WO2023002839A1 - 無機粉末射出成形用組成物、並びにそれを用いた成形体及び焼結体 - Google Patents

無機粉末射出成形用組成物、並びにそれを用いた成形体及び焼結体 Download PDF

Info

Publication number
WO2023002839A1
WO2023002839A1 PCT/JP2022/026526 JP2022026526W WO2023002839A1 WO 2023002839 A1 WO2023002839 A1 WO 2023002839A1 JP 2022026526 W JP2022026526 W JP 2022026526W WO 2023002839 A1 WO2023002839 A1 WO 2023002839A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyacetal
inorganic powder
injection molding
modified
powder injection
Prior art date
Application number
PCT/JP2022/026526
Other languages
English (en)
French (fr)
Inventor
久遠 宮崎
基裕 深井
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to EP22845773.5A priority Critical patent/EP4374988A1/en
Priority to CN202280045425.7A priority patent/CN117580661A/zh
Priority to KR1020237039775A priority patent/KR20230173165A/ko
Priority to JP2023536673A priority patent/JPWO2023002839A1/ja
Publication of WO2023002839A1 publication Critical patent/WO2023002839A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/103Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing an organic binding agent comprising a mixture of, or obtained by reaction of, two or more components other than a solvent or a lubricating agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/24Producing shaped prefabricated articles from the material by injection moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2/00Addition polymers of aldehydes or cyclic oligomers thereof or of ketones; Addition copolymers thereof with less than 50 molar percent of other substances
    • C08G2/38Block or graft polymers prepared by polymerisation of aldehydes or ketones on to macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/011Crosslinking or vulcanising agents, e.g. accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L59/00Compositions of polyacetals; Compositions of derivatives of polyacetals

Definitions

  • the present invention relates to a molding raw material used when manufacturing an inorganic powder sintered molded body, a molded body using the raw material, and a sintered body.
  • the powder injection molding method is known as a method of manufacturing metal and ceramic parts.
  • an inorganic powder injection molding composition is obtained by melt-kneading sinterable inorganic powders such as metals, ceramics and cermets with organic binders composed of organic compounds such as polyethylene, polypropylene and paraffin wax.
  • sinterable inorganic powders such as metals, ceramics and cermets
  • organic binders composed of organic compounds such as polyethylene, polypropylene and paraffin wax.
  • the green molded body is subjected to a degreasing step to remove the organic binder component.
  • the desired component is obtained by sintering the molded body from which the binder has been removed.
  • This method is capable of mass-producing complex-shaped parts at once, and has a high degree of freedom in shape, high degree of freedom in materials, high dimensional accuracy, high mechanical strength of sintered products, etc.
  • Polyacetal is known as one of the organic compounds that constitute the binder (for example, organic binder) used in this powder injection molding method.
  • POM has the advantages of increasing the strength of the green compact, suppressing deformation during degreasing, and leaving no residue after sintering.
  • Japanese Patent Application Laid-Open No. 2001-106581 discloses the use of polyolefin modified with methacrylic acid or the like as an organic binder for the purpose of improving compatibility with POM.
  • JP 2009-542880 proposes an organic binder composed of POM, polyethylene, and poly-1,3-dioxepane.
  • POM and polyethylene have low compatibility, but by blending poly-1,3-dioxepane, an organic binder with good dispersibility is obtained.
  • JP-A-2001-514017 proposes a block copolymer comprising a polyoxymethylene chain and hydrogenated polybutadiene.
  • Japanese Patent Laid-Open No. 7-293290 proposes the use of a polyolefin-based polymer-modified polyacetal resin as a binder composed of an organic compound.
  • a composition for producing a sintered molded body has been proposed, which is easily mixed with a polyolefin resin by using the polyolefin polymer-modified polyacetal resin as a binder. Furthermore, JP-A-2003-172273 also proposes to use a modified polyacetal as a binder composed of an organic compound.
  • the binder containing POM used in the powder injection molding method has the disadvantage that it decomposes when it is kneaded with sinterable inorganic powder and heat is applied during the injection molding process.
  • WO 2001/009213 proposes a block copolymer comprising a polyoxymethylene chain and hydrogenated polybutadiene.
  • Japanese Patent Application Laid-Open No. 09-111306 proposes the use of a polyolefin-based polymer-modified polyacetal resin as a binder composed of an organic compound.
  • Japanese Patent Application Laid-Open No. 2004-076153 also proposes to use a modified polyacetal as a binder composed of an organic compound.
  • An object of the present invention is to provide a composition containing a modified polyacetal suitable for inorganic powder injection molding applications.
  • JP-A-2001-106581 requires a long time for melt-kneading with POM and other resin components, and the effect of improving dispersibility with POM is limited.
  • dispersibility is certainly improved by blending poly-1,3-dioxepane, but from the viewpoint of shape retention during degreasing, it is necessary to blend polyolefin. It takes time to melt each of POM and polyolefin, and the effect of improving dispersibility is limited.
  • the object of invention (I) is to obtain an inorganic powder injection molding composition containing a modified polyacetal that can shorten the kneading time and has excellent injection moldability.
  • the method described in JP-A-2001-514017 aims to form a large-diameter gear having high roundness, excellent dimensional stability and durability. It was not envisaged to incorporate possible inorganic powders.
  • the structure of the polyolefin to be introduced is clear, but the structure of POM, which is the main structure of the modified polyacetal, is unclear, and the decomposition suppression effect is insufficient.
  • the method described in JP-A-2004-076153 although there is a description of modified polyacetal, there is no mention of a specific structure, and there is a problem that the effect of suppressing decomposition is insufficient.
  • the object of the invention (II) is to include a modified polyacetal that does not impair the shape retention of a green molded body based on the rigidity possessed by the polyacetal resin and that is inhibited from being decomposed in the process of kneading with inorganic powder and injection molding.
  • An object of the present invention is to obtain an inorganic powder injection molding composition.
  • the gists of inventions (I) and (II) are as follows.
  • invention (I) is as follows.
  • [Invention (I)] [1] a sinterable inorganic powder; an organic binder comprising a modified polyacetal (C) having a polyacetal segment (A) and a modified segment (B);
  • An inorganic powder injection molding composition comprising The modified polyacetal (C) has a melt flow rate (MFR) of 70 g/10 min or more and 160 g/10 min or less measured under conditions of 190° C. and 2.16 kg, A composition for inorganic powder injection molding, wherein the modified segment (B) has a number average molecular weight of 500 to 10,000.
  • MFR melt flow rate
  • the modified segment (B) has a number average molecular weight of 500 to 10,000.
  • each R is independently selected from hydrogen, an alkyl group, a substituted alkyl group, an aryl group and a substituted aryl group, and m is an integer selected from 2 to 6.
  • An injection molded article comprising the inorganic powder injection molding composition according to any one of [1] to [7].
  • the present inventors have made intensive studies to solve the above-described problems, and as a result, the number average molecular weight of the modified polyacetal, the number average molecular weight of the modified portion, and the oxymethylene unit and oxyalkylene unit that constitute the polyacetal segment
  • the present inventors have found that an inorganic powder injection molding composition containing an organic binder containing a modified polyacetal with an adjusted molar ratio of units can solve the above problems, and arrived at invention (II).
  • invention (II) is as follows.
  • [Invention (II)] [1] a sinterable inorganic powder; an organic binder comprising a modified polyacetal (C) having a polyacetal segment (A) and a modified segment (B);
  • An inorganic powder injection molding composition comprising The modified polyacetal (C) has a number average molecular weight of 10,000 to 500,000, The modified segment (B) has a number average molecular weight of 500 to 10,000,
  • the polyacetal segment (A) consists of 95.0 to 99.9 mol% of oxymethylene units and 0.1 to 5.0 mol% of oxyalkylene units represented by formula (1)
  • An inorganic powder injection molding composition characterized by: (Wherein, each R is independently selected from the group consisting of hydrogen, an alkyl group, a substituted alkyl group, an aryl group and a substituted aryl group, and m is an integer selected from 2 to 6.) [2] The ratio (Mn2/Mn1
  • the inorganic powder injection molding composition according to [1].
  • [3] The composition for inorganic powder injection molding according to [1] or [2], wherein the modified segment (B) is polyolefin.
  • [4] The inorganic powder injection molding composition according to any one of [1] to [3], wherein the modified segment (B) is hydrogenated polybutadiene.
  • [5] The inorganic powder injection molding composition according to any one of [1] to [4], wherein the modified polyacetal (C) is a block copolymer represented by (A)-(B)-(A).
  • the polyacetal molecular weight reduction rate of the weight average molecular weight of the modified polyacetal extracted after treating the composition for inorganic powder injection molding in chloroform at 80° C. for 8 hours with respect to the weight average molecular weight of the modified polyacetal (C) is 40. % or less, the inorganic powder injection molding composition according to any one of [1] to [5].
  • the inorganic powder injection molding composition according to any one of [1] to [6] which contains a polyolefin resin having a melt flow rate (MFR) of 60 g/10 minutes or more measured under conditions of 230° C. and 2.16 kg.
  • MFR melt flow rate
  • An injection molded article comprising the inorganic powder injection molding composition according to any one of [1] to [7].
  • composition containing modified polyacetal suitable for inorganic powder injection molding can be provided.
  • a homogeneous inorganic powder injection molding composition can be obtained in a short melt-kneading time.
  • the inorganic powder injection molding composition of the invention (I) it is possible to obtain a sintered body with a good yield because it has excellent injection moldability and does not cause cracks or blisters in the degreasing and sintering steps.
  • the amount of resin components other than the polyacetal resin in the inorganic powder injection molding composition is small (preferably not blended), it is preferable that the kneading time can be shortened and the injection moldability is excellent.
  • the invention (II) does not impair the shape retention of the green molded body based on the rigidity possessed by the polyacetal resin, and contains a modified polyacetal that is suppressed from being decomposed in the process of kneading with inorganic powder and injection molding.
  • An inorganic powder injection molding composition can be obtained.
  • the inorganic powder injection molding composition of the invention (II) it is possible to obtain a sintered body with excellent yield because it has excellent injection moldability and does not cause cracks or blisters in the degreasing and sintering steps.
  • the composition for inorganic powder injection molding of the present embodiment is an inorganic powder injection molding composition containing a sinterable inorganic powder and an organic binder containing a modified polyacetal (C) having a polyacetal segment (A) and a modified segment (B).
  • the modified segment (B) has a number average molecular weight of 500 to 10,000.
  • the inorganic powder injection molding composition of the present embodiment can be used for inorganic powder injection applications.
  • Preferred embodiments of the inorganic powder injection molding composition of the present embodiment include the following inventions (I) and (II).
  • the inorganic powder injection molding composition of the present embodiment contains a sinterable inorganic powder and an organic binder containing a modified polyacetal (C) composed of a polyacetal segment (A) and a modified segment (B).
  • the inorganic powder injection molding composition of the present embodiment may further contain other additives in addition to the sinterable inorganic powder and the organic binder.
  • the composition may consist of only the inorganic powder and the organic binder.
  • the resin components are only the modified polyacetal (C), the unreacted polyacetal described later, the polyamide resin as the nitrogen-containing compound described later, and the resin as the lubricant.
  • it does not contain a polyolefin resin or the like, which is normally blended to retain the shape of the molded article during degreasing.
  • aggregate resins other than polyacetal resins (modified polyacetal (C) described above and unreacted unreacted polyacetal resins described later) are added to retain the shape of the molded body during degreasing.
  • the mass ratio of the resin other than polyacetal) may be 1 part by mass or less, 0.5 parts by mass or less, or 0.01 parts by mass or less.
  • the inorganic powder can be selected from among all known suitable sinterable inorganic powders. Preferably, it is selected from metal powders, alloy powders, metal carbonyl powders, ceramic powders and mixtures thereof. Among them, metal powder and ceramic powder are particularly preferable in order to impart functionality.
  • the sinterable inorganic powder may be used singly or in combination.
  • the sinterable inorganic powder may be an inorganic powder having a melting point between 500° C. and 2000° C. and an average particle size of 100 ⁇ m or less. The melting point can be determined from the endothermic peak top by using a differential scanning calorimeter, raising the temperature at a rate of 5° C./min under an argon stream. Further, the average particle diameter means the average diameter of 50% weight accumulation measured using a particle size distribution measuring device employing a laser diffraction scattering method. Unless otherwise specified, these terms have the same meanings below.
  • the metal powder include powders of aluminum, magnesium, barium, calcium, cobalt, zinc, copper, nickel, iron, silicon, titanium, tungsten, and metal compounds and metal alloys based thereon. be done. It is possible here not only to use already finished alloys, but also mixtures of the individual alloy components.
  • the ceramic powder examples include oxides such as zinc oxide, aluminum oxide and zirconia; hydroxides such as hydroxyapatite; carbides such as silicon carbide; nitrides such as silicon nitride and boron nitride; halides such as fluorite; silicates such as Wright; titanates such as barium titanate and lead zirconate titanate; carbonates; phosphates;
  • the inorganic powders described above may be used singly, or it is possible to use several inorganic substances in combination, such as various metal powders, metal alloys, and ceramic powders.
  • preferred metal powders and alloy powders include titanium alloys and stainless steels such as SUS316L. Aluminum oxide and zirconia are mentioned.
  • the average particle size of the inorganic powder is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less.
  • the mass ratio of the sinterable inorganic powder is preferably 70 to 95% by mass, more preferably 75 to 95% by mass, based on 100% by mass of the inorganic powder injection molding composition. Particularly preferably, it is 80 to 95% by mass.
  • the sinterable inorganic powder is within the range described above, it is possible to obtain a composition for a sintered molded body having excellent kneadability and a melt viscosity suitable for injection molding, and high strength green molding. you can get a body
  • the organic binder preferably contains a modified polyacetal (C) composed of a polyacetal segment (A) and a modified segment (B), and further contains a lubricant.
  • Modified polyacetal resin has polyacetal segments and modified segments composed of polyolefin, etc. in its molecule, so there is a small amount of aggregate resin other than modified polyacetal (C), which is blended to maintain the shape of the molded product during degreasing. Even if it is (preferably without blending other aggregate resins), it has good adhesion with the sinterable inorganic powder and exhibits good shape retention even in the degreasing step.
  • the organic binder preferably contains a modified polyacetal mixture described below containing the modified polyacetal (C).
  • the organic binder may optionally contain a lubricant, an aggregate resin other than polyacetal, and an additive, and may be a modified polyacetal mixture or a mixture consisting of only a lubricant. It is preferable that the resin component containing an oxymethylene unit contained in the organic binder is only modified polyacetal (C) described later.
  • the modified polyacetal mixture contains the modified polyacetal (C) and may further contain a nitrogen-containing compound and a fatty acid metal salt. Among them, it is preferable that the modified polyacetal (C) is included and the optional ingredients are only the nitrogen-containing compound and the fatty acid metal salt.
  • Modified polyacetal (C)- The organic binder includes modified polyacetal (C) from the viewpoint of kneading with sinterable inorganic powder and thermal stability in the injection molding process.
  • Modified polyacetals are generally block copolymers having polyacetal segments and modified segments.
  • the polyacetal segment may be a homopolymer residue consisting only of oxymethylene units or may be a copolymer residue obtained by randomly copolymerizing oxymethylene units and oxyalkylene units.
  • a modified segment is a component that does not correspond to a polyacetal segment, and includes, for example, polyolefin, polyurethane, polyester, polyamide, polystyrene, and polyalkyl acrylate.
  • the modified polyacetal (C) in the present embodiment has a polyacetal segment (A) and a modified segment (B), and may consist of only the polyacetal segment (A) and the modified segment (B).
  • the polyacetal segment (A) is a polyacetal copolymer residue in which oxymethylene units and oxyalkylene units are randomly copolymerized, as described later, and the modified segment (B) is preferably polyolefin or polyurethane.
  • the modified polyacetal (C) may be used alone or in combination of multiple types.
  • the number average molecular weight of the modified polyacetal (C) is preferably from 10,000 to 500,000, more preferably from 10,000 to 50,000, from the viewpoint of obtaining a green molded product with good yield in the injection molding process. It is more preferably 10,000 to 20,000. From the viewpoint of molding small and thin parts, it is preferably 20,000 to 200,000, more preferably 20,000 to 100,000.
  • the number average molecular weight of the modified polyacetal (C) can be measured by GPC.
  • GPC As specific conditions for GPC, for example, HLC-8120 manufactured by Tosoh Corporation is used as the GPC apparatus, HFIP806 manufactured by Showa Denko K.K. ), and can be measured under conditions of a temperature of 40° C. and a flow rate of 0.5 ml/min using polymethyl methacrylate (PMMA) manufactured by Polymer Laboratories as a standard sample.
  • the number average molecular weight of the modified segment (B) constituting the modified polyacetal (C) is preferably 500 to 10,000 (polystyrene equivalent) from the viewpoint of obtaining a green molded article with a good yield in the injection molding process. From the viewpoint of suppressing the decomposition of the modified polyacetal (C) during kneading with the sinterable inorganic powder, it is more preferably 2,000 to 5,000 (in terms of polystyrene). Further, the modified segment (B) preferably has a molecular weight distribution (Mw/Mn) of less than 2. GPC can be used to measure the number average molecular weight of the modified segment (B).
  • the number average molecular weight can be measured.
  • the number average molecular weight of the modified segment (B) is to be measured for any modified polyacetal resin manufactured by a third party, it is desirable to decompose the polyacetal block in advance before measurement.
  • the ratio of the number average molecular weight (Mn2) of the modified segment (B) to the number average molecular weight (Mn1) of the modified polyacetal (C) (Mn2/Mn1 ⁇ 100 (%)) is the molded body in the degreasing and sintering steps. 0.5% or more and 10% or less is preferable from the viewpoint of preventing cracking and swelling of the core, and 0.5% or more and 5.0% or less is more preferable from the viewpoint of improving the yield in the injection molding process.
  • Polyolefin and polyurethane can be suitably used for the modified segment (B) of the modified polyacetal (C).
  • Polyolefin is preferable from the viewpoint of reducing the residue derived from the organic binder in the degreasing step.
  • Specific examples include polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, polyisoprene, polybutadiene, and hydrogenated polybutadiene.
  • modified segment (B) contained in the modified polyacetal (C) may be of one type or plural types. Among them, from the viewpoint of ease of production, one type is preferable.
  • the polyacetal segment (A) of the modified polyacetal (C) is derived from oxymethylene units (that is, (CH 2 O) units) resulting from ring-opening-polymerized trioxane, and ring-opening-polymerized cyclic formal (or cyclic ether). It is composed of a polyacetal copolymer residue containing an oxyalkylene unit represented by the following formula (1) (hereinafter sometimes simply referred to as an “oxyalkylene unit”).
  • the polyacetal segment (A) preferably consists of only the oxymethylene units and the oxyalkylene units.
  • the oxymethylene units and the oxyalkylene units are randomly present in the polyacetal segment (A), that is, the polyacetal copolymer residue.
  • each R is independently selected from hydrogen, an alkyl group, a substituted alkyl group, an aryl group and a substituted aryl group, and m is an integer selected from 2 to 6.
  • the oxyalkylene unit represented by the formula (1) contained in the polyacetal segment (A) may be of one type or of plural types. Among them, from the viewpoint of ease of production, one type is preferable.
  • the polyacetal segment (A) contains 95.0 to 99.9 mol% of oxymethylene units and 0.1 It preferably consists of to 5.0 mol % of oxyalkylene units, preferably 98.0 to 99.7 mol % of oxymethylene units and 0.3 to 2.0 mol % of oxyalkylene units.
  • the mol % of monomer units constituting the polyacetal segment (A) can be measured by the following method. A modified polyacetal and 1N hydrochloric acid are placed in a pressure-resistant bottle and heated at 130° C. for 2 hours to hydrolyze the modified polyacetal to obtain an alkylene glycol component derived from cyclic formal (or cyclic ether).
  • a hydroxyalkylated modified segment After hydrolysis, a hydroxyalkylated modified segment will also be present, but this hydroxyalkylated modified segment exists as a phase separation from the aqueous solution.
  • the alkylene glycol component present in the aqueous solution after hydrolysis is quantified by gas chromatography.
  • the oxyalkylene unit represented by the above formula (1) resulting from cyclic formal (or cyclic ether) include ethylene oxide residue, propylene oxide residue, 1,3-dioxolane residue, 1,3, 5-trioxepane residue, diethylene glycol formal residue, 1,4-butanediol formal residue, 1,3-dioxane residue and the like.
  • the oxyalkylene unit is preferably a 1,3-dioxolane residue, a 1,3,5-trioxepane residue, or a 1,4-butanediol formal residue from the viewpoint of the production rate of the modified polyacetal (C). , and more preferably a 1,3-dioxolane residue.
  • a 1,3-dioxolane residue obtained by polymerizing 1,3-dioxolane containing 500 mass ppm or less of 2-methyl-1,3-dioxolane and 15 mass ppm or less of peroxide in terms of hydrogen peroxide. is preferably an oxyalkylene unit, and 10 to 500 mass ppm of one or more hindered phenols are preferably added during the polymerization.
  • the content of 2-methyl-1,3-dioxolane can be measured by a gas chromatograph equipped with Gascropack 55 manufactured by GL Sciences Inc. using a hydrogen flame ion detector.
  • the content of peroxide in 1,3-dioxolane was as follows.
  • the modified polyacetal (C) is composed of polyacetal segment (A) - modified segment (B) - polyacetal segment (A) ( In this specification, sometimes referred to as (A)-(B)-(A), ABA, etc.) or modified segment (B)-polyacetal segment (A)-modified segment (B) (in this specification, ( It is preferably a block copolymer represented by B)-(A)-(B), sometimes referred to as BAB, etc.). Further, (A)-(B)-(A) is more preferable from the viewpoint of strength development of the green compact. For any polyacetal resin, whether or not it is a block copolymer can be identified using a known method. A method of quantitative comparison can be considered.
  • the modified polyacetal (C) has a melt flow rate of 70 g/10 min or more, measured at 190° C. and 2.16 kg, and 70 g/10 min or more of 160 g. /10 min or less, more preferably 90 g/10 min or more and 160 g/10 min or less, still more preferably 90 g/10 min or more and 150 g/10 min or less.
  • the melt flow rate is 70 g/10 minutes or more, the fluidity of the inorganic powder injection molding composition is improved, and the injection moldability is excellent even in a small and thin shape.
  • it is 160 g/10 minutes or less, the strength of the green molded body is improved.
  • the mass ratio of the modified polyacetal (C) in 100% by mass of the modified polyacetal mixture is preferably 95% by mass or more, more preferably 97% by mass or more and less than 100% by mass, and still more preferably 97 to 99% by mass. It is 9% by mass.
  • the mass ratio of the modified polyacetal (C) in 100% by mass of the organic binder is preferably 1 to 40% by mass, more preferably 1 to 40% by mass, from the viewpoint of reducing decomposition products of the polyacetal in kneading and injection molding steps. It is 1 to 20% by mass, particularly preferably 1 to 10% by mass.
  • the mass ratio of the modified polyacetal (C) in 100% by mass of the inorganic powder injection molding composition is 1 to 20% by mass from the viewpoint of excellent shape retention of the green molded body containing the inorganic powder. is preferred, more preferably 2 to 15% by mass, and still more preferably 4 to 10% by mass.
  • the ratio of the mass of the inorganic powder to the mass of the modified polyacetal (C) in the inorganic powder injection molding composition is the shape retention property of the green molded body. From the viewpoint of preventing cracking and swelling of the molded body in the degreasing and sintering steps, it is preferably from 5 to 200, more preferably from 10 to 100, and even more preferably from 15 to 50.
  • the method for producing the modified polyacetal (C) is not particularly limited, and it can be obtained by a known method. Depending on the method for producing the modified polyacetal (C), an unreacted polyacetal resin and/or an unreacted polyolefin polymer coexist together with the modified polyacetal that is the reaction product, in the form of a substantially compatible or uniformly dispersed mixture. may be taken.
  • the unreacted polyacetal resin and the unreacted polyolefin polymer generated by the method for producing the modified polyacetal (C) may be the above-mentioned thermoplastic resin which is one component in the composition for inorganic powder injection molding.
  • the modified polyacetal mixture preferably further contains a nitrogen-containing compound and/or a fatty acid metal salt, more preferably a nitrogen-containing compound and a fatty acid metal salt.
  • a nitrogen-containing compound and the fatty acid metal salt By containing the nitrogen-containing compound and the fatty acid metal salt, the extrudability, thermal stability, and suppression of foreign matter in producing the modified polyacetal mixture can be improved.
  • the fluidity of the inorganic powder injection molding composition kneaded with the metal powder and the strength of the green molded body tend to be improved at the same time.
  • the nitrogen-containing compound and the fatty acid metal salt the composition for inorganic powder injection molding has improved thermal stability.
  • nitrogen-containing compound examples include, but are not limited to, polyamide resins, amide compounds, urea derivatives, and triazine derivatives.
  • Polyamide resin is preferable from the viewpoint of further excellent strength. These may be used individually by 1 type, and may be used in combination of 2 or more type.
  • polyamide resin examples include, but are not particularly limited to, nylon 6, nylon 11, nylon 12, nylon 66, nylon 6/10 obtained by condensation of diamine and dicarboxylic acid, condensation of amino acids, ring-opening polymerization of lactam, and the like.
  • amide compound examples include, but are not limited to, aliphatic monocarboxylic acids, aliphatic dicarboxylic acids, aromatic monocarboxylic acids, or aromatic dicarboxylic acids and aliphatic monoamines, aliphatic diamines, aromatic monoamines, and aromatic diamines.
  • stearyl stearamide stearyl oleic acid amide, stearyl erucic acid amide, ethylenediamine-distearic acid amide, ethylenediamine-dibehenic acid amide, hexamethylenediamine-distearic acid amide, ethylenediamine-dierucic acid amide, xylylenediamine-dierucic acid produced from acid amide, di(xylylenediamine-stearic acid amide), sebacic acid amide, and the like.
  • urea derivative examples include, but are not particularly limited to, N-phenylurea, N,N'-diphenylurea, N-phenylthiourea, N,N'-diphenylthiourea, and the like.
  • triazine derivative examples include, but are not limited to, melamine, benzoguanamine, N-phenylmelamine, melem, N,N'-diphenylmelamine, N-methylolmelamine, N,N'-trimethylolmelamine, 2,4-diamino -6-cyclohexyl triazine, melam and the like.
  • the mass ratio of the nitrogen-containing compound is preferably 0.005 to 0.2 parts by mass, particularly preferably 0.005 to 0.1 parts by mass, with respect to 100 parts by mass of the modified polyacetal mixture.
  • the mass ratio of the nitrogen-containing compound is within the above range, it is preferable from the viewpoint of improving the thermal stability of the modified polyacetal mixture when kneading the sinterable inorganic powder and the organic binder.
  • fatty acid metal salt examples include, but are not limited to, a saturated or unsaturated fatty acid having 10 to 35 carbon atoms or a fatty acid substituted with a hydroxyl group, and an alkali metal or alkaline earth metal hydroxide, oxide, or Chlorides and fatty acid metal salts obtained from. These may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Fatty acids of the fatty acid metal salts include capric acid, undecylic acid, lauric acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanic acid, arachidic acid, behenic acid, liglyceric acid, and serotin.
  • metal compounds include alkali metals such as lithium, sodium and potassium, alkaline earth metals such as magnesium, calcium, strontium and barium, hydroxides and chlorides of zinc and aluminum.
  • the fatty acid is preferably myristic acid, palmitic acid, or stearic acid
  • the metal compound is calcium hydroxide, oxide, or chloride, and more preferably calcium myristate, calcium palmitate, or calcium stearate.
  • the ratio of the mass of the fatty acid metal salt to the mass of the nitrogen-containing compound is It is preferably in a specific range, specifically the ratio is 1-15, preferably 1-10. Setting the ratio to 1 to 15 is preferable in that the thermal stability of the modified polyacetal mixture (for example, the modified polyacetal (C)) in the organic binder can be improved.
  • the organic binder may further contain an aggregate resin other than polyacetal.
  • aggregate resin refers to a thermoplastic resin compounded to maintain the strength of the molded article and to retain the shape of the molded article during degreasing.
  • aggregate resins other than the polyacetal include polyolefin resins and the nitrogen-containing compounds described above, which are resins. It should be noted that the later-described lubricant is not included in the aggregate resin other than polyacetal.
  • the organic binder may further contain a polyolefin resin.
  • the polyolefin resin is preferably a homopolymer or copolymer having structural units derived from alkenes having 2 to 8 carbon atoms, preferably 2 to 4 carbon atoms.
  • the polyolefin resin preferably has a melt flow index of 40 g/10 minutes or more measured at 230 ° C. and 2.16 kg. More preferably, it is 60 g/10 minutes or more.
  • polystyrene resin examples include polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, polyisoprene, and polybutadiene.
  • Polyethylene, polypropylene, and mixtures thereof are preferred, and polyethylene or polypropylene is more preferred from the viewpoint of shape retention in the degreasing step and suppression of cracking and blistering in the degreasing step.
  • polyethylenes that can be preferably used include, for example, Suntech HD series, Suntech LD series, Suntech EVA series (manufactured by Asahi Kasei Corporation), Neozex, Ultozex, and Evolue (manufactured by Prime Polymer). , Sumitomo Noblen (manufactured by Sumitomo Chemical), Novatec PP (manufactured by Nippon Polypropylene), SunAllomer PM series (manufactured by SunAllomer), Prime Polypro (manufactured by Prime Polymer), etc., can be used as polypropylene.
  • the polyolefin resin is difficult to be decomposed by acid.
  • the above polyolefin resin was immersed in a 30% nitric acid aqueous solution under the conditions of 23°C (room temperature) and 70°C for 24 hours under the method described in JIS K 7114 from the viewpoint of the shape retention of the molded body after acid degreasing. It is preferred that the weight after immersion is 10% or less, more preferably 5% or less, and particularly preferably 1% or less.
  • the difference between the thermal decomposition starting point (°C) of the modified polyacetal (C) and the thermal decomposition starting point (°C) of the polyolefin resin is 30°C or more from the viewpoint of further reducing cracks and blisters during the degreasing process. It is preferably 30 to 100°C, more preferably 30 to 100°C.
  • the thermal decomposition starting point is a temperature measured using a thermogravimetric differential thermal analyzer.
  • the addition of the polyolefin resin to the organic binder is optional, and the mass ratio of the polyolefin resin may be selected within a range that does not affect the shape retention of the green molded body and the shape of the molded body after acid degreasing.
  • the mass ratio of the polyolefin resin in the organic binder is 2% by mass or less with respect to 100% by mass of the organic binder, from the viewpoint of maintaining the shape of the green molded body and the shape of the molded body after acid degreasing. is preferably 1% by mass or less, and particularly preferably 0.5% by mass or less.
  • the organic binder may further contain polyacetal.
  • Examples of the polyacetal include unreacted polyacetal generated in the production of the above modified polyacetal (C).
  • Examples of the polyacetal include polyacetal represented by the following formula (3).
  • the organic binder further contains a lubricant.
  • a lubricant By containing the lubricant, the fluidity of the composition for inorganic powder injection molding is further improved, and fine molded articles can be satisfactorily injection molded.
  • the above-mentioned lubricant is a compound other than the above-mentioned polyacetal resin and polyolefin resin, and examples thereof include waxes.
  • the waxes include paraffin wax, polyethylene wax, polypropylene wax, carnauba wax, polyethylene glycol, polytetramethylene ether glycol, polytetraethylene glycol, polyisobutylene, microcrystalline wax, montan wax, beeswax, and wood wax. , synthetic wax, poly-1,3-dioxolane, poly-1,3-dioxepane and the like.
  • paraffin wax, polyethylene glycol, polytetramethylene ether glycol, and poly-1,3-dioxepane are preferable from the viewpoint of more excellent fluidity of the inorganic powder injection molding composition in injection molding.
  • the mass ratio of the lubricant is preferably 5 to 60% by mass, more preferably 5 to 60% by mass with respect to 100% by mass of the organic binder, from the viewpoint of further improving the fluidity of the inorganic powder injection molding composition in injection molding. is 5 to 50% by mass, particularly preferably 10 to 50% by mass.
  • the mass ratio of the organic binder in 100% by mass of the inorganic powder injection molding composition of the present embodiment is preferably 5 to 30% by mass, more preferably 5 to 20% by mass, and still more preferably 5 to 10% by mass. % by mass.
  • Additives other than the above-described components that can be added to the inorganic powder injection molding composition are not limited as long as they do not impair the effects of the present invention, but antioxidants are preferred additives. be able to.
  • the antioxidant include n-octadecyl-3-(3′,5′-di-t-butyl-4′-hydroxyphenyl)propionate, n-octadecyl-3-(3′-methyl-5′ -t-butyl-4'-hydroxyphenyl)propionate, n-tetradecyl-3-(3',5'-di-t-butyl-4'-hydroxyphenyl)propionate, 1,6-hexanediol-bis-( 3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate), 1,4-butanediol-bis-(3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate
  • antioxidants may be used alone or in combination of two or more.
  • the content of the antioxidant is 0.01 to 1.0% by mass, preferably 0.05 to 0.5% by mass, based on 100% by mass of the modified polyacetal (C). Thermal stability improves because content exists in the said range.
  • the inorganic powder injection molding composition of the present embodiment can be produced, for example, by mixing the inorganic powder, the organic binder, and the additive.
  • the inorganic powder injection molding composition of the present embodiment can be used as a raw material for a sintered body.
  • the sintered body is a sintered body obtained by injection molding the inorganic powder injection molding composition to obtain an injection molded body containing the inorganic powder injection molding composition, degreasing and sintering the injection molded body. you can Examples of the sintered body include automobile parts, aircraft parts, medical equipment parts, electric/electronic equipment parts, and defense equipment parts.
  • Invention (II) is as follows.
  • [Invention (II)] [Inorganic powder injection molding composition]
  • the inorganic powder injection molding composition of the present embodiment contains a sinterable inorganic powder and an organic binder containing a modified polyacetal (C) composed of a polyacetal segment (A) and a modified segment (B).
  • the inorganic powder injection molding composition of the present embodiment may further contain other additives in addition to the sinterable inorganic powder and the organic binder.
  • the composition may consist of only the inorganic powder and the organic binder.
  • the inorganic powder can be selected from among all known suitable sinterable inorganic powders. Preferably, it is selected from metal powders, alloy powders, metal carbonyl powders, ceramic powders and mixtures thereof. Among them, metal powder and ceramic powder are particularly preferable in order to impart functionality.
  • the sinterable inorganic powder may be used singly or in combination of multiple types.
  • the sinterable inorganic powder may be an inorganic powder having a melting point between 500° C. and 2000° C. and an average particle size of 100 ⁇ m or less.
  • the melting point can be determined from the endothermic peak top by using a differential scanning calorimeter, raising the temperature at a rate of 5° C./min under an argon stream.
  • the average particle diameter means the average diameter of 50% weight accumulation measured using a particle size distribution measuring device employing a laser diffraction scattering method. Unless otherwise specified, these terms have the same meanings below.
  • the metal powder include powders of aluminum, magnesium, barium, calcium, cobalt, zinc, copper, nickel, iron, silicon, titanium, tungsten, and metal compounds and metal alloys based thereon. be done. It is possible here not only to use already finished alloys, but also mixtures of the individual alloy components.
  • the ceramic powder examples include oxides such as zinc oxide, aluminum oxide, and zirconia; hydroxides such as hydroxyapatite; carbides such as silicon carbide; nitrides such as silicon nitride and boron nitride; silicates such as light, titanates such as barium titanate and lead zirconate titanate, carbonates, phosphates, ferrites, and the like.
  • the inorganic powders described above may be used singly, or it is possible to use several inorganic substances in combination, such as various metal powders, metal powders, and ceramics powders.
  • Preferred metal powders and alloy powders include titanium alloys and stainless steels such as SUS316L, from the viewpoint of particularly excellent shape retention of the green compact and suppression of decomposition during kneading and injection molding when used with an organic binder containing modified polyacetal (C).
  • Examples include steel, and ceramic powders include aluminum oxide and zirconia.
  • the average particle size of the inorganic powder is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less.
  • the mass ratio of the sinterable inorganic powder is preferably 70 to 95% by mass, more preferably 75 to 95% by mass, based on 100% by mass of the inorganic powder injection molding composition. Particularly preferably, it is 80 to 95% by mass.
  • the sinterable inorganic powder is within the range described above, it is possible to obtain a composition for a sintered molded body having a melt viscosity suitable for injection molding, and to obtain a green molded body with high strength. can.
  • the organic binder contains a modified polyacetal (C) composed of a polyacetal segment (A) and a modified segment (B).
  • the organic binder preferably contains a modified polyacetal mixture described below containing the modified polyacetal (C).
  • the organic binder may optionally contain a thermoplastic resin and additives, and may be a mixture consisting only of a modified polyacetal mixture, a polyolefin resin, and a fluidity imparting agent. It is preferable that the resin component containing an oxymethylene unit contained in the organic binder is only modified polyacetal (C) described later.
  • the modified polyacetal mixture contains the modified polyacetal (C) and may further contain a nitrogen-containing compound and a fatty acid metal salt. Among them, it is preferable that the modified polyacetal (C) is included and the optional ingredients are only the nitrogen-containing compound and the fatty acid metal salt.
  • Modified polyacetal (C)- The organic binder includes modified polyacetal (C) from the viewpoint of kneading with sinterable inorganic powder and thermal stability in the injection molding process.
  • Modified polyacetals are generally block copolymers having polyacetal segments and modified segments.
  • the polyacetal segment may be a homopolymer residue consisting only of oxymethylene units or may be a copolymer residue obtained by randomly copolymerizing oxymethylene units and oxyalkylene units.
  • a modified segment is a component that does not correspond to a polyacetal segment, and includes, for example, polyolefin, polyurethane, polyester, polyamide, polystyrene, and polyalkyl acrylate.
  • the modified polyacetal (C) in the present embodiment has a polyacetal segment (A) and a modified segment (B), and may consist of only the polyacetal segment (A) and the modified segment (B).
  • the polyacetal segment (A) is a polyacetal copolymer residue in which oxymethylene units and oxyalkylene units are randomly copolymerized, as described later, and the modified segment (B) is preferably polyolefin or polyurethane.
  • the modified polyacetal (C) may be used alone or in combination of multiple types.
  • the number average molecular weight of the modified polyacetal (C) is preferably 10,000 to 500,000 from the viewpoint of obtaining a green molded product with a high yield in the injection molding process, and from the viewpoint of molding small and thin parts, More preferably 20,000 to 200,000, more preferably 20,000 to 100,000.
  • the number average molecular weight of the modified polyacetal (C) can be measured by GPC.
  • GPC As specific conditions for GPC, for example, HLC-8120 manufactured by Tosoh Corporation is used as the GPC apparatus, HFIP806 manufactured by Showa Denko K.K. ), and can be measured under conditions of a temperature of 40° C. and a flow rate of 0.5 ml/min using polymethyl methacrylate (PMMA) manufactured by Polymer Laboratories as a standard sample.
  • the number average molecular weight of the modified segment (B) constituting the modified polyacetal (C) is preferably 500 to 10,000 (polystyrene equivalent) from the viewpoint of obtaining a green molded article with a good yield in the injection molding process. From the viewpoint of suppressing the decomposition of the modified polyacetal (C) during kneading with the sinterable inorganic powder, it is more preferably 2,000 to 5,000 (in terms of polystyrene). Further, the modified segment (B) preferably has a molecular weight distribution (Mw/Mn) of less than 2. GPC can be used to measure the number average molecular weight of the modified segment (B).
  • the number average molecular weight can be measured.
  • the number average molecular weight of the modified segment (B) is to be measured for any modified polyacetal resin manufactured by a third party, it is desirable to decompose the polyacetal block in advance before measurement.
  • the ratio of the number average molecular weight (Mn2) of the modified segment (B) to the number average molecular weight (Mn1) of the modified polyacetal (C) (Mn2/Mn1 ⁇ 100 (%)) is the molded body in the degreasing and sintering steps. 0.5% or more and 10% or less is preferable from the viewpoint of preventing cracking and swelling of the core, and 0.5% or more and 5.0% or less is more preferable from the viewpoint of improving the yield in the injection molding process.
  • Polyolefin and polyurethane can be suitably used for the modified segment (B) of the modified polyacetal (C).
  • Polyolefin is preferable from the viewpoint of reducing the residue derived from the organic binder in the degreasing step.
  • Specific examples include polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, polyisoprene, polybutadiene, and hydrogenated polybutadiene.
  • modified segment (B) contained in the modified polyacetal (C) may be of one type or plural types. Among them, from the viewpoint of ease of production, one type is preferable.
  • the polyacetal segment (A) of the modified polyacetal (C) is derived from oxymethylene units (that is, (CH 2 O) units) resulting from ring-opening-polymerized trioxane, and ring-opening-polymerized cyclic formal (or cyclic ether). It is composed of a polyacetal copolymer residue containing an oxyalkylene unit represented by the following formula (1) (hereinafter sometimes simply referred to as an “oxyalkylene unit”).
  • the polyacetal segment (A) preferably consists of only the oxymethylene units and the oxyalkylene units.
  • the oxymethylene units and the oxyalkylene units are randomly present in the polyacetal segment (A), that is, the polyacetal copolymer residue.
  • each R is independently selected from hydrogen, an alkyl group, a substituted alkyl group, an aryl group and a substituted aryl group, and m is an integer selected from 2 to 6.
  • the oxyalkylene unit represented by the formula (1) contained in the polyacetal segment (A) may be of one type or of plural types. Among them, from the viewpoint of ease of production, one type is preferable.
  • the polyacetal segment (A) contains 95.0 to 99.9 mol% of oxymethylene units and 0.1 It consists of to 5.0 mol % of oxyalkylene units, preferably 98.0 to 99.7 mol % of oxymethylene units and 0.3 to 2.0 mol % of oxyalkylene units.
  • the mol % of monomer units constituting the polyacetal segment (A) can be measured by the following method. A modified polyacetal and 1N hydrochloric acid are placed in a pressure-resistant bottle and heated at 130° C. for 2 hours to hydrolyze the modified polyacetal to obtain an alkylene glycol component derived from cyclic formal (or cyclic ether).
  • a hydroxyalkylated modified segment After hydrolysis, a hydroxyalkylated modified segment will also be present, but this hydroxyalkylated modified segment exists as a phase separation from the aqueous solution.
  • the alkylene glycol component present in the aqueous solution after hydrolysis is quantified by gas chromatography.
  • the oxyalkylene unit represented by the above formula (1) resulting from cyclic formal (or cyclic ether) include ethylene oxide residue, propylene oxide residue, 1,3-dioxolane residue, 1,3, 5-trioxepane residue, diethylene glycol formal residue, 1,4-butanediol formal residue, 1,3-dioxane residue and the like.
  • the oxyalkylene unit is preferably a 1,3-dioxolane residue, a 1,3,5-trioxepane residue, or a 1,4-butanediol formal residue from the viewpoint of the production rate of the modified polyacetal (C). , and more preferably a 1,3-dioxolane residue.
  • a 1,3-dioxolane residue obtained by polymerizing 1,3-dioxolane containing 500 mass ppm or less of 2-methyl-1,3-dioxolane and 15 mass ppm or less of peroxide in terms of hydrogen peroxide. is preferably an oxyalkylene unit, and 10 to 500 mass ppm of one or more hindered phenols are preferably added during the polymerization.
  • the content of 2-methyl-1,3-dioxolane can be measured by a gas chromatograph equipped with Gascropack 55 manufactured by GL Sciences Inc. using a hydrogen flame ion detector.
  • the content of peroxide in 1,3-dioxolane was as follows.
  • the modified polyacetal (C) is composed of polyacetal segment (A) - modified segment (B) - polyacetal segment (A) ( In this specification, sometimes referred to as (A)-(B)-(A), ABA, etc.) or modified segment (B)-polyacetal segment (A)-modified segment (B) (in this specification, ( It is preferably a block copolymer represented by B)-(A)-(B), sometimes referred to as BAB, etc.). Further, (A)-(B)-(A) is more preferable from the viewpoint of strength development of the green compact. For any polyacetal resin, whether or not it is a block copolymer can be identified using a known method. A method of quantitative comparison can be considered.
  • Mw1 is the weight average molecular weight of the modified polyacetal (C) in the inorganic powder injection molding composition
  • Mw2 is the weight average molecular weight of the modified polyacetal obtained by extracting the inorganic powder injection molding composition in chloroform at 80° C. for 8 hours.
  • the polyacetal molecular weight reduction rate represented by the following formula is preferably 40% or less from the viewpoint of maintaining good injection moldability, and more preferably 20% or less from the viewpoint of maintaining the strength of the molded product. 10% or less is more preferable from the viewpoint of odor reduction in the workplace.
  • Polyacetal molecular weight reduction rate (%) (1-Mw2/Mw1) x 100
  • the conditions for extraction may be the conditions described in "1. Evaluation of thermal stability of polyacetal" in Examples below.
  • the mass ratio of the modified polyacetal (C) in 100% by mass of the modified polyacetal mixture is preferably 95% by mass or more, more preferably 97% by mass or more and less than 100% by mass, and still more preferably 97 to 99% by mass. It is 9% by mass.
  • the mass ratio of the modified polyacetal (C) in 100% by mass of the organic binder is preferably 1 to 40% by mass, more preferably 1 to 40% by mass, from the viewpoint of reducing decomposition products of the polyacetal in kneading and injection molding steps. It is 1 to 20% by mass, particularly preferably 1 to 10% by mass.
  • the mass ratio of the modified polyacetal (C) in 100% by mass of the inorganic powder injection molding composition is 1 to 20% by mass from the viewpoint of excellent shape retention of the green molded body containing the inorganic powder. is preferred, more preferably 2 to 15% by mass, and still more preferably 4 to 10% by mass.
  • the ratio of the mass of the inorganic powder to the mass of the modified polyacetal (C) in the inorganic powder injection molding composition is the shape retention property of the green molded body. From the viewpoint of preventing cracking and swelling of the molded body in the degreasing and sintering steps, it is preferably from 5 to 200, more preferably from 10 to 100, and even more preferably from 15 to 50.
  • the method for producing the modified polyacetal (C) is not particularly limited, and it can be obtained by a known method. Depending on the method for producing the modified polyacetal (C), an unreacted polyacetal resin and/or an unreacted polyolefin polymer coexist together with the modified polyacetal that is the reaction product, in the form of a substantially compatible or uniformly dispersed mixture. may be taken.
  • the unreacted polyacetal resin and the unreacted polyolefin polymer generated by the method for producing the modified polyacetal (C) may be the above-mentioned thermoplastic resin which is one component in the composition for inorganic powder injection molding.
  • the modified polyacetal mixture preferably further contains a nitrogen-containing compound and/or a fatty acid metal salt, more preferably a nitrogen-containing compound and a fatty acid metal salt.
  • a nitrogen-containing compound and the fatty acid metal salt By containing the nitrogen-containing compound and the fatty acid metal salt, the extrudability, thermal stability, and suppression of foreign matter in producing the modified polyacetal mixture can be improved.
  • the fluidity of the inorganic powder injection molding composition kneaded with the metal powder and the strength of the green molded body tend to be improved at the same time.
  • the nitrogen-containing compound and the fatty acid metal salt the composition for inorganic powder injection molding has improved thermal stability.
  • nitrogen-containing compound examples include, but are not limited to, polyamide resins, amide compounds, urea derivatives, and triazine derivatives.
  • Polyamide resin is preferable from the viewpoint of further excellent strength. These may be used individually by 1 type, and may be used in combination of 2 or more type.
  • polyamide resin examples include, but are not particularly limited to, nylon 6, nylon 11, nylon 12, nylon 66, nylon 6/10 obtained by condensation of diamine and dicarboxylic acid, condensation of amino acids, ring-opening polymerization of lactam, and the like.
  • amide compound examples include, but are not limited to, aliphatic monocarboxylic acids, aliphatic dicarboxylic acids, aromatic monocarboxylic acids, or aromatic dicarboxylic acids and aliphatic monoamines, aliphatic diamines, aromatic monoamines, and aromatic diamines.
  • stearyl stearamide stearyl oleic acid amide, stearyl erucic acid amide, ethylenediamine-distearic acid amide, ethylenediamine-dibehenic acid amide, hexamethylenediamine-distearic acid amide, ethylenediamine-dierucic acid amide, xylylenediamine-dierucic acid produced from acid amide, di(xylylenediamine-stearic acid amide), sebacic acid amide, and the like.
  • urea derivative examples include, but are not particularly limited to, N-phenylurea, N,N'-diphenylurea, N-phenylthiourea, N,N'-diphenylthiourea, and the like.
  • triazine derivative examples include, but are not limited to, melamine, benzoguanamine, N-phenylmelamine, melem, N,N'-diphenylmelamine, N-methylolmelamine, N,N'-trimethylolmelamine, 2,4-diamino -6-cyclohexyl triazine, melam and the like.
  • the mass ratio of the nitrogen-containing compound is preferably 0.005 to 0.2 parts by mass, particularly preferably 0.005 to 0.1 parts by mass, with respect to 100 parts by mass of the modified polyacetal mixture.
  • the mass ratio of the nitrogen-containing compound is within the above range, it is preferable from the viewpoint of improving the thermal stability of the modified polyacetal mixture when kneading the sinterable inorganic powder and the organic binder.
  • fatty acid metal salt examples include, but are not limited to, a saturated or unsaturated fatty acid having 10 to 35 carbon atoms or a fatty acid substituted with a hydroxyl group, and an alkali metal or alkaline earth metal hydroxide, oxide, or Chlorides and fatty acid metal salts obtained from. These may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Fatty acids of the fatty acid metal salts include capric acid, undecylic acid, lauric acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanic acid, arachidic acid, behenic acid, liglyceric acid, and serotin.
  • metal compounds include alkali metals such as lithium, sodium and potassium, alkaline earth metals such as magnesium, calcium, strontium and barium, hydroxides and chlorides of zinc and aluminum.
  • the fatty acid is preferably myristic acid, palmitic acid, or stearic acid
  • the metal compound is calcium hydroxide, oxide, or chloride, and more preferably calcium myristate, calcium palmitate, or calcium stearate.
  • the ratio of the mass of the fatty acid metal salt to the mass of the nitrogen-containing compound is It is preferably in a specific range, specifically the ratio is 1-15, preferably 1-10. Setting the ratio to 1 to 15 is preferable in that the thermal stability of the modified polyacetal mixture (for example, the modified polyacetal (C)) in the organic binder can be improved.
  • the organic binder may further contain a thermoplastic resin.
  • thermoplastic resin examples include polyacetal resin and polyolefin resin.
  • the organic binder may further contain a polyolefin resin.
  • the polyolefin resin is preferably a homopolymer or copolymer having structural units derived from alkenes having 2 to 8 carbon atoms, preferably 2 to 4 carbon atoms.
  • the polyolefin resin preferably has a melt flow index of 40 g/10 minutes or more measured at 230 ° C. and 2.16 kg. More preferably, it is 60 g/10 minutes or more.
  • polystyrene resin examples include polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, polyisoprene, and polybutadiene.
  • Polyethylene, polypropylene, and mixtures thereof are preferred, and polyethylene or polypropylene is more preferred from the viewpoint of shape retention in the degreasing step and suppression of cracking and blistering in the degreasing step.
  • polyethylenes that can be preferably used include, for example, Suntech HD series, Suntech LD series, Suntech EVA series (manufactured by Asahi Kasei Corporation), Neozex, Ultozex, and Evolue (manufactured by Prime Polymer). , Sumitomo Noblen (manufactured by Sumitomo Chemical), Novatec PP (manufactured by Nippon Polypropylene), SunAllomer PM series (manufactured by SunAllomer), Prime Polypro (manufactured by Prime Polymer), etc., can be used as polypropylene.
  • the polyolefin resin is difficult to be decomposed by acid.
  • the above polyolefin resin was immersed in a 30% nitric acid aqueous solution under the conditions of 23°C (room temperature) and 70°C for 24 hours under the method described in JIS K 7114 from the viewpoint of the shape retention of the molded body after acid degreasing. It is preferred that the weight after immersion is 10% or less, more preferably 5% or less, and particularly preferably 1% or less.
  • the difference between the thermal decomposition starting point (°C) of the modified polyacetal (C) and the thermal decomposition starting point (°C) of the polyolefin resin is 30°C or more from the viewpoint of further reducing cracks and blisters during the degreasing process. It is preferably 30 to 100°C, more preferably 30 to 100°C.
  • the thermal decomposition starting point is a temperature measured using a thermogravimetric differential thermal analyzer.
  • the mass ratio of the polyolefin resin in the organic binder is 5 to 95% by mass with respect to 100% by mass of the organic binder from the viewpoint of maintaining the shape of the green molded body and the shape of the molded body after acid degreasing. %, more preferably 5 to 70% by mass, particularly preferably 5 to 60% by mass.
  • the mass ratio of the polyolefin resin to 100 mass% of the polyacetal resin is preferably 1 to 200 mass%, more preferably 5 to 150 mass%, still more preferably 10 to 120 mass%.
  • the total weight ratio of the polyacetal resin and the polyolefin resin in 100% by weight of the organic binder is preferably 45% by weight or more, more preferably 90% by weight or more.
  • the ratio of the total mass of the polyacetal resin, the polyolefin resin, and the fluidity imparting agent to be described later in 100% by mass of the organic binder is preferably 90% by mass or more, more preferably 95% by mass or more. , more preferably 98% by mass or more.
  • polyacetal examples include unreacted polyacetal generated in the production of the above modified polyacetal (C).
  • examples of the polyacetal include polyacetal represented by the following formula (3).
  • the organic binder preferably further contains a fluidity imparting agent.
  • a fluidity imparting agent By including the fluidity imparting agent, the fluidity of the composition for inorganic powder injection molding is further improved, and fine molded articles can be well injection molded.
  • the fluidity-imparting agent is a compound other than the above-mentioned polyacetal resin and polyolefin resin, and examples thereof include waxes.
  • the waxes include paraffin wax, polyethylene wax, polypropylene wax, carnauba wax, polyethylene glycol, polytetramethylene ether glycol, polytetraethylene glycol, polyisobutylene, microcrystalline wax, montan wax, beeswax, and wood wax. , synthetic wax, poly-1,3-dioxolane, poly-1,3-dioxepane and the like.
  • paraffin wax, polyethylene glycol, polytetramethylene ether glycol, and poly-1,3-dioxepane are preferable from the viewpoint of more excellent fluidity of the inorganic powder injection molding composition in injection molding.
  • the mass ratio of the fluidity imparting agent is preferably 5 to 60% by mass with respect to 100% by mass of the organic binder from the viewpoint of further improving the fluidity of the inorganic powder injection molding composition in injection molding. , more preferably 5 to 50% by mass, particularly preferably 10 to 50% by mass.
  • the mass ratio of the organic binder in 100% by mass of the inorganic powder injection molding composition of the present embodiment is preferably 5 to 30% by mass, more preferably 5 to 20% by mass, and still more preferably 5 to 10% by mass. % by mass.
  • Additives other than the above-described components that can be added to the inorganic powder injection molding composition are not limited as long as they do not impair the effects of the present invention, but antioxidants are preferred additives. be able to.
  • the antioxidant include n-octadecyl-3-(3′,5′-di-t-butyl-4′-hydroxyphenyl)propionate, n-octadecyl-3-(3′-methyl-5′ -t-butyl-4'-hydroxyphenyl)propionate, n-tetradecyl-3-(3',5'-di-t-butyl-4'-hydroxyphenyl)propionate, 1,6-hexanediol-bis-( 3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate), 1,4-butanediol-bis-(3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate
  • antioxidants may be used alone or in combination of two or more.
  • the content of the antioxidant is 0.01 to 1.0% by mass, preferably 0.05 to 0.5% by mass, based on 100% by mass of the modified polyacetal (C). Thermal stability improves because content exists in the said range.
  • the polyacetal molecular weight reduction rate of the weight average molecular weight of the modified polyacetal obtained by extracting the inorganic powder injection molding composition in chloroform at 80° C. for 8 hours with respect to the weight average molecular weight of the modified polyacetal (C) is 40% or less. , preferably 5 to 36%, more preferably 7 to 26%.
  • the polyacetal molecular weight reduction rate can be measured by the method described in Examples below.
  • the inorganic powder injection molding composition of the present embodiment can be produced by mixing the inorganic powder, the organic binder, and the additive.
  • the inorganic powder injection molding composition of the present embodiment can be used as a raw material for a sintered body.
  • the sintered body is a sintered body obtained by injection molding the inorganic powder injection molding composition to obtain an injection molded body containing the inorganic powder injection molding composition, degreasing and sintering the injection molded body. you can Examples of the sintered body include automobile parts, aircraft parts, medical equipment parts, electric/electronic equipment parts, and defense equipment parts.
  • melt flow rate MFR
  • l, m, n are each an integer of 1 to 50.
  • x and y are each an integer of 1 to 50.
  • o, p and q are each an integer of 1 to 50.
  • the melt flow rate was measured according to ASTM-D-1238-57T under conditions of 190° C. and 2.16 kg.
  • the resulting kneaded product was put into a Wiley-type pulverizer (manufactured by Yoshida Seisakusho) and pulverized to obtain sinterable inorganic powder injection molding compositions I-1 to I-13 for acid degreasing.
  • a Wiley-type pulverizer manufactured by Yoshida Seisakusho
  • an unmodified polyacetal mixture I-1 was used, and low-density polyethylene (Suntec TM LDPE M6555, manufactured by Asahi Kasei Corporation), polytetramethylene ether glycol, and SUS316L were blended in the proportions shown in Table 2. Knead for a minute.
  • the resulting kneaded product was put into a Wiley-type pulverizer (manufactured by Yoshida Seisakusho) and pulverized to obtain a sinterable inorganic powder injection molding composition for acid degreasing.
  • unmodified polyacetal mixture I-1 unmodified polyacetal mixture I-1, polypropylene (Sumitomo Noblen U501E1, manufactured by Sumitomo Chemical Co., Ltd.) of 120 g/10 minutes under the conditions of MFR of 230 ° C. and 2.16 kg, paraffin wax, and SUS316L are shown. 3 and kneaded for 30 minutes to obtain a sinterable inorganic powder injection molding composition for heat degreasing.
  • Shape retention of degreased molding 2-1 Shape retention after acid degreasing Examples I-1 to I-7 and Comparative Examples I-1 to I-8 were subjected to acid degreasing.
  • the molded body was supported at two points with an interval of 50 mm and set in a degreasing furnace. The above furnace was first heated to 110° C. and purged with nitrogen gas at 500 l/h for 30 minutes. Thereafter, 30 ml/h of 98% nitric acid was supplied while maintaining a nitrogen purge. The nitric acid supply was maintained for 2.5 hours, followed by degreasing under conditions of purging the furnace with 500 l/h of nitrogen gas for 45 minutes and cooling to room temperature.
  • the inside of the degreasing furnace is purged with nitrogen gas, and the temperature is raised to 500°C at a temperature elevation rate of 30°C/hr as the first condition and a temperature elevation rate of 45°C/hr as the second condition, respectively. and held at 500° C. for 2 hours for degreasing.
  • the appearance of the degreased molded body was visually observed, and it was judged to be good if there was no distortion or damage, and bad if distortion or damage was observed. It should be noted that those for which injection molding could not be performed were regarded as unimplemented. The results are listed in Table 3.
  • terminal stabilization treatment 1 terminal stabilization treatment 1
  • the degree of vacuum during the terminal stabilization treatment was set to 4 kPa, and degassing was performed.
  • the block copolymer obtained from the extruder die was extruded as strands and pelletized. Modified polyacetal II-1 was thus obtained.
  • Number average molecular weight (Mn1) of modified polyacetal II-1 obtained, number average molecular weight (Mn2) of modified segment, ratio of number average molecular weight (Mn2) of modified segment (B) to number average molecular weight (Mn1) of modified polyacetal (Mn2/Mn1 ⁇ 100(%)) and the proportion of oxyethylene units in the polyacetal segment (A) are shown in Table 4, respectively.
  • the number average molecular weight (Mn1) of the modified polyacetal obtained, the number average molecular weight (Mn2) of the modified segment, and the ratio (Mn2/ Mn1 ⁇ 100 (%)) and the proportion of oxyethylene units in the polyacetal segment (A) are shown in Table 4, respectively.
  • Modified Polyacetal II-4 was obtained by polymerizing and terminal stabilization in the same manner as Modified Polyacetal II-1, except for using both hydroxyl-terminated hydrogenated polybutadiene represented by Formula (4) having a number average molecular weight of 1376. rice field.
  • Number average molecular weight (Mn1) of modified polyacetal II-4 obtained, number average molecular weight (Mn2) of modified segment, ratio of number average molecular weight (Mn2) of modified segment (B) to number average molecular weight (Mn1) of modified polyacetal (Mn2/Mn1 ⁇ 100(%)) and the proportion of oxyethylene units in the polyacetal segment (A) are shown in Table 4, respectively.
  • Modified Polyacetal II-5 was obtained by polymerizing and terminal stabilization in the same manner as Modified Polyacetal II-1, except for using both hydroxy-terminated hydrogenated polybutadiene represented by Formula (4) having a number average molecular weight of 9384. rice field.
  • Number average molecular weight (Mn1) of modified polyacetal II-5 obtained, number average molecular weight (Mn2) of modified segment, ratio of number average molecular weight (Mn2) of modified segment (B) to number average molecular weight (Mn1) of modified polyacetal (Mn2/Mn1 ⁇ 100(%)) and the proportion of oxyethylene units in the polyacetal segment (A) are shown in Table 4, respectively.
  • Modified polyacetal II-7 Polymerizing a block copolymer according to the same method as in polymerization method 1 except that the double-hydroxy-terminated hydrogenated polybutadiene represented by formula (5) is used instead of the double-hydroxy-terminated hydrogenated polybutadiene represented by formula (4), Modified polyacetal II-7 was obtained by terminal stabilization of the block copolymer in the same manner as terminal stabilization treatment 1.
  • Number average molecular weight (Mn1) of modified polyacetal II-7 obtained, number average molecular weight (Mn2) of modified segment, ratio of number average molecular weight (Mn2) of modified segment (B) to number average molecular weight (Mn1) of modified polyacetal (Mn2/Mn1 ⁇ 100(%)) and the proportion of oxyethylene units in the polyacetal segment (A) are shown in Table 4, respectively.
  • x and y indicate the ratio of each unit and do not indicate the bonding state.
  • Each of x and y is an integer of 1 to 50.
  • Modified polyacetal II-8 Polymerizing a block copolymer in the same manner as in polymerization method 1 except that a single hydroxy-terminated hydrogenated polybutadiene represented by formula (6) is used instead of the double-terminated hydroxy-terminated polybutadiene represented by formula (4), Modified polyacetal II-8 was obtained by terminal stabilization of the block copolymer in the same manner as terminal stabilization treatment 1.
  • Number average molecular weight (Mn1) of modified polyacetal II-8 obtained, number average molecular weight (Mn2) of modified segment, ratio of number average molecular weight (Mn2) of modified segment (B) to number average molecular weight (Mn1) of modified polyacetal (Mn2/Mn1 ⁇ 100(%)) and the proportion of oxyethylene units in the polyacetal segment (A) are shown in Table 4, respectively.
  • o, p, and q indicate the ratio of each unit and do not indicate the binding state. o, p, and q are each an integer of 1 to 50.
  • Modified Polyacetal II-11 was obtained by polymerizing and terminal stabilization in the same manner as Modified Polyacetal II-1, except for using both hydroxyl-terminated hydrogenated polybutadiene represented by Formula (4) having a number average molecular weight of 20,000. rice field.
  • Number average molecular weight (Mn1) of modified polyacetal II-11 obtained, number average molecular weight (Mn2) of modified segment, ratio of number average molecular weight (Mn2) of modified segment (B) to number average molecular weight (Mn1) of modified polyacetal (Mn2/Mn1 ⁇ 100(%)) and the proportion of oxyethylene units in the polyacetal segment (A) are shown in Table 4, respectively.
  • Modified Polyacetal II-12 was obtained by polymerizing and terminal stabilization in the same manner as Modified Polyacetal II-1, except for using both hydroxyl-terminated hydrogenated polybutadiene represented by Formula (4) having a number average molecular weight of 230. rice field.
  • Number average molecular weight (Mn1) of modified polyacetal II-12 obtained, number average molecular weight (Mn2) of modified segment, ratio of number average molecular weight (Mn2) of modified segment (B) to number average molecular weight (Mn1) of modified polyacetal (Mn2/Mn1 ⁇ 100(%)) and the proportion of oxyethylene units in the polyacetal segment (A) are shown in Table 4, respectively.
  • Unmodified polyacetal II-1 was obtained by polymerizing and terminal stabilization in the same manner as in the production of modified polyacetal II-1, except that an equimolar amount of methanol was used instead of the hydrogenated polybutadiene having hydroxylated at both ends. rice field.
  • Polypropylene (Sumitomo Noblen U501E1, manufactured by Sumitomo Chemical Co., Ltd.) with an MFR of 120 g / 10 minutes under the condition of 2.16 kg, and polytetramethylene ether glycol (PTMG3000, manufactured by Mitsubishi Chemical Co., Ltd.) as a fluidity imparting agent to 100% by mass of the organic binder. 79% by mass, 14% by mass, and 7% by mass, respectively, and kneaded for 30 minutes.
  • PTMG3000 polytetramethylene ether glycol
  • SUS316L (DAP316L, manufactured by Daido Steel Co., Ltd., melting point 1380°C, average particle size 10 ⁇ m) was added so as to be 93 mass% of the total weight of the inorganic powder injection molding composition. and kneaded for 60 minutes. The resulting kneaded product was put into a Wiley type pulverizer (manufactured by Yoshida Seisakusho) and pulverized to obtain inorganic powder injection molding compositions II-1 to II-14.
  • Wiley type pulverizer manufactured by Yoshida Seisakusho
  • polypropylene, polytetramethylene ether glycol, and SUS316L were mixed in the same manner except that unmodified polyacetal mixture 1 was used instead of modified polyacetal mixtures II-1 to II-14, and inorganic powder injection molding composition II-15 was prepared. Obtained. Furthermore, an inorganic powder injection molding composition II-16 was obtained in the same manner as in Example 1 except that polyethylene glycol (PEG8000, manufactured by Aldrich) was used as a fluidity imparting agent.
  • PEG8000 polyethylene glycol
  • Polypropylene (Sumitomo Noblen U501E1, manufactured by Sumitomo Chemical Co., Ltd.) with an MFR of 120 g / 10 minutes under the condition of 2.16 kg, and paraffin wax (PW145, manufactured by Nippon Seiro Co., Ltd.) as a fluidity imparting agent with respect to 100% by mass of the organic binder They were added to 25% by mass, 25% by mass, and 50% by mass, respectively, and kneaded for 30 minutes.
  • PW145 manufactured by Nippon Seiro Co., Ltd.
  • SUS316L (DAP316L, manufactured by Daido Steel Co., Ltd., melting point 1380°C, average particle size 10 ⁇ m) was added so as to be 93 mass% of the total weight of the inorganic powder injection molding composition. and kneaded for 60 minutes. The resulting kneaded product was put into a Wiley type pulverizer (manufactured by Yoshida Seisakusho) and pulverized to obtain inorganic powder injection molding compositions II-17 to II-30.
  • Wiley type pulverizer manufactured by Yoshida Seisakusho
  • Polypropylene, paraffin wax, and SUS316L were mixed in the same manner except that the unmodified polyacetal mixture II-1 was used instead of the modified polyacetal mixtures II-1 to II-14 to obtain an inorganic powder injection molding composition II-31. rice field.
  • the same procedure as in Example II-17 was performed except that 40% by mass of paraffin wax (PW145, manufactured by Nippon Seiro Co., Ltd.) and 10% by mass of polytetramethylene ether glycol (PTMG3000, manufactured by Mitsubishi Chemical Corporation) were used as fluidity imparting agents.
  • An inorganic powder injection molding composition II-32 was obtained.
  • the thermal stability of the modified polyacetal or unmodified polyacetal was determined as the polyacetal molecular weight reduction rate represented by the following formula (7).
  • Tables 5 and 6 show the results.
  • Polyacetal molecular weight reduction rate (%) (1-Mw2/Mw1) x 100 (7)
  • the degreased compact was transferred to a sintering furnace, and after the interior of the furnace was replaced with argon gas, the temperature was raised from room temperature to 600° C. at a rate of 5° C./min. After holding at 600° C. for 1 hour, the temperature was raised to 1350° C. at a rate of 5° C./min under a reduced pressure of 1 to 5 Torr, held for 1 hour for sintering, and then cooled to room temperature. The appearance of the obtained sintered bodies was visually observed, and those with no cracks or blisters were judged to be good, and those with cracks or blisters were judged to be unsatisfactory. The results are listed in Table 5.
  • the inorganic powder injection molding composition of the present invention is suitable for inorganic powder injection molding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

本発明は、無機粉末射出成形用途に適した変性ポリアセタールを含む組成物を提供することを目的とする。本発明の無機粉末射出成形用組成物は、焼結可能な無機粉末と、ポリアセタールセグメント(A)及び変性セグメント(B)を有する変性ポリアセタール(C)を含む有機バインダーと、を含む無機粉末射出成形用組成物であって、上記変性セグメント(B)の数平均分子量が500~10000である。

Description

無機粉末射出成形用組成物、並びにそれを用いた成形体及び焼結体
 本発明は、無機粉末焼結成形体を製造するときに使用する成形用原料、それを用いた成形体、焼結体に関するものである。
 金属やセラミックス部品の製造方法として粉末射出成形法が知られている。当該手法では金属やセラミックス、サーメット等の焼結可能な無機粉体とポリエチレンやポリプロピレン、パラフィンワックスといった有機化合物から構成される有機バインダーを溶融混練することで無機粉末射出成形用組成物を得、次いで当該組成物を原料に射出成形することによってグリーン成形体を成形した後、当該グリーン成形体を脱脂工程に付し有機バインダー成分を取り除く。最後に脱バインダーされた成形体を焼結することで所望の部品を得る。当該手法は複雑形状の部品を一度で大量に生産することが可能であり形状の自由度が高い、材料の自由度が高い、寸法精度が高い、焼結品の機械的強度が高い、などの利点がある。
 この粉末射出成形法に用いられるバインダー(例えば有機バインダー)を構成する有機化合物の1つとしてポリアセタール(POM)が知られている。POMにはグリーン成形体の強度を高めると共に、脱脂時の変形を抑止し、焼結後に残渣が残らないという利点がある。
 一方、脱脂時に成形体の形状保持の為に配合されるポリエチレンや射出成形性を良好に保つ為に配合されるパラフィンワックスなどの有機化合物との相溶性が悪く、均質なフィードストックを得る為にはPOMの配合量を減らさざるを得ず、POMの効果は限定的であった。
 そこで特開2001-106581号公報では、POMとの相溶性を向上させる目的で、メタクリル酸等で変性したポリオレフィンを有機バインダーに用いることが開示されている。
 また特表2009-542880号公報にはPOM、ポリエチレン、ポリ-1,3-ジオキセパンからなる有機バインダーが提案されている。従前、POMとポリエチレンは相溶性が低いが、ポリ-1,3-ジオキセパンを配合することで分散性の良好な有機バインダーを得ている。
 一方、POMの特性を維持しつつ他の有機化合物との相溶性を向上させる為には、POMの分子鎖内にポリオレフィンなどの他の分子構造を導入した変性ポリアセタール樹脂を使用することが有効である。そのようなPOMとして特開2001-514017号公報にはポリオキシメチレン鎖と水素添加ポリブタジエンからなるブロックコポリマーが提案されている。また特開平7-293290号公報には有機化合物から構成されるバインダーとしてポリオレフィン系重合体変性ポリアセタール樹脂を使用することが提案されている。当該ポリオレフィン系重合体変性ポリアセタール樹脂をバインダーに用いることで、ポリオレフィン樹脂との混合が容易な焼結成形体製造用組成物が提案されている。
 更に特開2003-172273号公報にも有機化合物から構成されるバインダーとして変性ポリアセタールを使用することが提案されている。
 また、粉末射出成形法に用いられるPOMを含むバインダーは、焼結可能な無機粉末との混練や射出成形の工程で熱がかかることで分解してしまう欠点がある。
 ここでPOMの利点を維持しつつ混練や射出成形の工程での分解を抑制する為には、POMの分子鎖内にポリオレフィンなどの他の分子構造を導入した変性ポリアセタール樹脂を使用することが有効である。
 そのようなPOMとして国際公開第2001/009213号にはポリオキシメチレン鎖と水素添加ポリブタジエンからなるブロックコポリマーが提案されている。
 また特開平09-111306号公報には有機化合物から構成されるバインダーとしてポリオレフィン系重合体変性ポリアセタール樹脂を使用することが提案されている。当該ポリオレフィン系重合体変性ポリアセタール樹脂をバインダーに用いることで、粉末射出成形法において、脱脂工程での熱分解性能が高く、加熱時に変形が生じにくいことが記載されている。
 更に特開2004-076153号公報にも有機化合物から構成されるバインダーとして変性ポリアセタールを使用することが提案されている。
特開2001-106581号公報 特表2009-542880号公報 国際公開第2001/009213号 特開平09-111306号公報 特開2004-076153号公報
 本発明は、無機粉末射出成形用途に適した変性ポリアセタールを含む組成物を提供することを目的とする。
 発明(I)に関し、特開2001-106581号公報に記載の方法では、POMやその他の樹脂成分との溶融混練に長時間を有し、POMとの分散性の改善効果は限定的であった。
 また特表2009-542880号公報に記載の方法では、ポリ-1,3-ジオキセパンを配合することで確かに分散性は改善するが、脱脂時の保形性の観点からポリオレフィンを配合する必要があり、POM、ポリオレフィンのそれぞれを溶融させるのに時間を有し、また、分散性の改善効果も限定的であった。
 更に国際公開第2001/009213号に記載の方法では、ポリアセタールセグメントを(A)、水素添加ポリブタジエンセグメントを(B)とした時、(A)-(B)-(A)ブロックコポリマーとすることでポリオレフィンや無機フィラーとの相溶性改善に優れるが、本願記載の焼結可能な無機粉末を配合することは想定されていなかった。
 また特開平09-111306号公報並びに特開2004-076153公報に記載の方法では変性ポリアセタールの他にポリオレフィン等の樹脂を配合しており溶融混練が長時間になる、ロット間での分散性のばらつきが生じるという問題がある。
 従って、発明(I)の目的は、混練時間を短縮でき、射出成形性にも優れた変性ポリアセタールを含む無機粉末射出成形用組成物を得ることである。
 また、発明(II)に関し、特開2001-514017号公報に記載の方法では、高い真円度、優れた寸法安定性及び耐久性を有する大口径ギアを成形することを目的としており、焼結可能な無機粉末を配合することは想定されていなかった。
 また特開平09-111306号公報に記載の方法では、導入されるポリオレフィンの構造は明確であるが変性ポリアセタールの主構造であるPOMの構造が不明確であり、分解抑制効果が不十分となる問題がある。
 更に特開2004-076153号公報に記載の方法では、変性ポリアセタールの記載はあるものの具体的な構造には言及されておらず、分解抑制効果が不十分となる問題がある。
 従って、発明(II)の目的は、ポリアセタール樹脂の具備する剛性に基づくグリーン成形体の形状保持性を損なわず、無機粉末との混練や射出成形の工程で分解が抑制された、変性ポリアセタールを含む無機粉末射出成形用組成物を得ることである。
 発明(I)(II)の要旨は以下のとおりである。
 発明(I)に関し、本発明者らは、上述した課題を解決するべく鋭意検討した結果、ポリアセタールセグメント(A)及び数平均分子量が特定範囲の変性セグメント(B)を有する、190℃、2.16kgでのメルトフローレートが70g/10分以上、160g/10分以下である変性ポリアセタール(C)を含む有機バインダーと焼結可能な無機粉末とを含む無機粉末射出成形用組成物が上記課題を解決できることを見出し、発明(I)に到達した。
 すなわち、発明(I)は以下の通りである。
[発明(I)]
[1]
 焼結可能な無機粉末と、
 ポリアセタールセグメント(A)及び変性セグメント(B)を有する変性ポリアセタール(C)を含む有機バインダーと、
を含む無機粉末射出成形用組成物であって、
 前記変性ポリアセタール(C)の190℃、2.16kgの条件で測定したメルトフローレート(MFR)が70g/10分以上、160g/10分以下であり、
 前記変性セグメント(B)の数平均分子量が500~10,000である
ことを特徴とする無機粉末射出成形用組成物。
[2]
 前記変性セグメント(B)がポリオレフィンである、[1]に記載の無機粉末射出成形用組成物。
[3]
 前記変性セグメント(B)が水素添加ポリブタジエンである、[1]又は[2]に記載の無機粉末射出成形用組成物。
[4]
 前記変性ポリアセタール(C)の数平均分子量が10,000~50,000である、[1]~[3]のいずれかに記載の無機粉末射出成形用組成物。
[5]
 前記ポリアセタールセグメント(A)がオキシメチレン単位95.0~99.9mol%及び式(1)で表されるオキシアルキレン単位0.1~5.0mol%からなる、[1]~[4]のいずれかに記載の無機粉末射出成形用組成物。
Figure JPOXMLDOC01-appb-C000003
(式中、Rは、それぞれ独立して、水素、アルキル基、置換アルキル基、アリール基及び置換アリール基から選択され、mは2~6から選ばれる整数である。)
[6]
 前記変性ポリアセタール(C)が(A)-(B)-(A)で表されるブロックコポリマーである、[1]~[5]のいずれかに記載の無機粉末射出成形用組成物。
[7]
 さらに滑剤を含む、[1]~[6]のいずれかに記載の無機粉末射出成形用組成物。
[8]
 [1]~[7]のいずれかに記載の無機粉末射出成形用組成物を含む、射出成形体。
[9]
 [8]に記載の射出成形体を脱脂、焼結した焼結体。
 発明(II)に関し、本発明者らは、上述した課題を解決するべく鋭意検討した結果、変性ポリアセタールの数平均分子量、変性部の数平均分子量、及びポリアセタールセグメントを構成するオキシメチレン単位とオキシアルキレン単位のモル割合を調整した変性ポリアセタールを含有する有機バインダーを含む無機粉末射出成形用組成物が上記課題を解決できることを見出し、発明(II)に到達した。
 すなわち、発明(II)は以下の通りである。
[発明(II)]
[1]
 焼結可能な無機粉末と、
 ポリアセタールセグメント(A)及び変性セグメント(B)を有する変性ポリアセタール(C)を含む有機バインダーと、
を含む無機粉末射出成形用組成物であって、
 前記変性ポリアセタール(C)の数平均分子量が10000~500000であり、
 前記変性セグメント(B)の数平均分子量が500~10000であり、
 前記ポリアセタールセグメント(A)がオキシメチレン単位95.0~99.9mol%及び式(1)で表されるオキシアルキレン単位0.1~5.0mol%からなる、
ことを特徴とする無機粉末射出成形用組成物。
Figure JPOXMLDOC01-appb-C000004
(式中、Rは、それぞれ独立して、水素、アルキル基、置換アルキル基、アリール基及び置換アリール基からなる群から選択され、mは2~6から選ばれる整数である。)
[2]
 前記変性ポリアセタール(C)の数平均分子量(Mn1)に対する前記変性セグメント(B)の数平均分子量(Mn2)の割合(Mn2/Mn1×100(%))が0.5%以上10%以下である、[1]に記載の無機粉末射出成形用組成物。
[3]
 前記変性セグメント(B)がポリオレフィンである、[1]又は[2]に記載の無機粉末射出成形用組成物。
[4]
 前記変性セグメント(B)が水素添加ポリブタジエンである、[1]~[3]のいずれかに記載の無機粉末射出成形用組成物。
[5]
 前記変性ポリアセタール(C)が(A)-(B)-(A)で表されるブロックコポリマーである、[1]~[4]のいずれかに記載の無機粉末射出成形用組成物。
[6]
 前記変性ポリアセタール(C)の重量平均分子量に対する、前記無機粉末射出成形用組成物をクロロホルム中で80℃8時間の条件で処理した後に抽出した変性ポリアセタールの重量平均分子量の、ポリアセタール分子量減少率が40%以下である、[1]~[5]のいずれかに記載の無機粉末射出成形用組成物。
[7]
 230℃、2.16kgの条件で測定したメルトフローレート(MFR)が60g/10分以上のポリオレフィン樹脂を含む、[1]~[6]のいずれかに記載の無機粉末射出成形用組成物。
[8]
 [1]~[7]のいずれかに記載の無機粉末射出成形用組成物を含む、射出成形体。
[9]
 [8]に記載の射出成形体を脱脂、焼結した焼結体。
 本発明によれば、無機粉末射出成形用途に適した変性ポリアセタールを含む組成物を提供することができる。
 特に、発明(I)よれば、短い溶融混練時間で均質な無機粉末射出成形用組成物を得ることが出来る。また、発明(I)の無機粉末射出成形用組成物を用いることで、射出成形性に優れ、脱脂並びに焼結工程でひび割れや膨れを起こさないことから歩留まり良く焼結体を得ることができる。中でも、無機粉末射出成形用組成物中のポリアセタール樹脂以外の樹脂成分の配合量が少量(好ましくは配合しない)であっても、混練時間を短縮でき、射出成形性にも優れることが好ましい。
 また、発明(II)によれば、ポリアセタール樹脂の具備する剛性に基づくグリーン成形体の形状保持性を損なわず、無機粉末との混練や射出成形の工程で分解が抑制された、変性ポリアセタールを含む無機粉末射出成形用組成物を得ることができる。
 また発明(II)の無機粉末射出成形用組成物を用いることで、射出成形性に優れ、脱脂並びに焼結工程でひび割れや膨れを起こさないことから歩留まり良く焼結体を得ることができる。
 以下、本発明を実施するための形態について詳細に説明する。なお、本発明は、以下の記載に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 本実施形態の無機粉末射出成形用組成物は、焼結可能な無機粉末と、ポリアセタールセグメント(A)及び変性セグメント(B)を有する変性ポリアセタール(C)を含む有機バインダーと、を含む無機粉末射出成形用組成物であって、上記変性セグメント(B)の数平均分子量が500~10000である。本実施形態の無機粉末射出成形用組成物は、無機粉末射出用途に用いることができる。
 本実施形態の上記無機粉末射出成形用組成物の好適形態として、下記の発明(I)及び発明(II)があげられる。
 以下、発明(I)について説明する。
[発明(I)]
[無機粉末射出成形用組成物]
 本実施形態の無機粉末射出成形用組成物は、焼結可能な無機粉末と、ポリアセタールセグメント(A)及び変性セグメント(B)からなる変性ポリアセタール(C)を含む有機バインダーと、を含む。
 本実施形態の無機粉末射出成形用組成物は、焼結可能な上記無機粉末、上記有機バインダーに加え、更にその他の添加物を含んでもよい。また、上記無機粉末と上記有機バインダーとのみからなる組成物であってもよい。
 本実施形態の無機粉末射出成形用組成物は、樹脂成分が、上記変性ポリアセタール(C)、後述の未反応のポリアセタール、後述の窒素含有化合物としてのポリアミド樹脂、滑剤としての樹脂のみであることが好ましく、通常、脱脂時に成形体の形状保持の為に配合されるポリオレフィン樹脂等を含まないことが好ましい。本実施形態の無機粉末射出成形用組成物100質量部中の、脱脂時に成形体の形状保持の為に配合されるポリアセタール樹脂以外の骨材樹脂(上記変性ポリアセタール(C)、後述の未反応のポリアセタール以外の樹脂)の質量割合は、1質量部以下であってよく、0.5質量部以下であってよく、0.01質量部以下であってもよい。
<焼結可能な無機粉末>
 上記無機粉末は、公知の適当な焼結可能な無機粉末の全ての中から選択することができる。好ましくは、金属粉末、合金粉末、金属カルボニル粉末、セラミックス粉末及びこれらの混合物から選択される。中でも、機能性を付与するために、金属粉末やセラミックス粉末が特に好ましい。
 上記焼結可能な上記無機粉末は、1種を単独で用いてもよいし、複数種を組み合わせて用いてもよい。
 焼結可能な無機粉末とは、500℃から2000℃の間に融点を持ち、平均粒子径が100μm以下の無機粉末としてよい。なお、上記融点は、示差走査熱量測定装置を用い、アルゴン気流下、5℃/minの条件で昇温し、吸熱ピークトップから判定することができる。また、平均粒子径は、レーザー回折散乱法を採用した粒度分布測定装置を用いて測定した重量累積50%の平均径を意味する。これらの用語の意味は、特にことわりがないかぎり、以下においても同様である。
 上記金属粉末として、具体的な例は、アルミニウム、マグネシウム、バリウム、カルシウム、コバルト、亜鉛、銅、ニッケル、鉄、ケイ素、チタン、タングステン、及びこれらをベースとする金属化合物及び金属合金の粉末が挙げられる。ここで、既に完成された合金のみならず、個々の合金成分の混合物を使用することもできる。
 上記セラミックス粉末としては、酸化亜鉛、酸化アルミニウム、ジルコニア等の酸化物;ハイドロキシアパタイト等の水酸化物;炭化ケイ素等の炭化物;窒化ケイ素や窒化ホウ素等の窒化物;蛍石等のハロゲン化物;ステアライト等のケイ酸塩;チタン酸バリウムやチタン酸ジルコン酸鉛等のチタン酸塩;炭酸塩;リン酸塩;フェライト;等が挙げられる。
 上述した無機粉末は、1種単独で用いてもよく、種々の金属粉末、金属合金、及びセラミックス粉末等、幾つかの無機物質を組み合わせて用いることも可能である。変性ポリアセタール(C)を含む有機バインダーと共に用いると混練性や射出成形性に特に優れる観点から、好ましい金属粉末や合金粉末としては、チタン合金やSUS316L等のステンレス鋼が挙げられ、セラミック粉末としては、酸化アルミニウム、ジルコニアが挙げられる。
 上記無機粉末の平均粒子径としては、30μm以下であることが好ましく、より好ましくは20μm以下である。
 上記焼結可能な無機粉末の質量割合としては、上記無機粉末射出成形用組成物100質量%に対して、70~95質量%であることが好ましく、より好ましくは75~95質量%であり、特に好ましくは80~95質%である。焼結可能な無機粉末が上述した範囲内であることで、混練性に優れ、射出成形に適した溶融粘度を有した焼結成形体用組成物を得ることができ、かつ、強度の高いグリーン成形体を得ることができる。
<有機バインダー>
 上記有機バインダーは、ポリアセタールセグメント(A)及び変性セグメント(B)からなる変性ポリアセタール(C)を含み、更に滑剤を含むことが好ましい。変性ポリアセタール樹脂は分子中にポリアセタールセグメントとポリオレフィン等からなる変性セグメントを有すことから、脱脂時に成形体の形状保持の為に配合される、変性ポリアセタール(C)以外の骨材樹脂の配合が少量であっても(好ましくは他の骨材樹脂を配合せずとも)焼結可能な無機粉末と良好な密着性を有し、かつ脱脂工程でも良好な保形性を示す。
 上記有機バインダーは、変性ポリアセタール(C)を含む後述の変性ポリアセタール混合物を含むことが好ましい。有機バインダーとしては、更に、任意で滑剤、ポリアセタール以外の骨材樹脂、添加剤を含んでもよく、変性ポリアセタール混合物、滑剤のみからなる混合物であってよい。有機バインダー中に含まれるオキシメチレン単位を含む樹脂成分は、後述の変性ポリアセタール(C)のみであることが好ましい。
(変性ポリアセタール混合物)
 上記変性ポリアセタール混合物は、変性ポリアセタール(C)を含み、更に窒素含有化合物、脂肪酸金属塩を含んでいてよい。中でも、変性ポリアセタール(C)を含み、任意含有成分が窒素含有化合物、脂肪酸金属塩のみであることが好ましい。
-変性ポリアセタール(C)-
 上記有機バインダーとしては、焼結可能な無機粉末との混練や、射出成形工程での熱安定性の観点から、変性ポリアセタール(C)を含む。
 一般に、変性ポリアセタールとは、ポリアセタールセグメントと変性セグメントを有するブロック共重合体である。ポリアセタールセグメントはオキシメチレン単位のみからなるホモポリマー残基である場合と、オキシメチレン単位とオキシアルキレン単位とがランダムに共重合したコポリマー残基の場合がある。変性セグメントとは、ポリアセタールセグメントに該当しない成分であり、例えば、ポリオレフィン、ポリウレタン、ポリエステル、ポリアミド、ポリスチレン、ポリアクリル酸アルキルなどがあげられる。
 本実施形態における変性ポリアセタール(C)は、ポリアセタールセグメント(A)及び変性セグメント(B)を有し、ポリアセタールセグメント(A)と変性セグメント(B)とのみからなっていてもよい。また、ポリアセタールセグメント(A)は、後述するとおり、オキシメチレン単位とオキシアルキレン単位とがランダムに共重合したポリアセタールコポリマー残基であり、変性セグメント(B)は好ましくはポリオレフィン、ポリウレタンである。
 上記変性ポリアセタール(C)は、1種を単独で用いてもよいし、複数種を組み合わせて用いてもよい。
 上記変性ポリアセタール(C)の数平均分子量は、射出成形工程でグリーン成形体を歩留まり良く得る観点から、10,000~500,000であることが好ましく、より好ましくは10,000~50,000、更に好ましくは10,000~20,000である。また、小型で薄物の部品を成形する観点からは、20,000~200,000であることが好ましく、20,000~100,000がより好ましい。
 上記変性ポリアセタール(C)の数平均分子量は、GPCにより測定することができる。GPCの具体的な条件としては、例えば、GPC装置として東ソー(株)製HLC-8120を用い、またカラムとして昭和電工(株)製HFIP806(30cmカラム2本)、キャリアとしてヘキサフルオロイソプロパノール(以後HFIPと呼ぶ)、標準試料としてポリマーラボラトリー社製ポリメチルメタクリレート(PMMA)を用いて、温度40℃、流量0.5ml/分の条件下で測定することができる。
 上記変性ポリアセタール(C)を構成する変性セグメント(B)の数平均分子量は、射出成形工程で歩留まり良くグリーン成形体を得る観点から、500~10,000(ポリスチレン換算)であることが好ましい。また焼結可能な無機粉末との混練時の変性ポリアセタール(C)の分解抑制の観点から、2,000~5,000(ポリスチレン換算)であることがより好ましい。
 また、変性セグメント(B)の分子量分布(Mw/Mn)は2未満であることが好ましい。
 変性セグメント(B)の数平均分子量の測定方法は、GPCを用いて測定することができる。例えば、GPC装置としてウオーターズ社製の150Cを用い、また、1,2,4-トリクロロベンゼンをキャリアとして用い、140℃の温度で、標準試料としてポリスチレンを用い、数平均分子量を測定することができる。なお、仮に第三者の製造した任意の変性ポリアセタール樹脂について、変性セグメント(B)の数平均分子量を測定する場合は、予めポリアセタールブロックを分解してから測定するのが望ましい。
 上記変性ポリアセタール(C)の数平均分子量(Mn1)に対する上記変性セグメント(B)の数平均分子量(Mn2)の割合(Mn2/Mn1×100(%))は、脱脂、焼結工程での成形体の割れ・膨れを防止する観点から、0.5%以上10%以下が好ましく、射出成形工程での歩留まりを良くする観点から、0.5%以上5.0%以下がより好ましい。
 上記変性ポリアセタール(C)の変性セグメント(B)は、ポリオレフィン、ポリウレタンを好適に使用できる。脱脂工程での有機バインダー由来の残渣を低減する観点から、ポリオレフィンが好ましい。具体的にはポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、ポリイソプレン、ポリブタジエン、水素添加ポリブタジエン等が挙げられる。好ましくは、ポリエチレン、ポリプロピレン、水素添加ポリブタジエンであり、脱脂工程における形状保持性、脱脂工程におけるひび割れ及び膨れの抑制の観点から、水素添加ポリブタジエンであることがより好ましい。
 上記変性ポリアセタール(C)に含まれる変性セグメント(B)は、1種であってもよいし複数種であってもよい。中でも、製造容易性の観点から、1種であることが好ましい。
 上記変性ポリアセタール(C)のポリアセタールセグメント(A)は、開環重合したトリオキサンに起因するオキシメチレン単位(すなわち、(CHO)単位)、及び開環重合した環状ホルマール(又は環状エーテル)に起因する下記式(1)で表されるオキシアルキレン単位(本明細書において、単に「オキシアルキレン単位」と称する場合がある)を含むポリアセタールコポリマー残基から構成されている。ポリアセタールセグメント(A)は、上記オキシメチレン単位及び上記オキシアルキレン単位のみからなることが好ましい。また、ポリアセタールセグメント(A)、すなわちポリアセタールコポリマー残基において、オキシメチレン単位とオキシアルキレン単位とはランダムに存在することが好ましい。
Figure JPOXMLDOC01-appb-C000005
(式中、Rは、それぞれ独立して、水素、アルキル基、置換アルキル基、アリール基及び置換アリール基から選択され、mは2~6から選ばれる整数である。)
 上記ポリアセタールセグメント(A)中に含まれる、上記式(1)で表されるオキシアルキレン単位は、1種であってもよいし、複数種であってもよい。中でも、製造容易性の観点から、1種であることが好ましい。
 上記ポリアセタールセグメント(A)は、焼結可能な無機粉末との混練工程での変性ポリアセタール(C)の熱分解抑制の観点から、95.0~99.9モル%のオキシメチレン単位及び0.1~5.0モル%のオキシアルキレン単位、好ましくは98.0~99.7モル%のオキシメチレン単位及び0.3~2.0モル%のオキシアルキレン単位からなることが好ましい。
 ポリアセタールセグメント(A)を構成するモノマー単位のモル%は、以下の方法で測定することができる。変性ポリアセタールと1Nの塩酸とを耐圧ビンに仕込み130℃で2時間加熱し、変性ポリアセタールを加水分解し、環状ホルマール(又は環状エーテル)に起因するアルキレングリコール成分を得る。加水分解後に、ヒドロキシアルキル化された変性セグメントも存在することになるが、このヒドロキシアルキル化された変性セグメントは水溶液から相分離して存在する。一方、加水分解後の水溶液中に存在するアルキレングリコール成分をガスクロマトグラフィーで定量する。
 環状ホルマール(又は環状エーテル)に起因する、上記式(1)で表されるオキシアルキレン単位の具体例としては、エチレンオキシド残基、プロピレンオキシド残基、1,3-ジオキソラン残基、1,3,5-トリオキセパン残基、ジエチレングリコールホルマール残基、1,4-ブタンジオールホルマール残基、1,3-ジオキサン残基などが挙げられる。中でも変性ポリアセタール(C)の生成率の点から、オキシアルキレン単位は、1,3-ジオキソラン残基、1,3,5-トリオキセパン残基、1,4-ブタンジオールホルマール残基であることが好ましく、更に好ましくは1,3-ジオキソラン残基である。
 特に、2-メチル-1,3-ジオキソランが500質量ppm以下であり、且つパーオキサイドが過酸化水素換算で15質量ppm以下である1,3-ジオキソランを重合させた1,3-ジオキソラン残基を、オキシアルキレン単位とすることが好ましく、更に10~500質量ppmの1種又は複数種のヒンダードフェノールを重合中に添加することが好ましい。
 なお、2-メチル-1,3ジオキソランの含有量は、ジーエルサイエンス(株)製ガスクロパック55を装着したガスクロマトグラフィーで水素炎イオン検出器により測定することができる。具体的には、1,3-ジオキソラン中のパーオキサイドの含有量は、フラスコ内にイソプロピルアルコール40ml、ヨウ化ナトリウム飽和溶液(NaIをイソプロピルアルコールで溶解)10ml、酢酸2ml及び1,3-ジオキソラン25gを加え、100℃で約5分間環流し、その後直ちに0.01Nチオ硫酸ナトリウムで、フラスコ内の混合物の色が黄色から無色になるまで滴定して、滴定量を求め(滴定量をAmlとする)、空滴定として、1,3-ジオキソランを用いず上記と同じ操作を行った場合の滴定量(Bmlとする)とから、次の計算式で求められる。
  パーオキサイド量(過酸化水素に換算した値、ppm)=(A-B)×17×0.01/(25×1000)×106
 上記変性ポリアセタール(C)は、焼結可能な無機粉末との混練工程での変性ポリアセタール(C)の分解抑制の観点から、ポリアセタールセグメント(A)-変性セグメント(B)-ポリアセタールセグメント(A)(本明細書において、(A)-(B)-(A)、ABA等と称する場合がある)又は変性セグメント(B)-ポリアセタールセグメント(A)-変性セグメント(B)(本明細書において、(B)-(A)-(B)、BAB等と称する場合がある)で表されるブロックコポリマーであることが好ましい。更に、グリーン成形体の強度発現の観点から、(A)-(B)-(A)であることがより好ましい。
 なお、任意のポリアセタール樹脂について、それがブロックコポリマーであるか否かは、公知の方法を用いて同定できるが、例えば、構造が既知のポリアセタール樹脂を対象試料として、樹脂分解時のホルムアルデヒド発生量を定量比較する方法が考えられる。
 上記変性ポリアセタール(C)のASTM-D-1238-57Tに準拠して、190℃、2.16kgの条件で測定されるメルトフローレートは、70g/10分以上であり、70g/10分以上160g/10分以下が好ましく、より好ましくは90g/10分以上160g/10分以下であり、さらに好ましくは90g/10分以上150g/10分以下である。メルトフローレートが70g/10分以上であることにより、無機粉末射出成形用組成物の流動性が向上し、小型、薄物の形状でも射出成形性に優れる。160g/10分以下であることにより、グリーン成形体の強度が向上する。
 上記変性ポリアセタール混合物100質量%中の、上記変性ポリアセタール(C)の質量割合は、95質量%以上であることが好ましく、より好ましくは97質量%以上100質量%未満、更に好ましくは97~99.9質量%である。
 上記有機バインダー100質量%中の上記変性ポリアセタール(C)の質量割合は、混練、射出成形工程での上記ポリアセタールの分解物低減の観点から、1~40質量%であることが好ましく、より好ましくは1~20質量%であり、特に好ましくは1~10質量%である。
 また、上記無機粉末射出成形用組成物100質量%中の上記変性ポリアセタール(C)の質量割合は、無機粉末を含むグリーン成形体の形状保持性に優れる観点から、1~20質量%であることが好ましく、より好ましくは2~15質量%、更に好ましくは4~10質量%である。
 上記無機粉末射出成形用組成物中の、上記変性ポリアセタール(C)の質量に対する上記無機粉末の質量の割合(無機粉末の質量/変性ポリアセタール(C)の質量)は、グリーン成形体の形状保持性、脱脂・焼結工程での成形体の割れ膨れ防止の観点から、5~200であることが好ましく、より好ましくは10~100、更に好ましくは15~50である。
 上記変性ポリアセタール(C)の製造方法は特に限定されず、公知の方法により得ることが出来る。
 上記変性ポリアセタール(C)の製造方法によっては、反応生成物である変性ポリアセタールと共に、未反応ポリアセタール樹脂及び/又は未反応ポリオレフィン系重合体が共存し、実質的に相溶又は均一分散した混合物の形態をとる場合がある。変性ポリアセタール(C)の製造方法によって発生した未反応のポリアセタール樹脂及び未反応のポリオレフィン系重合体は、無機粉末射出成形用組成物中の一成分である、上述の熱可塑性樹脂としてよい。
-窒素含有化合物、脂肪酸金属塩-
 上記変性ポリアセタール混合物は、更に窒素含有化合物及び/又は脂肪酸金属塩を含むことが好ましく、窒素含有化合物及び脂肪酸金属塩を含むことがより好ましい。
 上記窒素含有化合物及び上記脂肪酸金属塩を含むことにより、変性ポリアセタール混合物を製造する際の押出し性、熱安定性、異物の抑制を優れたものにすることができる。また、金属粉末と混練された無機粉末射出成形用組成物の流動性と、グリーン成形体の強度を同時に改善される傾向がある。上記窒素含有化合物と上記脂肪酸金属塩とを含むことにより、無機粉末射出成形用組成物は熱安定性が向上する。
 上記窒素含有化合物としては、特に限定されないが例えば、ポリアミド樹脂、アミド化合物、尿素誘導体、トリアジン誘導体、等が挙げられ、中でも、無機粉末射出成形用組成物の熱安定性に一層優れ、グリーン成形体の強度にも一層優れる観点から、ポリアミド樹脂が好ましい。これらは1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 上記ポリアミド樹脂としては、特に限定されないが例えば、ジアミンとジカルボン酸との縮合、アミノ酸の縮合、ラクタムの開環重合等によって得られるナイロン6、ナイロン11、ナイロン12、ナイロン66、ナイロン6・10、ナイロン6/6・10、ナイロン6/6・6、ナイロン6・6/6・10、ナイロン6/6・6/6・10、ポリ-β-アラニン等が挙げられる。
 上記アミド化合物としては、特に限定されないが例えば、脂肪族モノカルボン酸、脂肪族ジカルボン酸、芳香族モノカルボン酸又は芳香族ジカルボン酸と脂肪族モノアミン、脂肪族ジアミン、芳香族モノアミン、芳香族ジアミンとから生成されるステアリルステアリン酸アミド、ステアリルオレイン酸アミド、ステアリルエルカ酸アミド、エチレンジアミン-ジステアリン酸アミド、エチレンジアミン-ジベヘニン酸アミド、ヘキサメチレンジアミン-ジステアリン酸アミド、エチレンジアミン-ジエルカ酸アミド、キシリレンジアミン-ジエルカ酸アミド、ジ(キシリレンジアミン-ステアリン酸アミド)、セバシン酸アミド等が挙げられる。
 上記尿素誘導体としては、特に限定されないが例えば、N-フェニル尿素、N,N’-ジフェニル尿素、N-フェニルチオ尿素、N,N’-ジフェニルチオ尿素等が挙げられる。
 上記トリアジン誘導体としては、特に限定されないが例えば、メラミン、ベンゾグアナミン、N-フェニルメラミン、メレム、N,N’-ジフェニルメラミン、N-メチロールメラミン、N,N’-トリメチロールメラミン、2,4-ジアミノ-6-シクロヘキシルトリアジン、メラム等が挙げられる。
 上記窒素含有化合物の質量割合は、変性ポリアセタール混合物100質量部に対して、好ましくは0.005~0.2質量部であり、特に好ましくは0.005~0.1質量部である。上記窒素含有化合物の質量割合が上述の範囲であると、焼結可能な無機粉末と有機バインダーとを混練する際、変性ポリアセタール混合物の熱安定性が向上する観点で好ましい。
 上記脂肪酸金属塩としては、特に限定されないが例えば、炭素数10~35の飽和若しくは不飽和の脂肪酸又は水酸基で置換されている脂肪酸と、アルカリ金属若しくはアルカリ土類金属の水酸化物、酸化物又は塩化物と、から得られた脂肪酸金属塩が挙げられる。これらは1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 上記脂肪酸金属塩の脂肪酸としては、カプリン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミトン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグリセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、ウンデシレン酸、オレイン酸、エライジン酸、セトレイン酸、エルカ酸、ブラシジン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸、プロピオール酸、ステアロール酸、12-ヒドロキシドデカン酸、3-ヒドオキシデカン酸、16-ヒドロキシヘキサデカン酸、10-ヒドロキシヘキサデカン酸、12-ヒドロキシオクタデカン酸、10-ヒドロキシ-8-オクタデカン酸等が挙げられる。また、金属化合物としては、リチウム、ナトリウム、カリウム等のアルカリ金属、マグネシウム、カルシウム、ストロンチウム、バリウム等のアルカリ土類金属、亜鉛、若しくはアルミニウムの水酸化物又は塩化物である。中でも好ましくは、脂肪酸がミリスチン酸、パルミチン酸、ステアリン酸であり、金属化合物がカルシウムの水酸化物、酸化物及び塩化物であり、より好ましくは、ミリスチン酸カルシウム、パルミチン酸カリシウム、ステアリン酸カルシウムである。
 上記変性ポリアセタール混合物において、上記窒素含有化合物と上記脂肪酸金属塩とを添加する場合、上記窒素含有化合物の質量に対する上記脂肪酸金属塩の質量の割合(脂肪酸金属塩の質量/窒素含有化合物の質量)が特定の範囲にあることが好ましく、具体的には当該割合が1~15であり、好ましくは1~10である。当該割合を1~15にすることにより、有機バインダー中の変性ポリアセタール混合物(例えば、上記変性ポリアセタール(C))の熱安定性を向上させることができる点で好ましい。
(ポリアセタール以外の骨材樹脂)
 上記有機バインダーは、更にポリアセタール以外の骨材樹脂を含んでいてよい。ここで骨材樹脂とは成形体の強度の保持、および脱脂時の成形体の形状保持の為に配合される熱可塑性樹脂のことをいう。上記ポリアセタール以外の骨材樹脂としては、ポリオレフィン樹脂、樹脂である上述の窒素含有化合物等が挙げられる。なお、後述の滑剤はポリアセタール以外の骨材樹脂に含まないものとする。
-ポリオレフィン樹脂-
 上記有機バインダーは、更にポリオレフィン樹脂を含んでもよい。
 上記ポリオレフィン樹脂は、炭素原子2~8個、好ましくは炭素原子2~4個、を有するアルケンに由来する構造単位を有する単独重合体又は共重合体であることが好ましい。
 上記ポリオレフィン樹脂は、焼結可能な無機粉末との混練性、射出成形性の観点から、230℃、2.16kgの条件で測定したメルトフローインデックスが、40g/10分以上であることが好ましく、60g/10分以上であることが更に好ましい。
 上記ポリオレフィン樹脂としては、具体的には、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、ポリイソプレン、ポリブタジエン等が挙げられる。好ましくは、ポリエチレン、ポリプロピレン、及びこれらの混合物であり、脱脂工程における形状保持性、脱脂工程におけるひび割れ及び膨れの抑制の観点から、ポリエチレン又はポリプロピレンであることがより好ましい。ポリエチレンとして市販品の中で好適に使用し得るものは、例えば、サンテックHDシリーズ、サンテックLDシリーズ、サンテックEVAシリーズ(以上旭化成製)、ネオゼックス、ウルトゼックス、エボリュー(以上プライムポリマー製)等が挙げられ、ポリプロピレンとして住友ノーブレン(住友化学製)、ノバテックPP(日本ポリプロ製)、サンアロマーPMシリーズ(サンアロマー社製)、プライムポリプロ(プライムポリマー製)等が挙げられる。
 上記ポリオレフィン樹脂は、酸脱脂後の成形体の形状保持性の観点から、酸で分解されにくいことが好ましい。上記ポリオレフィン樹脂は、酸脱脂後の成形体の形状保持性の観点から、JIS K 7114に記載の手法の下、30%の硝酸水溶液に23℃(室温)、70℃の条件で24時間浸漬した後の重量が浸漬前の10%以下であることが好ましく、5%以下であることがより好ましく、1%以下であることが特に好ましい。
 上記変性ポリアセタール(C)の熱分解開始点(℃)と、上記ポリオレフィン樹脂の熱分解開始点(℃)との差は、脱脂工程時のひび割れ、膨れを一層低減する観点から、30℃以上であることが好ましく、より好ましくは30~100℃である。上記熱分解開始点は、熱重量示差熱分析装置を用いて測定される温度である。
 有機バインダーへのポリオレフィン樹脂の添加は任意であり、ポリオレフィン樹脂の質量割合は、グリーン成形体の形状保持、並びに酸脱脂後の成形体の形状に影響しない範囲で選択してよい。上記有機バインダー中の上記ポリオレフィン樹脂の質量割合は、グリーン成形体の形状保持、並びに酸脱脂後の成形体の形状を良好に保持できる観点から、有機バインダー100質量%に対して、2質量%以下であることが好ましく、より好ましく1質量%以下であり、特に好ましくは0.5質量%以下である。
(ポリアセタール)
 上記有機バインダーは、さらにポリアセタールを含んでいてもよい。
 上記ポリアセタールとしては、上述の変性ポリアセタール(C)の製造で発生する未反応のポリアセタールが挙げられる。
 上記ポリアセタールとしては、下記式(3)で表されるポリアセタールが挙げられる。上記ポリアセタールは、一種であってもよいし、複数種であってもよい。
Figure JPOXMLDOC01-appb-C000006
(式中、R及びRは、水素、アルキル基、置換アルキル基、アリール基及び置換アリール基からなる群から独立に選択され、p=95~100モル%、q=0~5モル%、p+q=100モル%であり、zは2~6から選ばれる整数である)
(滑剤)
 上記有機バインダーは、更に滑剤を含むことが好ましい。上記滑剤を含むことにより、無機粉末射出成形用組成物の流動性が更に向上し、微細な成形品に対しても良好に射出成形が可能となる。
 上記滑剤は、上述のポリアセタール樹脂、ポリオレフィン樹脂以外の化合物であり、例えばワックス類が挙げられる。上記ワックス類としては、例えばパラフィンワックス、ポリエチレンワックス、ポリプロピレンワックス、カルバナワックス、ポリエチレングリコール、ポリテトラメチレンエーテルグリコール、ポリテトラエチレングリコール、ポリイソブチレン、マイクロクリスタリンワックス、モンタン系ワックス、蜜ロウ、木ロウ、合成ワックス、ポリ-1,3-ジオキソラン、ポリ-1,3-ジオキセパン等が挙げられる。中でも、射出成形での無機粉末射出成形用組成物の流動性に一層優れる観点から、パラフィンワックス、ポリエチレングリコール、ポリテトラメチレンエーテルグリコール、ポリ-1,3-ジオキセパンが好ましい。
 上記滑剤の質量割合は、射出成形での無機粉末射出成形用組成物の流動性に一層優れる観点から、上記有機バインダー100質量%に対して、5~60質量%であることが好ましく、より好ましくは5~50質量%であり、特に好ましくは10~50質量%である。
 本実施形態の無機粉末射出成形用組成物100質量%中の上記有機バインダーの質量割合は、5~30質量%であることが好ましく、より好ましくは5~20質量%、更に好ましくは5~10質量%である。
<その他の添加物>
 上記無機粉末射出成形用組成物に添加可能な、上述の成分以外のその他の添加剤としては、本発明の効果を損なわない限り限定されるものではないが、好ましい添加剤として酸化防止剤を挙げることができる。
 上記酸化防止剤としては、例えば、n-オクタデシル-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート、n-オクタデシル-3-(3’-メチル-5’-t-ブチル-4’-ヒドロキシフェニル)プロピオネート、n-テトラデシル-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート、1,6-ヘキサンジオール-ビス-(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート)、1,4-ブタンジオール-ビス-(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート)、3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオン、トリエチレングリコール-ビス-(3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート)、テトラキス(メチレン3-(3’-t-ブチル-4-ヒドロキシフェニル)プロピオネート)メタン、N,N’-ビス-(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェノール)プロピオニル)ヒドラジン、N,N’-テトラメチレン-ビス-3-(3’-メチル-5’-t-ブチル-4-ヒドロキシフェノール)プロピオニルジアミン、N,N’-ビス-3-(3’,5’-ジ-t-ブチル-4-ヒドロキシフェノール)プロピオニルヘキサメチレンジアミン、3-(N-サリチロイル)アミノ-1,2,4-トリアゾール、N,N’-ビス-(2-(3-(3,5-ジブチル-4-ヒドロキシフェニル)プロピオニルオキシ)エチル)オキシアミド、N,N’-ヘキサメチレン-ビス-(3-3,5-t-ブチル-4-ヒドロキシフェニル)プロパンアミド、等が挙げられる。これら酸化防止剤は1種で用いてもよいし、2種以上を組み合わせ用いてもよい。
 酸化防止剤の含有量は、変性ポリアセタール(C)100質量%に対して、0.01~1.0質量%、好ましくは0.05~0.5質量%である。含有量が上記範囲内にあることで、熱安定性が向上する。
 本実施形態の無機粉末射出成形用組成物は、例えば、上記無機粉末、上記有機バインダー、上記添加剤を混合して製造することができる。
 本実施形態の無機粉末射出成形用組成物は、焼結体の原料として用いることができる。上記焼結体は、上記無機粉末射出成形用組成物を射出成形して、上記無機粉末射出成形用組成物を含む射出成形体とし、上記射出成形体を脱脂、焼結した焼結体であってよい。上記焼結体としては、例えば、自動車部品、航空機部品、医療機器部品、電気・電子機器部品、防衛機器部品等が挙げられる。
 発明(II)は以下の通りである。
[発明(II)]
[無機粉末射出成形用組成物]
 本実施形態の無機粉末射出成形用組成物は、焼結可能な無機粉末と、ポリアセタールセグメント(A)及び変性セグメント(B)からなる変性ポリアセタール(C)を含む有機バインダーと、を含む。
 本実施形態の無機粉末射出成形用組成物は、焼結可能な上記無機粉末、上記有機バインダーに加え、更にその他の添加物を含んでもよい。また、上記無機粉末と上記有機バインダーとのみからなる組成物であってもよい。
<焼結可能な無機粉末>
 上記無機粉末は、公知の適当な焼結可能な無機粉末の全ての中から選択することができる。好ましくは、金属粉末、合金粉末、金属カルボニル粉末、セラミックス粉末及びこれらの混合物から選択される。中でも、機能性を付与するために、金属粉末やセラミックス粉末が特に好ましい。
 上記焼結可能な無機粉末は、1種を単独で用いてもよいし、複数種を組み合わせて用いてもよい。
 焼結可能な無機粉末とは、500℃から2000℃の間に融点を持ち、平均粒子径が100μm以下の無機粉末としてよい。なお、上記融点は、示差走査熱量測定装置を用い、アルゴン気流下、5℃/minの条件で昇温し、吸熱ピークトップから判定することができる。また、平均粒子径は、レーザー回折散乱法を採用した粒度分布測定装置を用いて測定した重量累積50%の平均径を意味する。これらの用語の意味は、特にことわりがないかぎり、以下においても同様である。
 上記金属粉末として、具体的な例は、アルミニウム、マグネシウム、バリウム、カルシウム、コバルト、亜鉛、銅、ニッケル、鉄、ケイ素、チタン、タングステン、及びこれらをベースとする金属化合物及び金属合金の粉末が挙げられる。ここで、既に完成された合金のみならず、個々の合金成分の混合物を使用することもできる。
 上記セラミックス粉末としては、酸化亜鉛、酸化アルミニウム、ジルコニア等の酸化物、ハイドロキシアパタイト等の水酸化物、炭化ケイ素等の炭化物、窒化ケイ素、窒化ホウ素等の窒化物、蛍石等のハロゲン化物、ステアライト等のケイ酸塩、チタン酸バリウム、チタン酸ジルコン酸鉛等のチタン酸塩、炭酸塩、リン酸塩、フェライト、等が挙げられる。
 上述した無機粉末は、1種単独で用いてもよく、種々の金属粉末、金属粉末、及びセラミックス粉末等、幾つかの無機物質を組み合わせて用いることも可能である。変性ポリアセタール(C)を含む有機バインダーと共に用いるとグリーン成形体の形状保持性や混練・射出成形時の分解抑制に特に優れる観点から、好ましい金属粉末や合金粉末としては、チタン合金やSUS316L等のステンレス鋼が挙げられ、セラミック粉末としては、酸化アルミニウム、ジルコニアが挙げられる。
 上記無機粉末の平均粒子径としては、30μm以下であることが好ましく、より好ましくは20μm以下である。
 上記焼結可能な無機粉末の質量割合としては、上記無機粉末射出成形用組成物100質量%に対して、70~95質量%であることが好ましく、より好ましくは75~95質量%であり、特に好ましくは80~95質%である。焼結可能な無機粉末が上述した範囲内であることで、射出成形に適した溶融粘度を有した焼結成形体用組成物を得ることができ、かつ、強度の高いグリーン成形体を得ることができる。
<有機バインダー>
 上記有機バインダーは、ポリアセタールセグメント(A)及び変性セグメント(B)からなる変性ポリアセタール(C)を含む。上記有機バインダーは、変性ポリアセタール(C)を含む後述の変性ポリアセタール混合物を含むことが好ましい。有機バインダーとしては、更に、任意で熱可塑性樹脂や添加剤を含んでもよく、変性ポリアセタール混合物、ポリオレフィン樹脂、流動性付与剤のみからなる混合物であってよい。有機バインダー中に含まれるオキシメチレン単位を含む樹脂成分は、後述の変性ポリアセタール(C)のみであることが好ましい。
(変性ポリアセタール混合物)
 上記変性ポリアセタール混合物は、変性ポリアセタール(C)を含み、更に窒素含有化合物、脂肪酸金属塩を含んでいてよい。中でも、変性ポリアセタール(C)を含み、任意含有成分が窒素含有化合物、脂肪酸金属塩のみであることが好ましい。
-変性ポリアセタール(C)-
 上記有機バインダーとしては、焼結可能な無機粉末との混練や、射出成形工程での熱安定性の観点から、変性ポリアセタール(C)を含む。
 一般に、変性ポリアセタールとは、ポリアセタールセグメントと変性セグメントを有するブロック共重合体である。ポリアセタールセグメントはオキシメチレン単位のみからなるホモポリマー残基である場合と、オキシメチレン単位とオキシアルキレン単位とがランダムに共重合したコポリマー残基の場合がある。変性セグメントとは、ポリアセタールセグメントに該当しない成分であり、例えば、ポリオレフィン、ポリウレタン、ポリエステル、ポリアミド、ポリスチレン、ポリアクリル酸アルキルなどがあげられる。
 本実施形態における変性ポリアセタール(C)は、ポリアセタールセグメント(A)及び変性セグメント(B)を有し、ポリアセタールセグメント(A)と変性セグメント(B)とのみからなっていてもよい。また、ポリアセタールセグメント(A)は、後述するとおり、オキシメチレン単位とオキシアルキレン単位とがランダムに共重合したポリアセタールコポリマー残基であり、変性セグメント(B)は好ましくはポリオレフィン、ポリウレタンである。
 上記変性ポリアセタール(C)は、1種を単独で用いてもよいし、複数種を組み合わせて用いてもよい。
 上記変性ポリアセタール(C)の数平均分子量は、射出成形工程でグリーン成形体を歩留まり良く得る観点から、10,000~500,000であることが好ましく、小型で薄物の部品を成形する観点から、20,000~200,000であることがより好ましく、20,000~100,000がより好ましい。
 上記変性ポリアセタール(C)の数平均分子量は、GPCにより測定することができる。GPCの具体的な条件としては、例えば、GPC装置として東ソー(株)製HLC-8120を用い、またカラムとして昭和電工(株)製HFIP806(30cmカラム2本)、キャリアとしてヘキサフルオロイソプロパノール(以後HFIPと呼ぶ)、標準試料としてポリマーラボラトリー社製ポリメチルメタクリレート(PMMA)を用いて、温度40℃、流量0.5ml/分の条件下で測定することができる。
 上記変性ポリアセタール(C)を構成する変性セグメント(B)の数平均分子量は、射出成形工程で歩留まり良くグリーン成形体を得る観点から、500~10,000(ポリスチレン換算)であることが好ましい。また焼結可能な無機粉末との混練時の変性ポリアセタール(C)の分解抑制の観点から、2,000~5,000(ポリスチレン換算)であることがより好ましい。
 また、変性セグメント(B)の分子量分布(Mw/Mn)は2未満であることが好ましい。
 変性セグメント(B)の数平均分子量の測定方法は、GPCを用いて測定することができる。例えば、GPC装置としてウオーターズ社製の150Cを用い、また、1,2,4-トリクロロベンゼンをキャリアとして用い、140℃の温度で、標準試料としてポリスチレンを用い、数平均分子量を測定することができる。なお、仮に第三者の製造した任意の変性ポリアセタール樹脂について、変性セグメント(B)の数平均分子量を測定する場合は、予めポリアセタールブロックを分解してから測定するのが望ましい。
 上記変性ポリアセタール(C)の数平均分子量(Mn1)に対する上記変性セグメント(B)の数平均分子量(Mn2)の割合(Mn2/Mn1×100(%))は、脱脂、焼結工程での成形体の割れ・膨れを防止する観点から、0.5%以上10%以下が好ましく、射出成形工程での歩留まりを良くする観点から、0.5%以上5.0%以下がより好ましい。
 上記変性ポリアセタール(C)の変性セグメント(B)は、ポリオレフィン、ポリウレタンを好適に使用できる。脱脂工程での有機バインダー由来の残渣を低減する観点から、ポリオレフィンが好ましい。具体的にはポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、ポリイソプレン、ポリブタジエン、水素添加ポリブタジエン等が挙げられる。好ましくは、ポリエチレン、ポリプロピレン、水素添加ポリブタジエンであり、脱脂工程における形状保持性、脱脂工程におけるひび割れ及び膨れの抑制の観点から、水素添加ポリブタジエンであることがより好ましい。
 上記変性ポリアセタール(C)に含まれる変性セグメント(B)は、1種であってもよいし複数種であってもよい。中でも、製造容易性の観点から、1種であることが好ましい。
 上記変性ポリアセタール(C)のポリアセタールセグメント(A)は、開環重合したトリオキサンに起因するオキシメチレン単位(すなわち、(CHO)単位)、及び開環重合した環状ホルマール(又は環状エーテル)に起因する下記式(1)で表されるオキシアルキレン単位(本明細書において、単に「オキシアルキレン単位」と称する場合がある)を含むポリアセタールコポリマー残基から構成されている。ポリアセタールセグメント(A)は、上記オキシメチレン単位及び上記オキシアルキレン単位のみからなることが好ましい。また、ポリアセタールセグメント(A)、すなわちポリアセタールコポリマー残基において、オキシメチレン単位とオキシアルキレン単位とはランダムに存在することが好ましい。
Figure JPOXMLDOC01-appb-C000007
(式中、Rは、それぞれ独立して、水素、アルキル基、置換アルキル基、アリール基及び置換アリール基から選択され、mは2~6から選ばれる整数である。)
 上記ポリアセタールセグメント(A)中に含まれる、上記式(1)で表されるオキシアルキレン単位は、1種であってもよいし、複数種であってもよい。中でも、製造容易性の観点から、1種であることが好ましい。
 上記ポリアセタールセグメント(A)は、焼結可能な無機粉末との混練工程での変性ポリアセタール(C)の熱分解抑制の観点から、95.0~99.9モル%のオキシメチレン単位及び0.1~5.0モル%のオキシアルキレン単位、好ましくは98.0~99.7モル%のオキシメチレン単位及び0.3~2.0モル%のオキシアルキレン単位からなる。
 ポリアセタールセグメント(A)を構成するモノマー単位のモル%は、以下の方法で測定することができる。変性ポリアセタールと1Nの塩酸とを耐圧ビンに仕込み130℃で2時間加熱し、変性ポリアセタールを加水分解し、環状ホルマール(又は環状エーテル)に起因するアルキレングリコール成分を得る。加水分解後に、ヒドロキシアルキル化された変性セグメントも存在することになるが、このヒドロキシアルキル化された変性セグメントは水溶液から相分離して存在する。一方、加水分解後の水溶液中に存在するアルキレングリコール成分をガスクロマトグラフィーで定量する。
 環状ホルマール(又は環状エーテル)に起因する、上記式(1)で表されるオキシアルキレン単位の具体例としては、エチレンオキシド残基、プロピレンオキシド残基、1,3-ジオキソラン残基、1,3,5-トリオキセパン残基、ジエチレングリコールホルマール残基、1,4-ブタンジオールホルマール残基、1,3-ジオキサン残基などが挙げられる。中でも変性ポリアセタール(C)の生成率の点から、オキシアルキレン単位は、1,3-ジオキソラン残基、1,3,5-トリオキセパン残基、1,4-ブタンジオールホルマール残基であることが好ましく、更に好ましくは1,3-ジオキソラン残基である。
 特に、2-メチル-1,3-ジオキソランが500質量ppm以下であり、且つパーオキサイドが過酸化水素換算で15質量ppm以下である1,3-ジオキソランを重合させた1,3-ジオキソラン残基を、オキシアルキレン単位とすることが好ましく、更に10~500質量ppmの1種又は複数種のヒンダードフェノールを重合中に添加することが好ましい。
 なお、2-メチル-1,3ジオキソランの含有量は、ジーエルサイエンス(株)製ガスクロパック55を装着したガスクロマトグラフィーで水素炎イオン検出器により測定することができる。具体的には、1,3-ジオキソラン中のパーオキサイドの含有量は、フラスコ内にイソプロピルアルコール40ml、ヨウ化ナトリウム飽和溶液(NaIをイソプロピルアルコールで溶解)10ml、酢酸2ml及び1,3-ジオキソラン25gを加え、100℃で約5分間環流し、その後直ちに0.01Nチオ硫酸ナトリウムで、フラスコ内の混合物の色が黄色から無色になるまで滴定して、滴定量を求め(滴定量をAmlとする。)、空滴定として、1,3-ジオキソランを用いず上記と同じ操作を行った場合の滴定量(Bmlとする。)とから、次の計算式で求められる。
  パーオキサイド量(過酸化水素に換算した値、ppm)=(A-B)×17×0.01/(25×1000)×106
 上記変性ポリアセタール(C)は、焼結可能な無機粉末との混練工程での変性ポリアセタール(C)の分解抑制の観点から、ポリアセタールセグメント(A)-変性セグメント(B)-ポリアセタールセグメント(A)(本明細書において、(A)-(B)-(A)、ABA等と称する場合がある)又は変性セグメント(B)-ポリアセタールセグメント(A)-変性セグメント(B)(本明細書において、(B)-(A)-(B)、BAB等と称する場合がある)で表されるブロックコポリマーであることが好ましい。更に、グリーン成形体の強度発現の観点から、(A)-(B)-(A)であることがより好ましい。
 なお、任意のポリアセタール樹脂について、それがブロックコポリマーであるか否かは、公知の方法を用いて同定できるが、例えば、構造が既知のポリアセタール樹脂を対象試料として、樹脂分解時のホルムアルデヒド発生量を定量比較する方法が考えられる。
 上記変性ポリアセタール(C)は焼結可能な無機粉末との混練や射出成形のような熱がかかる工程を通しても分解しにくいため、所望の無機粉末射出成形用組成物及び射出成形体を得ることができる。無機粉末射出成形用組成物中の変性ポリアセタール(C)の重量平均分子量をMw1、無機粉末射出成形用組成物をクロロホルム中で80℃8時間の条件で抽出した変性ポリアセタールの重量平均分子量をMw2としたとき、下記式で表されるポリアセタール分子量減少率が、良好な射出成形性を維持する観点から40%以下であることが好ましく、成形体の強度保持の観点から、20%以下が更に好ましく、作業場の臭気低減の観点から、10%以下がより好ましい。
ポリアセタール分子量減少率(%)=(1-Mw2/Mw1)×100
 なお、抽出の条件は、後述の実施例の「1.ポリアセタールの熱安定性評価」に記載の条件としてよい。
 上記変性ポリアセタール混合物100質量%中の、上記変性ポリアセタール(C)の質量割合は、95質量%以上であることが好ましく、より好ましくは97質量%以上100質量%未満、更に好ましくは97~99.9質量%である。
 上記有機バインダー100質量%中の上記変性ポリアセタール(C)の質量割合は、混練、射出成形工程での上記ポリアセタールの分解物低減の観点から、1~40質量%であることが好ましく、より好ましくは1~20質量%であり、特に好ましくは1~10質量%である。
 また、上記無機粉末射出成形用組成物100質量%中の上記変性ポリアセタール(C)の質量割合は、無機粉末を含むグリーン成形体の形状保持性に優れる観点から、1~20質量%であることが好ましく、より好ましくは2~15質量%、更に好ましくは4~10質量%である。
 上記無機粉末射出成形用組成物中の、上記変性ポリアセタール(C)の質量に対する上記無機粉末の質量の割合(無機粉末の質量/変性ポリアセタール(C)の質量)は、グリーン成形体の形状保持性、脱脂・焼結工程での成形体の割れ膨れ防止の観点から、5~200であることが好ましく、より好ましくは10~100、更に好ましくは15~50である。
 上記変性ポリアセタール(C)の製造方法は特に限定されず、公知の方法により得ることが出来る。
 上記変性ポリアセタール(C)の製造方法によっては、反応生成物である変性ポリアセタールと共に、未反応ポリアセタール樹脂及び/又は未反応ポリオレフィン系重合体が共存し、実質的に相溶又は均一分散した混合物の形態をとる場合がある。変性ポリアセタール(C)の製造方法によって発生した未反応のポリアセタール樹脂及び未反応のポリオレフィン系重合体は、無機粉末射出成形用組成物中の一成分である、上述の熱可塑性樹脂としてよい。
-窒素含有化合物、脂肪酸金属塩-
 上記変性ポリアセタール混合物は、更に窒素含有化合物及び/又は脂肪酸金属塩を含むことが好ましく、窒素含有化合物及び脂肪酸金属塩を含むことがより好ましい。
 上記窒素含有化合物及び上記脂肪酸金属塩を含むことにより、変性ポリアセタール混合物を製造する際の押出し性、熱安定性、異物の抑制を優れたものにすることができる。また、金属粉末と混練された無機粉末射出成形用組成物の流動性と、グリーン成形体の強度を同時に改善される傾向がある。上記窒素含有化合物と上記脂肪酸金属塩とを含むことにより、無機粉末射出成形用組成物は熱安定性が向上する。
 上記窒素含有化合物としては、特に限定されないが例えば、ポリアミド樹脂、アミド化合物、尿素誘導体、トリアジン誘導体、等が挙げられ、中でも、無機粉末射出成形用組成物の熱安定性に一層優れ、グリーン成形体の強度にも一層優れる観点から、ポリアミド樹脂が好ましい。これらは1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 上記ポリアミド樹脂としては、特に限定されないが例えば、ジアミンとジカルボン酸との縮合、アミノ酸の縮合、ラクタムの開環重合等によって得られるナイロン6、ナイロン11、ナイロン12、ナイロン66、ナイロン6・10、ナイロン6/6・10、ナイロン6/6・6、ナイロン6・6/6・10、ナイロン6/6・6/6・10、ポリ-β-アラニン等が挙げられる。
 上記アミド化合物としては、特に限定されないが例えば、脂肪族モノカルボン酸、脂肪族ジカルボン酸、芳香族モノカルボン酸又は芳香族ジカルボン酸と脂肪族モノアミン、脂肪族ジアミン、芳香族モノアミン、芳香族ジアミンとから生成されるステアリルステアリン酸アミド、ステアリルオレイン酸アミド、ステアリルエルカ酸アミド、エチレンジアミン-ジステアリン酸アミド、エチレンジアミン-ジベヘニン酸アミド、ヘキサメチレンジアミン-ジステアリン酸アミド、エチレンジアミン-ジエルカ酸アミド、キシリレンジアミン-ジエルカ酸アミド、ジ(キシリレンジアミン-ステアリン酸アミド)、セバシン酸アミド等が挙げられる。
 上記尿素誘導体としては、特に限定されないが例えば、N-フェニル尿素、N,N’-ジフェニル尿素、N-フェニルチオ尿素、N,N’-ジフェニルチオ尿素等が挙げられる。
 上記トリアジン誘導体としては、特に限定されないが例えば、メラミン、ベンゾグアナミン、N-フェニルメラミン、メレム、N,N’-ジフェニルメラミン、N-メチロールメラミン、N,N’-トリメチロールメラミン、2,4-ジアミノ-6-シクロヘキシルトリアジン、メラム等が挙げられる。
 上記窒素含有化合物の質量割合は、変性ポリアセタール混合物100質量部に対して、好ましくは0.005~0.2質量部であり、特に好ましくは0.005~0.1質量部である。上記窒素含有化合物の質量割合が上述の範囲であると、焼結可能な無機粉末と有機バインダーとを混練する際、変性ポリアセタール混合物の熱安定性が向上する観点で好ましい。
 上記脂肪酸金属塩としては、特に限定されないが例えば、炭素数10~35の飽和若しくは不飽和の脂肪酸又は水酸基で置換されている脂肪酸と、アルカリ金属若しくはアルカリ土類金属の水酸化物、酸化物又は塩化物と、から得られた脂肪酸金属塩が挙げられる。これらは1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 上記脂肪酸金属塩の脂肪酸としては、カプリン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミトン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグリセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、ウンデシレン酸、オレイン酸、エライジン酸、セトレイン酸、エルカ酸、ブラシジン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸、プロピオール酸、ステアロール酸、12-ヒドロキシドデカン酸、3-ヒドオキシデカン酸、16-ヒドロキシヘキサデカン酸、10-ヒドロキシヘキサデカン酸、12-ヒドロキシオクタデカン酸、10-ヒドロキシ-8-オクタデカン酸等が挙げられる。また、金属化合物としては、リチウム、ナトリウム、カリウム等のアルカリ金属、マグネシウム、カルシウム、ストロンチウム、バリウム等のアルカリ土類金属、亜鉛、若しくはアルミニウムの水酸化物又は塩化物である。中でも好ましくは、脂肪酸がミリスチン酸、パルミチン酸、ステアリン酸であり、金属化合物がカルシウムの水酸化物、酸化物及び塩化物であり、より好ましくは、ミリスチン酸カルシウム、パルミチン酸カリシウム、ステアリン酸カルシウムである。
 上記変性ポリアセタール混合物において、上記窒素含有化合物と上記脂肪酸金属塩とを添加する場合、上記窒素含有化合物の質量に対する上記脂肪酸金属塩の質量の割合(脂肪酸金属塩の質量/窒素含有化合物の質量)が特定の範囲にあることが好ましく、具体的には当該割合が1~15であり、好ましくは1~10である。当該割合を1~15にすることにより、有機バインダー中の変性ポリアセタール混合物(例えば、上記変性ポリアセタール(C))の熱安定性を向上させることができる点で好ましい。
(熱可塑性樹脂)
 上記有機バインダーは、更に熱可塑性樹脂を含んでいてよい。上記熱可塑性樹脂としては、ポリアセタール樹脂、ポリオレフィン樹脂等が挙げられる。
-ポリオレフィン樹脂-
 上記有機バインダーは、更にポリオレフィン樹脂を含んでもよい。
 上記ポリオレフィン樹脂は、炭素原子2~8個、好ましくは炭素原子2~4個、を有するアルケンに由来する構造単位を有する単独重合体又は共重合体であることが好ましい。
 上記ポリオレフィン樹脂は、焼結可能な無機粉末との混練性、射出成形性の観点から、230℃、2.16kgの条件で測定したメルトフローインデックスが、40g/10分以上であることが好ましく、60g/10分以上であることが更に好ましい。
 上記ポリオレフィン樹脂としては、具体的には、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、ポリイソプレン、ポリブタジエン等が挙げられる。好ましくは、ポリエチレン、ポリプロピレン、及びこれらの混合物であり、脱脂工程における形状保持性、脱脂工程におけるひび割れ及び膨れの抑制の観点から、ポリエチレン又はポリプロピレンであることがより好ましい。ポリエチレンとして市販品の中で好適に使用し得るものは、例えば、サンテックHDシリーズ、サンテックLDシリーズ、サンテックEVAシリーズ(以上旭化成製)、ネオゼックス、ウルトゼックス、エボリュー(以上プライムポリマー製)等が挙げられ、ポリプロピレンとして住友ノーブレン(住友化学製)、ノバテックPP(日本ポリプロ製)、サンアロマーPMシリーズ(サンアロマー社製)、プライムポリプロ(プライムポリマー製)等が挙げられる。
 上記ポリオレフィン樹脂は、酸脱脂後の成形体の形状保持性の観点から、酸で分解されにくいことが好ましい。上記ポリオレフィン樹脂は、酸脱脂後の成形体の形状保持性の観点から、JIS K 7114に記載の手法の下、30%の硝酸水溶液に23℃(室温)、70℃の条件で24時間浸漬した後の重量が浸漬前の10%以下であることが好ましく、5%以下であることがより好ましく、1%以下であることが特に好ましい。
 上記変性ポリアセタール(C)の熱分解開始点(℃)と、上記ポリオレフィン樹脂の熱分解開始点(℃)との差は、脱脂工程時のひび割れ、膨れを一層低減する観点から、30℃以上であることが好ましく、より好ましくは30~100℃である。上記熱分解開始点は、熱重量示差熱分析装置を用いて測定される温度である。
 上記有機バインダー中の上記ポリオレフィン樹脂の質量割合は、グリーン成形体の形状保持、並びに酸脱脂後の成形体の形状を良好に保持できる観点から、有機バインダー100質量%に対して、5~95質量%であることが好ましく、より好ましくは5~70質量%であり、特に好ましくは5~60質量%である。
 上記ポリアセタール樹脂100質量%に対する上記ポリオレフィン樹脂の質量割合は、1~200質量%であることが好ましく、より好ましくは5~150質量%、更に好ましくは10~120質量%である。
 上記有機バインダー100質量%中の上記ポリアセタール樹脂と上記ポリオレフィン樹脂との合計質量の割合としては、45質量%以上であることが好ましく、より好ましくは90質量%以上である。
 また、上記有機バインダー100質量%中の上記ポリアセタール樹脂と上記ポリオレフィン樹脂と後述の流動性付与剤との合計質量の割合としては、90質量%以上であることが好ましく、より好ましくは95質量%以上、更に好ましくは98質量%以上である。
-ポリアセタール-
 上記ポリアセタールとしては、上述の変性ポリアセタール(C)の製造で発生する未反応のポリアセタールが挙げられる。
 上記ポリアセタールとしては、下記式(3)で表されるポリアセタールが挙げられる。上記ポリアセタールは、一種であってもよいし、複数種であってもよい。
Figure JPOXMLDOC01-appb-C000008
(式中、R及びRは、水素、アルキル基、置換アルキル基、アリール基及び置換アリール基からなる群から独立に選択され、p=95~100モル%、q=0~5モル%、p+q=100モル%であり、zは2~6から選ばれる整数である)
(流動性付与剤)
 上記有機バインダーは、更に流動性付与剤を含むことが好ましい。上記流動性付与剤を含むことにより、無機粉末射出成形用組成物の流動性が更に向上し、微細な成形品に対しても良好に射出成形が可能となる。
 上記流動性付与剤は、上述のポリアセタール樹脂、ポリオレフィン樹脂以外の化合物であり、例えばワックス類が挙げられる。上記ワックス類としては、例えばパラフィンワックス、ポリエチレンワックス、ポリプロピレンワックス、カルバナワックス、ポリエチレングリコール、ポリテトラメチレンエーテルグリコール、ポリテトラエチレングリコール、ポリイソブチレン、マイクロクリスタリンワックス、モンタン系ワックス、蜜ロウ、木ロウ、合成ワックス、ポリ-1,3-ジオキソラン、ポリ-1,3-ジオキセパン等が挙げられる。中でも、射出成形での無機粉末射出成形用組成物の流動性に一層優れる観点から、パラフィンワックス、ポリエチレングリコール、ポリテトラメチレンエーテルグリコール、ポリ-1,3-ジオキセパンが好ましい。
 上記流動性付与剤の質量割合は、射出成形での無機粉末射出成形用組成物の流動性に一層優れる観点から、上記有機バインダー100質量%に対して、5~60質量%であることが好ましく、より好ましくは5~50質量%であり、特に好ましくは10~50質量%である。
 本実施形態の無機粉末射出成形用組成物100質量%中の上記有機バインダーの質量割合は、5~30質量%であることが好ましく、より好ましくは5~20質量%、更に好ましくは5~10質量%である。
<その他の添加物>
 上記無機粉末射出成形用組成物に添加可能な、上述の成分以外のその他の添加剤としては、本発明の効果を損なわない限り限定されるものではないが、好ましい添加剤として酸化防止剤を挙げることができる。
 上記酸化防止剤としては、例えば、n-オクタデシル-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート、n-オクタデシル-3-(3’-メチル-5’-t-ブチル-4’-ヒドロキシフェニル)プロピオネート、n-テトラデシル-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート、1,6-ヘキサンジオール-ビス-(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート)、1,4-ブタンジオール-ビス-(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート)、3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオン、トリエチレングリコール-ビス-(3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート)、テトラキス(メチレン3-(3’-t-ブチル-4-ヒドロキシフェニル)プロピオネート)メタン、N,N’-ビス-(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェノール)プロピオニル)ヒドラジン、N,N’-テトラメチレン-ビス-3-(3’-メチル-5’-t-ブチル-4-ヒドロキシフェノール)プロピオニルジアミン、N,N’-ビス-3-(3’,5’-ジ-t-ブチル-4-ヒドロキシフェノール)プロピオニルヘキサメチレンジアミン、3-(N-サリチロイル)アミノ-1,2,4-トリアゾール、N,N’-ビス-(2-(3-(3,5-ジブチル-4-ヒドロキシフェニル)プロピオニルオキシ)エチル)オキシアミド、N,N’-ヘキサメチレン-ビス-(3-3,5-t-ブチル-4-ヒドロキシフェニル)プロパンアミド、等が挙げられる。これら酸化防止剤は1種で用いてもよいし、2種以上を組み合わせ用いてもよい。
 酸化防止剤の含有量は、変性ポリアセタール(C)100質量%に対して、0.01~1.0質量%、好ましくは0.05~0.5質量%である。含有量が上記範囲内にあることで、熱安定性が向上する。
 上記変性ポリアセタール(C)の重量平均分子量に対する、上記無機粉末射出成形用組成物をクロロホルム中で80℃8時間の条件で抽出した変性ポリアセタールの重量平均分子量の、ポリアセタール分子量減少率は、40%以下であり、好ましくは5~36%、より好ましくは7~26%である。上記ポリアセタール分子量減少率は後述の実施例に記載の方法で測定することができる。
 本実施形態の無機粉末射出成形用組成物は、上記無機粉末、上記有機バインダー、上記添加剤を混合して製造することができる。
 本実施形態の無機粉末射出成形用組成物は、焼結体の原料として用いることができる。上記焼結体は、上記無機粉末射出成形用組成物を射出成形して、上記無機粉末射出成形用組成物を含む射出成形体とし、上記射出成形体を脱脂、焼結した焼結体であってよい。上記焼結体としては、例えば、自動車部品、航空機部品、医療機器部品、電気・電子機器部品、防衛機器部品等が挙げられる。
 以下、具体的な実施例及び比較例を挙げて本発明について詳細に説明するが、本発明は以下の実施例に限定されるものではない。
[発明(I)の実施例]
 実施例及び比較例中の用語及び特性の測定方法は以下の通りとする。
[変性ポリアセタール(C)の製造]
 下記式(4)、(5)で表される両末端がヒドロキシアルキル化された水素添加ポリブタジエン1、水素添加ポリブタジエン2、及び下記式(6)で表される片末端がヒドロキシアルキル化された水素添加ポリブタジエン3を連鎖移動剤に用い、特許第4560261号に記載の手法で重合し、ポリアセタールセグメントがオキシメチレン単位及びオキシエチレン単位から構成された変性ポリアセタールI-1~I-13を得た。また比較として連鎖移動剤にメタノールを用いた未変性のポリアセタールI-1も重合した。得られた変性ポリアセタール及び未変性ポリアセタール(C)の数平均分子量(Mn1)、変性セグメントの数平均分子量(Mn2)、ポリアセタールセグメント(A)中のオキシエチレン単位のモル比率及び変性ポリアセタール(C)のメルトフローレート(MFR)をそれぞれ表1に記載する。
Figure JPOXMLDOC01-appb-C000009
(式中、l、m、nはそれぞれ1~50の整数である。)
Figure JPOXMLDOC01-appb-C000010
(式中、x、yはそれぞれ1~50の整数である。)
Figure JPOXMLDOC01-appb-C000011
(式中、o、p、qはそれぞれ1~50の整数である。)
 尚、メルトフローレートはASTM-D-1238-57Tに準拠し、190℃、2.16kgの条件で測定した。
[ポリアセタール組成物の製造]
 上記変性ポリアセタール(C)100質量部に、ナイロン66を0.05質量部、ステアリン酸カルシウム0.3質量部、を均一添加混合し、200℃に設定されたベント付の2軸押出し機(L/D=40)に供給し、90kPaで減圧脱気しながらペレット化した。その後100℃で2hr乾燥を行うことで、変性ポリアセタール混合物I-1~I-13を得た。
 また変性ポリアセタールの変わりに未変性ポリアセタール100質量部を用いる以外は同様に添加剤を配合し、未変性ポリアセタール混合物I-1を得た。
[焼結可能な無機粉末射出成形用組成物の製造]
1)酸脱脂用の焼結可能な無機粉末射出成形用組成物の製造
 170℃に加温したMS式加圧ニーダー(DS3-10型、日本スピンドル製造社製)に、上記変性ポリアセタール混合物I-1~I-13、滑剤としてポリテトラメチレンエーテルグリコール(PTMG3000、三菱ケミカル社製)、焼結可能な無機粉末としてSUS316L(DAP316L、大同特殊鋼社製)をそれぞれ表2に記載の質量割合で配合し30分間混練した。
 得られた混練物をウイレー型粉砕機(吉田製作所製)に投入し粉砕することで酸脱脂用の焼結可能な無機粉末射出成形用組成物I-1~I-13を得た。
 また変性ポリアセタール混合物を用いる代わりに未変性ポリアセタール混合物I-1を用い、低密度ポリエチレン(サンテックTM LDPE M6555、旭化成社製)、ポリテトラメチレンエーテルグリコール、SUS316Lを表2に記載の割合で配合し30分間混練した。
 得られた混練物をウイレー型粉砕機(吉田製作所製)に投入し粉砕することで酸脱脂用の焼結可能な無機粉末射出成形用組成物を得た。
2)加熱脱脂用の焼結可能な無機粉末射出成形用組成物の製造
 170℃に加温したMS式加圧ニーダー(DS3-10型、日本スピンドル製造社製)に、上記変性ポリアセタール混合物I-1~I-13、滑剤としてパラフィンワックス(Paraffin wax-145、日本精蝋社製)、焼結可能な無機粉末としてSUS316L(DAP316L、大同特殊鋼社製)をそれぞれ表3に記載の割合で配合し30分間混練した。
 得られた混練物をウイレー型粉砕機(吉田製作所製)に投入し粉砕することで加熱脱脂用の焼結可能な無機粉末射出成形用組成物を得た。
 また変性ポリアセタール混合物を用いる代わりに未変性ポリアセタール混合物I-1、MFRが230℃、2.16kgの条件で120g/10分のポリプロピレン(住友ノーブレン U501E1、住友化学社製)、パラフィンワックス、SUS316Lを表3に記載の割合で配合し、30分間混練することで加熱脱脂用の焼結可能な無機粉末射出成形用組成物を得た。
[評価]
1.射出成形性
 射出成形機(Fanuc社製 ROBOSHOT α-50iA)を用いて、成形温度175~200℃にて成形し、ISO 10724-1に準拠するダンベル形状のグリーン成形体試験片を得た。このとき成形体の変形有無を目視にて観察し、変形が見られない場合を良好、変形が見られた場合を不良、射出成形できなかったもの成形不可と判定した。結果を表2、3に記載する。
2.脱脂された成形体の保形性
2-1:酸脱脂後の保形性
 実施例I-1~I-7、比較例I-1~I-8については酸脱脂を行った。
 上記成形体を50mmの間隔で2点支持し、脱脂炉の中にセットした。上記の炉をまず110℃に加熱し、窒素ガスを500l/hで30分間置換した。その後、窒素パージの保持下に98%硝酸30ml/hを供給した。硝酸供給を2.5時間にわたって保持し、引き続き、炉を45分間にわたって窒素ガス500l/hで置換し、室温に冷却する条件にて脱脂した。
 得られた脱脂された成形体の外観を目視にて観察し、歪みや破損がなかったものを良好、歪みや破損が見られたものを不良と判定した。尚、射出成形できなかったものは未実施とした。結果を表2に記載する。
2-2:加熱脱脂後の保形性
 実施例I-8~I-14、比較例I-9~I-16については加熱脱脂を行った。
 上記成形体を50mmの間隔で2点支持し、脱脂炉の中にセットした。次いで脱脂炉内を窒素ガスでパージし、窒素ガス気流化、第一の条件として30℃/hrの昇温速度、第二の条件として45℃/hrの昇温速度でそれぞれ500℃まで昇温し、500℃で2時間保持することで脱脂を行った。脱脂された成形体の外観を目視にて観察し、歪みや破損がなかったものを良好、歪みや破損が見られたものを不良と判定した。尚、射出成形できなかったものについては未実施とした。結果を表3に記載する。
3:焼結体の形状観察
 各条件で脱脂後、実施例I-1~I-14、比較例I-1~I-16について焼結を行った。
 脱脂した成形体を焼結炉に移し、炉内をアルゴンガスで置換したのち室温から600℃まで5℃/minの条件で昇温した。600℃で1時間保持したのち、1~5Torrの減圧下、1350℃まで5℃/minの条件で昇温し、1時間保持することで焼結を行い、その後、室温まで冷却した。
 得られた焼結体の形状を目視にて観察し、割れ、膨れが見られなかったものについて良好、割れ、膨れが見られたものについて不良とした。尚、射出成形できなかったものについては未実施とした。結果を表2、3に記載する。
4:密度測定
 目視で割れ膨れのなかったサンプルについて、室温23℃、湿度50%RHの条件で24時間静置した後、重量を測定した。続いて当該サンプルを水中に24時間静置した後、水中で重量を測定した。続いて、当該サンプルを水中から取り出し水分をふき取った後、重量を測定した。これらの重量を用いて密度を計算し、用いたSUS316Lの密度(7.8g/cm)に対する比率(%)を計算した。結果を表2、3に記載する。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
[発明(II)の実施例]
 実施例及び比較例中の用語及び特性の測定法は以下の通りとする。
[変性ポリアセタールII-1の製造]
 熱媒を通すことのできるジャケット付きの2軸パドル型連続重合機を80℃に調整し、下記原料(1)~(3)及び触媒(4)を連続的にフィードして重合を行った。
(1)トリオキサン:133モル/時間
(2)1,3-ジオキソラン:3.5モル/時間
(3)数平均分子量が2390である下記式(4)で表される両末端ヒドロキシル化水素添加ポリブタジエン:0.1モル/時間
Figure JPOXMLDOC01-appb-C000015
(式中、l、m、nは各単位の割合を示しているのであって結合状態を示すものではない。l、m、nはそれぞれ1~50の整数である。)
(4)触媒(シクロヘキサンに溶解させた三フッ化ホウ素ジ-n-ブチルエーテル):トリオキサン1モルに対し5×10-5モル
 重合機から排出されたブロックコポリマーを、トリエチルアミン1%水溶液中に投入し、重合触媒の失活を完全に行った。そのブロックコポリマーをろ取し、アセトンで洗浄後、60℃に設定された真空乾燥機で乾燥させた(以下、この重合方法を「重合方法1」と略記する。)。
 次に、上記ブロックコポリマー100質量部に対し、末端安定化処理剤として水2質量部及び塩基性物質としてトリエチルアミン1質量部を接触させ溶融混練することで、不安定末端鎖であるヒドロキシオキシメチレン鎖を加水分解し安定化した。末端安定化に当たっては、まず200℃に設定したベント付きの二軸押出機に、上記ブロックコポリマーを供給し、溶融混練した。次いで、押出前に水/トリエチルアミンを連続的に供給し、ブロックコポリマーと混練させた。続いて、ホルムアルデヒド、水、トリエチルアミンを除去し、ブロックコポリマーの末端安定化処理を行った(以下、末端安定化処理1と称する場合がある)。末端安定化処理中の真空度は4kPaに設定し、脱気を行った。押出機のダイスより得られたブロックコポリマーは、ストランドとして押出され、ペレタイズされた。これにより変性ポリアセタールII-1を得た。
 得られた変性ポリアセタールII-1の数平均分子量(Mn1)、変性セグメントの数平均分子量(Mn2)、変性ポリアセタールの数平均分子量(Mn1)に対する変性セグメント(B)の数平均分子量(Mn2)の割合(Mn2/Mn1×100(%))、及びポリアセタールセグメント(A)中のオキシエチレン単位の割合をそれぞれ表4に記載する。
[変性ポリアセタールII-2、II-3、II-6、II-9、II-10、II-13、II-14の製造]
 トリオキサン、1,3-ジオキソラン、式(4)で表される両末端ヒドロキシ水素添加ポリブタジエンの2軸パドル型連続重合機への時間当たりのフィード量を種々代えたこと以外は、重合方法1と同様の方法に従ってブロックコポリマーを重合し、末端安定化処理1と同様の方法でブロックコポリマーの末端安定化を行い、変性ポリアセタールII-2、II-3、II-6、II-9、II-10、II-13、II-14を得た。
 得られた変性ポリアセタールの数平均分子量(Mn1)、変性セグメントの数平均分子量(Mn2)、変性ポリアセタールの数平均分子量(Mn1)に対する変性セグメント(B)の数平均分子量(Mn2)の割合(Mn2/Mn1×100(%))、及びポリアセタールセグメント(A)中のオキシエチレン単位の割合をそれぞれ表4に記載する。
[変性ポリアセタールII-4の製造]
 数平均分子量が1376である式(4)で表される両末端ヒドロキシ水素添加ポリブタジエンを使う以外は変性ポリアセタールII-1と同様に重合、及び末端安定化を行うことで変性ポリアセタールII-4を得た。
 得られた変性ポリアセタールII-4の数平均分子量(Mn1)、変性セグメントの数平均分子量(Mn2)、変性ポリアセタールの数平均分子量(Mn1)に対する変性セグメント(B)の数平均分子量(Mn2)の割合(Mn2/Mn1×100(%))、及びポリアセタールセグメント(A)中のオキシエチレン単位の割合をそれぞれ表4に記載する。
[変性ポリアセタールII-5の製造]
 数平均分子量が9384である式(4)で表される両末端ヒドロキシ水素添加ポリブタジエンを使う以外は変性ポリアセタールII-1と同様に重合、及び末端安定化を行うことで変性ポリアセタールII-5を得た。
 得られた変性ポリアセタールII-5の数平均分子量(Mn1)、変性セグメントの数平均分子量(Mn2)、変性ポリアセタールの数平均分子量(Mn1)に対する変性セグメント(B)の数平均分子量(Mn2)の割合(Mn2/Mn1×100(%))、及びポリアセタールセグメント(A)中のオキシエチレン単位の割合をそれぞれ表4に記載する。
[変性ポリアセタールII-7の製造]
 式(4)で表される両末端ヒドロキシ水素添加ポリブタジエンの代わりに、式(5)で表される両末端ヒドロキシ水素添加ポリブタジエンを用いる以外は重合方法1と同様の方法に従ってブロックコポリマーを重合し、末端安定化処理1と同様の方法でブロックコポリマーの末端安定化を行うことで、変性ポリアセタールII-7を得た。
 得られた変性ポリアセタールII-7の数平均分子量(Mn1)、変性セグメントの数平均分子量(Mn2)、変性ポリアセタールの数平均分子量(Mn1)に対する変性セグメント(B)の数平均分子量(Mn2)の割合(Mn2/Mn1×100(%))、及びポリアセタールセグメント(A)中のオキシエチレン単位の割合をそれぞれ表4に記載する。
Figure JPOXMLDOC01-appb-C000016
(式中、x、yは各単位の割合を示しているのであって結合状態を示すものではない。x、yはそれぞれ1~50の整数である。)
[変性ポリアセタールII-8の製造]
 式(4)で表される両末端ヒドロキシ水素添加ポリブタジエンの代わりに、式(6)で表される片末端ヒドロキシ水素添加ポリブタジエンを用いる以外は重合方法1と同様の方法に従ってブロックコポリマーを重合し、末端安定化処理1と同様の方法でブロックコポリマーの末端安定化を行うことで、変性ポリアセタールII-8を得た。
 得られた変性ポリアセタールII-8の数平均分子量(Mn1)、変性セグメントの数平均分子量(Mn2)、変性ポリアセタールの数平均分子量(Mn1)に対する変性セグメント(B)の数平均分子量(Mn2)の割合(Mn2/Mn1×100(%))、及びポリアセタールセグメント(A)中のオキシエチレン単位の割合をそれぞれ表4に記載する。
Figure JPOXMLDOC01-appb-C000017
(式中、o、p、qは各単位の割合を示しているのであって結合状態を示すものではない。o、p、qはそれぞれ1~50の整数である。)
[変性ポリアセタールII-11の製造]
 数平均分子量が20000である式(4)で表される両末端ヒドロキシ水素添加ポリブタジエンを使う以外は変性ポリアセタールII-1と同様に重合、及び末端安定化を行うことで変性ポリアセタールII-11を得た。
 得られた変性ポリアセタールII-11の数平均分子量(Mn1)、変性セグメントの数平均分子量(Mn2)、変性ポリアセタールの数平均分子量(Mn1)に対する変性セグメント(B)の数平均分子量(Mn2)の割合(Mn2/Mn1×100(%))、及びポリアセタールセグメント(A)中のオキシエチレン単位の割合をそれぞれ表4に記載する。
[変性ポリアセタールII-12の製造]
 数平均分子量が230である式(4)で表される両末端ヒドロキシ水素添加ポリブタジエンを使う以外は変性ポリアセタールII-1と同様に重合、及び末端安定化を行うことで変性ポリアセタールII-12を得た。
 得られた変性ポリアセタールII-12の数平均分子量(Mn1)、変性セグメントの数平均分子量(Mn2)、変性ポリアセタールの数平均分子量(Mn1)に対する変性セグメント(B)の数平均分子量(Mn2)の割合(Mn2/Mn1×100(%))、及びポリアセタールセグメント(A)中のオキシエチレン単位の割合をそれぞれ表4に記載する。
[未変性ポリアセタールII-1の製造]
 両末端ヒドロキシル化水素添加ポリブタジエンの代わりに、等モルのメタノールを使用した以外は、変性ポリアセタールII-1の製造と同様に重合、及び末端安定化を行うことで、未変性ポリアセタールII-1を得た。
[ポリアセタール混合物の製造]
 上記変性ポリアセタール100質量部に、ナイロン66を0.05質量部、ステアリン酸カルシウム0.3質量部、を均一添加混合し、200℃に設定されたベント付の2軸押出し機(L/D=40)に供給し、90kPaで減圧脱気しながらペレット化した。その後100℃で2hr乾燥を行うことで、変性ポリアセタール混合物II-1~II-14を得た。
 また変性ポリアセタールの変わりに未変性ポリアセタール100質量部を用いる以外は上記と同様に添加剤を配合し、未変性ポリアセタール混合物II-15を得た。
[酸脱脂用無機粉末射出成形用組成物の製造]
 170℃に加温したMS式加圧ニーダー(DS3-10型、日本スピンドル製造社製)に、上記変性ポリアセタール混合物II-1~II-14、MFRが60g/10分以上のポリオレフィンとして230℃、2.16kgの条件でMFRが120g/10分のポリプロピレン(住友ノーブレン U501E1、住友化学社製)、流動性付与剤としてポリテトラメチレンエーテルグリコール(PTMG3000、三菱ケミカル社製)が有機バインダー100質量%に対してそれぞれ79質量%、14質量%、7質量%となる様に投入し、30分間混練した。
 続いて、焼結可能な無機粉末としてSUS316L(DAP316L、大同特殊鋼社製、融点1380℃、平均粒子径10μm)を無機粉末射出成形用組成物全重量に対して93質量%になるように投入し、60分間混練した。
 得られた混練物をウイレー型粉砕機(吉田製作所製)に投入し粉砕することで無機粉末射出成形用組成物II-1~II-14を得た。
 また変性ポリアセタール混合物II-1~II-14を用いる代わりに未変性ポリアセタール混合物1を用いる以外は同様にポリプロピレン、ポリテトラメチレンエーテルグリコール、SUS316Lを混合し、無機粉末射出成型用組成物II-15を得た。
 更に流動性付与剤としてポリエチレングリコール(PEG8000、アルドリッチ社製)を用いる以外は実施例1と同様にして無機粉末射出成形用組成物II-16を得た。
[加熱脱脂用無機粉末射出成形用組成物の製造]
 170℃に加温したMS式加圧ニーダー(DS3-10型、日本スピンドル製造社製)に、上記変性ポリアセタール混合物II-1~II-14、MFRが60g/10分以上のポリオレフィンとして230℃、2.16kgの条件でMFRが120g/10分のポリプロピレン(住友ノーブレン U501E1、住友化学社製)、流動性付与剤としてパラフィンワックス(PW145、日本精蝋社製)が有機バインダー100質量%に対してそれぞれ25質量%、25質量%、50質量%となる様に投入し、30分間混練した。
 続いて、焼結可能な無機粉末としてSUS316L(DAP316L、大同特殊鋼社製、融点1380℃、平均粒子径10μm)を無機粉末射出成形用組成物全重量に対して93質量%になるように投入し、60分間混練した。
 得られた混練物をウイレー型粉砕機(吉田製作所製)に投入し粉砕することで無機粉末射出成形用組成物II-17~II-30を得た。
 また変性ポリアセタール混合物II-1~II-14を用いる代わりに未変性ポリアセタール混合物II-1を用いる以外は同様にポリプロピレン、パラフィンワックス、SUS316Lを混合し、無機粉末射出成型用組成物II-31を得た。
 また流動性付与剤としてパラフィンワックス(PW145、日本精蝋社製)を40質量%、ポリテトラメチレンエーテルグリコール(PTMG3000、三菱ケミカル社製)を10質量%用いる以外は実施例II-17と同様にして無機粉末射出成型用組成物II-32を得た。
[評価]
1.ポリアセタールの熱安定性評価
 変性ポリアセタール及び未変性ポリアセタールの重量平均分子量(Mw1)をゲル浸透クロマトグラフィー(HLC-8120、東ソー社製)を用いて測定した。
 無機粉末射出成形用組成物50gを、クロロホルム120mLを用いて80℃、8時間の条件でソックスレー抽出を実施した。次に残渣を50℃、3時間の条件で真空乾燥し、ヘキサフルオロイソプロパノールを用いて変性ポリアセタールを抽出した。得られた変性ポリアセタール及び未変性ポリアセタールの重量平均分子量(Mw2)を、ゲル浸透クロマトグラフィーを用いて測定した。得られた分子量から変性ポリアセタール又は未変性ポリアセタールの熱安定性を下記式(7)に表されるポリアセタール分子量減少率として判定した。結果を表5、6に示す。
ポリアセタール分子量減少率(%)=(1-Mw2/Mw1)×100   (7)
2.無機粉末射出成形用組成物の射出成形性評価
 射出成形機(Fanuc社製 ROBOSHOT α-50iA)を用いて、成形温度175~200℃にて成形し、ISO 10724-1に準拠するダンベル形状のグリーン成形体試験片を得た。このとき試験片の変形有無を目視にて観察し、変形が見られない場合を良好、変形が見られた場合を不良と判定した。結果を表5、6に記載する。
3.焼結体の観察
[酸脱脂及び焼結]
 上記グリーン成形体試験片を50mmの間隔で2点支持し、脱脂炉の中にセットした。上記炉を110℃に加熱し、窒素ガスを500l/hで30分間置換した。その後、窒素パージの保持下に98%硝酸30ml/hを供給した。硝酸を2.5時間供給し、引き続き、炉を45分間にわたって窒素ガス500l/hで置換し、室温に冷却する条件にて脱脂した。
 続いて脱脂した成形体を焼結炉に移し、炉内をアルゴンガスで置換したのち室温から600℃まで5℃/minの条件で昇温した。600℃で1時間保持したのち、1~5Torrの減圧下、1350℃まで5℃/minの条件で昇温し、1時間保持することで焼結を行い、その後、室温まで冷却した。
 得られた焼結体の外観を目視にて観察し、割れ・膨れのなかったものを良好、割れ・膨れが見られたものを不良と判定した。結果を表5に記載する。
 目視で割れ膨れのなかったサンプルについて、室温23℃、湿度50%RHの条件で24時間静置した後、重量を測定した。続いて当該サンプルを水中に24時間静置した後、水中で重量を測定した。続いて、当該サンプルを水中から取り出し水分をふき取った後、重量を測定した。これらの重量を用いて密度を計算し、用いたSUS316Lの密度(7.8g/cm)に対する比率(%)を計算した。結果を表5に記載する。
[加熱脱脂及び焼結]
 上記成形体を50mmの間隔で2点支持し、脱脂炉の中にセットした。次いで脱脂炉内を窒素ガスでパージし、窒素ガス気流化、第一の条件として30℃/hrの昇温速度、第二の条件として45℃/hrの昇温速度でそれぞれ500℃まで昇温し、500℃で2時間保持することで脱脂を行った。続いて脱脂した成形体を焼結炉に移し、炉内をアルゴンガスで置換したのち室温から600℃まで5℃/minの条件で昇温した。600℃で1時間保持したのち、1~5Torrの減圧下、1350℃まで5℃/minの条件で昇温し、1時間保持することで焼結を行い、その後、室温まで冷却した。
 得られた焼結体の外観を目視にて観察し、割れ・膨れのなかったものを良好、割れ・膨れが見られたものを不良と判定した。結果を表6に記載する。
 目視で割れ膨れのなかったサンプルについて、室温23℃、湿度50%RHの条件で24時間静置した後、重量を測定した。続いて当該サンプルを水中に24時間静置した後、水中で重量を測定した。続いて、当該サンプルを水中から取り出し水分をふき取った後、重量を測定した。これらの重量を用いて密度を計算し、用いたSUS316Lの密度(7.8g/cm)に対する比率(%)を計算した。結果を表6に記載する。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
 本発明の無機粉末射出成形用組成物は、無機粉末射出成形用途に適する。

Claims (18)

  1.  焼結可能な無機粉末と、
     ポリアセタールセグメント(A)及び変性セグメント(B)を有する変性ポリアセタール(C)を含む有機バインダーと、
    を含む無機粉末射出成形用組成物であって、
     前記変性ポリアセタール(C)の190℃、2.16kgの条件で測定したメルトフローレート(MFR)が70g/10分以上、160g/10分以下であり、
     前記変性セグメント(B)の数平均分子量が500~10,000である
    ことを特徴とする無機粉末射出成形用組成物。
  2.  前記変性セグメント(B)がポリオレフィンである、請求項1に記載の無機粉末射出成形用組成物。
  3.  前記変性セグメント(B)が水素添加ポリブタジエンである、請求項1又は2に記載の無機粉末射出成形用組成物。
  4.  前記変性ポリアセタール(C)の数平均分子量が10,000~50,000である、請求項1又は2に記載の無機粉末射出成形用組成物。
  5.  前記ポリアセタールセグメント(A)がオキシメチレン単位95.0~99.9mol%及び式(1)で表されるオキシアルキレン単位0.1~5.0mol%からなる、請求項1又は2に記載の無機粉末射出成形用組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは、それぞれ独立して、水素、アルキル基、置換アルキル基、アリール基及び置換アリール基から選択され、mは2~6から選ばれる整数である。)
  6.  前記変性ポリアセタール(C)が(A)-(B)-(A)で表されるブロックコポリマーである、請求項1又は2に記載の無機粉末射出成形用組成物。
  7.  さらに滑剤を含む、請求項1又は2に記載の無機粉末射出成形用組成物。
  8.  請求項1又は2に記載の無機粉末射出成形用組成物を含む、射出成形体。
  9.  請求項8に記載の射出成形体を脱脂、焼結した焼結体。
  10.  焼結可能な無機粉末と、
     ポリアセタールセグメント(A)及び変性セグメント(B)を有する変性ポリアセタール(C)を含む有機バインダーと、
    を含む無機粉末射出成形用組成物であって、
     前記変性ポリアセタール(C)の数平均分子量が10000~500000であり、
     前記変性セグメント(B)の数平均分子量が500~10000であり、
     前記ポリアセタールセグメント(A)がオキシメチレン単位95.0~99.9mol%及び式(1)で表されるオキシアルキレン単位0.1~5.0mol%からなる、
    ことを特徴とする無機粉末射出成形用組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは、それぞれ独立して、水素、アルキル基、置換アルキル基、アリール基及び置換アリール基からなる群から選択され、mは2~6から選ばれる整数である。)
  11.  前記変性ポリアセタール(C)の数平均分子量(Mn1)に対する前記変性セグメント(B)の数平均分子量(Mn2)の割合(Mn2/Mn1×100(%))が0.5%以上10%以下である、請求項10に記載の無機粉末射出成形用組成物。
  12.  前記変性セグメント(B)がポリオレフィンである、請求項10又は11に記載の無機粉末射出成形用組成物。
  13.  前記変性セグメント(B)が水素添加ポリブタジエンである、請求項10又は11に記載の無機粉末射出成形用組成物。
  14.  前記変性ポリアセタール(C)が(A)-(B)-(A)で表されるブロックコポリマーである、請求項10又は11に記載の無機粉末射出成形用組成物。
  15.  前記変性ポリアセタール(C)の重量平均分子量に対する、前記無機粉末射出成形用組成物をクロロホルム中で80℃8時間の条件で抽出した変性ポリアセタールの重量平均分子量の、ポリアセタール分子量減少率が40%以下である、請求項10又は11に記載の無機粉末射出成形用組成物。
  16.  230℃、2.16kgの条件で測定したメルトフローレート(MFR)が60g/10分以上のポリオレフィン樹脂を含む、請求項10又は11に記載の無機粉末射出成形用組成物。
  17.  請求項10又は11に記載の無機粉末射出成形用組成物を含む、射出成形体。
  18.  請求項17に記載の射出成形体を脱脂、焼結した焼結体。
PCT/JP2022/026526 2021-07-19 2022-07-01 無機粉末射出成形用組成物、並びにそれを用いた成形体及び焼結体 WO2023002839A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22845773.5A EP4374988A1 (en) 2021-07-19 2022-07-01 Composition for inorganic powder injection molding, and molded body and sintered body each using same
CN202280045425.7A CN117580661A (zh) 2021-07-19 2022-07-01 无机粉末注射成型用组合物以及使用了该组合物的成型体和烧结体
KR1020237039775A KR20230173165A (ko) 2021-07-19 2022-07-01 무기 분말 사출 성형용 조성물, 그리고 그것을 사용한 성형체 및 소결체
JP2023536673A JPWO2023002839A1 (ja) 2021-07-19 2022-07-01

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-119164 2021-07-19
JP2021-119163 2021-07-19
JP2021119164 2021-07-19
JP2021119163 2021-07-19

Publications (1)

Publication Number Publication Date
WO2023002839A1 true WO2023002839A1 (ja) 2023-01-26

Family

ID=84979140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026526 WO2023002839A1 (ja) 2021-07-19 2022-07-01 無機粉末射出成形用組成物、並びにそれを用いた成形体及び焼結体

Country Status (5)

Country Link
EP (1) EP4374988A1 (ja)
JP (1) JPWO2023002839A1 (ja)
KR (1) KR20230173165A (ja)
TW (1) TW202304836A (ja)
WO (1) WO2023002839A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07293290A (ja) 1994-04-26 1995-11-07 Nippondenso Co Ltd トルクコンバータのすべり量制御装置
JPH09111306A (ja) 1995-10-17 1997-04-28 Polyplastics Co 燒結成形体製造用組成物
WO2001009213A1 (fr) 1999-07-30 2001-02-08 Asahi Kasei Kabushiki Kaisha Copolymere bloc de polyacetal
JP2001106581A (ja) 1999-10-07 2001-04-17 Polyplastics Co 燒結成形体製造用組成物
JP2001514017A (ja) 1997-08-26 2001-09-11 ディベルサ コーポレーション 新規生物活性のスクリーニング
JP2002029856A (ja) * 2000-07-13 2002-01-29 Polyplastics Co 燒結成形体製造用組成物
JP2003172273A (ja) 2001-12-06 2003-06-20 Mitsubishi Heavy Ind Ltd スクロール型圧縮機及びオルダムリング
JP2004076153A (ja) 2002-06-18 2004-03-11 Dowa Mining Co Ltd 粉末成形用組成物およびこれを用いた成形体の脱脂方法
JP2009542880A (ja) 2006-07-13 2009-12-03 ビーエーエスエフ ソシエタス・ヨーロピア 金属成形体を製造するためのバインダーを含有する熱可塑性材料
WO2019219522A1 (en) * 2018-05-15 2019-11-21 Höganäs Ab (Publ) Binder composition for metal injection molding feedstocks; metal injection molding feedstock comprising the same; metal injection molding process using the feedstock, and article obtained by the process

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07293290A (ja) 1994-04-26 1995-11-07 Nippondenso Co Ltd トルクコンバータのすべり量制御装置
JPH09111306A (ja) 1995-10-17 1997-04-28 Polyplastics Co 燒結成形体製造用組成物
JP2001514017A (ja) 1997-08-26 2001-09-11 ディベルサ コーポレーション 新規生物活性のスクリーニング
WO2001009213A1 (fr) 1999-07-30 2001-02-08 Asahi Kasei Kabushiki Kaisha Copolymere bloc de polyacetal
JP4560261B2 (ja) 1999-07-30 2010-10-13 旭化成ケミカルズ株式会社 ポリアセタールブロックコポリマー
JP2001106581A (ja) 1999-10-07 2001-04-17 Polyplastics Co 燒結成形体製造用組成物
JP2002029856A (ja) * 2000-07-13 2002-01-29 Polyplastics Co 燒結成形体製造用組成物
JP2003172273A (ja) 2001-12-06 2003-06-20 Mitsubishi Heavy Ind Ltd スクロール型圧縮機及びオルダムリング
JP2004076153A (ja) 2002-06-18 2004-03-11 Dowa Mining Co Ltd 粉末成形用組成物およびこれを用いた成形体の脱脂方法
JP2009542880A (ja) 2006-07-13 2009-12-03 ビーエーエスエフ ソシエタス・ヨーロピア 金属成形体を製造するためのバインダーを含有する熱可塑性材料
WO2019219522A1 (en) * 2018-05-15 2019-11-21 Höganäs Ab (Publ) Binder composition for metal injection molding feedstocks; metal injection molding feedstock comprising the same; metal injection molding process using the feedstock, and article obtained by the process

Also Published As

Publication number Publication date
KR20230173165A (ko) 2023-12-26
EP4374988A1 (en) 2024-05-29
TW202304836A (zh) 2023-02-01
JPWO2023002839A1 (ja) 2023-01-26

Similar Documents

Publication Publication Date Title
JP5480471B2 (ja) ポリアセタール樹脂組成物
WO2007020931A1 (ja) ポリアセタール樹脂組成物及び樹脂成形体
JP7301664B2 (ja) ポリアセタール樹脂組成物及び金属樹脂組成物
JP5586996B2 (ja) ポリアセタール樹脂組成物
EP3202845A1 (en) Polyacetal resin composition and sliding member
WO2023002839A1 (ja) 無機粉末射出成形用組成物、並びにそれを用いた成形体及び焼結体
JPH06212054A (ja) ポリオキシメチレン樹脂組成物
CN117580661A (zh) 无机粉末注射成型用组合物以及使用了该组合物的成型体和烧结体
JPH06179798A (ja) ポリアセタール樹脂組成物
WO2022215473A1 (ja) 成形体、成形体の製造方法及び焼結体の製造方法
WO2022215472A1 (ja) 焼結成形体用組成物及び焼結成形体
JP2008156504A (ja) ポリアセタール樹脂組成物
JP7341446B1 (ja) 焼結成形体用組成物、グリーン成形体及び焼結成形体
JP7456754B2 (ja) ポリアセタール樹脂組成物およびギア成形体
US20240189898A1 (en) Composition for use in sintered molded bodies and sintered molded body
JP5890754B2 (ja) ポリアセタール樹脂組成物
US20240189903A1 (en) Molded body, method of producing molded body, and method of producing sintered body
JPH06340792A (ja) モールドデポジットの改良されたポリアセタール樹脂組成物
JP2006045331A (ja) ポリアセタール樹脂組成物およびそれからなる成形品
TW202124574A (zh) 聚縮醛樹脂組合物及金屬樹脂組合物
JPH07207117A (ja) ポリオキシメチレン樹脂組成物
JPS5933353A (ja) モ−ルドデポジツトと熱安定性を改良したポリアセタ−ル樹脂組成物
JPS60104153A (ja) アセタ−ル樹脂組成物
JP2014005385A (ja) ポリアセタール樹脂組成物
JP2005179593A (ja) ポリアセタール樹脂組成物およびそれからなる成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845773

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023536673

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237039775

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237039775

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202280045425.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022845773

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022845773

Country of ref document: EP

Effective date: 20240219