WO2022267997A1 - 发动机的控制方法、装置、设备、程序和存储介质 - Google Patents

发动机的控制方法、装置、设备、程序和存储介质 Download PDF

Info

Publication number
WO2022267997A1
WO2022267997A1 PCT/CN2022/099586 CN2022099586W WO2022267997A1 WO 2022267997 A1 WO2022267997 A1 WO 2022267997A1 CN 2022099586 W CN2022099586 W CN 2022099586W WO 2022267997 A1 WO2022267997 A1 WO 2022267997A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
idle speed
vehicle
throttle valve
preset
Prior art date
Application number
PCT/CN2022/099586
Other languages
English (en)
French (fr)
Inventor
战金程
王禄宝
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Publication of WO2022267997A1 publication Critical patent/WO2022267997A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/08Throttle valves specially adapted therefor; Arrangements of such valves in conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/068Introducing corrections for particular operating conditions for engine starting or warming up for warming-up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present disclosure relates to the field of vehicle control, in particular to an engine control method, device, equipment, program and storage medium.
  • the running performance of the engine is the key to the stable operation of the vehicle.
  • a forced crankcase ventilation system is usually installed in the engine.
  • the throttle will break the ice, but the small ice cubes produced after the ice breaking will still block the throttle when the throttle opening is small, causing the throttle drive motor to stall. Since the temperature of the throttle drive motor will increase when the rotor is locked, the throttle drive motor will be damaged or a fault will be reported, which will affect the normal driving of the vehicle.
  • the present disclosure aims to solve one of the technical problems in the related art at least to a certain extent.
  • the first purpose of the present disclosure is to propose an engine control method to solve the technical problem existing in the prior art that the throttle driving motor is locked due to ice formation at the throttle of the engine.
  • a second object of the present disclosure is to propose a control device for an engine.
  • a third object of the present disclosure is to propose a computing processing device.
  • a fourth object of the present disclosure is to propose a computer program.
  • a fifth object of the present disclosure is to provide a computer-readable storage medium.
  • the embodiment of the first aspect of the present disclosure proposes a method for controlling an engine, which is applied to an engine of a vehicle, and includes the following steps:
  • a target idle speed is determined according to the current idle speed of the engine, and the target idle speed is greater than the current idle speed
  • the opening degree of the throttle valve of the engine is increased, so that the heat generated by the engine heats the pipeline where the throttle valve is located.
  • the detecting whether the pipeline where the throttle valve of the engine is located is icy includes:
  • the vehicle meets preset icing conditions, it is determined that the pipeline where the throttle valve is located is icing, and the icing conditions include:
  • the gear of the vehicle is neutral
  • the coolant temperature of the engine is less than or equal to a preset first temperature threshold
  • the ambient temperature around the vehicle is less than or equal to a preset second temperature threshold
  • the states of the coolant temperature sensor of the engine and the ambient temperature sensor of the vehicle are both normal;
  • the throttle drive motor of the engine runs according to a specified duty cycle, which is greater than the preset first duration threshold, the specified duty cycle is greater than the preset duty cycle threshold, and the throttle drive motor is controlled by A motor that describes the opening of the throttle valve.
  • the determining the target idle speed according to the current idle speed of the engine includes:
  • the target idle speed is determined according to the current idle speed and a preset speed step value.
  • the method further includes:
  • the method further includes:
  • the target idle speed is set as a base idle speed, and the base idle speed is the corresponding speed of the engine in a normal idle state;
  • the exit conditions include at least one of the following:
  • the time period during which the engine runs at idle speed is greater than a preset second time period threshold
  • the opening of the accelerator pedal of the vehicle is greater than a preset opening threshold
  • the vehicle speed of the vehicle is greater than a preset vehicle speed threshold
  • the gear of the vehicle is not neutral
  • the state of the coolant temperature sensor of the engine is abnormal
  • the state of the vehicle's ambient temperature sensor is abnormal.
  • the embodiment of the first aspect of the present disclosure proposes an engine control method. First, it detects whether the pipeline where the throttle valve is located is frozen. Speed, determine the target idle speed, and then increase the opening of the throttle valve of the engine according to the target idle speed, so that the heat generated by the engine heats the pipeline where the throttle valve is located. Wherein, the target idle speed is greater than the current idle speed.
  • the disclosure increases the opening of the throttle valve by increasing the target idle speed of the engine, so that the heat generated by the engine can heat the pipeline where the throttle valve is located, thereby melting the ice of the pipeline where the throttle valve is located, and avoiding the The pipeline of the throttle body freezes and causes the throttle valve drive motor to stall.
  • the embodiment of the second aspect of the present disclosure proposes an engine control device, which is applied to a vehicle engine, and the device includes:
  • a detection module configured to detect whether the pipeline where the throttle valve of the engine is located is frozen
  • a determination module configured to determine a target idle speed according to the current idle speed of the engine if it is detected that the pipeline where the throttle valve is located is frozen, and the target idle speed is greater than the current idle speed;
  • the control module is configured to increase the opening degree of the throttle valve of the engine according to the target idle speed, so that the heat generated by the engine heats the pipeline where the throttle valve is located.
  • the detection module is used for:
  • the vehicle meets preset icing conditions, it is determined that the pipeline where the throttle valve is located is icing, and the icing conditions include:
  • the gear of the vehicle is neutral
  • the coolant temperature of the engine is less than or equal to a preset first temperature threshold
  • the ambient temperature around the vehicle is less than or equal to a preset second temperature threshold
  • the states of the coolant temperature sensor of the engine and the ambient temperature sensor of the vehicle are both normal;
  • the throttle drive motor of the engine runs according to a specified duty cycle, which is greater than the preset first duration threshold, the specified duty cycle is greater than the preset duty cycle threshold, and the throttle drive motor is controlled by A motor that describes the opening of the throttle valve.
  • the determining module is used for:
  • the target idle speed is determined according to the current idle speed and a preset speed step value.
  • the device further includes:
  • the cycle module is used to repeatedly perform the steps of detecting whether the pipeline where the throttle valve of the engine is located is frozen, to the step of increasing the opening degree of the throttle valve of the engine according to the target idle speed, until the If the vehicle does not satisfy the icing condition, or the target idle speed is greater than the maximum idle speed, the throttle opening of the engine is continuously controlled according to the target idle speed.
  • the device further includes:
  • An exit module configured to set the target idle speed as a base idle speed if the vehicle satisfies a preset exit condition, and the base idle speed is the corresponding speed of the engine in a normal idle state;
  • the exit conditions include at least one of the following:
  • the time period during which the engine runs at idle speed is greater than a preset second time period threshold
  • the opening of the accelerator pedal of the vehicle is greater than a preset opening threshold
  • the vehicle speed of the vehicle is greater than a preset vehicle speed threshold
  • the gear of the vehicle is not neutral
  • the state of the coolant temperature sensor of the engine is abnormal
  • the state of the vehicle's ambient temperature sensor is abnormal.
  • the embodiment of the second aspect of the present disclosure proposes an engine control device. First, it detects whether the pipeline where the throttle valve is located is frozen. Speed, determine the target idle speed, and then increase the opening of the throttle valve of the engine according to the target idle speed, so that the heat generated by the engine heats the pipeline where the throttle valve is located. Wherein, the target idle speed is greater than the current idle speed.
  • the disclosure increases the opening of the throttle valve by increasing the target idle speed of the engine, so that the heat generated by the engine can heat the pipeline where the throttle valve is located, thereby melting the ice of the pipeline where the throttle valve is located, and avoiding the The pipeline of the throttle body freezes and causes the throttle valve drive motor to stall.
  • the embodiment of the third aspect of the present disclosure proposes a computing processing device, including:
  • One or more processors when the computer readable code is executed by the one or more processors, the computing processing device executes the engine control method proposed in the embodiment of the first aspect of the present disclosure.
  • the embodiment of the fourth aspect of the present disclosure proposes a computer program, including computer readable codes, when the computer readable codes are run on a computing processing device, causing the computing processing device to execute the first aspect of the present disclosure.
  • the control method of the engine proposed by the embodiment proposes a computer program, including computer readable codes, when the computer readable codes are run on a computing processing device, causing the computing processing device to execute the first aspect of the present disclosure.
  • the embodiment of the fifth aspect of the present disclosure provides a computer-readable storage medium, in which the computer program provided by the embodiment of the fourth aspect of the present disclosure is stored.
  • Fig. 1 is a flow chart of a method for controlling an engine according to an exemplary embodiment
  • Fig. 2 is a flow chart showing another engine control method according to an exemplary embodiment
  • Fig. 3 is a flow chart of another engine control method according to an exemplary embodiment
  • Fig. 4 is a block diagram of an engine control device according to an exemplary embodiment
  • Fig. 5 is a block diagram of another engine control device according to an exemplary embodiment
  • Fig. 6 is a block diagram of another engine control device according to an exemplary embodiment
  • FIG. 7 provides a schematic structural diagram of a computing processing device according to an embodiment of the present disclosure.
  • Fig. 8 is a schematic diagram of a program code storage unit for portable or fixed implementation of the method according to the present invention provided by an embodiment of the present disclosure.
  • Fig. 1 is a flow chart of a method for controlling an engine according to an exemplary embodiment. As shown in Fig. 1 , it is applied to an engine of a vehicle, and the method includes:
  • Step 101 detecting whether the pipeline where the throttle valve of the engine is located is frozen.
  • the application scenario of the present disclosure may be a non-supercharged engine or a non-supercharged region of a supercharged engine (ie, a scenario where the supercharger does not work).
  • the pipeline where the throttle valve is located may freeze, and the engine will use ice-breaking technology to break the ice cubes at the throttle valve when starting.
  • the temperature inside the engine increases, the hardness of the ice decreases and changes state as it melts, sticking to the wall of the throttle tube. If the engine keeps idling after starting, as the engine runs longer, the air intake required to keep the engine running decreases, and the throttle valve needs to reduce its opening.
  • whether the pipeline where the throttle valve is located can be determined to be icy by detecting whether the vehicle satisfies preset icing conditions, wherein the icing conditions can include, for example: the gear of the vehicle is a preset gear, the engine and The ambient temperature around the vehicle is lower than a preset temperature threshold or the like.
  • Step 102 if it is detected that the pipeline where the throttle valve is located is icy, determine the target idle speed according to the current idle speed of the engine, and the target idle speed is greater than the current idle speed.
  • Step 103 increase the opening of the throttle valve of the engine, so that the heat generated by the engine heats the pipeline where the throttle valve is located.
  • the target idle speed can be controlled by controlling the opening degree of the throttle valve
  • an instruction to increase the target idle speed of the engine can be issued to increase the throttle speed.
  • the opening degree of the valve so that the increased opening degree of the throttle valve can make the engine reach the target idle speed.
  • the current idle speed of the engine may be obtained first, and a preset speed value is added to the current idle speed to obtain a target idle speed greater than the current idle speed.
  • the throttle opening of the engine can be correspondingly increased, so that the heat generated by the engine can pass through the throttle and heat the pipeline where the throttle is located, thereby melting the ice of the pipeline where the throttle is located, avoiding Because the throttle valve is stuck by ice, the throttle valve drive motor cannot control the opening of the throttle valve to decrease, which leads to the damage of the throttle valve drive motor or a fault report.
  • the disclosure first detects whether the pipeline where the throttle valve of the engine is located is frozen.
  • the target idle speed increases the opening of the throttle valve of the engine, so that the heat generated by the engine heats the pipeline where the throttle valve is located.
  • the target idle speed is greater than the current idle speed.
  • the disclosure increases the opening of the throttle valve by increasing the target idle speed of the engine, so that the heat generated by the engine can heat the pipeline where the throttle valve is located, thereby melting the ice of the pipeline where the throttle valve is located, and avoiding the The pipeline of the throttle body freezes and causes the throttle valve drive motor to stall.
  • step 101 is:
  • the icing conditions include:
  • the gear of the vehicle is neutral.
  • the coolant temperature of the engine is less than or equal to the preset first temperature threshold.
  • the ambient temperature around the vehicle is less than or equal to the preset second temperature threshold.
  • the status of the engine's coolant temperature sensor and the vehicle's ambient temperature sensor are both OK.
  • the throttle driving motor of the engine runs according to the specified duty cycle, which is greater than the preset first duration threshold, the specified duty cycle is greater than the preset duty cycle threshold, and the throttle driving motor is a motor that controls the opening of the throttle .
  • whether the pipeline where the throttle valve is located can be determined to be icy by detecting whether the vehicle meets a preset icing condition.
  • the icing condition may include: the gear of the vehicle is neutral, the coolant temperature of the engine is less than or equal to the preset first temperature threshold, the ambient temperature around the vehicle is less than or equal to the preset second temperature threshold, the cooling of the engine.
  • the states of the fluid temperature sensor and the ambient temperature sensor of the vehicle are both normal, and the throttle valve drive motor of the engine operates at a specified duty cycle for a period longer than the preset first duration threshold.
  • the first temperature threshold can be, for example, -10°C
  • the second temperature threshold can be, for example, -10°C
  • the duty cycle threshold can be, for example, 80%
  • the first duration threshold can be, for example, 2s
  • the throttle drive motor is a control throttle. Valve opening motor.
  • the throttle valve driving motor of the engine runs for a specified time period (such as 300 ms) according to a specified duty cycle (such as 85%) to control the opening of the throttle valve of the engine from maximum to minimum. If the throttle driving motor of the engine operates with a specified duty ratio (such as 85%) for a period longer than the first time threshold (such as 2s), it indicates that the throttle is blocked by ice, which causes the throttle driving motor to be unable to control the throttle opening. small.
  • the first duration threshold is greater than the specified duration.
  • the gear of the vehicle is neutral (the vehicle is at a standstill), and the coolant temperature of the engine is less than or equal to the first temperature threshold, and the ambient temperature around the vehicle is less than or equal to the second temperature threshold, and the engine If the status of the coolant temperature sensor and the ambient temperature sensor of the vehicle are both normal, and the engine’s throttle valve driving motor runs at a specified duty cycle for a period greater than the first duration threshold, then it can be determined that the pipeline where the throttle valve is located is frozen .
  • step 102 is:
  • the speed step value can be increased on the basis of the current idle speed of the engine to obtain the target idle speed, that is, the current idle speed and the speed step The sum of the values is taken as the target idle speed.
  • the rotational speed step value may be, for example, 100 rpm.
  • Fig. 2 is a flow chart of another engine control method shown according to an exemplary embodiment. As shown in Fig. 2 , the method further includes:
  • step 104 the steps from step 101 to step 103 are repeatedly executed until the vehicle does not meet the icing condition, or the target idle speed is greater than the maximum idle speed, and the throttle opening of the engine is continuously controlled according to the target idle speed.
  • step 101 to step 103 can be repeatedly executed.
  • the target idle speed is continuously increased until the vehicle no longer satisfies the icing condition, or the target idle speed is greater than The maximum idle speed, wherein the maximum idle speed may be, for example, 1800 rpm. If the target idle speed is greater than the maximum idle speed, the target idle speed may be determined as the maximum idle speed, and the throttle opening of the engine may be continuously controlled according to the target idle speed. If the vehicle no longer satisfies the icing condition, the current target idle speed is maintained, and the throttle opening of the engine is continuously controlled according to the target idle speed.
  • the opening of the throttle valve is increased, and the output power of the engine is continuously increased.
  • the heat generated by the engine is also continuously increasing, so the ice in the pipeline where the throttle valve is located can be The heat generated by the engine melts, avoiding the problem that the throttle drive motor cannot control the opening of the throttle valve to reduce due to the throttle being stuck by ice, which will cause damage to the throttle drive motor or report a fault.
  • increasing the opening of the throttle valve by gradually increasing the target idle speed can reduce the energy consumption of the engine while ensuring that the ice in the pipeline where the throttle valve is located melts.
  • the target idle speed of 1500rpm can be maintained , and continue to control the opening of the throttle valve of the engine according to the target idle speed of 1500rpm.
  • the target idle speed of 1800 rpm can be maintained, and the throttle opening of the engine can be continuously controlled according to the target idle speed of 1800 rpm.
  • Fig. 3 is a flow chart of another engine control method shown according to an exemplary embodiment. As shown in Fig. 3, the method further includes:
  • Step 105 if the vehicle satisfies the preset exit condition, set the target idle speed as the base idle speed, which is the corresponding speed of the engine in a normal idle state.
  • Exit conditions include at least one of the following:
  • the period during which the engine runs at idle speed is greater than the preset second period threshold.
  • the accelerator pedal opening of the vehicle is greater than a preset opening threshold.
  • the speed of the vehicle is greater than a preset speed threshold.
  • the gear of the vehicle is not neutral.
  • the status of the engine coolant temperature sensor is abnormal.
  • the status of the vehicle's ambient temperature sensor is abnormal.
  • the exit condition may include at least one of the following: the duration of the engine running at idle speed is greater than a preset second duration threshold.
  • the accelerator pedal opening of the vehicle is greater than a preset opening threshold.
  • the speed of the vehicle is greater than a preset speed threshold.
  • the gear of the vehicle is not neutral.
  • the status of the engine coolant temperature sensor is abnormal.
  • the status of the vehicle's ambient temperature sensor is abnormal.
  • the second duration threshold may be, for example, 180s
  • the opening degree threshold may be, for example, 5%
  • the vehicle speed threshold may be, for example, 5km/h.
  • the opening of the accelerator pedal of the vehicle is greater than the preset opening threshold, or the speed of the vehicle is greater than the preset speed threshold, or the gear of the vehicle is not in neutral, it indicates that the vehicle has started (that is, the vehicle is not stop state), at this time, the air intake required by the engine is larger, and correspondingly, the opening of the throttle valve is also larger, so it is not necessary to continue to perform steps 101 to 103 to increase the opening of the throttle valve.
  • the target idle speed can be set as the base idle speed, so that the vehicle can run at the lowest idle speed that maintains the stable operation of the engine.
  • the basic idle speed can be understood as the corresponding speed of the engine in a normal idle state.
  • the opening threshold as 5%
  • the vehicle speed threshold as 5km/h as an example, when the engine runs at idle speed for longer than 180s, or when the accelerator pedal opening is greater than 5%, or When the vehicle speed is greater than 5km/h, it can be determined that the vehicle meets the exit conditions, and the engine is controlled to run at the base idle speed.
  • the disclosure first detects whether the pipeline where the throttle valve of the engine is located is frozen.
  • the target idle speed increases the opening of the throttle valve of the engine, so that the heat generated by the engine heats the pipeline where the throttle valve is located.
  • the target idle speed is greater than the current idle speed.
  • the disclosure increases the opening of the throttle valve by increasing the target idle speed of the engine, so that the heat generated by the engine can heat the pipeline where the throttle valve is located, thereby melting the ice of the pipeline where the throttle valve is located, and avoiding the The pipeline of the throttle body freezes and causes the throttle valve drive motor to stall.
  • Fig. 4 is a block diagram of an engine control device according to an exemplary embodiment. As shown in Fig. 4, it is applied to a vehicle engine, and the device 200 includes:
  • the detection module 201 is used to detect whether the pipeline where the throttle valve of the engine is located is frozen.
  • the determination module 202 is used to determine the target idle speed according to the current idle speed of the engine if it is detected that the pipeline where the throttle valve is located is frozen. The target idle speed is greater than the current idle speed.
  • the control module 203 is configured to increase the opening degree of the throttle valve of the engine according to the target idle speed, so that the heat generated by the engine heats the pipeline where the throttle valve is located.
  • the detection module 201 is used for:
  • the icing conditions include:
  • the gear of the vehicle is neutral.
  • the coolant temperature of the engine is less than or equal to the preset first temperature threshold.
  • the ambient temperature around the vehicle is less than or equal to the preset second temperature threshold.
  • the status of the engine's coolant temperature sensor and the vehicle's ambient temperature sensor are both OK.
  • the throttle driving motor of the engine runs according to the specified duty cycle, which is greater than the preset first duration threshold, the specified duty cycle is greater than the preset duty cycle threshold, and the throttle driving motor is a motor that controls the opening of the throttle .
  • the determination module 202 is used to:
  • Fig. 5 is a block diagram of another engine control device according to an exemplary embodiment. As shown in Fig. 5, the device 200 further includes:
  • the cycle module 204 is used to repeatedly execute the steps of detecting whether the pipeline where the throttle valve of the engine is located is frozen, to increasing the opening degree of the throttle valve of the engine according to the target idle speed, until the vehicle does not meet the icing condition, or the target idle speed
  • the rotation speed is greater than the maximum idle speed, and the opening of the throttle valve of the engine is continuously controlled according to the target idle speed.
  • Fig. 6 is a block diagram of another engine control device according to an exemplary embodiment. As shown in Fig. 6, the device 200 further includes:
  • the exit module 205 is used to set the target idle speed as the base idle speed if the vehicle meets the preset exit conditions, and the base idle speed is the corresponding speed of the engine in a normal idle state.
  • Exit conditions include at least one of the following:
  • the period during which the engine runs at idle speed is greater than the preset second period threshold.
  • the accelerator pedal opening of the vehicle is greater than a preset opening threshold.
  • the speed of the vehicle is greater than a preset speed threshold.
  • the gear of the vehicle is not neutral.
  • the status of the engine coolant temperature sensor is abnormal.
  • the status of the vehicle's ambient temperature sensor is abnormal.
  • the disclosure first detects whether the pipeline where the throttle valve of the engine is located is frozen.
  • the target idle speed increases the opening of the throttle valve of the engine, so that the heat generated by the engine heats the pipeline where the throttle valve is located.
  • the target idle speed is greater than the current idle speed.
  • the disclosure increases the opening of the throttle valve by increasing the target idle speed of the engine, so that the heat generated by the engine can heat the pipeline where the throttle valve is located, thereby melting the ice of the pipeline where the throttle valve is located, and avoiding the The pipeline of the throttle body freezes and causes the throttle valve drive motor to stall.
  • the present disclosure also proposes a computing processing device, including:
  • One or more processors when the computer readable codes are executed by the one or more processors, the computing processing device executes the aforementioned engine control method.
  • the present disclosure also proposes a computer program, including computer-readable codes, which, when the computer-readable codes are run on a computing processing device, cause the computing processing device to execute the aforementioned engine control method .
  • the present disclosure also proposes a computer-readable storage medium in which the aforementioned computer program is stored.
  • FIG. 7 is a schematic structural diagram of a computing processing device provided by an embodiment of the present disclosure.
  • the computing processing device typically includes a processor 310 and a computer program product or computer readable medium in the form of memory 330 .
  • Memory 330 may be an electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the memory 330 has a storage space 350 for program code 351 for performing any method step in the method described above.
  • the storage space 350 for program codes may include respective program codes 351 for respectively implementing various steps in the above methods. These program codes can be read from or written into one or more computer program products.
  • Such computer program products include program code carriers such as hard disks, compact disks (CDs), memory cards or floppy disks.
  • Such a computer program product is typically a portable or fixed storage unit as shown in FIG. 8 .
  • the storage unit may have storage segments, storage spaces, etc. arranged similarly to the memory 330 in the server of FIG. 7 .
  • the program code can eg be compressed in a suitable form.
  • the storage unit includes computer readable code 351', i.e. code readable by, for example, a processor such as 310, which code, when executed by the server, causes the server to perform the steps of the methods described above.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate or transmit a program for use in or in conjunction with an instruction execution system, device or device.
  • computer-readable media include the following: electrical connection with one or more wires (electronic device), portable computer disk case (magnetic device), random access memory (RAM), Read Only Memory (ROM), Erasable and Editable Read Only Memory (EPROM or Flash Memory), Fiber Optic Devices, and Portable Compact Disc Read Only Memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, since the program can be read, for example, by optically scanning the paper or other medium, followed by editing, interpretation or other suitable processing if necessary. processing to obtain the program electronically and store it in computer memory.
  • various parts of the present disclosure may be implemented in hardware, software, firmware or a combination thereof.
  • various steps or methods may be implemented by software or firmware stored in memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware as in another embodiment, it can be implemented by any one or a combination of the following techniques known in the art: a discrete Logic circuits, ASICs with suitable combinational logic gates, Programmable Gate Arrays (PGA), Field Programmable Gate Arrays (FPGA), etc.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing module, each unit may exist separately physically, or two or more units may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. If the integrated modules are realized in the form of software function modules and sold or used as independent products, they can also be stored in a computer-readable storage medium.
  • the storage medium mentioned above may be a read-only memory, a magnetic disk or an optical disk, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

一种发动机的控制方法,涉及车辆控制领域,应用于车辆的发动机,该方法包括:检测发动机的节气门所在的管路是否结冰;若检测到节气门所在的管路结冰,根据发动机的当前怠速转速,确定目标怠速转速,目标怠速转速大于当前怠速转速;根据目标怠速转速,增大发动机的节气门的开度,以使发动机产生的热量加热节气门所在的管路。该方法通过增大发动机的目标怠速转速来增大节气门的开度,使得发动机产生的热量能够加热节气门所在的管路,从而融化节气门所在的管路的冰,避免了因节气门所在的管路结冰而导致节气门驱动电机发生堵转的问题。还公开了一种发动机的控制装置、一种计算处理设备、一种计算机程序和一种计算机可读存储介质。

Description

发动机的控制方法、装置、设备、程序和存储介质
相关申请的交叉引用
本公开要求在2021年06月25日提交中国专利局、申请号为202110711301.5、名称为“发动机的控制方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及车辆控制领域,尤其涉及一种发动机的控制方法、装置、设备、程序和存储介质。
背景技术
随着社会的不断发展,汽车的保有量也变得越来越高,车辆的运行性能也越来越受到人们的关注,而发动机的运行性能是车辆稳定运行的关键。通常情况下,发动机活塞与缸筒内壁之间会存在窜气现象,因此发动机中通常会设置曲轴箱强制通风系统。
在非增压发动机和增压发动机的非增压区域的曲轴箱强制通风系统中,窜入曲轴箱的气体会流向发动机的进气歧管。在低温环境下进气歧管温度较低,温度较高的气体进入进气歧管遇冷会凝结成水珠,并经由管路流到节气门的位置。在车辆停止且熄火后,经过长时间静置(如晚上长时间停车),车辆整体温度会降至环境温度,随着温度降低,凝结的水珠会冷凝成冰。在发动机启动之后,节气门会进行破冰,但是破冰之后产生的小冰块,在节气门的开度较小时,仍会卡住节气门,导致节气门驱动电机发生堵转。由于发生堵转时节气门驱动电机的温度会升高,因而会使节气门驱动电机损坏或者上报故障,影响了车辆的正常行驶。
发明内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本公开的第一个目的在于提出一种发动机的控制方法,以解决现有技术中存在的,因发动机的节气门处结冰而导致节气门驱动电机发生堵转的技术问题。
本公开的第二个目的在于提出一种发动机的控制装置。
本公开的第三个目的在于提出一种计算处理设备。
本公开的第四个目的在于提出一种计算机程序。
本公开的第五个目的在于提出一种计算机可读存储介质。
为达上述目的,本公开第一方面实施例提出了一种发动机的控制方法,应用于车辆的发动机,包括以下步骤:
检测所述发动机的节气门所在的管路是否结冰;
若检测到所述节气门所在的管路结冰,根据所述发动机的当前怠速转速,确定目标怠速转速,所述目标怠速转速大于所述当前怠速转速;
根据所述目标怠速转速,增大所述发动机的节气门的开度,以使所述发动机产生的热量加热所述节气门所在的管路。
根据本公开的一个实施例,所述检测所述发动机的节气门所在的管路是否结冰,包括:
若所述车辆满足预设的结冰条件,确定所述节气门所在的管路结冰,所述结冰条件包括:
所述车辆的挡位为空挡;
所述发动机的冷却液温度小于或等于预设的第一温度阈值;
所述车辆周围的环境温度小于或等于预设的第二温度阈值;
所述发动机的冷却液温度传感器和所述车辆的环境温度传感器的状态均为正常;
所述发动机的节气门驱动电机按照指定占空比运行的时长,大于预设的第一时长阈值,所述指定占空比大于预设的占空比阈值,所述节气门驱动电机为控制所述节气门的开度的电机。
根据本公开的一个实施例,所述根据所述发动机的当前怠速转速,确定目标怠速转速,包括:
根据所述当前怠速转速和预设的转速步进值,确定所述目标怠速转速。
根据本公开的一个实施例,所述方法还包括:
重复执行所述检测所述发动机的节气门所在的管路是否结冰,至所述根据所述目标怠速转速,增大所述发动机的节气门的开度的步骤,直至所述车辆不满足所述结冰条件,或所述目标怠速转速大于最大怠速转速,持续按照所述目标怠速转速,控制所述发动机的节气门的开度。
根据本公开的一个实施例,所述方法还包括:
若所述车辆满足预设的退出条件,将所述目标怠速转速设置为基础怠速转速,所述基础怠速转速为,所述发动机在正常怠速状态下对应的转速;
所述退出条件包括以下至少一种:
所述发动机按照怠速运行的时长大于预设的第二时长阈值;
所述车辆的油门踏板开度大于预设的开度阈值;
所述车辆的车速大于预设的车速阈值;
所述车辆的挡位不为空挡;
所述发动机的冷却液温度传感器的状态为异常;
所述车辆的环境温度传感器的状态为异常。
本公开第一方面实施例提出了一种发动机的控制方法,首先检测发动机的节气门所在的管路是否结冰,在检测到节气门所在的管路结冰的情况下,根据发动机的当前怠速转速,确定目标怠速转速,之后根据目标怠速转速,增大发动机的节气门的开度,使得发动机产生的热量加热节气门所在的管路。其中,目标怠速转速大于当前怠速转速。本公开通过增大发动机的目标怠速转速来增大节气门的开度,使得发动机产生的热量能够加热节气门所在的管路,从而融化节气门所在的管路的冰,避免了因节气门所在的管路结冰而导致节气门驱动电机发生堵转的问题。
为达上述目的,本公开第二方面实施例提出了一种发动机的控制装置,应用于车辆的发动机,所述装置包括:
检测模块,用于检测所述发动机的节气门所在的管路是否结冰;
确定模块,用于若检测到所述节气门所在的管路结冰,根据所述发动机的当前怠速转速,确定目标怠速转速,所述目标怠速转速大于所述当前怠速转速;
控制模块,用于根据所述目标怠速转速,增大所述发动机的节气门的开度,以使所述发动机产生的热量加热所述节气门所在的管路。
根据本公开的一个实施例,所述检测模块用于:
若所述车辆满足预设的结冰条件,确定所述节气门所在的管路结冰,所述结冰条件包括:
所述车辆的挡位为空挡;
所述发动机的冷却液温度小于或等于预设的第一温度阈值;
所述车辆周围的环境温度小于或等于预设的第二温度阈值;
所述发动机的冷却液温度传感器和所述车辆的环境温度传感器的状态均为正常;
所述发动机的节气门驱动电机按照指定占空比运行的时长,大于预设的第一时长阈值,所述指定占空比大于预设的占空比阈值,所述节气门驱动电机为控制所述节气门的开度的电机。
根据本公开的一个实施例,所述确定模块用于:
根据所述当前怠速转速和预设的转速步进值,确定所述目标怠速转速。
根据本公开的一个实施例,所述装置还包括:
循环模块,用于重复执行所述检测所述发动机的节气门所在的管路是否结冰,至所述根据所述目标怠速转速,增大所述发动机的节气门的开度的步骤,直至所述车辆不满足所述结冰条件,或所述目标怠速转速大于最大怠速转速,持续按照所述目标怠速转速,控制所述发动机的节气门的开度。
根据本公开的一个实施例,所述装置还包括:
退出模块,用于若所述车辆满足预设的退出条件,将所述目标怠速转速设置为基础怠速转速,所述基础怠速转速为,所述发动机在正常怠速状态下对应的转速;
所述退出条件包括以下至少一种:
所述发动机按照怠速运行的时长大于预设的第二时长阈值;
所述车辆的油门踏板开度大于预设的开度阈值;
所述车辆的车速大于预设的车速阈值;
所述车辆的挡位不为空挡;
所述发动机的冷却液温度传感器的状态为异常;
所述车辆的环境温度传感器的状态为异常。
本公开第二方面实施例提出了一种发动机的控制装置,首先检测发动机的节气门所在的管路是否结冰,在检测到节气门所在的管路结冰的情况下,根据发动机的当前怠速转速,确定目标怠速转速,之后根据目标怠速转速,增大发动机的节气门的开度,使得发动机产生的热量加热节气门所在的管路。其中,目标怠速转速大于当前怠速转速。本公开通过增大发动机的目标怠速转速来增大节气门的开度,使得发动机产生的热量能够加热节气门所在的管路,从而融化节气门所在的管路的冰,避免了因节气门所在的管路结冰而导致节气门驱动电机发生堵转的问题。
为达上述目的,本公开第三方面实施例提出了一种计算处理设备,包括:
存储器,其中存储有计算机可读代码;以及
一个或多个处理器,当所述计算机可读代码被所述一个或多个处理器执行时,所述计算处理设备执行本公开第一方面实施例所提出的发动机的控制方法。
为达上述目的,本公开第四方面实施例提出了一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行本公开第一方面实施例所提出的发动机的控制方法。
为达上述目的,本公开第五方面实施例提出了一种计算机可读存储介质,其中存储了本公开第四方面实施例所提出的计算机程序。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据一示例性实施例示出的一种发动机的控制方法的流程图;
图2是根据一示例性实施例示出的另一种发动机的控制方法的流程图;
图3是根据一示例性实施例示出的另一种发动机的控制方法的流程图;
图4是根据一示例性实施例示出的一种发动机的控制装置的框图;
图5是根据一示例性实施例示出的另一种发动机的控制装置的框图;
图6是根据一示例性实施例示出的另一种发动机的控制装置的框图;
图7为本公开实施例提供了一种计算处理设备的结构示意图;
图8为本公开实施例提供了一种用于便携式或者固定实现根据本发明的方法的程序代码的存储单元的示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面参考附图描述本公开实施例的发动机的控制方法、装置、设备、程序和存储介质。
图1是根据一示例性实施例示出的一种发动机的控制方法的流程图,如图1所示,应用于车辆的发动机,该方法包括:
步骤101,检测发动机的节气门所在的管路是否结冰。
举例来说,本公开的应用场景可以为非增压发动机或者增压发动机的非增压区域(即增压器不工作的场景)。车辆在低温环境下静置较长时间之后,节气门所在的管路可能会结冰,发动机在启动时会利用破冰技术将节气门处的冰块打碎。随着发动机内部的温度升高,冰的硬度降低并且伴随融化出现状态变化,贴在节气门管壁上。如果发动机在启动之后一直维持怠速状态,随着发动机的运行时间变长,维持发动机运转的进气量需求降低,节气门需要减小开度,当节气门的阀板与节气门所在的管路的管壁之间的距离减小时,附着在管壁上的冰会容易卡住节气门的阀板,使得节气门的开度无法减小,导致节气门驱动电机发生堵转。由于发生堵转时节气门驱动电机的温度会升高,因而会使节气门驱动电机损坏或者上报故障,影响了车辆的正常行驶。因此在启动发动机之后,首先可以检测发动机的节气门所在的管路是否结冰。具体的,可以通过检测车辆是否满足预设的结冰条件,来确定节气门所在的管路是否结冰,其中,结冰条件例如可以包括:车辆的挡位为预设的档位,发动机和车辆周围的环境温度小于预设的温度阈值等。
步骤102,若检测到节气门所在的管路结冰,根据发动机的当前怠速转速,确定目标怠速转速,目标怠速转速大于当前怠速转速。
步骤103,根据目标怠速转速,增大发动机的节气门的开度,以使发动机产生的热量加热节气门所在的管路。
进一步的,由于可以通过控制节气门的开度来控制目标怠速转速,因此在检测到节气门所在的管路结冰的情况下,可以发出增大发动机的目标怠速转速的指令,以增大节气门的开度,从而使增大后的节气门的开度,能够使发动机达到目标怠速转速。具体的,可以先获取发动机的当前怠速转速,并在当前怠速转速的基础上增加预设的转速值,得到大于当前怠速转速的目标怠速转速。之后,可以根据得到的目标怠速转速,对应增大发动机的节气门开度,使得发动机产生的热量能够通过节气门,加热节气门所在的管路,从而融化节气门所在管路的冰,避免了由于节气门被冰卡住,节气门驱动电机无法控制节气门的开度减小,而导致节气门驱动电机损坏或者上报故障的问题。
综上所述,本公开首先检测发动机的节气门所在的管路是否结冰,在检测到节气门所在的管路结冰的情况下,根据发动机的当前怠速转速,确定目标怠速转速,之后根据 目标怠速转速,增大发动机的节气门的开度,使得发动机产生的热量加热节气门所在的管路。其中,目标怠速转速大于当前怠速转速。本公开通过增大发动机的目标怠速转速来增大节气门的开度,使得发动机产生的热量能够加热节气门所在的管路,从而融化节气门所在的管路的冰,避免了因节气门所在的管路结冰而导致节气门驱动电机发生堵转的问题。
在一种应用场景中,步骤101的一种实现方式为:
若车辆满足预设的结冰条件,确定节气门所在的管路结冰,结冰条件包括:
车辆的挡位为空挡。
发动机的冷却液温度小于或等于预设的第一温度阈值。
车辆周围的环境温度小于或等于预设的第二温度阈值。
发动机的冷却液温度传感器和车辆的环境温度传感器的状态均为正常。
发动机的节气门驱动电机按照指定占空比运行的时长,大于预设的第一时长阈值,指定占空比大于预设的占空比阈值,节气门驱动电机为控制节气门的开度的电机。
示例的,可以通过检测车辆是否满足预设的结冰条件,来确定节气门所在的管路是否结冰。其中,结冰条件可以包括:车辆的挡位为空挡,发动机的冷却液温度小于或等于预设的第一温度阈值,车辆周围的环境温度小于或等于预设的第二温度阈值,发动机的冷却液温度传感器和车辆的环境温度传感器的状态均为正常,发动机的节气门驱动电机按照指定占空比运行的时长,大于预设的第一时长阈值。其中,第一温度阈值例如可以为-10℃,第二温度阈值例如可以为-10℃,占空比阈值例如可以为80%,第一时长阈值例如可以为2s,节气门驱动电机为控制节气门的开度的电机。
需要说明的是,当发动机启动一段时间后,维持发动机怠速运转所需的进气量变小,此时需要减小节气门开度。通常情况下,发动机的节气门驱动电机按照指定占空比(如85%)运行指定时长(如300ms),就可以控制发动机节气门的开度从最大变为最小。如果发动机的节气门驱动电机按照指定占空比(如85%)运行的时长大于第一时长阈值(如2s),表明节气门处被冰堵塞,导致节气门驱动电机无法控制节气门开度变小。其中,第一时长阈值大于指定时长。
也就是说,如果车辆的挡位为空挡(车辆此时为停止状态),且发动机的冷却液温度小于或等于第一温度阈值,且车辆周围的环境温度小于或等于第二温度阈值,且发动机的冷却液温度传感器和车辆的环境温度传感器的状态均为正常,且发动机的节气门驱动 电机按照指定占空比运行的时长,大于第一时长阈值,那么可以确定节气门所在的管路结冰。
在另一种应用场景中,步骤102的一种实现方式为:
根据当前怠速转速和预设的转速步进值,确定目标怠速转速。
示例的,在检测到节气门所在的管路结冰的情况下,可以在发动机的当前怠速转速的基础上,增加转速步进值,得到目标怠速转速,即:将当前怠速转速与转速步进值之和作为目标怠速转速。其中,转速步进值例如可以为100rpm。
图2是根据一示例性实施例示出的另一种发动机的控制方法的流程图,如图2所示,该方法还包括:
步骤104,重复执行步骤101至步骤103的步骤,直至车辆不满足结冰条件,或目标怠速转速大于最大怠速转速,持续按照目标怠速转速,控制发动机的节气门的开度。
示例的,可以重复执行步骤101至步骤103,在检测到发动机的节气门所在的管路结冰的情况下,不断增大目标怠速转速,直到车辆不再满足结冰条件,或目标怠速转速大于最大怠速转速,其中,最大怠速转速例如可以为1800rpm。若目标怠速转速大于最大怠速转速,可以将目标怠速转速确定为最大怠速转速,并持续按照目标怠速转速,控制发动机的节气门的开度。若车辆不再满足结冰条件,那么保持当前的目标怠速转速,并持续按照目标怠速转速,控制发动机的节气门的开度。这样,通过不断增大目标怠速转速,使得节气门的开度增大,发动机的输出功率不断增大,相应的,发动机产生的热量也不断增大,因此节气门所在的管路的冰能够被发动机产生的热量融化,避免了由于节气门被冰卡住,节气门驱动电机无法控制节气门的开度减小,而导致节气门驱动电机损坏或者上报故障的问题。同时,通过逐渐增大目标怠速转速的方式来增大节气门的开度,能够在保证节气门所在的管路的冰融化的情况下,降低发动机的能耗。
具体的,以当前怠速转速为1200rpm,最大怠速转速为1800rpm,每次循环增加的转速为100rpm为例,如果循环执行3次之后,车辆不再满足结冰条件,那么可以保持1500rpm的目标怠速转速,并持续按照1500rpm的目标怠速转速,控制发动机的节气门的开度。或者当循环执行超过6次之后,目标怠速转速大于1800rpm,那么可以保持1800rpm的目标怠速转速,并持续按照1800rpm的目标怠速转速,控制发动机的节气门的开度。
图3是根据一示例性实施例示出的另一种发动机的控制方法的流程图,如图3所示, 该方法还包括:
步骤105,若车辆满足预设的退出条件,将目标怠速转速设置为基础怠速转速,基础怠速转速为,发动机在正常怠速状态下对应的转速。
退出条件包括以下至少一种:
发动机按照怠速运行的时长大于预设的第二时长阈值。
车辆的油门踏板开度大于预设的开度阈值。
车辆的车速大于预设的车速阈值。
车辆的挡位不为空挡。
发动机的冷却液温度传感器的状态为异常。
车辆的环境温度传感器的状态为异常。
示例的,在重复执行步骤101至步骤103的过程中,可以实时检测车辆是否满足预设的退出条件。其中,退出条件可以包括以下至少一种:发动机按照怠速运行的时长大于预设的第二时长阈值。车辆的油门踏板开度大于预设的开度阈值。车辆的车速大于预设的车速阈值。车辆的挡位不为空挡。发动机的冷却液温度传感器的状态为异常。车辆的环境温度传感器的状态为异常。其中,第二时长阈值例如可以为180s,开度阈值例如可以为5%,车速阈值例如可以为5km/h。
需要说明的是,当车辆的油门踏板开度大于预设的开度阈值,或者车辆的车速大于预设的车速阈值,或者车辆的挡位不为空挡时,表明车辆已经开动(即车辆不为停止状态),此时,发动机所需的进气量较大,相应的,节气门的开度也较大,因此不用继续通过执行步骤101至103的步骤,来增大节气门的开度。
也就是说,当上述条件至少有一种满足时,表明节气门所在的管路的冰已经融化,或者检测装置发生异常,那么可以确定车辆满足退出条件。此时可以将目标怠速转速设置为基础怠速转速,使得车辆能够以维持发动机稳定运转的最低怠速转速运行。其中,基础怠速转速可以理解为,发动机在正常怠速状态下对应的转速。
具体的,以第二时长阈值为180s,开度阈值为5%,车速阈值为5km/h为例,当发动机按照怠速运行的时长大于180s时,或者当油门踏板开度大于5%时,或者当车速大于5km/h时,可以确定车辆满足退出条件,并控制发动机按照为基础怠速转速运转。
综上所述,本公开首先检测发动机的节气门所在的管路是否结冰,在检测到节气门所在的管路结冰的情况下,根据发动机的当前怠速转速,确定目标怠速转速,之后根据 目标怠速转速,增大发动机的节气门的开度,使得发动机产生的热量加热节气门所在的管路。其中,目标怠速转速大于当前怠速转速。本公开通过增大发动机的目标怠速转速来增大节气门的开度,使得发动机产生的热量能够加热节气门所在的管路,从而融化节气门所在的管路的冰,避免了因节气门所在的管路结冰而导致节气门驱动电机发生堵转的问题。
图4是根据一示例性实施例示出的一种发动机的控制装置的框图,如图4所示,应用于车辆的发动机,该装置200包括:
检测模块201,用于检测发动机的节气门所在的管路是否结冰。
确定模块202,用于若检测到节气门所在的管路结冰,根据发动机的当前怠速转速,确定目标怠速转速,目标怠速转速大于当前怠速转速。
控制模块203,用于根据目标怠速转速,增大发动机的节气门的开度,以使发动机产生的热量加热节气门所在的管路。
在一种应用场景中,检测模块201用于:
若车辆满足预设的结冰条件,确定节气门所在的管路结冰,结冰条件包括:
车辆的挡位为空挡。
发动机的冷却液温度小于或等于预设的第一温度阈值。
车辆周围的环境温度小于或等于预设的第二温度阈值。
发动机的冷却液温度传感器和车辆的环境温度传感器的状态均为正常。
发动机的节气门驱动电机按照指定占空比运行的时长,大于预设的第一时长阈值,指定占空比大于预设的占空比阈值,节气门驱动电机为控制节气门的开度的电机。
在另一种应用场景中,确定模块202用于:
根据当前怠速转速和预设的转速步进值,确定目标怠速转速。
图5是根据一示例性实施例示出的另一种发动机的控制装置的框图,如图5所示,该装置200还包括:
循环模块204,用于重复执行检测发动机的节气门所在的管路是否结冰,至根据目标怠速转速,增大发动机的节气门的开度的步骤,直至车辆不满足结冰条件,或目标怠速转速大于最大怠速转速,持续按照目标怠速转速,控制发动机的节气门的开度。
图6是根据一示例性实施例示出的另一种发动机的控制装置的框图,如图6所示,该装置200还包括:
退出模块205,用于若车辆满足预设的退出条件,将目标怠速转速设置为基础怠速转速,基础怠速转速为,发动机在正常怠速状态下对应的转速。
退出条件包括以下至少一种:
发动机按照怠速运行的时长大于预设的第二时长阈值。
车辆的油门踏板开度大于预设的开度阈值。
车辆的车速大于预设的车速阈值。
车辆的挡位不为空挡。
发动机的冷却液温度传感器的状态为异常。
车辆的环境温度传感器的状态为异常。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
综上所述,本公开首先检测发动机的节气门所在的管路是否结冰,在检测到节气门所在的管路结冰的情况下,根据发动机的当前怠速转速,确定目标怠速转速,之后根据目标怠速转速,增大发动机的节气门的开度,使得发动机产生的热量加热节气门所在的管路。其中,目标怠速转速大于当前怠速转速。本公开通过增大发动机的目标怠速转速来增大节气门的开度,使得发动机产生的热量能够加热节气门所在的管路,从而融化节气门所在的管路的冰,避免了因节气门所在的管路结冰而导致节气门驱动电机发生堵转的问题。
为了实现上述实施例,本公开还提出了一种计算处理设备,包括:
存储器,其中存储有计算机可读代码;以及
一个或多个处理器,当所述计算机可读代码被所述一个或多个处理器执行时,所述计算处理设备执行前述的发动机的控制方法。
为了实现上述实施例,本公开还提出了一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行前述的发动机的控制方法。
为了实现上述实施例,本公开还提出了一种计算机可读存储介质,其中存储了前述的计算机程序。
图7为本公开实施例提供了一种计算处理设备的结构示意图。该计算处理设备通常包括处理器310和以存储器330形式的计算机程序产品或者计算机可读介质。存储器330 可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器330具有用于执行上述方法中的任何方法步骤的程序代码351的存储空间350。例如,用于程序代码的存储空间350可以包括分别用于实现上面的方法中的各种步骤的各个程序代码351。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为如图8所示的便携式或者固定存储单元。该存储单元可以具有与图7的服务器中的存储器330类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码351’,即可以由例如诸如310之类的处理器读取的代码,这些代码当由服务器运行时,导致该服务器执行上面所描述的方法中的各个步骤。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本公开的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本公开的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指 令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本公开的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本公开各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (13)

  1. 一种发动机的控制方法,其特征在于,应用于车辆的发动机,所述方法包括:
    检测所述发动机的节气门所在的管路是否结冰;
    若检测到所述节气门所在的管路结冰,根据所述发动机的当前怠速转速,确定目标怠速转速,所述目标怠速转速大于所述当前怠速转速;
    根据所述目标怠速转速,增大所述发动机的节气门的开度,以使所述发动机产生的热量加热所述节气门所在的管路。
  2. 根据权利要求1所述的方法,其特征在于,所述检测所述发动机的节气门所在的管路是否结冰,包括:
    若所述车辆满足预设的结冰条件,确定所述节气门所在的管路结冰,所述结冰条件包括:
    所述车辆的挡位为空挡;
    所述发动机的冷却液温度小于或等于预设的第一温度阈值;
    所述车辆周围的环境温度小于或等于预设的第二温度阈值;
    所述发动机的冷却液温度传感器和所述车辆的环境温度传感器的状态均为正常;
    所述发动机的节气门驱动电机按照指定占空比运行的时长,大于预设的第一时长阈值,所述指定占空比大于预设的占空比阈值,所述节气门驱动电机为控制所述节气门的开度的电机。
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述发动机的当前怠速转速,确定目标怠速转速,包括:
    根据所述当前怠速转速和预设的转速步进值,确定所述目标怠速转速。
  4. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    重复执行所述检测所述发动机的节气门所在的管路是否结冰,至所述根据所述目标怠速转速,增大所述发动机的节气门的开度的步骤,直至所述车辆不满足所述结冰条件,或所述目标怠速转速大于最大怠速转速,持续按照所述目标怠速转速,控制所述发动机的节气门的开度。
  5. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    若所述车辆满足预设的退出条件,将所述目标怠速转速设置为基础怠速转速,所述基础怠速转速为,所述发动机在正常怠速状态下对应的转速;
    所述退出条件包括以下至少一种:
    所述发动机按照怠速运行的时长大于预设的第二时长阈值;
    所述车辆的油门踏板开度大于预设的开度阈值;
    所述车辆的车速大于预设的车速阈值;
    所述车辆的挡位不为空挡;
    所述发动机的冷却液温度传感器的状态为异常;
    所述车辆的环境温度传感器的状态为异常。
  6. 一种发动机的控制装置,其特征在于,应用于车辆的发动机,所述装置包括:
    检测模块,用于检测所述发动机的节气门所在的管路是否结冰;
    确定模块,用于若检测到所述节气门所在的管路结冰,根据所述发动机的当前怠速转速,确定目标怠速转速,所述目标怠速转速大于所述当前怠速转速;
    控制模块,用于根据所述目标怠速转速,增大所述发动机的节气门的开度,以使所述发动机产生的热量加热所述节气门所在的管路。
  7. 根据权利要求6所述的装置,其特征在于,所述检测模块用于:
    若所述车辆满足预设的结冰条件,确定所述节气门所在的管路结冰,所述结冰条件包括:
    所述车辆的挡位为空挡;
    所述发动机的冷却液温度小于或等于预设的第一温度阈值;
    所述车辆周围的环境温度小于或等于预设的第二温度阈值;
    所述发动机的冷却液温度传感器和所述车辆的环境温度传感器的状态均为正常;
    所述发动机的节气门驱动电机按照指定占空比运行的时长,大于预设的第一时长阈值,所述指定占空比大于预设的占空比阈值,所述节气门驱动电机为控制所述节气门的开度的电机。
  8. 根据权利要求6所述的装置,其特征在于,所述确定模块用于:
    根据所述当前怠速转速和预设的转速步进值,确定所述目标怠速转速。
  9. 根据权利要求7所述的装置,其特征在于,所述装置还包括:
    循环模块,用于重复执行所述检测所述发动机的节气门所在的管路是否结冰,至所述根据所述目标怠速转速,增大所述发动机的节气门的开度的步骤,直至所述车辆不满足所述结冰条件,或所述目标怠速转速大于最大怠速转速,持续按照所述目标怠速转速, 控制所述发动机的节气门的开度。
  10. 根据权利要求6所述的装置,其特征在于,所述装置还包括:
    退出模块,用于若所述车辆满足预设的退出条件,将所述目标怠速转速设置为基础怠速转速,所述基础怠速转速为,所述发动机在正常怠速状态下对应的转速;
    所述退出条件包括以下至少一种:
    所述发动机按照怠速运行的时长大于预设的第二时长阈值;
    所述车辆的油门踏板开度大于预设的开度阈值;
    所述车辆的车速大于预设的车速阈值;
    所述车辆的挡位不为空挡;
    所述发动机的冷却液温度传感器的状态为异常;
    所述车辆的环境温度传感器的状态为异常。
  11. 一种计算处理设备,其特征在于,包括:
    存储器,其中存储有计算机可读代码;以及
    一个或多个处理器,当所述计算机可读代码被所述一个或多个处理器执行时,所述计算处理设备执行如权利要求1-5中任一项所述的发动机的控制方法。
  12. 一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行根据权利要求1-5中任一项所述的发动机的控制方法。
  13. 一种计算机可读存储介质,其中存储了如权利要求12所述的计算机程序。
PCT/CN2022/099586 2021-06-25 2022-06-17 发动机的控制方法、装置、设备、程序和存储介质 WO2022267997A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110711301.5A CN114592975A (zh) 2021-06-25 2021-06-25 发动机的控制方法和装置
CN202110711301.5 2021-06-25

Publications (1)

Publication Number Publication Date
WO2022267997A1 true WO2022267997A1 (zh) 2022-12-29

Family

ID=81803944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099586 WO2022267997A1 (zh) 2021-06-25 2022-06-17 发动机的控制方法、装置、设备、程序和存储介质

Country Status (2)

Country Link
CN (1) CN114592975A (zh)
WO (1) WO2022267997A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114592975A (zh) * 2021-06-25 2022-06-07 长城汽车股份有限公司 发动机的控制方法和装置
CN115306617B (zh) * 2022-07-31 2024-04-05 东风商用车有限公司 发动机快速暖机方法、装置、设备及可读存储介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050155574A1 (en) * 2004-01-16 2005-07-21 Visteon Global Technologies, Inc. Ice-breaking, autozero and frozen throttle plate detection at power-up for electronic motorized throttle
JP2005325751A (ja) * 2004-04-16 2005-11-24 Toyota Motor Corp スロットルバルブおよびそのスロットルバルブを備えた内燃機関の制御装置
CN1900501A (zh) * 2005-07-19 2007-01-24 三菱电机株式会社 内燃机的控制装置
CN102691548A (zh) * 2011-03-21 2012-09-26 通用汽车环球科技运作有限责任公司 防止主动曲轴箱通风系统中结冰的系统和方法
CN202510227U (zh) * 2012-02-17 2012-10-31 上海通用汽车有限公司 节气门体加热装置的智能控制系统
CN205172738U (zh) * 2015-11-25 2016-04-20 三国(上海)企业管理有限公司 一种具有ptc加热塞的摩托车节气门体
CN106555687A (zh) * 2015-09-30 2017-04-05 上海汽车集团股份有限公司 车辆发动机节气门阀板控制方法及装置
US20180051635A1 (en) * 2016-08-17 2018-02-22 Ford Global Technologies, Llc Methods and systems for clearing throttle obstruction
KR20180023089A (ko) * 2016-08-23 2018-03-07 현대자동차주식회사 스로틀밸브 결빙 방지방법
CN114592975A (zh) * 2021-06-25 2022-06-07 长城汽车股份有限公司 发动机的控制方法和装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4728832B2 (ja) * 2006-02-14 2011-07-20 愛三工業株式会社 内燃機関のスロットル制御装置
JP2008138530A (ja) * 2006-11-30 2008-06-19 Denso Corp 内燃機関の吸気制御装置
CN104153891B (zh) * 2014-07-30 2017-02-15 长城汽车股份有限公司 柴油、汽油双燃料发动机启动过程控制系统及控制方法
JP6419668B2 (ja) * 2015-09-29 2018-11-07 日立オートモティブシステムズ株式会社 内燃機関の制御装置
FR3044045B1 (fr) * 2015-11-24 2020-06-05 Continental Automotive France Procede d’acceleration du chauffage d’un groupe motopropulseur d’un vehicule automobile pour le placer dans des conditions operatoires d’un test et/ou d’une operation de maintenance
CN109538384B (zh) * 2018-12-30 2020-04-24 宝鸡吉利发动机有限公司 进气系统及车辆
CN111946457B (zh) * 2020-07-31 2021-10-15 东风汽车集团有限公司 汽油机电子节气门破冰控制方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050155574A1 (en) * 2004-01-16 2005-07-21 Visteon Global Technologies, Inc. Ice-breaking, autozero and frozen throttle plate detection at power-up for electronic motorized throttle
JP2005325751A (ja) * 2004-04-16 2005-11-24 Toyota Motor Corp スロットルバルブおよびそのスロットルバルブを備えた内燃機関の制御装置
CN1900501A (zh) * 2005-07-19 2007-01-24 三菱电机株式会社 内燃机的控制装置
CN102691548A (zh) * 2011-03-21 2012-09-26 通用汽车环球科技运作有限责任公司 防止主动曲轴箱通风系统中结冰的系统和方法
CN202510227U (zh) * 2012-02-17 2012-10-31 上海通用汽车有限公司 节气门体加热装置的智能控制系统
CN106555687A (zh) * 2015-09-30 2017-04-05 上海汽车集团股份有限公司 车辆发动机节气门阀板控制方法及装置
CN205172738U (zh) * 2015-11-25 2016-04-20 三国(上海)企业管理有限公司 一种具有ptc加热塞的摩托车节气门体
US20180051635A1 (en) * 2016-08-17 2018-02-22 Ford Global Technologies, Llc Methods and systems for clearing throttle obstruction
CN107762645A (zh) * 2016-08-17 2018-03-06 福特环球技术公司 用于清除节气门堵塞的方法和系统
KR20180023089A (ko) * 2016-08-23 2018-03-07 현대자동차주식회사 스로틀밸브 결빙 방지방법
CN114592975A (zh) * 2021-06-25 2022-06-07 长城汽车股份有限公司 发动机的控制方法和装置

Also Published As

Publication number Publication date
CN114592975A (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
WO2022267997A1 (zh) 发动机的控制方法、装置、设备、程序和存储介质
CN100434672C (zh) 车辆的异常检测装置
BRPI1107012B1 (pt) Método de controlar um sistema idle stop-and-go
JP2017031871A (ja) 冷却制御装置
WO2022228017A1 (zh) P0混动车辆的蠕行控制方法、装置以及p0混动车辆
JP2009243268A (ja) 電動過給機の制御装置
JP4378641B2 (ja) 内燃機関のスロットル制御装置
JP6788443B2 (ja) 車両用クーリングファン制御装置および方法
JP2014101775A (ja) 内燃機関の制御方法及び内燃機関の制御装置
WO2011074343A1 (ja) ファンカップリング装置の診断装置及び診断方法
US20070169383A1 (en) Method and apparatus to elevate the engine idle to allow battery charging during the operation of a snow plow or other accessory
JP2014141899A (ja) 車載内燃機関の冷却装置
WO2023001058A1 (zh) 汽油机节气门露水清洁控制方法、装置、设备及存储介质
CN112761773B (zh) 一种节温器故障诊断方法
CN113266480B (zh) 一种发动机节气门的控制方法、装置及汽车
KR101798025B1 (ko) 하이브리드 차량의 엔진 제어 장치 및 방법
JP7474657B2 (ja) アイドリングストップ制御装置
CN105649751B (zh) 发动机冷却系统的孔堵塞判定装置及方法
JP4803096B2 (ja) 過給機の冷却装置
US9458926B2 (en) Automatic transmission control
CN114060196A (zh) 控制发动机启停的方法和存储介质、发动机控制器及车辆
JP3627566B2 (ja) 車両の外気温推定装置
JP2006336489A (ja) ファンクラッチ制御方法及び装置
JP7287383B2 (ja) ファンクラッチの制御装置
US20130064685A1 (en) Method for managing a hybrid compressor of an air-conditioning circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE