WO2023008308A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2023008308A1
WO2023008308A1 PCT/JP2022/028359 JP2022028359W WO2023008308A1 WO 2023008308 A1 WO2023008308 A1 WO 2023008308A1 JP 2022028359 W JP2022028359 W JP 2022028359W WO 2023008308 A1 WO2023008308 A1 WO 2023008308A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
barrier layer
electrode
semiconductor device
field plate
Prior art date
Application number
PCT/JP2022/028359
Other languages
English (en)
French (fr)
Inventor
裕介 神田
Original Assignee
ヌヴォトンテクノロジージャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヌヴォトンテクノロジージャパン株式会社 filed Critical ヌヴォトンテクノロジージャパン株式会社
Priority to JP2023538480A priority Critical patent/JP7448728B2/ja
Priority to CN202280051723.7A priority patent/CN117769762A/zh
Publication of WO2023008308A1 publication Critical patent/WO2023008308A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66848Unipolar field-effect transistors with a Schottky gate, i.e. MESFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate

Definitions

  • the present disclosure relates to a semiconductor device, and more particularly to a group III nitride semiconductor device using a group III nitride semiconductor.
  • Group III nitride semiconductors particularly group III nitride semiconductor devices using gallium nitride (GaN) or aluminum gallium nitride (AlGaN), have a high breakdown voltage due to the wide bandgap of the material.
  • GaN gallium nitride
  • AlGaN aluminum gallium nitride
  • heterostructures such as AlGaN/GaN are easily formed in III-nitride semiconductor devices.
  • a high concentration of electrons (hereinafter referred to as a two-dimensional electron gas layer) is generated on the GaN layer side of the AlGaN/GaN interface due to piezoelectric polarization generated from the lattice constant difference between materials and spontaneous polarization of AlGaN and GaN. ) are formed.
  • the III-nitride semiconductor device utilizing the channel of the two-dimensional electron gas layer has a relatively high electron saturation velocity, a relatively high insulation resistance, and a relatively high thermal conductivity. applied to Then, it is necessary to use an electrode that is Schottky-junctioned to AlGaN as a gate electrode.
  • the gate electrode In order to improve the characteristics of these III-nitride semiconductor devices, it is necessary for the gate electrode to reduce deterioration of the electrode during high-temperature operation and to reduce reverse leakage current. Therefore, it is preferable to use a material with a high melting point and a high work function as the material used for the gate electrode. By using this material, the heat resistance of the gate electrode and the height of the Schottky barrier should be increased as much as possible. In this way, deterioration of the electrode and reverse leakage current during high-temperature operation are reduced, thereby increasing reliability.
  • a tantalum nitride (TaN ) layer, and the n-type GaN layer and the TaN layer form a Schottky junction.
  • TaN with an N/Ta ratio of 1.00 in the NaCl structure not only has a high work function of 5.4 eV as a material, but also has a small difference in lattice constant in the a-axis direction from the n-type GaN layer.
  • the work function is maximized, ie the Schottky barrier is maximized. Therefore, the heat resistance is high, the Schottky barrier can be increased, and a highly reliable gate electrode can be obtained.
  • FIG. 29 is a cross-sectional view showing the configuration in the vicinity of the gate electrode of the semiconductor device (III-nitride semiconductor device) according to Patent Document 2.
  • FIG. 29 As shown in FIG. 29, in the semiconductor device according to Patent Document 2, a buffer layer 102, a GaN layer 103a, and an AlGaN layer 104a are provided on a substrate 101 in this order.
  • This semiconductor device has a two-dimensional electron gas layer 105 on the GaN layer 103a side due to the heterostructure.
  • a first insulating layer 211 is provided on the AlGaN layer 104a, and a first opening 211a is provided in the first insulating layer 211 by removing the first insulating layer 211 so as to expose the AlGaN layer 104a.
  • a gate insulating layer 204 provided to cover the first insulating layer 211 and the first opening 211a, and a TaN layer 411a on the gate insulating layer 204 to cover the first opening 211a.
  • a second insulating layer 212 is provided to cover the gate insulating layer 204 and the TaN layer 411a.
  • a removed second opening 212b is provided.
  • a titanium nitride layer (TiN layer 411b) and a first wiring layer 411c are laminated in this order so as to cover the second opening 212b. and a gate electrode 411 made of a layer 411c.
  • the semiconductor device according to Patent Document 2 has a MIS (Metal-Insulator-Semiconductor) structure including the gate insulating layer 204, it may be used as an MES (MEtal-Semiconductor) structure.
  • MES Metal-Insulator-Semiconductor
  • the heat resistance is high and the Schottky barrier is high as described in Patent Document 1. can be obtained, and a highly reliable gate electrode can be obtained.
  • JP 2006-190749 A Japanese Unexamined Patent Application Publication No. 2013-201370
  • the gate electrode 411 is composed of a TaN layer 411a, a TiN layer 411b, and a first wiring layer 411c.
  • levels are generated when metal atoms of the first wiring layer 411c diffuse into the AlGaN layer 104a or the first insulating layer 211 due to thermal history during the manufacturing process.
  • the generated level lowers the Schottky barrier height, or traps electrons due to current collapse when a high voltage is applied between the source electrode and the drain electrode, increasing the on-resistance. Therefore, even if a temperature of about 250° C. to 500° C.
  • the present disclosure has been made in view of such problems, and aims to provide a semiconductor device having a gate electrode with high reliability and low on-resistance.
  • one aspect of the semiconductor device is a substrate, a first nitride semiconductor layer provided over the substrate, and a bandgap larger than that of the first nitride semiconductor layer.
  • a second nitride semiconductor layer provided on the first nitride semiconductor layer, and a first insulating layer provided on the second nitride semiconductor layer are spaced apart from each other, Between the source electrode and the drain electrode electrically connected to the first nitride semiconductor layer through the insulating layer and the source electrode and the drain electrode, a first insulation layer is formed so that the second nitride semiconductor layer is exposed.
  • the gate electrode being made of TaN; a first barrier layer having a layer thickness of Z1 and being in Schottky junction with the second nitride semiconductor layer; 2 barrier layers and a wiring layer provided on and in contact with the second barrier layer, Z1 and Z2 satisfy 200 nm ⁇ Z1+Z2 ⁇ 50 nm and Z1 ⁇ Z2 and 50 nm>Z1>3 nm.
  • the semiconductor device According to the semiconductor device according to the present disclosure, it is possible to obtain a semiconductor device having a gate electrode with high reliability and low on-resistance.
  • FIG. 1 is a cross-sectional view showing the configuration of the semiconductor device according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing an enlarged area II of FIG.
  • FIG. 3 is a cross-sectional view showing the vicinity of a gate electrode included in a semiconductor device according to a study example of Embodiment 1.
  • FIG. FIG. 4 is a graph showing the layer thickness dependence of the TiN layer of the reverse leakage current of the gate electrode and the on-resistance at high voltage/on-resistance at low voltage in the semiconductor device according to the study example of the first embodiment. is.
  • FIG. 1 is a cross-sectional view showing the configuration of the semiconductor device according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing an enlarged area II of FIG.
  • FIG. 3 is a cross-sectional view showing the vicinity of a gate electrode included in a semiconductor device according to a study example of Embodiment 1.
  • FIG. FIG. 4 is a graph showing the layer
  • FIG. 5 shows the layer thickness dependence results of the TiN layer of the reverse leakage current of the gate electrode and the on-resistance at high voltage/on-resistance at low voltage in the semiconductor device according to the study example of the first embodiment.
  • is a diagram. 6A to 6D are cross-sectional views showing steps of the method for manufacturing the semiconductor device according to the first embodiment.
  • 7A to 7D are cross-sectional views showing steps of the method for manufacturing the semiconductor device according to the first embodiment.
  • FIG. 8 is a cross-sectional view showing steps of the method for manufacturing the semiconductor device according to the first embodiment.
  • 9A to 9D are cross-sectional views showing steps of the method for manufacturing the semiconductor device according to the first embodiment.
  • FIG. 10A and 10B are cross-sectional views showing steps of the method for manufacturing the semiconductor device according to the first embodiment.
  • 11A and 11B are cross-sectional views showing steps of the method for manufacturing the semiconductor device according to the first embodiment.
  • 12A and 12B are cross-sectional views showing steps of the method for manufacturing the semiconductor device according to the first embodiment.
  • 13A and 13B are cross-sectional views showing steps of the method for manufacturing the semiconductor device according to the first embodiment.
  • FIG. 14 is a cross-sectional view of the semiconductor device according to the second embodiment.
  • 15 is a cross-sectional view showing a configuration in the vicinity of a gate electrode of a semiconductor device of Modification 1 according to Embodiment 2.
  • FIG. 16 is a cross-sectional view showing a configuration in the vicinity of a gate electrode of a semiconductor device according to Modification 2 of Embodiment 2.
  • FIG. 17 is a cross-sectional view showing a configuration in the vicinity of a gate electrode of a semiconductor device according to Modification 3 of Embodiment 2.
  • FIG. 18 is a cross-sectional view showing an enlarged region XVIII in FIG. 17.
  • FIG. 19 is a cross-sectional view showing a configuration in the vicinity of a gate electrode of a semiconductor device according to Modification 4 of Embodiment 2.
  • FIG. 20A to 20C are cross-sectional views showing steps of the method for manufacturing a semiconductor device according to the second embodiment.
  • 21A to 21C are cross-sectional views showing steps of the method for manufacturing a semiconductor device according to the second embodiment.
  • 22A to 22C are cross-sectional views showing steps of the method for manufacturing a semiconductor device according to the second embodiment.
  • 23A and 23B are cross-sectional views showing steps of the method for manufacturing the semiconductor device according to the second embodiment.
  • 24A and 24B are cross-sectional views showing steps of the method for manufacturing a semiconductor device according to the second embodiment.
  • 25A and 25B are cross-sectional views showing steps of the method for manufacturing the semiconductor device according to the second embodiment.
  • 26A and 26B are cross-sectional views showing steps of the method for manufacturing the semiconductor device according to the second embodiment.
  • 27A and 27B are cross-sectional views showing steps of the method for manufacturing the semiconductor device according to the second embodiment.
  • 28A and 28B are cross-sectional views showing steps of the method for manufacturing the semiconductor device according to the second embodiment.
  • FIG. 29 is a cross-sectional view showing the configuration near the gate electrode of
  • the inventors conducted extensive studies and experiments to provide a semiconductor device having a gate electrode with high reliability and low on-resistance. As a result, the inventors came up with the following semiconductor device and the like.
  • each figure is a schematic diagram and is not necessarily strictly illustrated.
  • the same reference numerals are assigned to substantially the same configurations, and overlapping descriptions are omitted or simplified.
  • top and bottom in the configuration of the semiconductor device do not refer to the upward direction (vertically upward) and the downward direction (vertically downward) in absolute spatial recognition, but to the stacked structure. It is a term defined by a relative positional relationship based on the stacking order in . Also, the terms “above” and “below” are used only when two components are spaced apart from each other and there is another component between the two components, as well as when two components are spaced apart from each other. It also applies when two components are in contact with each other and are placed in close contact with each other.
  • the x-axis, y-axis and z-axis indicate three axes of a three-dimensional orthogonal coordinate system.
  • the x-axis and y-axis are two axes parallel to the upper surface of the substrate of the semiconductor device, and the z-axis direction is perpendicular to the upper surface.
  • the positive direction of the z-axis may be described as upward, and the negative direction of the z-axis may be described as downward.
  • planar view refers to the substrate of the semiconductor device viewed from the z-axis positive direction.
  • FIG. 1 is a cross-sectional view showing the configuration of a semiconductor device 100A according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing an enlarged area II of FIG.
  • HEMT high electron mobility transistor
  • a semiconductor device 100A includes a substrate 101, a buffer layer 102, a first nitride semiconductor layer 103, a second nitride semiconductor layer 104, a two-dimensional electron gas layer 105, and a first insulating layer.
  • a source electrode 301 consisting of two wiring layers 301b, a drain electrode 302 consisting of an ohmic electrode 302a and a second wiring layer 302b, a first barrier layer 401a, a second barrier layer 401b and a wiring layer (first wiring layer 401c in this case). and a field plate electrode 501 composed of a third barrier layer 501b and a third wiring layer 501c.
  • the substrate 101 is, for example, a substrate made of Si in the present embodiment.
  • Substrate 101 is not limited to a substrate made of Si, and may be a substrate made of sapphire, SiC, GaN, AlN, or the like.
  • the buffer layer 102 is provided on the substrate 101 .
  • the buffer layer 102 is, for example, a group III nitride semiconductor layer having a layer thickness of 2 ⁇ m, and more specifically, a group III nitride semiconductor layer composed of a plurality of laminated structures composed of AlN and AlGaN. It is the material semiconductor layer.
  • the layer thickness is the thickness of the layer in the z-axis direction.
  • the buffer layer 102 may be composed of a single layer or multiple layers of a Group III nitride semiconductor such as GaN, AlGaN, AlN, InGaN, or AlInGaN.
  • the first nitride semiconductor layer 103 is provided on the substrate 101 , more specifically, on the buffer layer 102 .
  • the first nitride semiconductor layer 103 is made of GaN with a layer thickness of 200 nm, for example.
  • the first nitride semiconductor layer 103 is not limited to GaN, and may be composed of a group III nitride semiconductor such as InGaN, AlGaN, or AlInGaN. It may contain n-type impurities.
  • the second nitride semiconductor layer 104 has a larger bandgap than the first nitride semiconductor layer 103 and is provided on the first nitride semiconductor layer 103 .
  • the second nitride semiconductor layer 104 is made of, for example, AlGaN with a layer thickness of 20 nm and an Al composition ratio of 25%.
  • the Al composition ratio is 25% indicates that it is Al 0.25 Ga 0.75 N.
  • a high-concentration two-dimensional electron gas is generated on the first nitride semiconductor layer 103 side of the heterointerface between the second nitride semiconductor layer 104 and the first nitride semiconductor layer 103, and the channel of the two-dimensional electron gas layer 105 is generated. is formed.
  • the second nitride semiconductor layer 104 is not limited to AlGaN, and may be made of a group III nitride semiconductor such as AlInGaN.
  • the second nitride semiconductor layer 104 contains n-type impurities. It may be
  • a cap layer made of, for example, GaN and having a layer thickness of about 1 nm or more and 2 nm or less may be provided as a cap layer. That is, such a cap layer may be provided between the second nitride semiconductor layer 104 and the first insulating layer 201 . Further, as a spacer layer between the first nitride semiconductor layer 103 and the second nitride semiconductor layer 104, for example, a spacer layer made of AlN and having a layer thickness of about 1 nm may be provided.
  • the ohmic electrodes 301a and 302a are provided on the second nitride semiconductor layer 104 so as to face each other.
  • each of the ohmic electrodes 301a and 302a is a multi-layered electrode film having a laminated structure in which a Ti film and an Al film are laminated in order, for example, but the present invention is not limited to this.
  • the ohmic electrodes 301a and 302a are electrically ohmic-connected to the two-dimensional electron gas layer 105, respectively.
  • recesses obtained by partially removing the second nitride semiconductor layer 104 and the first nitride semiconductor layer 103 and n-type impurities containing donors such as Si are provided. At least one of the contact layers may be provided. Also, the contact layer containing n-type impurities may be formed by plasma treatment, ion implantation, re-growth, and the like.
  • the first insulating layer 201 is provided on the second nitride semiconductor layer 104 .
  • first insulating layer 201 is provided to cover second nitride semiconductor layer 104, part of ohmic electrode 301a, and part of ohmic electrode 302a.
  • the first insulating layer 201 is made of SiN with a layer thickness of 100 nm, for example.
  • the first opening 201a is an example of an opening provided in the first insulating layer 201 between the source electrode 301 and the drain electrode 302 so that the second nitride semiconductor layer 104 is exposed.
  • the first opening 201a is formed by removing the first insulating layer 201 between the ohmic electrodes 301a and 302a, and is provided so as to expose the second nitride semiconductor layer 104. It is
  • the first barrier layer 401a covers the first opening 201a and part of the first insulating layer 201 so as to cover the portion of the second nitride semiconductor layer 104 and the first insulating layer 201 exposed through the first opening 201a. It is provided above the part.
  • the layer thickness t1 of the first barrier layer 401a is assumed to be Z1.
  • the first barrier layer 401a is, for example, a NaCl-type structure oriented only in the (111) plane having a layer thickness t1 (Z1) of 30 nm and an N/Ta ratio of 1.00. of TaN.
  • the first barrier layer 401a and the second nitride semiconductor layer 104 are Schottky-junctioned. Z1 indicating the layer thickness t1 satisfies 50 nm>Z1>3 nm.
  • Z1 is preferably Z1>10 nm because TaN has a NaCl structure oriented only in the (111) plane.
  • the first barrier layer 401a may be TaN with an N/Ta ratio of 0.70 to 1.00 in a NaCl type structure oriented only in the (111) plane. By doing so, the Schottky barrier height can be increased as described in Patent Document 1.
  • AlGaN has a lattice constant of 0.311 nm or more and 0.319 nm or less. Therefore, the difference in distance between atoms between the first barrier layer 401a made of TaN and the second nitride semiconductor layer 104 made of AlGaN can be reduced. Therefore, since dislocations are less likely to be formed in the first barrier layer 401a, diffusion of metal atoms of the first wiring layer 401c via dislocations in the first barrier layer 401a can be reduced.
  • the second insulating layer 202 is provided to cover the first insulating layer 201 and the first barrier layer 401a. More specifically, the second insulating layer 202 is provided so as to cover the first insulating layer 201 and part of the first barrier layer 401a.
  • the second insulating layer 202 is preferably composed of a material having an oxygen content of 1% or less, and is composed of SiN having a layer thickness of 150 nm, for example.
  • the second insulating layer 202 is not limited to SiN, and may be SiC or SiCN.
  • the second opening 202b is formed by removing the second insulating layer 202, and is provided so as to cover the range of the first opening 201a in plan view and to expose the first barrier layer 401a. ing.
  • the first opening 201a is arranged so as to be included in the larger second opening 202b in plan view.
  • the second opening 202b is provided so as to cover the range of the first opening 201a in plan view
  • the end portion of the second opening 202b on the side of the drain electrode 302 is the first opening. It may be positioned inside the portion 201a. That is, in this case, in plan view, the size of the second opening 202b is smaller than that of the semiconductor device 100A shown in FIG. In this way, by reducing the size of the second opening 202b, which can be a path through which the metal atoms of the first wiring layer 401c diffuse, the first insulating layer 201 and the second nitride semiconductor layer 104 on the drain electrode 302 side are separated from each other. The diffusion of the metal atoms of the first wiring layer 401c into the can be further reduced.
  • the second barrier layer 401b and the first wiring layer 401c are laminated in the order of the second barrier layer 401b and the first wiring layer 401c.
  • the second barrier layer 401b is formed on the first barrier layer 401a exposed by the second opening 202b and part of the second insulating layer 202 so as to cover the second opening 202b. provided in contact.
  • the first wiring layer 401c is provided on and in contact with the second barrier layer 401b.
  • the first wiring layer 401c is an example of a wiring layer provided on and in contact with the second barrier layer 401b.
  • the second barrier layer 401b is, for example, a layer made of TiN or WN with a layer thickness t2 (see FIG. 2) of 50 nm.
  • the layer thickness t2 of the second barrier layer 401b is hereinafter referred to as Z2.
  • the first wiring layer 401c is made of Al with a layer thickness of 450 nm, for example.
  • the second barrier layer 401b is not limited to a single layer of TiN or WN, and may have a multilayer structure composed of TiN and WN.
  • the first wiring layer 401c is not limited to Al, and may be W, Au, or Cu, or may be a compound containing these elements, or may be a plurality of laminated structures composed of these elements. It may be a multilayer electrode film consisting of.
  • the distance (lattice constant) between adjacent metal atoms in the second barrier layer 401b made of TiN or WN oriented only in the (111) plane is about 0.302 nm or 0.298 nm, respectively.
  • the distance (lattice constant) between adjacent metal atoms in the first barrier layer 401a made of TaN with an N/Ta ratio of 1.00 is 0.315 nm. Since the difference in the distance between adjacent metal atoms in the second barrier layer 401b and the first barrier layer 401a is thus small, dislocations are less likely to form in the second barrier layer 401b. Therefore, metal diffusion of metal atoms of the first wiring layer 401c through dislocations of the second barrier layer 401b is reduced.
  • the crystal structure of the second barrier layer 401b is a NaCl type structure oriented only in the (111) plane
  • the crystal structure of the first wiring layer 401c provided on the second barrier layer 401b is only the (111) plane. It becomes easy to have a crystal structure oriented to
  • the first wiring layer 401c is composed of Al with a layer thickness of 450 nm
  • the crystal structure of the first wiring layer 401c is an FCC type structure oriented only in the (111) plane, and the distance between adjacent metal atoms is 0.5. 286 nm. By doing so, the resistance of the first wiring layer 401c can be reduced and the reliability can be improved.
  • the distance between adjacent metal atoms from the lower layer to the upper layer increases as in the first barrier layer 401a made of TaN, the second barrier layer 401b made of TiN or WN, and the first wiring layer 401c made of Al. Since the structure is such that it becomes smaller gradually, dislocations are less likely to be formed in the first wiring layer 401c. Therefore, the resistance of the first wiring layer 401c can be reduced and the reliability can be improved.
  • the gate electrode 401 is an electrode including the first barrier layer 401a, the second barrier layer 401b and the first wiring layer 401c. Further, as shown in FIG. 1, the gate electrode 401 is an electrode provided spaced apart from the source electrode 301 and the drain electrode 302 and in contact with the second nitride semiconductor layer 104 at the first opening 201a. In other words, gate electrode 401 is an electrode that penetrates first insulating layer 201 and second insulating layer 202 and contacts second nitride semiconductor layer 104 .
  • the first barrier layer 401a and the second barrier layer 401b branch from the first opening 201a on the way to the drain electrode 302 . More specifically, the first barrier layer 401a and the second barrier layer 401b branch at a branch point p2 indicated as a dashed circle in FIG.
  • the direction from the first opening 201a toward the drain electrode 302 is the positive direction of the x-axis. That is, the first barrier layer 401a and the second barrier layer 401b are in contact with each other on the x-axis negative side of the branch point p2, and are separated from each other on the x-axis positive side of the branch point p2.
  • the second insulating layer 202 is provided extending from above the first barrier layer 401a to above the first insulating layer 201 between the branch point p2 and the drain electrode 302 . That is, on the x-axis positive side of the branch point p2, part of the second insulating layer 202 is sandwiched between the first barrier layer 401a and the second barrier layer 401b.
  • the field plate electrode 501 is an electrode provided on the second insulating layer 202 between the drain electrode 302 and the first opening 201a, which is an example of an opening.
  • the third barrier layer 501b and the third wiring layer 501c forming the field plate electrode 501 are laminated in the order of the third barrier layer 501b and the third wiring layer 501c.
  • the third barrier layer 501b is provided on part of the second insulating layer 202 between the second opening 202b and the drain electrode 302 .
  • field plate electrode 501 comprising third barrier layer 501b and third interconnection layer 501c is formed.
  • the field plate electrode 501 is connected to the potential of the source electrode 301 . In this case, field plate electrode 501 exhibits the same potential as source electrode 301 .
  • the third barrier layer 501b preferably has the same configuration as the second barrier layer 401b, but is not limited to this. Also, the third wiring layer 501c may have the same configuration as the first wiring layer 401c, but the configuration is not limited to this.
  • the uppermost surface position of the field plate electrode 501 is the second barrier layer closest to the drain electrode 302. It may be below the lower end position p1 of the side surface of 401b.
  • the uppermost surface position of the field plate electrode 501 is the position of the uppermost surface 501t of the field plate electrode 501 shown in FIG.
  • the side surface of the second barrier layer 401b is the surface of the second barrier layer 401b parallel to the yz plane, and the side surface closest to the drain electrode 302 is the side surface closest to the drain electrode 302. be.
  • the lower end position p1 of the side surface of the second barrier layer 401b is indicated by a dashed circle.
  • the position of the top surface 501t may be positioned below the lower end position p1 of the side surface of the second barrier layer 401b (negative z-axis side).
  • the top surface position of field plate electrode 501 is located above lower end position p1 (z-axis positive side).
  • the lowermost position of the field plate electrode 501 is provided below the lower end position p1 of the side surface of the second barrier layer 401b closest to the drain electrode 302. It is The lowermost surface position of the field plate electrode 501 is the position of the lowermost surface 501u of the field plate electrode 501 shown in FIG. In other words, in this case, as shown in FIG. 2, the position of the lowermost surface 501u is positioned below (z-axis negative side) the lower end position p1 of the side surface of the second barrier layer 401b. By doing so, the electric field at the lower end of the first barrier layer 401a closest to the drain electrode 302 can be further relaxed.
  • the material of a part of the field plate electrode 501 is the same as the material of the second barrier layer 401b. More specifically, the material of the second barrier layer 401b and the material of the third barrier layer 501b are the same, and the material of the first wiring layer 401c and the material of the third wiring layer 501c are the same. By doing so, the gate electrode 401 and the field plate electrode 501 can be formed simultaneously.
  • the field plate electrode 501 is composed of multiple layers including a lower layer and an upper layer. More specifically, the field plate electrode 501 is composed of a lower third barrier layer 501b and an upper third wiring layer 501c. As described above, the third barrier layer 501b and the third wiring layer 501c forming the field plate electrode 501 are made of the same material as the second barrier layer 401b and the first wiring layer 401c forming the gate electrode 401, respectively. Further, in this embodiment, the resistivity of the upper layer is lower than that of the lower layer. In other words, the resistivity of the third wiring layer 501c made of Al above the third barrier layer 501b made of TiN is small. Therefore, the impedance of the field plate electrode 501 can be lowered.
  • the third opening 202c and the fourth opening 202d are formed by removing the first insulating layer 201 and the second insulating layer 202, and are provided so that the ohmic electrode 301a and the ohmic electrode 302a are partially exposed. It is
  • the second wiring layer 301b is provided on the ohmic electrode 301a exposed by the third opening 202c and part of the second insulating layer 202 so as to cover the third opening 202c.
  • the second wiring layer 302b is provided on the ohmic electrode 302a exposed through the fourth opening 202d and a portion of the second insulating layer 202 so as to cover the fourth opening 202d.
  • each of the second wiring layer 301b and the second wiring layer 302b is configured by sequentially stacking TiN with a layer thickness of 200 nm, Al with a layer thickness of 3000 nm, and TiN with a layer thickness of 50 nm. be done.
  • the second wiring layer 301b and the second wiring layer 302b are not limited to Al, and instead of Al, they may be Au or Cu, or compounds containing these elements. It may be a multilayer electrode film composed of a plurality of laminated structures.
  • the source electrode 301 consisting of the ohmic electrode 301a and the second wiring layer 301b and the drain electrode 302 consisting of the ohmic electrode 302a and the second wiring layer 302b are constructed as described above. Also, the source electrode 301 and the drain electrode 302 are provided with a space therebetween.
  • the source electrode 301 and the drain electrode 302 are electrically connected to the first nitride semiconductor layer 103 through the first insulating layer 201 and the second insulating layer 202 respectively. That is, in the present embodiment, the source electrode 301 and the drain electrode 302 are in contact with the second nitride semiconductor layer 104 at the third opening 202c and the fourth opening 202d, respectively. is electrically connected to
  • Z1 indicating the layer thickness t1 of the first barrier layer 401a and Z2 indicating the layer thickness t2 of the second barrier layer 401b will be described. These Z1 and Z2 satisfy 200 nm ⁇ Z1+Z2 ⁇ 50 nm, Z1 ⁇ Z2 and 50 nm>Z1>3 nm.
  • the semiconductor device 100A having the gate electrode 401 with high reliability and low on-resistance can be obtained.
  • FIG. 3 is a cross-sectional view showing the vicinity of the gate electrode 401x included in the semiconductor device according to the study example of the first embodiment.
  • the semiconductor device according to this examination example mainly does not have the second insulating layer 202, and the gate electrode 401x is configured by a laminated structure of a TiN layer 401bx and an Al layer 401cx. It has the same configuration as the semiconductor device 100A according to the embodiment.
  • FIG. 3 is a cross-sectional view showing the vicinity of the gate electrode 401x included in the semiconductor device according to the study example of the first embodiment.
  • the semiconductor device according to this examination example mainly does not have the second insulating layer 202, and the gate electrode 401x is configured by a laminated structure of a TiN layer 401bx and an Al layer 401cx. It has the same configuration as the semiconductor device 100A according to the embodiment.
  • FIG. 4 shows the layer thickness dependence results of the TiN layer 401bx of the reverse leakage current of the gate electrode 401x and the on-resistance at high voltage/on-resistance at low voltage in the semiconductor device according to the study example of the first embodiment.
  • FIG. 4 is a diagram showing; More specifically, the first axis (left axis) of the graph in FIG. 4 shows the result of the dependence of the reverse leakage current of the gate electrode 401x on the thickness of the TiN layer 401bx.
  • the second axis (right axis) of the graph in FIG. 4 when a voltage is applied between the source electrode 301 and the drain electrode 302, which is an index of current collapse, and switching is performed, the voltage at high voltage (85 V) is shown.
  • the results of the layer thickness dependence of the TiN layer 401bx for the ratio of the on-resistance to the on-resistance at low voltage (30 V) are shown.
  • FIG. 5 shows the layer thickness dependence results of the TiN layer 401bx of the reverse leakage current of the gate electrode 401x and the on-resistance at high voltage/on-resistance at low voltage in the semiconductor device according to the study example of the first embodiment.
  • Fig. 10 is another diagram showing; More specifically, the horizontal axis of the graph of FIG. 5 indicates the reverse leakage current of the gate electrode 401x, and the vertical axis of the graph of FIG. (30 V) shows the ratio to the on-resistance. Also, the layer thickness of the TiN layer 401bx is shown outside the frame.
  • the dependence of the reverse leakage current of the gate electrode 401x on the thickness of the TiN layer 401bx shows that the reverse leakage current of the gate electrode 401x is reduced when the thickness of the TiN layer 401bx is 30 nm or more.
  • the fluctuation of the reverse leakage current of the gate electrode 401x when the thickness of the TiN layer 401bx is 30 nm or more and 100 nm or less is sufficiently smaller than the fluctuation range when the thickness of the TiN layer 401bx is changed from 20 nm to 30 nm. Therefore, it is thought that this is due to manufacturing variations.
  • the layer thickness dependence of the TiN layer 401bx for the ratio of the ON resistance at high voltage and at low voltage when switching when the layer thickness of the TiN layer 401bx is 50 nm or more and 100 nm or less, the ON resistance It can be seen that the resistance ratio becomes smaller and the current collapse is reduced. Furthermore, when the layer thickness of the TiN layer 401bx is 70 nm or more and 100 nm or less, the on-resistance ratio becomes even smaller and the current collapse is reduced.
  • FIG. 5 shows a straight line with a downward sloping one-dot chain line, and it is shown that there is a trade-off relationship between the reduction of the reverse leakage current and the increase of the current collapse as the line gets closer to the straight line of the one-dot chain line. It is As shown in FIG. 5, as the thickness of the TiN layer 401bx increases to 50 nm, 70 nm, and 100 nm, the trade-off relationship disappears away from the downward-sloping chain line.
  • the thickness of the TiN layer 401bx is 20 nm
  • diffusion of the metal atoms of Al lowers the Schottky barrier, and it is thought that the reverse leakage current of the gate electrode 401x increases. Therefore, it is considered that the current collapse is reduced more than when the thickness of the TiN layer 401bx is 50 nm.
  • the gate electrode 401 according to this embodiment is composed of a first barrier layer 401a (TaN), a second barrier layer 401b (TiN), and a first wiring layer 401c (Al).
  • the gate electrode 401x according to the study example is composed of a TiN layer 401bx and an Al layer 401cx. That is, when part of the TiN layer 401bx according to the study example is replaced with the first barrier layer 401a, the gate electrode 401x according to the study example and the gate electrode 401 according to the present embodiment have the same configuration.
  • TaN has a work function of 5.4 eV, a lattice constant of 0.310 nm or more and 0.315 nm or less, and a melting point of 3090°C.
  • TiN has a work function of 4.7 eV, a lattice constant of 0.302 nm, and a melting point of 2930°C.
  • the gate electrode 401 in which the TiN layer 401bx according to the study example is partially replaced with the first barrier layer 401a (TaN), the work function is increased compared to the gate electrode 401x according to the study example.
  • the lattice constant and melting point are comparable. Therefore, if the layer thickness of the TiN layer 401bx and Z1+Z2 (the sum of the layer thickness of the first barrier layer 401a and the layer thickness of the second barrier layer 401b) are equivalent, the gate electrode 401 has It is expected that reverse leakage current is suppressed and current collapse is reduced.
  • the first wiring layer 401c extends into the first insulating layer 201 and the second nitride semiconductor layer 104 by the first barrier layer 401a and the second barrier layer 401b. It is considered possible to suppress the diffusion of the metal atoms in the first insulating layer 201 and the second nitride semiconductor layer 104 to reduce the level. Therefore, it is possible to reduce the current collapse while reducing the reverse leakage current of the gate electrode 401 .
  • the semiconductor device 100A having the gate electrode 401 with high reliability and low on-resistance can be obtained.
  • WN has a work function of 4.6 eV and a lattice constant of 0.298 nm, which are values equivalent to those of TiN.
  • WN has a melting point of less than 2000° C., which is sufficiently high. Therefore, the same effect can be expected when the second barrier layer 401b of the gate electrode 401 is made of WN instead of TiN.
  • Z1+Z2 ⁇ 200 nm is preferable, Z1+Z2 ⁇ 150 nm is even better, and Z1+Z2 ⁇ 100 nm is even better.
  • the first barrier layer 401a is made of TaN, which is a high melting point material, and the layer thickness t1 satisfies Z1>3 nm. Metal diffusion into the first insulating layer 201 and the second nitride semiconductor layer 104 can be suppressed more than when the barrier layer 401b is formed only.
  • TaN is formed by a sputtering method, it grows in a discontinuous island shape in the initial stage of film formation, so Z1>3 nm tends to form a uniform film shape, so Z1>3 nm is preferable.
  • Z1>10 nm is preferable, and Z1>15 nm is even better.
  • Z1 indicating the layer thickness t1 of the first barrier layer 401a satisfies 50 nm>Z1.
  • Z1 is better when 40 nm>Z1, and even better when Z1 is 30 nm>Z1.
  • TaN forming the first barrier layer 401a exhibits high barrier properties, but has low workability by dry etching. Therefore, by making the layer thickness t1 of the first barrier layer 401a small, for example, 50 nm>Z1, the workability of the first barrier layer 401a can be improved.
  • TaN must be processed by dry etching.
  • dry etching since TaN has a high vapor pressure of a halogen compound, the selectivity between TaN and the first insulating layer 201 is low, and variations in the remaining film of the first insulating layer 201 increase. The variation in the remaining film of the first insulating layer 201 increases, and the variation in capacitance between the field plate electrode 501 and the drain electrode 302 increases.
  • TiN or WN has a lower vapor pressure of a halogen compound than TaN, the selection ratio between TiN or WN and the first insulating layer 201 is high.
  • the first wiring layer between the first insulating layer 201 and the second nitride semiconductor layer 104 is more likely to reach than the conventional technique of Patent Document 2. Diffusion of the metal atoms of 401c is suppressed, processing is facilitated, and therefore variations in residual film of the first insulating layer 201 are reduced. Therefore, the capacitance variation between the field plate electrode 501 and the drain electrode 302 can be reduced.
  • the first barrier layer 401a made of TaN is covered with the first insulating layer 201 and the second insulating layer 202 made of SiN, and the second barrier layer 401b. Furthermore, the second insulating layer 202 is made of a material with an oxygen content of 1% or less. Therefore, oxidation of the first barrier layer 401a made of TaN is suppressed.
  • 2 also shows the closest distance d1 between the gate electrode 401 and the field plate electrode 501.
  • the closest distance d1 means the shortest distance between the gate electrode 401 and the field plate electrode 501.
  • the closest distance d1 is the length in the x-axis direction in the cross-sectional view shown in FIG.
  • the closest distance d1 is 100 nm or more. Also, the closest distance d1 is preferably 200 nm or more, more preferably 300 nm or more. By doing so, the ESD (Electrostatic Discharge) withstand voltage of the gate electrode 401 and the field plate electrode 501 can be sufficiently increased. Also, the closest distance d1 may be 1000 nm or less, preferably 900 nm or less, and even more preferably 800 nm or less. This facilitates downsizing of the semiconductor device 100A.
  • a method for manufacturing the semiconductor device 100A according to the present embodiment will be described below with reference to FIGS.
  • 6 to 13 are cross-sectional views showing steps of the method for manufacturing the semiconductor device 100A according to the first embodiment.
  • a layered structure of AlN and AlGaN with a layer thickness of 2 ⁇ m is formed on a substrate 101 made of Si by using a metal organic chemical vapor deposition (MOCVD) method.
  • MOCVD metal organic chemical vapor deposition
  • the buffer layer 102, the first nitride semiconductor layer 103 having a thickness of 200 nm and made of GaN, and the second nitride semiconductor layer 104 having a thickness of 20 nm and having an Al composition ratio of 25% are arranged in the +c-plane direction ( ⁇ 0001> direction) are sequentially epitaxially grown.
  • a high-concentration two-dimensional electron gas is generated on the first nitride semiconductor layer 103 side of the heterointerface between the second nitride semiconductor layer 104 and the first nitride semiconductor layer 103, forming a two-dimensional electron gas layer.
  • 105 channels are formed.
  • the second nitride semiconductor layer 104 is pre-cleaned with hydrochloric acid. Further, a mask is formed by applying a resist and then patterning the resist by lithography in areas other than the regions where the source electrode 301 and the drain electrode 302 are to be formed. Next, after a Ti film and an Al film are sequentially deposited by vapor deposition, ohmic electrodes 301a and 302a are formed by a lift-off method, as shown in FIG. Next, heat treatment is performed to electrically ohmic-connect the two-dimensional electron gas layer 105 and the ohmic electrodes 301a and 302a. The ohmic electrode 301a and the ohmic electrode 302a may be formed by sequentially applying the lithography method and the dry etching method after depositing the Ti film and the Al film by the sputtering method.
  • a first insulating layer 201 made of SiN having a layer thickness of 100 nm is deposited by plasma CVD (Chemical Vapor Deposition). Thereafter, a mask is formed by applying a resist and then patterning the resist using a lithography method in areas other than the area where the gate electrode 401 is to be formed. Next, a dry etching method is used to form a first opening 201a so that the second nitride semiconductor layer 104 is exposed.
  • the first insulating layer 201 may be SiCN, or may be SiN deposited by low pressure CVD.
  • the wet etching method may be used to provide the first opening 201 a in the first insulating layer 201 .
  • a sputtering apparatus is used to perform a sputtering process with a Ta target containing N2 gas, thereby depositing a first barrier layer 401a of TaN having a layer thickness of 30 nm. be.
  • a resist is applied to the region where the gate electrode 401 is to be formed, and then the resist is patterned using a lithography method to form a mask.
  • a dry etching method is then used to pattern the first barrier layer 401a.
  • part of the first insulating layer 201 is removed by overetching, but since the thickness of the TaN (first barrier layer 401a) is as thin as 30 nm, the amount of removal of the first insulating layer 201 is minimized. , and variations in the remaining film of the first insulating layer 201 are reduced.
  • a second insulating layer 202 of SiN having a layer thickness of 150 nm is deposited by plasma CVD. Thereafter, a mask is formed by applying a resist and then patterning the resist using a lithography method in areas other than the area where the gate electrode 401 is to be formed. Next, a dry etching method is used to form a second opening 202b to expose the first barrier layer 401a.
  • TiN with a layer thickness of 50 nm and Al with a layer thickness of 450 nm are sequentially deposited by sputtering.
  • TiN with a layer thickness of 50 nm corresponds to the second barrier layer 401b and the third barrier layer 501b
  • Al with a layer thickness of 450 nm corresponds to the first wiring layer 401c and the third wiring layer 501c.
  • a resist is applied to the regions where the gate electrode 401 and the field plate electrode 501 are to be formed, and then the resist is patterned using the lithography method to form a mask.
  • the second barrier layer 401b and the third barrier layer 501b and the first wiring layer 401c and the third wiring layer 501c are patterned.
  • gate electrode 401 and field plate electrode 501 are formed.
  • a mask is formed by applying a resist and then patterning the resist using lithography in areas other than the regions where the source electrode 301 and the drain electrode 302 are to be formed.
  • a dry etching method is used to form a third opening 202c and a fourth opening 202d to expose the ohmic electrode 301a and the ohmic electrode 302a.
  • TiN with a layer thickness of 200 nm, Al with a layer thickness of 3000 nm, and TiN with a layer thickness of 50 nm are sequentially deposited by sputtering.
  • a resist is applied to regions where the source electrode 301 and the drain electrode 302 are to be formed, and then the resist is patterned using a lithography method to form a mask.
  • a dry etching method is used to pattern the second wiring layer 301b and the second wiring layer 302b.
  • a source electrode 301 and a drain electrode 302 are formed.
  • the second wiring layer 301b and the second wiring layer 302b may be formed not only by the dry etching method but also by the plating method or the damascene method. good too.
  • the semiconductor device 100A formed as described above the first insulating layer 201 and the second nitride semiconductor layer 104 are separated from each other by the first barrier layer 401a and the second barrier layer 401b by satisfying 200 nm ⁇ Z1+Z2 ⁇ 50 nm. Diffusion of the metal atoms of the first wiring layer 401c into the inside is suppressed, and generation of levels in the first insulating layer 201 and the second nitride semiconductor layer 104 can be reduced. Therefore, it is possible to reduce the current collapse while reducing the reverse leakage current of the gate electrode 401 . Further, by setting Z1+Z2 ⁇ 70 nm, it is possible to further reduce the current collapse while reducing the reverse leakage current of the gate. Therefore, the semiconductor device 100A having the gate electrode 401 with high reliability and low on-resistance can be obtained.
  • the first barrier layer 401a is made of TaN, which is a high-melting-point material, and the layer thickness t1 satisfies 50 nm>Z1>3 nm. Metal diffusion can be suppressed more than in the case of only two barrier layers 401b.
  • Embodiment 2 a semiconductor device according to Embodiment 2 will be described with reference to FIG. 14 .
  • FIG. 14 is a cross-sectional view showing the configuration of a semiconductor device 100B according to the second embodiment.
  • the detailed description of the components common to the first embodiment is omitted.
  • the semiconductor device 100B is a HEMT having a Schottky junction gate electrode.
  • a semiconductor device 100B includes a substrate 101, a buffer layer 102, a first nitride semiconductor layer 103, a second nitride semiconductor layer 104, a two-dimensional electron gas layer 105, and a first insulating layer.
  • Layer 201 opening (here, first opening 201a), second insulating layer 202, third insulating layer 203, second opening 203b, third opening 203c, and fourth opening 203d , a source electrode 301 consisting of an ohmic electrode 301a and a second wiring layer 301b, a drain electrode 302 consisting of an ohmic electrode 302a and a second wiring layer 302b, a first barrier layer 401a, a second barrier layer 402b and a wiring layer (here has a gate electrode 402 including a first wiring layer 402c) and a field plate electrode 502.
  • a field plate electrode 502 is provided on the second insulating layer 202 between the gate electrode 402 and the drain electrode 302 . More specifically, field plate electrode 502 is an electrode provided on second insulating layer 202 between first opening 201a, which is an example of an opening, and drain electrode 302 . Also, the field plate electrode 502 is connected to the potential of the source electrode 301 . In this case, field plate electrode 502 exhibits the same potential as source electrode 301 . In this embodiment, the field plate electrode 502 is made of TiN with a layer thickness of 50 nm, for example. Note that the field plate electrode 502 is not limited to TiN, and may be composed of a plurality of layers including a lower layer and an upper layer.
  • the resistivity of the upper layer may be lower than that of the lower layer.
  • the field plate electrode 502 may be Al, Au, Cu, W, Ti, Ta, TiN, TaN, WN, Pt, etc., or a combination of compounds containing these elements.
  • the third insulating layer 203 is provided so as to cover the second insulating layer 202 and the field plate electrode 502 . More specifically, the third insulating layer 203 is provided on the second insulating layer 202 between the branch point p2 and the drain electrode 302 so as to cover the field plate electrode 502 .
  • the third insulating layer 203 is made of SiN with a layer thickness of 150 nm, for example.
  • the second opening 203b is formed by removing the second insulating layer 202 and the third insulating layer 203, and covers the range of the first opening 201a in plan view, and the first barrier layer 401a. is exposed.
  • the first opening 201a is arranged so as to be included in the larger second opening 203b in plan view.
  • the second opening 203b is provided so as to cover the range of the first opening 201a in a plan view, but the end portion of the second opening 203b on the side of the drain electrode 302 is the first opening. It may be positioned inside the portion 201a. That is, in this case, the size of the second opening 203b is smaller in plan view than in the semiconductor device 100B shown in FIG.
  • the size of the second opening 203b which can be a path through which the metal atoms of the first wiring layer 402c diffuse, the first insulating layer 201 and the second nitride semiconductor layer 104 on the drain electrode 302 side are separated from each other. The diffusion of the metal atoms of the first wiring layer 402c into the can be further reduced.
  • the second barrier layer 402b and the first wiring layer 402c are laminated in the order of the second barrier layer 402b and the first wiring layer 402c.
  • the second barrier layer 402b is formed on the first barrier layer 401a exposed by the second opening 203b and part of the third insulating layer 203 so as to cover the second opening 203b. provided in contact.
  • the first wiring layer 402c is provided on and in contact with the second barrier layer 402b.
  • the first wiring layer 402c is an example of a wiring layer provided on and in contact with the second barrier layer 402b.
  • the second barrier layer 402b is made of TiN or WN with a layer thickness of 50 nm, for example.
  • the first wiring layer 402c is made of Al with a layer thickness of 450 nm, for example.
  • the second barrier layer 402b is not limited to a single layer of TiN or WN, and may have a multilayer structure composed of TiN and WN.
  • the first wiring layer 402c is not limited to Al, but may be W, Au, or Cu, or may be a compound containing these elements, or may be a plurality of laminated structures composed of these elements. It may be a multilayer electrode film consisting of.
  • the distance (lattice constant) between adjacent metal atoms in the second barrier layer 402b made of TiN or WN oriented only in the (111) plane is about 0.302 nm or 0.298 nm, respectively.
  • the distance (lattice constant) between adjacent metal atoms in the first barrier layer 401a made of TaN with an N/Ta ratio of 1.00 is 0.315 nm.
  • the crystal structure of the second barrier layer 402b is a NaCl type structure oriented only in the (111) plane, so that the crystal structure of the first wiring layer 402c provided on the second barrier layer 402b is only in the (111) plane. It becomes easy to have a crystal structure oriented to When the thickness of the first wiring layer 402c is 450 nm and the first wiring layer 402c is made of Al, the crystal structure of the first wiring layer 402c is an FCC type structure oriented only in the (111) plane, The distance between adjacent metal atoms is 0.286 nm. By doing so, the resistance of the first wiring layer 402c can be reduced and the reliability can be improved.
  • the distance between adjacent metal atoms from the lower layer to the upper layer is large, such as the first barrier layer 401a made of TaN, the second barrier layer 402b made of TiN or WN, and the first wiring layer 402c made of Al. Since the structure is such that it becomes smaller gradually, dislocations are less likely to be formed in the first wiring layer 402c. Therefore, the resistance of the first wiring layer 402c can be further reduced and the reliability can be improved.
  • the first barrier layer 401a and the second barrier layer 402b are branched from a branch point p2 on the way from the first opening 201a to the drain electrode 302. At this time, on the x-axis positive side of the branch point p2, the second insulating layer 202 and the third insulating layer 203 are sandwiched between the first barrier layer 401a and the second barrier layer 402b. More specifically, a part of the laminate composed of the second insulating layer 202 and the third insulating layer 203 is sandwiched between the first barrier layer 401a and the second barrier layer 402b.
  • the top surface position of the field plate electrode 502 is provided below the lower end position p 1 of the side surface of the second barrier layer 402 b closest to the drain electrode 302 .
  • the uppermost surface position of the field plate electrode 502 is the position of the uppermost surface 502t of the field plate electrode 502 shown in FIG.
  • the side surface of the second barrier layer 402b is the surface of the second barrier layer 402b parallel to the yz plane, and the side surface closest to the drain electrode 302 is the side surface closest to the drain electrode 302. be.
  • the lower end position p1 of the side surface of the second barrier layer 402b is indicated by a dashed circle.
  • the position of the top surface 502t is located below the lower end position p1 of the side surface of the second barrier layer 402b (negative z-axis side).
  • the area where the field plate electrode 502 and the gate electrode 402 face each other can be reduced, so that the capacitance between the field plate electrode 502 and the gate electrode 402 can be reduced.
  • the first barrier layer 401a made of TaN is covered with the first insulating layer 201 and the second insulating layer 202 made of SiN, and the second barrier layer 402b. Furthermore, the second insulating layer 202 is made of a material with an oxygen content of 1% or less. Therefore, oxidation of the first barrier layer 401a made of TaN is suppressed.
  • FIG. 14 also shows the closest distance d1 between the gate electrode 402 and the field plate electrode 502.
  • the closest distance d1 means the shortest distance between the gate electrode 402 and the field plate electrode 502 .
  • the closest distance d1 is the length in the x-axis direction in the cross-sectional view shown in FIG.
  • the closest distance d1 is 100 nm or more. Also, the closest distance d1 is preferably 200 nm or more, more preferably 300 nm or more. By doing so, the ESD withstand voltage of the gate electrode 402 and the field plate electrode 502 can be sufficiently increased. Also, the closest distance d1 may be 1000 nm or less, preferably 900 nm or less, and even more preferably 800 nm or less. This facilitates compactness of the semiconductor device 100B.
  • the lowermost surface position of the field plate electrode 502 is provided below the lower end position p1 of the side surface of the second barrier layer 402b closest to the drain electrode 302. It is The lowermost surface position of the field plate electrode 502 is the position of the lowermost surface 502u of the field plate electrode 502 shown in FIG. In other words, in this case, as shown in FIG. 14, the position of the lowermost surface 502u is positioned below (z-axis negative side) the lower end position p1 of the side surface of the second barrier layer 402b. By doing so, the electric field at the lower end of the first barrier layer 401a closest to the drain electrode 302 can be further relaxed.
  • Third opening 203c and fourth opening 203d are formed by removing first insulating layer 201, second insulating layer 202, and third insulating layer 203, and are part of ohmic electrode 301a and ohmic electrode 302a. is exposed.
  • the second wiring layer 301b is provided on the ohmic electrode 301a exposed by the third opening 203c and part of the third insulating layer 203 so as to cover the third opening 203c.
  • the second wiring layer 302b is provided on the ohmic electrode 302a exposed through the fourth opening 203d and part of the third insulating layer 203 so as to cover the fourth opening 203d.
  • the second wiring layer 301b and the second wiring layer 302b are each made of, for example, TiN with a layer thickness of 200 nm, Al with a layer thickness of 3000 nm, and TiN with a layer thickness of 50 nm.
  • the second wiring layer 301b and the second wiring layer 302b are not limited to Al, and instead of Al, W, Au, or Cu may be used, or compounds containing these elements may be used. It may also be a multilayer electrode film composed of a plurality of laminated structures composed of elements.
  • the semiconductor device 100B has the third insulating layer 203, and the second insulating layer 202 and the third insulating layer 203 are the first barrier layer 401a and the second barrier layer 402b. sandwiched between With the semiconductor device 100B having such a structure, the second insulating layer 202 and the third insulating layer 203 are designed independently, so that the structural design of the semiconductor device 100B is free from the viewpoint of ESD withstand voltage and electric field design. High degree. Furthermore, since the third insulating layer 203 is inserted between the first barrier layer 401a and the second barrier layer 402b, the electrostatic capacity between the field plate electrode 502 and the gate electrode 402 is small, the reliability is high, and the on-resistance is low. A gate electrode 402 having excellent characteristics is obtained.
  • the dielectric constant of the material forming the third insulating layer 203 may be smaller than the dielectric constant of the material forming the second insulating layer 202 .
  • the material forming the third insulating layer 203 may be, for example, SiO 2 , SiON, SiC, or SiCN, and may be selected according to the dielectric constant of the material forming the second insulating layer 202 . By doing so, the capacitance between the field plate electrode 502 and the gate electrode 402 can be reduced.
  • the layer thickness of the second insulating layer 202 may be thinner than the layer thickness of the third insulating layer 203 . By doing so, the electric field can be relaxed at the end of the first barrier layer 401a on the drain electrode 302 side.
  • At least one of the first barrier layer 401a and the second barrier layer 402b may be left-right asymmetric. That is, at least one of the shape of the first barrier layer 401a and the shape of the second barrier layer 402b is defined by a line of symmetry passing through the center of the opening (here, the first opening 201a) and parallel to the z-axis. It does not have to be symmetrical. By doing so, the degree of freedom in designing the structure of the field plate electrode 502 is improved.
  • FIG. 15 Such a shape will be explained using FIGS. 15 to 19.
  • FIG. 15 Such a shape will be explained using FIGS. 15 to 19.
  • FIG. 15 is a cross-sectional view showing the configuration near the gate electrode 402 of the semiconductor device 100B of Modification 1 according to Embodiment 2. As shown in FIG.
  • Semiconductor device 100B of Modification 1 according to Embodiment 2 is mainly except that field plate electrode 502 has a stepped shape and that second barrier layer 402b has a left-right asymmetric shape. , has the same configuration as the semiconductor device 100B according to the second embodiment.
  • FIG. 15 a line of symmetry L1 passing through the center of the first opening 201a and parallel to the z-axis is shown.
  • the shape of the second barrier layer 402b is not symmetrical with respect to the line of symmetry L1, for example, in the cross-sectional view shown in FIG. In this case, in the second barrier layer 402b, the extension length in the direction from the center of the first opening 201a toward the source electrode 301 and the extension length in the direction from the center toward the drain electrode 302 are different.
  • the direction from the center toward the source electrode 301 is the negative direction of the x-axis
  • the extension length in the negative direction of the x-axis is the length from the line of symmetry L1 to the end of the second barrier layer 402b on the source electrode 301 side. length.
  • the direction from the center toward the source electrode 301 is the positive direction of the x-axis
  • the extension length in the positive direction of the x-axis is the length from the line of symmetry L1 to the end of the second barrier layer 402b on the drain electrode 302 side. length.
  • At least one of the first barrier layer 401a and the second barrier layer 402b (here, the second barrier layer 402b) has an extension length in the direction from the center of the first opening 201a toward the source electrode 301.
  • the extension length in the direction from the center toward the drain electrode 302 is different. Thereby, the degree of freedom in designing the structure of the field plate electrode 502 is improved.
  • the distance between the first barrier layer 401a and the field plate electrode 502 may be shorter than the distance d2 between the second barrier layer 402b and the field plate electrode 502. More specifically, the distance d2 between the second barrier layer 402b and the field plate electrode 502 is the length in the x-axis direction shown in FIG. Note that since the end of the first barrier layer 401a on the positive side of the x-axis and the end of the field plate electrode 502 on the negative side of the x-axis overlap in plan view, the distance between the first barrier layer 401a and the field plate electrode 502 is is 0 here. By doing so, the distance between the second barrier layer 402b and the drain electrode 302 is widened, so that the capacitance between the drain electrode 302 and the gate electrode 402 can be reduced.
  • FIG. 16 is a cross-sectional view showing the configuration near the gate electrode 402 of the semiconductor device 100B of Modification 2 according to Embodiment 2. As shown in FIG.
  • the semiconductor device 100B of Modification 2 of Embodiment 2 has the same configuration as the semiconductor device 100B of Modification 1 of Embodiment 2, except that the shape of the second barrier layer 402b is mainly different. .
  • the shape of the second barrier layer 402b is not line-symmetrical about the line of symmetry L1, for example, in the cross-sectional view shown in FIG.
  • the second barrier layer 402b is located on the x-axis negative side of the center of the first opening 201a (for example, the symmetry line L1) and on the x-axis positive side of the center of the first opening 201a (for example, the symmetry line L1).
  • Each has a staircase shape.
  • the stepped shape on the x-axis negative side from the center of the first opening 201a and the stepped shape on the x-axis positive side from the center of the first opening 201a have different numbers of steps.
  • the distance between 401 a and field plate electrode 502 may be shorter than the distance d2 between second barrier layer 402 b and field plate electrode 502 . By doing so, the distance between the second barrier layer 402b and the drain electrode 302 is widened, so that the capacitance between the drain electrode 302 and the gate electrode 402 can be reduced.
  • FIG. 17 is a cross-sectional view showing the configuration near the gate electrode 402 of the semiconductor device 100B of Modification 3 according to Embodiment 2. As shown in FIG. 18 is a cross-sectional view showing an enlarged region XVIII in FIG. 17.
  • FIG. 18 is a cross-sectional view showing an enlarged region XVIII in FIG. 17.
  • a semiconductor device 100B of Modified Example 3 according to Embodiment 2 has the same configuration as the semiconductor device 100B according to Embodiment 2, mainly except that the shape of the first barrier layer 401a is left-right asymmetric.
  • the shape of the first barrier layer 401a is not symmetrical about the line of symmetry L1 in the cross-sectional views shown in FIGS. 17 and 18, for example. More specifically, in the first barrier layer 401a, the extension length in the direction from the center of the first opening 201a toward the source electrode 301 (hereinafter referred to as the first extension length) and the extension length in the direction from the center toward the drain electrode 302
  • the stretched length (hereinafter referred to as the second stretched length) is different.
  • the first stretch length and the second stretch length are length d4 and length d5, respectively.
  • the first extension length is a length d4 along the x-axis negative direction, which is the direction from the center of the first opening 201a (for example, the line of symmetry L1) toward the source electrode 301.
  • the extension length is a length d5 along the x-axis positive direction, which is the direction from the center of the first opening 201a (for example, the line of symmetry L1) toward the drain electrode 302 .
  • the first stretching length and the second stretching length are length d6 and length d7, respectively.
  • the first stretching length is the length d6 along the staircase-shaped step of the first barrier layer 401a located on the x-axis negative side of the line of symmetry L1
  • the second stretching length is the length d6 along the line of symmetry.
  • a length d7 is a length along the staircase-shaped step of the first barrier layer 401a located on the positive side of the x-axis from L1.
  • the first stretched length and the second stretched length preferably satisfy length d4>length d5 or length d6>length d7. As shown in FIGS.
  • the extension length (first extension length) from the center of the first opening 201a toward the source electrode 301 and the extension length from the center toward the drain electrode 302 It is different from the stretching length in the direction (second stretching length). Thereby, the degree of freedom in designing the structure of the field plate electrode 502 is improved.
  • the distance d3 between the first barrier layer 401a and the field plate electrode 502 may be longer than the distance between the second barrier layer 402b and the field plate electrode 502. More specifically, the distance d3 between the first barrier layer 401a and the field plate electrode 502 is the length in the x-axis direction shown in FIG. Note that since the end of the second barrier layer 402b on the positive side of the x-axis and the end of the field plate electrode 502 on the negative side of the x-axis overlap in plan view, the distance between the second barrier layer 402b and the field plate electrode 502 is is 0 here.
  • the widths of the second barrier layer 402b and the first wiring layer 402c are expanded toward the drain electrode 302, and the wiring resistance of the gate electrode 402 can be reduced. Furthermore, since the field plate electrode 502 has a flat shape, the capacitance between the field plate electrode 502 and the gate electrode 402 can be reduced.
  • FIG. 19 is a cross-sectional view showing a configuration in the vicinity of a gate electrode 402 of a semiconductor device 100B of Modification 4 according to Embodiment 2. As shown in FIG.
  • a semiconductor device 100B of Modification 4 of Embodiment 2 has the same configuration as semiconductor device 100B of Modification 3 of Embodiment 2, except that the shape of second barrier layer 402b is mainly different. .
  • the distance d3 between the first barrier layer 401a and the field plate electrode 502 may be longer than the distance d2 between the second barrier layer 402b and the field plate electrode 502.
  • the widths of the second barrier layer 402b and the first wiring layer 402c are further expanded toward the drain electrode 302, and the wiring resistance of the gate electrode 402 can be reduced.
  • the capacitance between the field plate electrode 502 and the gate electrode 402 is increased. Therefore, by increasing the thickness of the third insulating layer 203, the structure can be designed so that the capacitance between the field plate electrode 502 and the gate electrode 402 does not increase.
  • FIGS. 20 to 28 are cross-sectional views showing the configuration of the semiconductor device 100B during manufacturing.
  • FIGS. 20 to 23 are the same as FIGS. 6 to 9 shown in Embodiment 1, detailed description thereof will be omitted.
  • a second insulating layer 202 made of SiN having a thickness of 150 nm is deposited by plasma CVD, and then TiN having a thickness of 50 nm is successively deposited by sputtering.
  • a resist is applied to the region where the field plate electrode 502 is to be formed, and the resist is patterned using a lithographic method to form a mask. A dry etching method is then used to form the field plate electrode 502 .
  • a third insulating layer 203 of SiN having a layer thickness of 150 nm is deposited by plasma CVD. After that, a resist is applied to the area other than the area where the gate electrode 402 is to be formed, and then the resist is patterned using a lithography method to form a mask. Next, a dry etching method is used to form a second opening 203b to expose the first barrier layer 401a.
  • a second barrier layer 402b made of TiN with a layer thickness of 50 nm and a first wiring layer 402c made of Al with a layer thickness of 450 nm are sequentially deposited by sputtering.
  • a resist is applied to the region where the gate electrode 402 is to be formed, and then the resist is patterned using a lithography method to form a mask.
  • a dry etching method is used to pattern the second barrier layer 402b and the first wiring layer 402c.
  • the gate electrode 402 is formed.
  • a mask is formed by applying a resist and then patterning the resist using lithography in areas other than the regions where the source electrode 301 and the drain electrode 302 are to be formed.
  • a dry etching method is used to form a third opening 203c and a fourth opening 203d to expose the ohmic electrode 301a and the ohmic electrode 302a.
  • TiN with a layer thickness of 200 nm, Al with a layer thickness of 3000 nm, and TiN with a layer thickness of 50 nm are sequentially deposited by sputtering.
  • a resist is applied to regions where the source electrode 301 and the drain electrode 302 are to be formed, and then the resist is patterned using a lithography method to form a mask.
  • a dry etching method is used to pattern the second wiring layer 301b and the second wiring layer 302b.
  • a source electrode 301 and a drain electrode 302 are formed.
  • the second wiring layer 301b and the second wiring layer 302b may be formed as wiring using Au or Cu by the plating method or the damascene method, not limited to the dry etching method.
  • the semiconductor device 100B having the structure shown in FIG. 14 is completed through the series of steps described above.
  • the semiconductor device 100B formed as described above since the opposing area between the field plate electrode 502 and the gate electrode 402 can be reduced, the capacitance between the field plate electrode 502 and the gate electrode 402 can be reduced. . Therefore, the semiconductor device 100B having the gate electrode 402 with small capacitance between the field plate electrode 502 and the gate electrode 402, high reliability, and low on-resistance is obtained.
  • At least one of the first barrier layer 401a and the second barrier layer 402b may be bilaterally asymmetric.
  • the distance between the first barrier layer 401a and the field plate electrode 502 may be shorter than the distance d2 between the second barrier layer 402b and the field plate electrode 502.
  • the distance between first barrier layer 401a and field plate electrode 501 may be shorter than the distance between second barrier layer 401b and field plate electrode 501.
  • the distance between the second barrier layer 401b and the drain electrode 302 is widened, so that the capacitance between the drain electrode 302 and the gate electrode 401 can be reduced.
  • the distance d3 between the first barrier layer 401a and the field plate electrode 502 may be longer than the distance between the second barrier layer 402b and the field plate electrode 502.
  • the distance between first barrier layer 401 a and field plate electrode 501 may be longer than the distance between second barrier layer 402 b and field plate electrode 501 .
  • the width of the gate electrode 401 is expanded toward the drain electrode 302, and the wiring resistance of the gate electrode 401 can be reduced.
  • the field plate electrode 501 has a flat shape, the capacitance between the field plate electrode 501 and the gate electrode 401 can be reduced.
  • a semiconductor device is useful for communication equipment and inverters that require high-speed operation, power switching elements used in power supply circuits, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

半導体装置(100A)は、第1窒化物半導体層(103)と、第2窒化物半導体層(104)と、ソース電極(301)およびドレイン電極(302)と、ソース電極(301)およびドレイン電極(302)と間隔を空けて設けられ、第2窒化物半導体層(104)に接触するゲート電極(401)と、を有し、ゲート電極(401)は、TaNからなり、層厚がZ1であり、第2窒化物半導体層(104)にショットキー接合する第1バリア層(401a)と、第1バリア層(401a)の上に接触して設けられ、TiNまたはWNからなり、層厚がZ2である第2バリア層(401b)と、第2バリア層(401b)の上に接触して設けられた配線層と、を含み、Z1およびZ2は、200nm≧Z1+Z2≧50nm、Z1<Z2、および、50nm>Z1>3nmを満たす。

Description

半導体装置
 本開示は、半導体装置に関し、特に、III族窒化物半導体を用いたIII族窒化物半導体装置に関する。
 III族窒化物半導体、特に、窒化ガリウム(GaN)または窒化アルミニウムガリウム(AlGaN)を用いたIII族窒化物半導体装置は、材料のバンドギャップの広さから、高い絶縁破壊電圧を有する。また、III族窒化物半導体装置では、AlGaN/GaN等のヘテロ構造が容易に形成される。
 AlGaN/GaNヘテロ構造では、材料間での格子定数差から発生するピエゾ分極とAlGaNおよびGaNの自発分極とにより、AlGaN/GaN界面のGaN層側に高濃度の電子(以下「二次元電子ガス層」と称する)によるチャネルが形成される。この二次元電子ガス層のチャネルを利用したIII族窒化物半導体装置は、電子飽和速度が比較的高く、かつ、耐絶縁性が比較的高く、熱伝導率も比較的高いことから、高周波パワーデバイスに応用されている。そして、AlGaNに対してショットキー接合した電極をゲート電極として用いることが必要となる。
 これらのIII族窒化物半導体装置において特性を高めるため、ゲート電極においては、高温動作における電極の劣化の低減と逆方向リーク電流の低減とが必要である。そのため、ゲート電極に用いる材料には、高融点で仕事関数の高い材料が用いられるとよい。この材料が用いられることにより、ゲート電極の耐熱性とショットキー障壁の高さとが出来る限り高くされるとよい。このようにして、高温動作における電極の劣化と逆方向リーク電流とが低減されることで、信頼性を高くすることができる。
 また、III族窒化物半導体装置の特有の課題である電流コラプスと呼ばれる現象の低減が必要である。電流コラプスは、大電流かつ高電圧のストレスが印加されることでオン抵抗が増大する現象である。この現象は、高電圧のストレスによって加速された電子が、III族窒化物半導体装置内部の結晶欠陥および膜界面に存在する準位に捕獲されることにより発生する。
 特許文献1には、+c面方向(<0001>方向)のn型GaN層の上に、高融点であるスパッタ法により成膜したNaCl構造のN/Ta比=1.00の窒化タンタル(TaN)層を備え、n型GaN層とTaN層とはショットキー接合している半導体装置が開示されている。この構成により、NaCl構造のN/Ta比=1.00のTaNは、材料としての仕事関数が5.4eVと高いだけでなく、n型GaN層とのa軸方向の格子定数差が少ないため仕事関数が最大となり、すなわちショットキー障壁が最大となる。そのため、耐熱性を高くショットキー障壁を高くすることができ、信頼性の高いゲート電極を得ることができる。
 図29は、特許文献2に係る半導体装置(III族窒化物半導体装置)のゲート電極近傍の構成を示す断面図である。図29に示すように、特許文献2に係る半導体装置には、基板101の上に、バッファ層102と、GaN層103aと、AlGaN層104aと、が順に設けられている。この半導体装置は、ヘテロ構造によりGaN層103a側に二次元電子ガス層105を備えている。また、AlGaN層104aの上に第1絶縁層211と、第1絶縁層211にはAlGaN層104aが露出するように第1絶縁層211が除去された第1開口部211aと、が設けられている。さらに、第1絶縁層211の上および第1開口部211aを覆うように設けられたゲート絶縁層204と、第1開口部211aを覆うようにゲート絶縁層204の上にTaN層411aと、が設けられている。ゲート絶縁層204の上とTaN層411aの上とを覆うように第2絶縁層212が設けられ、第2絶縁層212にはTaN層411aの一部が露出するように第2絶縁層212が除去された第2開口部212bが設けられている。第2開口部212bを覆うように窒化チタン層(TiN層411b)と、第1配線層411cと、が順に積層され、つまりこの半導体装置は、TaN層411aと、TiN層411bと、第1配線層411cと、からなるゲート電極411を備えている。特許文献2に係る半導体装置は、ゲート絶縁層204を備えたMIS(Metal-Insulator-Semiconductor)構造であるが、MES(MEtal-Semiconductor)構造として利用されてもよい。この場合は、特許文献2に係る半導体装置は、TaN層411aとAlGaN層104aとがショットキー接合されても、特許文献1に記載されているように耐熱性が高くショットキー障壁を高くすることができ、信頼性の高いゲート電極を得ることができる。
特開2006-190749号公報 特開2013-201370号公報
 上記特許文献2によれば、TaN層411aと、TiN層411bと、第1配線層411cと、からなるゲート電極411が示されている。特許文献2に記載された方法では、製造工程中の熱履歴により、AlGaN層104aまたは第1絶縁層211の内部へ第1配線層411cの金属原子が拡散すると、準位が発生する。発生した準位によって、ショットキー障壁高さが低下したり、ソース電極とドレイン電極との間に高電圧が印加された時に電流コラプスにより電子がトラップされてオン抵抗が増大したりする。そのため、製造工程中の熱履歴により250℃~500℃程度の温度が与えられても、第1配線層411cの金属原子が第1配線層411cからAlGaN層104aまたは第1絶縁層211へ拡散しないようにTaN層411aの層厚と、TiN層411bの層厚と、が考慮される必要がある。しかしながら、特許文献1および2においては、TaN層411aの層厚規定と、TiN層411bの層厚規定と、がなく、AlGaN層104aまたは第1絶縁層211への第1配線層411cの金属原子の拡散を抑制するバリア性が不明瞭である。
 本開示は、このような課題を鑑みてなされたものであり、信頼性が高く、低オン抵抗なゲート電極を有する半導体装置を提供することを目的とする。
 上記目的を達成するために、本開示に係る半導体装置の一態様は、基板と、基板の上に設けられた第1窒化物半導体層と、第1窒化物半導体層と比べてバンドギャップが大きく、第1窒化物半導体層の上に設けられた第2窒化物半導体層と、第2窒化物半導体層の上に設けられた第1絶縁層と、間隔を空けて設けられ、それぞれが第1絶縁層を貫通して第1窒化物半導体層に電気的に接続されたソース電極およびドレイン電極と、ソース電極とドレイン電極との間において、第2窒化物半導体層が露出するように第1絶縁層に設けられた開口部と、ソース電極およびドレイン電極と間隔を空けて設けられ、開口部で第2窒化物半導体層に接触するゲート電極と、を有し、ゲート電極は、TaNからなり、層厚がZ1であり、第2窒化物半導体層にショットキー接合する第1バリア層と、第1バリア層の上に接触して設けられ、TiNまたはWNからなり、層厚がZ2である第2バリア層と、第2バリア層の上に接触して設けられた配線層と、を含み、Z1およびZ2は、200nm≧Z1+Z2≧50nm、Z1<Z2、および、50nm>Z1>3nmを満たす。
 本開示に係る半導体装置によると、信頼性が高く、低オン抵抗なゲート電極を有する半導体装置を得ることができる。
図1は、実施の形態1に係る半導体装置の構成を示す断面図である。 図2は、図1の領域IIを拡大して示す断面図である。 図3は、実施の形態1の検討例に係る半導体装置が有するゲート電極近傍を示す断面図である。 図4は、実施の形態1の検討例に係る半導体装置におけるゲート電極の逆方向リーク電流と高電圧時のオン抵抗/低電圧時のオン抵抗とのTiN層の層厚依存性結果を示す図である。 図5は、実施の形態1の検討例に係る半導体装置におけるゲート電極の逆方向リーク電流と高電圧時のオン抵抗/低電圧時のオン抵抗とのTiN層の層厚依存性結果を示す他の図である。 図6は、実施の形態1に係る半導体装置の製造方法の工程を示す断面図である。 図7は、実施の形態1に係る半導体装置の製造方法の工程を示す断面図である。 図8は、実施の形態1に係る半導体装置の製造方法の工程を示す断面図である。 図9は、実施の形態1に係る半導体装置の製造方法の工程を示す断面図である。 図10は、実施の形態1に係る半導体装置の製造方法の工程を示す断面図である。 図11は、実施の形態1に係る半導体装置の製造方法の工程を示す断面図である。 図12は、実施の形態1に係る半導体装置の製造方法の工程を示す断面図である。 図13は、実施の形態1に係る半導体装置の製造方法の工程を示す断面図である。 図14は、実施の形態2に係る半導体装置の断面図である。 図15は、実施の形態2に係る変形例1の半導体装置のゲート電極近傍の構成を示す断面図である。 図16は、実施の形態2に係る変形例2の半導体装置のゲート電極近傍の構成を示す断面図である。 図17は、実施の形態2に係る変形例3の半導体装置のゲート電極近傍の構成を示す断面図である。 図18は、図17の領域XVIIIを拡大して示す断面図である。 図19は、実施の形態2に係る変形例4の半導体装置のゲート電極近傍の構成を示す断面図である。 図20は、実施の形態2に係る半導体装置の製造方法の工程を示す断面図である。 図21は、実施の形態2に係る半導体装置の製造方法の工程を示す断面図である。 図22は、実施の形態2に係る半導体装置の製造方法の工程を示す断面図である。 図23は、実施の形態2に係る半導体装置の製造方法の工程を示す断面図である。 図24は、実施の形態2に係る半導体装置の製造方法の工程を示す断面図である。 図25は、実施の形態2に係る半導体装置の製造方法の工程を示す断面図である。 図26は、実施の形態2に係る半導体装置の製造方法の工程を示す断面図である。 図27は、実施の形態2に係る半導体装置の製造方法の工程を示す断面図である。 図28は、実施の形態2に係る半導体装置の製造方法の工程を示す断面図である。 図29は、特許文献2に係る半導体装置のゲート電極近傍の構成を示す断面図である。
 発明者らは、信頼性が高く、低オン抵抗なゲート電極を有する半導体装置を提供すべく、鋭意検討、実験を重ねた。その結果、発明者らは、下記半導体装置等に想到した。
 以下、本開示の一態様に係る半導体装置等の具体例について、図面を参照しながら説明する。ここで示す実施の形態は、いずれも本開示の一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、構成要素、構成要素の配置および接続形態、並びに、ステップ(工程)およびステップの順序等は、一例であって本開示を限定する趣旨ではない。よって、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化する。
 また、本明細書において、半導体装置の構成における「上」および「下」という用語は、絶対的な空間認識における上方向(鉛直上方)および下方向(鉛直下方)を指すものではなく、積層構造における積層順を基に相対的な位置関係により規定される用語である。また、「上」および「下」という用語は、2つの構成要素が互いに間隔を空けて配置されて2つの構成要素の間に別の構成要素が存在する場合のみならず、2つの構成要素が互いに密着して配置されて2つの構成要素が接する場合にも適用される。
 また、本明細書および図面において、x軸、y軸およびz軸は、三次元直交座標系の三軸を示している。各実施の形態では、半導体装置が有する基板が含む上面に平行な二軸をx軸およびy軸とし、この上面に直交する方向をz軸方向としている。以下で説明する実施の形態において、z軸正方向を上と記載し、z軸負方向を下と記載する場合がある。
 また、本明細書において「平面視」とは、半導体装置が有する基板をz軸正方向から見たときのことをいう。
 (実施の形態1)
 まず、実施の形態1に係る半導体装置について、図1および図2を用いて説明する。図1は、実施の形態1に係る半導体装置100Aの構成を示す断面図である。図2は、図1の領域IIを拡大して示す断面図である。本実施の形態では、半導体装置100Aがショットキー接合ゲート構造を備えた高電子移動度トランジスタ(High Electron Mobility Transistor:HEMT)である場合について説明する。
 図1に示すように、半導体装置100Aは、基板101と、バッファ層102と、第1窒化物半導体層103と、第2窒化物半導体層104と、二次元電子ガス層105と、第1絶縁層201と、開口部(ここでは第1開口部201a)と、第2絶縁層202と、第2開口部202bと、第3開口部202cと、第4開口部202dと、オーミック電極301aおよび第2配線層301bからなるソース電極301と、オーミック電極302aおよび第2配線層302bからなるドレイン電極302と、第1バリア層401a、第2バリア層401bおよび配線層(ここでは第1配線層401c)を含むゲート電極401と、第3バリア層501bおよび第3配線層501cからなるフィールドプレート電極501と、を備える。
 基板101は、本実施の形態において、例えば、Siからなる基板である。基板101は、Siからなる基板に限らず、サファイア(Sapphire)、SiC、GaN、または、AlN等からなる基板であってもよい。
 バッファ層102は、基板101の上に設けられている。本実施の形態において、バッファ層102は、例えば、層厚が2μmのIII族窒化物半導体層であって、より具体的には、AlNおよびAlGaNで構成される複数の積層構造からなるIII族窒化物半導体層である。また、層厚とは、z軸方向の層の厚みである。バッファ層102は、その他に、GaN、AlGaN、AlN、InGaN、または、AlInGaN等のIII族窒化物半導体の単層もしくは複数層によって構成されていてもよい。
 第1窒化物半導体層103は、基板101の上に設けられており、より具体的には、バッファ層102の上に設けられている。本実施の形態において、第1窒化物半導体層103は、例えば、層厚が200nmのGaNによって構成される。なお、第1窒化物半導体層103は、GaNに限らず、InGaN、AlGaN、または、AlInGaN等のIII族窒化物半導体によって構成されていてもよく、また、第1窒化物半導体層103には、n型の不純物が含まれていてもよい。
 第2窒化物半導体層104は、第1窒化物半導体層103と比べてバンドギャップが大きく第1窒化物半導体層103の上に設けられている。本実施の形態において、第2窒化物半導体層104は、例えば、層厚が20nmのAl組成比が25%のAlGaNによって構成される。なお、「Al組成比が25%」とは、Al0.25Ga0.75Nであることを示す。第2窒化物半導体層104と第1窒化物半導体層103とのヘテロ界面の第1窒化物半導体層103側には、高濃度の二次元電子ガスが発生し、二次元電子ガス層105のチャネルが形成される。
 なお、第2窒化物半導体層104は、AlGaNに限らず、AlInGaN等のIII族窒化物半導体によって構成されていてもよく、また、第2窒化物半導体層104には、n型の不純物が含まれていてもよい。
 なお、第2窒化物半導体層104の上にはキャップ層として、例えばGaNからなる層厚が約1nm以上2nm以下のキャップ層が設けられてもよい。つまり、第2窒化物半導体層104と第1絶縁層201との間には、このようなキャップ層が設けられてもよい。また、第1窒化物半導体層103と第2窒化物半導体層104との間にスペーサ層として、例えば、AlNからなる層厚が約1nmのスペーサ層が設けられてもよい。
 オーミック電極301aおよび302aは、第2窒化物半導体層104の上に対向するように設けられている。本実施の形態において、オーミック電極301aおよび302aはそれぞれ、例えば、Ti膜とAl膜とを順に積層した積層構造からなる多層電極膜であるが、これに限らない。また、オーミック電極301aおよび302aはそれぞれ、二次元電子ガス層105と電気的にオーミック接続されている。
 なお、オーミック電極301aおよび302aの下には、第2窒化物半導体層104および第1窒化物半導体層103の一部を除去したリセス、並びに、Siなどのドナーを含んだn型の不純物を含んだコンタクト層の少なくとも一方が設けてられもよい。また、n型の不純物を含んだコンタクト層は、プラズマ処理、イオン注入および再成長等により形成されてもよい。
 第1絶縁層201は、第2窒化物半導体層104の上に設けられている。本実施の形態においては、第1絶縁層201は、第2窒化物半導体層104の上と、オーミック電極301aの一部と、オーミック電極302aの一部と、を覆うように設けられている。本実施の形態において、第1絶縁層201は、例えば、層厚が100nmのSiNによって構成される。
 第1開口部201aは、ソース電極301とドレイン電極302との間において、第2窒化物半導体層104が露出するように第1絶縁層201に設けられた開口部の一例である。本実施の形態においては、第1開口部201aは、オーミック電極301aおよび302aの間にある第1絶縁層201を除去して形成されており、第2窒化物半導体層104が露出するように設けられている。
 第1バリア層401aは、第1開口部201aと第1絶縁層201の一部とを覆うように、第1開口部201aにより露出した第2窒化物半導体層104と第1絶縁層201の一部との上に設けられている。ここで、図2に示すように、第1バリア層401aの層厚t1をZ1とする。本実施の形態において、第1バリア層401aは、例えば、第1バリア層401aの層厚t1(Z1)が30nmの(111)面のみに配向したNaCl型構造のN/Ta比=1.00のTaNによって構成される。また、第1バリア層401aと第2窒化物半導体層104とは、ショットキー接合されている。層厚t1を示すZ1は、50nm>Z1>3nmを満たす。
 なお、Z1は、スパッタ法によってTaN(第1バリア層401a)が形成された場合は、TaNを(111)面のみに配向したNaCl構造とするため、Z1>10nmであるとよい。なお、原子層堆積法によってTaN(第1バリア層401a)が形成された場合は、上記層厚の限りではないが、生産性が低いという課題がある。
 なお、第1バリア層401aは、(111)面のみに配向したNaCl型構造のN/Ta比=0.70~1.00のTaNとしてもよい。このようにすることで、特許文献1に記載されているようにショットキー障壁高さを高くすることができる。
 また、NaCl型構造のN/Ta比=0.70~1.00であるTaNの近接する金属原子間の距離(つまりは格子定数)は0.310nm以上0.315nm以下となる。AlGaNの格子定数は0.311nm以上0.319nm以下である。よって、TaNからなる第1バリア層401aとAlGaNからなる第2窒化物半導体層104との原子間の距離の差を小さくすることができる。そのため、第1バリア層401aに転位が形成されにくいので、第1配線層401cの金属原子が第1バリア層401aの転位を介して拡散することを低減できる。
 第2絶縁層202は、第1絶縁層201の上と、第1バリア層401aと、を覆うように設けられている。より具体的には、第2絶縁層202は、第1絶縁層201の上と、第1バリア層401aの一部の上と、を覆うように設けられている。本実施の形態において、第2絶縁層202は、酸素含有率1%以下の材料で構成されているとよく、例えば、層厚が150nmのSiNによって構成される。なお、第2絶縁層202は、SiNに限らず、SiC、または、SiCNであってもよい。
 第2開口部202bは、第2絶縁層202を除去して形成されており、平面視で第1開口部201aの範囲を覆うように、かつ、第1バリア層401aが露出するように設けられている。この場合、平面視で第1開口部201aは、より大きいサイズの第2開口部202bに包含されるように配置されている。
 なお、第2開口部202bは、平面視で第1開口部201aの範囲を覆うように設けられているが、これに限らず第2開口部202bのドレイン電極302側の端部が第1開口部201aの内側に位置していてもよい。つまりこの場合、平面視で、図1に示す半導体装置100Aに比べて第2開口部202bのサイズがより小さくなる。このように第1配線層401cの金属原子が拡散する経路となり得る第2開口部202bのサイズをより小さくすることで、ドレイン電極302側の第1絶縁層201と第2窒化物半導体層104との中への第1配線層401cの金属原子の拡散をさらに低減できる。
 第2バリア層401bと第1配線層401cとは、第2バリア層401b、および、第1配線層401cの順に積層されている。第2バリア層401bは、第2開口部202bを覆うように、第2開口部202bにより露出した第1バリア層401aと第2絶縁層202の一部との上に、第1バリア層401aに接触して設けられている。さらに、第1配線層401cは、第2バリア層401bの上に接触して設けられている。なお、第1配線層401cは、第2バリア層401bの上に接触して設けられた配線層の一例である。これにより、第1バリア層401a、第2バリア層401bおよび第1配線層401cを含むゲート電極401が形成される。
 本実施の形態において、第2バリア層401bは、例えば、第2バリア層401bの層厚t2(図2参照)が50nmのTiNまたはWNからなる層である。なお、以下では、第2バリア層401bの層厚t2をZ2とする。第1配線層401cは、例えば、層厚が450nmのAlによって構成される。
 なお、第2バリア層401bは、TiNまたはWNの単層に限らず、TiNとWNとで構成される複数の積層構造としてもよい。なお、第1配線層401cは、Alに限らず、W、Au、または、Cuであってもよいし、これらの元素を含んだ化合物でもよいし、これらの元素によって構成される複数の積層構造からなる多層電極膜であってもよい。
 なお、第2バリア層401bは、TiNによって構成される場合、NaCl型構造のN/Ti比=1.00~1.20のTiNとしてもよい。もしくは第2バリア層401bは、WNによって構成される場合、NaCl型構造のN/W比=0.10のWNとしてもよい。このようにすることで、第2バリア層401bは(111)面のみに配向したNaCl型構造のN/Ta比=1.00のTaNからなる第1バリア層401aの上に設けられるため、第2バリア層401bが(111)面のみに配向した結晶構造となることができる。また、(111)面のみに配向したTiNまたはWNからなる第2バリア層401bの近接する金属原子間の距離(格子定数)はそれぞれ、0.302nmまたは0.298nm程度である。また、N/Ta比=1.00のTaNからなる第1バリア層401aの近接する金属原子間の距離(格子定数)は0.315nmである。このように、第2バリア層401bと第1バリア層401aとの近接する金属原子間の距離の差が小さいため、第2バリア層401bに転位が形成されにくい。そのため、第1配線層401cの金属原子の第2バリア層401bの転位を介した金属拡散が低減される。
 また、第2バリア層401bの結晶構造を(111)面のみに配向したNaCl型構造とすることで、第2バリア層401bの上に設ける第1配線層401cの結晶構造が(111)面のみに配向した結晶構造となることが容易となる。第1配線層401cが層厚が450nmのAlによって構成される場合、第1配線層401cの結晶構造が(111)面のみに配向したFCC型構造となり、近接する金属原子間の距離は0.286nmである。このようにすることで、第1配線層401cの抵抗の低減や信頼性を向上することができる。
 また、TaNからなる第1バリア層401a、TiNまたはWNからなる第2バリア層401b、および、Alからなる第1配線層401cのように、下層から上層に向かって近接する金属原子間の距離が徐々に小さくなる構造となっているため、第1配線層401cに転位が形成されにくい。そのため、さらに第1配線層401cの抵抗の低減および信頼性を向上することができる。
 上記の通り、本実施の形態に係るゲート電極401は、第1バリア層401a、第2バリア層401bおよび第1配線層401cを含む電極である。また、図1が示すように、ゲート電極401は、ソース電極301およびドレイン電極302と間隔を空けて設けられ、第1開口部201aで第2窒化物半導体層104に接触する電極である。換言すると、ゲート電極401は、第1絶縁層201および第2絶縁層202を貫通して、第2窒化物半導体層104に接触する電極である。
 ここで、第1バリア層401aと、第2バリア層401bと、第2絶縁層202と、の位置関係について説明する。
 第1バリア層401aと第2バリア層401bとは第1開口部201aからドレイン電極302に向かう途中で分岐する。より具体的には、第1バリア層401aと第2バリア層401bとは、図2で破線の丸として記載されている分岐点p2で分岐する。第1開口部201aからドレイン電極302に向かう方向とは、x軸正方向である。つまり、第1バリア層401aと第2バリア層401bとは、分岐点p2よりもx軸負側では接しており、分岐点p2よりもx軸正側では分岐して離れている。また、第2絶縁層202は、分岐点p2とドレイン電極302との間の、第1バリア層401aの上から第1絶縁層201の上に延伸して設けられている、と言える。つまり、分岐点p2よりもx軸正側では、第2絶縁層202の一部は、第1バリア層401aと第2バリア層401bとで挟まれている。
 フィールドプレート電極501は、開口部の一例である第1開口部201aとドレイン電極302との間の第2絶縁層202の上に設けられた電極である。フィールドプレート電極501を構成する第3バリア層501bと第3配線層501cとは、第3バリア層501b、および、第3配線層501cの順に積層されている。第3バリア層501bは、第2開口部202bとドレイン電極302との間の第2絶縁層202の上の一部に設けられている。これにより、第3バリア層501bおよび第3配線層501cからなるフィールドプレート電極501が形成される。また、フィールドプレート電極501は、ソース電極301の電位に接続されている。この場合、フィールドプレート電極501は、ソース電極301と同電位を示す。
 第3バリア層501bは、第2バリア層401bと同様の構成であるとよいが、これに限らない。また、第3配線層501cは、第1配線層401cと同様の構成であるとよいが、これに限らない。
 なお、図示されないが、基板101が含む上面(z軸正側の主面)の垂直方向(z軸方向)において、フィールドプレート電極501の最上面位置は、ドレイン電極302に最近接する第2バリア層401bの側面の下端位置p1より下方であってもよい。フィールドプレート電極501の最上面位置とは、図2が示すフィールドプレート電極501の最上面501tの位置である。また、第2バリア層401bの側面とは、ここでは、yz平面と平行な第2バリア層401bの面であり、ドレイン電極302に最近接する側面とは、最もドレイン電極302と距離が短い側面である。図2には、第2バリア層401bの側面の下端位置p1が破線の丸で示されている。この場合、図示されないが、最上面501tの位置は、第2バリア層401bの側面の下端位置p1より下側(z軸負側)に位置していてもよい。このようにすることで、フィールドプレート電極501とゲート電極401とが対向する面積を小さくできるため、フィールドプレート電極501とゲート電極401との静電容量を小さくすることができる。なお、本実施の形態においては、図2が示すように、フィールドプレート電極501の最上面位置は、下端位置p1より上側(z軸正側)に位置している。
 なお、本実施の形態においては、基板101が含む上面の垂直方向において、フィールドプレート電極501の最下面位置は、ドレイン電極302に最近接する第2バリア層401bの側面の下端位置p1より下方に設けられている。フィールドプレート電極501の最下面位置とは、図2が示すフィールドプレート電極501の最下面501uの位置である。つまりこの場合、図2が示すように、最下面501uの位置は、第2バリア層401bの側面の下端位置p1より下側(z軸負側)に位置している。このようにすることで、ドレイン電極302に最近接する第1バリア層401a下端の電界をより緩和することができる。
 なお、本実施の形態においては、フィールドプレート電極501の一部の材料は、第2バリア層401bの材料と同一である。より具体的には、第2バリア層401bの材料と第3バリア層501bの材料とは同一であり、第1配線層401cの材料と第3配線層501cの材料とは同一である。このようにすることで、ゲート電極401とフィールドプレート電極501を同時に形成可能である。
 なお、フィールドプレート電極501は、下層と上層とを含む複数層で構成されている。より具体的には、フィールドプレート電極501は、下層である第3バリア層501bと上層である第3配線層501cとで構成されている。上記の通り、フィールドプレート電極501を構成する第3バリア層501bおよび第3配線層501cはそれぞれ、ゲート電極401を構成する第2バリア層401bおよび第1配線層401cと同一材料である。本実施の形態においては、さらに、下層の抵抗率よりも上層の抵抗率が小さい。つまり、下層のTiNからなる第3バリア層501bよりも上層のAlからなる第3配線層501cは、抵抗率が小さい。このため、フィールドプレート電極501のインピーダンスが低くできる。
 第3開口部202cおよび第4開口部202dは、第1絶縁層201と第2絶縁層202とを除去して形成されており、オーミック電極301aおよびオーミック電極302aの一部が露出するように設けられている。
 第2配線層301bは、第3開口部202cを覆うように、第3開口部202cにより露出したオーミック電極301aと第2絶縁層202の一部との上に設けられている。同様に、第2配線層302bは、第4開口部202dを覆うように、第4開口部202dにより露出したオーミック電極302aと第2絶縁層202の一部との上に設けられている。本実施の形態において、第2配線層301bと第2配線層302bとはそれぞれ、例えば、層厚が200nmのTiNと層厚が3000nmのAlと層厚が50nmのTiNとを順に積層して構成される。なお、第2配線層301bと第2配線層302bとは、Alに限らず、Alに替えてAuまたはCuであってもよいし、これらの元素を含んだ化合物でもよいし、これらの元素によって構成される複数の積層構造からなる多層電極膜であってもよい。
 オーミック電極301aと第2配線層301bとからなるソース電極301およびオーミック電極302aと第2配線層302bとからなるドレイン電極302は、上記の通りに構成されている。また、ソース電極301およびドレイン電極302は、間隔を空けて設けられている。ソース電極301およびドレイン電極302は、それぞれが第1絶縁層201および第2絶縁層202を貫通して、第1窒化物半導体層103に電気的に接続されている。つまり、本実施の形態においては、ソース電極301およびドレイン電極302はそれぞれ、第3開口部202cおよび第4開口部202dで、第2窒化物半導体層104に接触し、第1窒化物半導体層103に電気的に接続されている。
 ここで、第1バリア層401aの層厚t1を示すZ1と、第2バリア層401bの層厚t2を示すZ2と、について説明する。このZ1およびZ2は、200nm≧Z1+Z2≧50nm、Z1<Z2、および、50nm>Z1>3nmを満たす。
 このような構造の半導体装置100Aにすることで、特許文献2の従来の技術と比べて、以下の効果が期待される。まず、Z1+Z2≧50nmとすることで、第1バリア層401aと第2バリア層401bとにより第1絶縁層201と第2窒化物半導体層104との中への第1配線層401cの金属原子の拡散が抑制されて、第1絶縁層201と第2窒化物半導体層104との中の準位の発生を低減することができる。そのため、ゲート電極401の逆方向リーク電流を低減しつつ、電流コラプスを低減することができる。さらに、Z1+Z2≧70nmとすることでゲート電極401の逆方向リーク電流を低減しつつ、電流コラプスをさらに低減することができる。したがって、信頼性が高く低オン抵抗なゲート電極401を有する半導体装置100Aが得られる。
 Z1+Z2≧50nmとすることでゲート電極401の逆方向リーク電流を低減しつつ、電流コラプスを低減することができる理由を述べる。図3は、実施の形態1の検討例に係る半導体装置が有するゲート電極401x近傍を示す断面図である。この検討例に係る半導体装置は、主に、第2絶縁層202を有しない点、および、ゲート電極401xがTiN層401bxとAl層401cxとの積層構造によって構成されている点を除いて、本実施の形態に係る半導体装置100Aと同じ構成を有する。図4は、実施の形態1の検討例に係る半導体装置におけるゲート電極401xの逆方向リーク電流と高電圧時のオン抵抗/低電圧時のオン抵抗とのTiN層401bxの層厚依存性結果を示す図である。より具体的には、図4のグラフの第1軸(左側軸)にゲート電極401xの逆方向リーク電流についてのTiN層401bxの層厚依存性の結果が示されている。次に、図4のグラフの第2軸(右側軸)に電流コラプスの指標となるソース電極301とドレイン電極302との間に電圧を印加してスイッチングさせたときの高電圧時(85V)のオン抵抗と低電圧時(30V)のオン抵抗との比についてのTiN層401bxの層厚依存性の結果が示されている。
 図5は、実施の形態1の検討例に係る半導体装置におけるゲート電極401xの逆方向リーク電流と高電圧時のオン抵抗/低電圧時のオン抵抗とのTiN層401bxの層厚依存性結果を示す他の図である。より具体的には、図5のグラフの横軸は、ゲート電極401xの逆方向リーク電流を示し、図5のグラフの縦軸は、上記の高電圧時(85V)のオン抵抗と低電圧時(30V)のオン抵抗との比を示す。また、TiN層401bxの層厚が枠外に記載されている。
 図4に示すように、ゲート電極401xの逆方向リーク電流についてのTiN層401bxの層厚依存性の結果では、TiN層401bxの層厚が30nm以上になるとゲート電極401xの逆方向リーク電流を低減できることがわかる。TiN層401bxの層厚が30nm以上100nm以下としたときのゲート電極401xの逆方向リーク電流の変動は、TiN層401bxの層厚が20nmから30nmまで変化したときの変動幅に比べて十分に小さいため製造バラツキであると考えられる。次に、スイッチングさせた時の高電圧時と低電圧時とのオン抵抗の比についてのTiN層401bxの層厚依存性の結果では、TiN層401bxの層厚が50nm以上100nm以下になると、オン抵抗の比が小さくなり、電流コラプスを低減していることがわかる。さらに、TiN層401bxの層厚が70nm以上100nm以下ではオン抵抗の比がさらに小さくなり電流コラプスを低減している。
 一般的に、ゲート電極401xの逆方向リーク電流が多いと準位にトラップされた電子は放出されるため、ゲート電極401xの逆方向リーク電流の低減と電流コラプスの増大とはトレードオフの関係にある。しかしながら、本検討結果ではTiN層401bxの層厚を50nm以上とするとゲート電極401xの逆方向リーク電流は変わらずに電流コラプスを低減しており、トレードオフの関係を解消していることがわかる。TiN層401bxの層厚が70nm以上では、電流コラプスの低減が顕著である。図5には、右肩下がりの一点鎖線の直線が示されており、この一点鎖線の直線に近いほど、逆方向リーク電流の低減と電流コラプスの増大とがトレードオフの関係にあることが示されている。図5が示すように、TiN層401bxの層厚が50nm、70nmおよび100nmと増加するに従い、右肩下がりの一点鎖線の直線付近から離れて、トレードオフの関係が解消されている。
 また、TiN層401bxの層厚が20nmのときは、Alの金属原子が拡散したことによりショットキー障壁の低下を引き起こし、ゲート電極401xの逆方向リーク電流が多くなっていると考えられる。そのため、TiN層401bxの層厚が50nmのときより電流コラプスが低減されていると考えられる。
 ここで、本実施の形態に係る半導体装置100Aと、検討例に係る半導体装置と、を比較する。本実施の形態に係るゲート電極401は、第1バリア層401a(TaN)と第2バリア層401b(TiN)と第1配線層401c(Al)とによって構成されている。また、検討例に係るゲート電極401xは、TiN層401bxとAl層401cxとによって構成されている。つまり、検討例に係るTiN層401bxの一部が第1バリア層401aに置き換えられると、検討例に係るゲート電極401xと本実施の形態に係るゲート電極401とは、同じ構成となる。
 ここで、TaNについては、仕事関数が5.4eV、格子定数が0.310nm以上0.315nm以下、融点が3090℃である。TiNについては、仕事関数が4.7eV、格子定数が0.302nm、融点が2930℃である。
 このため、検討例に係るTiN層401bxの一部が第1バリア層401a(TaN)に置き換えられた構成であるゲート電極401においては、検討例に係るゲート電極401xに比べて、仕事関数は増加し、格子定数および融点は同等程度となる。よって、TiN層401bxの層厚とZ1+Z2(第1バリア層401aの層厚および第2バリア層401bの層厚の合計)とが同等であれば、ゲート電極401においては、ゲート電極401xよりも、逆方向リーク電流が抑制され、かつ、電流コラプスが低減されることが期待される。
 つまりは、本実施の形態においても、Z1+Z2≧50nmとすることで、逆方向リーク電流が抑制され、かつ、電流コラプスが低減されることが期待される。より具体的には、Z1+Z2≧50nmとすることで、第1バリア層401aと第2バリア層401bとにより第1絶縁層201と第2窒化物半導体層104との中への第1配線層401cの金属原子の拡散を抑制して、第1絶縁層201と第2窒化物半導体層104との中の準位を低減することができると考えられる。そのため、ゲート電極401の逆方向リーク電流を低減しつつ、電流コラプスを低減することができる。さらに、Z1+Z2≧70nmとすることでゲートの逆方向リーク電流を低減しつつ、電流コラプスをさらに低減することができる。そのため、信頼性が高く低オン抵抗なゲート電極401を有する半導体装置100Aが得られる。
 また、WNについては、仕事関数が4.6eV、格子定数が0.298nmであり、TiNと同等の値である。また、WNについては融点が2000℃未満であり、十分に高い融点である。このため、ゲート電極401の第2バリア層401bが、TiNではなくWNで構成される場合も同様の効果が期待される。
 なお、第1バリア層401aと第2バリア層401bとの加工および結晶性の観点からZ1+Z2≦200nmであることがよく、Z1+Z2≦150nmであればよりよく、Z1+Z2≦100nmであればさらによい。
 また、TiNまたはWNからなる第2バリア層401bに加え、第1バリア層401aが更なる高融点材料であるTaNからなり、層厚t1がZ1>3nmを満たすことで、ゲート電極401が第2バリア層401bのみからなる場合より、第1絶縁層201と第2窒化物半導体層104との中への金属拡散を抑制することができる。スパッタ法によってTaNが形成された場合は、成膜の初期過程では非連続膜なアイランド状に成長するため、Z1>3nmとすることで均一な膜形状となり易いため、Z1>3nmとするとよい。また、Z1>10nmとするとよく、Z1>15nmとするとさらによい。なお、原子層堆積法によってTaNが形成された場合は、その限りではないが、生産性が低いという課題がある。さらに、第1バリア層401aの層厚t1を示すZ1は、50nm>Z1である。Z1は、40nm>Z1であるとよりよく、Z1は、30nm>Z1であるとさらによい。第1バリア層401aを構成するTaNは、高いバリア性を示すが、ドライエッチングによる加工性が低い。そのため、第1バリア層401aの層厚t1を薄く、例えば、50nm>Z1とすることで、第1バリア層401aの加工性を高めることができる。
 また、TaNはドライエッチングで加工する必要がある。ドライエッチングでの加工の際に、TaNはハロゲン化合物の蒸気圧が高いため、TaNと第1絶縁層201との選択比が低くなり、第1絶縁層201の残膜ばらつきが増加する。そして、第1絶縁層201の残膜ばらつきが増加することで、フィールドプレート電極501とドレイン電極302との静電容量ばらつきが増加してしまう。それに対して、TiNまたはWNはTaNに比べてハロゲン化合物の蒸気圧が低いため、TiNまたはWNと第1絶縁層201との選択比が高くなる。そのため、本実施の形態のようにZ1<Z2とすることで、特許文献2の従来の技術と比べて、第1絶縁層201と第2窒化物半導体層104との中への第1配線層401cの金属原子の拡散が抑制され、加工しやすくなり、このため第1絶縁層201の残膜ばらつきが低減される。したがって、フィールドプレート電極501とドレイン電極302との静電容量ばらつきを低減できる。
 なお、本実施の形態のように、TaNからなる第1バリア層401aは、SiNからなる第1絶縁層201および第2絶縁層202と、第2バリア層401bと、で覆われている。さらに、第2絶縁層202は、酸素含有率1%以下の材料で構成されている。このため、TaNからなる第1バリア層401aの酸化が抑制される。また、図2には、ゲート電極401とフィールドプレート電極501との最近接距離d1が示されている。最近接距離d1は、ゲート電極401とフィールドプレート電極501との間隔のうち、最も短い距離を意味する。例えば、本実施の形態においては、最近接距離d1は、図2が示す断面図におけるx軸方向の長さであって、ゲート電極401とフィールドプレート電極501との間隔である。最近接距離d1は、100nm以上である。また、最近接距離d1は、200nm以上であるとよく、300nm以上であるとさらによい。このようにすることで、ゲート電極401とフィールドプレート電極501のESD(Electrostatic Discharge:静電気放電)耐圧を十分に高めることができる。また、最近接距離d1は、1000nm以下であればよく、900nm以下であるとよりよく、800nm以下であるとさらによい。これにより、半導体装置100Aのコンパクト化が容易になる。
 以下、図6~図13を参照しながら、本実施の形態における半導体装置100Aの製造方法を説明する。
 図6~図13は、それぞれ、実施の形態1に係る半導体装置100Aの製造方法の工程を示す断面図である。
 まず、図6に示すように、Siからなる基板101の上に、有機金属気相成長法(MOCVD:Metal Organic Chemical Vapor Deposition)を用いて、層厚が2μmでAlNおよびAlGaNの積層構造からなるバッファ層102と、層厚が200nmでGaNからなる第1窒化物半導体層103と、層厚が20nmでAl組成比25%の第2窒化物半導体層104と、が+c面方向(<0001>方向)に順次エピタキシャル成長されて、形成される。この結果、第2窒化物半導体層104と第1窒化物半導体層103とのヘテロ界面の第1窒化物半導体層103側には、高濃度の二次元電子ガスが発生し、二次元電子ガス層105のチャネルが形成される。
 次に、第2窒化物半導体層104の上に、塩酸による前洗浄が施される。さらに、ソース電極301およびドレイン電極302が形成される領域以外に、レジストが塗布された後にリソグラフィー法によりレジストがパターニングされてマスクが形成される。次に、蒸着によりTi膜およびAl膜が順に堆積された後、図7に示すように、リフトオフ法によりオーミック電極301aとオーミック電極302aとが形成される。次に、熱処理が施されることで、二次元電子ガス層105と、オーミック電極301aおよびオーミック電極302aと、が電気的にオーミック接続される。なお、スパッタ法によりTi膜およびAl膜が順に堆積された後に、リソグラフィー法およびドライエッチング法が順に適用されることにより、オーミック電極301aとオーミック電極302aとが形成されてもよい。
 次に、図8に示すように、層厚が100nmのSiNからなる第1絶縁層201がプラズマCVD(Chemical Vapor Deposition)法により堆積される。その後、ゲート電極401が形成される領域以外に、レジストが塗布された後にリソグラフィー法が用いられてレジストがパターニングされてマスクが形成される。次に、ドライエッチング法が用いられて、第2窒化物半導体層104が露出するように第1開口部201aが形成される。なお、本実施の形態では、第1絶縁層201は、SiCNであってもよいし、減圧CVD法により堆積されたSiNであってもよい。また、本実施の形態では、ドライエッチング法が用いられているが、ウェットエッチング法が用いられて第1絶縁層201に第1開口部201aが設けられてもよい。
 次に、図9に示すように、スパッタ装置が用いられて、TaターゲットにNガスを含んだスパッタ処理が行われることにより、層厚が30nmのTaNからなる第1バリア層401aが堆積される。その後、ゲート電極401が形成される領域に、レジストが塗布された後にリソグラフィー法が用いられてレジストがパターニングされてマスクが形成される。次に、ドライエッチング法が用いられて、第1バリア層401aがパターニングされる。このとき、オーバーエッチングにより第1絶縁層201の一部が除去されるが、TaN(第1バリア層401a)の層厚が30nmと薄いため、第1絶縁層201が除去される量を最小限に留めることができ、第1絶縁層201の残膜ばらつきが低減される。
 次に、図10に示すように、層厚が150nmのSiNからなる第2絶縁層202がプラズマCVD法により堆積される。その後、ゲート電極401が形成される領域以外に、レジストが塗布された後にリソグラフィー法が用いられてレジストがパターニングされてマスクが形成される。次に、ドライエッチング法が用いられて、第1バリア層401aが露出するように第2開口部202bが形成される。
 次に、層厚が50nmのTiNと、層厚が450nmのAlと、がスパッタ法により順に堆積される。図11に示すように、層厚が50nmのTiNが第2バリア層401bおよび第3バリア層501bに相当し、層厚が450nmのAlが第1配線層401cおよび第3配線層501cに相当する。その後、ゲート電極401とフィールドプレート電極501とが形成される領域に、レジストが塗布された後にリソグラフィー法が用いられてレジストがパターニングされてマスクが形成される。次に、ドライエッチング法が用いられて、第2バリア層401bおよび第3バリア層501bと第1配線層401cおよび第3配線層501cとがパターニングされる。このようにして、ゲート電極401とフィールドプレート電極501とが形成される。
 次に、図12に示すように、ソース電極301とドレイン電極302とが形成される領域以外に、レジストが塗布された後にリソグラフィー法が用いられてレジストがパターニングされてマスクが形成される。次に、ドライエッチング法が用いられて、オーミック電極301aとオーミック電極302aとが露出するように第3開口部202cと第4開口部202dとが形成される。
 次に、図13に示すように、層厚が200nmのTiNと層厚が3000nmのAlと層厚が50nmのTiNとがスパッタ法により順に堆積される。その後、ソース電極301とドレイン電極302とが形成される領域に、レジストが塗布された後にリソグラフィー法が用いられてレジストがパターニングされてマスクが形成される。次に、ドライエッチング法が用いられて、第2配線層301bと第2配線層302bとがパターニングされる。このようにして、ソース電極301とドレイン電極302とが形成される。なお、第2配線層301bと第2配線層302bとは、ドライエッチング法に限らず、メッキ法またはダマシン法により形成されてもよく、この場合、Au、またはCuが用いられた配線であってもよい。
 以上の一連の工程を経ることで、図1に示した構造の半導体装置100Aが完成する。
 以上のように形成された半導体装置100Aは、200nm≧Z1+Z2≧50nmとすることで、第1バリア層401aと第2バリア層401bとにより第1絶縁層201と第2窒化物半導体層104との中への第1配線層401cの金属原子の拡散が抑制されて、第1絶縁層201と第2窒化物半導体層104との中の準位の発生を低減することができる。そのため、ゲート電極401の逆方向リーク電流を低減しつつ、電流コラプスを低減することができる。さらに、Z1+Z2≧70nmとすることでゲートの逆方向リーク電流を低減しつつ、電流コラプスをさらに低減することができる。したがって、信頼性が高く低オン抵抗なゲート電極401を有する半導体装置100Aが得られる。
 また、本実施の形態のようにZ1<Z2とすることで、特許文献2の従来の技術と比べて第1配線層401cの金属原子の拡散が抑制され、加工しやすくなり、また、第1絶縁層201の残膜ばらつきが低減される。したがって、フィールドプレート電極501とドレイン電極302との静電容量ばらつきを低減できる。
 また、TiNまたはWNの第2バリア層401bに加え、第1バリア層401aが更なる高融点材料であるTaNからなり、層厚t1が50nm>Z1>3nmを満たすことで、ゲート電極401が第2バリア層401bのみからなる場合より金属拡散を抑制することができる。
 (実施の形態2)
 ここで実施の形態2に係る半導体装置について、図14を用いて説明する。
 図14は、実施の形態2に係る半導体装置100Bの構成を示す断面図である。なお、本実施の形態では、実施の形態1と共通の構成要素については、その詳細な説明を省略する。
 本実施の形態では、半導体装置100Bがショットキー接合ゲート電極を備えたHEMTである場合について説明する。
 図14に示すように、半導体装置100Bは、基板101と、バッファ層102と、第1窒化物半導体層103と、第2窒化物半導体層104と、二次元電子ガス層105と、第1絶縁層201と、開口部(ここでは第1開口部201a)と、第2絶縁層202と、第3絶縁層203と、第2開口部203bと、第3開口部203cと、第4開口部203dと、オーミック電極301aおよび第2配線層301bからなるソース電極301と、オーミック電極302aおよび第2配線層302bからなるドレイン電極302と、第1バリア層401a、第2バリア層402bおよび配線層(ここでは第1配線層402c)を含むゲート電極402と、フィールドプレート電極502と、を備える。
 フィールドプレート電極502は、ゲート電極402とドレイン電極302との間の第2絶縁層202の上に設けられている。より具体的には、フィールドプレート電極502は、開口部の一例である第1開口部201aとドレイン電極302との間の第2絶縁層202の上に設けられた電極である。また、フィールドプレート電極502は、ソース電極301の電位に接続されている。この場合、フィールドプレート電極502は、ソース電極301と同電位を示す。本実施の形態において、フィールドプレート電極502は、例えば、層厚が50nmのTiNによって構成される。なお、フィールドプレート電極502は、TiNに限らず、下層と上層とを含む複数層で構成されてもよい。この場合、下層の抵抗率よりも上層の抵抗率が小さくてもよい。フィールドプレート電極502は、Al、Au、Cu、W、Ti、Ta、TiN、TaN、WN、Pt等でもよく、これらの元素を含んだ化合物が組み合わされてもよい。
 第3絶縁層203は、第2絶縁層202の上と、フィールドプレート電極502と、を覆うように設けられている。より具体的には、第3絶縁層203は、分岐点p2とドレイン電極302との間の、第2絶縁層202の上に、フィールドプレート電極502を覆うように設けられている。本実施の形態において、第3絶縁層203は、例えば、層厚が150nmのSiNによって構成される。
 第2開口部203bは、第2絶縁層202と第3絶縁層203とを除去して形成されており、平面視で第1開口部201aの範囲を覆うように、かつ、第1バリア層401aが露出するように設けられている。この場合、平面視で第1開口部201aは、より大きいサイズの第2開口部203bに包含されるように配置されている。
 なお、第2開口部203bは、平面視で第1開口部201aの範囲を覆うように設けられているが、これに限らず第2開口部203bのドレイン電極302側の端部が第1開口部201aの内側に位置していてもよい。つまりこの場合、平面視で、図14に示す半導体装置100Bに比べて第2開口部203bのサイズがより小さくなる。このように第1配線層402cの金属原子が拡散する経路となり得る第2開口部203bのサイズをより小さくすることで、ドレイン電極302側の第1絶縁層201と第2窒化物半導体層104との中への第1配線層402cの金属原子の拡散をさらに低減できる。
 第2バリア層402bと第1配線層402cとは、第2バリア層402b、および、第1配線層402cの順に積層されている。第2バリア層402bは、第2開口部203bを覆うように、第2開口部203bにより露出した第1バリア層401aと第3絶縁層203の一部との上に、第1バリア層401aに接触して設けられている。さらに、第1配線層402cは、第2バリア層402bの上に接触して設けられている。なお、第1配線層402cは、第2バリア層402bの上に接触して設けられた配線層の一例である。これにより、第1バリア層401a、第2バリア層402bおよび第1配線層402cを含むゲート電極402が形成される。
 本実施の形態において、第2バリア層402bは、例えば、層厚が50nmのTiNまたはWNで構成される。第1配線層402cは、例えば、層厚が450nmのAlによって構成される。
 なお、第2バリア層402bは、TiNまたはWNの単層に限らず、TiNとWNとで構成される複数の積層構造としてもよい。また、第1配線層402cは、Alに限らず、W、Au、または、Cuであってもよいし、これらの元素を含んだ化合物でもよいし、これらの元素によって構成される複数の積層構造からなる多層電極膜であってもよい。
 なお、第2バリア層402bは、TiNによって構成される場合、NaCl型構造のN/Ti比=1.00~1.20のTiNとしてもよい。もしくは第2バリア層402bは、WNによって構成される場合、NaCl型構造のN/W比=0.10のWNとしてもよい。このようにすることで、第2バリア層402bは(111)面のみに配向したNaCl型構造のN/Ta比=1.00のTaNからなる第1バリア層401aの上に設けられるため、第2バリア層402bが(111)面のみに配向した結晶構造となることができる。また、(111)面のみに配向したTiNまたはWNからなる第2バリア層402bの近接する金属原子間の距離(格子定数)はそれぞれ、0.302nmまたは0.298nm程度である。また、N/Ta比=1.00のTaNからなる第1バリア層401aの近接する金属原子間の距離(格子定数)は0.315nmである。このように、第2バリア層402bと第1バリア層401aとの近接する金属原子間の距離の差が小さいため、第2バリア層402bに転位が形成されにくい。そのため、第1配線層402cの金属原子の第2バリア層402bの転位を介した金属拡散が低減される。
 また、第2バリア層402bの結晶構造を(111)面のみに配向したNaCl型構造とすることで、第2バリア層402bの上に設ける第1配線層402cの結晶構造が(111)面のみに配向した結晶構造となることが容易となる。第1配線層402cの層厚が450nmであり、かつ、第1配線層402cがAlによって構成される場合、第1配線層402cの結晶構造が(111)面のみに配向したFCC型構造となり、近接する金属原子間の距離は0.286nmである。このようにすることで、第1配線層402cの抵抗の低減や信頼性を向上することができる。
 また、TaNからなる第1バリア層401a、TiNまたはWNからなる第2バリア層402b、および、Alからなる第1配線層402cのように、下層から上層に向かって近接する金属原子間の距離が徐々に小さくなる構造となっているため、第1配線層402cに転位が形成されにくい。そのため、さらに第1配線層402cの抵抗の低減および信頼性を向上することができる。
 ここで、第1バリア層401aと、第2バリア層402bと、第2絶縁層202と、第3絶縁層203と、の位置関係について説明する。
 第1バリア層401aと第2バリア層402bとは第1開口部201aからドレイン電極302に向かう途中の分岐点p2から分岐する。このとき、分岐点p2よりもx軸正側では、第2絶縁層202と第3絶縁層203とは、第1バリア層401aと第2バリア層402bとで挟まれている。より具体的には、第2絶縁層202と第3絶縁層203とで構成される積層体の一部が、第1バリア層401aと第2バリア層402bとで挟まれている。
 また、基板101が含む上面の垂直方向において、フィールドプレート電極502の最上面位置は、ドレイン電極302に最近接する第2バリア層402bの側面の下端位置p1より下方に設けられている。フィールドプレート電極502の最上面位置とは、図14が示すフィールドプレート電極502の最上面502tの位置である。また、第2バリア層402bの側面とは、ここでは、yz平面と平行な第2バリア層402bの面であり、ドレイン電極302に最近接する側面とは、最もドレイン電極302と距離が短い側面である。図14には、第2バリア層402bの側面の下端位置p1が破線の丸で示されている。つまりこの場合、図14に示すように、最上面502tの位置は、第2バリア層402bの側面の下端位置p1より下側(z軸負側)に位置している。このようにすることで、フィールドプレート電極502とゲート電極402とが対向する面積を小さくできるため、フィールドプレート電極502とゲート電極402との静電容量を小さくすることができる。
 また、TaNからなる第1バリア層401aは、SiNからなる第1絶縁層201および第2絶縁層202と、第2バリア層402bと、で覆われている。さらに、第2絶縁層202は、酸素含有率1%以下の材料で構成されている。このため、TaNからなる第1バリア層401aの酸化が抑制される。また、図14には、ゲート電極402とフィールドプレート電極502との最近接距離d1が示されている。最近接距離d1は、ゲート電極402とフィールドプレート電極502との間隔のうち、最も短い距離を意味する。例えば、本実施の形態においては、最近接距離d1は、図14が示す断面図におけるx軸方向の長さであって、ゲート電極402とフィールドプレート電極502との間隔である。最近接距離d1は、100nm以上である。また、最近接距離d1は、200nm以上であるとよく、300nm以上であるとさらによい。このようにすることで、ゲート電極402とフィールドプレート電極502のESD耐圧を十分に高めることができる。また、最近接距離d1は、1000nm以下であればよく、900nm以下であるとよりよく、800nm以下であるとさらによい。これにより、半導体装置100Bのコンパクト化が容易になる。
 なお、本実施の形態においては、基板101が含む上面の垂直方向において、フィールドプレート電極502の最下面位置は、ドレイン電極302に最近接する第2バリア層402bの側面の下端位置p1より下方に設けられている。フィールドプレート電極502の最下面位置とは、図14が示すフィールドプレート電極502の最下面502uの位置である。つまりこの場合、図14が示すように、最下面502uの位置は、第2バリア層402bの側面の下端位置p1より下側(z軸負側)に位置している。このようにすることで、ドレイン電極302に最近接する第1バリア層401a下端の電界をより緩和することができる。
 第3開口部203cおよび第4開口部203dは、第1絶縁層201と第2絶縁層202と第3絶縁層203とを除去して形成されており、オーミック電極301aおよびオーミック電極302aの一部が露出するように設けられている。
 第2配線層301bは、第3開口部203cを覆うように、第3開口部203cにより露出したオーミック電極301aと第3絶縁層203の一部との上に設けられている。同様に、第2配線層302bは、第4開口部203dを覆うように、第4開口部203dにより露出したオーミック電極302aと第3絶縁層203の一部との上に設けられている。本実施の形態において、第2配線層301bと第2配線層302bとはそれぞれ、例えば、層厚が200nmのTiNと層厚が3000nmのAlと層厚が50nmのTiNとにより構成される。なお、第2配線層301bと第2配線層302bとは、Alに限らず、Alに替えてW、AuまたはCuであってもよいし、これらの元素を含んだ化合物でもよいし、これらの元素によって構成される複数の積層構造からなる多層電極膜であってもよい。
 上記の通り、本実施の形態に係る半導体装置100Bは、第3絶縁層203を有し、第2絶縁層202と第3絶縁層203とは、第1バリア層401aと第2バリア層402bとで挟まれている。このような構造の半導体装置100Bにすることで、第2絶縁層202と第3絶縁層203とが独立に設計されるため、ESD耐圧および電界設計の観点から、半導体装置100Bの構造設計の自由度が高い。さらに、第3絶縁層203が第1バリア層401aと第2バリア層402bとの間に挿入されるためフィールドプレート電極502とゲート電極402との静電容量が小さく、信頼性が高く低オン抵抗な特性を有するゲート電極402が得られる。
 なお、第3絶縁層203を構成する材料の誘電率は第2絶縁層202を構成する材料の誘電率より小さくてもよい。第3絶縁層203を構成する材料は、例えば、SiO、SiON、SiC、SiCNであってもよく、第2絶縁層202を構成する材料の誘電率に応じて選択されるとよい。このようにすると、フィールドプレート電極502とゲート電極402との静電容量を小さくできる。
 なお、第2絶縁層202の層厚は第3絶縁層203の層厚より薄くてもよい。このようにすることで、ドレイン電極302側の第1バリア層401aの端部を電界緩和することができる。
 なお、第1バリア層401aと第2バリア層402bとの少なくとも一方は左右非対称であってもよい。つまり、第1バリア層401aの形状と第2バリア層402bの形状との少なくとも一方は、開口部(ここでは第1開口部201a)の中央を通りz軸と平行な対称線を軸として、線対称でなくてもよい。このようにすることで、フィールドプレート電極502の構造設計の自由度が向上する。
 このような形状について、図15~図19を用いて説明する。
 まずは、図15を用いて説明する。
 図15は、実施の形態2に係る変形例1の半導体装置100Bのゲート電極402近傍の構成を示す断面図である。
 実施の形態2に係る変形例1の半導体装置100Bは、主に、フィールドプレート電極502が階段形状を有している点、および、第2バリア層402bの形状が左右非対称である点を除いて、実施の形態2に係る半導体装置100Bと同じ構成を有する。
 図15においては、上記の第1開口部201aの中央を通りz軸と平行な対称線L1が示されている。第2バリア層402bの形状は、この対称線L1を軸として、例えば図15が示す断面図において、線対称でない。この場合、第2バリア層402bでは、第1開口部201aの中央からソース電極301へ向かう方向への延伸長と、当該中央からドレイン電極302へ向かう方向への延伸長と、が異なる。なお、当該中央からソース電極301へ向かう方向とはx軸負方向であり、このx軸負方向への延伸長とは対称線L1からソース電極301側の第2バリア層402bの端部までの長さである。また、当該中央からソース電極301へ向かう方向とはx軸正方向であり、このx軸正方向への延伸長とは対称線L1からドレイン電極302側の第2バリア層402bの端部までの長さである。このように、第1バリア層401aと第2バリア層402bのうち少なくとも一方(ここでは、第2バリア層402b)では、第1開口部201aの中央からソース電極301へ向かう方向への延伸長と当該中央からドレイン電極302へ向かう方向への延伸長とが異なる。これにより、フィールドプレート電極502の構造設計自由度が向上する。
 さらに、基板101の平面視において、第1バリア層401aとフィールドプレート電極502との間隔は、第2バリア層402bとフィールドプレート電極502との間隔d2より短くてもよい。より具体的には、第2バリア層402bとフィールドプレート電極502との間隔d2は図15が示すx軸方向の長さである。なお、平面視で、第1バリア層401aのx軸正側の端部とフィールドプレート電極502のx軸負側の端部とが重なるため、第1バリア層401aとフィールドプレート電極502との間隔は、ここでは0である。このようにすることで、第2バリア層402bとドレイン電極302との間隔が広がるためドレイン電極302とゲート電極402との静電容量を小さくできる。
 さらに、図16を用いて説明する。
 図16は、実施の形態2に係る変形例2の半導体装置100Bのゲート電極402近傍の構成を示す断面図である。
 実施の形態2に係る変形例2の半導体装置100Bは、主に、第2バリア層402bの形状が異なる点を除いて、実施の形態2に係る変形例1の半導体装置100Bと同じ構成を有する。
 図16が示すように、第2バリア層402bの形状は、この対称線L1を軸として、例えば図16が示す断面図において、線対称でない。また、第2バリア層402bは、第1開口部201aの中央(例えば対称線L1)よりx軸負側と、第1開口部201aの中央(例えば対称線L1)よりx軸正側と、にそれぞれ、階段形状を有している。ここでは、第1開口部201aの中央よりx軸負側の階段形状と、第1開口部201aの中央よりx軸正側と階段形状と、では、階段の段数が異なっている。
 また、図15が示す実施の形態2に係る変形例1の半導体装置100Bと同様に、実施の形態2に係る変形例2の半導体装置100Bにおいては、基板101の平面視において、第1バリア層401aとフィールドプレート電極502との間隔は、第2バリア層402bとフィールドプレート電極502との間隔d2より短くてもよい。このようにすることで、第2バリア層402bとドレイン電極302との間隔が広がるためドレイン電極302とゲート電極402との静電容量を小さくできる。
 さらに、図17および図18を用いて説明する。
 図17は、実施の形態2に係る変形例3の半導体装置100Bのゲート電極402近傍の構成を示す断面図である。図18は、図17の領域XVIIIを拡大して示す断面図である。
 実施の形態2に係る変形例3の半導体装置100Bは、主に、第1バリア層401aの形状が左右非対称である点を除いて、実施の形態2に係る半導体装置100Bと同じ構成を有する。
 図17および図18においては、対称線L1が示されている。第1バリア層401aの形状は、この対称線L1を軸として、例えば図17および図18が示す断面図において、線対称でない。より具体的には、第1バリア層401aでは、第1開口部201aの中央からソース電極301へ向かう方向への延伸長(以下第1延伸長)と、当該中央からドレイン電極302へ向かう方向への延伸長(以下第2延伸長)と、が異なる。一例として、図18が示すように、第1延伸長と第2延伸長とはそれぞれ、長さd4と長さd5とである。この場合、第1延伸長は、第1開口部201aの中央(例えば、対称線L1)からソース電極301へ向かう方向であるx軸負方向に沿う長さである長さd4であり、第2延伸長は、第1開口部201aの中央(例えば、対称線L1)からドレイン電極302へ向かう方向であるx軸正方向に沿う長さである長さd5である。また、他の一例として、図18が示すように、第1延伸長と第2延伸長とはそれぞれ、長さd6と長さd7とである。この場合、第1延伸長は、対称線L1よりx軸負側に位置する第1バリア層401aの階段形状の段差に沿う長さである長さd6であり、第2延伸長は、対称線L1よりx軸正側に位置する第1バリア層401aの階段形状の段差に沿う長さである長さd7である。このように、第1延伸長と第2延伸長とは、長さd4>長さd5、または、長さd6>長さd7を満たすとよい。図17および図18が示すように、第1バリア層401aでは、第1開口部201aの中央からソース電極301へ向かう方向への延伸長(第1延伸長)と当該中央からドレイン電極302へ向かう方向への延伸長(第2延伸長)とが異なる。これにより、フィールドプレート電極502の構造設計自由度が向上する。
 さらに、基板101の平面視において、第1バリア層401aとフィールドプレート電極502との間隔d3は、第2バリア層402bとフィールドプレート電極502との間隔より長くてもよい。より具体的には、第1バリア層401aとフィールドプレート電極502との間隔d3は図17が示すx軸方向の長さである。なお、平面視で、第2バリア層402bのx軸正側の端部とフィールドプレート電極502のx軸負側の端部とが重なるため、第2バリア層402bとフィールドプレート電極502との間隔は、ここでは0である。このようにすることで、第2バリア層402bおよび第1配線層402cの幅がドレイン電極302側に拡大されて、ゲート電極402の配線抵抗を小さくできる。さらに、フィールドプレート電極502の形状が平坦になるためフィールドプレート電極502とゲート電極402との静電容量を小さくできる。
 さらに、図19を用いて説明する。
 図19は、実施の形態2に係る変形例4の半導体装置100Bのゲート電極402近傍の構成を示す断面図である。
 実施の形態2に係る変形例4の半導体装置100Bは、主に、第2バリア層402bの形状が異なる点を除いて、実施の形態2に係る変形例3の半導体装置100Bと同じ構成を有する。図19が示すように、第1バリア層401aとフィールドプレート電極502との間隔d3は、第2バリア層402bとフィールドプレート電極502との間隔d2より長くてもよい。この場合、第2バリア層402bおよび第1配線層402cの幅がさらにドレイン電極302側に拡大されて、ゲート電極402の配線抵抗を小さくできる。このように、ゲート電極402の配線抵抗を小さくしたい場合は、フィールドプレート電極502とゲート電極402との静電容量が大きくなる。そのため、第3絶縁層203の層厚を厚くすることで、フィールドプレート電極502とゲート電極402との静電容量が大きくならないように構造設計することができる。
 以下、図20~図28を参照しながら、本実施の形態における半導体装置100Bの製造方法を説明する。図20~図28は、それぞれ、製造途上における半導体装置100Bの構成を示す断面図である。
 まず、図20~図23は実施の形態1で示した図6~図9と同様のため詳細な説明を省略する。
 次に、図24に示すように、層厚が150nmのSiNからなる第2絶縁層202がプラズマCVD法により堆積された後、層厚が50nmのTiNがスパッタ法により順に堆積される。その後、フィールドプレート電極502を形成される領域に、レジストが塗布された後にリソグラフィー法が用いられてレジストがパターニングされてマスクが形成される。次に、ドライエッチング法が用いられて、フィールドプレート電極502が形成される。
 次に、図25に示すように、層厚が150nmのSiNからなる第3絶縁層203がプラズマCVD法により堆積される。その後、ゲート電極402が形成される領域以外に、レジストが塗布された後にリソグラフィー法が用いられてレジストがパターニングされてマスクが形成される。次に、ドライエッチング法が用いられて、第1バリア層401aが露出するように第2開口部203bを形成する。
 次に、図26に示すように、層厚が50nmのTiNからなる第2バリア層402bと層厚が450nmのAlからなる第1配線層402cとがスパッタ法により順に堆積される。その後、ゲート電極402が形成される領域に、レジストが塗布された後にリソグラフィー法が用いられてレジストがパターニングされてマスクが形成される。次に、ドライエッチング法が用いられて、第2バリア層402bと第1配線層402cとがパターニングされる。このようにして、ゲート電極402が形成される。
 次に、図27に示すように、ソース電極301とドレイン電極302とが形成される領域以外に、レジストが塗布された後にリソグラフィー法が用いられてレジストがパターニングされてマスクが形成される。次に、ドライエッチング法が用いられて、オーミック電極301aとオーミック電極302aとが露出するように第3開口部203cと第4開口部203dとが形成される。
 次に、図28に示すように、層厚が200nmのTiNと層厚が3000nmのAlと層厚が50nmのTiNとがスパッタ法により順に堆積される。その後、ソース電極301とドレイン電極302とが形成される領域に、レジストが塗布された後にリソグラフィー法が用いられてレジストがパターニングされてマスクが形成される。次に、ドライエッチング法が用いられて、第2配線層301bと第2配線層302bとがパターニングされる。このようにして、ソース電極301とドレイン電極302とが形成される。なお、第2配線層301bと第2配線層302bとは、ドライエッチング法に限らず、メッキ法またはダマシン法によりAu、またはCuが用いられた配線として、形成されてもよい。
 以上の一連の工程を経ることで、図14に示した構造の半導体装置100Bが完成する。
 以上のように形成された半導体装置100Bにおいては、フィールドプレート電極502とゲート電極402との対向する面積を小さくできるため、フィールドプレート電極502とゲート電極402との静電容量を小さくすることができる。そのため、フィールドプレート電極502とゲート電極402との静電容量が小さく、信頼性が高く低オン抵抗な特性を有するゲート電極402を有する半導体装置100Bが得られる。
 (その他の実施の形態)
 以上、本開示に係る半導体装置について、各実施の形態に基づいて説明したが、本開示は、上記各実施の形態に限定されるものではない。
 例えば、実施の形態2において図15~図19で示したように、第1バリア層401aと第2バリア層402bの少なくとも一方は左右非対称であってもよい。なお、実施の形態1においても同様であり、第1バリア層401aと第2バリア層401bの少なくとも一方は左右非対称であってもよい。このようにすることで、フィールドプレート電極501の構造設計の自由度が向上する。
 また例えば、図15で示したように、第1バリア層401aとフィールドプレート電極502との間隔は、第2バリア層402bとフィールドプレート電極502との間隔d2より短くてもよい。なお、実施の形態1においても同様であり、第1バリア層401aとフィールドプレート電極501との間隔は、第2バリア層401bとフィールドプレート電極501との間隔より短くてもよい。このようにすることで、第2バリア層401bとドレイン電極302との間隔が広がるためドレイン電極302とゲート電極401との静電容量を小さくできる。
 また例えば、図17で示したように、第1バリア層401aとフィールドプレート電極502との間隔d3は、第2バリア層402bとフィールドプレート電極502との間隔より長くてもよい。なお、実施の形態1においても同様であり、第1バリア層401aとフィールドプレート電極501との間隔は、第2バリア層402bとフィールドプレート電極501との間隔より長くてもよい。このようにすることで、ゲート電極401の幅がドレイン電極302側に拡大されて、ゲート電極401の配線抵抗を小さくできる。さらに、フィールドプレート電極501の形状が平坦になるためフィールドプレート電極501とゲート電極401との静電容量を小さくできる。
 また、例えば、本開示の主旨を逸脱しない限り、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本開示の趣旨を逸脱しない範囲で実施の形態における構成要素および機能を任意に組み合わせることで実現される形態も本開示に含まれる。
 また、上記の実施の形態は、請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
 本開示に係る半導体装置は、高速動作が要求される通信機器やインバータ、および、電源回路等に用いられるパワースイッチング素子等に有用である。
100A、100B 半導体装置
101 基板
102 バッファ層
103 第1窒化物半導体層
103a GaN層
104 第2窒化物半導体層
104a AlGaN層
105 二次元電子ガス層
201、211 第1絶縁層
201a、211a 第1開口部
202、212 第2絶縁層
202b、203b、212b 第2開口部
202c、203c 第3開口部
202d、203d 第4開口部
203 第3絶縁層
204 ゲート絶縁層
301 ソース電極
301a、302a オーミック電極
301b、302b 第2配線層
302 ドレイン電極
401、401x、402、411 ゲート電極
401a 第1バリア層
401b、402b 第2バリア層
401c、402c、411c 第1配線層
411a TaN層
401bx、411b TiN層
401cx Al層
501、502 フィールドプレート電極
501b 第3バリア層
501c 第3配線層
501t、502t 最上面
501u、502u 最下面
p1 下端位置
p2 分岐点
d1 最近接距離
d2、d3 間隔
d4、d5、d6、d7 長さ
L1 対称線
t1、t2 層厚

Claims (14)

  1.  基板と、
     前記基板の上に設けられた第1窒化物半導体層と、
     前記第1窒化物半導体層と比べてバンドギャップが大きく、前記第1窒化物半導体層の上に設けられた第2窒化物半導体層と、
     前記第2窒化物半導体層の上に設けられた第1絶縁層と、
     間隔を空けて設けられ、それぞれが前記第1絶縁層を貫通して前記第1窒化物半導体層に電気的に接続されたソース電極およびドレイン電極と、
     前記ソース電極と前記ドレイン電極との間において、前記第2窒化物半導体層が露出するように前記第1絶縁層に設けられた開口部と、
     前記ソース電極および前記ドレイン電極と間隔を空けて設けられ、前記開口部で前記第2窒化物半導体層に接触するゲート電極と、を有し、
     前記ゲート電極は、
      TaNからなり、層厚がZ1であり、前記第2窒化物半導体層にショットキー接合する第1バリア層と、
      前記第1バリア層の上に接触して設けられ、TiNまたはWNからなり、層厚がZ2である第2バリア層と、
      前記第2バリア層の上に接触して設けられた配線層と、を含み、
      前記Z1および前記Z2は、200nm≧Z1+Z2≧50nm、Z1<Z2、および、50nm>Z1>3nmを満たす
     半導体装置。
  2.  前記Z1および前記Z2は、Z1+Z2≧70nmを満たす
     請求項1に記載の半導体装置。
  3.  前記Z1は、Z1>10nmを満たす
     請求項1または2に記載の半導体装置。
  4.  前記第1バリア層と前記第2バリア層とは前記開口部から前記ドレイン電極に向かう途中の分岐点から分岐し、
     前記半導体装置は、
      前記分岐点と前記ドレイン電極との間の、前記第1バリア層の上から前記第1絶縁層の上に延伸して設けられた酸素含有率1%以下の第2絶縁層と、
      前記開口部と前記ドレイン電極との間の、前記第2絶縁層の上に設けられた、前記ソース電極と同電位のフィールドプレート電極と、を有し、
     前記フィールドプレート電極と前記ゲート電極との最近接距離は100nm以上1000nm以下である
     請求項1~3のいずれか1項に記載の半導体装置。
  5.  前記基板が含む上面の垂直方向において、
     前記フィールドプレート電極の最下面位置は、前記ドレイン電極に最近接する前記第2バリア層の側面の下端位置より下方である
     請求項4に記載の半導体装置。
  6.  前記フィールドプレート電極の一部の材料は、前記第2バリア層の材料と同一である
     請求項4または5に記載の半導体装置。
  7.  前記基板が含む上面の垂直方向において、
     前記フィールドプレート電極の最上面位置は、前記ドレイン電極に最近接する前記第2バリア層の側面の下端位置より下方である
     請求項4~6のいずれか1項に記載の半導体装置。
  8.  前記フィールドプレート電極は、下層と上層とを含む複数層で構成され、前記下層の抵抗率よりも前記上層の抵抗率が小さい
     請求項4~7のいずれか1項に記載の半導体装置。
  9.  更に、前記分岐点と前記ドレイン電極との間の、前記第2絶縁層の上に、前記フィールドプレート電極を覆うように設けられた第3絶縁層を有し、
     前記第2絶縁層と前記第3絶縁層とは、前記第1バリア層と前記第2バリア層とで挟まれている
     請求項4~8のいずれか1項に記載の半導体装置。
  10.  前記第3絶縁層を構成する材料の誘電率は前記第2絶縁層を構成する材料の誘電率より小さい
     請求項9に記載の半導体装置。
  11.  前記第2絶縁層の層厚は前記第3絶縁層の層厚より薄い
     請求項9または10に記載の半導体装置。
  12.  前記第1バリア層と前記第2バリア層のうち少なくとも一方では、前記開口部の中央から前記ソース電極へ向かう方向への延伸長と前記中央から前記ドレイン電極へ向かう方向への延伸長とが異なる
     請求項4~11のいずれか1項に記載の半導体装置。
  13.  前記基板の平面視において、
     前記第1バリア層と前記フィールドプレート電極との間隔は、前記第2バリア層と前記フィールドプレート電極との間隔より短い
     請求項12に記載の半導体装置。
  14.  前記基板の平面視において、
     前記第1バリア層と前記フィールドプレート電極との間隔は、前記第2バリア層と前記フィールドプレート電極との間隔より長い
     請求項12に記載の半導体装置。
PCT/JP2022/028359 2021-07-27 2022-07-21 半導体装置 WO2023008308A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023538480A JP7448728B2 (ja) 2021-07-27 2022-07-21 半導体装置
CN202280051723.7A CN117769762A (zh) 2021-07-27 2022-07-21 半导体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021122144 2021-07-27
JP2021-122144 2021-07-27

Publications (1)

Publication Number Publication Date
WO2023008308A1 true WO2023008308A1 (ja) 2023-02-02

Family

ID=85086926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028359 WO2023008308A1 (ja) 2021-07-27 2022-07-21 半導体装置

Country Status (4)

Country Link
JP (1) JP7448728B2 (ja)
CN (1) CN117769762A (ja)
TW (1) TW202306173A (ja)
WO (1) WO2023008308A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006190749A (ja) 2005-01-05 2006-07-20 Mitsubishi Electric Corp 半導体素子および電界効果トランジスタ
JP2010517302A (ja) * 2007-02-06 2010-05-20 インターナショナル レクティフィアー コーポレイション Iii族窒化物半導体デバイス
JP2010533987A (ja) * 2007-07-20 2010-10-28 アイメック Iii−v族cmosデバイスでのダマシンコンタクト
JP2012523697A (ja) * 2009-04-08 2012-10-04 エフィシエント パワー コンヴァーション コーポレーション エンハンスメントモードGaNHEMTデバイス、及びその製造方法
JP2013201370A (ja) 2012-03-26 2013-10-03 Toshiba Corp 窒化物半導体装置およびその製造方法
US20140106516A1 (en) * 2012-10-15 2014-04-17 Infineon Technologies Austria Ag Self-doped ohmic contacts for compound semiconductor devices
JP2014072388A (ja) * 2012-09-28 2014-04-21 Fujitsu Ltd 化合物半導体装置及びその製造方法
JP2014099523A (ja) * 2012-11-15 2014-05-29 Mitsubishi Electric Corp ヘテロ接合電界効果型トランジスタおよびその製造方法
US20200051823A1 (en) * 2018-08-07 2020-02-13 Stimicroelectronics S.R.L. Method of manufacturing a hemt device with reduced gate leakage current, and hemt device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4547933B2 (ja) * 2003-02-19 2010-09-22 日亜化学工業株式会社 窒化物半導体素子
JP2008277640A (ja) * 2007-05-02 2008-11-13 Toshiba Corp 窒化物半導体素子
JP2008305816A (ja) * 2007-06-05 2008-12-18 Mitsubishi Electric Corp 半導体装置及びその製造方法
JP2013149851A (ja) * 2012-01-20 2013-08-01 Sharp Corp 窒化物半導体装置
JP6650867B2 (ja) * 2016-12-22 2020-02-19 三菱電機株式会社 ヘテロ接合電界効果型トランジスタの製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006190749A (ja) 2005-01-05 2006-07-20 Mitsubishi Electric Corp 半導体素子および電界効果トランジスタ
JP2010517302A (ja) * 2007-02-06 2010-05-20 インターナショナル レクティフィアー コーポレイション Iii族窒化物半導体デバイス
JP2010533987A (ja) * 2007-07-20 2010-10-28 アイメック Iii−v族cmosデバイスでのダマシンコンタクト
JP2012523697A (ja) * 2009-04-08 2012-10-04 エフィシエント パワー コンヴァーション コーポレーション エンハンスメントモードGaNHEMTデバイス、及びその製造方法
JP2013201370A (ja) 2012-03-26 2013-10-03 Toshiba Corp 窒化物半導体装置およびその製造方法
JP2014072388A (ja) * 2012-09-28 2014-04-21 Fujitsu Ltd 化合物半導体装置及びその製造方法
US20140106516A1 (en) * 2012-10-15 2014-04-17 Infineon Technologies Austria Ag Self-doped ohmic contacts for compound semiconductor devices
JP2014099523A (ja) * 2012-11-15 2014-05-29 Mitsubishi Electric Corp ヘテロ接合電界効果型トランジスタおよびその製造方法
US20200051823A1 (en) * 2018-08-07 2020-02-13 Stimicroelectronics S.R.L. Method of manufacturing a hemt device with reduced gate leakage current, and hemt device

Also Published As

Publication number Publication date
JP7448728B2 (ja) 2024-03-12
JPWO2023008308A1 (ja) 2023-02-02
CN117769762A (zh) 2024-03-26
TW202306173A (zh) 2023-02-01

Similar Documents

Publication Publication Date Title
TWI663698B (zh) 半導體裝置
TWI770134B (zh) 半導體裝置及半導體裝置之製造方法
US11417520B2 (en) Semiconductor structure having sets of III-V compound layers and method of forming
CN105938799B (zh) 半导体器件的制造方法和半导体器件
US8207574B2 (en) Semiconductor device and method for manufacturing the same
US8525274B2 (en) Semiconductor device and method of manufacturing the same
TW201633532A (zh) 半導體裝置及半導體裝置之製造方法
JP7082508B2 (ja) 窒化物半導体装置
JP7065370B2 (ja) 半導体デバイス及びその製造方法
JP5306438B2 (ja) 電界効果トランジスタおよびその製造方法
JP2016149404A (ja) 半導体装置の製造方法および半導体装置
TWI641133B (zh) 半導體單元
TW201601312A (zh) 半導體裝置及半導體裝置之製造方法
TW202103268A (zh) 高電子遷移率電晶體及其製作方法
CN114556561B (zh) 基于氮化物的半导体ic芯片及其制造方法
TW201635522A (zh) 半導體單元
TW202238993A (zh) 半導體結構
TWI725433B (zh) 半導體裝置的製作方法
WO2023008308A1 (ja) 半導体装置
JP6650867B2 (ja) ヘテロ接合電界効果型トランジスタの製造方法
JP6176131B2 (ja) 半導体装置の製造方法
TWI652820B (zh) 半導體結構的製造方法及半導體裝置
JP2012227228A (ja) 半導体デバイスおよび半導体デバイスの製造方法
JP4955858B2 (ja) 多層構造半導体装置
TWI685970B (zh) 半導體結構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849370

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023538480

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280051723.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022849370

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022849370

Country of ref document: EP

Effective date: 20240227