WO2023000448A1 - 像素驱动电路、显示面板及显示设备 - Google Patents

像素驱动电路、显示面板及显示设备 Download PDF

Info

Publication number
WO2023000448A1
WO2023000448A1 PCT/CN2021/116308 CN2021116308W WO2023000448A1 WO 2023000448 A1 WO2023000448 A1 WO 2023000448A1 CN 2021116308 W CN2021116308 W CN 2021116308W WO 2023000448 A1 WO2023000448 A1 WO 2023000448A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
pole
control signal
terminal
voltage
Prior art date
Application number
PCT/CN2021/116308
Other languages
English (en)
French (fr)
Inventor
吕晶
Original Assignee
上海闻泰信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海闻泰信息技术有限公司 filed Critical 上海闻泰信息技术有限公司
Publication of WO2023000448A1 publication Critical patent/WO2023000448A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen

Definitions

  • the present disclosure relates to a pixel driving circuit, a display panel and a display device.
  • Micro LED micro-electroluminescent
  • the luminous brightness is positively correlated with the applied voltage and current. If the voltage driving method is adopted, the relationship between the luminous brightness and the voltage will be affected by factors such as ambient temperature and use time. The phenomenon of unevenness and poor stability, and the relationship between the luminous brightness of the light-emitting element and the current is not easily disturbed by other factors. Therefore, Micro LED light-emitting elements usually adopt a current-driven design.
  • Fig. 1 is an existing pixel drive circuit, which includes a switch TFT11, a drive TFT12 and a storage capacitor C.
  • the switch TFT11 is controlled by the scan signal Scan to input the data signal Vdata to the gate path end of the drive TFT12
  • the drive TFT12 is controlled by the gate path end of the gate path.
  • Voltage control under the action of power supply PVDD, output drive current, and the current flows through the light-emitting element LED to emit light.
  • the storage capacitor C is connected to the gate access end of the driving TFT 12 and the power supply PVDD, and is used to maintain the voltage of the gate access end of the driving TFT 12 and prevent it from changing due to leakage within a refresh cycle.
  • the characteristics of the TFT (including the threshold voltage Vth and the mobility) will deviate and drift.
  • the existing pixel drive circuit does not compensate the characteristics of the TFT, which will cause the driving current Bias and drift, which affect display uniformity and lifetime.
  • the power supply PVDD in the pixel circuit produces a voltage drop (IR drop) problem due to driving loading (download), which will also make the light emitting element emit light unstable.
  • the existing pixel driving circuit does not compensate the characteristics of the TFT, it will cause deviation and drift of the driving current, which will affect the display uniformity and lifespan.
  • the power supply PVDD in the pixel circuit has a voltage drop (IR drop) problem due to driving loading (downloading), which will make the light emitting element emit light unstable.
  • a pixel driving circuit a display panel, and a display device are provided.
  • the present disclosure provides a pixel drive circuit, which includes a drive transistor, and the drive transistor is used to drive a light-emitting element to emit light.
  • the pixel drive circuit also includes a reset module, a threshold value extraction module, a data writing module, and a light-emitting control module; the reset The module is used to reset the voltage of the driving transistor in response to the first control signal; the threshold extraction module is used to extract the threshold voltage of the driving transistor in response to the second control signal; the data writing module is used to Responding to the third control signal, writing the data voltage, and compensating the threshold voltage of the driving transistor;
  • the current of the transistor and the light-emitting element is the same, and the current has nothing to do with the threshold voltage and the power supply voltage input to the driving transistor.
  • the reset module includes a first transistor and a second capacitor
  • the threshold extraction module includes a third transistor, a fourth transistor, a fifth transistor, and a first capacitor
  • the data writing module includes a first Six transistors
  • the lighting control module includes a seventh transistor and an eighth transistor.
  • the reset module when the reset module responds to the first control signal, the first transistor is turned on, and the reference voltage connected to the first transistor is written into the first terminal of the second capacitor , the control terminal of the driving transistor and the anode of the light-emitting element, and then reset the voltage of the control terminal of the driving transistor.
  • the threshold extraction module when the threshold extraction module responds to the second control signal, the third transistor, the fourth transistor, and the fifth transistor are turned on, and the reference voltage is written into the first capacitor of the first capacitor. terminal, the power supply voltage is written into the first pole of the driving transistor, and the second pole of the driving transistor is connected to the control terminal of the driving transistor, so that the potential of the control terminal of the driving transistor rises until the driving transistor The transistor is turned off, thereby extracting the threshold voltage of the driving transistor.
  • the sixth transistor when the data writing module responds to the third control signal, the sixth transistor is turned on, the data voltage is written into the first terminal of the first capacitor, and passed through the first The coupling effect of the capacitor realizes compensation for the threshold voltage of the driving transistor.
  • the seventh transistor and the eighth transistor are turned on, so that the currents flowing through the driving transistor and the light-emitting element are the same, And the current has nothing to do with the threshold voltage and the power supply voltage input to the driving transistor.
  • the control terminal of the first transistor is connected to the first control signal, the first pole of the first transistor is connected to the reference voltage, and the second pole of the first transistor is connected to the The control terminal of the drive transistor, the second pole of the first transistor is also connected to the first terminal of the second capacitor, the second terminal of the second capacitor is connected to the positive terminal of the power supply voltage, and the first The second pole of the transistor is also connected to the anode of the light-emitting element, and the cathode of the light-emitting element is connected to the negative terminal of the power supply voltage; the control terminal of the third transistor is connected to the second control signal, and the third The first pole of the transistor is connected to the first pole of the first transistor, the second pole of the third transistor is connected to the first terminal of the first capacitor, and the second terminal of the first capacitor is connected to the driving transistor the control terminal of the fourth transistor; the control terminal of the fourth transistor is connected to the second control signal, the first pole of the fourth transistor is connected to the control terminal of the driving transistor, and the
  • the two poles are connected to the first terminal of the first capacitor; the control terminal of the seventh transistor is connected to the fourth control signal, the first pole of the seventh transistor is connected to the positive terminal of the power supply voltage, the The second pole of the seventh transistor is connected to the first pole of the driving transistor; the control terminal of the eighth transistor is connected to the fourth control signal, and the first pole of the eighth transistor is connected to the first pole of the driving transistor.
  • the second pole of the eighth transistor is connected to the anode of the light emitting element.
  • a display panel comprising any one of the pixel driving circuits described above.
  • it also includes a reset signal line, a first scan signal line, a second scan signal line, and a light emission control signal line;
  • the reset signal line is connected to the reset module of the pixel driving circuit, and the reset signal line Outputting a first control signal;
  • the first scanning signal line is connected to the threshold extraction module of the pixel driving circuit, and the first scanning signal line outputs a second control signal;
  • the second scanning signal line is connected to the pixel driving circuit
  • the data writing module of the second scanning signal line outputs a third control signal;
  • the light emission control signal line is connected to the light emission control module of the pixel driving circuit, and the light emission control signal line outputs a fourth control signal.
  • a display device comprising any one of the display panels described above.
  • FIG. 1 is a circuit diagram of a pixel driving circuit in the prior art
  • FIG. 2 is a functional block diagram of a pixel driving circuit provided by one or more embodiments of the present disclosure
  • FIG. 3 is a circuit diagram of a pixel driving circuit provided by one or more embodiments of the present disclosure.
  • FIG. 4 is a waveform diagram of working signals corresponding to a pixel driving circuit provided by one or more embodiments of the present disclosure.
  • the present disclosure provides a pixel driving circuit 100 including a driving transistor T2 for driving the light emitting element 101 to emit light. Further, the pixel driving circuit 100 also includes a reset module 10 , a threshold extraction module 20 , a data writing module 30 and a light emission control module 40 .
  • the reset module 10 is used to reset the voltage of the driving transistor T2 in response to the first control signal X1; the threshold extraction module 20 is used to respond to the second control signal X2 to extract the threshold voltage of the driving transistor T2; the data writing module 30 is used to Write the data voltage Vdata in response to the third control signal X3, and compensate the threshold voltage of the driving transistor T2; the light emission control module 40 is used to respond to the fourth control signal X4, make the light emitting element 101 emit light, and flow through the driving transistor T2 It is the same as the current of the light-emitting element 101, and the current has nothing to do with the threshold voltage and the power supply voltage input to the driving transistor T2.
  • the reset module 10 can reset the voltage of the driving transistor T2, that is, the voltage of the control terminal of the driving transistor T2 can be reset at the beginning of each light-emitting period, which can reduce the impact of the previous light-emitting period on the driving transistor.
  • the influence of the voltage of T2 reduces the influence of the signal between two adjacent periods.
  • the threshold extraction module 20 can extract the threshold voltage of the driving transistor T2, the data writing module 30 can write the data voltage Vdata, and compensate the threshold voltage of the driving transistor T2, and the light emission control module 40 can make the light emitting element 101 emit light, and ensure The current flowing through the driving transistor T2 and the light-emitting element 101 is the same, so that the current has nothing to do with the threshold voltage and the power supply voltage input to the driving transistor T2, that is, the threshold voltage of the driving transistor T2 and the power supply voltage input to the driving transistor T2 will not affect
  • the drive current flowing through the light-emitting element 101 avoids the problem of drive current deviation and drift caused by the characteristics of the drive transistor T2, and also avoids the influence of the voltage drop on the drive current due to the power supply voltage, which improves the uniformity of display and improves The life of the light emitting element 101 is extended.
  • the reset module 10 includes a first transistor T1 and a second capacitor C2.
  • the threshold extraction module 20 includes a third transistor T3, a fourth transistor T4, a fifth transistor T5, and a first capacitor C1.
  • the writing module 30 includes a sixth transistor T6, and the light emission control module 40 includes a seventh transistor T7 and an eighth transistor T8.
  • the reset module 10 responds to the first control signal X1, the first transistor T1 is turned on, and the reference voltage Vint connected to the first transistor T1 is written into the first terminal of the second capacitor C2, the control terminal of the driving transistor T2 and The anode of the light-emitting element LED further realizes the reset of the voltage of the control terminal of the driving transistor T2.
  • the threshold extraction module 20 responds to the second control signal X2, the third transistor T3, the fourth transistor T4, and the fifth transistor T5 are turned on, the reference voltage Vint is written into the first terminal of the first capacitor C1, and the power supply voltage is written into the driving transistor.
  • the first pole of T2 and the second pole of the driving transistor T2 are connected to the control terminal of the driving transistor T3, so that the potential of the control terminal of the driving transistor T2 increases until the driving transistor T2 is cut off, and then the threshold voltage of the driving transistor T2 is extracted.
  • the sixth transistor T6 When the data writing module 30 responds to the third control signal X3, the sixth transistor T6 is turned on, the data voltage Vdata is written into the first terminal of the first capacitor C1, and the threshold value of the driving transistor T2 is realized through the coupling effect of the first capacitor C1 voltage is compensated.
  • the seventh transistor T7 and the eighth transistor T8 are turned on, so that the current flowing through the driving transistor T2 and the light emitting element LED is the same, and the current is the same as the threshold voltage and the input
  • the supply voltage that drives transistor T2 is independent.
  • the reset module can reset the voltage of the drive transistor, that is, the voltage of the control terminal of the drive transistor can be reset at the beginning of each light-emitting cycle, which can reduce the impact of the previous light-emitting cycle.
  • the influence of the voltage of the driving transistor reduces the influence of the signal between two adjacent periods.
  • the threshold extraction module can extract the threshold voltage of the driving transistor, the data writing module can write the data voltage, and compensate the threshold voltage of the driving transistor, and the light emission control module can make the light emitting element emit light, and ensure the flow through the driving transistor and the light emitting element
  • the current is the same, so that the current has nothing to do with the threshold voltage and the power supply voltage input to the drive transistor, that is, the threshold voltage of the drive transistor and the power supply voltage input to the drive transistor will not affect the drive current flowing through the light-emitting element, avoiding the drive current caused by the drive
  • the problem of deviation and drift of the driving current caused by the characteristics of the transistor also avoids the influence of the voltage drop of the power supply voltage on the driving current, improves the uniformity of the display, and improves the life of the light-emitting element.
  • the first control signal X1 is the reset signal Reset
  • the second control signal X2 is the first scan signal Scan(n-1)
  • the third control signal X3 is the second scan signal Scan(n)
  • the fourth control signal X3 is the second scan signal Scan(n-1).
  • the signal X4 is an emission control signal EMIT.
  • the light-emitting element LED is a micro LED.
  • the control terminal of the first transistor T1 is connected to the first control signal X1, the first pole of the first transistor T1 is connected to the reference voltage Vint, the second pole of the first transistor T1 is connected to the control terminal of the driving transistor T2, and the first pole of the first transistor T2 is connected to the control terminal of the driving transistor T2.
  • the second pole is also connected to the first terminal of the second capacitor C2, the second terminal of the second capacitor C2 is connected to the positive terminal PVDD of the power supply voltage, the second pole of the first transistor T1 is also connected to the anode of the light emitting element LED, and the light emitting element LED
  • the cathode of the power supply voltage is connected to the negative terminal PVEE.
  • the control terminal of the third transistor T3 is connected to the second control signal X2, the first pole of the third transistor T3 is connected to the first pole of the first transistor T1, and the second pole of the third transistor T3 is connected to the first terminal of the first capacitor C1 , the second terminal of the first capacitor C1 is connected to the control terminal of the driving transistor T2.
  • the control terminal of the fourth transistor T4 is connected to the second control signal X2, the first terminal of the fourth transistor T4 is connected to the control terminal of the driving transistor T2, and the second terminal of the fourth transistor T4 is connected to the second terminal of the driving transistor T2.
  • the control terminal of the fifth transistor T5 is connected to the second control signal X2, the first pole of the fifth transistor T5 is connected to the positive terminal PVDD of the power supply voltage, and the second pole of the fifth transistor T5 is connected to the first terminal of the driving transistor T2. pole.
  • the control terminal of the sixth transistor T6 is connected to the third control signal X3, the first pole of the sixth transistor T6 is connected to the data voltage Vdata, and the second pole of the sixth transistor T6 is connected to the first terminal of the first capacitor C1.
  • the control terminal of the seventh transistor T7 is connected to the fourth control signal X4, the first terminal of the seventh transistor T7 is connected to the positive terminal PVDD of the power supply voltage, and the second terminal of the seventh transistor T7 is connected to the first terminal of the driving transistor T2.
  • the control end of the eighth transistor T8 is connected to the fourth control signal X4, the first pole of the eighth transistor T8 is connected to the second pole of the driving transistor T2, and the second pole of the eighth transistor T8 is connected to the anode of the light emitting element LED.
  • the first transistor T1, the driving transistor T2, the third transistor T3, the fourth transistor T4, the fifth transistor T5, the sixth transistor T6, the seventh transistor T7 and the eighth transistor T8 are all P Type transistors, that is, the control terminal (gate) of the TFT is turned on at a low voltage.
  • both the power supply voltage and the reference voltage Vint are DC signals.
  • the positive terminal PVDD of the power supply voltage inputs a DC high level
  • the negative terminal PVEE of the power supply voltage and the reference voltage Vint input a DC low level.
  • the first scan signal Scan(n-1) and the second scan signal Scan(n) are clock pulse signals.
  • the working process of the pixel driving circuit 100 includes 4 stages, respectively T10 reset stage, T20 threshold value extraction stage, T30 data voltage writing stage, T40 light emitting stage; T10 reset stage, T20 threshold value extraction stage, T30 data voltage writing stage , T40 light-emitting stage constitutes a light-emitting period of the light-emitting element LED.
  • the reset signal Reset is low level
  • the first scanning signal Scan(n-1), the second scanning signal Scan(n), and the light emission control signal EMIT are all high level
  • the first transistor T1 is turned on
  • the reference voltage Vint is written into the first terminal of the second capacitor C2
  • the control terminal of the driving transistor T2 ie, the N1 node
  • the anode of the light-emitting element LED ie, the N4 node
  • the first scan signal Scan(n-1) is at low level
  • the reset signal Reset the second scan signal Scan(n)
  • the light emission control signal EMIT are all at high level
  • the third transistor T3, the fourth Transistor T4 and the fifth transistor T5 are turned on, and the positive terminal PVDD of the power supply voltage is written into the first pole (ie, N3 node) of the drive transistor T2. Since the fourth transistor T4 is turned on, the second pole (ie, N5 node) of the drive transistor T2 ) is connected to the control terminal of the driving transistor T2, the gate and the source of the driving transistor T2 are short-circuited together, and the driving transistor T2 is equivalent to a diode connection.
  • the first scan signal Scan(n-1) is at a low level
  • the third transistor T3 is turned on, and the reference voltage Vint is written into the first end of the first capacitor C1 (ie, the N2 node), and the voltage of the N2 node is Vint, Since the voltage of the N1 node is changing with that of the N5 node, the second terminal of the first capacitor C1, that is, the N1 node is not floating (drifting), so the N1 node voltage will not be affected by the N2 node voltage.
  • the second scan signal Scan(n) is at low level
  • the reset signal Reset the first scan signal Scan(n-1)
  • the light emission control signal EMIT are all at high level
  • the light-emitting control signal EMIT is low level
  • the reset signal Reset the first scan signal Scan(n-1), and the second scan signal Scan(n) are all high level
  • the seventh transistor T7 and the eighth transistor T8 is turned on
  • the positive terminal PVDD of the power supply voltage the N3 node, the N4 node, and the negative terminal PVEE of the power supply voltage form a path
  • the current I flowing through the driving transistor T2 and the light emitting element LED is the same.
  • Vg PVDD-Vth+(Vdata-Vint)*C1/(C1+C2)
  • Vd PVDD
  • +(Vdata-Vint)*C1/( C1+C2)) Vth-(Vdat a-Vint)*C1/(C1+C2).
  • k 0.5 ⁇ Cox(W/L)
  • I k(Vth-(Vdata-Vint)*C1/(C1+C2)-Vth) ⁇ 2.
  • the present disclosure also provides a display panel, including the pixel driving circuit 100 described in any one of the above.
  • the display panel includes a reset signal line, a first scan signal line, a second scan signal line and a light emission control signal line.
  • the reset signal line is connected to the reset module 10 of the pixel driving circuit 100, and the reset signal line outputs the first control signal X1;
  • the first scanning signal line is connected to the threshold extraction module 20 of the pixel driving circuit 100, and the first scanning signal line outputs the second control signal X2
  • the second scanning signal line is connected to the data writing module 30 of the pixel drive circuit 100, and the second scanning signal line outputs the third control signal X4;
  • the light emission control signal line is connected to the light emission control module 40 of the pixel drive circuit 100, and the light emission control signal line outputs The fourth control signal X4.
  • the present disclosure also provides a display device, including the display panel described in the above embodiments.
  • the display device provided by the present disclosure can be, but not limited to, a mobile phone, a tablet computer, a notebook computer, etc., and all embodiments of the pixel driving circuit 100 provided by the present disclosure are applicable to the display panel and the display device provided by the present disclosure, and All can achieve the same or similar beneficial effects.
  • the reset module 10 can reset the voltage of the driving transistor T2, that is, the voltage of the control terminal of the driving transistor T2 can be reset at the beginning of each light-emitting period, It can reduce the influence of the previous lighting period on the voltage of the driving transistor T2, and reduce the influence of the signal between two adjacent periods.
  • the threshold extraction module 20 can extract the threshold voltage of the driving transistor T2, the data writing module 30 can write the data voltage Vdata, and compensate the threshold voltage of the driving transistor T2, and the light emission control module 40 can make the light emitting element 101 emit light, and ensure The current flowing through the driving transistor T2 and the light-emitting element 101 is the same, so that the current has nothing to do with the threshold voltage and the power supply voltage input to the driving transistor T2, that is, the threshold voltage of the driving transistor T2 and the power supply voltage input to the driving transistor T2 will not affect
  • the drive current flowing through the light-emitting element 101 avoids the problem of drive current deviation and drift caused by the characteristics of the drive transistor T2, and also avoids the influence of the voltage drop on the drive current due to the power supply voltage, which improves the uniformity of display and improves The life of the light emitting element 101 is extended.
  • the threshold voltage of the driving transistor and the power supply voltage input to the driving transistor will not affect the driving current flowing through the light-emitting element, which improves the uniformity of display and the life of the light-emitting element , has strong industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of El Displays (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种提高显示均一性以及提高发光元件寿命的像素驱动电路(100)、显示面板及显示设备。像素驱动电路(100),包括驱动晶体管(T2),驱动晶体管(T2)用于驱动发光元件(101)发光,复位模块(10)用于响应第一控制信号(X1),对驱动晶体管(T2)的电压进行复位;阈值提取模块(20)用于响应第二控制信号(X2),以提取驱动晶体管(T2)的阈值电压;数据写入模块(30)用于响应第三控制信号(X3),将数据电压(Vdata)写入,并对驱动晶体管(T2)的阈值电压进行补偿;发光控制模块(40)用于响应第四控制信号(X4),使发光元件(101)发光,且流过驱动晶体管(T2)及发光元件(101)的电流相同,电流与阈值电压及输入驱动晶体管(T2)的电源电压无关。

Description

像素驱动电路、显示面板及显示设备
本公开要求于2021年7月22日提交中国专利局、申请号为202110831647.9、发明名称为“像素驱动电路、显示面板及显示设备”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及一种像素驱动电路、显示面板及显示设备。
背景技术
近年来,显示器不断向着薄型化、轻型化和柔性化方向发展,其中微型电致发光(Micro LED)在这些方面具有天然的优势。对于Micro LED发光元件,其发光亮度与施加的电压、电流均成正相关关系,采用电压驱动方式,由于发光亮度与电压的关系会受到环境温度、使用时间等因素的影响而发生变化,会发生亮度不均、稳定差的现象,而发光元件的发光亮度和电流的关系不易受其他因素的干扰。因此,Micro LED发光元通常采用电流驱动型设计。
图1为现有的像素驱动电路,其包括开关TFT11、驱动TFT12和存储电容C,开关TFT11受扫描信号Scan控制将数据信号Vdata输入到驱动TFT12的栅极通路端,驱动TFT12受栅极通路端的电压控制,在电源PVDD作用下,输出驱动电流,电流流经发光元件LED发光。存储电容C连接驱动TFT12的栅极通路端和电源PVDD,用于维持驱动TFT12的栅极通路端的电压,防止其在一个刷新周期内因漏电而发生变化。
然而,由于制程的均一性和使用时间的延长,TFT的特性(包括阈值电压Vth、迁移率mobility)会发生偏差和漂移,现有的像素驱动电路未对TFT的特性进行补偿,会造成驱动电流偏差和漂移,影响显示均一性和寿命。并且,像素电路中电源PVDD由于驱动loading(下载) 而产生电压降(IR drop)问题,也会使得发光元件发光不稳定。
鉴于此,实有必要提供一种新型的像素驱动电路、显示面板及显示设备以克服上述缺陷。
发明内容
(一)要解决的技术问题
现有的像素驱动电路未对TFT的特性进行补偿时,会造成驱动电流偏差和漂移,影响显示均一性和寿命。并且,像素电路中电源PVDD由于驱动loading(下载)而产生电压降(IR drop)问题,会使得发光元件发光不稳定。
(二)技术方案
根据本公开公开的各种实施例,提供一种像素驱动电路、显示面板及显示设备。
本公开提供一种像素驱动电路,包括驱动晶体管,所述驱动晶体管用于驱动发光元件发光,所述像素驱动电路还包括复位模块、阈值提取模块、数据写入模块及发光控制模块;所述复位模块用于响应第一控制信号,对所述驱动晶体管的电压进行复位;所述阈值提取模块用于响应第二控制信号,以提取所述驱动晶体管的阈值电压;所述数据写入模块用于响应第三控制信号,将数据电压写入,并对所述驱动晶体管的阈值电压进行补偿;所述发光控制模块用于响应第四控制信号,使所述发光元件发光,且流过所述驱动晶体管及所述发光元件的电流相同,所述电流与所述阈值电压及输入所述驱动晶体管的电源电压无关。
在一个优选实施方式中,所述复位模块包括第一晶体管及第二电容,所述阈值提取模块包括第三晶体管、第四晶体管、第五晶体管及第一电容,所述数据写入模块包括第六晶体管,所述发光控制模块包括第七晶体管及第八晶体管。
在一个优选实施方式中,当所述复位模块响应所述第一控制信号 时,所述第一晶体管导通,接入所述第一晶体管的参考电压写入所述第二电容的第一端、所述驱动晶体管的控制端及所述发光元件的阳极,进而实现对所述驱动晶体管的控制端的电压进行复位。
在一个优选实施方式中,当所述阈值提取模块响应所述第二控制信号时,所述第三晶体管、第四晶体管、第五晶体管导通,参考电压写入所述第一电容的第一端,所述电源电压写入所述驱动晶体管的第一极,所述驱动晶体管的第二极连通所述驱动晶体管的控制端,进而使所述驱动晶体管的控制端的电位升高直至所述驱动晶体管截止,进而提取所述驱动晶体管的阈值电压。
在一个优选实施方式中,当所述数据写入模块响应第三控制信号时,所述第六晶体管导通,所述数据电压写入所述第一电容的第一端,通过所述第一电容的耦合作用实现对所述驱动晶体管的阈值电压进行补偿。
在一个优选实施方式中,当所述发光控制模块响应所述第四控制信号时,所述第七晶体管及第八晶体管导通,使流过所述驱动晶体管及所述发光元件的电流相同,且所述电流与所述阈值电压及输入所述驱动晶体管的电源电压无关。
在一个优选实施方式中,所述第一晶体管的控制端接入所述第一控制信号,所述第一晶体管的第一极接入参考电压,所述第一晶体管的第二极连接所述驱动晶体管的控制端,所述第一晶体管的第二极还连接所述第二电容的第一端,所述第二电容的第二端接入所述电源电压的正极端,所述第一晶体管的第二极还连接所述发光元件的阳极,所述发光元件的阴极连接所述电源电压的负极端;所述第三晶体管的控制端接入所述第二控制信号,所述第三晶体管的第一极连接所述第一晶体管的第一极,所述第三晶体管的第二极连接所述第一电容的第一端,所述第一电容的第二端连接所述驱动晶体管的控制端;所述第四晶体管的控制端接入所述第二控制信号,所述第四晶体管的第一极连接所述驱动晶体管的控制端,所述第四晶体管的第二极连接驱动晶 体管的第二极;所述第五晶体管的控制端接入所述第二控制信号,所述第五晶体管的第一极连接所述电源电压的正极端,所述第五晶体管的第二极连接所述驱动晶体管的第一极;所述第六晶体管的控制端接入所述第三控制信号,所述第六晶体管的第一极接入所述数据电压,所述第六晶体管的第二极连接所述第一电容的第一端;所述第七晶体管的控制端接入所述第四控制信号,所述第七晶体管的第一极连接所述电源电压的正极端,所述第七晶体管的第二极连接所述驱动晶体管的第一极;所述第八晶体管的控制端接入所述第四控制信号,所述第八晶体管的第一极连接所述驱动晶体管的第二极,所述第八晶体管的第二极连接所述发光元件的阳极。
一种显示面板,包括上述任意一项所述的像素驱动电路。
在一个优选实施方式中,还包括复位信号线、第一扫描信号线、第二扫描信号线及发光控制信号线;所述复位信号线连接所述像素驱动电路的复位模块,所述复位信号线输出第一控制信号;所述第一扫描信号线连接所述像素驱动电路的阈值提取模块,所述第一扫描信号线输出第二控制信号;所述第二扫描信号线连接所述像素驱动电路的数据写入模块,所述第二扫描信号线输出第三控制信号;所述发光控制信号线连接所述像素驱动电路的发光控制模块,所述发光控制信号线输出第四控制信号。
一种显示设备,包括上述任意一项所述的显示面板。
为使发明的上述目的、特征和优引脚能更明显易懂,下文特举本公开较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图 获得其他相关的附图。
图1为现有技术的像素驱动电路的电路图;
图2为本公开一个或多个实施例提供的像素驱动电路的原理框图;
图3为本公开一个或多个实施例提供的像素驱动电路的电路图;
图4为本公开一个或多个实施例提供的像素驱动电路对应的工作信号波形图。
具体实施方式
为下面将结合本公开实施例中附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本公开实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本公开的实施例的详细描述并非旨在限制要求保护的本公开的范围,而是仅仅表示本公开的选定实施例。基于本公开的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
请参阅图2,本公开提供一种像素驱动电路100,包括驱动晶体管T2,驱动晶体管T2用于驱动发光元件101发光。进一步地,像素驱动电路100还包括复位模块10、阈值提取模块20、数据写入模块30及发光控制模块40。
复位模块10用于响应第一控制信号X1,对驱动晶体管T2的电压进行复位;阈值提取模块20用于响应第二控制信号X2,以提取驱动晶体管T2的阈值电压;数据写入模块30用于响应第三控制信号X3,将数据电压Vdata写入,并对驱动晶体管T2的阈值电压进行补偿;发光控制模块40用于响应第四控制信号X4,使发光元件101发光,且流过驱动晶体管T2及发光元件101的电流相同,所述电流与所述阈值电压及输入驱动晶体管T2的电源电压无关。
本公开提供的像素驱动电路100,复位模块10能够对驱动晶体管 T2的电压进行复位,即驱动晶体管T2的控制端的电压可以在每个发光周期的开始被复位,可降低上一发光周期对驱动晶体管T2的电压的影响,降低相邻两周期之间信号的影响。阈值提取模块20能够提取驱动晶体管T2的阈值电压,数据写入模块30能够将数据电压Vdata写入,并对驱动晶体管T2的阈值电压进行补偿,发光控制模块40能够使发光元件101发光,且保证流过驱动晶体管T2及发光元件101的电流相同,使所述电流与所述阈值电压及输入驱动晶体管T2的电源电压无关,即驱动晶体管T2的阈值电压及输入驱动晶体管T2的电源电压不会影响流过发光元件101的驱动电流,避免了由于驱动晶体管T2的特性造成的驱动电流偏差、漂移的问题,也避免了由于电源电压产生电压降对驱动电流的影响,提高了显示的均一性,提高了发光元件101的寿命。
请一并参阅图2及图3,复位模块10包括第一晶体管T1及第二电容C2,阈值提取模块20包括第三晶体管T3、第四晶体管T4、第五晶体管T5及第一电容C1,数据写入模块30包括第六晶体管T6,发光控制模块40包括第七晶体管T7及第八晶体管T8。
进一步地,当复位模块10响应第一控制信号X1时,第一晶体管T1导通,接入第一晶体管T1的参考电压Vint写入第二电容C2的第一端、驱动晶体管T2的控制端及发光元件LED的阳极,进而实现对驱动晶体管T2的控制端的电压进行复位。
当阈值提取模块20响应第二控制信号X2时,第三晶体管T3、第四晶体管T4、第五晶体管T5导通,参考电压Vint写入第一电容C1的第一端,电源电压写入驱动晶体管T2的第一极,驱动晶体管T2的第二极连通驱动晶体管T3的控制端,进而使驱动晶体管T2的控制端的电位升高直至驱动晶体管T2截止,进而提取驱动晶体管T2的阈值电压。
当数据写入模块30响应第三控制信号X3时,第六晶体管T6导通,数据电压Vdata写入第一电容C1的第一端,通过第一电容C1的耦合 作用实现对驱动晶体管T2的阈值电压进行补偿。
当发光控制模块40响应第四控制信号X4时,第七晶体管T7及第八晶体管T8导通,使流过驱动晶体管T2及发光元件LED的电流相同,且所述电流与所述阈值电压及输入驱动晶体管T2的电源电压无关。
本公开提供的像素驱动电路、显示面板及显示设备,复位模块能够对驱动晶体管的电压进行复位,即驱动晶体管的控制端的电压可以在每个发光周期的开始被复位,可降低上一发光周期对驱动晶体管的电压的影响,降低相邻两周期之间信号的影响。阈值提取模块能够提取驱动晶体管的阈值电压,数据写入模块能够将数据电压写入,并对驱动晶体管的阈值电压进行补偿,发光控制模块能够使发光元件发光,且保证流过驱动晶体管及发光元件的电流相同,使所述电流与所述阈值电压及输入驱动晶体管的电源电压无关,即驱动晶体管的阈值电压及输入驱动晶体管的电源电压不会影响流过发光元件的驱动电流,避免了由于驱动晶体管的特性造成的驱动电流偏差、漂移的问题,也避免了由于电源电压产生电压降对驱动电流的影响,提高了显示的均一性,提高了发光元件的寿命。
下面结合图2及图3对本公开提供的像素驱动电路100的连接关系及工作原理进行详细介绍。本实施方式中,第一控制信号X1为复位信号Reset,第二控制信号X2为第一扫描信号Scan(n-1),第三控制信号X3为第二扫描信号Scan(n),第四控制信号X4为发光控制信号EMIT。发光元件LED为micro LED。
第一晶体管T1的控制端接入第一控制信号X1,第一晶体管T1的第一极接入参考电压Vint,第一晶体管T1的第二极连接驱动晶体管T2的控制端,第一晶体管T2的第二极还连接第二电容C2的第一端,第二电容C2的第二端接入电源电压的正极端PVDD,第一晶体管T1的第二极还连接发光元件LED的阳极,发光元件LED的阴极连接电源电压的负极端PVEE。
第三晶体管T3的控制端接入第二控制信号X2,第三晶体管T3的 第一极连接第一晶体管T1的第一极,第三晶体管T3的第二极连接第一电容C1的第一端,第一电容C1的第二端连接驱动晶体管T2的控制端。第四晶体管T4的控制端接入第二控制信号X2,第四晶体管T4的第一极连接驱动晶体管T2的控制端,第四晶体管T4的第二极连接驱动晶体管T2的第二极。第五晶体管T5的控制端接入所述第二控制信号X2,第五晶体管T5的第一极连接所述电源电压的正极端PVDD,第五晶体管T5的第二极连接驱动晶体管T2的第一极。
第六晶体管T6的控制端接入第三控制信号X3,第六晶体管T6的第一极接入数据电压Vdata,第六晶体管T6的第二极连接第一电容C1的第一端。
第七晶体管T7的控制端接入第四控制信号X4,第七晶体管T7的第一极连接所述电源电压的正极端PVDD,第七晶体管T7的第二极连接驱动晶体管T2的第一极。第八晶体管T8的控制端接入第四控制信号X4,第八晶体管T8的第一极连接驱动晶体管T2的第二极,第八晶体管T8的第二极连接发光元件LED的阳极。
可以理解地,本实施方式中,第一晶体管T1、驱动晶体管T2、第三晶体管T3、第四晶体管T4、第五晶体管T5、第六晶体管T6、第七晶体管T7及第八晶体管T8均为P型晶体管,即TFT的控制端(栅极)为低电压导通。具体的,电源电压和参考电压Vint均为直流信号,工作时,电源电压的正极端PVDD输入直流高电平,电源电压的负极端PVEE和参考电压Vint输入直流低电平。第一扫描信号Scan(n-1)、第二扫描信号Scan(n)时钟脉冲信号。
本像素驱动电路100的工作过程包括4个阶段,分别为T10复位阶段、T20阈值提取阶段、T30数据电压写入阶段、T40发光阶段;T10复位阶段、T20阈值提取阶段、T30数据电压写入阶段、T40发光阶段构成发光元件LED的一个发光周期。
T10复位阶段:复位信号Reset为低电平,第一扫描信号Scan(n-1)、第二扫描信号Scan(n)、发光控制信号EMIT均为高电平,第一晶体管 T1打开,参考电压Vint写入第二电容C2的第一端、驱动晶体管T2的控制端(即N1节点)和发光元件LED的阳极(即N4节点),实现了对N1节点和N4节点的电压进行复位,且N1节点电压由第二电容C2保持。
T20阈值提取阶段:第一扫描信号Scan(n-1)为低电平,复位信号Reset、第二扫描信号Scan(n)、发光控制信号EMIT均为高电平,第三晶体管T3、第四晶体管T4、第五晶体管T5导通,电源电压的正极端PVDD写入驱动晶体管T2的第一极(即N3节点),由于第四晶体管T4导通,驱动晶体管T2的第二极(即N5节点)连通驱动晶体管T2的控制端,驱动晶体管T2的栅极和源极短接在一起,驱动晶体管T2相当于一个二极管接法。由于T10复位阶段的N1节点电压为参考电压Vint,驱动晶体管T2打开,此阶段电源电压的正极端PVDD、N3节点和N5节点形成通路。由于发光控制信号EMIT为高电平,第八晶体管T8关闭,电荷在N5节点积累,使得N1结点电位升高,直至使驱动晶体管T2不能打开,即驱动晶体管T2截止,截止时,N1结点电压为:V=PVDD-Vth,Vth为驱动晶体管T2的阈值电压,完成对驱动晶体管T2阈值电压的提取。
进一步地,第一扫描信号Scan(n-1)为低电平,第三晶体管T3打开,参考电压Vint电压写入第一电容C1的第一端(即N2节点),N2节点电压为Vint,由于N1节点电压同N5节点在变化,第一电容C1的第二端,即N1节点不是floating(漂移),故N1节点电压不会受N2节点电压影响。
T30数据电压写入阶段:第二扫描信号Scan(n)为低电平,复位信号Reset、第一扫描信号Scan(n-1)、发光控制信号EMIT均为高电平,第六晶体管T6导通,数据电压Vdata写入N2节点,N2节点电压变化为:△VN2=Vdata-Vint,由第一电容C1的耦合作用,第一电容C1电容右侧的N1结点的电压变化为:(Vdata-Vint)*C1/(C1+C2),依据为:电容串联后,每个电容所带的电量相等,并等于串联后的等效电容上 的电量,总电压等于各个电容电压之和,即第一电容C1与第二电容C2之间的电压为[C1/(C1+C2)]*U,第二电容C2与地的电压为[C2/(C1+C2)]*U,两者相加就是电源电压。因此,当前阶段N1结点的电压为:V=PVDD-Vth+(Vdata-Vint)*C1/(C1+C2),实现了对阈值电压Vth的补偿。
T40发光阶段:发光控制信号EMIT为低电平,复位信号Reset、第一扫描信号Scan(n-1)、第二扫描信号Scan(n)均为高电平,第七晶体管T7及第八晶体管T8导通,电源电压的正极端PVDD、N3节点、N4节点、电源电压的负极端PVEE形成通路,流过驱动晶体管T2及发光元件LED的电流I相同。
现有的电流公式为:I=0.5μCox(W/L)(Vdg-Vth)^2;其中μ为等效电子迁移率,Cox为栅绝缘层的电容值,W是T2的沟道宽度,L是T2的沟道长度,Vdg是T2的漏极-栅极电压,Vth是T2的阈值。
其中,Vg=PVDD-Vth+(Vdata-Vint)*C1/(C1+C2),Vd=PVDD;则Vdg=Vd-Vg=PVDD-(PVDD-|Vth|+(Vdata-Vint)*C1/(C1+C2))=Vth-(Vdat a-Vint)*C1/(C1+C2)。再将Vdg带入电流公式,且定义k=0.5μCox(W/L),则:I=k(Vth-(Vdata-Vint)*C1/(C1+C2)-Vth)^2。因此,最终的电流计算公式为:I=k*(Vint-Vdata)*C1/(C1+C2)^2,由此可以看出,流过发光元件LED的电流仅与参考电压Vint、数据电压Vdata、第一电容C1及第二电容C2有关,而与电源电压PVDD、阈值电压Vth无关,避免了由于驱动晶体管T2的特性造成的驱动电流偏差、漂移的问题,也避免了由于电源电压产生电压降对驱动电流的影响,提高了显示的均一性,提高了发光元件101的寿命。
本公开还提供一种显示面板,包括上述任意一项所述的像素驱动电路100。具体的,显示面板包括复位信号线、第一扫描信号线、第二扫描信号线及发光控制信号线。复位信号线连接像素驱动电路100的复位模块10,复位信号线输出第一控制信号X1;第一扫描信号线连接像素驱动电路100的阈值提取模块20,第一扫描信号线输出第二控制 信号X2;第二扫描信号线连接像素驱动电路100的数据写入模块30,第二扫描信号线输出第三控制信号X4;发光控制信号线连接像素驱动电路100的发光控制模块40,发光控制信号线输出第四控制信号X4。
本公开还提供一种显示设备,包括上述实施例所述的显示面板。可以理解,本公开提供的显示设备可以为,但不限于手机、平板电脑、笔记本电脑等,本公开提供的像素驱动电路100的所有实施例均适用于本公开提供的显示面板、显示设备,且均能够达到相同或相似的有益效果。
综上,本公开提供的像素驱动电路100、显示面板及显示设备,复位模块10能够对驱动晶体管T2的电压进行复位,即驱动晶体管T2的控制端的电压可以在每个发光周期的开始被复位,可降低上一发光周期对驱动晶体管T2的电压的影响,降低相邻两周期之间信号的影响。阈值提取模块20能够提取驱动晶体管T2的阈值电压,数据写入模块30能够将数据电压Vdata写入,并对驱动晶体管T2的阈值电压进行补偿,发光控制模块40能够使发光元件101发光,且保证流过驱动晶体管T2及发光元件101的电流相同,使所述电流与所述阈值电压及输入驱动晶体管T2的电源电压无关,即驱动晶体管T2的阈值电压及输入驱动晶体管T2的电源电压不会影响流过发光元件101的驱动电流,避免了由于驱动晶体管T2的特性造成的驱动电流偏差、漂移的问题,也避免了由于电源电压产生电压降对驱动电流的影响,提高了显示的均一性,提高了发光元件101的寿命。
以上所述仅为本公开的实施方式,并非因此限制本公开的专利范围,凡是利用本公开说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本公开的专利保护范围内。
工业实用性
本公开提供的像素驱动电路、显示面板及显示设备,驱动晶体管 的阈值电压及输入驱动晶体管的电源电压不会影响流过发光元件的驱动电流,提高了显示的均一性,提高了发光元件的寿命,具有很强的工业实用性。

Claims (10)

  1. 一种像素驱动电路,包括驱动晶体管,所述驱动晶体管用于驱动发光元件发光,其特征在于,所述像素驱动电路还包括复位模块、阈值提取模块、数据写入模块及发光控制模块;
    所述复位模块用于响应第一控制信号,对所述驱动晶体管的电压进行复位;所述阈值提取模块用于响应第二控制信号,以提取所述驱动晶体管的阈值电压;所述数据写入模块用于响应第三控制信号,将数据电压写入,并对所述驱动晶体管的阈值电压进行补偿;所述发光控制模块用于响应第四控制信号,使所述发光元件发光,且流过所述驱动晶体管及所述发光元件的电流相同,所述电流与所述阈值电压及输入所述驱动晶体管的电源电压无关。
  2. 如权利要求1所述的像素驱动电路,其中,所述复位模块包括第一晶体管及第二电容,所述阈值提取模块包括第三晶体管、第四晶体管、第五晶体管及第一电容,所述数据写入模块包括第六晶体管,所述发光控制模块包括第七晶体管及第八晶体管。
  3. 如权利要求2所述的像素驱动电路,其中,当所述复位模块响应所述第一控制信号时,所述第一晶体管导通,接入所述第一晶体管的参考电压写入所述第二电容的第一端、所述驱动晶体管的控制端及所述发光元件的阳极,进而实现对所述驱动晶体管的控制端的电压进行复位。
  4. 如权利要求2所述的像素驱动电路,其中,当所述阈值提取模块响应所述第二控制信号时,所述第三晶体管、第四晶体管、第五晶体管导通,参考电压写入所述第一电容的第一端,所述电源电压写入所述驱动晶体管的第一极,所述驱动晶体管的第二极连通所述驱动晶体管的控制端,进而使所述驱动晶体管的控制端的电位升高直至所述驱动晶体管截止,进而提取所述驱动晶体管的阈值电压。
  5. 如权利要求2所述的像素驱动电路,其中,当所述数据写入模 块响应第三控制信号时,所述第六晶体管导通,所述数据电压写入所述第一电容的第一端,通过所述第一电容的耦合作用实现对所述驱动晶体管的阈值电压进行补偿。
  6. 如权利要求2所述的像素驱动电路,其中,当所述发光控制模块响应所述第四控制信号时,所述第七晶体管及第八晶体管导通,使流过所述驱动晶体管及所述发光元件的电流相同,且所述电流与所述阈值电压及输入所述驱动晶体管的电源电压无关。
  7. 如权利要求2所述的像素驱动电路,其中,所述第一晶体管的控制端接入所述第一控制信号,所述第一晶体管的第一极接入参考电压,所述第一晶体管的第二极连接所述驱动晶体管的控制端,所述第一晶体管的第二极还连接所述第二电容的第一端,所述第二电容的第二端接入所述电源电压的正极端,所述第一晶体管的第二极还连接所述发光元件的阳极,所述发光元件的阴极连接所述电源电压的负极端;
    所述第三晶体管的控制端接入所述第二控制信号,所述第三晶体管的第一极连接所述第一晶体管的第一极,所述第三晶体管的第二极连接所述第一电容的第一端,所述第一电容的第二端连接所述驱动晶体管的控制端;所述第四晶体管的控制端接入所述第二控制信号,所述第四晶体管的第一极连接所述驱动晶体管的控制端,所述第四晶体管的第二极连接驱动晶体管的第二极;所述第五晶体管的控制端接入所述第二控制信号,所述第五晶体管的第一极连接所述电源电压的正极端,所述第五晶体管的第二极连接所述驱动晶体管的第一极;
    所述第六晶体管的控制端接入所述第三控制信号,所述第六晶体管的第一极接入所述数据电压,所述第六晶体管的第二极连接所述第一电容的第一端;
    所述第七晶体管的控制端接入所述第四控制信号,所述第七晶体管的第一极连接所述电源电压的正极端,所述第七晶体管的第二极连接所述驱动晶体管的第一极;所述第八晶体管的控制端接入所述第四控制信号,所述第八晶体管的第一极连接所述驱动晶体管的第二极, 所述第八晶体管的第二极连接所述发光元件的阳极。
  8. 一种显示面板,其特征在于,包括如1-7任意一项所述的像素驱动电路。
  9. 如权利要求8所述的显示面板,其中,还包括复位信号线、第一扫描信号线、第二扫描信号线及发光控制信号线;所述复位信号线连接所述像素驱动电路的复位模块,所述复位信号线输出第一控制信号;所述第一扫描信号线连接所述像素驱动电路的阈值提取模块,所述第一扫描信号线输出第二控制信号;所述第二扫描信号线连接所述像素驱动电路的数据写入模块,所述第二扫描信号线输出第三控制信号;所述发光控制信号线连接所述像素驱动电路的发光控制模块,所述发光控制信号线输出第四控制信号。
  10. 一种显示设备,其特征在于,包括权利要求8或9所述的显示面板。
PCT/CN2021/116308 2021-07-22 2021-09-02 像素驱动电路、显示面板及显示设备 WO2023000448A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110831647.9 2021-07-22
CN202110831647.9A CN113487996A (zh) 2021-07-22 2021-07-22 像素驱动电路、显示面板及显示设备

Publications (1)

Publication Number Publication Date
WO2023000448A1 true WO2023000448A1 (zh) 2023-01-26

Family

ID=77942981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116308 WO2023000448A1 (zh) 2021-07-22 2021-09-02 像素驱动电路、显示面板及显示设备

Country Status (2)

Country Link
CN (1) CN113487996A (zh)
WO (1) WO2023000448A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117636807A (zh) * 2023-12-28 2024-03-01 惠科股份有限公司 显示驱动电路、显示驱动方法和显示面板

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113920915B (zh) * 2021-10-19 2024-05-28 上海闻泰信息技术有限公司 一种光感驱动电路、驱动方法及显示面板
CN114038405A (zh) * 2021-11-22 2022-02-11 深圳市华星光电半导体显示技术有限公司 发光器件驱动电路、背光模组以及显示面板
CN114822413A (zh) * 2022-05-10 2022-07-29 绵阳惠科光电科技有限公司 像素电路、像素驱动方法及显示装置
CN115206227B (zh) * 2022-05-18 2023-04-07 惠科股份有限公司 像素单元的驱动电路及显示面板
CN115101012A (zh) * 2022-07-06 2022-09-23 北京欧铼德微电子技术有限公司 像素补偿电路、系统和方法
CN115440163B (zh) 2022-11-09 2023-01-03 惠科股份有限公司 像素驱动电路、像素驱动方法及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110193855A1 (en) * 2010-02-05 2011-08-11 Sam-Il Han Pixel, display device, and driving method thereof
CN103915057A (zh) * 2013-01-04 2014-07-09 友达光电股份有限公司 像素驱动电路及使用其的有机发光显示器
CN104217682A (zh) * 2014-09-04 2014-12-17 上海天马有机发光显示技术有限公司 一种像素电路、有机电致发光显示面板及显示装置
CN104464616A (zh) * 2014-10-28 2015-03-25 上海天马有机发光显示技术有限公司 像素电路及其驱动方法、显示面板
CN106409233A (zh) * 2016-11-28 2017-02-15 上海天马有机发光显示技术有限公司 一种像素电路、其驱动方法及有机发光显示面板
CN112053661A (zh) * 2020-09-28 2020-12-08 京东方科技集团股份有限公司 像素电路、像素驱动方法、显示面板和显示装置
CN112581908A (zh) * 2020-12-23 2021-03-30 上海天马有机发光显示技术有限公司 像素驱动电路、驱动方法、显示面板与显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010224390A (ja) * 2009-03-25 2010-10-07 Seiko Epson Corp 単位回路、並びに単位回路及び電気光学装置の駆動方法
KR101178911B1 (ko) * 2009-10-15 2012-09-03 삼성디스플레이 주식회사 화소 및 이를 이용한 유기전계발광 표시장치
CN103077680B (zh) * 2013-01-10 2016-04-20 上海和辉光电有限公司 一种oled像素驱动电路
CN104050917B (zh) * 2014-06-09 2018-02-23 上海天马有机发光显示技术有限公司 一种像素电路、有机电致发光显示面板及显示装置
CN114093326B (zh) * 2017-10-18 2023-04-11 京东方科技集团股份有限公司 一种像素电路及其驱动方法
CN112071259B (zh) * 2020-09-15 2021-11-23 武汉华星光电半导体显示技术有限公司 像素电路及显示面板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110193855A1 (en) * 2010-02-05 2011-08-11 Sam-Il Han Pixel, display device, and driving method thereof
CN103915057A (zh) * 2013-01-04 2014-07-09 友达光电股份有限公司 像素驱动电路及使用其的有机发光显示器
CN104217682A (zh) * 2014-09-04 2014-12-17 上海天马有机发光显示技术有限公司 一种像素电路、有机电致发光显示面板及显示装置
CN104464616A (zh) * 2014-10-28 2015-03-25 上海天马有机发光显示技术有限公司 像素电路及其驱动方法、显示面板
CN106409233A (zh) * 2016-11-28 2017-02-15 上海天马有机发光显示技术有限公司 一种像素电路、其驱动方法及有机发光显示面板
CN112053661A (zh) * 2020-09-28 2020-12-08 京东方科技集团股份有限公司 像素电路、像素驱动方法、显示面板和显示装置
CN112581908A (zh) * 2020-12-23 2021-03-30 上海天马有机发光显示技术有限公司 像素驱动电路、驱动方法、显示面板与显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117636807A (zh) * 2023-12-28 2024-03-01 惠科股份有限公司 显示驱动电路、显示驱动方法和显示面板

Also Published As

Publication number Publication date
CN113487996A (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
WO2023000448A1 (zh) 像素驱动电路、显示面板及显示设备
WO2019237735A1 (zh) 像素电路及其驱动方法、显示面板和显示装置
TWI425472B (zh) 像素電路及其驅動方法
WO2017118055A1 (zh) 像素驱动电路、像素驱动方法、显示面板和显示装置
WO2016045283A1 (zh) 像素驱动电路、方法、显示面板和显示装置
CN102956191B (zh) 有机发光二极管补偿电路
WO2016011711A1 (zh) 像素电路、像素电路的驱动方法和显示装置
WO2016119304A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2017031909A1 (zh) 像素电路及其驱动方法、阵列基板、显示面板及显示装置
WO2018054350A1 (zh) 像素电路及其驱动方法、阵列基板以及显示装置
CN111613180A (zh) Amoled像素补偿驱动电路、方法及显示面板
WO2018228202A1 (zh) 像素电路、像素驱动方法和显示装置
WO2018157443A1 (zh) 像素补偿电路及驱动方法、显示装置
US11222585B2 (en) Pixel driving circuit and pixel driving method
WO2020187158A1 (zh) 像素驱动电路和显示面板及其驱动方法、显示装置
WO2023011333A1 (zh) 像素驱动电路及其驱动方法、显示面板
CN105096837A (zh) 一种像素电路及其驱动方法、显示面板和显示装置
WO2023115533A1 (zh) 像素电路以及显示面板
CN113450695A (zh) 一种MicroLED像素电路、时序控制方法及显示器
CN109192139B (zh) 一种像素补偿电路
CN110738964A (zh) 像素电路及显示装置
WO2024045830A1 (zh) 像素电路及显示面板
CN109410835B (zh) 一种新型oled驱动电路
WO2017121162A1 (zh) 像素驱动电路、方法、像素结构及显示器件
CN110164365B (zh) 像素驱动电路及其驱动方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE