WO2022270380A1 - 有機溶剤回収システム - Google Patents

有機溶剤回収システム Download PDF

Info

Publication number
WO2022270380A1
WO2022270380A1 PCT/JP2022/023971 JP2022023971W WO2022270380A1 WO 2022270380 A1 WO2022270380 A1 WO 2022270380A1 JP 2022023971 W JP2022023971 W JP 2022023971W WO 2022270380 A1 WO2022270380 A1 WO 2022270380A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic solvent
gas
cooling
recovery system
adsorption
Prior art date
Application number
PCT/JP2022/023971
Other languages
English (en)
French (fr)
Inventor
大樹 河野
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to US18/572,901 priority Critical patent/US20240278165A1/en
Priority to CN202280044338.XA priority patent/CN117545542A/zh
Priority to KR1020247001661A priority patent/KR20240023605A/ko
Priority to JP2022568544A priority patent/JPWO2022270380A1/ja
Priority to EP22828297.6A priority patent/EP4360730A1/en
Publication of WO2022270380A1 publication Critical patent/WO2022270380A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0027Condensation of vapours; Recovering volatile solvents by condensation by direct contact between vapours or gases and the cooling medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0003Condensation of vapours; Recovering volatile solvents by condensation by using heat-exchange surfaces for indirect contact between gases or vapours and the cooling medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0057Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/44Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
    • B01D2259/4009Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating using hot gas

Definitions

  • This disclosure relates to an organic solvent recovery system.
  • a combination of a cooling condensation device and a concentrating device using an adsorption element is known.
  • the cooling condensing device condenses and recovers the organic solvent to reduce the concentration of the organic solvent in the exhaust gas.
  • Concentrators using adsorption elements contact the exhaust gas with reduced organic solvent concentration discharged from the cooling and condensing device with the adsorption element to absorb the organic solvent and further reduce the organic solvent concentration in the exhaust gas.
  • a high-temperature gas is blown onto the adsorbent that has adsorbed the solvent to desorb the organic solvent, and the desorbed gas containing the organic solvent at a high concentration is discharged.
  • the desorbed gas is returned to the cooling condenser and reprocessed (see Patent Literatures 1 and 2).
  • JP 2016-101553 A Japanese Unexamined Patent Application Publication No. 2017-991
  • An object of the present disclosure is to provide an organic solvent recovery system capable of recovering an organic solvent from exhaust gas more efficiently.
  • the organic solvent recovery system of the present disclosure is an organic solvent recovery system that recovers the organic solvent from the organic solvent-containing exhaust gas emitted from production equipment.
  • the organic solvent recovery system includes a cooling condensation device that liquefies and condenses the organic solvent by cooling the exhaust gas containing the organic solvent and discharges it as a cooled gas in which the concentration of the organic solvent is reduced; a first flow path through which the process gas flows; and a first adsorption element that adsorbs the organic solvent contained in the cooled process gas introduced from the first flow path to further increase the concentration of the organic solvent.
  • a first concentrator for discharging as a reduced first treated gas, introducing a high-temperature gas to desorb the organic solvent from the first adsorption element, and discharging as a first desorbed gas; and a second adsorption element adsorbs the organic solvent contained in the first process gas introduced from the second circulation path to further increase the concentration of the organic solvent.
  • a second concentrator that discharges as a reduced second process gas, introduces hot gas to desorb the organic solvent from the second adsorption element, and discharges as a second desorbed gas. At least two or more of the first concentrating devices are provided, at least one or more of the second concentrating devices are provided, and the number of the second concentrating devices is less than the number of the first concentrating devices.
  • the plurality of first concentrators are arranged in parallel with the production equipment.
  • At least two cooling and condensing devices are provided, and the number of the first concentrating devices is the same as the number of the cooling and condensing devices.
  • the cooling and condensing device includes a network structure that separates the condensed organic solvent and the cooling process gas by contacting the exhaust gas after cooling, and the network structure. and a chamber in which the cooled processing gas after passing through is stored for a certain period of time.
  • the cooling and condensing device further includes a heat exchanger that performs the cooling by heat exchange with a refrigerant.
  • a plurality of the first concentrators are arranged in the circumferential direction around the cylinder axis of a hollow columnar rotor in which the first adsorption element rotates around the cylinder axis.
  • the second concentrator is arranged on a disk-shaped adsorption rotor in which the second adsorption element rotates around the cylinder axis.
  • an organic solvent recovery system capable of recovering the organic solvent from the exhaust gas more efficiently.
  • FIG. 1 is a diagram schematically showing the configuration of an organic solvent recovery system according to Embodiment 1A;
  • FIG. FIG. 4 is an example of another configuration diagram of the organic solvent recovery system in Embodiment 1A.
  • FIG. 10 is an example of still another configuration diagram of the organic solvent recovery system in Embodiment 1A.
  • 1 is a diagram schematically showing the configuration of an organic solvent recovery system according to Embodiment 1B;
  • FIG. FIG. 4 is a diagram schematically showing the configuration of an organic solvent recovery system according to Embodiment 2B; It is a figure which shows roughly the structure of the organic-solvent recovery system of Embodiment 1C.
  • FIG. 4 is a diagram schematically showing the configuration of an organic solvent recovery system according to Embodiment 2C; It is a figure which shows roughly the structure of the organic-solvent recovery system of Embodiment 3C.
  • FIG. 4 is a diagram schematically showing the configuration of an organic solvent recovery system according to Embodiment 4C; 1 is a diagram schematically showing the configuration of an organic solvent recovery system according to Embodiment 1D; FIG. FIG. 4 is a diagram schematically showing the configuration of an organic solvent recovery system according to Embodiment 2D; It is a figure which shows roughly the structure of the organic-solvent recovery system of Embodiment 3D.
  • FIG. 4 is a diagram schematically showing the configuration of an organic solvent recovery system according to Embodiment 2C; It is a figure which shows roughly the structure of the organic-solvent recovery system of Embodiment 3D.
  • FIG. 4 is a diagram schematically showing the configuration of an organic solvent recovery system according to Embodiment 2C; It is a figure which shows roughly
  • FIG. 1 is a diagram schematically showing the configuration of an organic solvent recovery system 1A according to Embodiment 1A.
  • the organic solvent recovery system 1A is composed of a cooling condenser 100, a concentrator 300, a first circulation path F1, and a second circulation path F2.
  • the cooling-condensing device 100 has a cooling section 110 , a separating section 120 and a chamber 123 .
  • the exhaust gas G1 containing the organic solvent is cooled by passing through the cooling section 110, and the organic solvent is liquefied and condensed accordingly.
  • the exhaust gas G2 is separated into a liquefied and condensed cooled condensate L1 and a cooled processed gas G3 having a reduced organic solvent concentration by passing through the separation section 120 .
  • a portion of the cooled process gas (adsorption inlet gas) G 4 is distributed to feed concentrator 300 and exit cooled condenser 100 .
  • cooling means and configuration of the cooling unit 110 are not particularly limited, there is a first heat exchanger 111 that cools the exhaust gas by indirect heat exchange between refrigerant such as cooling water, cold water, and brine. Conditions such as the cooling temperature may also be appropriately determined depending on the organic solvent to be recovered.
  • the cooling unit 110 may be provided with a second heat exchanger 112 in front of the first heat exchanger 111 that cools the exhaust gas G1 by heat exchange between the remainder (return gas) G6 of the cooling process gas and the exhaust gas G1. good. This is because the heat transfer area and the amount of refrigerant required for the first heat exchanger 111 are reduced.
  • the separation means and configuration of the separation unit 120 are not particularly limited, there are net-like structures 121 such as demisters, filters, and meshes that catch droplets by contact.
  • the cooled condensate L1 trapped in the mesh-like structure 121 is collected by gravity into a tank 125 arranged below the mesh-like structure 121 and recovered as a recovered liquid L3.
  • the chamber 123 is a structure having a certain amount of space. A part of the cooling process gas (adsorption inlet gas) G4 to be supplied to the concentrator 300 and the rest of the cooling process gas (return gas) G6 are distributed.
  • the chamber 123 has a partition part 128 that allows the intake of the first flow path F1 so as to face the exhaust direction of the cooling process gas G3 discharged from the mesh structure 121 .
  • the concentrator 300 has an adsorption element 310 containing an adsorbent that adsorbs the contained organic solvent when it comes into contact with the gas and desorbs the adsorbed organic solvent when it comes into contact with the heated gas.
  • the adsorption element 310 also includes a desorption section (desorption zone) 311 and an adsorption section (adsorption zone) 312 .
  • a part of the cooling process gas (adsorption inlet gas) G4 is introduced, and a part of the cooling process gas (adsorption inlet gas) G4 is brought into contact with the adsorbent.
  • the organic solvent contained in the inlet gas) G4 is adsorbed by the adsorbent, whereby part of the cooling process gas (adsorption inlet gas) G4 is cleaned and discharged as clean gas G9.
  • the organic solvent is desorbed from the adsorbent by introducing a gas G10 having a higher temperature than a part of the cooling process gas (adsorption inlet gas) G4 into the adsorbent, thereby desorbing the organic solvent. It is discharged as gas G11.
  • activated alumina, silica gel, activated carbon material, and zeolite are widely used, and among them, activated carbon and hydrophobic zeolite are particularly preferably used.
  • activated carbon and hydrophobic zeolite are excellent in the function of adsorbing and desorbing low-concentration organic compounds, and have been used as adsorbents in various devices for a long time.
  • the specific configuration of the concentrator in the embodiment is not particularly limited, as shown in FIG. is known to rotate the adsorption section 312 so that the adsorbent that adsorbs the organic solvent in the part of the cooling process gas (adsorption inlet gas) G4 is continuously moved to the desorption section 311 .
  • the desorption section 311 is preferably arranged below the adsorption section 312 as shown in FIG. This is because even when part of the organic solvent contained in the desorption gas G11 is liquefied and condensed to generate the desorption condensate L2, the desorption condensate L2 is less likely to adhere to the adsorption unit 312.
  • the desorbed condensate L2 falls downward from the desorbing portion 311 and is collected along the inner surface of the exterior of the desorbing portion. More preferably, as shown in FIG. 1, the attachment/detachment portion 311 is inclined downward. This is because the desorbed condensate L2 falls more easily.
  • the concentrating device 300 may have a purge section (not shown) in which the portion of the desorption section 311 that has completed the desorption process is transferred before transfer to the adsorption section 312 .
  • a part of the clean gas G9 may be introduced into the purge section, and the purge section outlet gas discharged from the purge section may be introduced into the adsorption section 312 . This is because, by purging the adsorbent that has been completely desorbed with the clean gas G9, the desorbed gas G11 remaining in the adsorbent can be prevented from being mixed with the clean gas G9, and the adsorbent can be cooled.
  • the high-temperature gas G10 used for desorption is preferably a part of the clean gas G9 heated to a high temperature using heating means such as the regeneration heater 350. This is because the amount of air to be processed for the organic solvent-containing gas in the adsorption section 312 does not increase.
  • the temperature of the exhaust gas G1 is 50 to 200° C., it is more preferable to heat a part of the exhaust gas G1 with the regeneration heater 350 or the like before use. This is because the utility of the regeneration heater 350 can be reduced by using the high-temperature exhaust gas G1 for desorption, and the regeneration heater 350 becomes unnecessary for desorption depending on the temperature of the exhaust gas G1. Further, it is assumed that the exhaust gas G1 and the desorption gas G11 pass through the cooling and condensing device 100 at a ratio of 0% to 50% and 50% to 100%, respectively.
  • the first flow path F1 is a part that introduces part of the cooling process gas (adsorption inlet gas) G4 from the chamber 123 to the concentrator 300.
  • the connection port of the first flow path F1 to the chamber 123 is preferably the ceiling portion 127 of the chamber 123 . This is to prevent a small amount of liquid droplets that could not be captured by the separation unit 120 from entering the concentrating device 300, thereby preventing deterioration in performance and strength due to wetting of the adsorption element 310 of the concentrating device 300, which will be described later.
  • the partition 128 should be provided so as to take out a part of the cooling process gas (adsorption inlet gas) G4 so as to be opposed to the ventilation direction of the cooling process gas G3.
  • a liquid droplet penetration prevention member similar to the mesh structure 121 may be provided at the outlet of part of the cooling process gas (adsorption inlet gas) G4, or a heater for vaporizing liquid droplets may be provided. may be provided.
  • the second flow path F2 is a part that returns the desorption gas G11 to the exhaust gas G1 introduction part of the cooling/condensing device 100.
  • the second flow path F2 is preferably connected so that the desorption section 311 is arranged above the position where the desorption gas G11 and the exhaust gas G1 supplied to the cooling/condensing device 100 join. This is because the desorbed condensate L2 generated from the desorbed gas G11 of the concentrator 300 easily moves to the cooling condensing device 100 . More preferably, it should be configured such that it is ventilated in two places, the exhaust gas G1 introduction part of the cooling and condensing device 100 and the tank 125 . This is because the desorbed condensed liquid L2 generated from the desorbed gas G11 can be easily collected directly into the tank 125 .
  • the high-temperature gas G10 used for desorption of the concentrator 300 of the organic solvent recovery system 1A in the embodiment is preferably a part of the clean gas G9 heated to a high temperature using a heating means such as the regeneration heater 350 as described above.
  • a heating means such as the regeneration heater 350 as described above.
  • the regeneration heater 350 it is more preferable to use the regeneration heater 350 or the like to raise the temperature of a part of the exhaust gas G1. This is because the utility of the regeneration heater 350 can be reduced by using high-temperature exhaust gas for desorption, and the regeneration heater 350 becomes unnecessary for desorption depending on the temperature of the exhaust gas G1.
  • the exhaust gas G1 and the desorption gas G11 pass through the cooling and condensing device 100 at a ratio of 0% to 50% and 50% to 100%, respectively.
  • the rest of the cooling process gas (return gas) G6 may be returned to the production facility 130.
  • a concentrator 600 for processing the clean gas G9 may be additionally introduced.
  • the concentrator 500 and the concentrator 600 may have the same configuration as the concentrator 300 or a different configuration. There is no limit to the number of concentrators to be additionally introduced.
  • the desorption gas discharged from any concentrator is returned to the exhaust gas G1 introduction part of the cooling condenser 100 via the second flow path F2.
  • the organic solvent contained in the exhaust gas G1 includes an organic solvent that can be liquefied and recovered by cooling at 1°C to 50°C.
  • organic solvents are N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide and n-decane. These are examples and are not limiting.
  • the organic solvent contained may be one or more.
  • FIG. 4 is a diagram schematically showing the configuration of an organic solvent recovery system 1B according to Embodiment 1B.
  • the organic solvent recovery system 1B is composed of a cooling condensation device 100, a first concentrating device 200, a second concentrating device 300, and various flow paths.
  • the cooling/condensing device 100 has a cooling section 110 and a separating section 120 .
  • An exhaust gas G1 containing an organic solvent is discharged from the production facility 130. As shown in FIG.
  • the exhaust gas G1 is cooled by passing through the cooling section 110 .
  • the organic solvent is liquefied and condensed.
  • the exhaust gas G2 that has passed through the cooling section 110 is separated into a liquefied and condensed cooling condensate L1 and a cooling process gas G3 with a reduced organic solvent concentration by passing through the separation section 120 .
  • Cooled process gas G3 is discharged from cooled condenser 100 to first concentrator 200 through chamber 123 as cooled process gas G4.
  • the cooling means and configuration of the cooling unit 110 are not particularly limited.
  • a first heat exchanger 111 is used that cools exhaust gas by indirect heat exchange between a refrigerant such as cooling water, cold water, and brine.
  • the first heat exchanger 111 is positioned so that the exhaust gas G1 flows vertically.
  • the cooling unit 110 is provided with a second heat exchanger 112 in front of the first heat exchanger 111 that cools the exhaust gas G1 by heat exchange between the cooling process gas G6 and the exhaust gas G1, which will be described later.
  • the second heat exchanger 112 can reduce the heat transfer area and the amount of refrigerant required for the first heat exchanger 111 .
  • a part of the exhaust gas G1 and the cooling process gas G6 is returned to the production facility 130 through the fifth flow path F5.
  • Conditions such as the cooling temperature in the first heat exchanger 111 and the second heat exchanger 112 may be appropriately determined according to the organic solvent to be recovered.
  • Embodiment 1B uses a reticulated structure 121 such as demisters, filters, and meshes that contact and trap droplets.
  • the separation unit 120 has a funnel-shaped receiving unit 122 that receives the cooled condensate L1 containing the organic solvent that has been cooled in the cooling unit 110 .
  • the cooled condensate L1 cooled in the cooling part 110 and the cooled condensate L1 trapped in the network structure 121 flow to the receiving part 122 by gravity, and then are collected in the tank 125 arranged below the receiving part 122 . It is liquefied and recovered as recovery liquid L3.
  • the chamber 123 is a structure having a certain amount of space.
  • a weir 124 is provided in the chamber 123 .
  • the weir 124 prevents part of the cooling condensate L1 from moving toward the tip of the chamber 123 and flowing into the first flow path F1 as the cooling gas flow path.
  • Weir 124 serves to ensure that cooling condensate L1 is recovered.
  • the cooled process gas G3 stored in the chamber 123 for a certain period of time flows through the first flow path F1 as the cooled process gas G4 and is supplied to the first concentration device 200 .
  • the direction of flow from the mesh structure 121 to the chamber 123 in the separation unit 120 is relative to the direction of flow from the cooling unit 110 to the separation unit 120.
  • the exhaust gas G1 exhaust gas G2, cooling process gas G3 flows in the L-shaped direction.
  • the organic solvent recovery system 1B Since the organic solvent recovery system 1B has an L-shaped structure where the cooling unit 110 and the separation unit 120 are configured, it suppresses the exposure of the first concentration device 200 and the second concentration device 300 by droplets and splashes. can do.
  • the first concentrator 200 and the second concentrator 300 may be weakened or damaged if exposed and the adsorbent gets wet. Since the organic solvent recovery system 1B has an L-shaped structure, it is possible to prevent the first concentrator 200 and the second concentrator 300 from being weakened or damaged.
  • the first concentrator 200 has an adsorption rotor 212 that includes an adsorbent that adsorbs the contained organic solvent by contact with gas and desorbs the adsorbed organic solvent by contact with heated gas.
  • the adsorption rotor 212 is composed of a plurality of adsorption units 210 partitioned by a plurality of partitions.
  • the suction rotor 212 has a hollow cylindrical shape as a whole due to the plurality of suction units 210 .
  • the adsorption rotor 212 is installed in the processing chamber and is provided so that the fluid can flow in the radial direction.
  • the attraction rotor 212 is rotatable around the cylinder axis by receiving the rotational driving force of the motor.
  • a part of the adsorption unit 210 constitutes an adsorption section that adsorbs the organic solvent contained in the cooled processed gas G4 supplied from the outside to the inside of the adsorption unit 210, and the adsorption unit 210 constitutes a desorption section that desorbs the organic solvent adsorbed by the adsorption unit 210 from the adsorption unit 210 by supplying heated air from the inside to the outside of the adsorption unit 210 .
  • the cooled processing gas G4 supplied into the processing chamber is introduced from the outer peripheral surface of the adsorption rotor 212 into the adsorption section.
  • the cooled processing gas G4 introduced into the adsorption section adsorbs the organic solvent to the plurality of adsorption units 210 positioned in the adsorption section when passing through the adsorption rotor 212 from the outer peripheral surface to the inner peripheral surface along the radial direction. It is purified by letting
  • the cooled process gases G5 and G6 as the cleaned fluid to be processed are discharged from the upper part of the adsorption unit 210 as clean gas.
  • a part of the discharged clean gas flows through the second flow path F2 as the cooled processed gas G5 and is supplied to the second concentrator 300.
  • a part of the discharged clean gas flows through the fourth flow path F4 as the cooled processed gas G6 and is returned to the second heat exchanger 112 .
  • the inner peripheral side flow path forming member 211 and the outer peripheral side flow path forming member 213 are arranged facing each other on the inner peripheral side and the outer peripheral side of the adsorption rotor 212 so as to sandwich a part of the adsorption rotor 212 in the circumferential direction. ing.
  • a region of the adsorption rotor 212 sandwiched between the inner peripheral side flow path forming member 211 and the outer peripheral side flow path forming member 213 is a detachable portion.
  • the hot gas G7 which is a part of the cooling process gas G5 heated by the regeneration heater 250, is introduced from the inner peripheral side passage forming member 211 to the desorption portion.
  • the high-temperature gas G7 introduced into the desorption section when passing through the adsorption rotor 212, thermally desorbs the organic solvent adsorbed by the plurality of adsorption units 210 located in the desorption section.
  • the desorption gas G8 containing the organic solvent is discharged as a concentrated gas from the desorption section through the outer peripheral side flow path forming member 213 to the outside of the processing chamber and returned to the third flow path F3.
  • a part of the organic solvent contained in the desorption gas G8 is liquefied and condensed and collected in the tank 125 as the desorption condensate L2.
  • the third flow path F3 is a part for returning the desorption gas G8 and the later-described desorption gas G11 to the exhaust gas G1 introduction part of the cooling and condensing device 100.
  • the third flow path F3 is preferably connected so that the desorption section is arranged above the position where the desorption gas and the exhaust gas G1 supplied to the cooling/condensing device 100 join. This is because the desorbed condensate L2 generated from the desorbed gas G8 of the first concentrator 200 and the desorbed gas G11 of the second concentrator 300 easily moves to the cooling condenser 100 .
  • the third flow path F3 is configured so as to pass through two points, the inlet of the exhaust gas G1 of the cooling and condensing device 100 and the tank 125 . This is because the desorbed condensed liquid L2 generated from the desorbed gas G8 and the desorbed gas G11 can be easily collected directly into the tank 125 .
  • the adsorption unit 210 located in the adsorption section performs adsorption processing of the substance to be processed, and after the adsorption processing, the adsorption unit 210 located in the desorption section performs desorption processing of the substance to be processed. done.
  • the adsorption rotor 212 rotates around the cylindrical axis, the adsorption unit 210 alternately moves between the desorption section and the adsorption section, and adsorption and desorption of the substance to be treated are continuously performed.
  • Activated alumina, silica gel, activated carbon material, zeolite, and the like can be used as materials for the adsorption elements that constitute the adsorption unit 210 .
  • the shape of the adsorption element in the adsorption unit 210 is not particularly limited, and may be, for example, a honeycomb-shaped sheet containing an activated carbon material or zeolite, or a laminate of activated carbon fiber nonwoven fabrics.
  • the second concentrator 300 has an adsorption element 310 containing an adsorbent that adsorbs the contained organic solvent by contact with gas and desorbs the adsorbed organic solvent by contact with heated gas.
  • the adsorption element 310 includes a desorption section (desorption zone) 311 and an adsorption section (adsorption zone) 312 .
  • the cooling process gas G5 is introduced into the adsorbent, and the cooling process gas G5 is brought into contact with the adsorbent. is cleaned and discharged as clean gas G9.
  • the high-temperature gas G10 having a higher temperature than the cooling process gas G5 is introduced into the adsorbent, whereby the organic solvent is desorbed from the adsorbent and discharged as the desorbed gas G11 containing the organic solvent.
  • activated alumina, silica gel, activated carbon material, and zeolite are widely used, and among them, activated carbon and hydrophobic zeolite are particularly preferably used.
  • the second concentrator 300 includes a rotating shaft and an adsorption element 310 provided around the rotating shaft.
  • the second concentrating device 300 rotates the adsorption element 310 around the rotation axis, so that the adsorbent that adsorbs the organic solvent in the cooling process gas G5 introduced from the second flow path F2 is continuous in the adsorption section 312. It is configured to move to the detachable portion 311 automatically.
  • the desorption section 311 of the second concentrator 300 is arranged below the adsorption section 312 . This is because even when part of the organic solvent contained in the desorption gas G11 is liquefied and condensed to generate the desorption condensate L2, the desorption condensate L2 is less likely to adhere to the adsorption unit 312.
  • the desorbed condensate L2 falls downward from the desorption section 311 and is collected along the inner surface of the exterior of the desorption section. More preferably, the desorbing portion 311 is inclined downward so that the desorbed condensate L2 can easily fall downward.
  • the second concentrating device 300 may have a cleaning section (purge section) in which the portion where the desorption processing of the desorption section 311 is completed transfers before transferring to the adsorption section 312 .
  • a part of the clean gas G9 may be introduced into the purge section, and the purge section outlet gas discharged from the purge section may be introduced into the adsorption section 312 .
  • the high-temperature gas G10 used for desorption is preferably a part of the clean gas G9 heated to a high temperature using heating means such as the regeneration heater 350. This is because, in the adsorption section 312, the processing air volume of the organic solvent-containing gas does not increase.
  • FIG. 5 is a diagram schematically showing the configuration of an organic solvent recovery system 2B according to Embodiment 2B.
  • the organic solvent recovery system 2B is composed of a cooling condensation device 100, a first concentrating device 200, a second concentrating device 300, and various flow paths.
  • the organic solvent recovery system 2B is the same as the organic solvent recovery system 1B of Embodiment 1B except that a heater 126 is provided inside the chamber 123 .
  • the heater 126 slightly heats the cooled process gas G3 after cooling.
  • the cooled process gas G3 can prevent the organic solvent or moisture from condensing by being slightly heated.
  • the cooling/condensing device 100 includes a cooling section 110 through which the exhaust gas G1 flows, and a separating section 120 located downstream of the cooling section 110 when viewed along the flow direction of the exhaust gas G1. contains.
  • the separation unit 120 separates the cooled condensate L1 and the cooling process gas G3 by bringing the exhaust gas G2 after cooling into contact with the receiving unit 122 that receives the cooled condensate L1 containing the organic solvent cooled in the cooling unit 110. It has a mesh-like structure 121 and a chamber 123 in which the cooled processing gas G3 after passing through the mesh-like structure 121 is stored for a certain period of time.
  • the direction of flow from the mesh structure 121 to the chamber 123 in the separation unit 120 intersects with the direction of flow from the cooling unit 110 to the separation unit 120, thereby causing the exhaust gas to flow. It flows in an L-shaped direction.
  • the cooled condensate L1 containing the organic solvent can be recovered from the exhaust gas G1 with high efficiency. Since the organic solvent recovery system in the present embodiment has an L-shaped structure where the cooling unit 110 and the separation unit 120 are configured, the first concentration device 200 and the second Exposure of the concentrator 300 can be suppressed.
  • a heater 126 for heating the cooling process gas G3 is arranged downstream of the mesh structure 121 in the present embodiment. As a result, it is possible to prevent the organic solvent or moisture from condensing due to the slight heating of the cooling process gas G3.
  • a weir 124 is provided in the chamber 123 in the present embodiment. As a result, it is possible to prevent the cooling condensate L1 from flowing into the first circulation path F1 as the cooling gas circulation path.
  • the concentrating device in the present embodiment includes a first concentrating device 200 and a second concentrating device 300 located downstream of the first concentrating device.
  • the first concentrating device 200 absorbs the organic solvent contained in the cooled processed gas G4 introduced from the first flow path F1 by the adsorption unit 210, and discharges as the cooled processed gas G5 in which the concentration of the organic solvent is further reduced. Then, the high-temperature gas G7 is introduced to desorb the organic solvent from the adsorption unit 210, and the desorbed gas G8 is discharged.
  • the organic solvent recovery system in the present embodiment further includes a second flow path F2 that allows a portion of the cooling process gas G5 to flow.
  • the organic solvent contained in the processing gas G5 is adsorbed by the adsorption element 310 and discharged as a clean gas G9 in which the concentration of the organic solvent is further reduced. It is discharged as desorption gas G11.
  • a plurality of adsorption units 210 are arranged in the circumferential direction around the cylinder axis of a hollow columnar rotor rotating around the cylinder axis. As a result, the organic solvent can be recovered with high efficiency.
  • the adsorption element 310 is arranged on a disk-shaped adsorption rotor that rotates around the cylinder axis. As a result, the organic solvent can be recovered with high efficiency.
  • two concentrating devices the first concentrating device 200 and the second concentrating device 300
  • the concentrator two first concentrators 200 or two second concentrators 300 may be applied depending on the air volume. Also, depending on the removal efficiency, three or more concentrators may be applied.
  • Examples of the organic solvent contained in the exhaust gas G1 include organic solvents that can be liquefied and recovered by cooling to 1°C to 50°C.
  • Examples of organic solvents are N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide and n-decane. These are examples and are not limiting.
  • the organic solvent contained may be one or more.
  • FIG. 6 is a diagram schematically showing the configuration of an organic solvent recovery system 1C according to Embodiment 1C.
  • the organic solvent recovery system 1C is composed of a cooling condensation device 100, a first concentrating device 200, a second concentrating device 300, and various flow paths.
  • the cooling/condensing device 100 has a cooling section 110 and a separating section 120 .
  • An exhaust gas G1 containing an organic solvent is discharged from the production facility 130. As shown in FIG.
  • the exhaust gas G1 is cooled by passing through the cooling section 110 .
  • the organic solvent is liquefied and condensed.
  • the exhaust gas G2 that has passed through the cooling section 110 is separated into a liquefied and condensed cooling condensate L1 and a cooling process gas G3 with a reduced organic solvent concentration by passing through the separation section 120 .
  • Cooled process gas G3 is discharged from cooled condenser 100 to first concentrator 200 through chamber 123 as cooled process gas G4.
  • the cooling means and configuration of the cooling unit 110 are not particularly limited.
  • the first heat exchanger 111 is used to cool the exhaust gas by indirect heat exchange between a refrigerant such as cooling water, cold water, and brine.
  • the first heat exchanger 111 is positioned so that the exhaust gas G1 flows horizontally.
  • the cooling unit 110 is provided with a second heat exchanger 112 in front of the first heat exchanger 111 that cools the exhaust gas G1 by heat exchange between the cooling process gas G6 and the exhaust gas G1, which will be described later.
  • the second heat exchanger 112 can reduce the heat transfer area and the amount of refrigerant required for the first heat exchanger 111 .
  • a part of the exhaust gas G1 and the cooling process gas G6 is returned to the production facility 130 through the fifth flow path F5.
  • Conditions such as the cooling temperature in the first heat exchanger 111 and the second heat exchanger 112 may be appropriately determined according to the organic solvent to be recovered.
  • Embodiment 1C uses a reticulated structure 121 such as demisters, filters, and meshes that contact and trap droplets.
  • the cooled condensate L1 trapped in the mesh-like structure 121 is collected by gravity into a tank 125 arranged below the mesh-like structure 121 and recovered as a recovery liquid L3.
  • the chamber 123 is a structure having a certain amount of space.
  • the cooled process gas G3 stored in the chamber 123 for a certain period of time flows through the first flow path F1 as the cooled process gas G4 and is supplied to the first concentration device 200 .
  • the chamber 123 has a partition part 128 that allows the intake of the first flow path F1 so as to face the exhaust direction of the cooling process gas G3 discharged from the mesh structure 121 .
  • the first flow path F1 is a part that introduces the cooled process gas G4 from the chamber 123 to the first concentration device 200.
  • the connection port of the first flow path F1 to the chamber 123 is preferably the ceiling portion 127 of the chamber 123 .
  • the cooling process gas G4 is taken out so as to be opposed to the ventilation direction of the cooling process gas G3. This makes it possible to further prevent droplets from entering.
  • a liquid drop prevention member similar to the mesh structure 121 may be provided at the outlet of the cooling process gas G4, or a heater for vaporizing the liquid drops may be provided.
  • the first concentrator 200 has an adsorption rotor 212 that includes an adsorbent that adsorbs the contained organic solvent by contact with gas and desorbs the adsorbed organic solvent by contact with heated gas.
  • the adsorption rotor 212 is composed of a plurality of adsorption units 210 partitioned by a plurality of partitions.
  • the suction rotor 212 has a hollow cylindrical shape as a whole due to the plurality of suction units 210 .
  • the adsorption rotor 212 is installed in the processing chamber and is provided so that the fluid can flow in the radial direction.
  • the attraction rotor 212 is rotatable around the cylinder axis by receiving the rotational driving force of the motor.
  • a part of the adsorption unit 210 constitutes an adsorption section that adsorbs the organic solvent contained in the cooled processed gas G4 supplied from the outside to the inside of the adsorption unit 210, and the adsorption unit 210 constitutes a desorption section that desorbs the organic solvent adsorbed by the adsorption unit 210 from the adsorption unit 210 by supplying heated air from the inside to the outside of the adsorption unit 210 .
  • the cooled processing gas G4 supplied into the processing chamber is introduced from the outer peripheral surface of the adsorption rotor 212 into the adsorption section.
  • the cooled processing gas G4 introduced into the adsorption section adsorbs the organic solvent to the plurality of adsorption units 210 positioned in the adsorption section when passing through the adsorption rotor 212 from the outer peripheral surface to the inner peripheral surface along the radial direction. It is purified by letting
  • the cooled process gases G5 and G6 as the cleaned fluid to be processed are discharged from the upper part of the adsorption unit 210 as clean gas.
  • a part of the discharged clean gas flows through the second flow path F2 as the cooled processed gas G5 and is supplied to the second concentrator 300.
  • a part of the discharged clean gas flows through the fourth flow path F4 as the cooled processed gas G6 and is returned to the second heat exchanger 112 .
  • the inner peripheral side flow path forming member 211 and the outer peripheral side flow path forming member 213 are arranged facing each other on the inner peripheral side and the outer peripheral side of the adsorption rotor 212 so as to sandwich a part of the adsorption rotor 212 in the circumferential direction. ing.
  • a region of the adsorption rotor 212 sandwiched between the inner peripheral side flow path forming member 211 and the outer peripheral side flow path forming member 213 is a detachable portion.
  • the hot gas G7 which is a part of the cooling process gas G5 heated by the regeneration heater 250, is introduced from the inner peripheral side passage forming member 211 to the desorption portion.
  • the high-temperature gas G7 introduced into the desorption section when passing through the adsorption rotor 212, thermally desorbs the organic solvent adsorbed by the plurality of adsorption units 210 located in the desorption section.
  • the desorption gas G8 containing the organic solvent is discharged as a concentrated gas from the desorption section through the outer peripheral side flow path forming member 213 to the outside of the processing chamber and returned to the third flow path F3.
  • a part of the organic solvent contained in the desorption gas G8 is liquefied and condensed and collected in the tank 125 as the desorption condensate L2.
  • the third flow path F3 is a part that returns the desorption gas G8 to the inlet of the exhaust gas G1 of the cooling and condensing device 100.
  • the third flow path F3 is preferably connected such that the desorption section is arranged above the confluence position of the desorption gas G8 and the exhaust gas G1 supplied to the cooling/condensing device 100 . This arrangement makes it easier for the desorbed condensate L2 generated from the desorbed gas G8 of the first concentrator 200 to migrate to the cooling condenser 100 .
  • the third flow path F3 is configured so as to pass through two points, the inlet of the exhaust gas G1 of the cooling and condensing device 100 and the tank 125 . This configuration makes it easier for the desorbed condensate L2 generated from the desorbed gas G8 to be collected directly into the tank 125 .
  • the adsorption unit 210 located in the adsorption section performs adsorption processing of the substance to be processed, and after the adsorption processing, the adsorption unit 210 located in the desorption section performs desorption processing of the substance to be processed. done.
  • the adsorption rotor 212 rotates around the cylindrical axis, the adsorption unit 210 alternately moves between the desorption section and the adsorption section, and adsorption and desorption of the substance to be treated are continuously performed.
  • Activated alumina, silica gel, activated carbon material, zeolite, and the like can be used as materials for the adsorption elements that constitute the adsorption unit 210 .
  • the shape of the adsorption element in the adsorption unit 210 is not particularly limited, and may be, for example, a honeycomb-shaped sheet containing an activated carbon material or zeolite, or a laminate of activated carbon fiber nonwoven fabrics.
  • the second concentrator 300 has an adsorption element 310 containing an adsorbent that adsorbs the contained organic solvent by contact with gas and desorbs the adsorbed organic solvent by contact with heated gas.
  • the adsorption element 310 includes a desorption section (desorption zone) 311 and an adsorption section (adsorption zone) 312 .
  • the cooling process gas G5 is introduced into the adsorbent, and the cooling process gas G5 is brought into contact with the adsorbent. is cleaned and discharged as clean gas G9.
  • the high-temperature gas G10 having a higher temperature than the cooling process gas G5 is introduced into the adsorbent, whereby the organic solvent is desorbed from the adsorbent and discharged as the desorbed gas G11 containing the organic solvent.
  • the desorption gas G11 is returned to the first flow path F1 along the sixth flow path F6.
  • the organic solvent recovery system 1C Since the organic solvent recovery system 1C returns the desorption gas G11 to the first flow path F1, it is not necessary to process the air volume of the desorption gas G11 in the cooling condensation device 100. Therefore, the organic solvent recovery system 1C can contribute to miniaturization and energy saving of the cooling/condensing device 100 .
  • the organic solvent recovery system 1C can suppress condensation of NMP (N-methyl-2-pyrrolidone), moisture, etc. contained in the cooling process gas G4 because the desorption gas G11 is at a high temperature.
  • activated alumina, silica gel, activated carbon material, and zeolite are widely used, and among them, activated carbon and hydrophobic zeolite are particularly preferably used.
  • the second concentrator 300 includes a rotating shaft and an adsorption element 310 provided around the rotating shaft.
  • the second concentrating device 300 rotates the adsorption element 310 around the rotation axis, so that the adsorbent that adsorbs the organic solvent in the cooling process gas G5 introduced from the second flow path F2 is continuous in the adsorption section 312. It is configured to move to the detachable portion 311 automatically.
  • the second concentrating device 300 may have a cleaning section (purge section) in which the portion where the desorption processing of the desorption section 311 is completed transfers before transferring to the adsorption section 312 .
  • a part of the clean gas G9 may be introduced into the purge section, and the purge section outlet gas discharged from the purge section may be introduced into the adsorption section 312 .
  • the high-temperature gas G10 used for desorption is preferably a part of the clean gas G9 heated to a high temperature using heating means such as the regeneration heater 350.
  • heating means such as the regeneration heater 350.
  • FIG. 7 is a diagram schematically showing the configuration of an organic solvent recovery system 2C according to Embodiment 2C.
  • the organic solvent recovery system 2C is composed of a cooling condensation device 100, a first concentrating device 200, a second concentrating device 300, and various flow paths.
  • the organic solvent recovery system 2C is the same as the organic solvent recovery system 1C of Embodiment 1C except that the desorption gas G11 of the second concentrator 300 is returned to the regeneration heater 250 through the sixth flow path F6. be.
  • the organic solvent recovery system 2C returns the desorbed gas G11 to the regeneration heater 250, it is not necessary to process the air volume of the desorbed gas G11 in the cooling condensation device 100 and the first concentrating device 200. Therefore, the organic solvent recovery system 2C can contribute to miniaturization and energy saving of the cooling condensation device 100 and the first concentrating device 200 . The organic solvent recovery system 2C can contribute to energy saving of the regeneration heater 250 because the desorption gas G11 is at a high temperature.
  • FIG. 8 is a diagram schematically showing the configuration of an organic solvent recovery system 3C according to Embodiment 3C.
  • the organic solvent recovery system 3C is composed of a cooling condensation device 100, a first concentrating device 200, a second concentrating device 300, and various flow paths.
  • the desorption gas G11 of the second concentrator 300 is returned to the fourth flow path F4 through the sixth flow path F6.
  • the organic solvent recovery system 3C has the same configuration as the organic solvent recovery system 1C of the embodiment 1C except that the desorption gas G11 of the second concentrator 300 is returned to the fourth flow path F4 through the sixth flow path F6. are the same.
  • the desorption gas G11 that has flowed through the sixth flow path F6 flows through the fourth flow path F4 together with the cooled processed gas G6 discharged from the second concentrator 300, and is returned to the second heat exchanger 112.
  • the organic solvent recovery system 3 ⁇ /b>C eliminates the need for the air volume of the desorbed gas G ⁇ b>11 to be processed in the cooling condensation device 100 and the first concentration device 200 . Therefore, the organic solvent recovery system 3C can contribute to miniaturization and energy saving of the cooling condensation device 100 and the first concentrating device 200 .
  • the organic solvent recovery system 3C can improve the temperature of the fluid flowing through the second heat exchanger 112 because the desorption gas G11 is at a high temperature. It can contribute to energy efficiency and energy saving.
  • FIG. 9 is a diagram schematically showing the configuration of an organic solvent recovery system 4C according to Embodiment 4C.
  • the organic solvent recovery system 4C is composed of a cooling/condensing device 100, a first concentrating device 200, a second concentrating device 300, and various flow paths.
  • the desorption gas G11 from the second concentrator 300 is returned to the fifth flow path F5 through the sixth flow path F6.
  • the organic solvent recovery system 4C has the same configuration as the organic solvent recovery system 1C of the embodiment 1C except that the desorption gas G11 of the second concentrator 300 is returned to the fifth circulation path F5 through the sixth circulation path F6. are the same.
  • the desorption gas G11 that has flowed through the sixth flow path F6 flows through the fifth flow path F5 together with part of the exhaust gas G1 and the cooling process gas G6 discharged from the second heat exchanger 112 and is returned to the production facility 130.
  • the organic solvent recovery system 4 ⁇ /b>C eliminates the need to process the air volume of the desorption gas G ⁇ b>11 in the cooling condensation device 100 and the first concentration device 200 . Therefore, the organic solvent recovery system 4C can contribute to miniaturization and energy saving of the cooling condenser 100 and the first concentration device 200 .
  • the organic solvent recovery system 4C can increase the temperature of the exhaust gas G1 discharged again from the production facility 130 because the desorption gas G11 is at a high temperature. Therefore, the organic solvent recovery system 4C can improve the temperature of the fluid flowing through the second heat exchanger 112, and contributes to downsizing and energy saving of the second heat exchanger 112 for cooling the exhaust gas G1. can contribute.
  • the organic solvent recovery system 1C in the present embodiment cools the exhaust gas G1 containing the organic solvent, liquefies and condenses the organic solvent, and discharges it as a cooled processed gas G4 in which the concentration of the organic solvent is reduced.
  • a first flow path F1 for flowing the cooling process gas G4 and an adsorption unit 210 adsorbing the organic solvent contained in the cooling process gas G4 introduced from the first flow path F1 to remove the organic solvent.
  • a first concentrator 200 that discharges a cooled processed gas G5 with a further reduced concentration, introduces a high-temperature gas G7, desorbs an organic solvent from the adsorption unit 210, and discharges it as a desorbed gas G8;
  • the concentration of the organic solvent was further reduced by adsorbing the organic solvent contained in the cooling process gas G5 introduced from the second circulation path F2 and the adsorption element 310, which was introduced from the second circulation path F2.
  • a second concentrator 300 that discharges as clean gas G9, introduces hot gas G10 to desorb the organic solvent from the adsorption element 310, and discharges as desorbed gas G11.
  • the desorbed gas G8 is returned to the cooling condenser 100, and the desorbed gas G11 is returned to the first flow path F1. Since the organic solvent recovery system 1C returns the desorbed gas G11 to the first flow path F1, it is not necessary to process the air volume of the desorbed gas G11 in the cooling and condensing device 100. FIG. Therefore, the organic solvent recovery system 1C can contribute to miniaturization and energy saving of the cooling/condensing device 100 .
  • the organic solvent recovery system 1C can suppress condensation of NMP (N-methyl-2-pyrrolidone), moisture, etc. contained in the cooling process gas G4 because the desorption gas G11 is at a high temperature.
  • the desorption gas G8 is returned to the cooling condenser 100, and the desorption gas G11 is returned to the regeneration heater 250. Since the organic solvent recovery system 2C returns the desorbed gas G11 to the regeneration heater 250, it is not necessary to process the air volume of the desorbed gas G11 in the cooling condensation device 100 and the first concentrating device 200. FIG. Therefore, the organic solvent recovery system 2C can contribute to miniaturization and energy saving of the cooling condensation device 100 and the first concentrating device 200 . The organic solvent recovery system 2C can contribute to energy saving of the regeneration heater 250 because the desorption gas G11 is at a high temperature.
  • the desorbed gas G8 is returned to the cooling condenser 100, and the desorbed gas G11 is returned to the fourth flow path F4.
  • the desorption gas G11 is returned to the second heat exchanger 112 through the fourth flow path F4 together with the cooling process gas G6.
  • the organic solvent recovery system 3 ⁇ /b>C eliminates the need for the air volume of the desorbed gas G ⁇ b>11 to be processed in the cooling condensation device 100 and the first concentration device 200 . Therefore, the organic solvent recovery system 3C can contribute to miniaturization and energy saving of the cooling condensation device 100 and the first concentrating device 200 .
  • the organic solvent recovery system 3C can improve the temperature of the fluid flowing through the second heat exchanger 112 because the desorption gas G11 is at a high temperature. It can contribute to energy efficiency and energy saving.
  • the desorbed gas G8 is returned to the cooling condenser 100, and the desorbed gas G11 is returned to the fifth flow path F5.
  • the desorption gas G11 flows through the fifth flow path F5 together with part of the exhaust gas G1 and the cooling process gas G6 discharged from the second heat exchanger 112 and is returned to the production facility 130.
  • the organic solvent recovery system 4 ⁇ /b>C eliminates the need to process the air volume of the desorption gas G ⁇ b>11 in the cooling condensation device 100 and the first concentration device 200 . Therefore, the organic solvent recovery system 4C can contribute to miniaturization and energy saving of the cooling condenser 100 and the first concentration device 200 .
  • the organic solvent recovery system 4C can increase the temperature of the exhaust gas G1 discharged again from the production facility 130 because the desorption gas G11 is at a high temperature. Therefore, the organic solvent recovery system 4C can improve the temperature of the fluid flowing through the second heat exchanger 112, and contributes to downsizing and energy saving of the second heat exchanger 112 for cooling the exhaust gas G1. can contribute.
  • a plurality of adsorption units 210 are arranged in the circumferential direction around the cylinder axis of a hollow columnar rotor rotating around the cylinder axis. As a result, the organic solvent can be recovered with high efficiency.
  • the adsorption element 310 is arranged on a disk-shaped adsorption rotor that rotates around the cylinder axis. As a result, the organic solvent can be recovered with high efficiency.
  • two concentrating devices the first concentrating device 200 and the second concentrating device 300
  • the concentrator two first concentrators 200 or two second concentrators 300 may be applied depending on the air volume. Also, depending on the removal efficiency, three or more concentrators may be applied.
  • Examples of the organic solvent contained in the exhaust gas G1 include organic solvents that can be liquefied and recovered by cooling to 1°C to 50°C.
  • Examples of organic solvents are N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide and n-decane. These are examples and are not limiting.
  • the organic solvent contained may be one or more.
  • FIG. 10 is a diagram schematically showing the configuration of an organic solvent recovery system 1D according to Embodiment 1D.
  • the organic solvent recovery system 1D is composed of a cooling condensation device 100, a first concentrating device 200, a second concentrating device 300, and various flow paths.
  • the cooling/condensing device 100 has a cooling section 110 and a separating section 120 .
  • An exhaust gas G1 containing an organic solvent is discharged from the production facility 130. As shown in FIG.
  • the exhaust gas G1 is cooled by passing through the cooling section 110 .
  • the organic solvent is liquefied and condensed.
  • the exhaust gas G2 that has passed through the cooling section 110 is separated into a liquefied and condensed cooling condensate L1 and a cooling process gas G3 with a reduced organic solvent concentration by passing through the separation section 120 .
  • a part of the cooled process gas G3 is discharged from the cooling condensing device 100 to the first concentration device 200 as the cooling process gas G4 through the chamber 123, and the remaining part is discharged from the cooling condensing device 100 as the cooling process gas G6 to the second heat exchange to be described later. returned to vessel 112 .
  • the cooling means and configuration of the cooling unit 110 are not particularly limited.
  • a first heat exchanger 111 that cools the exhaust gas by indirect heat exchange between a refrigerant such as cooling water, cold water, and brine is used.
  • the first heat exchanger 111 is positioned so that the exhaust gas G1 flows horizontally.
  • the cooling unit 110 is provided with a second heat exchanger 112 in front of the first heat exchanger 111 that cools the exhaust gas G1 by heat exchange between the cooling process gas G6 and the exhaust gas G1.
  • the second heat exchanger 112 can reduce the heat transfer area and the amount of refrigerant required for the first heat exchanger 111 .
  • a part of the exhaust gas G1 and the cooling process gas G6 is returned to the production facility 130 through the fifth flow path F5.
  • Conditions such as the cooling temperature in the first heat exchanger 111 and the second heat exchanger 112 may be appropriately determined according to the organic solvent to be recovered.
  • Embodiment 1D uses a reticulated structure 121 such as demisters, filters, and meshes that contact and trap droplets.
  • the cooled condensate L1 trapped in the mesh-like structure 121 is collected by gravity into a tank 125 arranged below the mesh-like structure 121 and recovered as a recovery liquid L3.
  • the chamber 123 is a structure having a certain amount of space. A portion of the cooled process gas G3 stored in the chamber 123 for a certain period of time flows through the first flow path F1 as the cooled process gas G4 and is supplied to the first concentration device 200 . The cooling process gas G3 is returned to the second heat exchanger 112 after the remaining portion flows through the fourth flow path F4 as the cooling process gas G6.
  • the chamber 123 has a partition part 128 that allows the intake of the first flow path F1 so as to face the exhaust direction of the cooling process gas G3 discharged from the mesh structure 121 .
  • the first flow path F1 is a part that introduces the cooled process gas G4 from the chamber 123 to the first concentration device 200.
  • the connection port of the first flow path F1 to the chamber 123 is preferably the ceiling portion 127 of the chamber 123 .
  • the cooling process gas G4 is taken out so as to be opposed to the ventilation direction of the cooling process gas G3. This makes it possible to further prevent droplets from entering.
  • a liquid drop prevention member similar to the mesh structure 121 may be provided at the outlet of the cooling process gas G4, or a heater for vaporizing the liquid drops may be provided.
  • the first concentrator 200 has an adsorption rotor 212 that includes an adsorbent that adsorbs the contained organic solvent by contact with gas and desorbs the adsorbed organic solvent by contact with heated gas.
  • the adsorption rotor 212 is composed of a plurality of adsorption units 210 partitioned by a plurality of partitions.
  • the suction rotor 212 has a hollow cylindrical shape as a whole due to the plurality of suction units 210 .
  • the adsorption rotor 212 is installed in the processing chamber and is provided so that the fluid can flow in the radial direction.
  • the attraction rotor 212 is rotatable around the cylinder axis by receiving the rotational driving force of the motor.
  • a part of the adsorption unit 210 constitutes an adsorption section that adsorbs the organic solvent contained in the cooled processed gas G4 supplied from the outside to the inside of the adsorption unit 210, and the adsorption unit 210 constitutes a desorption section that desorbs the organic solvent adsorbed by the adsorption unit 210 from the adsorption unit 210 by supplying heated air from the inside to the outside of the adsorption unit 210 .
  • the cooled processing gas G4 supplied into the processing chamber is introduced from the outer peripheral surface of the adsorption rotor 212 into the adsorption section.
  • the cooled processing gas G4 introduced into the adsorption section adsorbs the organic solvent to the plurality of adsorption units 210 positioned in the adsorption section when passing through the adsorption rotor 212 from the outer peripheral surface to the inner peripheral surface along the radial direction. It is purified by letting
  • the cooled process gas G5 as the cleaned fluid to be processed is discharged from the upper part of the adsorption unit 210 as clean gas.
  • the discharged clean gas flows through the second flow path F2 as the cooled processed gas G5 and is supplied to the second concentrator 300.
  • the inner peripheral side flow path forming member 211 and the outer peripheral side flow path forming member 213 are arranged facing each other on the inner peripheral side and the outer peripheral side of the adsorption rotor 212 so as to sandwich a part of the adsorption rotor 212 in the circumferential direction. ing.
  • a region of the adsorption rotor 212 sandwiched between the inner peripheral side flow path forming member 211 and the outer peripheral side flow path forming member 213 is a detachable portion.
  • the hot gas G7 which is a part of the cooling process gas G5 heated by the regeneration heater 250, is introduced from the inner peripheral side passage forming member 211 to the desorption portion.
  • the high-temperature gas G7 introduced into the desorption section when passing through the adsorption rotor 212, thermally desorbs the organic solvent adsorbed by the plurality of adsorption units 210 located in the desorption section.
  • the desorption gas G8 containing the organic solvent is discharged as a concentrated gas from the desorption section through the outer peripheral side flow path forming member 213 to the outside of the processing chamber and returned to the third flow path F3.
  • a part of the organic solvent contained in the desorption gas G8 is liquefied and condensed and collected in the tank 125 as the desorption condensate L2.
  • the third flow path F3 is a part that returns the desorption gas G8 to the inlet of the exhaust gas G1 of the cooling and condensing device 100.
  • the third flow path F3 is preferably connected such that the desorption section is arranged above the confluence position of the desorption gas G8 and the exhaust gas G1 supplied to the cooling/condensing device 100 . This arrangement makes it easier for the desorbed condensate L2 generated from the desorbed gas G8 of the first concentrator 200 to migrate to the cooling condenser 100 .
  • the third flow path F3 is configured so as to pass through two points, the inlet of the exhaust gas G1 of the cooling and condensing device 100 and the tank 125 . This configuration makes it easier for the desorbed condensate L2 generated from the desorbed gas G8 to be collected directly into the tank 125 .
  • the adsorption unit 210 located in the adsorption section performs adsorption processing of the substance to be processed, and after the adsorption processing, the adsorption unit 210 located in the desorption section performs desorption processing of the substance to be processed. done.
  • the adsorption rotor 212 rotates around the cylindrical axis, the adsorption unit 210 alternately moves between the desorption section and the adsorption section, and adsorption and desorption of the substance to be treated are continuously performed.
  • Activated alumina, silica gel, activated carbon material, zeolite, and the like can be used as materials for the adsorption elements that constitute the adsorption unit 210 .
  • the shape of the adsorption element in the adsorption unit 210 is not particularly limited, and may be, for example, a honeycomb-shaped sheet containing an activated carbon material or zeolite, or a laminate of activated carbon fiber nonwoven fabrics.
  • the second concentrator 300 has an adsorption element 310 containing an adsorbent that adsorbs the contained organic solvent by contact with gas and desorbs the adsorbed organic solvent by contact with heated gas.
  • the adsorption element 310 includes a desorption section (desorption zone) 311 and an adsorption section (adsorption zone) 312 .
  • the cooling process gas G5 is introduced into the adsorbent, and the cooling process gas G5 is brought into contact with the adsorbent. is cleaned and discharged as clean gas G9.
  • the high-temperature gas G10 having a higher temperature than the cooling process gas G5 is introduced into the adsorbent, whereby the organic solvent is desorbed from the adsorbent and discharged as the desorbed gas G11 containing the organic solvent.
  • the desorption gas G11 is returned to the first flow path F1 along the sixth flow path F6.
  • the organic solvent recovery system 1D Since the organic solvent recovery system 1D returns the desorption gas G11 to the first flow path F1, it is not necessary to process the air volume of the desorption gas G11 in the cooling condensation device 100. Therefore, the organic solvent recovery system 1D can contribute to miniaturization and energy saving of the cooling/condensing device 100 .
  • the organic solvent recovery system 1D can suppress condensation of NMP (N-methyl-2-pyrrolidone), moisture, etc. contained in the cooling process gas G4 because the desorption gas G11 is at a high temperature.
  • activated alumina, silica gel, activated carbon material, and zeolite are widely used, and among them, activated carbon and hydrophobic zeolite are particularly preferably used.
  • the second concentrator 300 includes a rotating shaft and an adsorption element 310 provided around the rotating shaft.
  • the second concentrating device 300 rotates the adsorption element 310 around the rotation axis, so that the adsorbent that adsorbs the organic solvent in the cooling process gas G5 introduced from the second flow path F2 is continuous in the adsorption section 312. It is configured to move to the detachable portion 311 automatically.
  • the second concentrating device 300 may have a cleaning section (purge section) in which the portion where the desorption processing of the desorption section 311 is completed transfers before transferring to the adsorption section 312 .
  • a part of the clean gas G9 may be introduced into the purge section, and the purge section outlet gas discharged from the purge section may be introduced into the adsorption section 312 .
  • the high-temperature gas G10 used for desorption is preferably a part of the clean gas G9 heated to a high temperature using heating means such as the regeneration heater 350.
  • heating means such as the regeneration heater 350.
  • FIG. 11 is a diagram schematically showing the configuration of an organic solvent recovery system 2D according to Embodiment 2D.
  • the organic solvent recovery system 2D is composed of a cooling condensation device 100, a first concentrating device 200, a second concentrating device 300, and various flow paths.
  • the organic solvent recovery system 2D is the same as the organic solvent recovery system 1D of Embodiment 1D except that the desorption gas G11 of the second concentrator 300 is returned to the regeneration heater 250 through the sixth flow path F6. be.
  • the organic solvent recovery system 2D Since the organic solvent recovery system 2D returns the desorbed gas G11 to the regeneration heater 250, it is not necessary to process the air volume of the desorbed gas G11 in the cooling condensation device 100 and the first concentration device 200. Therefore, the organic solvent recovery system 2D can contribute to miniaturization and energy saving of the cooling condensation device 100 and the first concentrating device 200 . The organic solvent recovery system 2D can contribute to energy saving of the regeneration heater 250 because the desorption gas G11 is at a high temperature.
  • FIG. 12 is a diagram schematically showing the configuration of an organic solvent recovery system 3D according to Embodiment 3D.
  • the organic solvent recovery system 3D is composed of a cooling condensation device 100, a first concentrating device 200, a second concentrating device 300, and various flow paths.
  • the desorption gas G11 of the second concentrator 300 is returned to the fourth flow path F4 through the sixth flow path F6.
  • the organic solvent recovery system 3D has the same configuration as the organic solvent recovery system 1D of Embodiment 1D except that the desorption gas G11 of the second concentrator 300 is returned to the fourth flow path F4 through the sixth flow path F6. are the same.
  • the desorption gas G11 that has flowed through the sixth flow path F6 flows through the fourth flow path F4 together with the cooling process gas G6 discharged from the cooling condenser 100, and is returned to the second heat exchanger 112.
  • the organic solvent recovery system 3D eliminates the need for the air volume of the desorption gas G11 to be processed in the cooling condensation device 100 and the first concentrating device 200. FIG. Therefore, the organic solvent recovery system 3D can contribute to miniaturization and energy saving of the cooling condensation device 100 and the first concentrating device 200 .
  • the organic solvent recovery system 3D can improve the temperature of the fluid flowing through the second heat exchanger 112 because the desorption gas G11 is at a high temperature, and the small size of the second heat exchanger 112 for cooling the exhaust gas G1. It can contribute to energy efficiency and energy saving.
  • FIG. 13 is a diagram schematically showing the configuration of an organic solvent recovery system 4D according to Embodiment 4D.
  • the organic solvent recovery system 4D is composed of a cooling condensation device 100, a first concentrating device 200, a second concentrating device 300, and various flow paths.
  • the desorption gas G11 of the second concentration device 300 is returned to the fifth flow path F5 through the sixth flow path F6.
  • the organic solvent recovery system 4D has the same configuration as the organic solvent recovery system 1D of Embodiment 1D except that the desorption gas G11 of the second concentrator 300 is returned to the fifth circulation path F5 through the sixth circulation path F6. are the same.
  • the desorption gas G11 that has flowed through the sixth flow path F6 flows through the fifth flow path F5 together with part of the exhaust gas G1 and the cooling process gas G6 discharged from the second heat exchanger 112 and is returned to the production facility 130.
  • the organic solvent recovery system 4D eliminates the need for the air volume of the desorbed gas G11 to be processed in the cooling condensation device 100 and the first concentrating device 200. FIG. Therefore, the organic solvent recovery system 4D can contribute to miniaturization and energy saving of the cooling condenser 100 and the first concentration device 200 .
  • the organic solvent recovery system 4D can increase the temperature of the exhaust gas G1 discharged again from the production facility 130 because the desorption gas G11 is at a high temperature. Therefore, the organic solvent recovery system 4D can improve the temperature of the fluid flowing through the second heat exchanger 112, and contributes to downsizing and energy saving of the second heat exchanger 112 for cooling the exhaust gas G1. can contribute.
  • the organic solvent recovery system 1D in the present embodiment is a cooling condensation device that liquefies and condenses the organic solvent by cooling the exhaust gas G1 containing the organic solvent and discharges it as a cooled processed gas G4 in which the concentration of the organic solvent is reduced.
  • a cooling condensation device that liquefies and condenses the organic solvent by cooling the exhaust gas G1 containing the organic solvent and discharges it as a cooled processed gas G4 in which the concentration of the organic solvent is reduced.
  • 100 a first circulation path F1 through which a part of the cooling process gas G4 flows, and an adsorption unit 210 adsorbing the organic solvent contained in the cooling process gas G4 introduced from the first circulation path F1.
  • a first concentrator 200 that discharges a cooled processed gas G5 in which the concentration of the organic solvent is further reduced, introduces a high-temperature gas G7, desorbs the organic solvent from the adsorption unit 210, and discharges it as a desorbed gas G8, and a cooled processed gas.
  • the concentration of the organic solvent was further reduced by adsorbing the organic solvent contained in the second flow path F2 for flowing G5 and the cooling process gas G5 introduced from the second flow path F2 by the adsorption element 310.
  • a second concentrator 300 that discharges as clean gas G9, introduces hot gas G10 to desorb the organic solvent from the adsorption element 310, and discharges as desorbed gas G11.
  • the cooling/condensing device 100 includes a second heat exchanger 112 that cools the exhaust gas G1 by heat exchange with the refrigerant.
  • the organic solvent recovery system 1D further includes a fourth flow path F4 for returning the cooling process gas G6, which is the remainder of the cooling process gas other than a part of the cooling process gas G4, to the second heat exchanger 112.
  • the desorbed gas G8 is returned to the cooling condenser 100, and the desorbed gas G11 is returned to the first flow path F1. Since the organic solvent recovery system 1D returns the desorbed gas G11 to the first flow path F1, it is not necessary to process the air volume of the desorbed gas G11 in the cooling and condensing device 100.
  • the organic solvent recovery system 1D can contribute to miniaturization and energy saving of the cooling/condensing device 100 .
  • the organic solvent recovery system 1D can suppress condensation of NMP (N-methyl-2-pyrrolidone), moisture, etc. contained in the cooling process gas G4 because the desorption gas G11 is at a high temperature.
  • the desorption gas G8 is returned to the cooling condenser 100, and the desorption gas G11 is returned to the regeneration heater 250. Since the organic solvent recovery system 2D returns the desorbed gas G11 to the regeneration heater 250, it is not necessary to process the air volume of the desorbed gas G11 in the cooling condensing device 100 and the first concentrating device 200. FIG. Therefore, the organic solvent recovery system 2D can contribute to miniaturization and energy saving of the cooling condensation device 100 and the first concentrating device 200 . The organic solvent recovery system 2D can contribute to energy saving of the regeneration heater 250 because the desorption gas G11 is at a high temperature.
  • the desorbed gas G8 is returned to the cooling condenser 100, and the desorbed gas G11 is returned to the fourth flow path F4.
  • the desorption gas G11 is returned to the second heat exchanger 112 through the fourth flow path F4 together with the cooling process gas G6.
  • the organic solvent recovery system 3D eliminates the need for the air volume of the desorption gas G11 to be processed in the cooling condensation device 100 and the first concentrating device 200. FIG. Therefore, the organic solvent recovery system 3D can contribute to miniaturization and energy saving of the cooling condensation device 100 and the first concentrating device 200 .
  • the organic solvent recovery system 3D can improve the temperature of the fluid flowing through the second heat exchanger 112 because the desorption gas G11 is at a high temperature, and the small size of the second heat exchanger 112 for cooling the exhaust gas G1. It can contribute to energy efficiency and energy saving.
  • the desorbed gas G8 is returned to the cooling condenser 100, and the desorbed gas G11 is returned to the fifth flow path F5.
  • the desorption gas G11 flows through the fifth flow path F5 together with part of the exhaust gas G1 and the cooling process gas G6 discharged from the second heat exchanger 112 and is returned to the production facility 130.
  • the organic solvent recovery system 4D eliminates the need for the air volume of the desorbed gas G11 to be processed in the cooling condensation device 100 and the first concentrating device 200. FIG. Therefore, the organic solvent recovery system 4D can contribute to miniaturization and energy saving of the cooling condenser 100 and the first concentration device 200 .
  • the organic solvent recovery system 4D can increase the temperature of the exhaust gas G1 discharged again from the production facility 130 because the desorption gas G11 is at a high temperature. Therefore, the organic solvent recovery system 4D can improve the temperature of the fluid flowing through the second heat exchanger 112, and contributes to downsizing and energy saving of the second heat exchanger 112 for cooling the exhaust gas G1. can contribute.
  • a plurality of adsorption units 210 are arranged in the circumferential direction around the cylinder axis of a hollow columnar rotor rotating around the cylinder axis. As a result, the organic solvent can be recovered with high efficiency.
  • the adsorption element 310 is arranged on a disk-shaped adsorption rotor that rotates around the cylinder axis. As a result, the organic solvent can be recovered with high efficiency.
  • two concentrating devices the first concentrating device 200 and the second concentrating device 300
  • the concentrator two first concentrators 200 or two second concentrators 300 may be applied depending on the air volume. Also, depending on the removal efficiency, three or more concentrators may be applied.
  • Examples of the organic solvent contained in the exhaust gas G1 include organic solvents that can be liquefied and recovered by cooling to 1°C to 50°C.
  • Examples of organic solvents are N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide and n-decane. These are examples and are not limiting.
  • the organic solvent contained may be one or more.
  • FIG. 14 is a diagram schematically showing the configuration of an organic solvent recovery system 1E according to Embodiment 1E.
  • the organic solvent recovery system 1E includes an organic solvent recovery system 2B1 comprising a cooling condensing device 100, a first concentrating device 200 and a second concentrating device 300, and an organic solvent recovery system 2B1 comprising a cooling condensing device 100 and a first concentrating device 200. It is composed of a collection system 2B2 and various flow paths.
  • the organic solvent recovery system 2B1 has the same configuration as that of the embodiment 2B described above.
  • the organic solvent recovery system 2B2 has a configuration in which the second concentrating device 300 is removed from the above-described Embodiment 2B.
  • the organic solvent recovery system 1E of Embodiment 1E has one second concentrator 300 in the latter stage and two first concentrators 200 in the former stage. That is, the number of second concentrating devices 300 in the latter stage is less than the number of first concentrating devices 200 in the preceding stage.
  • the organic solvent recovery system 1E of Embodiment 1E has a configuration in which a plurality of cooling condensing devices 100 and a plurality of first concentrating devices 200 are arranged in parallel with respect to the production facility 130, as shown in FIG.
  • the number of first concentrators 200 is the same as the number of cooling condensers 100, but the numbers may be different.
  • Various configurations of the organic solvent recovery system 1E including the organic solvent recovery system 2B1 and the organic solvent recovery system 2B2 will be specifically described below.
  • the cooling/condensing device 100 has a cooling section 110 and a separating section 120 .
  • An exhaust gas G1 containing an organic solvent is discharged from the production facility 130. As shown in FIG.
  • the exhaust gas G1 is cooled by passing through the cooling section 110 .
  • the organic solvent is liquefied and condensed.
  • the exhaust gas G2 that has passed through the cooling section 110 is separated into a liquefied and condensed cooling condensate L1 and a cooling process gas G3 with a reduced organic solvent concentration by passing through the separation section 120 .
  • a heater 126 is provided in the chamber 123 .
  • the heater 126 slightly heats the cooled process gas G3 after cooling.
  • the cooled process gas G3 can prevent the organic solvent or moisture from condensing by being slightly heated. Cooled process gas G3 is discharged from cooled condenser 100 to first concentrator 200 through chamber 123 as cooled process gas G4.
  • Embodiment 1E uses a first heat exchanger 111 that cools the exhaust gas by indirect heat exchange between a refrigerant such as cooling water, cold water, and brine.
  • the first heat exchanger 111 is positioned so that the exhaust gas G1 flows vertically.
  • the cooling unit 110 is provided with a second heat exchanger 112 in front of the first heat exchanger 111 that cools the exhaust gas G1 by heat exchange between the cooling process gas G6 and the exhaust gas G1, which will be described later.
  • the second heat exchanger 112 can reduce the heat transfer area and the amount of refrigerant required for the first heat exchanger 111 .
  • a part of the exhaust gas G1 and the cooling process gas G6 is returned to the production facility 130 through the fifth flow path F5.
  • Conditions such as the cooling temperature in the first heat exchanger 111 and the second heat exchanger 112 may be appropriately determined according to the organic solvent to be recovered.
  • Embodiment 1E uses a reticulated structure 121 such as demisters, filters, and meshes that contact and trap droplets.
  • the separation unit 120 has a funnel-shaped receiving unit 122 that receives the cooled condensate L1 containing the organic solvent that has been cooled in the cooling unit 110 .
  • the cooled condensate L1 cooled in the cooling part 110 and the cooled condensate L1 trapped in the network structure 121 flow to the receiving part 122 by gravity, and then are collected in the tank 125 arranged below the receiving part 122 . It is liquefied and recovered as recovery liquid L3.
  • the chamber 123 is a structure having a certain amount of space.
  • a weir 124 is provided in the chamber 123 .
  • the weir 124 prevents part of the cooling condensate L1 from moving toward the tip of the chamber 123 and flowing into the first flow path F1 as the cooling gas flow path.
  • Weir 124 serves to ensure that cooling condensate L1 is recovered.
  • the cooled process gas G3 stored in the chamber 123 for a certain period of time flows through the first flow path F1 as the cooled process gas G4 and is supplied to the first concentration device 200 .
  • the direction of flow from the mesh structure 121 to the chamber 123 in the separation unit 120 is the direction of flow from the cooling unit 110 to the separation unit 120.
  • the exhaust gas G1 exhaust gas G2, cooling process gas G3 flows in the L-shaped direction.
  • the organic solvent recovery system 1E Since the organic solvent recovery system 1E has an L-shaped structure where the cooling unit 110 and the separation unit 120 are configured, it suppresses the exposure of the first concentration device 200 and the second concentration device 300 by droplets and splashes. can do.
  • the first concentrator 200 and the second concentrator 300 may be weakened or damaged if exposed and the adsorbent gets wet.
  • the organic solvent recovery system 1E can prevent the first concentration device 200 and the second concentration device 300 from being weakened or damaged by having an L-shaped structure.
  • the first concentrator 200 has an adsorption rotor 212 that includes an adsorbent that adsorbs the contained organic solvent by contact with gas and desorbs the adsorbed organic solvent by contact with heated gas.
  • the adsorption rotor 212 is composed of a plurality of adsorption units 210 partitioned by a plurality of partitions.
  • the suction rotor 212 has a hollow cylindrical shape as a whole due to the plurality of suction units 210 .
  • the adsorption rotor 212 is installed in the processing chamber and is provided so that the fluid can flow in the radial direction.
  • the attraction rotor 212 is rotatable around the cylinder axis by receiving the rotational driving force of the motor.
  • a part of the adsorption unit 210 constitutes an adsorption section that adsorbs the organic solvent contained in the cooled processed gas G4 supplied from the outside to the inside of the adsorption unit 210, and the adsorption unit 210 constitutes a desorption section that desorbs the organic solvent adsorbed by the adsorption unit 210 from the adsorption unit 210 by supplying heated air from the inside to the outside of the adsorption unit 210 .
  • the cooled processing gas G4 supplied into the processing chamber is introduced from the outer peripheral surface of the adsorption rotor 212 into the adsorption section.
  • the cooled processing gas G4 introduced into the adsorption section adsorbs the organic solvent to the plurality of adsorption units 210 positioned in the adsorption section when passing through the adsorption rotor 212 from the outer peripheral surface to the inner peripheral surface along the radial direction. It is purified by letting
  • the cooled processing gases G5 and G6 as cleaned fluids to be processed are discharged from the upper portion of the adsorption unit 210 as clean gas.
  • a part of the discharged clean gas flows through the second flow path F2 as the cooled processed gas G5 and is supplied to the second concentrator 300.
  • a part of the discharged clean gas flows through the fourth flow path F4 as the cooled processed gas G6 and is returned to the second heat exchanger 112 .
  • the cooled process gas G5 as the cleaned fluid to be processed is discharged from the upper part of the adsorption unit 210 as clean gas.
  • the inner peripheral side flow path forming member 211 and the outer peripheral side flow path forming member 213 are arranged facing each other on the inner peripheral side and the outer peripheral side of the adsorption rotor 212 so as to sandwich a part of the adsorption rotor 212 in the circumferential direction. ing.
  • a region of the adsorption rotor 212 sandwiched between the inner peripheral side flow path forming member 211 and the outer peripheral side flow path forming member 213 is a detachable portion.
  • the hot gas G7 which is a part of the cooling process gas G5 heated by the regeneration heater 250, is introduced from the inner peripheral side passage forming member 211 to the desorption portion.
  • the high-temperature gas G7 introduced into the desorption section when passing through the adsorption rotor 212, thermally desorbs the organic solvent adsorbed by the plurality of adsorption units 210 located in the desorption section.
  • the desorption gas G8 containing the organic solvent is discharged as a concentrated gas from the desorption section through the outer peripheral side flow path forming member 213 to the outside of the processing chamber and returned to the third flow path F3.
  • a part of the organic solvent contained in the desorption gas G8 is liquefied and condensed and collected in the tank 125 as the desorption condensate L2.
  • the third flow path F3 is a portion that returns the desorption gas G8 and the later-described desorption gas G11 to the exhaust gas G1 inlet of the cooling condenser 100.
  • the third flow path F3 is preferably connected so that the desorption section is arranged above the position where the desorption gas and the exhaust gas G1 supplied to the cooling/condensing device 100 join. This is because the desorbed condensate L2 generated from the desorbed gas G8 of the first concentrator 200 and the desorbed gas G11 of the second concentrator 300 easily moves to the cooling condenser 100 .
  • the third flow path F3 is configured so as to pass through two points, the inlet of the exhaust gas G1 of the cooling and condensing device 100 and the tank 125 . This is because the desorbed condensed liquid L2 generated from the desorbed gas G8 and the desorbed gas G11 can be easily collected directly into the tank 125 .
  • the third flow path F3 is a part that returns the desorption gas G8 to the exhaust gas G1 inlet of the cooling condenser 100. As shown in FIG.
  • the adsorption unit 210 located in the adsorption section performs adsorption processing of the substance to be processed, and after the adsorption processing, the adsorption unit 210 located in the desorption section performs desorption processing of the substance to be processed. done.
  • the adsorption rotor 212 rotates around the cylindrical axis, the adsorption unit 210 alternately moves between the desorption section and the adsorption section, and adsorption and desorption of the substance to be treated are continuously performed.
  • Activated alumina, silica gel, activated carbon material, zeolite, and the like can be used as materials for the adsorption elements that constitute the adsorption unit 210 .
  • the shape of the adsorption element in the adsorption unit 210 is not particularly limited, and may be, for example, a honeycomb-shaped sheet containing an activated carbon material or zeolite, or a laminate of activated carbon fiber nonwoven fabrics.
  • the second concentrator 300 has an adsorption element 310 containing an adsorbent that adsorbs the contained organic solvent by contact with gas and desorbs the adsorbed organic solvent by contact with heated gas.
  • the adsorption element 310 includes a desorption section (desorption zone) 311 and an adsorption section (adsorption zone) 312 .
  • the cooling process gas G5 is introduced into the adsorbent, and the cooling process gas G5 is brought into contact with the adsorbent. is cleaned and discharged as clean gas G9.
  • the high-temperature gas G10 having a higher temperature than the cooling process gas G5 is introduced into the adsorbent, whereby the organic solvent is desorbed from the adsorbent and discharged as the desorbed gas G11 containing the organic solvent.
  • activated alumina, silica gel, activated carbon material, and zeolite are widely used, and among them, activated carbon and hydrophobic zeolite are particularly preferably used.
  • the second concentrator 300 includes a rotating shaft and an adsorption element 310 provided around the rotating shaft.
  • the second concentrating device 300 rotates the adsorption element 310 around the rotation axis, so that the adsorbent that adsorbs the organic solvent in the cooling process gas G5 introduced from the second flow path F2 is continuous in the adsorption section 312. It is configured to move to the detachable portion 311 automatically.
  • the second concentration device 300 preferably has the desorption section 311 arranged below the adsorption section 312 . This is because even when part of the organic solvent contained in the desorption gas G11 is liquefied and condensed to generate the desorption condensate L2, the desorption condensate L2 is less likely to adhere to the adsorption unit 312.
  • the desorbed condensate L2 falls downward from the desorption section 311 and is collected along the inner surface of the exterior of the desorption section. More preferably, the desorbing portion 311 is inclined downward so that the desorbed condensate L2 can easily fall downward.
  • the second concentrating device 300 may have a cleaning section (purge section) in which the portion where the desorption processing of the desorption section 311 is completed transfers before transferring to the adsorption section 312 .
  • a part of the clean gas G9 may be introduced into the purge section, and the purge section outlet gas discharged from the purge section may be introduced into the adsorption section 312 .
  • the high-temperature gas G10 used for desorption is preferably a part of the clean gas G9 heated to a high temperature using heating means such as the regeneration heater 350. This is because, in the adsorption section 312, the processing air volume of the organic solvent-containing gas does not increase.
  • FIGS. 15 and 16 are diagrams schematically showing the configuration of an organic solvent recovery system 2E according to Embodiment 2E.
  • the organic solvent recovery system 2E includes an organic solvent recovery system 2B1 comprising a cooling condensing device 100, a first concentrating device 200 and a second concentrating device 300, and an organic solvent recovery system 2B1 comprising a cooling condensing device 100 and a first concentrating device 200. It is configured to include two recovery systems 2B2 and various flow paths.
  • the channels are connected at points A and B, but due to space limitations, FIG. 1 is divided into two figures.
  • Organic solvent recovery system 2B1 and organic solvent recovery system 2B2 in organic solvent recovery system 2E shown in FIGS. 15 and 16 are organic solvent recovery system 2B1 and organic solvent recovery system 2B2 included in organic solvent recovery system 1E shown in FIG. It has the same configuration as
  • the organic solvent recovery system 2E of Embodiment 2E has a configuration in which the number of second concentrating devices 300 in the latter stage is less than the number of first concentrating devices 200 in the preceding stage.
  • the number of second concentrators 300 in the latter stage is two, while the number of first concentrators 200 in the former stage is four.
  • the number of each of the first concentrating devices 200 and the second concentrating devices 300 may be any number.
  • the position to which the second concentrating device 300 in the latter stage is connected may be any position among the plurality of first concentrating devices 200 in the preceding stage.
  • the organic solvent recovery system 2E of Embodiment 2E has a configuration in which a plurality of cooling condensing devices 100 and a plurality of first concentrating devices 200 are arranged in parallel with respect to the production facility 130. is.
  • the number of first concentrators 200 is the same as the number of cooling condensers 100, but the numbers may be different.
  • the number of cooling-condensing devices 100 may be configured to be less than the number of first concentrating devices 200 .
  • the cooling process gas G4 discharged from one cooling condensing device 100 may be configured to flow into a plurality of first concentrating devices 200 .
  • the organic solvent recovery systems 1E and 2E in the present embodiment cool the exhaust gas G1 containing the organic solvent, liquefy and condense the organic solvent, and discharge the cooled gas G4 with a reduced concentration of the organic solvent.
  • the condensing device 100, the first circulation path F1 through which the cooled gas G4 flows, and the adsorption unit 210 adsorbs the organic solvent contained in the cooled gas G4 introduced from the first circulation path F1 to obtain an organic solvent.
  • a first concentrator 200 that discharges a cooled processed gas G5 with a further reduced solvent concentration, introduces a high-temperature gas G7, desorbs the organic solvent from the adsorption unit 210, and discharges it as a desorbed gas G8, and a cooled processed gas G5.
  • the concentration of the organic solvent is further reduced by adsorbing the organic solvent contained in the cooling process gas G5 introduced from the second circulation path F2 and the adsorption element 310 that is introduced from the second circulation path F2. and a second concentrator 300 that discharges the desorbed clean gas G9, introduces the hot gas G10 to desorb the organic solvent from the adsorption element 310, and discharges it as the desorbed gas G11.
  • At least two or more first concentrators 200 are provided, at least one or more second concentrators 300 are provided, and the number of second concentrators 300 is less than the number of first concentrators 200 .
  • the organic solvent recovery systems 1E and 2E efficiently recover the organic solvent from the exhaust gas G1 by the plurality of first concentration devices 200. be able to.
  • a plurality of first concentrators 200 in the present embodiment are arranged in parallel with the production facility 130 . As a result, even when the flow rate of the exhaust gas G1 discharged from the production facility 130 is large, the organic solvent can be recovered from the exhaust gas G1 with high efficiency.
  • At least two cooling-condensing devices 100 in the present embodiment are provided, and the number of first concentrating devices 200 is the same as the number of cooling-condensing devices 100 .
  • the cooling and condensing device 100 in the present embodiment includes a network structure 121 that separates the condensed organic solvent and the cooling process gas G3 by contacting the exhaust gas G2 after cooling, and and a chamber 123 in which the cooled process gas G3 is stored for a certain period of time. As a result, the organic solvent can be recovered from the exhaust gas G1 with high efficiency.
  • the cooling/condensing device 100 in the present embodiment further includes a first heat exchanger 111 and a second heat exchanger 112 that perform cooling by heat exchange with refrigerant. Thereby, heat exchange between the refrigerant and the exhaust gas can be effectively performed.
  • a plurality of adsorption units 210 are arranged in the circumferential direction around the cylinder axis of a hollow columnar rotor rotating around the cylinder axis. As a result, the organic solvent can be recovered with high efficiency.
  • the adsorption element 310 is arranged on a disk-shaped adsorption rotor that rotates around the cylinder axis. As a result, the organic solvent can be recovered with high efficiency.
  • the organic solvent recovery systems 1E, 2E may be configured by any one of the organic solvent recovery systems shown in FIGS. 2 to 13, or a combination thereof.
  • the number of each of the first concentrating devices 200 and the second concentrating devices 300 may be any number.
  • the number of second concentrating devices 300 in the latter stage may be one, and the number of first concentrating devices 200 in the preceding stage may be three or more.
  • one or more second concentrators 300 are required to discharge the clean gas G9.
  • Examples of the organic solvent contained in the exhaust gas G1 include organic solvents that can be liquefied and recovered by cooling to 1°C to 50°C.
  • Examples of organic solvents are N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide and n-decane. These are examples and are not limiting.
  • the organic solvent contained may be one or more.
  • the first concentrator 200 which is a vertical cylindrical concentrator
  • the second concentrator 300 which is a disc-shaped concentrator
  • the concentrator may be a horizontal cylinder-type concentrator, and may be configured by any combination of a vertical cylinder-type concentrator, a horizontal cylinder-type concentrator, and a disk-type concentrator. can be anything.
  • the horizontal cylinder type concentrator may be applied to the concentrator shown in any one of FIGS. 1 to 13.
  • WO2016/189958 and WO2017/170207 are examples of horizontal cylindrical concentrators.
  • Japanese Patent Application Laid-Open No. 84616/1988 can be cited as a vertical cylinder type concentrator.
  • Japanese Unexamined Patent Application Publication No. 61-167430 can be cited. These are all examples and are not limited to the concentrators disclosed in the documents described herein.
  • FIG. 17 is a diagram schematically showing the configuration of an organic solvent recovery system 1J according to Embodiment 1J.
  • the organic solvent recovery system 1J is composed of an organic solvent recovery system 1K1 composed of a cooling condensing device 100 and a second concentrating device 300, an organic solvent recovery system 1K2 composed of the cooling condensing device 100, and various flow paths. ing.
  • the organic solvent recovery system 1J has a configuration obtained by removing the first concentration device 200 from the organic solvent recovery system 1E of FIG. As shown in FIG. 17, the organic solvent recovery system 1J of Embodiment 1J has one second concentrating device 300 in the latter stage and two cooling condensation devices 100 in the former stage. In other words, the number of second concentrating devices 300 in the latter stage is less than the number of cooling and condensing devices 100 in the preceding stage.
  • An organic solvent recovery system 1J of Embodiment 1J has a configuration in which a plurality of cooling and condensing devices 100 are arranged in parallel with respect to a production facility 130, as shown in FIG.
  • Various configurations of the organic solvent recovery system 1J including the organic solvent recovery system 1K1 and the organic solvent recovery system 1K2 will be specifically described below.
  • the cooling condensation device 100 used in the organic solvent recovery system 1K1 and the organic solvent recovery system 1K2 will be explained.
  • the cooling-condensing device 100 has a cooling section 110 and a separating section 120 .
  • An exhaust gas G1 containing an organic solvent is discharged from the production facility 130. As shown in FIG.
  • the exhaust gas G1 is cooled by passing through the cooling section 110 .
  • the organic solvent is liquefied and condensed.
  • the exhaust gas G2 that has passed through the cooling section 110 is separated into a liquefied and condensed cooling condensate L1 and a cooling process gas G3 with a reduced organic solvent concentration by passing through the separation section 120 .
  • a heater 126 is provided in the chamber 123 .
  • the heater 126 slightly heats the cooled process gas G3 after cooling.
  • the cooled process gas G3 can prevent the organic solvent or moisture from condensing by being slightly heated.
  • the cooled process gas G3 is discharged from the cooled condenser 100 to the second concentrator 300 through the chamber 123 with a portion G22 of the cooled process gas.
  • Embodiment 1J uses a first heat exchanger 111 that cools the exhaust gas by indirect heat exchange between a refrigerant such as cooling water, cold water, and brine.
  • the first heat exchanger 111 is positioned so that the exhaust gas G1 flows vertically.
  • the cooling unit 110 is provided with a second heat exchanger 112 in front of the first heat exchanger 111, which cools the exhaust gas G1 by heat exchange between the cooling process gas G21 and the exhaust gas G1, which will be described later.
  • the second heat exchanger 112 can reduce the heat transfer area and the amount of refrigerant required for the first heat exchanger 111 .
  • a part of the exhaust gas G1 and the cooling process gas G21 is returned to the production facility 130 through the fifth flow path F5.
  • Conditions such as the cooling temperature in the first heat exchanger 111 and the second heat exchanger 112 may be appropriately determined according to the organic solvent to be recovered.
  • Embodiment 1J uses a reticulated structure 121 such as demisters, filters, and meshes that contact and trap droplets.
  • the separation unit 120 has a funnel-shaped receiving unit 122 that receives the cooled condensate L1 containing the organic solvent that has been cooled in the cooling unit 110 .
  • the cooled condensate L1 cooled in the cooling part 110 and the cooled condensate L1 trapped in the network structure 121 flow to the receiving part 122 by gravity, and then are collected in the tank 125 arranged below the receiving part 122 . It is liquefied and recovered as recovery liquid L3.
  • the chamber 123 is a structure having a certain amount of space.
  • a weir 124 is provided in the chamber 123 .
  • the weir 124 prevents part of the cooling condensate L1 from moving toward the tip of the chamber 123 and flowing into the first flow path F1 as the cooling gas flow path.
  • Weir 124 serves to ensure that cooling condensate L1 is recovered.
  • the cooling process gas G3 stored in the chamber 123 for a certain period of time flows through the flow path F21 as the cooling process gas G21 (return gas G21) and is returned to the cooling section 110.
  • FIG. A part of the cooled processed gas G3 flows through the flow path F22 as the cooled processed gas G22 and is supplied to the second concentrator 300 .
  • the cooling unit 110 In front of the first heat exchanger 111, the cooling unit 110 is provided with a second heat exchanger 112 that cools the exhaust gas G1 by heat exchange between the cooling process gas G21 and the exhaust gas G1. This reduces the heat transfer area and the amount of refrigerant required for the first heat exchanger 111 .
  • the direction of flow from the mesh structure 121 to the chamber 123 in the separation unit 120 is relative to the direction of flow from the cooling unit 110 to the separation unit 120.
  • the exhaust gas G1 exhaust gas G2, cooling process gas G3 flows in the L-shaped direction.
  • the organic solvent recovery system 1J Since the organic solvent recovery system 1J has an L-shaped structure in the part composed of the cooling part 110 and the separation part 120, it is possible to suppress the exposure of the second concentrating device 300 due to droplets and splashes.
  • the second concentrator 300 may be weakened or damaged if exposed and the adsorbent gets wet. Since the organic solvent recovery system 1J has an L-shaped structure, it is possible to prevent the second concentrator 300 from being weakened or damaged.
  • the second concentration device 300 used in the organic solvent recovery system 1K1 will be explained.
  • the second concentrator 300 has an adsorption element 310 containing an adsorbent that adsorbs the contained organic solvent when it comes into contact with the gas and desorbs the adsorbed organic solvent when it comes into contact with the heated gas.
  • the adsorption element 310 includes a desorption section (desorption zone) 311 and an adsorption section (adsorption zone) 312 .
  • the cooling process gas G22 is introduced, and the cooling process gas G22 comes into contact with the adsorbent. is cleaned and discharged as clean gas G9.
  • the high-temperature gas G10 having a higher temperature than the cooling process gas G22 is introduced into the adsorbent, whereby the organic solvent is desorbed from the adsorbent and discharged as the desorbed gas G11 containing the organic solvent.
  • activated alumina, silica gel, activated carbon material, and zeolite are widely used, and among them, activated carbon and hydrophobic zeolite are particularly preferably used.
  • the second concentrator 300 includes a rotating shaft and an adsorption element 310 provided around the rotating shaft.
  • the second concentrating device 300 rotates the adsorption element 310 around the rotation axis, so that in the adsorption section 312, the adsorbent that adsorbs the organic solvent in the cooled processed gas G22 introduced from the flow path F22 is continuously adsorbed. It is configured to move to the detachable portion 311 .
  • the second concentration device 300 preferably has the desorption section 311 arranged below the adsorption section 312 . This is because even when part of the organic solvent contained in the desorption gas G11 is liquefied and condensed to generate the desorption condensate L2, the desorption condensate L2 is less likely to adhere to the adsorption unit 312.
  • the desorbed condensate L2 falls downward from the desorption section 311 and is collected along the inner surface of the exterior of the desorption section. More preferably, the desorbing portion 311 is inclined downward so that the desorbed condensate L2 can easily fall downward.
  • the second concentrating device 300 may have a cleaning section (purge section) in which the portion where the desorption processing of the desorption section 311 is completed transfers before transferring to the adsorption section 312 .
  • a part of the clean gas G9 may be introduced into the purge section, and the purge section outlet gas discharged from the purge section may be introduced into the adsorption section 312 .
  • the high-temperature gas G10 used for desorption is preferably a part of the clean gas G9 heated to a high temperature using heating means such as the regeneration heater 350. This is because, in the adsorption section 312, the processing air volume of the organic solvent-containing gas does not increase.
  • the organic solvent recovery system 1K2 in the organic solvent recovery system 1J does not have the second concentration device 300 unlike the organic solvent recovery system 1K1. Therefore, all of the cooling process gas G3 stored in the chamber 123 of the cooling condensing device 100 for a certain period of time flows through the flow path F21 as the cooling process gas G21 (return gas G21) and is returned to the cooling unit 110.
  • a plurality of cooling-condensing devices 100 are arranged in parallel with respect to production equipment 130, and the number of second concentrating devices 300 in the latter stage is This configuration is less than the number of cooling and condensing devices 100 .
  • the number of the second concentrating device 300 in the latter stage is one
  • the number of the cooling and condensing devices 100 in the former stage is two.
  • Any number of the second concentrating devices 300 may be provided as long as the number of the second concentrating devices 300 in the latter stage is less than the number of the cooling-condensing devices 100 in the preceding stage.
  • the position to which the second concentrating device 300 in the latter stage is connected may be any position among the plurality of cooling-condensing devices 100 in the former stage.
  • the organic solvent recovery system 1J in the present embodiment is a cooling condensation device that liquefies and condenses the organic solvent by cooling the exhaust gas G1 containing the organic solvent and discharges it as a cooled processed gas G22 in which the concentration of the organic solvent is reduced.
  • a flow path F22 for flowing the cooling process gas G22, and the organic solvent contained in the cooling process gas G22 introduced from the flow path F22 is adsorbed by the adsorption element 310 to further reduce the concentration of the organic solvent.
  • a second concentrator 300 that discharges the desorbed clean gas G9, introduces the hot gas G10 to desorb the organic solvent from the adsorption element 310, and discharges it as the desorbed gas G11.
  • At least two cooling condensing devices 100 are provided, at least one second concentrating device 300 is provided, and the number of second concentrating devices 300 is less than the number of cooling condensing devices 100 .
  • the organic solvent recovery system 1J can recover the organic solvent from the exhaust gas G1 with high efficiency by the plurality of cooling and condensing devices 100. .
  • a plurality of cooling and condensing devices 100 in the present embodiment are arranged in parallel with production equipment 130 . As a result, even when the flow rate of the exhaust gas G1 discharged from the production facility 130 is large, the organic solvent can be recovered from the exhaust gas G1 with high efficiency.
  • the cooling and condensing device 100 in the present embodiment includes a network structure 121 that separates the condensed organic solvent and the cooling process gas G3 by contacting the exhaust gas G2 after cooling, and and a chamber 123 in which the cooled process gas G3 is stored for a certain period of time. As a result, the organic solvent can be recovered from the exhaust gas G1 with high efficiency.
  • the cooling/condensing device 100 in the present embodiment further includes a first heat exchanger 111 and a second heat exchanger 112 that perform the cooling by heat exchange with the refrigerant. Thereby, heat exchange between the refrigerant and the exhaust gas can be effectively performed.
  • the adsorption element 310 is arranged on a disk-shaped adsorption rotor that rotates around the cylinder axis. As a result, the organic solvent can be recovered with high efficiency.
  • the organic solvent recovery system 1J has any one of the configurations obtained by removing the front-stage concentrator from the configuration of the organic solvent recovery system provided with the two-stage concentrator shown in FIGS. 2 to 13, or A combination thereof may be used.
  • the second concentrator 300 which is a disk-shaped concentrator, has been described as an example.
  • a plurality of adsorption units 210 are arranged in the circumferential direction around the cylinder axis of a hollow columnar rotor that rotates around the cylinder axis.
  • Concentrator 200 may be used.
  • the concentrating device may be a horizontal cylindrical concentrating device.
  • Examples of the organic solvent contained in the exhaust gas G1 include organic solvents that can be liquefied and recovered by cooling to 1°C to 50°C.
  • Examples of organic solvents are N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide and n-decane. These are examples and are not limiting.
  • the organic solvent contained may be one or more.
  • 1A, 1B, 1C, 1D, 2B, 2C, 2D, 3C, 3D, 4C, 4D organic solvent recovery system 100 cooling condenser, 110 cooling section, 111 first heat exchanger, 112 second heat exchanger, 120 Separation section, 121 network structure, 123 chamber, 125 tank, 127 ceiling section, 128 partition section, 130 production equipment, 200 first concentrator, 210 adsorption unit, 211 inner peripheral flow path forming member, 212 adsorption rotor, 213 outer flow path forming member, 250, 350 regeneration heater, 300 second concentrator, 310 adsorption element, 311 desorption section, 312 adsorption section, F1 first flow path, F2 second flow path, F3 third flow Flow path, F4 Fourth flow path, F5 Fifth flow path, F6 Sixth flow path, G1, G2 Exhaust gas, G3, G4, G5, G6 Cooling process gas, G7, G10 High temperature gas, G8, G11 Desorption Gas, G9 clean gas, L1

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

有機溶剤回収システム(1E)は、冷却凝縮装置(100)と、第一通流経路(F1)と、第一濃縮装置(200)と、第二通流経路(F2)と、第二濃縮装置(300)と、を備える。第一濃縮装置(200)は、少なくとも2つ以上設けられ、第二濃縮装置(300)は、少なくとも1つ以上設けられ、第二濃縮装置(300)の数が、第一濃縮装置(200)の数未満である。

Description

有機溶剤回収システム
 本開示は、有機溶剤回収システムに関する。
 従来、有機溶剤を含有する排ガスから有機溶剤を回収する処理システムとして、冷却凝縮装置および吸着素子を使用した濃縮装置を組み合わせたものが知られている。冷却凝縮装置は、有機溶剤を凝縮回収し、排ガス中の有機溶剤濃度を低減させる。吸着素子を使用した濃縮装置は、冷却凝縮装置から排出された有機溶剤濃度が低減された排ガスを吸着素子に接触させて有機溶剤を吸着させて更に排ガス中の有機溶剤濃度を低減させるとともに、有機溶剤を吸着した吸着材に高温のガスを吹き付けて有機溶剤を脱着させて高濃度の有機溶剤を含有する脱着ガスとして排出する。脱着ガスは冷却凝縮装置に返送され、再処理される(特許文献1、2参照)。
特開2016-101553号公報 特開2017-991号公報
 生産設備においては、一定量のクリーンガスが補給される。従って、補給ガス分の排ガスが外部環境へ排出される。近年、世界的な排ガス規制に伴い、極低濃度までの有機溶剤の除去が求められており、高度な処理効率が求められる。
 本開示の目的は、排ガスから有機溶剤をより高効率に回収することが可能な有機溶剤回収システムを提供することである。
 本開示の有機溶剤回収システムは、生産設備から排出される有機溶剤を含有する排ガスから上記有機溶剤を回収する有機溶剤回収システムである。有機溶剤回収システムは、上記有機溶剤を含有する上記排ガスを冷却することで、上記有機溶剤を液化凝縮し、上記有機溶剤の濃度が低減された冷却処理ガスとして排出する冷却凝縮装置と、上記冷却処理ガスを通流させる第一通流経路と、上記第一通流経路から導入された上記冷却処理ガスに含まれる上記有機溶剤を第一吸着素子にて吸着して上記有機溶剤の濃度が更に低減された第一処理ガスとして排出し、高温ガスを導入して上記第一吸着素子から上記有機溶剤を脱着して第一脱着ガスとして排出する第一濃縮装置と、上記第一処理ガスの一部を通流させる第二通流経路と、上記第二通流経路から導入された上記第一処理ガスに含まれる上記有機溶剤を第二吸着素子にて吸着して上記有機溶剤の濃度が更に低減された第二処理ガスとして排出し、高温ガスを導入して上記第二吸着素子から上記有機溶剤を脱着して第二脱着ガスとして排出する第二濃縮装置と、を備える。上記第一濃縮装置は、少なくとも2つ以上設けられ、上記第二濃縮装置は、少なくとも1つ以上設けられ、上記第二濃縮装置の数が、上記第一濃縮装置の数未満である。
 上記の有機溶剤回収システムにおいて、複数の上記第一濃縮装置は、上記生産設備に対して並列に配置される。
 上記の有機溶剤回収システムにおいて、上記冷却凝縮装置は、少なくとも2つ以上設けられ、上記第一濃縮装置の数が、上記冷却凝縮装置の数と同じである。
 上記の有機溶剤回収システムにおいて、上記冷却凝縮装置は、上記冷却後の上記排ガスを接触させることで凝縮した上記有機溶剤と上記冷却処理ガスとを分離させる網目状構造体と、上記網目状構造体を通過後の上記冷却処理ガスを一定時間貯留させるチャンバーと、をさらに備える。
 上記の有機溶剤回収システムにおいて、上記冷却凝縮装置は、冷媒との熱交換により上記冷却を行う熱交換器をさらに備える。
 上記の有機溶剤回収システムにおいて、上記第一濃縮装置は、上記第一吸着素子が筒軸回りに回転する中空円柱状のロータの筒軸回りの周方向に複数配置されている。
 上記の有機溶剤回収システムにおいて、上記第二濃縮装置は、上記第二吸着素子が筒軸回りに回転する円盤状の吸着ロータに配置されている。
 この開示によれば、排ガスから有機溶剤をより高効率に回収することが可能な有機溶剤回収システムを提供することができる。
実施の形態1Aにおける有機溶剤回収システムの構成を概略的に示す図である。 実施の形態1Aにおける有機溶剤回収システムの別の構成図の一例である。 実施の形態1Aにおける有機溶剤回収システムのさらに別の構成図の一例である。 実施の形態1Bの有機溶剤回収システムの構成を概略的に示す図である。 実施の形態2Bの有機溶剤回収システムの構成を概略的に示す図である。 実施の形態1Cの有機溶剤回収システムの構成を概略的に示す図である。 実施の形態2Cの有機溶剤回収システムの構成を概略的に示す図である。 実施の形態3Cの有機溶剤回収システムの構成を概略的に示す図である。 実施の形態4Cの有機溶剤回収システムの構成を概略的に示す図である。 実施の形態1Dの有機溶剤回収システムの構成を概略的に示す図である。 実施の形態2Dの有機溶剤回収システムの構成を概略的に示す図である。 実施の形態3Dの有機溶剤回収システムの構成を概略的に示す図である。 実施の形態4Dの有機溶剤回収システムの構成を概略的に示す図である。 実施の形態1Eの有機溶剤回収システムの構成を概略的に示す図である。 実施の形態2Eの有機溶剤回収システムの構成を概略的に示す図である。 実施の形態2Eの有機溶剤回収システムの構成を概略的に示す図である。 実施の形態1Jの有機溶剤回収システムの構成を概略的に示す図である。
 本開示に基づいた各実施の形態の有機溶剤回収システムについて、以下、図面を参照しながら説明する。以下に説明する実施の形態において、個数、量などに言及する場合、特に記載がある場合を除き、本開示の範囲は必ずしもその個数、量などに限定されない。同一の部品、相当部品に対しては、同一の参照番号を付し、重複する説明は繰り返さない場合がある。実施の形態における構成を適宜組み合わせて用いることは当初から予定されていることである。
 [実施の形態1A]
 図1は、実施の形態1Aにおける有機溶剤回収システム1Aの構成を概略的に示す図である。有機溶剤回収システム1Aは、冷却凝縮装置100、濃縮装置300、第一通流経路F1、第二通流経路F2とで構成されている。
 冷却凝縮装置100は、冷却部110と分離部120およびチャンバー123を有している。有機溶剤を含有する排ガスG1は冷却部110を通過することによって冷却し、それに伴って該有機溶剤を液化凝縮させる。次に該排ガスG2は、分離部120を通過することによって、液化凝縮された冷却凝縮液L1と有機溶剤濃度の低減された冷却処理ガスG3とに分離される。最後にチャンバー123を通じて、冷却処理ガスの一部(吸着入口ガス)G4が濃縮装置300へ供給するように分配されて、冷却凝縮装置100から排出される。
 冷却部110の冷却手段・構成は特に限定しないが、冷却水、冷水、ブラインなどの冷媒と排ガスとの間接的な熱交換によって冷却する第一熱交換器111などがある。冷却温度などの条件も回収対象となる有機溶剤によって適宜決めればよい。
 また、冷却部110は、第一熱交換器111の前に、冷却処理ガスの残部(リターンガス)G6と排ガスG1との熱交換によって排ガスG1を冷却させる第二熱交換器112を設けてもよい。第一熱交換器111に必要な伝熱面積や冷媒量が削減されるからである。
 分離部120の分離手段・構成は特に限定しないが、デミスター、フィルター、メッシュなどの液滴を接触して捕捉する網目状構造体121などがある。網目状構造体121に捕捉された冷却凝縮液L1は、重力によって網目状構造体121下部に配置されたタンク125へ集液され、回収液L3として回収される。
 チャンバー123は、一定容量の空間を有する構造体である。濃縮装置300へ供給する冷却処理ガスの一部(吸着入口ガス)G4と、冷却処理ガスの残部(リターンガス)G6に分配される。チャンバー123は、網目状構造体121から排出される冷却処理ガスG3の排気方向と対向するように第一通流経路F1の吸込みを可能にする仕切部128を有する。
 濃縮装置300は、ガスが接触することによって、含有する有機溶剤を吸着し、加熱ガスを接触することによって、吸着した有機溶剤を脱着させる吸着材を含む吸着素子310を有している。また、吸着素子310は、脱着部(脱着ゾーン)311と吸着部(吸着ゾーン)312とを含んでいる。吸着部312では、冷却処理ガスの一部(吸着入口ガス)G4が導入され、吸着材に冷却処理ガスの一部(吸着入口ガス)G4が接触することで、冷却処理ガスの一部(吸着入口ガス)G4に含有される有機溶剤が吸着材に吸着され、これにより冷却処理ガスの一部(吸着入口ガス)G4が清浄化されて清浄ガスG9として排出される。
 脱着部311では、吸着材に冷却処理ガスの一部(吸着入口ガス)G4よりも高温のガスG10が導入されることで、有機溶剤が吸着材から脱着され、これにより有機溶剤を含有する脱着ガスG11として排出される。
 吸着素子310に含まれる吸着材としては、活性アルミナ、シリカゲル、活性炭素材やゼオライトが広く利用されており、中でも活性炭と疎水性ゼオライトが特に好適に利用されている。活性炭と疎水性ゼオライトは、低濃度の有機化合物を吸着、脱着する機能に優れており、古くから吸着材として各種の装置に利用されている。
 また、実施形態における濃縮装置の具体的な構成は特に限定しないが、図1に示す通り、回転軸と、回転軸の周りに設けられた吸着素子310とを備え、回転軸周りに吸着素子310を回転させることにより、吸着部312において、冷却処理ガスの一部(吸着入口ガス)G4中の有機溶剤を吸着した吸着材が連続的に脱着部311に移動する構成が知られている。
 実施形態における濃縮装置300は、図1に示す通り、脱着部311は吸着部312よりも下部に配置された方が好ましい。脱着ガスG11中に含まれる有機溶剤の一部が液化凝縮して脱着凝縮液L2が発生した場合においても、吸着部312に脱着凝縮液L2が付着しにくくなるからである。脱着凝縮液L2は脱着部311より下部へ落ち、脱着部の外装の内面などを伝って回収される。より好ましくは、図1に示す通り、脱着部311は下に傾斜をつけた方が良い。脱着凝縮液L2がより下へ落ち易くなるためである。
 濃縮装置300は、脱着部311の脱着処理が完了した部分が吸着部312への移行の前に移行するパージ部(図示せず)を有していてもよい。清浄ガスG9の一部がパージ部に導入され、パージ部から排出されたパージ部出口ガスが、吸着部312に導入されるような構成であってもよい。清浄ガスG9により脱着完了した吸着材をパージすることで、吸着材に残る脱着ガスG11が清浄ガスG9へ混入することを防ぎ、吸着材を冷却することができるからである。
 濃縮装置300は、脱着に使用する高温のガスG10は、清浄ガスG9の一部を再生ヒータ350などの加熱手段を用いて高温状態にしたものが好ましい。吸着部312で有機溶剤含有ガスの処理風量が増えないからである。排ガスG1の温度が50~200℃の温度の場合においては、排ガスG1の一部を再生ヒータ350などで昇温させて使用した方がより好ましい。高温の排ガスG1を脱着に用いることで、再生ヒータ350の使用ユーティリティを削減でき、排ガスG1の温度によっては脱着に再生ヒータ350が不要になるからである。また、冷却凝縮装置100へ排ガスG1および脱着ガスG11を通過させる割合は、排ガスG1が0%~50%であり、脱着ガスG11が50%~100%が想定される。
 第一通流経路F1は、冷却処理ガスの一部(吸着入口ガス)G4をチャンバー123から濃縮装置300へ導入する部位である。第一通流経路F1のチャンバー123への接続口は、チャンバー123の天井部127が好ましい。分離部120で捕捉しきれなかった僅かな液滴の濃縮装置300への侵入を抑制し、後述する濃縮装置300の吸着素子310の濡れによる性能低下・強度低下などを防ぐためである。さらに好ましくは、冷却処理ガスG3の通気方向対して、対向するように冷却処理ガスの一部(吸着入口ガス)G4を取り出すように仕切部128を設けた方が良い。より液滴の侵入を防ぐことができる。このほか、冷却処理ガスの一部(吸着入口ガス)G4の取り出し口に、上記網目状構造体121と類似の液滴侵入防止部材を設けても良いし、液滴を気化させるための加熱器を設けても良い。
 第二通流経路F2は、脱着ガスG11を冷却凝縮装置100の排ガスG1導入部に返送する部位である。第二通流経路F2は、脱着部311が脱着ガスG11と冷却凝縮装置100へ供給される排ガスG1との合流位置よりも上部に配置されるように接続されることが好ましい。濃縮装置300の脱着ガスG11から発生した脱着凝縮液L2が、冷却凝縮装置100へ移行しやすいからである。さらに好ましくは、冷却凝縮装置100の排ガスG1導入部およびタンク125の二か所に通気されるように構成された方が良い。脱着ガスG11から発生した脱着凝縮液L2が直接タンク125へ回収されやすくなるからである。
 実施形態における有機溶剤回収システム1Aの濃縮装置300の脱着に使用する高温のガスG10は、前述の通り清浄ガスG9の一部を再生ヒータ350などの加熱手段を用いて高温状態にしたものが好ましいが、排ガスG1の温度が50~200℃の温度の場合においては、排ガスG1の一部を再生ヒータ350などで昇温させて使用した方がより好ましい。高温の排ガスを脱着に用いることで、再生ヒータ350の使用ユーティリティを削減でき、排ガスG1の温度によっては脱着に再生ヒータ350が不要になるからである。また、冷却凝縮装置100へ排ガスG1および脱着ガスG11を通過させる割合は、排ガスG1が0%~50%であり、脱着ガスG11が50%~100%が想定される。
 排ガスG1は、生産設備130から排出されるガスである場合、冷却処理ガスの残部(リターンガス)G6は、生産設備130に戻される構成としてもよい。
 冷却処理ガスの残部(リターンガス)G6に含まれる有機溶剤濃度を更に低減したい場合、図2に示すように、冷却処理ガスの残部(リターンガス)G6を処理する濃縮装置500を追加導入してもよい。また、清浄ガスG9に含まれる有機溶剤濃度を更に低減したい場合、図3に示すように、清浄ガスG9を処理する濃縮装置600を追加導入してもよい。濃縮装置500や濃縮装置600は、濃縮装置300と同じ構成でも別の構成であってもよい。また、追加導入する濃縮装置数に制限はない。何れの濃縮装置から排出される脱着ガスは、第二通流経路F2を経由して、冷却凝縮装置100の排ガスG1導入部に返送される。
 実施形態では、排ガスG1に含有される有機溶剤としては、1℃~50℃の冷却にて液化して回収できる有機溶剤が挙げられる。有機溶剤としては、たとえば、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、またn-デカンである。これらは例示であり、これらに限定されることはない。含有される有機溶剤は、1種でも複数種でもよい。
 [実施の形態1B]
 図4は、実施の形態1Bの有機溶剤回収システム1Bの構成を概略的に示す図である。有機溶剤回収システム1Bは、冷却凝縮装置100、第一濃縮装置200、第二濃縮装置300、および各種通流経路により構成されている。
 冷却凝縮装置100は、冷却部110と分離部120とを有している。有機溶剤を含有する排ガスG1は、生産設備130から排出される。排ガスG1は、冷却部110を通過することによって冷却される。排ガスG1は、冷却部110の通過に伴って有機溶剤が液化凝縮される。
 冷却部110を通過した排ガスG2は、分離部120を通過することによって、液化凝縮された冷却凝縮液L1と有機溶剤濃度の低減された冷却処理ガスG3とに分離される。冷却処理ガスG3は、チャンバー123を通じて、冷却処理ガスG4として冷却凝縮装置100から第一濃縮装置200へ排出される。
 冷却部110の冷却手段および構成は、特に限定しない。実施の形態1Bでは、冷却水、冷水、ブラインなどの冷媒と排ガスとの間接的な熱交換によって冷却する第一熱交換器111が用いられる。第一熱交換器111は、排ガスG1が上下方向に通流するように位置している。
 冷却部110は、第一熱交換器111の前に、後述する冷却処理ガスG6と排ガスG1との熱交換によって排ガスG1を冷却させる第二熱交換器112が設けられている。第二熱交換器112は、第一熱交換器111に必要な伝熱面積や冷媒量を削減することができる。排ガスG1および冷却処理ガスG6の一部は、第五通流経路F5を通り生産設備130へ戻される。第一熱交換器111および第二熱交換器112における冷却温度などの条件は、回収対象となる有機溶剤によって適宜決めればよい。
 分離部120の分離手段および構成は特に限定しない。実施の形態1Bでは、デミスター、フィルター、およびメッシュなどの液滴を接触して捕捉する網目状構造体121が用いられる。分離部120は、冷却部110で冷却された有機溶剤を含む冷却凝縮液L1を受ける漏斗状の受け部122を有している。冷却部110で冷却された冷却凝縮液L1および網目状構造体121に捕捉された冷却凝縮液L1は、重力によって受け部122に流れた後、受け部122の下部に配置されたタンク125へ集液され、回収液L3として回収される。
 チャンバー123は、一定容量の空間を有する構造体である。チャンバー123内には、堰124が設けられている。堰124は、冷却凝縮液L1の一部がチャンバー123の先端方向へ移動し冷却ガス通流経路としての第一通流経路F1へ通流してしまうことを防止する。堰124は、確実に冷却凝縮液L1を回収する働きをする。チャンバー123内に一定時間貯留された冷却処理ガスG3は、冷却処理ガスG4として第一通流経路F1を通流し、第一濃縮装置200へ供給される。
 有機溶剤回収システム1Bでは、排ガスG1の流れる方向に沿って見た場合に、冷却部110から分離部120に流れる方向に対して、分離部120内において網目状構造体121からチャンバー123に流れる方向が交差することで排ガスG1(排ガスG2,冷却処理ガスG3)がL字方向に流れる構造となっている。
 有機溶剤回収システム1Bは、冷却部110と分離部120とで構成される箇所がL字構造であるため、液滴や飛沫によって第一濃縮装置200および第二濃縮装置300が暴露することを抑制することができる。第一濃縮装置200および第二濃縮装置300は、暴露し吸着剤が濡れてしまうと強度低下や破損の可能性がある。有機溶剤回収システム1Bは、L字構造を有することにより第一濃縮装置200および第二濃縮装置300の強度低下や破損を防止することができる。
 第一濃縮装置200は、ガスが接触することによって、含有する有機溶剤を吸着し、加熱ガスを接触することによって、吸着した有機溶剤を脱着させる吸着材を含む吸着ロータ212を有している。吸着ロータ212は、複数の仕切り部で仕切られた複数の吸着ユニット210で構成されている。吸着ロータ212は、複数の吸着ユニット210により全体として中空円柱状の形状となっている。吸着ロータ212は、処理室内に設置され、径方向に流体を流動できるように設けられている。吸着ロータ212は、モータの回転駆動力を受けて筒軸周りに回転可能に設けられている。
 第一濃縮装置200では、吸着ユニット210の一部が、吸着ユニット210の外側から内側に向けて供給された冷却処理ガスG4に含まれる有機溶剤を吸着する吸着部を構成するとともに、吸着ユニット210の残部が、吸着ユニット210の内側から外側に向けて加熱空気を供給することによって吸着ユニット210に吸着された有機溶剤を吸着ユニット210から脱着する脱着部を構成する。
 清浄化に際しては、処理室内に供給された冷却処理ガスG4を、吸着ロータ212の外周面から吸着部に導入する。吸着部に導入された冷却処理ガスG4は、径方向に沿って外周面から内周面へ向けて吸着ロータ212を通過する際に、吸着部に位置する複数の吸着ユニット210に有機溶剤を吸着させることにより清浄化される。
 清浄化された被処理流体としての冷却処理ガスG5,G6は、清浄ガスとして、吸着ユニット210の上部から排出される。排出された清浄ガスの一部は、冷却処理ガスG5として第二通流経路F2を通流し、第二濃縮装置300へ供給される。排出された清浄ガスの一部は、冷却処理ガスG6として第四通流経路F4を通流し、第二熱交換器112へ戻される。
 内周側流路形成部材211および外周側流路形成部材213は、周方向における吸着ロータ212の一部を挟み込むように、吸着ロータ212の内周側および外周側において互いに対向して配設されている。内周側流路形成部材211および外周側流路形成部材213により挟まれた吸着ロータ212の領域が脱着部である。
 有機溶剤の脱着を行うためには、内周側流路形成部材211から脱着部に対して再生ヒータ250により加熱された冷却処理ガスG5の一部である高温ガスG7を導入する。脱着部に導入された高温ガスG7は、吸着ロータ212を通過する際に、脱着部に位置する複数の吸着ユニット210から、これらに吸着している有機溶剤を熱によって脱着させる。有機溶剤を含んだ脱着ガスG8は、濃縮ガスとして、脱着部から外周側流路形成部材213を通って、処理室外に排出されて、第三通流経路F3に戻される。脱着ガスG8中に含まれる有機溶剤の一部は、液化凝縮して脱着凝縮液L2としてタンク125へ集液される。
 第三通流経路F3は、脱着ガスG8および後述する脱着ガスG11を冷却凝縮装置100の排ガスG1の導入部に返送する部位である。第三通流経路F3は、脱着部が脱着ガスと冷却凝縮装置100へ供給される排ガスG1との合流位置よりも上部に配置されるように接続されることが好ましい。第一濃縮装置200の脱着ガスG8および第二濃縮装置300の脱着ガスG11から発生した脱着凝縮液L2が、冷却凝縮装置100へ移行しやすいからである。第三通流経路F3は、冷却凝縮装置100の排ガスG1の導入部およびタンク125の二か所に通気されるように構成された方が良い。脱着ガスG8および脱着ガスG11から発生した脱着凝縮液L2が直接タンク125へ回収されやすくなるからである。
 第一濃縮装置200においては、吸着部に位置する吸着ユニット210に対して被処理物質の吸着処理が行われ、吸着処理後に脱着部に位置する吸着ユニット210に対して被処理物質の脱着処理が行われる。吸着ロータ212が筒軸周りに回転することにより、吸着ユニット210が脱着部と吸着部とを交互に移動して、被処理物質の吸着処理と脱着処理とが連続的に実施される。
 吸着ユニット210を構成する吸着素子の材料としては、活性アルミナ、シリカゲル、活性炭素材、ゼオライト等を用いることができる。吸着ユニット210における吸着素子の形状は特に限定されず、例えば、活性炭素材やゼオライトを含有するシートをハニカム状に形成したものでも、活性炭素繊維不織布を積層したものでもよい。
 第二濃縮装置300は、ガスが接触することによって、含有する有機溶剤を吸着し、加熱ガスを接触することによって、吸着した有機溶剤を脱着させる吸着材を含む吸着素子310を有している。吸着素子310は、脱着部(脱着ゾーン)311と吸着部(吸着ゾーン)312とを含んでいる。吸着部312では、冷却処理ガスG5が導入されることで、吸着材に冷却処理ガスG5が接触することで、冷却処理ガスG5に含有される有機溶剤が吸着材に吸着され、冷却処理ガスG5が清浄化されて清浄ガスG9として排出される。
 脱着部311では、吸着材に冷却処理ガスG5よりも高温な高温ガスG10が導入されることで、有機溶剤が吸着材から脱着され、これにより有機溶剤を含有する脱着ガスG11として排出される。
 吸着素子310に含まれる吸着材としては、活性アルミナ、シリカゲル、活性炭素材やゼオライトが広く利用されており、中でも活性炭と疎水性ゼオライトが特に好適に利用されている。
 図4に示す通り、第二濃縮装置300は、回転軸と、回転軸の周りに設けられた吸着素子310とを備えている。第二濃縮装置300は、回転軸周りに吸着素子310を回転させることにより、吸着部312において、第二通流経路F2から導入された冷却処理ガスG5中の有機溶剤を吸着した吸着材が連続的に脱着部311に移動する構成である。
 図4に示す通り、第二濃縮装置300は、脱着部311が吸着部312よりも下部に配置された方が好ましい。脱着ガスG11中に含まれる有機溶剤の一部が液化凝縮して脱着凝縮液L2が発生した場合においても、吸着部312に脱着凝縮液L2が付着しにくくなるからである。脱着凝縮液L2は、脱着部311より下部へ落ち、脱着部の外装の内面などを伝って回収される。より好ましくは、脱着部311は、脱着凝縮液L2がより下へ落ち易くなるために下に傾斜をつけた方が良い。
 第二濃縮装置300は、脱着部311の脱着処理が完了した部分が吸着部312への移行の前に移行する洗浄部(パージ部)を有していてもよい。清浄ガスG9の一部がパージ部に導入され、パージ部から排出されたパージ部出口ガスが、吸着部312に導入されるような構成であってもよい。清浄ガスG9により脱着完了した吸着材を洗浄することで、吸着材に残る脱着ガスG11が清浄ガスG9へ混入することを防ぎ、吸着材を冷却することができるからである。
 脱着に使用する高温ガスG10は、清浄ガスG9の一部を再生ヒータ350などの加熱手段を用いて高温状態にしたものが好ましい。吸着部312において、有機溶剤含有ガスの処理風量が増えないからである。
 [実施の形態2B]
 図5は、実施の形態2Bの有機溶剤回収システム2Bの構成を概略的に示す図である。有機溶剤回収システム2Bは、冷却凝縮装置100、第一濃縮装置200、第二濃縮装置300、および各種通流経路により構成されている。有機溶剤回収システム2Bは、チャンバー123内にヒータ126が設けられている点以外は、実施の形態1Bの有機溶剤回収システム1Bと同じである。
 ヒータ126は、冷却後の冷却処理ガスG3をわずかに加熱する。冷却処理ガスG3は、わずかに加熱されることにより有機溶剤あるいは水分が凝縮することを防ぐことができる。
 [作用・効果]
 本実施の形態における冷却凝縮装置100は、排ガスG1を通流させる冷却部110と、排ガスG1の流れる方向に沿って見た場合に、冷却部110の下流側に位置する分離部120と、を含んでいる。分離部120は、冷却部110で冷却された有機溶剤を含む冷却凝縮液L1を受ける受け部122と、冷却後の排ガスG2を接触させることで冷却凝縮液L1と冷却処理ガスG3とを分離させる網目状構造体121と、網目状構造体121を通過後の冷却処理ガスG3を一定時間貯留させるチャンバー123と、を有している。
 排ガスG1の流れる方向に沿って見た場合に、冷却部110から分離部120に流れる方向に対して、分離部120内において網目状構造体121からチャンバー123に流れる方向が交差することで排ガスがL字方向に流れる。これにより、排ガスG1から有機溶剤を含む冷却凝縮液L1をより高効率に回収することができる。本実施の形態における有機溶剤回収システムは、冷却部110と分離部120とで構成される箇所がL字構造であるため、液滴や飛沫によって後段に設けられた第一濃縮装置200および第二濃縮装置300が暴露することを抑制することができる。
 本実施の形態における網目状構造体121の下流側には、冷却処理ガスG3を加熱するためのヒータ126が配置されている。これにより、冷却処理ガスG3がわずかに加熱されることにより有機溶剤あるいは水分が凝縮することを防ぐことができる。
 本実施の形態におけるチャンバー123内には、堰124が設けられている。これにより、冷却凝縮液L1が冷却ガス通流経路としての第一通流経路F1に流れることを防止することができる。
 本実施の形態における濃縮装置は、第一濃縮装置200と、第一濃縮装置の下流側に位置する第二濃縮装置300と、を含んでいる。第一濃縮装置200は、第一通流経路F1から導入された冷却処理ガスG4に含まれる有機溶剤を吸着ユニット210にて吸着して有機溶剤の濃度が更に低減された冷却処理ガスG5として排出し、高温ガスG7を導入して吸着ユニット210から有機溶剤を脱着して脱着ガスG8として排出する。
 本実施の形態における有機溶剤回収システムは、冷却処理ガスG5の一部を通流させる第二通流経路F2をさらに備え、第二濃縮装置300は、第二通流経路F2から導入された冷却処理ガスG5に含まれる有機溶剤を吸着素子310にて吸着して有機溶剤の濃度が更に低減された清浄ガスG9として排出し、高温ガスG10を導入して吸着素子310から有機溶剤を脱着して脱着ガスG11として排出する。
 本実施の形態における第一濃縮装置200は、吸着ユニット210が筒軸回りに回転する中空円柱状のロータの筒軸回りの周方向に複数配置されている。これにより、有機溶剤を高効率に回収することができる。
 本実施の形態における第二濃縮装置300は、吸着素子310が筒軸回りに回転する円盤状の吸着ロータに配置されている。これにより、有機溶剤を高効率に回収することができる。
 [他の実施の形態]
 上記実施の形態において、濃縮装置は、第一濃縮装置200と第二濃縮装置300との2つを用いていた。濃縮装置は、風量に応じて、第一濃縮装置200を2つまたは第二濃縮装置300を2つ適用しても良い。また、除去効率に応じて、濃縮装置を3つ以上適用してもよい。
 排ガスG1に含有される有機溶剤としては、1℃~50℃の冷却にて液化して回収できる有機溶剤が挙げられる。有機溶剤としては、たとえば、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、またn-デカンである。これらは例示であり、これらに限定されることはない。含有される有機溶剤は、1種でも複数種でもよい。
 [実施の形態1C]
 図6は、実施の形態1Cの有機溶剤回収システム1Cの構成を概略的に示す図である。有機溶剤回収システム1Cは、冷却凝縮装置100、第一濃縮装置200、第二濃縮装置300、および各種通流経路により構成されている。
 冷却凝縮装置100は、冷却部110と分離部120とを有している。有機溶剤を含有する排ガスG1は、生産設備130から排出される。排ガスG1は、冷却部110を通過することによって冷却される。排ガスG1は、冷却部110の通過に伴って有機溶剤が液化凝縮される。
 冷却部110を通過した排ガスG2は、分離部120を通過することによって、液化凝縮された冷却凝縮液L1と有機溶剤濃度の低減された冷却処理ガスG3とに分離される。冷却処理ガスG3は、チャンバー123を通じて、冷却処理ガスG4として冷却凝縮装置100から第一濃縮装置200へ排出される。
 冷却部110の冷却手段および構成は、特に限定しない。実施の形態1では、冷却水、冷水、ブラインなどの冷媒と排ガスとの間接的な熱交換によって冷却する第一熱交換器111が用いられる。第一熱交換器111は、排ガスG1が水平方向に通流するように位置している。
 冷却部110は、第一熱交換器111の前に、後述する冷却処理ガスG6と排ガスG1との熱交換によって排ガスG1を冷却させる第二熱交換器112が設けられている。第二熱交換器112は、第一熱交換器111に必要な伝熱面積や冷媒量を削減することができる。排ガスG1および冷却処理ガスG6の一部は、第五通流経路F5を通り生産設備130へ戻される。第一熱交換器111および第二熱交換器112における冷却温度などの条件は、回収対象となる有機溶剤によって適宜決めればよい。
 分離部120の分離手段および構成は特に限定しない。実施の形態1Cでは、デミスター、フィルター、およびメッシュなどの液滴を接触して捕捉する網目状構造体121が用いられる。網目状構造体121に捕捉された冷却凝縮液L1は、重力によって網目状構造体121の下部に配置されたタンク125へ集液され、回収液L3として回収される。
 チャンバー123は、一定容量の空間を有する構造体である。チャンバー123内に一定時間貯留された冷却処理ガスG3は、冷却処理ガスG4として第一通流経路F1を通流し、第一濃縮装置200へ供給される。チャンバー123は、網目状構造体121から排出される冷却処理ガスG3の排気方向と対向するように第一通流経路F1の吸込みを可能にする仕切部128を有する。
 第一通流経路F1は、冷却処理ガスG4をチャンバー123から第一濃縮装置200へ導入する部位である。第一通流経路F1のチャンバー123への接続口は、チャンバー123の天井部127が好ましい。これにより、分離部120で捕捉しきれなかった僅かな液滴の第一濃縮装置200への侵入を抑制し、後述する第一濃縮装置200の吸着ユニット210の濡れによる性能低下・強度低下などを防ぐことができる。さらに好ましくは、冷却処理ガスG3の通気方向対して、対向するように冷却処理ガスG4を取り出すようにした方が良い。これにより、液滴の侵入をより防ぐことができる。このほか、冷却処理ガスG4の取り出し口に、上記網目状構造体121と類似の液滴侵入防止部材を設けても良いし、液滴を気化させるための加熱器を設けても良い。
 第一濃縮装置200は、ガスが接触することによって、含有する有機溶剤を吸着し、加熱ガスを接触することによって、吸着した有機溶剤を脱着させる吸着材を含む吸着ロータ212を有している。吸着ロータ212は、複数の仕切り部で仕切られた複数の吸着ユニット210で構成されている。吸着ロータ212は、複数の吸着ユニット210により全体として中空円柱状の形状となっている。吸着ロータ212は、処理室内に設置され、径方向に流体を流動できるように設けられている。吸着ロータ212は、モータの回転駆動力を受けて筒軸周りに回転可能に設けられている。
 第一濃縮装置200では、吸着ユニット210の一部が、吸着ユニット210の外側から内側に向けて供給された冷却処理ガスG4に含まれる有機溶剤を吸着する吸着部を構成するとともに、吸着ユニット210の残部が、吸着ユニット210の内側から外側に向けて加熱空気を供給することによって吸着ユニット210に吸着された有機溶剤を吸着ユニット210から脱着する脱着部を構成する。
 清浄化に際しては、処理室内に供給された冷却処理ガスG4を、吸着ロータ212の外周面から吸着部に導入する。吸着部に導入された冷却処理ガスG4は、径方向に沿って外周面から内周面へ向けて吸着ロータ212を通過する際に、吸着部に位置する複数の吸着ユニット210に有機溶剤を吸着させることにより清浄化される。
 清浄化された被処理流体としての冷却処理ガスG5,G6は、清浄ガスとして、吸着ユニット210の上部から排出される。排出された清浄ガスの一部は、冷却処理ガスG5として第二通流経路F2を通流し、第二濃縮装置300へ供給される。排出された清浄ガスの一部は、冷却処理ガスG6として第四通流経路F4を通流し、第二熱交換器112へ戻される。
 内周側流路形成部材211および外周側流路形成部材213は、周方向における吸着ロータ212の一部を挟み込むように、吸着ロータ212の内周側および外周側において互いに対向して配設されている。内周側流路形成部材211および外周側流路形成部材213により挟まれた吸着ロータ212の領域が脱着部である。
 有機溶剤の脱着を行うためには、内周側流路形成部材211から脱着部に対して再生ヒータ250により加熱された冷却処理ガスG5の一部である高温ガスG7を導入する。脱着部に導入された高温ガスG7は、吸着ロータ212を通過する際に、脱着部に位置する複数の吸着ユニット210から、これらに吸着している有機溶剤を熱によって脱着させる。有機溶剤を含んだ脱着ガスG8は、濃縮ガスとして、脱着部から外周側流路形成部材213を通って、処理室外に排出されて、第三通流経路F3に戻される。脱着ガスG8中に含まれる有機溶剤の一部は、液化凝縮して脱着凝縮液L2としてタンク125へ集液される。
 第三通流経路F3は、脱着ガスG8を冷却凝縮装置100の排ガスG1の導入部に返送する部位である。第三通流経路F3は、脱着部が脱着ガスG8と冷却凝縮装置100へ供給される排ガスG1との合流位置よりも上部に配置されるように接続されることが好ましい。この配置により、第一濃縮装置200の脱着ガスG8から発生した脱着凝縮液L2が、冷却凝縮装置100へ移行し易くなる。第三通流経路F3は、冷却凝縮装置100の排ガスG1の導入部およびタンク125の二か所に通気されるように構成された方が良い。この構成により、脱着ガスG8から発生した脱着凝縮液L2が直接タンク125へ回収されやすくなる。
 第一濃縮装置200においては、吸着部に位置する吸着ユニット210に対して被処理物質の吸着処理が行われ、吸着処理後に脱着部に位置する吸着ユニット210に対して被処理物質の脱着処理が行われる。吸着ロータ212が筒軸周りに回転することにより、吸着ユニット210が脱着部と吸着部とを交互に移動して、被処理物質の吸着処理と脱着処理とが連続的に実施される。
 吸着ユニット210を構成する吸着素子の材料としては、活性アルミナ、シリカゲル、活性炭素材、ゼオライト等を用いることができる。吸着ユニット210における吸着素子の形状は特に限定されず、例えば、活性炭素材やゼオライトを含有するシートをハニカム状に形成したものでも、活性炭素繊維不織布を積層したものでもよい。
 第二濃縮装置300は、ガスが接触することによって、含有する有機溶剤を吸着し、加熱ガスを接触することによって、吸着した有機溶剤を脱着させる吸着材を含む吸着素子310を有している。吸着素子310は、脱着部(脱着ゾーン)311と吸着部(吸着ゾーン)312とを含んでいる。吸着部312では、冷却処理ガスG5が導入されることで、吸着材に冷却処理ガスG5が接触することで、冷却処理ガスG5に含有される有機溶剤が吸着材に吸着され、冷却処理ガスG5が清浄化されて清浄ガスG9として排出される。
 脱着部311では、吸着材に冷却処理ガスG5よりも高温な高温ガスG10が導入されることで、有機溶剤が吸着材から脱着され、これにより有機溶剤を含有する脱着ガスG11として排出される。脱着ガスG11は、第六通流経路F6通り第一通流経路F1に戻される。
 有機溶剤回収システム1Cは、脱着ガスG11を第一通流経路F1に戻すため、脱着ガスG11の風量分を冷却凝縮装置100において処理する必要がなくなる。このため、有機溶剤回収システム1Cは、冷却凝縮装置100の小型化、省エネルギー化に寄与することができる。有機溶剤回収システム1Cは、脱着ガスG11が高温であるため冷却処理ガスG4中に含まれるNMP(N-メチル-2-ピロリドン)、水分等の凝縮を抑制することができる。
 吸着素子310に含まれる吸着材としては、活性アルミナ、シリカゲル、活性炭素材やゼオライトが広く利用されており、中でも活性炭と疎水性ゼオライトが特に好適に利用されている。
 図6に示す通り、第二濃縮装置300は、回転軸と、回転軸の周りに設けられた吸着素子310とを備えている。第二濃縮装置300は、回転軸周りに吸着素子310を回転させることにより、吸着部312において、第二通流経路F2から導入された冷却処理ガスG5中の有機溶剤を吸着した吸着材が連続的に脱着部311に移動する構成である。
 第二濃縮装置300は、脱着部311の脱着処理が完了した部分が吸着部312への移行の前に移行する洗浄部(パージ部)を有していてもよい。清浄ガスG9の一部がパージ部に導入され、パージ部から排出されたパージ部出口ガスが、吸着部312に導入されるような構成であってもよい。清浄ガスG9により脱着完了した吸着材を洗浄することで、吸着材に残る脱着ガスG11が清浄ガスG9へ混入することを防ぎ、吸着材を冷却することができるからである。
 脱着に使用する高温ガスG10は、清浄ガスG9の一部を再生ヒータ350などの加熱手段を用いて高温状態にしたものが好ましい。高温状態にすることで、吸着部312において、有機溶剤含有ガスの処理風量の増加を抑制できる。
 [実施の形態2C]
 図7は、実施の形態2Cの有機溶剤回収システム2Cの構成を概略的に示す図である。有機溶剤回収システム2Cは、冷却凝縮装置100、第一濃縮装置200、第二濃縮装置300、および各種通流経路により構成されている。有機溶剤回収システム2Cは、第二濃縮装置300の脱着ガスG11が第六通流経路F6を通り再生ヒータ250に戻される点以外の構成は、実施の形態1Cの有機溶剤回収システム1Cと同じである。
 有機溶剤回収システム2Cは、脱着ガスG11を再生ヒータ250に戻すため、脱着ガスG11の風量分を冷却凝縮装置100および第一濃縮装置200において処理する必要がなくなる。このため、有機溶剤回収システム2Cは、冷却凝縮装置100および第一濃縮装置200の小型化、省エネルギー化に寄与することができる。有機溶剤回収システム2Cは、脱着ガスG11が高温であるため再生ヒータ250の省エネルギー化に寄与することができる。
 [実施の形態3C]
 図8は、実施の形態3Cの有機溶剤回収システム3Cの構成を概略的に示す図である。有機溶剤回収システム3Cは、冷却凝縮装置100、第一濃縮装置200、第二濃縮装置300、および各種通流経路により構成されている。有機溶剤回収システム3Cは、第二濃縮装置300の脱着ガスG11が第六通流経路F6を通り第四通流経路F4に戻される。有機溶剤回収システム3Cは、第二濃縮装置300の脱着ガスG11が第六通流経路F6通り第四通流経路F4に戻される点以外の構成は、実施の形態1Cの有機溶剤回収システム1Cと同じである。
 第六通流経路F6を通流した脱着ガスG11は、第二濃縮装置300から排出された冷却処理ガスG6とともに第四通流経路F4を通流し第二熱交換器112へ戻される。有機溶剤回収システム3Cは、脱着ガスG11の風量分を冷却凝縮装置100および第一濃縮装置200において処理する必要がなくなる。このため、有機溶剤回収システム3Cは、冷却凝縮装置100および第一濃縮装置200の小型化、省エネルギー化に寄与することができる。有機溶剤回収システム3Cは、脱着ガスG11が高温であるため第二熱交換器112に通流する流体の温度を向上させることができ、排ガスG1を冷却するための第二熱交換器112の小型化、省エネルギー化に寄与することができる。
 [実施の形態4C]
 図9は、実施の形態4Cの有機溶剤回収システム4Cの構成を概略的に示す図である。有機溶剤回収システム4Cは、冷却凝縮装置100、第一濃縮装置200、第二濃縮装置300、および各種通流経路により構成されている。有機溶剤回収システム4Cは、第二濃縮装置300の脱着ガスG11が第六通流経路F6を通り第五通流経路F5に戻される。有機溶剤回収システム4Cは、第二濃縮装置300の脱着ガスG11が第六通流経路F6通り第五通流経路F5に戻される点以外の構成は、実施の形態1Cの有機溶剤回収システム1Cと同じである。
 第六通流経路F6を通流した脱着ガスG11は、第二熱交換器112から排出された排ガスG1および冷却処理ガスG6の一部とともに第五通流経路F5を通流し生産設備130へ戻される。有機溶剤回収システム4Cは、脱着ガスG11の風量分を冷却凝縮装置100および第一濃縮装置200において処理する必要がなくなる。このため、有機溶剤回収システム4Cは、冷却凝縮装置100および第一濃縮装置200の小型化、省エネルギー化に寄与することができる。有機溶剤回収システム4Cは、脱着ガスG11が高温であるため生産設備130から再度排出される排ガスG1の温度を高めることができる。このため、有機溶剤回収システム4Cは、第二熱交換器112に通流する流体の温度を向上させることができ、排ガスG1を冷却するための第二熱交換器112の小型化、省エネルギー化に寄与することができる。
 [作用・効果]
 本実施の形態における有機溶剤回収システム1Cは、有機溶剤を含有する排ガスG1を冷却することで、有機溶剤を液化凝縮し、有機溶剤の濃度が低減された冷却処理ガスG4として排出する冷却凝縮装置100と、冷却処理ガスG4を通流させる第一通流経路F1と、第一通流経路F1から導入された冷却処理ガスG4に含まれる有機溶剤を吸着ユニット210にて吸着して有機溶剤の濃度が更に低減された冷却処理ガスG5として排出し、高温ガスG7を導入して吸着ユニット210から有機溶剤を脱着して脱着ガスG8として排出する第一濃縮装置200と、冷却処理ガスG5の一部を通流させる第二通流経路F2と、第二通流経路F2から導入された冷却処理ガスG5に含まれる有機溶剤を吸着素子310にて吸着して有機溶剤の濃度が更に低減された清浄ガスG9として排出し、高温ガスG10を導入して吸着素子310から有機溶剤を脱着して脱着ガスG11として排出する第二濃縮装置300と、を備える。
 脱着ガスG8は、冷却凝縮装置100に戻されるとともに、脱着ガスG11は、第一通流経路F1に戻される。有機溶剤回収システム1Cは、脱着ガスG11を第一通流経路F1に戻すため、脱着ガスG11の風量分を冷却凝縮装置100において処理する必要がなくなる。このため、有機溶剤回収システム1Cは、冷却凝縮装置100の小型化、省エネルギー化に寄与することができる。有機溶剤回収システム1Cは、脱着ガスG11が高温であるため冷却処理ガスG4中に含まれるNMP(N-メチル-2-ピロリドン)、水分等の凝縮を抑制することができる。
 脱着ガスG8は、冷却凝縮装置100に戻されるとともに、脱着ガスG11は、再生ヒータ250に戻される。有機溶剤回収システム2Cは、脱着ガスG11を再生ヒータ250に戻すため、脱着ガスG11の風量分を冷却凝縮装置100および第一濃縮装置200において処理する必要がなくなる。このため、有機溶剤回収システム2Cは、冷却凝縮装置100および第一濃縮装置200の小型化、省エネルギー化に寄与することができる。有機溶剤回収システム2Cは、脱着ガスG11が高温であるため再生ヒータ250の省エネルギー化に寄与することができる。
 脱着ガスG8は、冷却凝縮装置100に戻されるとともに、脱着ガスG11は、第四通流経路F4に戻される。脱着ガスG11は、冷却処理ガスG6とともに第四通流経路F4を通流し第二熱交換器112へ戻される。有機溶剤回収システム3Cは、脱着ガスG11の風量分を冷却凝縮装置100および第一濃縮装置200において処理する必要がなくなる。このため、有機溶剤回収システム3Cは、冷却凝縮装置100および第一濃縮装置200の小型化、省エネルギー化に寄与することができる。有機溶剤回収システム3Cは、脱着ガスG11が高温であるため第二熱交換器112に通流する流体の温度を向上させることができ、排ガスG1を冷却するための第二熱交換器112の小型化、省エネルギー化に寄与することができる。
 脱着ガスG8は、冷却凝縮装置100に戻されるとともに、脱着ガスG11は、第五通流経路F5に戻される。脱着ガスG11は、第二熱交換器112から排出された排ガスG1および冷却処理ガスG6の一部とともに第五通流経路F5を通流し生産設備130へ戻される。有機溶剤回収システム4Cは、脱着ガスG11の風量分を冷却凝縮装置100および第一濃縮装置200において処理する必要がなくなる。このため、有機溶剤回収システム4Cは、冷却凝縮装置100および第一濃縮装置200の小型化、省エネルギー化に寄与することができる。有機溶剤回収システム4Cは、脱着ガスG11が高温であるため生産設備130から再度排出される排ガスG1の温度を高めることができる。このため、有機溶剤回収システム4Cは、第二熱交換器112に通流する流体の温度を向上させることができ、排ガスG1を冷却するための第二熱交換器112の小型化、省エネルギー化に寄与することができる。
 本実施の形態における第一濃縮装置200は、吸着ユニット210が筒軸回りに回転する中空円柱状のロータの筒軸回りの周方向に複数配置されている。これにより、有機溶剤を高効率に回収することができる。
 本実施の形態における第二濃縮装置300は、吸着素子310が筒軸回りに回転する円盤状の吸着ロータに配置されている。これにより、有機溶剤を高効率に回収することができる。
 [他の実施の形態]
 上記実施の形態において、濃縮装置は、第一濃縮装置200と第二濃縮装置300との2つを用いていた。濃縮装置は、風量に応じて、第一濃縮装置200を2つまたは第二濃縮装置300を2つ適用しても良い。また、除去効率に応じて、濃縮装置を3つ以上適用してもよい。
 排ガスG1に含有される有機溶剤としては、1℃~50℃の冷却にて液化して回収できる有機溶剤が挙げられる。有機溶剤としては、たとえば、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、またn-デカンである。これらは例示であり、これらに限定されることはない。含有される有機溶剤は、1種でも複数種でもよい。
 [実施の形態1D]
 図10は、実施の形態1Dの有機溶剤回収システム1Dの構成を概略的に示す図である。有機溶剤回収システム1Dは、冷却凝縮装置100、第一濃縮装置200、第二濃縮装置300、および各種通流経路により構成されている。
 冷却凝縮装置100は、冷却部110と分離部120とを有している。有機溶剤を含有する排ガスG1は、生産設備130から排出される。排ガスG1は、冷却部110を通過することによって冷却される。排ガスG1は、冷却部110の通過に伴って有機溶剤が液化凝縮される。
 冷却部110を通過した排ガスG2は、分離部120を通過することによって、液化凝縮された冷却凝縮液L1と有機溶剤濃度の低減された冷却処理ガスG3とに分離される。冷却処理ガスG3は、チャンバー123を通じて、一部が冷却処理ガスG4として冷却凝縮装置100から第一濃縮装置200へ排出され、残部が冷却処理ガスG6として冷却凝縮装置100から後述する第二熱交換器112へ戻される。
 冷却部110の冷却手段および構成は、特に限定しない。実施の形態1Dでは、冷却水、冷水、ブラインなどの冷媒と排ガスとの間接的な熱交換によって冷却する第一熱交換器111が用いられる。第一熱交換器111は、排ガスG1が水平方向に通流するように位置している。
 冷却部110は、第一熱交換器111の前に、冷却処理ガスG6と排ガスG1との熱交換によって排ガスG1を冷却させる第二熱交換器112が設けられている。第二熱交換器112は、第一熱交換器111に必要な伝熱面積や冷媒量を削減することができる。排ガスG1および冷却処理ガスG6の一部は、第五通流経路F5を通り生産設備130へ戻される。第一熱交換器111および第二熱交換器112における冷却温度などの条件は、回収対象となる有機溶剤によって適宜決めればよい。
 分離部120の分離手段および構成は特に限定しない。実施の形態1Dでは、デミスター、フィルター、およびメッシュなどの液滴を接触して捕捉する網目状構造体121が用いられる。網目状構造体121に捕捉された冷却凝縮液L1は、重力によって網目状構造体121の下部に配置されたタンク125へ集液され、回収液L3として回収される。
 チャンバー123は、一定容量の空間を有する構造体である。チャンバー123内に一定時間貯留された冷却処理ガスG3は、冷却処理ガスG4として一部が第一通流経路F1を通流し、第一濃縮装置200へ供給される。冷却処理ガスG3は、冷却処理ガスG6として残部が第四通流経路F4を通流し、第二熱交換器112へ戻される。チャンバー123は、網目状構造体121から排出される冷却処理ガスG3の排気方向と対向するように第一通流経路F1の吸込みを可能にする仕切部128を有する。
 第一通流経路F1は、冷却処理ガスG4をチャンバー123から第一濃縮装置200へ導入する部位である。第一通流経路F1のチャンバー123への接続口は、チャンバー123の天井部127が好ましい。これにより、分離部120で捕捉しきれなかった僅かな液滴の第一濃縮装置200への侵入を抑制し、後述する第一濃縮装置200の吸着ユニット210の濡れによる性能低下・強度低下などを防ぐことができる。さらに好ましくは、冷却処理ガスG3の通気方向対して、対向するように冷却処理ガスG4を取り出すようにした方が良い。これにより、液滴の侵入をより防ぐことができる。このほか、冷却処理ガスG4の取り出し口に、上記網目状構造体121と類似の液滴侵入防止部材を設けても良いし、液滴を気化させるための加熱器を設けても良い。
 第一濃縮装置200は、ガスが接触することによって、含有する有機溶剤を吸着し、加熱ガスを接触することによって、吸着した有機溶剤を脱着させる吸着材を含む吸着ロータ212を有している。吸着ロータ212は、複数の仕切り部で仕切られた複数の吸着ユニット210で構成されている。吸着ロータ212は、複数の吸着ユニット210により全体として中空円柱状の形状となっている。吸着ロータ212は、処理室内に設置され、径方向に流体を流動できるように設けられている。吸着ロータ212は、モータの回転駆動力を受けて筒軸周りに回転可能に設けられている。
 第一濃縮装置200では、吸着ユニット210の一部が、吸着ユニット210の外側から内側に向けて供給された冷却処理ガスG4に含まれる有機溶剤を吸着する吸着部を構成するとともに、吸着ユニット210の残部が、吸着ユニット210の内側から外側に向けて加熱空気を供給することによって吸着ユニット210に吸着された有機溶剤を吸着ユニット210から脱着する脱着部を構成する。
 清浄化に際しては、処理室内に供給された冷却処理ガスG4を、吸着ロータ212の外周面から吸着部に導入する。吸着部に導入された冷却処理ガスG4は、径方向に沿って外周面から内周面へ向けて吸着ロータ212を通過する際に、吸着部に位置する複数の吸着ユニット210に有機溶剤を吸着させることにより清浄化される。
 清浄化された被処理流体としての冷却処理ガスG5は、清浄ガスとして、吸着ユニット210の上部から排出される。排出された清浄ガスは、冷却処理ガスG5として第二通流経路F2を通流し、第二濃縮装置300へ供給される。
 内周側流路形成部材211および外周側流路形成部材213は、周方向における吸着ロータ212の一部を挟み込むように、吸着ロータ212の内周側および外周側において互いに対向して配設されている。内周側流路形成部材211および外周側流路形成部材213により挟まれた吸着ロータ212の領域が脱着部である。
 有機溶剤の脱着を行うためには、内周側流路形成部材211から脱着部に対して再生ヒータ250により加熱された冷却処理ガスG5の一部である高温ガスG7を導入する。脱着部に導入された高温ガスG7は、吸着ロータ212を通過する際に、脱着部に位置する複数の吸着ユニット210から、これらに吸着している有機溶剤を熱によって脱着させる。有機溶剤を含んだ脱着ガスG8は、濃縮ガスとして、脱着部から外周側流路形成部材213を通って、処理室外に排出されて、第三通流経路F3に戻される。脱着ガスG8中に含まれる有機溶剤の一部は、液化凝縮して脱着凝縮液L2としてタンク125へ集液される。
 第三通流経路F3は、脱着ガスG8を冷却凝縮装置100の排ガスG1の導入部に返送する部位である。第三通流経路F3は、脱着部が脱着ガスG8と冷却凝縮装置100へ供給される排ガスG1との合流位置よりも上部に配置されるように接続されることが好ましい。この配置により、第一濃縮装置200の脱着ガスG8から発生した脱着凝縮液L2が、冷却凝縮装置100へ移行し易くなる。第三通流経路F3は、冷却凝縮装置100の排ガスG1の導入部およびタンク125の二か所に通気されるように構成された方が良い。この構成により、脱着ガスG8から発生した脱着凝縮液L2が直接タンク125へ回収されやすくなる。
 第一濃縮装置200においては、吸着部に位置する吸着ユニット210に対して被処理物質の吸着処理が行われ、吸着処理後に脱着部に位置する吸着ユニット210に対して被処理物質の脱着処理が行われる。吸着ロータ212が筒軸周りに回転することにより、吸着ユニット210が脱着部と吸着部とを交互に移動して、被処理物質の吸着処理と脱着処理とが連続的に実施される。
 吸着ユニット210を構成する吸着素子の材料としては、活性アルミナ、シリカゲル、活性炭素材、ゼオライト等を用いることができる。吸着ユニット210における吸着素子の形状は特に限定されず、例えば、活性炭素材やゼオライトを含有するシートをハニカム状に形成したものでも、活性炭素繊維不織布を積層したものでもよい。
 第二濃縮装置300は、ガスが接触することによって、含有する有機溶剤を吸着し、加熱ガスを接触することによって、吸着した有機溶剤を脱着させる吸着材を含む吸着素子310を有している。吸着素子310は、脱着部(脱着ゾーン)311と吸着部(吸着ゾーン)312とを含んでいる。吸着部312では、冷却処理ガスG5が導入されることで、吸着材に冷却処理ガスG5が接触することで、冷却処理ガスG5に含有される有機溶剤が吸着材に吸着され、冷却処理ガスG5が清浄化されて清浄ガスG9として排出される。
 脱着部311では、吸着材に冷却処理ガスG5よりも高温な高温ガスG10が導入されることで、有機溶剤が吸着材から脱着され、これにより有機溶剤を含有する脱着ガスG11として排出される。脱着ガスG11は、第六通流経路F6通り第一通流経路F1に戻される。
 有機溶剤回収システム1Dは、脱着ガスG11を第一通流経路F1に戻すため、脱着ガスG11の風量分を冷却凝縮装置100において処理する必要がなくなる。このため、有機溶剤回収システム1Dは、冷却凝縮装置100の小型化、省エネルギー化に寄与することができる。有機溶剤回収システム1Dは、脱着ガスG11が高温であるため冷却処理ガスG4中に含まれるNMP(N-メチル-2-ピロリドン)、水分等の凝縮を抑制することができる。
 吸着素子310に含まれる吸着材としては、活性アルミナ、シリカゲル、活性炭素材やゼオライトが広く利用されており、中でも活性炭と疎水性ゼオライトが特に好適に利用されている。
 図10に示す通り、第二濃縮装置300は、回転軸と、回転軸の周りに設けられた吸着素子310とを備えている。第二濃縮装置300は、回転軸周りに吸着素子310を回転させることにより、吸着部312において、第二通流経路F2から導入された冷却処理ガスG5中の有機溶剤を吸着した吸着材が連続的に脱着部311に移動する構成である。
 第二濃縮装置300は、脱着部311の脱着処理が完了した部分が吸着部312への移行の前に移行する洗浄部(パージ部)を有していてもよい。清浄ガスG9の一部がパージ部に導入され、パージ部から排出されたパージ部出口ガスが、吸着部312に導入されるような構成であってもよい。清浄ガスG9により脱着完了した吸着材を洗浄することで、吸着材に残る脱着ガスG11が清浄ガスG9へ混入することを防ぎ、吸着材を冷却することができるからである。
 脱着に使用する高温ガスG10は、清浄ガスG9の一部を再生ヒータ350などの加熱手段を用いて高温状態にしたものが好ましい。高温状態にすることで、吸着部312において、有機溶剤含有ガスの処理風量の増加を抑制できる。
 [実施の形態2D]
 図11は、実施の形態2Dの有機溶剤回収システム2Dの構成を概略的に示す図である。有機溶剤回収システム2Dは、冷却凝縮装置100、第一濃縮装置200、第二濃縮装置300、および各種通流経路により構成されている。有機溶剤回収システム2Dは、第二濃縮装置300の脱着ガスG11が第六通流経路F6を通り再生ヒータ250に戻される点以外の構成は、実施の形態1Dの有機溶剤回収システム1Dと同じである。
 有機溶剤回収システム2Dは、脱着ガスG11を再生ヒータ250に戻すため、脱着ガスG11の風量分を冷却凝縮装置100および第一濃縮装置200において処理する必要がなくなる。このため、有機溶剤回収システム2Dは、冷却凝縮装置100および第一濃縮装置200の小型化、省エネルギー化に寄与することができる。有機溶剤回収システム2Dは、脱着ガスG11が高温であるため再生ヒータ250の省エネルギー化に寄与することができる。
 [実施の形態3D]
 図12は、実施の形態3Dの有機溶剤回収システム3Dの構成を概略的に示す図である。有機溶剤回収システム3Dは、冷却凝縮装置100、第一濃縮装置200、第二濃縮装置300、および各種通流経路により構成されている。有機溶剤回収システム3Dは、第二濃縮装置300の脱着ガスG11が第六通流経路F6を通り第四通流経路F4に戻される。有機溶剤回収システム3Dは、第二濃縮装置300の脱着ガスG11が第六通流経路F6通り第四通流経路F4に戻される点以外の構成は、実施の形態1Dの有機溶剤回収システム1Dと同じである。
 第六通流経路F6を通流した脱着ガスG11は、冷却凝縮装置100から排出された冷却処理ガスG6とともに第四通流経路F4を通流し第二熱交換器112へ戻される。有機溶剤回収システム3Dは、脱着ガスG11の風量分を冷却凝縮装置100および第一濃縮装置200において処理する必要がなくなる。このため、有機溶剤回収システム3Dは、冷却凝縮装置100および第一濃縮装置200の小型化、省エネルギー化に寄与することができる。有機溶剤回収システム3Dは、脱着ガスG11が高温であるため第二熱交換器112に通流する流体の温度を向上させることができ、排ガスG1を冷却するための第二熱交換器112の小型化、省エネルギー化に寄与することができる。
 [実施の形態4D]
 図13は、実施の形態4Dの有機溶剤回収システム4Dの構成を概略的に示す図である。有機溶剤回収システム4Dは、冷却凝縮装置100、第一濃縮装置200、第二濃縮装置300、および各種通流経路により構成されている。有機溶剤回収システム4Dは、第二濃縮装置300の脱着ガスG11が第六通流経路F6を通り第五通流経路F5に戻される。有機溶剤回収システム4Dは、第二濃縮装置300の脱着ガスG11が第六通流経路F6通り第五通流経路F5に戻される点以外の構成は、実施の形態1Dの有機溶剤回収システム1Dと同じである。
 第六通流経路F6を通流した脱着ガスG11は、第二熱交換器112から排出された排ガスG1および冷却処理ガスG6の一部とともに第五通流経路F5を通流し生産設備130へ戻される。有機溶剤回収システム4Dは、脱着ガスG11の風量分を冷却凝縮装置100および第一濃縮装置200において処理する必要がなくなる。このため、有機溶剤回収システム4Dは、冷却凝縮装置100および第一濃縮装置200の小型化、省エネルギー化に寄与することができる。有機溶剤回収システム4Dは、脱着ガスG11が高温であるため生産設備130から再度排出される排ガスG1の温度を高めることができる。このため、有機溶剤回収システム4Dは、第二熱交換器112に通流する流体の温度を向上させることができ、排ガスG1を冷却するための第二熱交換器112の小型化、省エネルギー化に寄与することができる。
 [作用・効果]
 本実施の形態における有機溶剤回収システム1Dは、有機溶剤を含有する排ガスG1を冷却することで、有機溶剤を液化凝縮し、有機溶剤の濃度が低減された冷却処理ガスG4として排出する冷却凝縮装置100と、冷却処理ガスG4の一部を通流させる第一通流経路F1と、第一通流経路F1から導入された冷却処理ガスG4に含まれる有機溶剤を吸着ユニット210にて吸着して有機溶剤の濃度が更に低減された冷却処理ガスG5として排出し、高温ガスG7を導入して吸着ユニット210から有機溶剤を脱着して脱着ガスG8として排出する第一濃縮装置200と、冷却処理ガスG5を通流させる第二通流経路F2と、第二通流経路F2から導入された冷却処理ガスG5に含まれる有機溶剤を吸着素子310にて吸着して有機溶剤の濃度が更に低減された清浄ガスG9として排出し、高温ガスG10を導入して吸着素子310から有機溶剤を脱着して脱着ガスG11として排出する第二濃縮装置300と、を備える。
 冷却凝縮装置100は、冷媒との熱交換により排ガスG1の冷却を行う第二熱交換器112を含む。有機溶剤回収システム1Dは、冷却処理ガスG4の一部以外である冷却処理ガスの残部としての冷却処理ガスG6を、第二熱交換器112に戻す第四通流経路F4をさらに備える。脱着ガスG8は、冷却凝縮装置100に戻されるとともに、脱着ガスG11は、第一通流経路F1に戻される。有機溶剤回収システム1Dは、脱着ガスG11を第一通流経路F1に戻すため、脱着ガスG11の風量分を冷却凝縮装置100において処理する必要がなくなる。このため、有機溶剤回収システム1Dは、冷却凝縮装置100の小型化、省エネルギー化に寄与することができる。有機溶剤回収システム1Dは、脱着ガスG11が高温であるため冷却処理ガスG4中に含まれるNMP(N-メチル-2-ピロリドン)、水分等の凝縮を抑制することができる。
 脱着ガスG8は、冷却凝縮装置100に戻されるとともに、脱着ガスG11は、再生ヒータ250に戻される。有機溶剤回収システム2Dは、脱着ガスG11を再生ヒータ250に戻すため、脱着ガスG11の風量分を冷却凝縮装置100および第一濃縮装置200において処理する必要がなくなる。このため、有機溶剤回収システム2Dは、冷却凝縮装置100および第一濃縮装置200の小型化、省エネルギー化に寄与することができる。有機溶剤回収システム2Dは、脱着ガスG11が高温であるため再生ヒータ250の省エネルギー化に寄与することができる。
 脱着ガスG8は、冷却凝縮装置100に戻されるとともに、脱着ガスG11は、第四通流経路F4に戻される。脱着ガスG11は、冷却処理ガスG6とともに第四通流経路F4を通流し第二熱交換器112へ戻される。有機溶剤回収システム3Dは、脱着ガスG11の風量分を冷却凝縮装置100および第一濃縮装置200において処理する必要がなくなる。このため、有機溶剤回収システム3Dは、冷却凝縮装置100および第一濃縮装置200の小型化、省エネルギー化に寄与することができる。有機溶剤回収システム3Dは、脱着ガスG11が高温であるため第二熱交換器112に通流する流体の温度を向上させることができ、排ガスG1を冷却するための第二熱交換器112の小型化、省エネルギー化に寄与することができる。
 脱着ガスG8は、冷却凝縮装置100に戻されるとともに、脱着ガスG11は、第五通流経路F5に戻される。脱着ガスG11は、第二熱交換器112から排出された排ガスG1および冷却処理ガスG6の一部とともに第五通流経路F5を通流し生産設備130へ戻される。有機溶剤回収システム4Dは、脱着ガスG11の風量分を冷却凝縮装置100および第一濃縮装置200において処理する必要がなくなる。このため、有機溶剤回収システム4Dは、冷却凝縮装置100および第一濃縮装置200の小型化、省エネルギー化に寄与することができる。有機溶剤回収システム4Dは、脱着ガスG11が高温であるため生産設備130から再度排出される排ガスG1の温度を高めることができる。このため、有機溶剤回収システム4Dは、第二熱交換器112に通流する流体の温度を向上させることができ、排ガスG1を冷却するための第二熱交換器112の小型化、省エネルギー化に寄与することができる。
 本実施の形態における第一濃縮装置200は、吸着ユニット210が筒軸回りに回転する中空円柱状のロータの筒軸回りの周方向に複数配置されている。これにより、有機溶剤を高効率に回収することができる。
 本実施の形態における第二濃縮装置300は、吸着素子310が筒軸回りに回転する円盤状の吸着ロータに配置されている。これにより、有機溶剤を高効率に回収することができる。
 [他の実施の形態]
 上記実施の形態において、濃縮装置は、第一濃縮装置200と第二濃縮装置300との2つを用いていた。濃縮装置は、風量に応じて、第一濃縮装置200を2つまたは第二濃縮装置300を2つ適用しても良い。また、除去効率に応じて、濃縮装置を3つ以上適用してもよい。
 排ガスG1に含有される有機溶剤としては、1℃~50℃の冷却にて液化して回収できる有機溶剤が挙げられる。有機溶剤としては、たとえば、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、またn-デカンである。これらは例示であり、これらに限定されることはない。含有される有機溶剤は、1種でも複数種でもよい。
 [実施の形態1E]
 図14は、実施の形態1Eの有機溶剤回収システム1Eの構成を概略的に示す図である。有機溶剤回収システム1Eは、冷却凝縮装置100、第一濃縮装置200、第二濃縮装置300から構成される有機溶剤回収システム2B1と、冷却凝縮装置100、第一濃縮装置200から構成される有機溶剤回収システム2B2と、各種通流経路により構成されている。
 有機溶剤回収システム2B1は、上述した実施の形態2Bと同様の構成である。有機溶剤回収システム2B2は、上述した実施の形態2Bから第二濃縮装置300を削除した構成である。図14に示すように、実施の形態1Eの有機溶剤回収システム1Eは、後段の第二濃縮装置300の数が1つ、前段の第一濃縮装置200の数が2つである。つまり、後段の第二濃縮装置300の数が、前段の第一濃縮装置200の数未満となる構成である。
 実施の形態1Eの有機溶剤回収システム1Eは、図14に示すように、複数の冷却凝縮装置100、複数の第一濃縮装置200が、生産設備130に対して並列に配置される構成である。実施の形態1Eの有機溶剤回収システム1Eは、第一濃縮装置200の数が、冷却凝縮装置100の数と同じであるが、数は異なっていてもよい。以下では、有機溶剤回収システム2B1、有機溶剤回収システム2B2を含む有機溶剤回収システム1Eの各種構成について具体的に説明する。
 冷却凝縮装置100は、冷却部110と分離部120とを有している。有機溶剤を含有する排ガスG1は、生産設備130から排出される。排ガスG1は、冷却部110を通過することによって冷却される。排ガスG1は、冷却部110の通過に伴って有機溶剤が液化凝縮される。
 冷却部110を通過した排ガスG2は、分離部120を通過することによって、液化凝縮された冷却凝縮液L1と有機溶剤濃度の低減された冷却処理ガスG3とに分離される。チャンバー123内には、ヒータ126が設けられている。ヒータ126は、冷却後の冷却処理ガスG3をわずかに加熱する。冷却処理ガスG3は、わずかに加熱されることにより有機溶剤あるいは水分が凝縮することを防ぐことができる。冷却処理ガスG3は、チャンバー123を通じて、冷却処理ガスG4として冷却凝縮装置100から第一濃縮装置200へ排出される。
 冷却部110の冷却手段および構成は、特に限定しない。実施の形態1Eでは、冷却水、冷水、ブラインなどの冷媒と排ガスとの間接的な熱交換によって冷却する第一熱交換器111が用いられる。第一熱交換器111は、排ガスG1が上下方向に通流するように位置している。
 冷却部110は、第一熱交換器111の前に、後述する冷却処理ガスG6と排ガスG1との熱交換によって排ガスG1を冷却させる第二熱交換器112が設けられている。第二熱交換器112は、第一熱交換器111に必要な伝熱面積や冷媒量を削減することができる。排ガスG1および冷却処理ガスG6の一部は、第五通流経路F5を通り生産設備130へ戻される。第一熱交換器111および第二熱交換器112における冷却温度などの条件は、回収対象となる有機溶剤によって適宜決めればよい。
 分離部120の分離手段および構成は特に限定しない。実施の形態1Eでは、デミスター、フィルター、およびメッシュなどの液滴を接触して捕捉する網目状構造体121が用いられる。分離部120は、冷却部110で冷却された有機溶剤を含む冷却凝縮液L1を受ける漏斗状の受け部122を有している。冷却部110で冷却された冷却凝縮液L1および網目状構造体121に捕捉された冷却凝縮液L1は、重力によって受け部122に流れた後、受け部122の下部に配置されたタンク125へ集液され、回収液L3として回収される。
 チャンバー123は、一定容量の空間を有する構造体である。チャンバー123内には、堰124が設けられている。堰124は、冷却凝縮液L1の一部がチャンバー123の先端方向へ移動し冷却ガス通流経路としての第一通流経路F1へ通流してしまうことを防止する。堰124は、確実に冷却凝縮液L1を回収する働きをする。チャンバー123内に一定時間貯留された冷却処理ガスG3は、冷却処理ガスG4として第一通流経路F1を通流し、第一濃縮装置200へ供給される。
 有機溶剤回収システム1Eでは、排ガスG1の流れる方向に沿って見た場合に、冷却部110から分離部120に流れる方向に対して、分離部120内において網目状構造体121からチャンバー123に流れる方向が交差することで排ガスG1(排ガスG2,冷却処理ガスG3)がL字方向に流れる構造となっている。
 有機溶剤回収システム1Eは、冷却部110と分離部120とで構成される箇所がL字構造であるため、液滴や飛沫によって第一濃縮装置200および第二濃縮装置300が暴露することを抑制することができる。第一濃縮装置200および第二濃縮装置300は、暴露し吸着剤が濡れてしまうと強度低下や破損の可能性がある。有機溶剤回収システム1Eは、L字構造を有することにより第一濃縮装置200および第二濃縮装置300の強度低下や破損を防止することができる。
 第一濃縮装置200は、ガスが接触することによって、含有する有機溶剤を吸着し、加熱ガスを接触することによって、吸着した有機溶剤を脱着させる吸着材を含む吸着ロータ212を有している。吸着ロータ212は、複数の仕切り部で仕切られた複数の吸着ユニット210で構成されている。吸着ロータ212は、複数の吸着ユニット210により全体として中空円柱状の形状となっている。吸着ロータ212は、処理室内に設置され、径方向に流体を流動できるように設けられている。吸着ロータ212は、モータの回転駆動力を受けて筒軸周りに回転可能に設けられている。
 第一濃縮装置200では、吸着ユニット210の一部が、吸着ユニット210の外側から内側に向けて供給された冷却処理ガスG4に含まれる有機溶剤を吸着する吸着部を構成するとともに、吸着ユニット210の残部が、吸着ユニット210の内側から外側に向けて加熱空気を供給することによって吸着ユニット210に吸着された有機溶剤を吸着ユニット210から脱着する脱着部を構成する。
 清浄化に際しては、処理室内に供給された冷却処理ガスG4を、吸着ロータ212の外周面から吸着部に導入する。吸着部に導入された冷却処理ガスG4は、径方向に沿って外周面から内周面へ向けて吸着ロータ212を通過する際に、吸着部に位置する複数の吸着ユニット210に有機溶剤を吸着させることにより清浄化される。
 有機溶剤回収システム2B1において、清浄化された被処理流体としての冷却処理ガスG5,G6は、清浄ガスとして、吸着ユニット210の上部から排出される。排出された清浄ガスの一部は、冷却処理ガスG5として第二通流経路F2を通流し、第二濃縮装置300へ供給される。排出された清浄ガスの一部は、冷却処理ガスG6として第四通流経路F4を通流し、第二熱交換器112へ戻される。有機溶剤回収システム2B2において、清浄化された被処理流体としての冷却処理ガスG5は、清浄ガスとして、吸着ユニット210の上部から排出される。
 内周側流路形成部材211および外周側流路形成部材213は、周方向における吸着ロータ212の一部を挟み込むように、吸着ロータ212の内周側および外周側において互いに対向して配設されている。内周側流路形成部材211および外周側流路形成部材213により挟まれた吸着ロータ212の領域が脱着部である。
 有機溶剤の脱着を行うためには、内周側流路形成部材211から脱着部に対して再生ヒータ250により加熱された冷却処理ガスG5の一部である高温ガスG7を導入する。脱着部に導入された高温ガスG7は、吸着ロータ212を通過する際に、脱着部に位置する複数の吸着ユニット210から、これらに吸着している有機溶剤を熱によって脱着させる。有機溶剤を含んだ脱着ガスG8は、濃縮ガスとして、脱着部から外周側流路形成部材213を通って、処理室外に排出されて、第三通流経路F3に戻される。脱着ガスG8中に含まれる有機溶剤の一部は、液化凝縮して脱着凝縮液L2としてタンク125へ集液される。
 有機溶剤回収システム2B1において、第三通流経路F3は、脱着ガスG8および後述する脱着ガスG11を冷却凝縮装置100の排ガスG1の導入部に返送する部位である。第三通流経路F3は、脱着部が脱着ガスと冷却凝縮装置100へ供給される排ガスG1との合流位置よりも上部に配置されるように接続されることが好ましい。第一濃縮装置200の脱着ガスG8および第二濃縮装置300の脱着ガスG11から発生した脱着凝縮液L2が、冷却凝縮装置100へ移行しやすいからである。第三通流経路F3は、冷却凝縮装置100の排ガスG1の導入部およびタンク125の二か所に通気されるように構成された方が良い。脱着ガスG8および脱着ガスG11から発生した脱着凝縮液L2が直接タンク125へ回収されやすくなるからである。有機溶剤回収システム2B2において、第三通流経路F3は、脱着ガスG8を冷却凝縮装置100の排ガスG1の導入部に返送する部位である。
 第一濃縮装置200においては、吸着部に位置する吸着ユニット210に対して被処理物質の吸着処理が行われ、吸着処理後に脱着部に位置する吸着ユニット210に対して被処理物質の脱着処理が行われる。吸着ロータ212が筒軸周りに回転することにより、吸着ユニット210が脱着部と吸着部とを交互に移動して、被処理物質の吸着処理と脱着処理とが連続的に実施される。
 吸着ユニット210を構成する吸着素子の材料としては、活性アルミナ、シリカゲル、活性炭素材、ゼオライト等を用いることができる。吸着ユニット210における吸着素子の形状は特に限定されず、例えば、活性炭素材やゼオライトを含有するシートをハニカム状に形成したものでも、活性炭素繊維不織布を積層したものでもよい。
 第二濃縮装置300は、ガスが接触することによって、含有する有機溶剤を吸着し、加熱ガスを接触することによって、吸着した有機溶剤を脱着させる吸着材を含む吸着素子310を有している。吸着素子310は、脱着部(脱着ゾーン)311と吸着部(吸着ゾーン)312とを含んでいる。吸着部312では、冷却処理ガスG5が導入されることで、吸着材に冷却処理ガスG5が接触することで、冷却処理ガスG5に含有される有機溶剤が吸着材に吸着され、冷却処理ガスG5が清浄化されて清浄ガスG9として排出される。
 脱着部311では、吸着材に冷却処理ガスG5よりも高温な高温ガスG10が導入されることで、有機溶剤が吸着材から脱着され、これにより有機溶剤を含有する脱着ガスG11として排出される。
 吸着素子310に含まれる吸着材としては、活性アルミナ、シリカゲル、活性炭素材やゼオライトが広く利用されており、中でも活性炭と疎水性ゼオライトが特に好適に利用されている。
 図14に示す通り、第二濃縮装置300は、回転軸と、回転軸の周りに設けられた吸着素子310とを備えている。第二濃縮装置300は、回転軸周りに吸着素子310を回転させることにより、吸着部312において、第二通流経路F2から導入された冷却処理ガスG5中の有機溶剤を吸着した吸着材が連続的に脱着部311に移動する構成である。
 図14に示す通り、第二濃縮装置300は、脱着部311が吸着部312よりも下部に配置された方が好ましい。脱着ガスG11中に含まれる有機溶剤の一部が液化凝縮して脱着凝縮液L2が発生した場合においても、吸着部312に脱着凝縮液L2が付着しにくくなるからである。脱着凝縮液L2は、脱着部311より下部へ落ち、脱着部の外装の内面などを伝って回収される。より好ましくは、脱着部311は、脱着凝縮液L2がより下へ落ち易くなるために下に傾斜をつけた方が良い。
 第二濃縮装置300は、脱着部311の脱着処理が完了した部分が吸着部312への移行の前に移行する洗浄部(パージ部)を有していてもよい。清浄ガスG9の一部がパージ部に導入され、パージ部から排出されたパージ部出口ガスが、吸着部312に導入されるような構成であってもよい。清浄ガスG9により脱着完了した吸着材を洗浄することで、吸着材に残る脱着ガスG11が清浄ガスG9へ混入することを防ぎ、吸着材を冷却することができるからである。
 脱着に使用する高温ガスG10は、清浄ガスG9の一部を再生ヒータ350などの加熱手段を用いて高温状態にしたものが好ましい。吸着部312において、有機溶剤含有ガスの処理風量が増えないからである。
 [実施の形態2E]
 図15および図16は、実施の形態2Eの有機溶剤回収システム2Eの構成を概略的に示す図である。有機溶剤回収システム2Eは、冷却凝縮装置100、第一濃縮装置200、第二濃縮装置300から構成される有機溶剤回収システム2B1と、冷却凝縮装置100、第一濃縮装置200から構成される有機溶剤回収システム2B2と、を2つずつ備えるとともに、各種通流経路を備える構成である。図15と図16とは、A点およびB点で流路が接続されているが、紙面の都合上、1図を2図に分割して記載している。
 図15および図16に示す有機溶剤回収システム2Eにおける有機溶剤回収システム2B1および有機溶剤回収システム2B2は、図14で示した有機溶剤回収システム1Eに含まれる有機溶剤回収システム2B1および有機溶剤回収システム2B2と同じ構成である。
 図15、図16に示すように、実施の形態2Eの有機溶剤回収システム2Eは、後段の第二濃縮装置300の数が前段の第一濃縮装置200の数未満となる構成である。具体的には、後段の第二濃縮装置300の数が2つなのに対し、前段の第一濃縮装置200の数は4つである。なお、後段の第二濃縮装置300の数が前段の第一濃縮装置200の数未満となる構成であれば第一濃縮装置200および第二濃縮装置300の各々の数はいくつであってもよい。後段の第二濃縮装置300が接続される位置は、複数の前段の第一濃縮装置200のうちのいずれの位置であってもよい。
 実施の形態2Eの有機溶剤回収システム2Eは、図15,図16に示すように、複数の冷却凝縮装置100、複数の第一濃縮装置200が、生産設備130に対して並列に配置される構成である。実施の形態2Eの有機溶剤回収システム2Eは、第一濃縮装置200の数が、冷却凝縮装置100の数と同じであるが、数は異なっていてもよい。例えば、冷却凝縮装置100の数が、第一濃縮装置200の数未満となるように構成してもよい。この場合、1つの冷却凝縮装置100から排出される冷却処理ガスG4が複数の第一濃縮装置200へ流入する構成としてもよい。
 [作用・効果]
 本実施の形態における有機溶剤回収システム1E、2Eは、有機溶剤を含有する排ガスG1を冷却することで、有機溶剤を液化凝縮し、有機溶剤の濃度が低減された冷却処理ガスG4として排出する冷却凝縮装置100と、冷却処理ガスG4を通流させる第一通流経路F1と、第一通流経路F1から導入された冷却処理ガスG4に含まれる有機溶剤を吸着ユニット210にて吸着して有機溶剤の濃度が更に低減された冷却処理ガスG5として排出し、高温ガスG7を導入して吸着ユニット210から有機溶剤を脱着して脱着ガスG8として排出する第一濃縮装置200と、冷却処理ガスG5の一部を通流させる第二通流経路F2と、第二通流経路F2から導入された冷却処理ガスG5に含まれる有機溶剤を吸着素子310にて吸着して有機溶剤の濃度が更に低減された清浄ガスG9として排出し、高温ガスG10を導入して吸着素子310から有機溶剤を脱着して脱着ガスG11として排出する第二濃縮装置300と、を備える。第一濃縮装置200は、少なくとも2つ以上設けられ、第二濃縮装置300は、少なくとも1つ以上設けられ、第二濃縮装置300の数が、第一濃縮装置200の数未満である。
 このため、有機溶剤回収システム1E、2Eは、生産設備130から排出される排ガスG1の流量が多い場合であっても、複数の第一濃縮装置200により排ガスG1から有機溶剤を高効率に回収することができる。
 本実施の形態における複数の第一濃縮装置200は、生産設備130に対して並列に配置される。これにより、生産設備130から排出される排ガスG1の流量が多い場合であっても、排ガスG1から有機溶剤を高効率に回収することができる。
 本実施の形態における冷却凝縮装置100は、少なくとも2つ以上設けられ、第一濃縮装置200の数が、冷却凝縮装置100の数と同じである。これにより、生産設備130から排出される排ガスの流量が多い場合であっても、排ガスG1から有機溶剤を高効率に回収することができる。
 本実施の形態における冷却凝縮装置100は、冷却後の排ガスG2を接触させることで凝縮した有機溶剤と冷却処理ガスG3とを分離させる網目状構造体121と、網目状構造体121を通過後の冷却処理ガスG3を一定時間貯留させるチャンバー123と、をさらに備える。これにより、排ガスG1から有機溶剤を高効率に回収することができる。
 本実施の形態における冷却凝縮装置100は、冷媒との熱交換により冷却を行う第一熱交換器111、第二熱交換器112をさらに備える。これにより、冷媒と排ガスとの熱交換を効果的に行うことができる。
 本実施の形態における第一濃縮装置200は、吸着ユニット210が筒軸回りに回転する中空円柱状のロータの筒軸回りの周方向に複数配置されている。これにより、有機溶剤を高効率に回収することができる。
 本実施の形態における第二濃縮装置300は、吸着素子310が筒軸回りに回転する円盤状の吸着ロータに配置されている。これにより、有機溶剤を高効率に回収することができる。
 [他の実施の形態]
 上記実施の形態において、有機溶剤回収システム1E、2Eは、図2~図13に示す有機溶剤回収システムのいずれか、またはその組合せにより構成されるようにしてもよい。
 後段の第二濃縮装置300の数が、前段の第一濃縮装置200の数未満となる構成であれば、第一濃縮装置200および第二濃縮装置300の各々の数はいくつであってもよい。例えば、後段の第二濃縮装置300の数を1つとし、前段の第一濃縮装置200の数を3つ以上としてもよい。ただし、第二濃縮装置300は、清浄ガスG9を排出するために1つ以上必要である。
 排ガスG1に含有される有機溶剤としては、1℃~50℃の冷却にて液化して回収できる有機溶剤が挙げられる。有機溶剤としては、たとえば、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、またn-デカンである。これらは例示であり、これらに限定されることはない。含有される有機溶剤は、1種でも複数種でもよい。
 有機溶剤回収システム1E、2Eに用いられる濃縮装置として縦置きのシリンダー型の濃縮装置である第一濃縮装置200、ディスク型の濃縮装置である第二濃縮装置300を例に説明した。濃縮装置は、横置きのシリンダー型の濃縮装置を用いてもよく、縦置きのシリンダー型の濃縮装置、横置きのシリンダー型の濃縮装置、ディスク型の濃縮装置のうちいずれかの組合せにより構成されるものであってもよい。なお、横置きのシリンダー型の濃縮装置は、図1~図13のいずれかに示される濃縮装置に適用してもよい。
 横置きのシリンダー型の濃縮装置として、WO2016/189958、WO2017/170207が挙げられる。また、縦置きのシリンダー型の濃縮装置として、特開昭63-84616が挙げられる。また、ディスク型の濃縮装置として、特開昭61-167430が挙げられる。これらは全て例示であり、ここに記載した文献に開示の濃縮装置に限定されない。
 [実施の形態1J]
 図17は、実施の形態1Jの有機溶剤回収システム1Jの構成を概略的に示す図である。有機溶剤回収システム1Jは、冷却凝縮装置100、第二濃縮装置300から構成される有機溶剤回収システム1K1と、冷却凝縮装置100から構成される有機溶剤回収システム1K2と、各種通流経路により構成されている。
 有機溶剤回収システム1Jは、図14の有機溶剤回収システム1Eから第一濃縮装置200を取り除いた構成である。図17に示すように、実施の形態1Jの有機溶剤回収システム1Jは、後段の第二濃縮装置300の数が1つ、前段の冷却凝縮装置100の数が2つである。つまり、後段の第二濃縮装置300の数が、前段の冷却凝縮装置100の数未満となる構成である。
 実施の形態1Jの有機溶剤回収システム1Jは、図17に示すように、複数の冷却凝縮装置100が、生産設備130に対して並列に配置される構成である。以下では、有機溶剤回収システム1K1、有機溶剤回収システム1K2を含む有機溶剤回収システム1Jの各種構成について具体的に説明する。
 有機溶剤回収システム1K1、有機溶剤回収システム1K2において使用される冷却凝縮装置100について説明する。冷却凝縮装置100は、冷却部110と分離部120とを有している。有機溶剤を含有する排ガスG1は、生産設備130から排出される。排ガスG1は、冷却部110を通過することによって冷却される。排ガスG1は、冷却部110の通過に伴って有機溶剤が液化凝縮される。
 冷却部110を通過した排ガスG2は、分離部120を通過することによって、液化凝縮された冷却凝縮液L1と有機溶剤濃度の低減された冷却処理ガスG3とに分離される。チャンバー123内には、ヒータ126が設けられている。ヒータ126は、冷却後の冷却処理ガスG3をわずかに加熱する。冷却処理ガスG3は、わずかに加熱されることにより有機溶剤あるいは水分が凝縮することを防ぐことができる。冷却処理ガスG3は、チャンバー123を通じて、冷却処理ガスの一部G22が冷却凝縮装置100から第二濃縮装置300へ排出される。
 冷却部110の冷却手段および構成は、特に限定しない。実施の形態1Jでは、冷却水、冷水、ブラインなどの冷媒と排ガスとの間接的な熱交換によって冷却する第一熱交換器111が用いられる。第一熱交換器111は、排ガスG1が上下方向に通流するように位置している。
 冷却部110は、第一熱交換器111の前に、後述する冷却処理ガスG21と排ガスG1との熱交換によって排ガスG1を冷却させる第二熱交換器112が設けられている。第二熱交換器112は、第一熱交換器111に必要な伝熱面積や冷媒量を削減することができる。排ガスG1および冷却処理ガスG21の一部は、第五通流経路F5を通り生産設備130へ戻される。第一熱交換器111および第二熱交換器112における冷却温度などの条件は、回収対象となる有機溶剤によって適宜決めればよい。
 分離部120の分離手段および構成は特に限定しない。実施の形態1Jでは、デミスター、フィルター、およびメッシュなどの液滴を接触して捕捉する網目状構造体121が用いられる。分離部120は、冷却部110で冷却された有機溶剤を含む冷却凝縮液L1を受ける漏斗状の受け部122を有している。冷却部110で冷却された冷却凝縮液L1および網目状構造体121に捕捉された冷却凝縮液L1は、重力によって受け部122に流れた後、受け部122の下部に配置されたタンク125へ集液され、回収液L3として回収される。
 チャンバー123は、一定容量の空間を有する構造体である。チャンバー123内には、堰124が設けられている。堰124は、冷却凝縮液L1の一部がチャンバー123の先端方向へ移動し冷却ガス通流経路としての第一通流経路F1へ通流してしまうことを防止する。堰124は、確実に冷却凝縮液L1を回収する働きをする。チャンバー123内に一定時間貯留された冷却処理ガスG3は、冷却処理ガスG21(リターンガスG21)として通流経路F21を通流し、冷却部110に戻される。冷却処理ガスG3の一部は、冷却処理ガスG22として通流経路F22を通流し、第二濃縮装置300へ供給される。
 冷却部110には、第一熱交換器111の前に、冷却処理ガスG21と排ガスG1との熱交換によって排ガスG1を冷却させる第二熱交換器112が設けられている。これにより、第一熱交換器111に必要な伝熱面積や冷媒量が削減される。
 有機溶剤回収システム1Jでは、排ガスG1の流れる方向に沿って見た場合に、冷却部110から分離部120に流れる方向に対して、分離部120内において網目状構造体121からチャンバー123に流れる方向が交差することで排ガスG1(排ガスG2,冷却処理ガスG3)がL字方向に流れる構造となっている。
 有機溶剤回収システム1Jは、冷却部110と分離部120とで構成される箇所がL字構造であるため、液滴や飛沫によって第二濃縮装置300が暴露することを抑制することができる。第二濃縮装置300は、暴露し吸着剤が濡れてしまうと強度低下や破損の可能性がある。有機溶剤回収システム1Jは、L字構造を有することにより第二濃縮装置300の強度低下や破損を防止することができる。
 有機溶剤回収システム1K1に用いられる第二濃縮装置300について説明する。第二濃縮装置300は、ガスが接触することによって、含有する有機溶剤を吸着し、加熱ガスを接触することによって、吸着した有機溶剤を脱着させる吸着材を含む吸着素子310を有している。吸着素子310は、脱着部(脱着ゾーン)311と吸着部(吸着ゾーン)312とを含んでいる。吸着部312では、冷却処理ガスG22が導入されることで、吸着材に冷却処理ガスG22が接触することで、冷却処理ガスG22に含有される有機溶剤が吸着材に吸着され、冷却処理ガスG22が清浄化されて清浄ガスG9として排出される。
 脱着部311では、吸着材に冷却処理ガスG22よりも高温な高温ガスG10が導入されることで、有機溶剤が吸着材から脱着され、これにより有機溶剤を含有する脱着ガスG11として排出される。
 吸着素子310に含まれる吸着材としては、活性アルミナ、シリカゲル、活性炭素材やゼオライトが広く利用されており、中でも活性炭と疎水性ゼオライトが特に好適に利用されている。
 図17に示す通り、第二濃縮装置300は、回転軸と、回転軸の周りに設けられた吸着素子310とを備えている。第二濃縮装置300は、回転軸周りに吸着素子310を回転させることにより、吸着部312において、通流経路F22から導入された冷却処理ガスG22中の有機溶剤を吸着した吸着材が連続的に脱着部311に移動する構成である。
 図17に示す通り、第二濃縮装置300は、脱着部311が吸着部312よりも下部に配置された方が好ましい。脱着ガスG11中に含まれる有機溶剤の一部が液化凝縮して脱着凝縮液L2が発生した場合においても、吸着部312に脱着凝縮液L2が付着しにくくなるからである。脱着凝縮液L2は、脱着部311より下部へ落ち、脱着部の外装の内面などを伝って回収される。より好ましくは、脱着部311は、脱着凝縮液L2がより下へ落ち易くなるために下に傾斜をつけた方が良い。
 第二濃縮装置300は、脱着部311の脱着処理が完了した部分が吸着部312への移行の前に移行する洗浄部(パージ部)を有していてもよい。清浄ガスG9の一部がパージ部に導入され、パージ部から排出されたパージ部出口ガスが、吸着部312に導入されるような構成であってもよい。清浄ガスG9により脱着完了した吸着材を洗浄することで、吸着材に残る脱着ガスG11が清浄ガスG9へ混入することを防ぎ、吸着材を冷却することができるからである。
 脱着に使用する高温ガスG10は、清浄ガスG9の一部を再生ヒータ350などの加熱手段を用いて高温状態にしたものが好ましい。吸着部312において、有機溶剤含有ガスの処理風量が増えないからである。
 有機溶剤回収システム1Jにおける有機溶剤回収システム1K2は、有機溶剤回収システム1K1と異なり、第二濃縮装置300がない。このため、冷却凝縮装置100のチャンバー123内に一定時間貯留された冷却処理ガスG3は、全てが冷却処理ガスG21(リターンガスG21)として通流経路F21を通流し、冷却部110に戻される。
 図17に示すように、実施の形態1Jの有機溶剤回収システム1Jは、複数の冷却凝縮装置100が、生産設備130に対して並列に配置され、後段の第二濃縮装置300の数が前段の冷却凝縮装置100の数未満となる構成である。具体的には、後段の第二濃縮装置300の数が1つなのに対し、前段の冷却凝縮装置100の数は2つである。なお、後段の第二濃縮装置300の数が前段の冷却凝縮装置100の数未満となる構成であれば第二濃縮装置300の数はいくつであってもよい。この場合、後段の第二濃縮装置300が接続される位置は、複数の前段の冷却凝縮装置100のうちのいずれの位置であってもよい。
 [作用・効果]
 本実施の形態における有機溶剤回収システム1Jは、有機溶剤を含有する排ガスG1を冷却することで、有機溶剤を液化凝縮し、有機溶剤の濃度が低減された冷却処理ガスG22として排出する冷却凝縮装置100と、冷却処理ガスG22を通流させる通流経路F22と、通流経路F22から導入された冷却処理ガスG22に含まれる有機溶剤を吸着素子310にて吸着して有機溶剤の濃度が更に低減された清浄ガスG9として排出し、高温ガスG10を導入して吸着素子310から有機溶剤を脱着して脱着ガスG11として排出する第二濃縮装置300と、を備える。冷却凝縮装置100は、少なくとも2つ以上設けられ、第二濃縮装置300は、少なくとも1つ以上設けられ、第二濃縮装置300の数が、冷却凝縮装置100の数未満である。
 このため、有機溶剤回収システム1Jは、生産設備130から排出される排ガスG1の流量が多い場合であっても、複数の冷却凝縮装置100により排ガスG1から有機溶剤を高効率に回収することができる。
 本実施の形態における複数の冷却凝縮装置100は、生産設備130に対して並列に配置される。これにより、生産設備130から排出される排ガスG1の流量が多い場合であっても、排ガスG1から有機溶剤を高効率に回収することができる。
 本実施の形態における冷却凝縮装置100は、冷却後の排ガスG2を接触させることで凝縮した有機溶剤と冷却処理ガスG3とを分離させる網目状構造体121と、網目状構造体121を通過後の冷却処理ガスG3を一定時間貯留させるチャンバー123と、をさらに備える。これにより、排ガスG1から有機溶剤を高効率に回収することができる。
 本実施の形態における冷却凝縮装置100は、冷媒との熱交換により前記冷却を行う第一熱交換器111、第二熱交換器112をさらに備える。これにより、冷媒と排ガスとの熱交換を効果的に行うことができる。
 本実施の形態における第二濃縮装置300は、吸着素子310が筒軸回りに回転する円盤状の吸着ロータに配置されている。これにより、有機溶剤を高効率に回収することができる。
 [他の実施の形態]
 上記実施の形態において、有機溶剤回収システム1Jは、図2~図13に示す2段の濃縮装置を備えた有機溶剤回収システムの構成から、前段の濃縮装置を削除した構成のうちいずれか、またはその組合せにより構成されるようにしてもよい。
 有機溶剤回収システム1Jに用いられる濃縮装置として、ディスク型の濃縮装置である第二濃縮装置300を例に説明した。後段の第二濃縮装置300には、吸着ユニット210が筒軸回りに回転する中空円柱状のロータの筒軸回りの周方向に複数配置されている縦置きのシリンダー型の濃縮装置である第一濃縮装置200を用いてもよい。また、濃縮装置は、横置きのシリンダー型の濃縮装置を用いてもよい。
 排ガスG1に含有される有機溶剤としては、1℃~50℃の冷却にて液化して回収できる有機溶剤が挙げられる。有機溶剤としては、たとえば、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、またn-デカンである。これらは例示であり、これらに限定されることはない。含有される有機溶剤は、1種でも複数種でもよい。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1A,1B,1C,1D,2B,2C,2D,3C,3D,4C,4D 有機溶剤回収システム、100 冷却凝縮装置、110 冷却部、111 第一熱交換器、112 第二熱交換器、120 分離部、121 網目状構造体、123 チャンバー、125 タンク、127 天井部、128 仕切部、130 生産設備、200 第一濃縮装置、210 吸着ユニット、211 内周側流路形成部材、212 吸着ロータ、213 外周側流路形成部材、250,350 再生ヒータ、300 第二濃縮装置、310 吸着素子、311 脱着部、312 吸着部、F1 第一通流経路、F2 第二通流経路、F3 第三通流経路、F4 第四通流経路、F5 第五通流経路、F6 第六通流経路、G1,G2 排ガス、G3,G4,G5,G6 冷却処理ガス、G7,G10 高温ガス、G8,G11 脱着ガス、G9 清浄ガス、L1 冷却凝縮液、L2 脱着凝縮液、L3 回収液。

Claims (12)

  1.  生産設備から排出される有機溶剤を含有する排ガスから前記有機溶剤を回収する有機溶剤回収システムであって、
     前記有機溶剤を含有する前記排ガスを冷却することで、前記有機溶剤を液化凝縮し、前記有機溶剤の濃度が低減された冷却処理ガスとして排出する冷却凝縮装置と、
     前記冷却処理ガスを通流させる第一通流経路と、
     前記第一通流経路から導入された前記冷却処理ガスに含まれる前記有機溶剤を第一吸着素子にて吸着して前記有機溶剤の濃度が更に低減された第一処理ガスとして排出し、高温ガスを導入して前記第一吸着素子から前記有機溶剤を脱着して第一脱着ガスとして排出する第一濃縮装置と、
     前記第一処理ガスの一部を通流させる第二通流経路と、
     前記第二通流経路から導入された前記第一処理ガスに含まれる前記有機溶剤を第二吸着素子にて吸着して前記有機溶剤の濃度が更に低減された第二処理ガスとして排出し、高温ガスを導入して前記第二吸着素子から前記有機溶剤を脱着して第二脱着ガスとして排出する第二濃縮装置と、
     前記第一脱着ガスおよび前記第二脱着ガスを前記冷却凝縮装置に戻す第三通流経路と、を備え、
     前記第一濃縮装置は、少なくとも2つ以上設けられ、前記第二濃縮装置は、少なくとも1つ以上設けられ、
     前記第二濃縮装置の数が、前記第一濃縮装置の数未満である、有機溶剤回収システム。
  2.  複数の前記第一濃縮装置は、前記生産設備に対して並列に配置される、請求項1に記載の有機溶剤回収システム。
  3.  前記冷却凝縮装置は、少なくとも2つ以上設けられ、
     前記第一濃縮装置の数が、前記冷却凝縮装置の数と同じである、請求項1または請求項2に記載の有機溶剤回収システム。
  4.  前記冷却凝縮装置は、前記冷却後の前記排ガスを接触させることで凝縮した前記有機溶剤と前記冷却処理ガスとを分離させる網目状構造体と、前記網目状構造体を通過後の前記冷却処理ガスを一定時間貯留させるチャンバーと、をさらに備える、請求項1または請求項2に記載の有機溶剤回収システム。
  5.  前記冷却凝縮装置は、冷媒との熱交換により前記冷却を行う熱交換器をさらに備える、請求項1または請求項2に記載の有機溶剤回収システム。
  6.  前記第一濃縮装置は、前記第一吸着素子が筒軸回りに回転する中空円柱状のロータの筒軸回りの周方向に複数配置されている、請求項1または請求項2に記載の有機溶剤回収システム。
  7.  前記第二濃縮装置は、前記第二吸着素子が筒軸回りに回転する円盤状の吸着ロータに配置されている、請求項1または請求項2に記載の有機溶剤回収システム。
  8.  生産設備から排出される有機溶剤を含有する排ガスから前記有機溶剤を回収する有機溶剤回収システムであって、
     前記有機溶剤を含有する前記排ガスを冷却することで、前記有機溶剤を液化凝縮し、前記有機溶剤の濃度が低減された冷却処理ガスとして排出する冷却凝縮装置と、
     前記冷却処理ガスを通流させる第一通流経路と、
     前記第一通流経路から導入された前記冷却処理ガスに含まれる前記有機溶剤を吸着素子にて吸着して前記有機溶剤の濃度が更に低減された第一処理ガスとして排出し、高温ガスを導入して前記吸着素子から前記有機溶剤を脱着して脱着ガスとして排出する濃縮装置と、を備え、
     前記冷却凝縮装置は、少なくとも2つ以上設けられ、前記濃縮装置は、少なくとも1つ以上設けられ、
     前記濃縮装置の数が、前記冷却凝縮装置の数未満である、有機溶剤回収システム。
  9.  複数の前記冷却凝縮装置は、前記生産設備に対して並列に配置される、請求項8に記載の有機溶剤回収システム。
  10.  前記冷却凝縮装置は、前記冷却後の前記排ガスを接触させることで凝縮した前記有機溶剤と前記冷却処理ガスとを分離させる網目状構造体と、前記網目状構造体を通過後の前記冷却処理ガスを一定時間貯留させるチャンバーと、をさらに備える、請求項8または請求項9に記載の有機溶剤回収システム。
  11.  前記冷却凝縮装置は、冷媒との熱交換により前記冷却を行う熱交換器をさらに備える、請求項8または請求項9に記載の有機溶剤回収システム。
  12.  前記濃縮装置は、前記吸着素子が筒軸回りに回転する円盤状の吸着ロータに配置されている、請求項8または請求項9に記載の有機溶剤回収システム。
PCT/JP2022/023971 2021-06-23 2022-06-15 有機溶剤回収システム WO2022270380A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/572,901 US20240278165A1 (en) 2021-06-23 2022-06-15 Organic solvent recovery system
CN202280044338.XA CN117545542A (zh) 2021-06-23 2022-06-15 有机溶剂回收系统
KR1020247001661A KR20240023605A (ko) 2021-06-23 2022-06-15 유기 용제 회수 시스템
JP2022568544A JPWO2022270380A1 (ja) 2021-06-23 2022-06-15
EP22828297.6A EP4360730A1 (en) 2021-06-23 2022-06-15 Organic solvent recovery system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-104017 2021-06-23
JP2021104017 2021-06-23

Publications (1)

Publication Number Publication Date
WO2022270380A1 true WO2022270380A1 (ja) 2022-12-29

Family

ID=84544824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023971 WO2022270380A1 (ja) 2021-06-23 2022-06-15 有機溶剤回収システム

Country Status (7)

Country Link
US (1) US20240278165A1 (ja)
EP (1) EP4360730A1 (ja)
JP (1) JPWO2022270380A1 (ja)
KR (1) KR20240023605A (ja)
CN (1) CN117545542A (ja)
TW (1) TW202313181A (ja)
WO (1) WO2022270380A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61167430A (ja) 1985-11-25 1986-07-29 Toyobo Co Ltd 低濃度溶剤含有ガスから溶剤を回収する方法
JPS6384616A (ja) 1986-09-29 1988-04-15 Taikisha Ltd 円筒型回転式ガス処理装置
JP2008100187A (ja) * 2006-10-20 2008-05-01 Toyobo Co Ltd 有機溶剤含有ガス処理システム
JP2012005956A (ja) * 2010-06-24 2012-01-12 Panasonic Corp 溶剤回収装置
JP2012139657A (ja) * 2011-01-05 2012-07-26 Takasago Thermal Eng Co Ltd 溶剤回収システム
JP2014240052A (ja) * 2013-06-12 2014-12-25 東洋紡株式会社 有機溶剤含有ガス処理システム
JP2016101553A (ja) 2014-11-28 2016-06-02 東洋紡株式会社 有機溶剤回収システム
WO2016189958A1 (ja) 2015-05-28 2016-12-01 東洋紡株式会社 吸着処理装置
JP2017000991A (ja) 2015-06-15 2017-01-05 東洋紡株式会社 濃縮装置および有機溶剤回収システム
WO2017170207A1 (ja) 2016-03-28 2017-10-05 東洋紡株式会社 吸着処理装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61167430A (ja) 1985-11-25 1986-07-29 Toyobo Co Ltd 低濃度溶剤含有ガスから溶剤を回収する方法
JPS6384616A (ja) 1986-09-29 1988-04-15 Taikisha Ltd 円筒型回転式ガス処理装置
JP2008100187A (ja) * 2006-10-20 2008-05-01 Toyobo Co Ltd 有機溶剤含有ガス処理システム
JP2012005956A (ja) * 2010-06-24 2012-01-12 Panasonic Corp 溶剤回収装置
JP2012139657A (ja) * 2011-01-05 2012-07-26 Takasago Thermal Eng Co Ltd 溶剤回収システム
JP2014240052A (ja) * 2013-06-12 2014-12-25 東洋紡株式会社 有機溶剤含有ガス処理システム
JP2016101553A (ja) 2014-11-28 2016-06-02 東洋紡株式会社 有機溶剤回収システム
WO2016189958A1 (ja) 2015-05-28 2016-12-01 東洋紡株式会社 吸着処理装置
JP2017000991A (ja) 2015-06-15 2017-01-05 東洋紡株式会社 濃縮装置および有機溶剤回収システム
WO2017170207A1 (ja) 2016-03-28 2017-10-05 東洋紡株式会社 吸着処理装置

Also Published As

Publication number Publication date
JPWO2022270380A1 (ja) 2022-12-29
TW202313181A (zh) 2023-04-01
KR20240023605A (ko) 2024-02-22
CN117545542A (zh) 2024-02-09
US20240278165A1 (en) 2024-08-22
EP4360730A1 (en) 2024-05-01

Similar Documents

Publication Publication Date Title
WO2021132071A1 (ja) 有機溶剤回収システム
JP5588163B2 (ja) 溶剤回収装置
US10905997B2 (en) Moisture separation system
JP2010149040A (ja) 有機溶剤含有ガス処理システム
JP4530944B2 (ja) 揮発性有機化合物の回収プロセス
JP2009090979A (ja) 小型デシカント空調装置
WO2014091779A1 (ja) 有機溶剤含有ガス処理システム
JP5572198B2 (ja) 基板処理装置及び薬液再生方法
JP6458465B2 (ja) 有機溶剤回収システム
WO2022270380A1 (ja) 有機溶剤回収システム
CN212327833U (zh) 回收装置以及回收系统
JP5760440B2 (ja) 有機溶剤回収システム
JP6565357B2 (ja) 濃縮装置および有機溶剤回収システム
JP5862278B2 (ja) 有機溶剤含有ガス処理システム
JP2009273975A (ja) 有機溶剤含有ガス処理システム
JP2001038144A (ja) ガス処理装置
JP4270574B2 (ja) 溶剤の回収装置
TW202130404A (zh) 有機溶劑回收系統
JP7435367B2 (ja) 有機溶剤回収システム
JP2009138975A (ja) クリーンルーム排気の清浄化方法
JP2022039976A (ja) 有機溶剤回収システム
JP4352139B2 (ja) 小型デシカント空調装置
JP2014000521A (ja) 有機溶剤回収システム
JPH06102132B2 (ja) 溶剤濃縮回収装置
JP2004121921A (ja) 有機溶剤回収システム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022568544

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828297

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18572901

Country of ref document: US

Ref document number: 202280044338.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247001661

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247001661

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022828297

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022828297

Country of ref document: EP

Effective date: 20240123