber-based binders including styrene-butadiene rubber
  • the content of the binder may be 1 to 10% by weight based on 100% by weight of the entire positive electrode active material layer. If the content of the binder is less than the above range, the physical properties of the positive electrode may deteriorate and the positive electrode active material and the conductive material may be eliminated. It is preferable to determine the appropriate content within the above range.
  • the manufacturing method of the positive electrode is not particularly limited, and a known method or a variety of modified methods thereof may be used by a person skilled in the art.
  • the positive electrode may be manufactured by preparing a positive electrode slurry composition including the above-described composition and then applying the positive electrode slurry composition to at least one surface of the positive electrode current collector.
  • the positive electrode slurry composition includes the above-described positive electrode active material, conductive material, and binder, and may further include a solvent other than that.
  • the solvent one capable of uniformly dispersing the cathode active material, the conductive material, and the binder is used.
  • water is most preferable as an aqueous solvent, and in this case, the water may be distilled water or deionized water.
  • a lower alcohol that can be easily mixed with water may be used.
  • the lower alcohol includes methanol, ethanol, propanol, isopropanol, and butanol, and the like, preferably mixed with water.
  • the content of the solvent may be contained at a level having a concentration capable of facilitating coating, and the specific content varies depending on the application method and device.
  • the positive electrode slurry composition may additionally contain materials commonly used in the relevant technical field for the purpose of improving its functions, if necessary. For example, a viscosity modifier, a glidant, a filler, etc. are mentioned.
  • the coating method of the positive electrode slurry composition is not particularly limited in the present invention, and examples thereof include methods such as doctor blade, die casting, comma coating, and screen printing. can In addition, after molding on a separate substrate, the positive electrode slurry may be applied on the positive electrode current collector by a pressing or lamination method.
  • a drying process for solvent removal may be performed.
  • the drying process is performed at a temperature and time at a level capable of sufficiently removing the solvent, and since the conditions may vary depending on the type of solvent, the present invention is not particularly limited.
  • drying by warm air, hot air, low humidity air, vacuum drying, and irradiation of (far) infrared rays and electron beams may be mentioned.
  • the drying speed is usually adjusted so that the solvent can be removed as quickly as possible within a speed range that does not cause cracks in the positive electrode active material layer or peeling of the positive electrode active material layer from the positive electrode current collector due to stress concentration.
  • the density of the positive electrode active material in the positive electrode may be increased by pressing the current collector after the drying.
  • a mold press, a roll press, etc. are mentioned as a press method.
  • the porosity of the cathode specifically, the cathode active material layer prepared by the composition and manufacturing method described above may be 40 to 80%, preferably 60 to 75%.
  • the porosity of the positive electrode is less than 40%, the filling degree of the positive electrode slurry composition including the positive electrode active material, the conductive material and the binder is excessively high, so that sufficient electrolyte capable of exhibiting ion conduction and/or electrical conduction between the positive electrode active materials is formed. Therefore, output characteristics or cycle characteristics of the battery may be deteriorated, and overvoltage and discharge capacity of the battery may be severely reduced.
  • the negative electrode may include a negative electrode current collector and a negative electrode active material layer coated on one or both surfaces of the negative electrode current collector.
  • the negative electrode may be a lithium metal plate.
  • the anode current collector is for supporting the anode active material layer, as described in the case of the cathode current collector.
  • the anode active material layer may include a conductive material, a binder, and the like in addition to the anode active material.
  • the conductive material and the binder are as described above.
  • the anode active material includes a material capable of reversibly intercalating or deintercalating lithium (Li + ), a material capable of reacting with lithium ions to reversibly form a lithium-containing compound, lithium metal, or a lithium alloy.
  • a material capable of reversibly intercalating or deintercalating lithium (Li + ) capable of reacting with lithium ions to reversibly form a lithium-containing compound, lithium metal, or a lithium alloy.
  • the material capable of reversibly intercalating or deintercalating lithium ions may be, for example, crystalline carbon, amorphous carbon, or a mixture thereof.
  • a material capable of reversibly forming a lithium-containing compound by reacting with the lithium ion (Li + ) may be, for example, tin oxide, titanium nitrate, or silicon.
  • the lithium alloy is, for example, lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), francium (Fr), beryllium (Be), magnesium (Mg), calcium ( It may be an alloy of a metal selected from the group consisting of Ca), strontium (Sr), barium (Ba), radium (Ra), aluminum (Al), and tin (Sn).
  • the negative electrode active material may be lithium metal, and specifically, may be in the form of a lithium metal thin film or lithium metal powder.
  • the method of forming the negative electrode active material is not particularly limited, and a method of forming a layer or film commonly used in the art may be used. For example, methods such as compression, coating, and deposition may be used. In addition, a case in which a metal lithium thin film is formed on a metal plate by initial charging after assembling a battery in a state in which the lithium thin film is not present on the current collector is also included in the negative electrode of the present invention.
  • the electrolyte is for causing an electrochemical oxidation or reduction reaction at the positive electrode and the negative electrode through this electrolyte, and follows the above description.
  • Injection of the electrolyte may be performed at an appropriate stage during the manufacturing process of the lithium-sulfur battery according to the manufacturing process and required physical properties of the final product. That is, it may be applied before assembling a lithium-sulfur battery or at a final stage of assembly.
  • a separator may be additionally included between the anode and the cathode.
  • the separator separates or insulates the positive electrode and the negative electrode from each other and enables lithium ion transport between the positive electrode and the negative electrode, and may be made of a porous non-conductive or insulating material.
  • the separator may be used without particular limitation as long as it is commonly used as a separator in a lithium-sulfur battery.
  • the separator may be an independent member such as a film or may be a coating layer added to an anode and/or a cathode.
  • the separator has low resistance to ion migration of the electrolyte and excellent ability to absorb electrolyte.
  • the separator may be made of a porous substrate.
  • a porous substrate any porous substrate commonly used in a lithium-sulfur battery may be used, and a porous polymer film may be used alone or in a laminated manner.
  • Non-woven fabrics or polyolefin-based porous membranes made of melting glass fibers, polyethylene terephthalate fibers, etc. may be used, but are not limited thereto.
  • the material of the porous substrate is not particularly limited in the present invention, and any porous substrate commonly used in a lithium-sulfur battery can be used.
  • the porous substrate may be a polyolefin such as polyethylene or polypropylene, polyester such as polyethyleneterephthalate or polybutyleneterephthalate, or polyamide.
  • polyamide polyamide
  • polyacetal polycarbonate
  • polyimide polyetheretherketone
  • polyethersulfone polyphenyleneoxide
  • polyphenylene sulfide polyphenylenesulfide, polyethylenenaphthalate, polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, polyacrylonitrile, cellulose, nylon (nylon), poly(p-phenylene benzobisoxazole), and polyarylate.
  • the thickness of the porous substrate is not particularly limited, but may be 1 to 100 ⁇ m, preferably 5 to 50 ⁇ m. Although the thickness range of the porous substrate is not limited to the above-mentioned range, if the thickness is excessively thinner than the above-mentioned lower limit, mechanical properties may deteriorate and the separator may be easily damaged during use of the battery.
  • the average diameter and porosity of the pores present in the porous substrate are also not particularly limited, but may be 0.001 to 50 ⁇ m and 10 to 95%, respectively.
  • the lithium-sulfur battery according to the present disclosure may be classified into a cylindrical shape, a prismatic shape, a coin shape, a pouch type, etc. according to the shape, and may be divided into a bulk type and a thin film type according to the size. Structures and manufacturing methods of these batteries are well known in the art, so detailed descriptions are omitted.
  • the present invention discloses a battery module including the lithium-sulfur battery as a unit cell.
  • the battery module may be used as a power source for medium or large-sized devices requiring high temperature stability, long cycle characteristics, and high capacity characteristics.
  • Examples of the medium-large device include a power tool powered by an omniscient motor and moving; electric vehicles, including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters (E-scooters); electric golf carts; A power storage system, etc. may be mentioned, but is not limited thereto.
  • electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like
  • electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters (E-scooters)
  • electric golf carts A power storage system, etc. may be mentioned, but is not limited thereto.
  • a cathode slurry composition was prepared by mixing 80 wt% of the prepared sulfur-carbon composite, 10 wt% of Super-P as a conductive material, and 10 wt% of polyvinylidene fluoride as a binder.
  • the prepared positive electrode slurry composition was coated on a 20 ⁇ m thick aluminum foil to a thickness of 30 ⁇ m and dried at 60° C. for 12 hours to prepare a positive electrode.
  • 19 phi polyethylene having a thickness of 20 ⁇ m and a porosity of 45% was used as a separator, and a 14 phi circular electrode was used as the anode and a 16 phi circular electrode was used as the cathode.
  • LiN(CF 3 SO 2 ) 2 LiTFSI
  • LiNO 3 lithium nitrate
  • Lithium polysulfide dissolution characteristics of the electrolytes prepared in Examples and Comparative Examples were evaluated.
  • the ionic conductivity of the electrolytes of Examples and Comparative Examples was measured using an ion conductivity meter (model name: Eutech CON 150, manufacturer: Eutech Instruments). The results obtained at this time are shown in Table 1.
  • Example 1 Lithium polysulfide solubility (mg/ml) Ionic Conductivity (mS/cm)
  • Example 1 30.87 15.98
  • Example 2 21.49 12.01
  • Example 3 1.025 3.07
  • Example 4 0.932 3.75
  • Example 5 0.652 3.67
  • Example 6 1.664 5.06 Comparative Example 1 32.3 11.4
  • the electrolyte according to the embodiment exhibits sufficient ionic conductivity to be used as an electrolyte despite including the first solvent that does not dissolve the lithium salt.
  • Discharge capacity per unit weight of cathode active material (mAh/g sulfur ) 100 cycle capacity retention rate (%, based on 3-cycle discharge capacity) 1 cycle 3 cycle
  • Example 1 1002 916 69.5
  • Example 2 1048 972 67.5
  • Example 3 1098 1008 71.3
  • Example 4 1135 1089 47.8
  • Example 6 896 1038 68.2 Comparative Example 1 1283 981 34.7
  • the battery according to the embodiment has excellent capacity and lifespan characteristics.
  • the battery according to the Comparative Example has a lower discharge capacity than the Example, and the deterioration proceeds rapidly due to a decrease in coulombic efficiency.
  • the discharge capacity and cycle life of the battery are improved because it not only exhibits a higher discharge capacity than the comparative example, but also maintains a constant coulombic efficiency and is stably driven.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 리튬-황 전지용 전해질 및 이를 포함하는 리튬-황 전지에 관한 것으로, 보다 상세하게는 상기 전해질이 비수계 유기 용매로 벤젠계 화합물을 포함하는 제1용매 및 1,3-디옥솔란을 포함하는 제2용매를 포함함으로써 리튬 폴리설파이드의 용출을 억제하여 리튬-황 전지의 고용량화 및 장수명화를 가능하게 한다.

Description

리튬-황 전지용 전해질 및 이를 포함하는 리튬-황 전지
본 출원은 2021년 07월 30일자 한국 특허 출원 제10-2021-0100729호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함한다.
본 발명은 리튬-황 전지용 전해질 및 이를 포함하는 리튬-황 전지에 관한 것이다.
리튬 이차전지의 활용 범위가 휴대용 전자기기 및 통신기기뿐만 아니라 전기자동차(electric vehicle; EV), 전력저장장치(electric storage system; ESS)에까지 확대되면서 이들의 전원으로 사용되는 리튬 이차전지의 고용량화에 대한 요구가 높아지고 있다.
여러 리튬 이차전지 중에서 리튬-황 전지는 황-황 결합(sulfur-sulfur bond)을 포함하는 황 계열 물질을 양극 활물질로 사용하며, 리튬 금속, 리튬 이온의 삽입/탈삽입이 일어나는 탄소계 물질 또는 리튬과 합금을 형성하는 실리콘이나 주석 등을 음극 활물질로 사용하는 전지 시스템이다.
리튬-황 전지에서 양극 활물질의 주재료인 황은 낮은 원자당 무게를 가지며, 자원이 풍부하여 수급이 용이하며 값이 저렴하고, 독성이 없으며, 환경친화적 물질이라는 장점이 있다.
또한, 리튬-황 전지는 양극에서 리튬 이온과 황의 변환(conversion) 반응(S8+16Li++16e- → 8Li2S)으로부터 나오는 이론 방전용량이 1,672 mAh/g에 이르고, 음극으로 리튬 금속(이론 방전용량: 3,860 mAh/g)을 사용하는 경우 2,600 Wh/kg의 이론 에너지 밀도를 나타낸다. 이는 현재 연구되고 있는 다른 전지 시스템 (Ni-MH 전지: 450 Wh/kg, Li-FeS 전지: 480 Wh/kg, Li-MnO2 전지: 1,000 Wh/kg, Na-S 전지: 800 Wh/kg) 및 리튬 이온 전지(250 Wh/kg)의 이론 에너지 밀도에 비하여 매우 높은 수치를 가지기 때문에 현재까지 개발되고 있는 이차전지 중에서 고용량, 친환경 및 저가의 리튬 이차전지로 주목받고 있으며, 차세대 전지 시스템으로 여러 연구가 이루어지고 있다.
리튬-황 전지는 방전 시, 음극에서는 리튬 금속이 전자를 내어놓고 리튬 양이온 형태로 산화되며, 양극에서는 황이 전자를 받아들여 황 음이온 형태로 환원된다. 구체적으로, 양극 활물질인 황은 리튬 폴리설파이드(lithium polysulfide, 리튬 다황화물, Li2Sx, x = 8, 6, 4, 2)를 거쳐 최종적으로는 리튬 설파이드(lithium sulfide, 리튬 황화물, Li2S)로 환원된다.
리튬-황 전지에서 양극 활물질로 사용되는 황은 낮은 전기 전도성으로 인해, 고상 형태에서는 전자 및 리튬 이온과의 반응성을 확보하기가 어렵다. 이에, 황의 반응성을 개선하기 위해 리튬-황 전지의 방전 과정 중 생성되는 중간 생성물인 리튬 폴리설파이드를 통한 액상 반응을 유도하며, 이를 위해 리튬 폴리설파이드에 대한 용해도가 높은 에테르계 화합물이 전해질의 용매로 주로 사용되고 있다.
그러나, 전해질 용매로 에테르계 화합물을 사용하는 경우, 양극으로부터의 리튬 폴리설파이드의 용출 및 이의 셔틀(shuttle) 현상으로 인해 사이클이 진행됨에 따라 전지의 용량 및 수명 특성 저하가 가속화되며 실제 구동에 있어서는 최종산물까지의 전기화학반응에 뒤따르는 과전압이 크기 때문에 이론 방전용량 및 이론 에너지 밀도 전부를 구현하지 못하는 문제가 있다.
이에, 리튬 폴리설파이드의 용출 문제를 해결하고자 양극 활물질을 개질하거나 전해질의 함량을 최소화하는 등의 다양한 방법들이 연구되고 있다.
일례로, 대한민국 공개특허 제2016-0037084호는 탄소재로 그래핀으로 코팅한 3차원 구조의 탄소나노튜브 응집체를 사용함으로써 리튬 폴리설파이드가 녹아나오는 것을 차단하고, 황-탄소나노튜브 복합체의 도전성을 향상시킬 수 있음을 개시하고 있다.
또한, 대한민국 등록특허 제1379716호는 그래핀에 불산을 처리하여 그래핀 표면에 기공을 형성하고, 상기 기공에 유황 입자를 성장시키는 방법을 통해 제조된 유황을 포함하는 그래핀 복합체를 양극 활물질로 사용함을 통해 리튬 폴리 설파이드 용출을 억제하여 전지의 용량 감소를 최소화할 수 있음을 개시하고 있다.
이들 특허들은 양극 활물질로 사용되는 황-탄소 복합체의 구조 또는 소재를 달리함으로써 리튬 폴리설파이드의 용출을 방지하였으나, 그 효과가 충분치 않으며, 상업적인 이용이 어려운 문제가 있다. 또한, 전해질에 포함되는 에테르계 용매의 특성상 리튬-황 전지 내 전해질의 함량이 낮아질수록 충·방전 중에 빠르게 점도가 증가하고, 그로 인하여 과전압이 발생하여 쉽게 퇴화될 수 있는 문제가 있다. 따라서, 리튬 폴리설파이드의 용출을 억제하여 우수한 성능 및 구동 안정성을 구현할 수 있는 리튬-황 전지에 대한 개발이 여전히 필요하다.
[선행기술문헌]
[특허문헌]
대한민국 공개특허 제2016-0037084호(2016.04.05), 황-탄소나노튜브 복합체, 이의 제조방법, 이를 포함하는 리튬-황 전지용 캐소드 활물질 및 이를 포함한 리튬-황 전지
대한민국 등록특허 제1379716호(2014.03.25), 유황을 포함하는 그래핀 복합체 양극을 포함하는 리튬-유황 이차전지 및 그의 제조 방법
이에 본 발명자들은 상기 문제를 해결하고자 다각적으로 연구를 수행한 결과, 리튬-황 전지용 전해질에 비수계 유기용매로 특정 2종의 화합물을 포함하는 경우 리튬 폴리설파이드의 용출을 억제하면서도 우수한 리튬 이온 전도 특성을 나타내어 리튬-황 전지의 용량 및 수명 특성을 향상시킬 수 있음을 확인하여 본 발명을 완성하였다.
따라서, 본 발명의 목적은 성능 및 구동 안정성이 우수한 리튬-황 전지를 구현할 수 있는 리튬-황 전지용 전해질을 제공하는데 있다.
또한, 본 발명의 다른 목적은 상기 전해질을 포함하는 리튬-황 전지를 제공하는데 있다.
상기 목적을 달성하기 위해, 본 발명은 리튬염 및 비수계 유기용매를 포함하고, 상기 비수계 유기 용매는 벤젠계 화합물을 포함하는 제1용매 및 1,3-디옥솔란을 포함하는 제2용매를 포함하는 리튬-황 전지용 전해질을 제공한다.
본 발명의 일 실시예에 있어서, 상기 벤젠계 화합물은 벤젠, 1,4-디플루오로벤젠, 1,3,5-트리플루오로벤젠, 1,2,4,5-테트라플루오로벤젠 및 헥사플루오로벤젠으로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다.
본 발명의 일 실시예에 있어서, 상기 제1용매와 상기 제2용매의 부피비는 1:0.5 내지 1:4일 수 있다.
본 발명의 일 실시예에 있어서, 상기 리튬염은 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiC4BO8, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, (C2F5SO2)2NLi, (SO2F)2NLi, (CF3SO2)3CLi, 클로로 보란 리튬, 탄소수 4 이하의 저급지방족 카르본산 리튬, 테트라페닐 붕산 리튬 및 리튬 이미드로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다.
본 발명의 일 실시예에 있어서, 상기 제2용매와 리튬염의 몰비는 4:1 이상일 수 있다.
또한, 본 발명은 상기 리튬-황 전지용 전해질을 포함하는 리튬-황 전지를 제공한다.
본 발명에 따른 리튬-황 전지용 전해질은 특정 2종의 화합물을 포함하는 비수계 유기용매를 포함함에 따라 리튬 폴리설파이드의 용출을 억제함으로써 양극의 용량 발현을 최대화시켜 리튬-황 전지의 용량 특성을 개선시키고 안정적인 수명 특성을 확보할 수 있다.
도 1은 실시예 및 비교예에서 제조한 전해질의 리튬 폴리설파이드 용해 여부를 보여주는 사진이다((a): 실시예 1, (b): 실시예 2, (c): 실시예 3, (d): 실시예 4, (e): 실시예 6, (f): 비교예 1)
도 2는 실시예 4에 따른 전해질의 리튬 폴리설파이드 용해도를 평가한 결과를 나타내는 그래프이다.
도 3은 비교예 1에 따른 전해질의 리튬 폴리설파이드 용해도를 평가한 결과를 나타내는 그래프이다.
도 4는 실시예 1 내지 4 및 비교예 1에 따른 리튬-황 전지의 성능 평가 결과를 나타내는 그래프이다.
도 5는 실시예 1 내지 4 및 비교예 1에 따른 리튬-황 전지의 쿨롱 효율 평가 결과를 나타내는 그래프이다.
도 6은 실시예 3 및 6과 비교예 1에 따른 리튬-황 전지의 성능 평가 결과를 나타내는 그래프이다.
도 7은 실시예 3 및 6과 비교예 1에 따른 리튬-황 전지의 쿨롱 효율 평가 결과를 나타내는 그래프이다.
이하, 본 발명을 더욱 상세히 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명에서, ‘포함하다’ 또는 ‘가지다’등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서에서 사용되고 있는 용어 “복합체(composite)”란 두 가지 이상의 재료가 조합되어 물리적·화학적으로 서로 다른 상(phase)를 형성하면서 보다 유효한 기능을 발현하는 물질을 의미한다.
본 명세서에서 사용되고 있는 용어 “폴리설파이드(polysulfide)”는 “폴리설파이드 이온(Sx 2-, x = 8, 6, 4, 2))” 및 “리튬 폴리설파이드(Li2Sx 또는 LiSx -, x = 8, 6, 4, 2)”를 모두 포함하는 개념이다.
리튬-황 전지는 이론 방전용량 및 이론 에너지 밀도가 높을 뿐만 아니라 양극 활물질로 사용되는 황이 갖는 낮은 단가, 풍부한 매장량, 환경친화적이라는 장점으로 인해 차세대 이차전지로 각광받고 있다.
그러나, 전술한 바와 같이, 황의 방전 반응의 중간 생성물인 리튬 폴리설파이드는 전해질, 구체적으로는 이에 포함되는 용매에 대한 용해도가 높아 중성분자 내지 음이온의 형태로 전해질을 통해 양극의 반응 영역 밖으로 확산되어 음극으로 이동하게 된다. 이러한 리튬 폴리설파이드의 용출로 인해 황의 손실이 발생함에 따라 양극에서 전기화학적 반응에 참여하는 황의 양이 감소하게 되어 이론 방전용량의 최대 70 % 정도까지만 구현이 가능하며, 용량의 감소를 초래한다. 또한, 용출된 리튬 폴리설파이드는 음극인 리튬 금속과의 부반응 또는 양극과 음극 사이를 이동하는, 소위 셔틀 현상을 야기하며, 이러한 과정에서 전극 표면에 불용성의 리튬 설파이드가 고착되어 부동태 피막(passivation layer)을 형성함에 따라 전극의 반응성을 낮추고 전지의 전반적인 저항을 증가시켜 전지의 용량 및 수명 특성을 더욱 열화시키게 된다.
이를 위해 종래 기술에서 제안된 양극 활물질의 구조 또는 소재를 달리하거나 전해질의 조성 또는 함량을 변경하는 방법의 경우 리튬 폴리설파이드의 전해질로의 용해 속도를 늦출 수는 있으나, 리튬 폴리설파이드 용출 문제를 근본적으로 해결할 수는 없었다. 또한, 리튬-황 전지를 구성하는 다른 구성 요소와의 호환성 문제로 인해 전지의 성능 및 구동 안정성에 심각한 문제를 야기하거나 제조공정 측면에서 비효율적이라는 단점이 있기 때문에 실제 적용하기에는 바람직하지 않다.
이에 본 발명에서는 리튬-황 전지에 사용되는 전해질이 비수계 유기용매로 특정 2종의 화합물을 포함함으로써 리튬 폴리설파이드의 용출을 억제하여, 리튬-황 전지의 용량 및 수명 특성을 향상시킬 수 있는 리튬-황 전지용 전해질을 개시한다.
구체적으로, 본 개시에 따른 리튬-황 전지용 전해질은 리튬염 및 비수계 유기용매를 포함하고, 상기 비수계 유기 용매는 벤젠계 화합물을 포함하는 제1용매 및 1,3-디옥솔란을 포함하는 제2용매를 포함하는 것을 특징으로 한다.
특히, 본 개시에 따른 리튬-황 전지용 전해질은 비수계 유기용매가 제1용매로 벤젠계 화합물을 포함함으로써 리튬 폴리설파이드의 전해질로의 용해를 억제하며, 제2용매로 1,3-디옥솔란을 포함함에 따라 리튬염의 용해를 도모할 수 있다. 이에 따라, 리튬 폴리설파이드의 용출이 억제되기 때문에 황의 손실, 셔틀 현상, 전극의 부동태화 등의 문제가 발생하지 않으므로 양극 활물질의 용량 발현을 최대화하여 우수한 용량, 출력 및 수명 특성을 갖는 리튬-황 전지를 구현할 수 있다.
이하, 본 개시에 따른 리튬-황 전지용 전해질에 포함되는 A) 제1용매, B) 제2용매 및 C) 리튬염 각각에 대해 구체적으로 설명한다.
A) 제1용매
본 개시에 의한 리튬-황 전지용 전해질은 벤젠계 화합물을 포함하는 제1용매를 포함할 수 있다.
상기 제1용매로 포함되는 벤젠계 화합물은 분자 구조로 인해 비극성 특성을 나타내기 때문에 리튬 폴리설파이드의 전해질로의 용해도를 감소시켜 리튬 폴리설파이드의 용출을 억제하는 역할을 한다.
상기 벤젠계 화합물은 벤젠(benzene); 및 플루오로벤젠(flurorobenzene), 1,2-디플루오로벤젠(1,2-difluorobenzene), 1,4-디플루오로벤젠(1,4-difluorobenzene), 1,2,3-트리플루오로벤젠(1,2,3-trifluorobenzene), 1,3,5-트리플루오로벤젠(1,3,5-trifluorobenzene), 1,2,3,4-테트라플루오로벤젠(1,2,3,4-tetrafluorobenzene), 1,2,4,5-테트라플루오로벤젠(1,2,4,5-tetrafluorobenzene), 펜타플루오로벤젠(pentaflurorobenzene) 및 헥사플루오로벤젠(hexaflurorobenzene) 등의 플루오르화 벤젠으로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다. 본 발명의 일 실시예에 따르면, 상기 벤젠계 화합물은 1,4-디플루오로벤젠, 1,3,5-트리플루오로벤젠, 1,2,4,5-테트라플루오로벤젠 및 헥사플루오로벤젠으로 이루어진 군으로부터 선택되는 1종 이상일 수 있으며, 바람직하게는 벤젠 및 1,4-디플루오로벤젠으로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있다.
이와 같은 벤젠계 화합물을 포함하는 상기 제1용매의 함량은, 리튬-황 전지용 전해질에 포함되는 비수계 유기용매(즉, 제1용매+제2용매) 전체 100 부피%를 기준으로 20 내지 70 부피%, 바람직하게는 30 내지 70 부피%, 보다 바람직하게는 50 내지 60 부피%일 수 있다. 상기 제1용매의 함량이 상기 범위 미만인 경우 리튬 폴리설파이드의 용출을 억제하지 못하여 목적한 효과를 얻을 수 없다, 이와 반대로 상기 제1용매의 함량이 상기 범위를 초과하는 경우 전해질의 제조가 불가한 문제가 있다.
B) 제2용매
본 개시에 의한 리튬-황 전지용 전해질은 1,3-디옥솔란(1,3-dioxolane, DOL)을 포함하는 제2용매를 포함할 수 있다.
상기 제2용매로 포함되는 1,3-디옥솔란은 리튬염을 용해시켜 이를 포함하는 전해질이 리튬 이온 전도도를 갖게 함으로써 전기화학적 반응이 원활하게 진행될 수 있도록 한다. 구체적으로, 상기 1,3-디옥솔란은 리튬염을 비극성인 상기 제1용매 중으로 용해시키기 위해 리튬 이온의 킬레이트제(chelating agent, complexing agent) 역할을 한다.
전술한 1,3-디옥솔란을 포함하는 상기 제2용매의 함량은, 리튬-황 전지용 전해질에 포함되는 비수계 유기용매(즉, 제1용매+제2용매) 전체 100 부피%를 기준으로 30 내지 80 부피%, 바람직하게는 30 내지 70 부피%, 보다 바람직하게는 40 내지 50 부피%일 수 있다. 상기 제2용매의 함량이 상기 범위 미만인 경우 리튬염을 충분히 용해시키지 못해 리튬 이온 전도도가 저하되는 문제가 발생할 수 있다, 이와 반대로 상기 제2용매의 함량이 상기 범위를 초과하는 경우 리튬 폴리설파이드의 용출이 증가하여 손실되는 황이 많아지거나 셔틀 현상이 심해짐에 따라 전지의 용량 및 수명이 감소하는 문제가 발생할 수 있다.
또한, 본 개시에 의한 리튬-황 전지용 전해질은 상기 제1용매와 상기 제2용매를 1:0.5 내지 1:4, 바람직하게는 1:0.5 내지 1:2, 보다 바람직하게는 1:0.67 내지 1:1의 부피비로 포함할 수 있다. 본 발명에서, 상기 부피비는 “제1용매의 부피%”:“제2용매의 부피%”의 비에 대응한다. 상기 제1용매와 상기 제2용매의 부피비가 전술한 범위에 해당하는 경우 리튬 폴리설파이드 용출 억제 효과가 우수하면서도 우수한 리튬 이온 전도 특성을 나타낼 수 있다. 상기 제1용매와 상기 제2용매의 부피비가 상기 범위 미만인 경우 전해질이 제조되지 않는 문제가 발생할 우려가 있고, 이와 반대로 상기 범위를 초과하는 경우 리튬 폴리설파이드의 용출 방지 효과를 확보할 수 없다.
C) 리튬염
본 개시에 의한 리튬-황 전지용 전해질은 리튬 이온 전도 특성을 나타내기 위해 사용되는 전해질염으로 리튬염을 포함할 수 있다.
상기 리튬염은 리튬 이차전지에 통상적으로 사용 가능한 것이라면 제한 없이 사용할 수 있다.
일례로, 상기 리튬염은 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiC4BO8, LiAsF6, LiSbF6, LiAlCl4, LiSO3CH3, LiSO3CF3, LiSCN, LiC(CF3SO2)3, LiN(CF3SO2)2(lithium bis(trifluoromethanesulfonyl)imide; LiTFSI), LiN(C2F5SO2)2, LiN(SO2F)2(lithium bis(fluorosulfonyl)imide; LiFSI), 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 테트라페닐 붕산 리튬, 및 리튬 이미드로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다. 상기 리튬염은 LiN(CF3SO2)2(LiTFSI)를 필수 성분으로 포함하는 것이 바람직하다.
상기 리튬염의 농도는 전해질의 조성, 리튬염의 용해도, 용해된 리튬염의 전도성, 전지의 충전 및 방전 조건 등과 같이 리튬 이차전지 분야에 공지된 여러 요인을 고려하여 적절하게 결정할 수 있다. 일례로, 상기 리튬염의 농도는 0.2 내지 4 M, 구체적으로 0.6 내지 2 M, 더욱 구체적으로 0.7 내지 1.7 M일 수 있다. 상기 리튬염의 농도가 0.2 M 미만으로 사용하면 전해질의 전도도가 낮아져서 전해질 성능이 저하될 수 있고, 4 M을 초과하여 사용하면 전해질의 점도가 증가하여 리튬 이온의 이동성이 감소될 수 있다.
또한, 본 개시에 의한 리튬-황 전지용 전해질은 상기 제2용매와 상기 리튬염을 4:1 이상, 바람직하게는 4.5:1 내지 8:1, 보다 바람직하게는 5.5:1 내지 7:1의 몰비로 포함할 수 있다. 본 발명에서, 상기 몰비는 “제2용매의 몰수”:“리튬염의 몰수”의 비에 대응한다. 상기 제2용매와 상기 리튬염의 몰비가 전술한 범위에 해당하는 경우 낮은 과전압과 우수한 용량 특성을 나타낼 수 있다. 상기 제2용매와 상기 리튬염의 몰비가 상기 범위 미만인 경우 과전압이 증가하여 용량이 감소하는 문제가 발생할 수 있고, 이와 반대로 상기 범위를 초과하는 경우 리튬 폴리설파이드의 용출이 발생하는 문제가 발생할 수 있다.
본 개시에 의한 리튬-황 전지용 전해질은 전술한 조성 이외에 질산 또는 아질산계 화합물을 더 포함할 수 있다. 상기 질산 또는 아질산계 화합물은 음극에 안정적인 피막을 형성하고 충·방전 효율을 향상시키는 효과가 있다.
일례로, 상기 질산 또는 아질산계 화합물은 질산리튬(LiNO3), 질산칼륨(KNO3), 질산세슘(CsNO3), 질산바륨(Ba(NO3)2), 질산암모늄(NH4NO3), 아질산리튬(LiNO2), 아질산칼륨(KNO2), 아질산세슘(CsNO2), 아질산암모늄(NH4NO2) 등의 무기계 질산 또는 아질산 화합물; 메틸 니트레이트, 디알킬 이미다졸륨 니트레이트, 구아니딘 니트레이트, 이미다졸륨 니트레이트, 피리디늄 니트레이트, 에틸 니트라이트, 프로필 니트라이트, 부틸 니트라이트, 펜틸 니트라이트, 옥틸 니트라이트 등의 유기계 질산 또는 아질산 화합물; 니트로메탄, 니트로프로판, 니트로부탄, 니트로벤젠, 디니트로벤젠, 니트로 피리딘, 디니트로피리딘, 니트로톨루엔, 디니트로톨루엔 등의 유기 니트로 화합물 및 이들의 조합으로 이루어진 군에서 선택된 1종이 가능하며, 바람직하게는 질산리튬을 사용한다.
상기 질산 또는 아질산계 화합물의 함량은 리튬-황 전지용 전해질 전체 100 중량%를 기준으로 1 내지 10 중량%, 바람직하게는 2 내지 8 중량%, 보다 바람직하게는 2.5 내지 6 중량%로 포함할 수 있다. 상기 질산 또는 아질산계 화합물이 상기 범위 미만으로 포함되는 경우 쿨롱 효율이 급격히 낮아질 수 있고, 이와 반대로 상기 범위를 초과하는 경우 전해질의 점도가 높아져서 전지의 구동이 어려울 수 있다.
또한, 본 개시에 의한 리튬-황 전지용 전해질은 충·방전 특성, 난연성 등의 개선을 목적으로 기타 첨가제를 더 포함할 수 있다. 상기 첨가제의 예시로는 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아마이드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄, 플루오로에틸렌 카보네이트(FEC), 프로펜 설톤(PRS), 비닐렌 카보네이트(VC) 등을 들 수 있다.
또한, 본 발명은 상기 리튬-황 전지용 전해질을 포함하는 리튬-황 전지를 개시한다.
본 개시에 의한 리튬-황 전지는 양극; 음극 및 이들 사이에 개재되는 전해질을 포함하며, 상기 전해질로서 본 개시에 따른 리튬-황 전지용 전해질을 포함한다.
상기 양극은 양극 집전체와 상기 양극 집전체의 일면 또는 양면에 도포된 양극 활물질층을 포함할 수 있다.
상기 양극 집전체는 양극 활물질을 지지하며, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니다. 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티타늄, 팔라듐, 소성 탄소, 구리나 스테인리스 스틸 표면에 카본, 니켈, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다.
상기 양극 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질과의 결합력을 강화시킬 수 있으며, 필름, 시트, 호일, 메쉬, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태를 사용할 수 있다.
상기 양극 활물질층은 양극 활물질을 포함하며, 도전재, 바인더 및 첨가제 등을 더 포함할 수 있다.
상기 양극 활물질은 황을 포함하며, 구체적으로 황 원소(S8) 및 황 화합물로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다. 상기 양극 활물질은 무기 황, Li2Sn(n≥1), 디설파이드 화합물, 유기황 화합물 및 탄소-황 폴리머((C2Sx)n, x=2.5 내지 50, n≥2)로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다. 바람직하기로, 상기 양극 활물질은 무기 황일 수 있다.
상기 양극 활물질에 포함되는 황의 경우 단독으로는 전기 전도성이 없기 때문에 탄소재와 같은 전도성 소재와 복합화하여 사용된다. 이에 따라, 상기 황은 황-탄소 복합체의 형태로 포함되며, 바람직하기로, 상기 양극 활물질은 황-탄소 복합체일 수 있다.
상기 황-탄소 복합체에 포함되는 탄소는 다공성 탄소재로 상기 황이 균일하고 안정적으로 고정될 수 있는 골격을 제공하며, 황의 낮은 전기 전도도를 보완하여 전기화학적 반응이 원활하게 진행될 수 있도록 한다.
상기 다공성 탄소재는 일반적으로 다양한 탄소 재질의 전구체를 탄화시킴으로써 제조될 수 있다. 상기 다공성 탄소재는 내부에 일정하지 않은 기공을 포함하며, 상기 기공의 평균 직경은 1 내지 200 ㎚ 범위이며, 기공도 또는 공극률은 다공성 탄소재 전체 체적의 10 내지 90 % 범위일 수 있다. 만일 상기 기공의 평균 직경이 상기 범위 미만인 경우 기공 크기가 분자 수준에 불과하여 황의 함침이 불가능하며, 이와 반대로 상기 범위를 초과하는 경우 다공성 탄소재의 기계적 강도가 약화되어 전극의 제조공정에 적용하기에 바람직하지 않다.
상기 다공성 탄소재의 형태는 구형, 봉형, 침상형, 판상형, 튜브형 또는 벌크형으로 리튬-황 전지에 통상적으로 사용되는 것이라면 제한없이 사용될 수 있다.
상기 다공성 탄소재는 다공성 구조이거나 비표면적이 높은 것으로 당업계에서 통상적으로 사용되는 것이라면 어느 것이든 무방하다. 예를 들어, 상기 다공성 탄소재로는 그래파이트(graphite); 그래핀(graphene); 덴카 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본 블랙; 단일벽 탄소 나노튜브(SWCNT), 다중벽 탄소 나노튜브(MWCNT) 등의 탄소 나노튜브(CNT); 그라파이트 나노파이버(GNF), 카본 나노파이버(CNF), 활성화 탄소 파이버(ACF) 등의 탄소 섬유; 메조포러스 탄소(mesoporous carbon); 천연 흑연, 인조 흑연, 팽창 흑연 등의 흑연 및 활성탄소로 이루어진 군으로부터 선택된 1종 이상일 수 있으나, 이에 제한되지 않는다. 바람직하기로 상기 다공성 탄소재는 탄소 나노튜브일 수 있다.
상기 황-탄소 복합체는 황-탄소 복합체 전체 100 중량%를 기준으로 황을 60 내지 90 중량%, 바람직하기로 65 내지 85 중량%, 보다 바람직하기로 70 내지 80 중량%로 포함할 수 있다. 상기 황의 함량이 전술한 범위 미만인 경우 황-탄소 복합체 내 다공성 탄소재의 함량이 상대적으로 많아짐에 따라 비표면적이 증가하여 양극 제조시에 바인더의 함량이 증가한다. 이러한 바인더의 사용량 증가는 결국 양극의 면저항을 증가시키고 전자 이동(electron pass)을 막는 절연체 역할을 하게 되어 전지의 성능을 저하시킬 수 있다. 이와 반대로 상기 황의 함량이 전술한 범위를 초과하는 경우 다공성 탄소재와 결합하지 못한 황이 그들끼리 뭉치거나 다공성 탄소재의 표면으로 재용출됨에 따라 전자를 받기 어려워져 전기화학적 반응에 참여하지 못하게 되어 전지의 용량 손실이 발생할 수 있다.
또한, 상기 황-탄소 복합체에서 상기 황은 전술한 다공성 탄소재의 내부 및 외부 표면 중 적어도 어느 한 곳에 위치하며 이때 상기 다공성 탄소재의 내부 및 외부 전체 표면의 100% 미만, 바람직하기로 1 내지 95 %, 보다 바람직하기로 60 내지 90 % 영역에 존재할 수 있다. 상기 황이 다공성 탄소재의 내부 및 외부 표면에 상기 범위 내로 존재할 때 전자 전달 면적 및 전해질과의 젖음성 면에서 최대 효과를 나타낼 수 있다. 구체적으로, 상기 범위 영역에서 황이 다공성 탄소재의 내부 및 외부 표면에 얇고 고르게 함침되므로 충·방전 과정에서 전자 전달 접촉 면적을 증가시킬 수 있다. 만약, 상기 황이 다공성 탄소재의 내부 및 외부 전체 표면의 100% 영역에 위치하는 경우, 상기 탄소재가 완전히 황으로 덮여 전해질에 대한 젖음성이 떨어지고 전극 내 포함되는 도전재와 접촉성이 저하되어 전자 전달을 받지 못해 전기화학 반응에 참여할 수 없게 된다.
상기 황-탄소 복합체의 제조방법은 본 발명에서 특별히 한정하지 않으며 당 업계에서 통상적으로 사용되는 방법이 사용될 수 있다. 일례로, 상기 황과 다공성 탄소재를 단순 혼합한 다음 열처리하여 복합화하는 방법이 사용될 수 있다.
상기 양극 활물질은 전술한 조성 이외에 전이금속 원소, ⅢA족 원소, ⅣA족 원소, 이들 원소들의 황 화합물, 및 이들 원소들과 황의 합금 중에서 선택되는 하나 이상의 첨가제를 더 포함할 수 있다.
상기 전이금속 원소로는 Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Os, Ir, Pt, Au 또는 Hg 등이 포함되고, 상기 ⅢA족 원소로는 Al, Ga, In, Tl 등이 포함되며, 상기 ⅣA족 원소로는 Ge, Sn, Pb 등이 포함될 수 있다.
상기 양극 활물질은 양극 활물질층 전체 100 중량%를 기준으로 40 내지 95 중량%, 바람직하게는 45 내지 90 중량%, 보다 바람직하게는 60 내지 90 중량%로 포함할 수 있다. 상기 양극 활물질의 함량이 상기 범위 미만인 경우 양극의 전기화학적 반응을 충분하게 발휘하기 어렵고, 이와 반대로 상기 범위를 초과하는 경우 후술하는 도전재와 바인더의 함량이 상대적으로 부족하여 양극의 저항이 상승하며, 양극의 물리적 성질이 저하되는 문제가 있다.
상기 양극 활물질층은 선택적으로 전자가 양극(구체적으로는 양극 활물질) 내에서 원활하게 이동하도록 하기 위한 도전재 및 양극 활물질을 집전체에 잘 부착시키기 위한 바인더를 더 포함할 수 있다.
상기 도전재는 전해질과 양극 활물질을 전기적으로 연결시켜 주어 집전체(current collector)로부터 전자가 양극 활물질까지 이동하는 경로의 역할을 하는 물질로서, 도전성을 갖는 것이라면 제한없이 사용할 수 있다.
예를 들어, 상기 도전재로는 천연 흑연, 인조 흑연 등의 흑연; 슈퍼 P(Super-P), 덴카 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본 블랙; 탄소 나노튜브, 플러렌 등의 탄소 유도체; 탄소 섬유, 금속 섬유 등의 도전성 섬유; 불화 카본; 알루미늄, 니켈 분말 등의 금속 분말 또는 폴리아닐린, 폴리티오펜, 폴리아세틸렌, 폴리피롤 등의 전도성 고분자를 단독 또는 혼합하여 사용할 수 있다.
상기 도전재는 양극 활물질층 전체 100 중량%를 기준으로 1 내지 10 중량%, 바람직하게는 4 내지 7 중량%로 포함할 수 있다. 상기 도전재의 함량이 상기 범위 미만이면 양극 활물질과 집전체 간의 전자 전달이 용이하지 않아 전압 및 용량이 감소한다. 이와 반대로, 상기 범위 초과이면 상대적으로 양극 활물질의 비율이 감소하여 전지의 총 에너지(전하량)이 감소할 수 있으므로 상술한 범위 내에서 적정 함량을 결정하는 것이 바람직하다.
상기 바인더는 양극 활물질을 양극 집전체에 유지시키고, 양극 활물질 사이를 유기적으로 연결시켜 이들 간의 결착력을 보다 높이는 것으로, 당해 업계에서 공지된 모든 바인더를 사용할 수 있다.
예를 들어 상기 바인더는 폴리비닐리덴 플루오라이드(polyvinylidene fluoride, PVdF) 또는 폴리테트라플루오로에틸렌(polytetrafluoroethylene, PTFE)을 포함하는 불소 수지계 바인더; 스티렌-부타디엔 고무(styrene butadiene rubber, SBR), 아크릴로니트릴-부티디엔 고무, 스티렌-이소프렌 고무를 포함하는 고무계 바인더; 카르복시메틸셀룰로우즈(carboxyl methyl cellulose, CMC), 전분, 히드록시 프로필셀룰로우즈, 재생 셀룰로오스를 포함하는 셀룰로오스계 바인더; 폴 리 알코올계 바인더; 폴리에틸렌, 폴리프로필렌를 포함하는 폴리 올레핀계 바인더; 폴리 이미드계 바인더; 폴리 에스테르계 바인더; 및 실란계 바인더;로 이루어진 군으로부터 선택된 1종, 2종 이상의 혼합물 또는 공중합체를 사용할 수 있다.
상기 바인더의 함량은 양극 활물질층 전체 100 중량%를 기준으로 1 내지 10 중량%일 수 있다. 상기 바인더의 함량이 상기 범위 미만이면 양극의 물리적 성질이 저하되어 양극 활물질과 도전재가 탈락할 수 있고, 상기 범위 초과이면 양극에서 양극 활물질과 도전재의 비율이 상대적으로 감소되어 전지 용량이 감소될 수 있으므로 상술한 범위 내에서 적정 함량을 결정하는 것이 바람직하다.
본 발명에서 상기 양극의 제조방법은 특별히 한정되지 않으며, 통상의 기술자에 의해 공지의 방법 또는 이를 변형하는 다양한 방법이 사용 가능하다.
일례로, 상기 양극은 상술한 바의 조성을 포함하는 양극 슬러리 조성물을 제조한 후, 이를 상기 양극 집전체의 적어도 일면에 도포함으로써 제조된 것일 수 있다.
상기 양극 슬러리 조성물은 전술한 바의 양극 활물질, 도전재 및 바인더를 포함하며, 이외 용매를 더 포함할 수 있다.
상기 용매로는 양극 활물질, 도전재 및 바인더를 균일하게 분산시킬 수 있는 것을 사용한다. 이러한 용매로는 수계 용매로서 물이 가장 바람직하며, 이때 물은 증류수(distilled water), 탈이온수(deionzied water)일 수 있다. 다만 반드시 이에 한정하는 것은 아니며, 필요한 경우 물과 쉽게 혼합이 가능한 저급 알코올이 사용될 수 있다. 상기 저급 알코올로는 메탄올, 에탄올, 프로판올, 이소프로판올 및 부탄올 등이 있으며, 바람직하기로 이들은 물과 함께 혼합하여 사용될 수 있다.
상기 용매의 함량은 코팅을 용이하게 할 수 있는 정도의 농도를 갖는 수준으로 함유될 수 있으며, 구체적인 함량은 도포 방법 및 장치에 따라 달라진다.
상기 양극 슬러리 조성물은 필요에 따라 해당 해당 기술분야에서 그 기능의 향상 등을 목적으로 통상적으로 사용되는 물질을 필요에 따라 추가적으로 포함할 수 있다. 예를 들어 점도 조정제, 유동화제, 충진제 등을 들 수 있다.
상기 양극 슬러리 조성물의 도포 방법은 본 발명에서 특별히 한정하지 않으며, 예컨대, 닥터 블레이드(doctor blade), 다이 캐스팅(die casting), 콤마 코팅(comma coating), 스크린 프린팅(screen printing) 등의 방법을 들 수 있다. 또한, 별도의 기재(substrate) 위에 성형한 후 프레싱(pressing) 또는 라미네이션(lamination) 방법에 의해 양극 슬러리를 양극 집전체 상에 도포할 수도 있다.
상기 도포 후, 용매 제거를 위한 건조 공정을 수행할 수 있다. 상기 건조 공정은 용매를 충분히 제거할 수 있는 수준의 온도 및 시간에서 수행하며, 그 조건은 용매의 종류에 따라 달라질 수 있으므로 본 발명에 특별히 제한되지 않는다. 일례로, 온풍, 열풍, 저습풍에 의한 건조, 진공 건조, (원)적외선 및 전자선 등의 조사에 의한 건조법을 들 수 있다. 건조 속도는 통상 응력 집중에 의해 양극 활물질층에 균열이 생기거나 양극 활물질층이 양극 집전체로부터 박리되지 않을 정도의 속도 범위 내에서 가능한 한 빨리 용매를 제거할 수 있도록 조정한다.
추가적으로, 상기 건조 후 집전체를 프레스함으로써 양극 내 양극 활물질의 밀도를 높일 수도 있다. 이때 프레스 방법으로는 금형 프레스 및 롤 프레스 등을 들 수 있다.
전술한 바의 조성 및 제조방법으로 제조된 상기 양극, 구체적으로 양극 활물질층의 기공도는 40 내지 80 %, 바람직하기로 60 내지 75 %일 수 있다. 상기 양극의 기공도가 40 %에 미치지 못하는 경우에는 양극 활물질, 도전재 및 바인더를 포함하는 양극 슬러리 조성물의 충진도가 지나치게 높아져서 양극 활물질 사이에 이온 전도 및/또는 전기 전도를 나타낼 수 있는 충분한 전해질이 유지될 수 없게 되어 전지의 출력특성이나 사이클 특성이 저하될 수 있으며, 전지의 과전압 및 방전용량 감소가 심하게 되는 문제가 있다. 이와 반대로 상기 양극의 기공도가 80 % 를 초과하여 지나치게 높은 기공도를 갖는 경우 집전체와 물리적 및 전기적 연결이 낮아져 접착력이 저하되고 반응이 어려워지는 문제가 있으며, 높아진 기공도를 전해질이 충진되어 전지의 에너지 밀도가 낮아질 수 있는 문제가 있으므로 상기 범위에서 적절히 조절한다.
상기 음극은 음극 집전체 및 상기 음극집전체의 일면 또는 양면에 도포된 음극 활물질층을 포함할 수 있다. 또는 상기 음극은 리튬 금속판일 수 있다.
상기 음극 집전체는 음극 활물질층의 지지를 위한 것으로, 양극 집전체에서 설명한 바와 같다.
상기 음극 활물질층은 음극 활물질 이외에 도전재, 바인더 등을 포함할 수 있다. 이때 상기 도전재 및 바인더는 전술한 바를 따른다.
상기 음극 활물질은 리튬 (Li+)을 가역적으로 삽입(intercalation) 또는 탈삽입(deintercalation)할 수 있는 물질, 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질, 리튬 금속 또는 리튬 합금을 포함할 수 있다.
상기 리튬 이온(Li+)을 가역적으로 삽입 또는 탈삽입할 수 있는 물질은 예컨대 결정질 탄소, 비정질 탄소 또는 이들의 혼합물일 수 있다. 상기 리튬 이온(Li+)과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질은 예를 들어, 산화주석, 티타늄나이트레이트 또는 실리콘일 수 있다. 상기 리튬 합금은 예를 들어, 리튬(Li)과 나트륨(Na), 칼륨(K), 루비듐(Rb), 세슘(Cs), 프랑슘(Fr), 베릴륨(Be), 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 라듐(Ra), 알루미늄(Al) 및 주석(Sn)으로 이루어지는 군에서 선택되는 금속의 합금일 수 있다.
바람직하게 상기 음극 활물질은 리튬 금속일 수 있으며, 구체적으로, 리튬 금속 박막 또는 리튬 금속 분말의 형태일 수 있다.
상기 음극 활물질의 형성방법은 특별히 제한되지 않으며, 당업계에서 통상적으로 사용되는 층 또는 막의 형성방법을 이용할 수 있다. 예컨대 압착, 코팅, 증착 등의 방법을 이용할 수 있다. 또한, 집전체에 리튬 박막이 없는 상태로 전지를 조립한 후 초기 충전에 의해 금속판 상에 금속 리튬 박막이 형성되는 경우도 본 발명의 음극에 포함된다.
상기 전해질은 이를 매개로 상기 양극과 음극에서 전기화학적 산화 또는 환원 반응을 일으키기 위한 것으로, 전술한 바를 따른다.
상기 전해질의 주입은 최종 제품의 제조 공정 및 요구 물성에 따라, 리튬-황 전지의 제조 공정 중 적절한 단계에서 행해질 수 있다. 즉, 리튬-황 전지의 조립 전 또는 조립 최종 단계 등에서 적용될 수 있다.
상기 양극과 음극 사이에는 추가적으로 분리막이 포함될 수 있다.
상기 분리막은 상기 양극과 음극을 서로 분리 또는 절연시키고, 양극과 음극 사이에 리튬 이온 수송을 가능하게 하는 것으로 다공성 비전도성 또는 절연성 물질로 이루어질 수 있다. 상기 분리막은 통상 리튬-황 전지에서 분리막으로 사용되는 것이라면 특별한 제한없이 사용 가능하다. 상기 분리막은 필름과 같은 독립적인 부재일 수도 있고, 양극 및/또는 음극에 부가된 코팅층일 수도 있다.
상기 분리막으로는 전해질의 이온 이동에 대하여 저저항이면서 전해질에 대한 함습 능력이 우수한 것이 바람직하다.
상기 분리막은 다공성 기재로 이루어질 수 있는데 상기 다공성 기재는 통상적으로 리튬-황 전지에 사용되는 다공성 기재라면 모두 사용이 가능하고, 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 예를 들어, 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포 또는 폴리올레핀계 다공성 막을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 다공성 기재의 재질로는 본 발명에서 특별히 한정하지 않고, 통상적으로 리튬-황 전지에 사용되는 다공성 기재라면 모두 사용이 가능하다. 예를 들어, 상기 다공성 기재는 폴리에틸렌(polyethylene), 폴리프로필렌(polypropylene) 등의 폴리올레핀(polyolefin), 폴리에틸렌테레프탈레이트(polyethyleneterephthalate), 폴리부틸렌테레프탈레이트(polybutyleneterephthalate) 등의 폴리에스테르(polyester), 폴리아미드(polyamide), 폴리아세탈(polyacetal), 폴리카보네이트(polycarbonate), 폴리이미드(polyimide), 폴리에테르에테르케톤(polyetheretherketone), 폴리에테르설폰(polyethersulfone), 폴리페닐렌옥사이드(polyphenyleneoxide), 폴리페닐렌설파이드(polyphenylenesulfide), 폴리에틸렌나프탈렌(polyethylenenaphthalate), 폴리테트라플루오로에틸렌(polytetrafluoroethylene), 폴리비닐리덴 플루오라이드(polyvinylidene fluoride), 폴리염화비닐(polyvinyl chloride), 폴리아크릴로니트릴(polyacrylonitrile), 셀룰로오스(cellulose), 나일론(nylon), 폴리파라페닐렌벤조비스옥사졸(poly(p-phenylene benzobisoxazole) 및 폴리아릴레이트(polyarylate)로 이루어진 군에서 선택된 1종 이상의 재질을 포함할 수 있다.
상기 다공성 기재의 두께는 특별히 제한되지 않으나, 1 내지 100 ㎛, 바람직하게는 5 내지 50 ㎛일 수 있다. 상기 다공성 기재의 두께 범위가 전술한 범위로 한정되는 것은 아니지만, 두께가 전술한 하한보다 지나치게 얇을 경우에는 기계적 물성이 저하되어 전지 사용 중 분리막이 쉽게 손상될 수 있다.
상기 다공성 기재에 존재하는 기공의 평균 직경 및 기공도 역시 특별히 제한되지 않으나 각각 0.001 내지 50 ㎛ 및 10 내지 95 %일 수 있다.
본 개시에 따른 리튬-황 전지는 형상에 따라 원통형, 각형, 코인형, 파우치형 등으로 분류될 수 있으며, 사이즈에 따라 벌크 타입과 박막 타입으로 나눌 수 있다. 이들 전지의 구조와 제조 방법은 이 분야에 널리 알려져 있으므로 상세한 설명은 생략한다.
또한, 본 발명은 상기 리튬-황 전지를 단위전지로 포함하는 전지모듈을 개시한다.
상기 전지모듈은 고온 안정성, 긴 사이클 특성 및 높은 용량 특성 등이 요구되는 중대형 디바이스의 전원으로 사용될 수 있다.
상기 중대형 디바이스의 예로는 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(electric vehicle, EV), 하이브리드 전기자동차(hybrid electric vehicle, HEV), 플러그-인 하이브리드 전기자동차(plug-in hybrid electric vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
실시예 및 비교예
[실시예 1]
(1) 전해질 제조
1,4-디플루오로벤젠(제1용매) 및 1,3-디옥솔란(제2용매)를 1:4의 부피비로 혼합한 비수계 유기용매에 LiN(CF3SO2)2(LiTFSI)가 1 M이 되도록 용해시킨 후, 400 rpm 이상에서 12 시간 이상 교반하여 전해질(제2용매:리튬염=11.4:1(몰비))을 제조하였다.
(2) 리튬-황 전지 제조
황과 메조포러스 탄소(CMK-3, Advanced Chemical Supplier)를 60:40의 중량비로 볼밀을 사용하여 고르게 혼합한 후, 155 ℃에서 12 시간 그리고 200 ℃에서 2 시간 동안 열처리하여 황-탄소 복합체를 제조하였다.
상기 제조된 황-탄소 복합체 80 중량%, 도전재로 슈퍼-P 10 중량% 및 바인더로 폴리비닐리덴 플루오라이드 10 중량%를 혼합하여 양극 슬러리 조성물을 제조하였다.
이렇게 제조된 양극 슬러리 조성물을 20 ㎛ 두께의 알루미늄 호일 상에 30 ㎛ 두께로 도포한 뒤 60 ℃에서 12 시간 동안 건조하여 양극을 제조하였다.
상기 제조된 양극과 700 ㎛ 두께의 리튬 금속 음극을 대면하도록 위치시킨 후, 이들 사이에 분리막을 개재하고, 상기 (1)에서 제조한 전해질 20 ㎕를 주입하여 코인셀 타입의 리튬-황 전지를 제조하였다.
이때 분리막으로 두께 20 ㎛, 기공도 45 %의 폴리에틸렌을 19 phi로 사용하였으며, 상기 양극은 14 phi의 원형 전극으로, 상기 음극은 16 phi의 원형 전극으로 타발하여 사용하였다.
[실시예 2]
전해질 제조 시, 비수계 유기용매에 포함되는 1,4-디플루오로벤젠(제1용매) 및 1,3-디옥솔란(제2용매)의 부피비를 1:2로 변경한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 전해질(제2용매:리튬염=9.5:1(몰비)) 및 리튬-황 전지를 제조하였다.
[실시예 3]
전해질 제조 시, 비수계 유기용매에 포함되는 1,4-디플루오로벤젠(제1용매) 및 1,3-디옥솔란(제2용매)의 부피비를 1:1로 변경한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 전해질(제2용매:리튬염=7.2:1(몰비)) 및 리튬-황 전지를 제조하였다.
[실시예 4]
전해질 제조 시, 비수계 유기용매에 포함되는 1,4-디플루오로벤젠(제1용매) 및 1,3-디옥솔란(제2용매)의 부피비를 2:1로 변경한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 전해질(제2용매:리튬염=4.8:1(몰비)) 및 리튬-황 전지를 제조하였다.
[실시예 5]
전해질 제조 시, 비수계 유기용매에 포함되는 1,4-디플루오로벤젠(제1용매) 및 1,3-디옥솔란(제2용매)의 부피비를 3:1로 변경한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 전해질(제2용매:리튬염=3.6:1(몰비))을 제조하였다. 그러나, 균일한 용액(homogeneous solution) 상태로의 제조가 불가하여 전지에 적용이 불가하였다.
[실시예 6]
전해질 제조 시, 비수계 유기용매를 벤젠(제1용매) 및 1,3-디옥솔란(제2용매)을 1:1로 혼합한 용매로 변경한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 전해질(제2용매:리튬염=7.2:1(몰비)) 및 리튬-황 전지를 제조하였다.
[비교예 1]
1,3-디옥솔란과 1,2-디메톡시에탄을 1:1의 부피비로 혼합한 유기 용매에 1 M 농도의 LiN(CF3SO2)2(LiTFSI)와 0.1 M 농도의 질산리튬(LiNO3)을 용해시킨 혼합액을 전해질로 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 리튬-황 전지를 제조하였다.
실험예 1. 전해질 물성 평가
(1) 리튬 폴리설파이드 용해 특성
실시예 및 비교예에서 제조한 전해질의 리튬 폴리설파이드 용해 특성을 평가하였다.
구체적으로, 상온(25 ℃)에서 과량의 황화칼륨(K2S)을 실시예 및 비교예에서 제조한 전해질에 가하고, 이 용액을 12 시간 동안 평형을 이루게 하여 황화칼륨 포화 용액을 제조하였다. 실시예 및 비교예에서 제조한 전해질에 황화칼륨을 특정 농도로 첨가한 후, 교반하여 농도가 특정된 전해질 용액을 제조하였으며, 이때 리튬 폴리설파이드의 용해 여부를 육안으로 확인하였다. 또한, 상기 황화칼륨 포화 용액과 농도가 특정된 전해질 용액에 대해 UV-Vis 분광기(UV-Vis spectrophotometer)를 이용하여 리튬 폴리설파이드 용해도를 측정하였다. 이때 UV-Vis 분광기로는 Agilent사의 Agilent 8453을 이용하였다. 이때 얻어진 결과는 표 1 및 도 1 내지 3에 나타내었다.
(2) 이온 전도도
실시예 및 비교예의 전해질에 대해 이온 전도도 측정기(모델명: Eutech CON 150, 제조사: Eutech Instruments)을 이용하여 이온 전도도를 측정하였다. 이때 얻어진 결과는 표 1에 나타내었다.
리튬 폴리설파이드 용해도 (㎎/㎖) 이온 전도도 (mS/㎝)
실시예 1 30.87 15.98
실시예 2 21.49 12.01
실시예 3 1.025 3.07
실시예 4 0.932 3.75
실시예 5 0.652 3.67
실시예 6 1.664 5.06
비교예 1 32.3 11.4
상기 표 1 및 도 1 내지 3과 같이, 실시예에 따른 전해질은 비교예에 따른 전해질에 비해 리튬 폴리설파이드에 대한 용해도가 현저히 낮음을 확인할 수 있다.
또한, 실시예에 따른 전해질의 경우 리튬염을 용해시키지 못하는 제1용매를 포함함에도 불구하고 전해질로 사용하기에 충분한 이온 전도도를 나타냄을 알 수 있다.
실험예 2. 전지 성능 평가
실시예 및 비교예에서 제조한 전지에 대해, 충·방전 측정장치(LAND CT-2001A, 우한(Wuhan)사 제품)를 사용하여 성능을 평가하였다.
구체적으로, 30 ℃에서 및 1.5 내지 3.0 V의 전압 범위로 충·방전 실험을 진행하였으며, 황의 이론 방전용량(1,672 mAh/g)에 따른 C-rate로 사이클을 반복하였다. 이때 얻어진 결과는 표 2 및 도 4 내지 7에 나타내었다.
양극 활물질의 단위 중량당 방전용량
(mAh/gsulfur)
100 사이클 용량 유지율
(%, 3 사이클 방전용량 기준)
1 사이클 3 사이클
실시예 1 1002 916 69.5
실시예 2 1048 972 67.5
실시예 3 1098 1008 71.3
실시예 4 1135 1089 47.8
실시예 6 896 1038 68.2
비교예 1 1283 981 34.7
도 4 내지 7 및 상기 표 2를 통해, 실시예에 따른 전지의 경우 용량 및 수명 특성이 우수함을 확인할 수 있다.
구체적으로, 도 4 내지 7와 상기 표 2를 참조하면, 비교예에 따른 전지의 경우 방전용량이 실시예보다 낮으며, 쿨롱 효율이 감소하여 퇴화가 빠르게 진행됨을 알 수 있다. 한편, 실시예에 따른 전지의 경우 비교예 대비 높은 방전용량을 나타낼 뿐만 아니라 일정한 쿨롱 효율을 유지하며 안정적으로 구동되는 바, 전지의 방전용량과 사이클 수명이 향상된 것을 확인할 수 있다.

Claims (12)

  1. 리튬염 및 비수계 유기용매를 포함하고,
    상기 비수계 유기 용매는 벤젠계 화합물을 포함하는 제1용매 및 1,3-디옥솔란을 포함하는 제2용매를 포함하는 리튬-황 전지용 전해질.
  2. 제1항에 있어서,
    상기 벤젠계 화합물은 벤젠, 1,4-디플루오로벤젠, 1,3,5-트리플루오로벤젠, 1,2,4,5-테트라플루오로벤젠 및 헥사플루오로벤젠으로 이루어진 군으로부터 선택되는 1종 이상을 포함하는, 리튬-황 전지용 전해질.
  3. 제2항에 있어서,
    상기 벤젠계 화합물은 벤젠을 포함하는, 리튬-황 전지용 전해질.
  4. 제2항에 있어서,
    상기 벤젠계 화합물은 1,4-디플루오로벤젠을 포함하는, 리튬-황 전지용 전해질.
  5. 제1항에 있어서,
    상기 제1용매와 상기 제2용매의 부피비는 1:0.5 내지 1:4인, 리튬-황 전지용 전해질.
  6. 제1항에 있어서,
    상기 리튬염은 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiC4BO8, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, (C2F5SO2)2NLi, (SO2F)2NLi, (CF3SO2)3CLi, 클로로 보란 리튬, 탄소수 4 이하의 저급지방족 카르본산 리튬, 테트라페닐 붕산 리튬 및 리튬 이미드로 이루어진 군으로부터 선택되는 1종 이상을 포함하는, 리튬-황 전지용 전해질.
  7. 제1항에 있어서,
    상기 제2용매와 리튬염의 몰비는 4:1 이상인, 리튬-황 전지용 전해질.
  8. 제1항에 있어서,
    상기 제2용매와 리튬염의 몰비는 4.5:1 내지 8:1인, 리튬-황 전지용 전해질.
  9. 양극 활물질을 포함하는 양극;
    음극 활물질을 포함하는 음극; 및
    제1항에 따른 전해질을 포함하는 리튬-황 전지.
  10. 제9항에 있어서,
    상기 양극 활물질은 황 원소 및 황 화합물로 이루어진 군에서 선택되는 1종 이상을 포함하는, 리튬-황 전지.
  11. 제9항에 있어서,
    상기 양극 활물질은 무기 황, Li2Sn(n≥1), 디설파이드 화합물, 유기황 화합물 및 탄소-황 폴리머((C2Sx)n, x=2.5 내지 50, n≥2)로 이루어진 군으로부터 선택되는 1종 이상을 포함하는, 리튬-황 전지.
  12. 제9항에 있어서,
    상기 음극 활물질은 리튬 금속 및 리튬 합금으로 이루어진 군으로부터 선택되는 1종 이상을 포함하는, 리튬-황 전지.
PCT/KR2022/010129 2021-07-30 2022-07-12 리튬-황 전지용 전해질 및 이를 포함하는 리튬-황 전지 WO2023008783A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280006969.2A CN116325272A (zh) 2021-07-30 2022-07-12 锂硫电池用电解质和包含该电解质的锂硫电池
JP2023525601A JP2023548096A (ja) 2021-07-30 2022-07-12 リチウム-硫黄電池用電解質及びこれを含むリチウム-硫黄電池
US18/032,754 US20230395865A1 (en) 2021-07-30 2022-07-12 Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same
EP22849759.0A EP4207424A4 (en) 2021-07-30 2022-07-12 ELECTROLYTE FOR LITHIUM/SULFUR BATTERY AND LITHIUM/SULFUR BATTERY INCLUDING IT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0100729 2021-07-30
KR1020210100729A KR20230018795A (ko) 2021-07-30 2021-07-30 리튬-황 전지용 전해질 및 이를 포함하는 리튬-황 전지

Publications (1)

Publication Number Publication Date
WO2023008783A1 true WO2023008783A1 (ko) 2023-02-02

Family

ID=85087127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/010129 WO2023008783A1 (ko) 2021-07-30 2022-07-12 리튬-황 전지용 전해질 및 이를 포함하는 리튬-황 전지

Country Status (6)

Country Link
US (1) US20230395865A1 (ko)
EP (1) EP4207424A4 (ko)
JP (1) JP2023548096A (ko)
KR (1) KR20230018795A (ko)
CN (1) CN116325272A (ko)
WO (1) WO2023008783A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117154186B (zh) * 2023-10-30 2024-02-20 宁德时代新能源科技股份有限公司 二次电池及其制备方法、用电装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005251473A (ja) * 2004-03-02 2005-09-15 Sanyo Electric Co Ltd 非水電解質二次電池
KR20070016431A (ko) * 2005-08-03 2007-02-08 삼성에스디아이 주식회사 리튬 이차 전지용 활물질, 그의 제조방법 및 이를 갖는리튬 이차 전지
KR20120102375A (ko) * 2011-03-08 2012-09-18 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
KR101365679B1 (ko) * 2012-08-16 2014-02-20 부산대학교 산학협력단 리튬-설퍼 전지용 양극의 제조 방법 및 리튬 설퍼 전지
KR101379716B1 (ko) 2012-03-21 2014-03-31 에스케이 테크놀로지 이노베이션 컴퍼니 유황을 포함하는 그래핀 복합체 양극을 포함하는 리튬-유황 이차전지 및 그의 제조 방법
KR20140058177A (ko) * 2012-11-06 2014-05-14 한양대학교 산학협력단 리튬 설퍼 전지용 양극 활물질 및 이를 포함하는 리튬 설퍼 전지
KR20160037084A (ko) 2014-09-26 2016-04-05 주식회사 엘지화학 황-탄소나노튜브 복합체, 이의 제조방법, 이를 포함하는 리튬-황 전지용 캐소드 활물질 및 이를 포함한 리튬-황 전지
KR20210100729A (ko) 2018-12-18 2021-08-17 아토비무 유겐가이샤 초음파 납땜장치 및 초음파 납땜방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100326467B1 (ko) * 2000-07-25 2002-02-28 김순택 리튬 설퍼 전지용 전해액
KR100326466B1 (ko) * 2000-07-25 2002-02-28 김순택 리튬 설퍼 전지용 전해액
KR100875112B1 (ko) * 2002-11-16 2008-12-22 삼성에스디아이 주식회사 비수계 전해액 및 이를 채용한 리튬 전지
KR100592248B1 (ko) * 2003-10-24 2006-06-23 삼성에스디아이 주식회사 유기 전해액 및 이를 이용한 리튬 전지
GB2577114B (en) * 2018-09-14 2022-04-27 Johnson Matthey Plc Battery
GB2588749A (en) * 2019-10-15 2021-05-12 Oxis Energy Ltd Lithium sulfur cell
CN110890592B (zh) * 2019-11-28 2021-03-26 华中科技大学 一种含芳香类化合物作为稀释剂的锂金属电池电解液

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005251473A (ja) * 2004-03-02 2005-09-15 Sanyo Electric Co Ltd 非水電解質二次電池
KR20070016431A (ko) * 2005-08-03 2007-02-08 삼성에스디아이 주식회사 리튬 이차 전지용 활물질, 그의 제조방법 및 이를 갖는리튬 이차 전지
KR20120102375A (ko) * 2011-03-08 2012-09-18 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
KR101379716B1 (ko) 2012-03-21 2014-03-31 에스케이 테크놀로지 이노베이션 컴퍼니 유황을 포함하는 그래핀 복합체 양극을 포함하는 리튬-유황 이차전지 및 그의 제조 방법
KR101365679B1 (ko) * 2012-08-16 2014-02-20 부산대학교 산학협력단 리튬-설퍼 전지용 양극의 제조 방법 및 리튬 설퍼 전지
KR20140058177A (ko) * 2012-11-06 2014-05-14 한양대학교 산학협력단 리튬 설퍼 전지용 양극 활물질 및 이를 포함하는 리튬 설퍼 전지
KR20160037084A (ko) 2014-09-26 2016-04-05 주식회사 엘지화학 황-탄소나노튜브 복합체, 이의 제조방법, 이를 포함하는 리튬-황 전지용 캐소드 활물질 및 이를 포함한 리튬-황 전지
KR20210100729A (ko) 2018-12-18 2021-08-17 아토비무 유겐가이샤 초음파 납땜장치 및 초음파 납땜방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4207424A4

Also Published As

Publication number Publication date
EP4207424A4 (en) 2024-04-17
US20230395865A1 (en) 2023-12-07
JP2023548096A (ja) 2023-11-15
KR20230018795A (ko) 2023-02-07
CN116325272A (zh) 2023-06-23
EP4207424A1 (en) 2023-07-05

Similar Documents

Publication Publication Date Title
WO2017213325A1 (ko) 카본 나이트라이드와 그래핀 옥사이드의 자기조립 복합체 및 그 제조방법, 이를 적용한 양극 및 이를 포함하는 리튬-황 전지
WO2017131377A1 (ko) 폴리도파민을 포함하는 복합 코팅층이 형성된 리튬-황 전지용 분리막, 이의 제조방법 및 이를 포함하는 리튬-황 전지
WO2018084449A2 (ko) 황-탄소 복합체 및 이를 포함하는 리튬-황 전지
WO2019088475A1 (ko) 황-탄소 복합체 및 이를 포함하는 리튬-황 전지
WO2021010625A1 (ko) 리튬-황 이차전지
WO2022060021A1 (ko) 리튬 금속 전극의 제조방법, 이에 의해 제조된 리튬 금속 전극, 및 이를 포함하는 리튬 이차 전지
WO2021172879A1 (ko) 리튬 금속 음극의 제조방법, 이에 의해 제조된 리튬 금속 음극 및 이를 포함하는 리튬-황 전지
WO2022035120A1 (ko) 리튬-황 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬-황 전지
WO2022164107A1 (ko) 리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지
KR20210113055A (ko) 리튬-황 전지용 전해질 및 이를 포함하는 리튬-황 전지
KR102690260B1 (ko) 황-탄소 복합체 및 이를 포함하는 리튬-황 전지
WO2022086211A1 (ko) 코어-쉘 구조의 다공성 탄소재, 이의 제조방법, 이를 포함하는 황-탄소 복합체, 및 리튬 이차 전지
WO2020105980A1 (ko) 리튬-황 이차전지
WO2023008783A1 (ko) 리튬-황 전지용 전해질 및 이를 포함하는 리튬-황 전지
WO2021010626A1 (ko) 리튬-황 이차전지
WO2022086026A1 (ko) 리튬 이차전지용 양극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2022149913A1 (ko) 황-탄소 복합체, 이의 제조방법, 및 이를 포함하는 리튬-황 전지
WO2021177723A1 (ko) 리튬-황 전지용 전해질 및 이를 포함하는 리튬-황 전지
WO2022019698A1 (ko) 리튬-황 전지용 음극 및 이를 포함하는 리튬-황 전지
KR20200129546A (ko) 리튬-황 이차전지
WO2019022358A1 (ko) 리튬-황 전지용 양극 및 이를 포함하는 리튬-황 전지
KR102567965B1 (ko) 리튬 이차전지
KR20210120858A (ko) 리튬-황 전지용 전해질 및 이를 포함하는 리튬-황 전지
WO2021194231A1 (ko) 리튬-황 전지용 전해질 및 이를 포함하는 리튬-황 전지
WO2022050769A1 (ko) 리튬-황 전지용 양극 및 이를 포함하는 리튬-황 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849759

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022849759

Country of ref document: EP

Effective date: 20230330

WWE Wipo information: entry into national phase

Ref document number: 2023525601

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE