WO2023000472A1 - 半导体结构及半导体结构的制造方法 - Google Patents

半导体结构及半导体结构的制造方法 Download PDF

Info

Publication number
WO2023000472A1
WO2023000472A1 PCT/CN2021/117517 CN2021117517W WO2023000472A1 WO 2023000472 A1 WO2023000472 A1 WO 2023000472A1 CN 2021117517 W CN2021117517 W CN 2021117517W WO 2023000472 A1 WO2023000472 A1 WO 2023000472A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor structure
lower electrode
protective layer
substrate
Prior art date
Application number
PCT/CN2021/117517
Other languages
English (en)
French (fr)
Inventor
王琪
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Priority to US17/647,741 priority Critical patent/US20230022355A1/en
Publication of WO2023000472A1 publication Critical patent/WO2023000472A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/82Electrodes with an enlarged surface, e.g. formed by texturisation
    • H01L28/90Electrodes with an enlarged surface, e.g. formed by texturisation having vertical extensions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells

Definitions

  • the present disclosure relates to the field of semiconductor technology, and in particular, to a semiconductor structure and a method for manufacturing the semiconductor structure.
  • the capacitor lower electrode of the semiconductor structure is supported by a stacked structure. Due to the limitations of the stacked structure itself, the stacked structure is easily damaged during the process of forming the capacitor hole, thereby affecting the subsequently formed capacitor bottom electrode structure.
  • the disclosure provides a semiconductor structure and a method for manufacturing the semiconductor structure, so as to improve the performance of the semiconductor structure.
  • a semiconductor structure comprising:
  • a plurality of lower electrodes, the plurality of lower electrodes are located on the substrate at intervals;
  • the protective layer is located on the upper part of the lower electrode and separates the lower electrode;
  • the material of the protective layer includes hydrogenated amorphous hard carbon.
  • a method for manufacturing a semiconductor structure including:
  • the laminated structure includes a protective layer, the protective layer forms the upper part of the capacitor hole, and the material of the protective layer includes hydrogenated amorphous hard carbon.
  • FIG. 1 is a schematic flowchart of a method for manufacturing a semiconductor structure according to an exemplary embodiment
  • FIG. 2 is a structural diagram of a capacitor hole formed by a semiconductor structure manufacturing method according to an exemplary embodiment
  • Fig. 3 is a structural diagram showing a lower electrode formed by a method for manufacturing a semiconductor structure according to an exemplary embodiment
  • Fig. 4 is a structural diagram of removing the first sacrificial layer and the second sacrificial layer according to a manufacturing method of a semiconductor structure shown in an exemplary embodiment
  • Fig. 5 is a structural diagram showing a dielectric layer formed by a method for manufacturing a semiconductor structure according to an exemplary embodiment
  • Fig. 6 is a schematic structural diagram of a semiconductor structure according to an exemplary embodiment.
  • Substrate 11. Capacitor hole; 12. Barrier layer; 13. Base; 20. Lower electrode; 30. Lamination structure; 31. First supporting layer; 32. Second supporting layer; 33. First sacrificial layer ; 34, the second sacrificial layer; 40, the protective layer; 50, the dielectric layer; 60, the upper electrode.
  • An embodiment of the present disclosure provides a method for manufacturing a semiconductor structure, please refer to FIG. 1 , the method for manufacturing a semiconductor structure includes:
  • the laminated structure 30 includes a protective layer 40 , the protective layer 40 forms the upper part of the capacitor hole 11 , and the material of the protective layer 40 includes hydrogenated amorphous hard carbon.
  • the method for manufacturing a semiconductor structure according to an embodiment of the present disclosure forms a capacitive hole 11 in a stacked structure 30, the stacked structure 30 includes a protective layer 40, and the protective layer 40 forms the upper part of the capacitive hole 11, by making the material of the protective layer 40 include Hydrogenated amorphous hard carbon, that is, the hardness of the protective layer 40 is relatively high, so the protective layer 40 will not be damaged in the process of forming the capacitor hole 11, which can ensure the quality of the subsequent formation of the lower electrode 20, thereby improving the performance of the semiconductor structure.
  • the protective layer 40 formed by hydrogenated amorphous hard carbon is a diamond-like film, and the diamond-like film has the excellent characteristics of diamond and graphite, and has high hardness, high thermal conductivity, high resistivity, good optical properties and Excellent tribological properties, so the DLC film derived from diamond-like carbon is also a metastable long-range disordered amorphous material, and the bonding mode between carbon atoms is a covalent bond.
  • the substrate 10 may include a base 13 and a barrier layer 12 , a laminated structure 30 is formed on the barrier layer 12 , and the capacitor hole 11 is formed to expose the base 13 , that is, the barrier layer 12 forms the lower part of the capacitor hole 11 .
  • the forming process for the capacitor hole 11 is not limited here, and the technology in the related art can be used, such as the pitch multiplication technology to form the capacitor hole 11. In the process of forming the capacitor hole 11, because the hardness of the diamond-like film is relatively large, it will not destroyed.
  • Substrate 13 may include portions formed of silicon-containing materials.
  • the substrate 13 may be formed of any suitable material, for example, including at least one of silicon, monocrystalline silicon, polycrystalline silicon, amorphous silicon, silicon germanium, monocrystalline silicon germanium, polycrystalline silicon germanium, and carbon-doped silicon.
  • the barrier layer 12 may include silicon nitride (SiN), silicon oxynitride (SiON), silicon carbide nitride (SiCN), or the like.
  • the laminated structure 30 further includes a first sacrificial layer 33 , a second supporting layer 32 , a second sacrificial layer 34 and a first supporting layer 31 sequentially formed on the substrate 10 ;
  • the protection layer 40 is formed on the first support layer 31 , and the protection layer 40 can protect the first support layer 31 and avoid damage to the first support layer 31 during the process of forming the capacitor hole 11 .
  • the barrier layer 12 is formed on the substrate 13, the first sacrificial layer 33 is formed on the barrier layer 12, the second supporting layer 32 is formed on the first sacrificial layer 33, and the second sacrificial layer 32 is formed on the second supporting layer 32.
  • the barrier layer 12, the first sacrificial layer 33, the second supporting layer 32, the second sacrificial layer 34, the first supporting layer 31, and the protective layer 40 can be formed by physical vapor deposition, chemical Vapor deposition process or atomic layer deposition process and so on.
  • the barrier layer 12 , the second support layer 32 and the first support layer 31 can be made of the same material, such as silicon nitride (SiN), silicon oxynitride (SiON), silicon carbide nitride (SiCN) and the like.
  • the barrier layer 12 , the second support layer 32 and the first support layer 31 may also be made of different materials.
  • the method for manufacturing a semiconductor structure further includes: forming a lower electrode 20 in the capacitance hole 11, the bottom of the lower electrode 20 is in direct contact with the substrate 10, at this time the lower electrode 20 covers the side surface of the protective layer 40, and the lower electrode The bottom of 20 is in direct contact with the base 13, as shown in FIG. 3 .
  • the thickness of the protective layer 40 is smaller than the thickness of the first support layer 31 , and the protective layer 40 mainly plays a protective role, so the thickness of the protective layer 40 can be reduced as much as possible, thereby reducing the manufacturing cost of the semiconductor structure.
  • the manufacturing method of the semiconductor structure further includes: after forming the capacitor hole 11 , removing the protective layer 40 ; forming a lower electrode 20 in the capacitor hole 11 , the bottom of the lower electrode 20 is in direct contact with the substrate 10 . That is, in the process of forming the capacitance hole 11, the protection layer 40 realizes the protection of the first supporting layer 31, and after the formation of the capacitance hole 11, the protection layer 40 can be removed, and the material of the protection layer 40 includes hydrogenated amorphous hard carbon , and therefore easy to remove.
  • the method for manufacturing a semiconductor structure further includes: after forming the lower electrode 20, removing the first sacrificial layer 33 and the second sacrificial layer 34; forming a dielectric layer 50 on the surface of the lower electrode 20; The upper electrode 60 is formed.
  • the lower electrode 20 is formed in the capacitor hole 11, as shown in FIG. 2.
  • the first support layer 31 , the second support layer 32 and the barrier layer 12 support the lower electrode 20 , as shown in FIG. 4 .
  • a dielectric layer 50 is formed on the surface of the lower electrode 20 , and the dielectric layer 50 also covers the upper surface of the protection layer 40 , as shown in FIG. 5 .
  • an upper electrode 60 is formed on the surface of the dielectric layer 50 , for details, refer to the semiconductor structure shown in FIG. 6 .
  • the formed dielectric layer 50 covers the upper surface of the first support layer 31 .
  • the substrate 13 includes a plurality of discrete contact pads, and the lower electrode 20 is in direct contact with the contact pads.
  • the material of the contact pad includes but not limited to tungsten (W).
  • first sacrificial layer 33 and the second sacrificial layer 34 can be removed by wet etching.
  • the formation process of the lower electrode 20 , the dielectric layer 50 and the upper electrode 60 may be a physical vapor deposition process, a chemical vapor deposition process or an atomic layer deposition process in the related art, which is not limited here.
  • the material of the lower electrode 20 includes, but is not limited to, titanium nitride.
  • the material of the upper electrode 60 includes but is not limited to titanium nitride.
  • the material of the dielectric layer 50 includes a high-k material; wherein, the high-k material includes but not limited to at least one of aluminum oxide, zirconium oxide, and hafnium oxide.
  • the semiconductor structure includes: a substrate 10; a plurality of lower electrodes 20, the plurality of lower electrodes 20 are located on the substrate 10 at intervals; a protective layer 40, The protection layer 40 is located on the top of the bottom electrode 20 and separates the bottom electrode 20 ; wherein, the material of the protection layer 40 includes hydrogenated amorphous hard carbon.
  • the semiconductor structure of an embodiment of the present disclosure includes a substrate 10, a plurality of lower electrodes 20, and a protective layer 40.
  • the material of the protective layer 40 include hydrogenated amorphous hard carbon, that is, the hardness of the protective layer 40 is relatively high, so when forming a capacitor The protective layer 40 will not be damaged during the process of forming the hole 11, so the quality of the formed lower electrode 20 can be guaranteed, thereby improving the performance of the semiconductor structure.
  • the protection layer 40 is a diamond-like carbon film layer, which has high hardness, high thermal conductivity, high resistivity, good optical properties and excellent tribological properties.
  • the hydrogenated amorphous hard carbon included in the protective layer 40 can be doped with other materials, such as silicon nitride (SiN), silicon oxynitride (SiON), silicon nitride carbide (SiCN), etc.
  • Other structures of structure 30 are connected.
  • the substrate 10 may include a base 13 and a barrier layer 12 , and the barrier layer 12 forms a lower portion of the capacitor hole 11 .
  • Substrate 13 may include portions formed of silicon-containing materials.
  • the substrate 13 may be formed of any suitable material, for example, including at least one of silicon, monocrystalline silicon, polycrystalline silicon, amorphous silicon, silicon germanium, monocrystalline silicon germanium, polycrystalline silicon germanium, and carbon-doped silicon.
  • the barrier layer 12 may include silicon nitride (SiN), silicon oxynitride (SiON), silicon carbide nitride (SiCN), or the like.
  • the semiconductor structure further includes: a first supporting layer 31 , the first supporting layer 31 is located in the middle of the lower electrode 20 and separates the lower electrode 20 .
  • the first support layer 31 can further support the lower electrode 20 .
  • the first supporting layer 31 and the protective layer 40 are arranged at intervals.
  • the protection layer 40 covers the surface of the first support layer 31 , that is, the protection layer 40 can effectively protect the first support layer 31 and prevent the first support layer 31 from being damaged during the etching process to form the capacitor hole 11 .
  • the thickness of the protection layer 40 is smaller than the thickness of the first supporting layer 31 .
  • the thickness of the protection layer 40 is not greater than half of the thickness of the first support layer 31 . That is, a relatively thin layer of diamond-like film can effectively protect the first supporting layer 31, and when the protective layer 40 is in contact with the first supporting layer 31, the first supporting layer 31 can realize the protection of the lower electrode 20. Effective support, so the protective layer 40 can be made thinner.
  • the semiconductor structure further includes: a second supporting layer 32, which is located in the middle of the lower electrode 20 and separates the lower electrode 20; wherein, the second supporting layer 32 is located below the first support layer 31 and spaced apart from the first support layer 31 .
  • the protective layer 40, the first supporting layer 31 and the second supporting layer 32 are arranged in sequence along the height direction, and the protective layer 40 is in contact with the first supporting layer 31, while the first supporting layer 31 and the The second support layer 32 is arranged at intervals, and the protective layer 40 , the first support layer 31 and the second support layer 32 support the lower electrode 20 .
  • the barrier layer 12 , the second support layer 32 and the first support layer 31 can be made of the same material, such as silicon nitride (SiN), silicon oxynitride (SiON), silicon carbide nitride (SiCN) and the like.
  • the barrier layer 12 , the second support layer 32 and the first support layer 31 may also be made of different materials.
  • the thickness relationship between the first support layer 31 and the second support layer 32 is not limited here, the thickness of the first support layer 31 may be equal to the thickness of the second support layer 32, or the thickness of the first support layer 31
  • the thickness of the second support layer 32 may be smaller than that of the second support layer 32 , or the thickness of the first support layer 31 may be greater than the thickness of the second support layer 32 .
  • the semiconductor structure further includes: a dielectric layer 50 covering the surface of the lower electrode 20 ; and an upper electrode 60 covering the surface of the dielectric layer 50 .
  • the substrate 10 may include a base 13 and a barrier layer 12 , and the barrier layer 12 and the protective layer 40 , the first support layer 31 and the second support layer 32 realize the support function for the lower electrode 20 and the upper electrode 60 .
  • a dielectric layer 50 is provided between the lower electrode 20 and the upper electrode 60, and the material of the dielectric layer 50 includes a high-k material; wherein, the high-k material includes but is not limited to high-K materials such as aluminum oxide, zirconium oxide, and hafnium oxide. or any combination thereof.
  • the material of the bottom electrode 20 includes but not limited to titanium nitride.
  • the material of the upper electrode 60 includes but not limited to titanium nitride.
  • the substrate 10 includes a plurality of contact pads arranged at intervals, and the lower electrode 20 is in direct contact with the contact pads, so as to ensure the electrical connection between the lower electrode 20 and the contact pads. .
  • the material of the contact pad includes but not limited to tungsten (W).
  • W tungsten
  • a plurality of lower electrodes 20 are arranged corresponding to a plurality of contact pads one by one.
  • the semiconductor structure in this embodiment can be obtained by the above semiconductor structure manufacturing method, and other materials and structures of the semiconductor structure in this embodiment can refer to the above semiconductor structure manufacturing method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

本公开涉及半导体技术领域,提出了一种半导体结构及半导体结构的制造方法。半导体结构包括:衬底;多个下电极,多个下电极间隔地位于衬底上;保护层,保护层位于下电极的上部,并将下电极分隔开;其中,保护层的材质包括氢化非晶硬碳。

Description

半导体结构及半导体结构的制造方法
交叉引用
本公开要求于2021年07月22日提交的申请号为202110832234.2、名称为“半导体结构及半导体结构的制造方法”的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本公开涉及半导体技术领域,尤其涉及一种半导体结构及半导体结构的制造方法。
背景技术
相关技术中,半导体结构的电容下电极通过叠成结构进行支撑,由于叠成结构本身的限定,在形成电容孔过程中,叠成结构容易被破坏,从而影响后续形成的电容下电极结构。
发明内容
本公开提供一种半导体结构及半导体结构的制造方法,以改善半导体结构的性能。
根据本公开的第一个方面,提供了一种半导体结构,包括:
衬底;
多个下电极,多个下电极间隔地位于衬底上;
保护层,保护层位于下电极的上部,并将下电极分隔开;
其中,保护层的材质包括氢化非晶硬碳。
根据本公开的第二个方面,提供了一种半导体结构的制造方法,包括:
提供衬底;
在衬底上形成叠层结构;
在叠层结构中形成多个电容孔,电容孔暴露衬底;
其中,叠层结构包括保护层,保护层形成电容孔的上部,保护层的材质包括氢化非晶硬碳。
附图说明
通过结合附图考虑以下对本公开的优选实施方式的详细说明,本公开的各种目标,特 征和优点将变得更加显而易见。附图仅为本公开的示范性图解,并非一定是按比例绘制。在附图中,同样的附图标记始终表示相同或类似的部件。其中:
图1是根据一示例性实施方式示出的一种半导体结构的制造方法的流程示意图;
图2是根据一示例性实施方式示出的一种半导体结构的制造方法形成电容孔的结构图;
图3是根据一示例性实施方式示出的一种半导体结构的制造方法形成下电极的结构图;
图4是根据一示例性实施方式示出的一种半导体结构的制造方法去除第一牺牲层和第二牺牲层的结构图;
图5是根据一示例性实施方式示出的一种半导体结构的制造方法形成介质层的结构图;
图6是根据一示例性实施方式示出的一种半导体结构的结构示意图。
附图标记说明如下:
10、衬底;11、电容孔;12、阻挡层;13、基底;20、下电极;30、叠层结构;31、第一支撑层;32、第二支撑层;33、第一牺牲层;34、第二牺牲层;40、保护层;50、介质层;60、上电极。
具体实施方式
体现本公开特征与优点的典型实施例将在以下的说明中详细叙述。应理解的是本公开能够在不同的实施例上具有各种的变化,其皆不脱离本公开的范围,且其中的说明及附图在本质上是作说明之用,而非用以限制本公开。
在对本公开的不同示例性实施方式的下面描述中,参照附图进行,附图形成本公开的一部分,并且其中以示例方式显示了可实现本公开的多个方面的不同示例性结构、系统和步骤。应理解的是,可以使用部件、结构、示例性装置、系统和步骤的其他特定方案,并且可在不偏离本公开范围的情况下进行结构和功能性修改。而且,虽然本说明书中可使用术语“之上”、“之间”、“之内”等来描述本公开的不同示例性特征和元件,但是这些术语用于本文中仅出于方便,例如根据附图中的示例的方向。本说明书中的任何内容都不应理解为需要结构的特定三维方向才落入本公开的范围内。
本公开的一个实施例提供了一种半导体结构的制造方法,请参考图1,半导体结构的制造方法包括:
S101,提供衬底10;
S103,在衬底10上形成叠层结构30;
S105,在叠层结构30中形成多个电容孔11,电容孔11暴露衬底10;
其中,叠层结构30包括保护层40,保护层40形成电容孔11的上部,保护层40的材质包括氢化非晶硬碳。
本公开一个实施例的半导体结构的制造方法在叠层结构30中形成电容孔11,叠层结构30包括保护层40,且保护层40形成电容孔11的上部,通过使得保护层40的材质包括氢化非晶硬碳,即保护层40的硬度较高,因此在形成电容孔11的过程中不会对保护层40形成破坏,可以保证后续形成下电极20的质量,从而改善半导体结构的性能。
需要说明的是,氢化非晶硬碳形成的保护层40为类金刚石薄膜,类金刚石薄膜兼具了金刚石和石墨的优良特性,而具有高硬度,高热导率,高电阻率,良好光学性能以及优秀的摩擦学特性,所以由类金刚石而来的DLC膜同样是一种亚稳态长程无序的非晶材料,碳原子间的键合方式是共价键。
需要说明的是,衬底10可以包括基底13和阻挡层12,阻挡层12上形成叠层结构30,形成的电容孔11暴露基底13,即阻挡层12形成了电容孔11的下部。对于电容孔11的成型工艺此处不作限定,可以采用相关技术中的工艺,如间距倍增技术形成电容孔11,在形成电容孔11的过程中,由于类金刚石薄膜的硬度较大,因此不会被破坏。
基底13可以包括由含硅材料形成的部分。基底13可以由任何合适的材料形成,例如,包括硅、单晶硅、多晶硅、非晶硅、硅锗、单晶硅锗、多晶硅锗以及碳掺杂硅中的至少一种。阻挡层12可以包括氮化硅(SiN)、氮氧化硅(SiON)、氮碳化硅(SiCN)等。
在一个实施例中,如图2所示,叠层结构30还包括在衬底10上依次形成的第一牺牲层33、第二支撑层32、第二牺牲层34以及第一支撑层31;其中,保护层40形成于第一支撑层31上,保护层40可以形成对第一支撑层31的保护,避免形成电容孔11的过程中对第一支撑层31形成破坏。
具体的,在基底13上形成阻挡层12,在阻挡层12上形成第一牺牲层33,在第一牺牲层33上形成第二支撑层32,并在第二支撑层32上形成第二牺牲层34,在第二牺牲层34上形成第一支撑层31,最后在第一支撑层31上形成保护层40,即形成了叠层结构30,然后在叠层结构30内形成电容孔11,此时电容孔11暴露基底13,具体如图2所示。
针对上述实施例,需要说明的是,阻挡层12、第一牺牲层33、第二支撑层32、第二牺牲层34、第一支撑层31以及保护层40可以通过采用物理气相沉积工艺、化学气相沉积 工艺或原子层沉积工艺等形成。
阻挡层12、第二支撑层32以及第一支撑层31可以采用相同的材料,如氮化硅(SiN)、氮氧化硅(SiON)、氮碳化硅(SiCN)等。或者,阻挡层12、第二支撑层32以及第一支撑层31也可以采用不同的材料。
可选的,半导体结构的制造方法,还包括:在电容孔11中形成下电极20,下电极20的底部与衬底10直接接触,此时下电极20覆盖保护层40的侧表面,且下电极20的底部与基底13直接接触,具体如图3所示。
进一步的,保护层40的厚度小于第一支撑层31的厚度,保护层40主要起到保护作用,因此可以尽量降低保护层40的厚度,以此降低半导体结构的制造成本。
可选的,半导体结构的制造方法,还包括:形成电容孔11之后,去除保护层40;在电容孔11中形成下电极20,下电极20的底部与衬底10直接接触。即在形成电容孔11的过程中,保护层40实现了对第一支撑层31保护,而在形成电容孔11之后,可以将保护层40去除,而保护层40的材质包括氢化非晶硬碳,因此也容易去除。
在一个实施例中,半导体结构的制造方法,还包括:形成下电极20之后,去除第一牺牲层33和第二牺牲层34;在下电极20的表面形成介质层50;在介质层50的表面形成上电极60。
具体的,在形成如图2所示的结构后,在电容孔11中形成下电极20,如图3所示,并将第一牺牲层33和第二牺牲层34进行去除,保护层40、第一支撑层31、第二支撑层32以及阻挡层12实现对下电极20的支撑,如图4所示。并在下电极20的表面形成介质层50,介质层50还覆盖保护层40的上表面,如图5所示。最后在介质层50的表面形成上电极60,具体可以参见图6所示的半导体结构。
可选的,在形成电容孔11之后,如果将保护层40进行了去除,则形成的介质层50覆盖第一支撑层31的上表面。
可选的,基底13包括多个分立的接触垫,而下电极20与接触垫直接接触。其中,接触垫的材料包括但不限于钨(W)。
需要说明的是,第一牺牲层33和第二牺牲层34可以采用湿法刻蚀工艺去除。对于下电极20、介质层50以及上电极60的形成工艺可以是相关技术中的物理气相沉积工艺、化学气相沉积工艺或原子层沉积工艺等,此处不作限定。
下电极20的材料包括但不限于氮化钛。
上电极60的材料包括但不限于氮化钛。
介质层50的材料包括高k材料;其中,高k材料包括但不限于氧化铝、氧化锆和氧化铪中的至少一种。
本公开的一个实施例还提供了一种半导体结构,请参考图6,半导体结构包括:衬底10;多个下电极20,多个下电极20间隔地位于衬底10上;保护层40,保护层40位于下电极20的上部,并将下电极20分隔开;其中,保护层40的材质包括氢化非晶硬碳。
本公开一个实施例的半导体结构包括衬底10、多个下电极20以及保护层40,通过使得保护层40的材质包括氢化非晶硬碳,即保护层40的硬度较高,因此在形成电容孔11的过程中不会对保护层40形成破坏,所以可以保证形成的下电极20的质量,从而改善半导体结构的性能。
在一个实施例中,保护层40为类金刚石薄膜层,具有高硬度,高热导率,高电阻率,良好光学性能以及优秀的摩擦学特性。
可选的,保护层40包括的氢化非晶硬碳可以掺杂其他材料,如,氮化硅(SiN)、氮氧化硅(SiON)、氮碳化硅(SiCN)等,以此方便与叠层结构30的其他结构进行连接。
需要说明的是,衬底10可以包括基底13和阻挡层12,阻挡层12形成了电容孔11的下部。
基底13可以包括由含硅材料形成的部分。基底13可以由任何合适的材料形成,例如,包括硅、单晶硅、多晶硅、非晶硅、硅锗、单晶硅锗、多晶硅锗以及碳掺杂硅中的至少一种。阻挡层12可以包括氮化硅(SiN)、氮氧化硅(SiON)、氮碳化硅(SiCN)等。
在一个实施例中,半导体结构还包括:第一支撑层31,第一支撑层31位于下电极20的中部,并将下电极20分隔开。第一支撑层31可以进一步实现对下电极20起到支撑作用。
可选的,第一支撑层31和保护层40间隔设置。
可选的,保护层40覆盖第一支撑层31的表面,即保护层40可以实现对第一支撑层31的有效保护,避免第一支撑层31在蚀刻形成电容孔11的过程中被破坏。
在一个实施例中,保护层40的厚度小于第一支撑层31的厚度。
可选的,保护层40的厚度不大于第一支撑层31的厚度的一半。即较薄的一层类金刚石薄膜就可以实现对第一支撑层31的有效保护,且保护层40在与第一支撑层31相接触时,第一支撑层31就可以实现对下电极20的有效支撑,因此可以使得保护层40较薄。
在一个实施例中,如图6所示,半导体结构还包括:第二支撑层32,第二支撑层32位于下电极20的中部,并将下电极20分隔开;其中,第二支撑层32位于第一支撑层31 的下方,且与第一支撑层31间隔设置。
具体的,如图6所示,保护层40、第一支撑层31以及第二支撑层32沿高度方向依次设置,且保护层40和第一支撑层31相接触,而第一支撑层31以及第二支撑层32间隔设置,保护层40、第一支撑层31以及第二支撑层32实现了对下电极20的支撑。
阻挡层12、第二支撑层32以及第一支撑层31可以采用相同的材料,如氮化硅(SiN)、氮氧化硅(SiON)、氮碳化硅(SiCN)等。或者,阻挡层12、第二支撑层32以及第一支撑层31也可以采用不同的材料。
需要说明的是,第一支撑层31和第二支撑层32的厚度关系此处不作限定,第一支撑层31的厚度可以等于第二支撑层32的厚度,或者,第一支撑层31的厚度可以小于第二支撑层32的厚度,或者,第一支撑层31的厚度可以大于第二支撑层32的厚度。
在一个实施例中,如图6所示,半导体结构还包括:介质层50,介质层50覆盖在下电极20的表面;上电极60,上电极60覆盖在介质层50的表面。
衬底10可以包括基底13和阻挡层12,阻挡层12与保护层40、第一支撑层31以及第二支撑层32实现了对下电极20和上电极60的支撑作用。
可选的,下电极20和上电极60之间设置有介质层50,介质层50的材料包括高k材料;其中,高k材料包括但不限于氧化铝、氧化锆和氧化铪等高K材料或其任意组合物。
可选的,下电极20的材料包括但不限于氮化钛。
可选的,上电极60的材料包括但不限于氮化钛。
在一个实施例中,衬底10包括多个间隔设置的接触垫,下电极20与接触垫直接接触,从而保证下电极20与接触垫之间电连接。。
具体的,接触垫的材料包括但不限于钨(W)。多个下电极20与多个接触垫一一相对应地设置。
需要说明的是,本实施例中的半导体结构可以由上述的半导体结构的制造方法获得,对于本实施例中半导体结构的其他材料以及结构均可以参考上述半导体结构的制造方法。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和示例实施方式仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可 以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (20)

  1. 一种半导体结构,包括:
    衬底;
    多个下电极,多个所述下电极间隔地位于所述衬底上;
    保护层,所述保护层位于所述下电极的上部,并将所述下电极分隔开;
    其中,所述保护层的材质包括氢化非晶硬碳。
  2. 根据权利要求1所述的半导体结构,其中,所述保护层为类金刚石薄膜层。
  3. 根据权利要求1所述的半导体结构,其中,所述半导体结构还包括:
    第一支撑层,所述第一支撑层位于所述下电极的中部,并将所述下电极分隔开。
  4. 根据权利要求3所述的半导体结构,其中,所述保护层覆盖所述第一支撑层的表面。
  5. 根据权利要求4所述的半导体结构,其中,所述保护层的厚度小于所述第一支撑层的厚度。
  6. 根据权利要求5所述的半导体结构,其中,所述保护层的厚度不大于所述第一支撑层的厚度的一半。
  7. 根据权利要求3至6中任一项所述的半导体结构,其中,所述半导体结构还包括:
    第二支撑层,所述第二支撑层位于所述下电极的中部,并将所述下电极分隔开;
    其中,所述第二支撑层位于所述第一支撑层的下方,且与所述第一支撑层间隔设置。
  8. 根据权利要求7所述的半导体结构,其中,所述半导体结构还包括:
    介质层,所述介质层覆盖在所述下电极的表面;
    上电极,所述上电极覆盖在所述介质层的表面。
  9. 根据权利要求3所述的半导体结构,其中,所示第一支撑层和所示保护层间隔设置。
  10. 根据权利要求1所述的半导体结构,其中,所述衬底包括多个间隔设置的接触垫,所述下电极与所述接触垫直接接触。
  11. 根据权利要求1所述的半导体结构,其中,所述保护层包括的氢化非晶硬碳可以掺杂其他材料。
  12. 根据权利要求11所述的半导体结构,其中,所述氢化非晶硬碳可以掺杂氮化硅、氮氧化硅或氮碳化硅中的至少一种。
  13. 一种半导体结构的制造方法,包括:
    提供衬底;
    在所述衬底上形成叠层结构;
    在所述叠层结构中形成多个电容孔,所述电容孔暴露所述衬底;
    其中,所述叠层结构包括保护层,所述保护层形成所述电容孔的上部,所述保护层的材质包括氢化非晶硬碳。
  14. 根据权利要求13所述的半导体结构的制造方法,其中,所述叠层结构还包括在所述衬底上依次形成的第一牺牲层、第二支撑层、第二牺牲层以及第一支撑层;
    其中,所述保护层形成于所述第一支撑层上。
  15. 根据权利要求14所述的半导体结构的制造方法,其中,还包括:
    在所述电容孔中形成下电极,所述下电极的底部与所述衬底直接接触。
  16. 根据权利要求15所述的半导体结构的制造方法,其中,所述保护层的厚度小于所述第一支撑层的厚度。
  17. 根据权利要求14所述的半导体结构的制造方法,其中,还包括:
    形成所述电容孔之后,
    去除所述保护层;
    在所述电容孔中形成下电极,所述下电极的底部与所述衬底直接接触。
  18. 根据权利要求15至17中任一项所述的半导体结构的制造方法,其中,还包括:
    形成所述下电极之后,
    去除所述第一牺牲层和所述第二牺牲层;
    在所述下电极的表面形成介质层;
    在所述介质层的表面形成上电极。
  19. 根据权利要求13所述的半导体结构的制造方法,其中,所述衬底包括基底和阻挡层,所述阻挡层上形成所述叠层结构,形成的所示电容孔暴露所述基底。
  20. 根据权利要求13所述的半导体结构的制造方法,其中,所述保护层为类金刚石薄膜层。
PCT/CN2021/117517 2021-07-22 2021-09-09 半导体结构及半导体结构的制造方法 WO2023000472A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/647,741 US20230022355A1 (en) 2021-07-22 2022-01-12 Semiconductor structure and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110832234.2A CN113555504B (zh) 2021-07-22 2021-07-22 半导体结构及半导体结构的制造方法
CN202110832234.2 2021-07-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/647,741 Continuation US20230022355A1 (en) 2021-07-22 2022-01-12 Semiconductor structure and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2023000472A1 true WO2023000472A1 (zh) 2023-01-26

Family

ID=78104083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117517 WO2023000472A1 (zh) 2021-07-22 2021-09-09 半导体结构及半导体结构的制造方法

Country Status (2)

Country Link
CN (1) CN113555504B (zh)
WO (1) WO2023000472A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150076586A1 (en) * 2013-09-15 2015-03-19 SanDisk Technologies, Inc. Single-semiconductor-layer channel in a memory opening for a three-dimensional non-volatile memory device
CN104576325A (zh) * 2015-01-27 2015-04-29 株洲南车时代电气股份有限公司 一种制作碳化硅sbd器件的方法及其正面保护方法
CN108538822A (zh) * 2018-06-07 2018-09-14 睿力集成电路有限公司 半导体电容装置及其制作方法
CN111834529A (zh) * 2020-08-07 2020-10-27 福建省晋华集成电路有限公司 一种电容结构、半导体器件以及电容结构制备方法
CN112185963A (zh) * 2020-09-30 2021-01-05 福建省晋华集成电路有限公司 存储器及其形成方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100614803B1 (ko) * 2004-10-26 2006-08-22 삼성전자주식회사 커패시터 제조 방법
KR20110078133A (ko) * 2009-12-30 2011-07-07 주식회사 하이닉스반도체 반도체 소자의 캐패시터 형성방법
KR101935395B1 (ko) * 2012-08-29 2019-01-04 삼성전자주식회사 캐패시터를 포함하는 반도체 장치의 제조 방법
JP2016039162A (ja) * 2014-08-05 2016-03-22 マイクロン テクノロジー, インク. 半導体装置及びその製造方法
CN105262456B (zh) * 2015-10-09 2018-07-31 锐迪科微电子(上海)有限公司 一种高性能薄膜体声波谐振器及其制造方法
KR102499035B1 (ko) * 2016-07-25 2023-02-13 삼성전자주식회사 반도체 장치의 제조 방법
CN108735744B (zh) * 2017-04-21 2021-02-02 联华电子股份有限公司 半导体存储装置以及其制作方法
CN110634733A (zh) * 2018-06-22 2019-12-31 长鑫存储技术有限公司 半导体存储器电容孔的制备方法
CN109065501B (zh) * 2018-07-19 2024-02-06 长鑫存储技术有限公司 电容阵列结构及其制备方法
KR20200080944A (ko) * 2018-12-27 2020-07-07 에스케이하이닉스 주식회사 반도체장치 및 그 제조 방법
KR102645594B1 (ko) * 2019-03-29 2024-03-11 에스케이하이닉스 주식회사 반도체장치 및 그 제조 방법
CN112908968B (zh) * 2019-12-03 2022-06-10 长鑫存储技术有限公司 半导体存储器中的电容及其制备方法
CN111755314A (zh) * 2020-05-25 2020-10-09 长江存储科技有限责任公司 薄膜生长装置及薄膜生长方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150076586A1 (en) * 2013-09-15 2015-03-19 SanDisk Technologies, Inc. Single-semiconductor-layer channel in a memory opening for a three-dimensional non-volatile memory device
CN104576325A (zh) * 2015-01-27 2015-04-29 株洲南车时代电气股份有限公司 一种制作碳化硅sbd器件的方法及其正面保护方法
CN108538822A (zh) * 2018-06-07 2018-09-14 睿力集成电路有限公司 半导体电容装置及其制作方法
CN111834529A (zh) * 2020-08-07 2020-10-27 福建省晋华集成电路有限公司 一种电容结构、半导体器件以及电容结构制备方法
CN112185963A (zh) * 2020-09-30 2021-01-05 福建省晋华集成电路有限公司 存储器及其形成方法

Also Published As

Publication number Publication date
CN113555504A (zh) 2021-10-26
CN113555504B (zh) 2023-10-03

Similar Documents

Publication Publication Date Title
JP6286780B2 (ja) 無線周波数用途又は電力用途のための電子装置及びそのような装置を製造するためのプロセス
US6483147B1 (en) Through wafer backside contact to improve SOI heat dissipation
US6190985B1 (en) Practical way to remove heat from SOI devices
TWI771622B (zh) 形成記憶體元件之方法
JP2012528488A5 (zh)
US20140008756A1 (en) Deep trench heat sink
TWI355078B (en) Transistor structure and method of making the same
JP2000012687A5 (zh)
WO2023000472A1 (zh) 半导体结构及半导体结构的制造方法
JP2024015124A (ja) 半導体装置及び半導体装置の製造方法
KR100801736B1 (ko) 증가된 센싱마진을 갖는 반도체 메모리소자의 제조방법
US20230022355A1 (en) Semiconductor structure and manufacturing method thereof
JP2005276962A5 (zh)
TWI794109B (zh) 具有銲墊層之半導體元件的製備方法
US7906418B2 (en) Semiconductor device having substantially planar contacts and body
TW200810082A (en) Method and structure for creation of a metal insulator metal capacitor
TW412764B (en) Manufacturing method of the double layer metal capacitor
JP2014138178A (ja) 電子デバイス及びその製造方法、並びに基板構造及びその製造方法
TWI282168B (en) Silicon-on-insulator (SOI) semiconductor structure and method on manufacture
TW201540649A (zh) 微機械構件用的層裝置
WO2023133996A1 (zh) 半导体结构及半导体结构的制造方法
KR100741269B1 (ko) 반도체 소자의 금속배선 형성 방법
WO2022188358A1 (zh) 半导体结构及半导体结构的制作方法
TWI841428B (zh) 半導體元件及其製造方法
US11495516B2 (en) Semiconductor device with thermal release layer and method for fabricating the same

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE