WO2011074343A1 - ファンカップリング装置の診断装置及び診断方法 - Google Patents

ファンカップリング装置の診断装置及び診断方法 Download PDF

Info

Publication number
WO2011074343A1
WO2011074343A1 PCT/JP2010/069585 JP2010069585W WO2011074343A1 WO 2011074343 A1 WO2011074343 A1 WO 2011074343A1 JP 2010069585 W JP2010069585 W JP 2010069585W WO 2011074343 A1 WO2011074343 A1 WO 2011074343A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
fluid
valve body
fan
Prior art date
Application number
PCT/JP2010/069585
Other languages
English (en)
French (fr)
Inventor
雄三 影山
充彦 久保田
孝志 中沢
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CN201080057148.9A priority Critical patent/CN102656347B/zh
Priority to EP10837372.1A priority patent/EP2514943B1/en
Priority to US13/515,352 priority patent/US8763448B2/en
Publication of WO2011074343A1 publication Critical patent/WO2011074343A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D35/00Fluid clutches in which the clutching is predominantly obtained by fluid adhesion
    • F16D35/02Fluid clutches in which the clutching is predominantly obtained by fluid adhesion with rotary working chambers and rotary reservoirs, e.g. in one coupling part
    • F16D35/021Fluid clutches in which the clutching is predominantly obtained by fluid adhesion with rotary working chambers and rotary reservoirs, e.g. in one coupling part actuated by valves
    • F16D35/024Fluid clutches in which the clutching is predominantly obtained by fluid adhesion with rotary working chambers and rotary reservoirs, e.g. in one coupling part actuated by valves the valve being actuated electrically, e.g. by an electromagnet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/14Safety means against, or active at, failure of coolant-pumps drives, e.g. shutting engine down; Means for indicating functioning of coolant pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/04Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio
    • F01P7/042Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio using fluid couplings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/64Number of revolutions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/02Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
    • F01P5/04Pump-driving arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/102Actuator
    • F16D2500/1021Electrical type
    • F16D2500/1022Electromagnet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10406Clutch position
    • F16D2500/10418Accessory clutch, e.g. cooling fan, air conditioning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/3042Signal inputs from the clutch from the output shaft
    • F16D2500/30426Speed of the output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/51Relating safety
    • F16D2500/5108Failure diagnosis

Definitions

  • the present invention relates to diagnosis of a fan coupling device used for a cooling system of an internal combustion engine.
  • the cooling fan of the internal combustion engine blows cooling air to the radiator that dissipates the coolant of the internal combustion engine, thereby cooling the radiator.
  • a fan coupling device that connects an input shaft driven by an internal combustion engine and a cooling fan transmits torque using the viscosity of hydraulic fluid.
  • JP2007-321622A issued by the Japan Patent Office in 2007 diagnosed that the fan coupling device failed when the cooling speed of the cooling fan remained low with the fan coupling device fully locked.
  • a failure diagnosis device for fan coupling devices is proposed.
  • the fan coupling device transmits torque between the input shaft and the cooling fan via the fluid coupling.
  • the transmission torque at this time can be controlled by adjusting the amount of hydraulic fluid in the fluid coupling. That is, for example, the hydraulic fluid is supplied to the fluid coupling via the electromagnetic valve, and the hydraulic fluid in the fluid coupling is returned to the tank by the centrifugal force of the fluid coupling.
  • the object of the present invention is to accurately diagnose the sticking of the electromagnetic valve without being affected by the change in the rotational speed of the input shaft.
  • the present invention connects an internal combustion engine and a cooling fan that blows cooling air to a radiator that cools the refrigerant of the internal combustion engine, and an input shaft that is rotationally driven by the internal combustion engine; Fluid coupling that transmits torque from the input shaft to the cooling fan via the fluid, and the amount of fluid intervening in the fluid coupling, depending on energization between the lift position that increases the fluid volume and the closed position that decreases the fluid volume Sensor and controller for detecting the rotation speed of the cooling fan in a diagnostic device for diagnosing whether the valve body is fixed at the lift position using a fan coupling device comprising an electromagnetic valve that is adjusted by a valve body that is displaced And.
  • the controller is programmed to output a signal for returning the valve body to the closed position, and to start the determination of the sticking of the valve body to the lift position based on the rotation speed of the cooling fan after a predetermined time has elapsed from the output of the signal.
  • This invention is also used with the above fan coupling device to output a signal for detecting the rotational speed of the cooling fan and returning the lube body to the closed position in the diagnosis of whether or not the valve body is fixed in the lift position. Then, after a predetermined time has elapsed from the output of the signal, there is provided a diagnostic method for starting the determination of the sticking of the valve body to the lift position based on the rotation speed of the cooling fan.
  • FIG. 1 is a schematic configuration diagram of a fan coupling device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram of a cooling system for an internal combustion engine including a fan coupling device.
  • FIG. 3 is a diagram showing the relationship between the input rotation speed and the fan rotation speed when the ON sticking occurs and when the ON sticking does not occur.
  • FIG. 4 is a timing chart for explaining a failure diagnosis algorithm executed by the engine control module according to the first embodiment of the present invention.
  • FIG. FIG. 5 is a flowchart for explaining an electromagnetic valve sticking diagnosis routine executed by the engine control module according to the first embodiment of the present invention.
  • FIG. 6 is a diagram showing the characteristics of the map of the predetermined value T1 stored in the engine control module.
  • FIG. 7 is a diagram showing the characteristics of a map of a predetermined time stored in the engine control module.
  • FIG. 8 is a timing chart for explaining a fault diagnosis algorithm according to the second embodiment of the present invention.
  • FIG. 9 is a flowchart for explaining an electromagnetic valve sticking diagnosis routine executed by the engine control module according to the second embodiment of the present invention.
  • FIG. 10 is a diagram showing the characteristics of the count-up amount map stored by the engine control module according to the second embodiment of the present invention.
  • a fan coupling device 1 used for a cooling apparatus for an internal combustion engine for a vehicle includes a housing 4 that is rotatably supported on an input shaft 3 via a bearing 2.
  • the left side corresponds to the front of the vehicle, and the right side corresponds to the rear of the vehicle.
  • the housing 4 includes a housing body 5 that is rotatably supported by the input shaft 3 via a bearing 2 and a cover 6 that is fixed to the front surface of the housing body 5 with bolts.
  • FIG. 2 Referring to FIG. 2, FIG. 2 is fixed by bolts.
  • a storage chamber 8 and a working chamber 9 are defined inside the housing 4 by a ring-shaped partition plate 7.
  • the partition plate 7 is formed with a communication hole 10 that allows the storage chamber 8 and the working chamber 9 to communicate with each other.
  • a disk 11 is fixed to the tip of the input shaft 3 inside the cover 6 located in front of the partition plate 7, that is, on the left side in the drawing.
  • a labyrinth groove 11 a is formed on the outer periphery of the disk 11.
  • a labyrinth groove 6b that cooperates with the labyrinth groove 11a is formed in the cover 6 opposite to the labyrinth groove 11a.
  • the labyrinth groove 11a and the labyrinth groove 6b are each composed of a plurality of circular grooves forming concentric circles defined by a plurality of circular land portions.
  • the labyrinth groove 11a and the labyrinth groove 6b are disposed in a state where one land portion enters the other circular groove in a non-contact state and the other land portion enters the one circular groove.
  • the labyrinth groove 6 b and the labyrinth groove 11 a constitute a fluid coupling 12 that transmits the rotation of the disk 11 to the housing 4.
  • the housing body 5 is formed with a boss portion 5c surrounding the input shaft 3 and a ring-shaped recess 5a located outside the boss portion 5c.
  • a hydraulic fluid return passage is formed in the outer peripheral portion 5b of the housing body 5 facing the outer periphery of the concave portion 5a to return the hydraulic fluid in the working chamber 9 to the storage chamber 8 using centrifugal force.
  • the housing 4 is provided with an electromagnetic valve 13 that opens and closes the communication hole 10 of the partition plate 7.
  • the electromagnetic valve 13 includes an exciting coil 15, an iron core 16, an armature 17, and a valve body 18.
  • the exciting coil 15, the iron core 16, and the armature 17 are each formed in a ring shape.
  • the exciting coil 15 is fixed to the vehicle body and rotates relative to the input shaft 3 via the bearing 14.
  • the iron core 16 is fixed to the housing body 5 in front of the exciting coil 15.
  • the armature 17 is slidably fitted in the boss portion 5 c of the housing body 5 in the axial direction so as to be opposed to the iron core 16.
  • the valve body 18 has a proximal end fixed to the armature 17, and opens and closes the communication hole 10 according to the axial displacement of the armature 17.
  • the armature 17 is urged in a direction to close the communication hole 10 by a spring.
  • the valve body 18 In the state where the exciting coil 15 is not energized, the valve body 18 having the base end fixed to the armature 17 closes the communication hole 10.
  • the exciting coil 15 When the exciting coil 15 is energized, the iron core 16 is magnetized and the armature 17 is attracted to the iron core 16. As a result, the armature 17 retreats against the urging force of the spring, and the valve body 18 opens the communication hole 10.
  • a crank pulley 33 is fixed to a crankshaft 32 of an internal combustion engine 31 of the vehicle.
  • a pulley 34 is fixed to the input shaft 3 of the fan coupling device 1.
  • the crank pulley 33 and the pulley 34 are coupled by a belt 35, whereby the input shaft 3 is rotationally driven by the crank shaft 32.
  • the right side corresponds to the front of the vehicle and the left side corresponds to the rear of the vehicle.
  • the fan coupling device 1 is disposed at a front position of the engine room of the vehicle, that is, on the right side of the internal combustion engine 31 in the figure.
  • a refrigerant radiator 23 for cooling the internal combustion engine 31 is disposed further forward of the fan coupling device 1.
  • the radiator 23 is connected to the fan coupling device 1 via the shroud 22.
  • the valve body 18 opens the communication hole 10 provided in the partition plate 7.
  • the hydraulic fluid in the storage chamber 8 flows into the working chamber 9 through the communication hole 10 and is supplied to the fluid coupling 12.
  • the gap between the labyrinth grooves 11 a and 6 b is filled with the working fluid, and the rotational torque is transmitted from the disk 11 to the housing 4 due to the viscosity of the working fluid.
  • the transmission torque from the disk 11 to the housing 4 increases, and the cooling fan 21 fixed to the outer periphery of the housing 4 and the housing 4 tilts at a higher speed. To do.
  • the speed of the cooling air drawn into the radiator 23 increases, and the heat dissipation amount of the radiator 23 increases.
  • the amount of heat released from the radiator 23 increases, the refrigerant temperature in the radiator 23 decreases.
  • the valve body 18 closes the communication hole 10 provided in the partition plate 7 and the flow of the hydraulic fluid from the reservoir chamber 8 to the working chamber 9 is prevented.
  • the working fluid in the working chamber 9 and the fluid coupling 12 returns to the storage chamber 8 from the working chamber 9 through the working fluid return passage by centrifugal force, so that the working fluid that fills the gap in the fluid coupling 12 decreases.
  • the torque transmitted from the disk 11 to the housing 4 via the hydraulic fluid is also reduced, and the rotational speed of the cooling fan 21 is reduced.
  • the opening / closing control of the electromagnetic valve 13 is controlled by the control module 51. This opening / closing control is performed by duty control based on the duty signal.
  • the operation of the internal combustion engine 31 is controlled by the engine control module 41.
  • the engine control module 41 includes a fan rotation speed sensor 42 that detects the rotation speed Nfan of the cooling fan 21, a crank angle sensor 43 that detects the rotation speed Ne of the internal combustion engine 31, and a refrigerant temperature that detects the refrigerant temperature Tw of the internal combustion engine 31. Detection signals are individually signaled from the sensor 44, the outside air temperature sensor 45 that detects the outside air temperature Ta, the load sensor 46 that detects the driving load of the air conditioner included in the vehicle, and the vehicle speed sensor 47 that detects the traveling speed of the vehicle. Entered.
  • the engine control module 41 calculates a command duty to the electromagnetic valve 13 according to the operation condition of the vehicle or the internal combustion engine 31 determined from the input signal from each sensor.
  • the calculated command duty is transmitted from the engine control module 41 to the control module 51.
  • the engine control module 41 and the control module 51 are each composed of a microcomputer having a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface). It is also possible to configure the engine control module 41 and the control module 51 with a single microcomputer.
  • CPU central processing unit
  • ROM read only memory
  • RAM random access memory
  • I / O interface input / output interface
  • the two control modules 41 and 51 are connected by control Ekia network (CAN) communication.
  • the engine control module 41 outputs a command duty to the control module 51 via CAN communication, and the control module 51 converts the command duty into a duty signal and outputs it to the excitation coil 15 of the electromagnetic valve 13.
  • CAN control Ekia network
  • the excitation current of the exciting coil 15 is set to increase as the command duty increases.
  • the exciting current of the exciting coil 15 increases, the distance between the communication hole 10 and the valve body 18 increases, and the amount of hydraulic fluid flowing from the storage chamber 8 into the working chamber 9 increases.
  • the command duty is 0%, the communication hole 10 is closed by the valve body 18 and the amount of hydraulic fluid flowing from the reservoir chamber 8 into the working chamber 9 becomes zero.
  • the command duty is 100%, the amount of hydraulic fluid flowing from the storage chamber 8 into the working chamber 9 is maximized, and the fan rotational speed Nfan is equal to the rotational speed Nin of the input shaft 3.
  • the engine control module 41 sets a target fan rotational speed tNfan according to the operating conditions of the internal combustion engine 31.
  • the engine control module 41 feedback-controls the command duty so that the actual fan rotation speed Nfan detected by the fan rotation speed sensor 42 matches the target fan rotation speed tNfan.
  • the target fan rotation speed tNfan is set as follows.
  • the operating conditions are defined by three parameters of the refrigerant temperature Tw, the air conditioner operating load, and the vehicle speed.
  • the engine control module 41 sets the target fan rotation speed tNfan higher as the refrigerant temperature Tw is higher if the air conditioner operation load and the vehicle speed are constant.
  • High refrigerant temperature Tw means that it is necessary to increase the heat dissipation amount of the radiator 23, and in order to increase the heat dissipation amount of the radiator 23, it is necessary to increase the target fan rotational speed tNfan.
  • the engine control module 41 sets the target fan rotational speed tNfan higher as the air conditioner operation load is larger.
  • the engine control module 41 sets the target fan rotational speed tNfan to be lower as the vehicle speed is higher if the refrigerant temperature Tw and the air conditioner operation load are constant. As the vehicle speed increases, the amount of traveling wind that strikes the radiator 23 increases, and the amount of heat released from the radiator 23 increases. Therefore, in order to obtain the same heat radiation amount, the target fan rotation speed tNfan may be lowered corresponding to the increase in the heat radiation amount of the radiator 23.
  • the valve main body 18 is stuck so that the communication hole 10 cannot be closed even though the command duty is switched to 0% to stop the energization to the exciting coil 15.
  • ON fixing fixing with the valve body 18 in an open state is referred to as ON fixing.
  • the cause of ON sticking may be that foreign matter is caught in the communication hole 10 or the electric circuit of the electromagnetic valve 13 including the exciting coil 15 is broken.
  • the valve body 18 cannot physically close the communication hole 10, and the storage chamber 8 to the working chamber 9 and the fluid coupling 12 are disabled.
  • the supply of the hydraulic fluid cannot be shut off.
  • the electric circuit of the electromagnetic valve 13 breaks down and the energization to the exciting coil 15 cannot be stopped, the valve body 18 cannot close the communication hole 10, and the storage chamber 8 moves to the working chamber 9 and the fluid coupling 12. The supply of the hydraulic fluid cannot be shut off.
  • the cooling fan 21 continues to rotate at the same rotational speed as the input shaft 3.
  • the input shaft 3 of the fan coupling device 1 is driven by the internal combustion engine 31.
  • the valve main body 18 When the valve main body 18 is turned ON, the internal combustion engine 31 continues to drive the cooling fan 21 in spite of the necessity, and the load on the internal combustion engine 31 increases. An increase in engine load leads to an increase in exhaust gas volume, which may worsen exhaust emissions.
  • the fan rotation speed sensor 42 In order to diagnose whether or not the valve body 18 is ON-fixed, the fan rotation speed sensor 42 is operated in a state where the command duty is switched to 0%, that is, in a state where the energization stop of the excitation coil 15 is instructed. What is necessary is just to determine whether the actual fan rotational speed Nfan to detect shows a fall. If the valve body 18 is not ON-fixed, the actual fan rotation speed Nfan should decrease toward zero in the state where the energization stop to the exciting coil 15 is instructed. If the valve body 18 is stuck ON, the actual fan rotation speed Nfan should maintain a rotation speed substantially equal to that of the input shaft 3 in the state where the energization stop to the excitation coil 15 is instructed.
  • FIG. 3 when the valve body 18 is stuck on, the actual fan rotation speed Nfan is higher than when the valve body 18 is not stuck on.
  • the horizontal axis in the figure is the rotational speed Nin of the input shaft 3.
  • the rotational speed Nin of the input shaft 3 is referred to as the input rotational speed Nin of the fan coupling device 1.
  • the actual fan rotational speed Nfan matches the input rotational speed Nin. Therefore, the fan rotation speed Nfan when ON sticking occurs is gathered in the region A in the figure.
  • the actual fan rotational speed Nfan decreases in a direction away from the input rotational speed Nin. Therefore, the fan rotational speed Nfan when no ON sticking occurs is the region B To gather.
  • the rotational speed corresponding to the thick solid line in the figure which is a predetermined amount lower than the input rotational speed Nin in the figure, is set as a threshold value, and the actual fan rotational speed is instructed to stop energizing the exciting coil 15. If Nfan is equal to or greater than the threshold value, it can be determined that ON sticking has occurred in the valve body 18. If the actual fan rotation speed Nfan is less than the threshold value in a state where the energization stop of the excitation coil 15 is instructed, it can be determined that the valve body 18 is not stuck ON.
  • FIG. 4 when the input rotational speed Nin, in other words, the engine rotational speed Ne is relatively low, when the command duty to the electromagnetic valve 13 is switched from 100% to 0%, that is, to the excitation coil 15 A description will be given of the actual change in the fan rotation speed Nfan and the diagnosis of the ON sticking performed by the engine control module 41 when an energization stop is instructed from the energized state.
  • the actual fan rotational speed Nfan maintains a value close to the input rotational speed Nin for a while after switching the command duty to 0% at time t1, and thereafter Decreases from the input rotational speed Nin toward zero.
  • the reason why the decrease in the actual fan rotational speed Nfan is delayed after the command duty is switched to 0% at time t1 when the valve body 18 is not ON-fixed is as follows. That is. In the fan coupling device 1, torque is transmitted using viscous hydraulic fluid, and if the centrifugal force is weak even when the valve body 18 closes the communication hole 10 and stops supplying hydraulic fluid to the hydraulic chamber 9. The viscous hydraulic fluid does not return immediately from the working chamber 9 or the fluid coupling 12 to the storage chamber 8. Therefore, immediately after the command duty is switched to 0%, it is not possible to accurately determine whether the valve body 18 is stuck on even if the actual fan rotation speed Nfan is compared with the threshold value.
  • the engine control module 41 sets the timing at which a predetermined period has elapsed after the command duty is switched to 0% as the diagnosis timing of ON sticking of the valve body 18.
  • the predetermined time is set to the time from when the command duty is switched to 0% until all the hydraulic fluid in the working chamber 9 returns to the storage chamber 8.
  • FIG. As shown in FIG. 4, the diagnosis is permitted at the time t2 when the actual fan rotation speed Nfan is sufficiently lower than the threshold value when the valve main body 18 is not sticking ON. Therefore, the predetermined time T1 is a time from time t1 to time t2.
  • the engine control module 41 establishes a diagnosis permission condition at time t2 when the predetermined value T1 has elapsed from time t1, and diagnoses whether or not the valve body 18 is stuck on after time t2.
  • the time from when the command duty is switched to 0% until the total amount of hydraulic fluid in the working chamber 9 is returned to the storage chamber 8 is longer as the input rotational speed Nin is lower.
  • the fan coupling device 1 stores the working fluid from the working chamber 9 and the fluid coupling 12 by utilizing the centrifugal force acting on the remaining working fluid in the working chamber 9 and the fluid coupling 12 as the housing 4 rotates. Return to chamber 8. This centrifugal force is smaller as the input rotational speed Nin is lower. Therefore, the time until the entire amount of the hydraulic fluid in the working chamber 9 is returned to the storage chamber 8 becomes longer as the input rotational speed Nin is lower.
  • the predetermined time T1 is also preferable to set the predetermined time T1 to be longer as the input rotational speed Nin is lower. With this setting, the ON sticking of the valve body 18 can be diagnosed after the entire amount of the working fluid in the working chamber 9 has returned to the storage chamber 8 regardless of the input rotational speed Nin, and the diagnosis delay can be kept to a minimum. Can do.
  • FIG. With reference to FIG. 5, an electromagnetic valve sticking diagnosis routine executed by the engine control module 41 in order to realize this control will be described.
  • the engine control module 41 repeatedly executes this routine at regular intervals, for example, every 10 milliseconds, during operation of the internal combustion engine 31.
  • step S1 the engine control module 41 determines whether the command duty is 0%.
  • step S1 If the determination in step S1 is negative, the engine control module 41 resets the duty OFF timer in step S12 and ends the routine. If the determination in step S1 is positive, the engine control module 41 increments the duty OFF timer by adding 1 to the value of the duty OFF timer in step S2. Therefore, the duty OFF timer value is a value corresponding to the duration after the command duty is switched to 0%, and is incremented by one at each routine execution interval as long as the command duty is maintained at 0%. Value.
  • Step S1 means that if the command duty is other than 0%, the routine is terminated without permitting the sticking judgment of the valve body 18.
  • the command duty is other than 0%
  • the communication hole 10 is not completely closed, the supply of hydraulic fluid from the storage chamber 8 to the working chamber 9 is not shut off, and the actual fan rotational speed Nfan does not decrease.
  • the sticking determination of the valve body 18 is not permitted. If the sticking diagnosis of the valve body 18 is performed in this case, the ON sticking occurs even though the valve body 18 is functioning normally. This is because there is a possibility of misdiagnosis.
  • step S1 whether or not the command duty determined in step S1 is 0% is determined, but this is based on the premise that the energization stop to the excitation coil 15 is realized with the command duty 0%. It is also possible to stop energization of the exciting coil 15 with a command duty value close to 0% instead of the command duty 0%. In this case, in step S1, the command duty is compared with a command duty value that realizes the energization stop of the exciting coil 15.
  • step S3 the engine control module 41 determines whether the duty OFF timer value is equal to or greater than a predetermined value T1.
  • the predetermined value T1 corresponds to a required time from when the command duty is switched to 0% until the entire amount of hydraulic fluid in the working chamber 9 is discharged.
  • FIG. 6, preferably the control module 41 stores the FIG.
  • a map of a predetermined value T1 of the characteristic shown in FIG. 6 is stored in advance, and the predetermined value T1 is determined by referring to the map from the input rotational speed Nin prior to execution of the routine.
  • the map of the predetermined value T1 is set through experiments and simulations in advance.
  • the input rotation speed Nin is calculated by the following equation (1) using the engine rotation speed Ne.
  • the pulley ratio is a ratio of the diameters of the crank pulley 33 and the pulley 34.
  • an input rotation speed sensor that directly detects the rotation speed of the input shaft 3 and directly detect the input rotation speed Nin.
  • FIG. 6 is used when the characteristic map shown in FIG. It is also possible to replace the input rotational speed Nin set on the horizontal axis of the diagram 6 with the engine rotational speed Ne.
  • the time during which the hydraulic fluid is reliably discharged from the working chamber 9 is set in advance as a fixed value that does not depend on the input rotational speed Nin. It is also possible to store in the ROM of the engine control module 41 as a predetermined value T1 to be compared in step S3.
  • step S3 If the determination in step S3 is affirmative, the engine control module 41 performs the process in step S4. If the determination in step S3 is negative, the engine control module 41 immediately ends the routine.
  • step S4 the engine control module 41 determines whether or not the refrigerant temperature Tw detected by the refrigerant temperature sensor 44 is equal to or higher than a predetermined value T2.
  • the predetermined value T2 is set to 0 ° C., for example.
  • step S4 If the determination at step S4 is affirmative, the engine control module 41 performs the process at step S5. If the determination in step S4 is negative, the engine control module 41 immediately ends the routine.
  • step S5 it is determined whether or not the outside air temperature Ta detected by the outside air temperature sensor 45 is equal to or greater than a predetermined value T3.
  • a predetermined value T3 is set to 0 ° C. which is the same as the predetermined value T2, for example.
  • step S5 If the determination in step S5 is affirmative, the engine control module 41 performs the process in step S6. If the determination in step S5 is negative, the engine control module 41 immediately ends the routine.
  • step S6 the engine control module 41 determines whether or not a predetermined time has elapsed after the internal combustion engine 31 is started.
  • the elapsed time after the internal combustion engine 31 is started is measured by the engine control module 41 that starts the internal combustion engine 31. That is, the engine control module 41 functions as a sensor that detects an elapsed time after the internal combustion engine 31 is started. The determination in step S6 is performed for the following reason.
  • the working fluid is accumulated in the working chamber 9 or the fluid coupling 12 in a state where the internal combustion engine 31 is not operated.
  • the engine control module 41 executes the processes after step S2.
  • the internal combustion engine 31 immediately after start-up is in an idling operation state, and the input rotational speed Nin is low. Therefore, it takes a considerable time for the working fluid accumulated in the working chamber 9 and the fluid coupling 12 to return to the storage chamber 8. .
  • the working oil remains in the working chamber 9 and the fluid coupling 12, and the fan rotation speed Nfan does not decrease easily during this time.
  • Step S6 is set in consideration of the case where the internal combustion engine 31 is started in a state where the working fluid is accumulated in the working chamber 9 or the fluid coupling 12 as described above. Specifically, after the internal combustion engine 31 is started, the sticking determination is not performed until the return of the working fluid accumulated in the working chamber 9 and the fluid coupling 12 to the storage chamber 8 is completed.
  • the predetermined time corresponds to the time required for this.
  • the engine control module 41 includes FIG. 7 is stored, and the engine control module 41 searches the map from the input rotational speed Nin to calculate the predetermined time. FIG. As shown in FIG. 7, in this map, the predetermined time is set longer as the input rotational speed Nin is lower.
  • the command duty is 0% (step S1).
  • the duty OFF timer is equal to or greater than a predetermined value T1 (step S3).
  • the refrigerant temperature Tw is equal to or higher than a predetermined value T2 (step S4).
  • the outside air temperature Ta is not less than the predetermined value T3 (step S5).
  • a predetermined time has elapsed since the engine was started (step S6).
  • the engine control module 41 determines that the diagnosis permission condition is satisfied, and performs the processing from step S7. If any of the conditions (1) to (5) is not satisfied, the routine is terminated without permitting diagnosis.
  • diagnosis permission conditions (1) to (5) are satisfied, it is diagnosed in step S7 to S12 whether or not the valve body 18 is stuck on.
  • step S7 the threshold value is compared with the actual fan rotation speed Nfan detected by the fan rotation speed sensor 42.
  • the engine control module 41 includes FIG. A characteristic map shown in FIG. 3 is stored in the ROM in advance. Prior to routine execution, the engine control module 41 searches a map from the input rotational speed Nin to determine a threshold value. The threshold value used in step S7 is a value determined in this way. If the actual fan rotation speed Nfan is less than the threshold value in step S7, the engine control module 41 proceeds to step S11, resets the diagnostic timer, and ends the routine.
  • the engine control module 41 increments the diagnostic timer by adding 1 to the diagnostic timer value in step S8.
  • the increment unit of the diagnostic timer value is equivalent to 10 milliseconds in terms of time.
  • the duration of the state where the actual fan rotation speed Nfan is equal to or higher than the threshold is measured by executing steps S7, S8, and S11.
  • step S9 the engine control module 41 determines whether or not the diagnosis timer value is equal to or greater than a predetermined value T4.
  • the predetermined value T4 is a fixed value and is set to several seconds.
  • step S9 determines in step S10 that ON sticking has occurred in the valve body 18. By this determination, a measure such as turning on the ON sticking flag or warning the occurrence of ON sticking to the display device is taken. If the determination in step S9 is negative, the engine control module 41 ends the routine.
  • Steps S8 and S9 are provided when it is determined that the valve body 18 is stuck on for the first time when the actual fan rotational speed Nfan is equal to or higher than the threshold value for a predetermined time. Because. It is possible to prevent erroneous determination that ON sticking has occurred in the valve body 18 when the actual fan rotation speed Nfan is equal to or higher than the threshold value only once in any time.
  • FIG. 4 The timing at which the determination in step S6 in the flowchart of FIG. 4 corresponds to time t2.
  • FIG. 5 Determined by the predetermined value T1 used in step S3. If the valve main body 18 is not stuck ON at the diagnosis timing at time t2, FIG. The actual fan rotational speed Nfan indicated by the solid line 4 is smaller than the threshold value. Therefore, FIG. In the flowchart of FIG. 5, the process proceeds from step S7 to step S11, and the diagnosis timer is reset.
  • the diagnostic timer value does not increase, and it is not determined that the valve body 18 is stuck on until the diagnostic timer value reaches the predetermined value T4. .
  • the diagnostic timer value reaches the predetermined value T4.
  • the threshold value set with reference to the map 3 is also a small value.
  • the actual fan rotation speed Nfan is also low, but the threshold value is also set to a small value.
  • the valve body 18 There is no risk of erroneous determination that no ON sticking occurs.
  • the time from when the command duty is switched to 0% to when all the hydraulic fluid in the working chamber 9 is discharged is a predetermined value T1, and unless the duty OFF timer value is equal to or greater than the predetermined value T1, Do not allow diagnosis. Therefore, even if the discharge of the working fluid from the working chamber 9 is delayed, there is no risk of erroneous diagnosis. Furthermore, by setting the predetermined value T1 according to the input rotation speed Nin, the difference in the input rotation speed Nin does not affect the diagnosis.
  • the threshold value is set to a larger value as the input rotation speed Nin is higher, the influence of the input rotation speed Nin on the diagnosis is also eliminated.
  • FIG. 8 and FIG. 9 With reference to FIG. 9, a second embodiment of the present invention will be described.
  • FIG. No. 8 is a case where the command duty is switched to 0% in a state where the valve body 18 is not ON-fixed and a case where the command duty is switched to 0% in a state where the valve body 18 is ON-fixed.
  • the transition of the fan rotation speed Nfan is shown for each of cases where the input rotation speed Nin is high and low. Specifically, it is the following cases (1) to (4).
  • the actual fan rotation speed Nfan decreases relatively quickly, and the actual fan rotation speed Nfan decreases early.
  • the actual fan rotation speed Nfan does not decrease.
  • the actual fan rotation speed Nfan decreases relatively slowly, so the actual fan rotation speed Nfan decreases after the case (1).
  • the actual fan rotation speed Nfan does not decrease.
  • the time t11 is set as the diagnosis start timing in the cases (1) and (3), ON fixation It can be correctly determined whether or not it has occurred.
  • the cases (2) and (4) if the same time t11 is the diagnosis start timing, the actual fan rotational speed Nfan is equal to or higher than the low rotational speed threshold for the case (4), and as a result, the valve body 18 is mistakenly diagnosed as being stuck ON. Therefore, in cases (2) and (4), it is necessary to delay the diagnosis start timing compared to cases (1) and (3).
  • the time t12 when the actual fan rotational speed Nfan falls and falls below the low rotational speed threshold is set as the diagnosis start timing.
  • FIG. 9 Referring to FIG. 9, the electromagnetic valve sticking diagnosis routine executed by the engine control module 41 for this purpose will be described.
  • the engine control module 41 executes this routine in FIG. This is executed instead of the routine of 5.
  • the routine execution condition is FIG. This is the same as the routine 5.
  • FIG. Steps that perform the same processing as routine 5 are given the same step numbers.
  • the engine control module 41 determines in step S7 whether or not the actual fan rotation speed Nfan detected by the fan rotation speed sensor 42 is equal to or greater than a threshold value.
  • the threshold value used here is the same value as in the first embodiment.
  • step S24 the engine control module 41 proceeds to step S24, resets the diagnostic counter, and ends the routine.
  • the threshold value set with reference to the map 3 is also a small value.
  • the actual fan rotation speed Nfan is also low, but the threshold value is also set to a small value.
  • the valve body 18 There is no risk of erroneous determination that no ON sticking occurs.
  • step S7 determines in FIG. A map stored in advance in the ROM having the characteristics shown in FIG. 10 is searched, and the count-up amount is obtained from the input rotational speed Nin.
  • the engine control module 41 adds the count-up amount to the diagnostic counter value according to the following equation (2).
  • the diagnostic counter is reset to zero when the internal combustion engine 31 is started.
  • the count-up amount is set to be smaller as the input rotational speed Nin is lower. Even when the valve body 18 is not ON-fixed, when the actual fan rotational speed Nfan at the time t1 when the command duty is switched to 0% is relatively low, the hydraulic fluid is discharged from the working chamber 9. Therefore, the actual fan rotation speed Nfan is unlikely to decrease. According to this map, the count-up amount decreases as the input rotational speed Nin decreases, and thus as the actual fan rotational speed Nfan decreases. Therefore, by applying the same count-up amount when the input rotational speed Nin is low, it is possible to prevent erroneous diagnosis that ON sticking occurs in the valve body 18.
  • step S23 it is determined whether the diagnostic counter value is equal to or greater than a predetermined value T5.
  • the predetermined value T5 is a value for determining diagnosis timing, and is set in advance through experiments and simulations. While the diagnosis counter value is less than the predetermined value T5, the engine control module 41 determines that the diagnosis timing has not been reached and ends the routine.
  • step S23 If it is determined in step S23 that the diagnostic counter value is equal to or greater than the predetermined value T5, the engine control module 41 determines that ON sticking has occurred in the valve body 18. By this determination, a measure such as turning on the ON sticking flag or warning the occurrence of ON sticking to the display device is taken.
  • the diagnostic counter value counted up from time t1 when the command duty is switched to 0% reaches the predetermined value T5
  • the count-up amount of the diagnosis counter in case (4) is set smaller than the count-up amount of the diagnosis counter in case (3).
  • the diagnosis counter value in case (3) reaches the predetermined value T5 at time t11, and the diagnosis counter value in case (4) reaches the predetermined value T5 at time t12 later than the diagnosis counter value in case (3).
  • the determination timing of whether or not the valve main body 18 is stuck ON changes according to the input rotational speed Nin when the command duty is switched to 0%. Therefore, even in this embodiment, it is possible to accurately diagnose the adhesion of the electromagnetic valve without being affected by the change in the rotational speed of the input shaft 3.
  • FIG. 5 and FIG. 9 is a step of determining whether or not the operating condition of the internal combustion engine 31 is suitable for determining whether the valve body 18 is ON, the refrigerant temperature Tw, the outside air temperature Ta, and the engine
  • the determination in steps S4 to S6 performed using the elapsed time after the start is merely an example of determining whether or not the operating condition of the internal combustion engine 31 is suitable for determining whether the valve body 18 is ON.
  • the present invention is suitable for failure diagnosis of a fan coupling device for a vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

 内燃エンジン31と、内燃エンジン31の冷媒を冷却するラジエータ23に冷却風を送風する冷却ファン21と、を接続する、ファンカップリング装置1は、内燃エンジン31に回転駆動される入力軸3と、入力軸3から冷却ファン21へ流体を介してトルクを伝達する流体カップリング12と、流体カップリング12に介在する流体量を調整するバルブ本体18を有する電磁バルブ13とを備える。バルブ本体18を閉鎖位置に戻す信号の出力から所定時間経過後に、冷却ファン21の回転速度に基づくバルブ本体18のリフト位置への固着判定を開始することで、入力軸3の回転速度変化に影響されずに精度良く固着判定を行うことができる。

Description

ファンカップリング装置の診断装置及び診断方法
 この発明は、内燃エンジンの冷却システムに用いるファンカップリング装置の診断に関する。
 内燃エンジンの冷却ファンは内燃エンジンの冷却液を放熱するラジエータに冷却風を送風し、ラジエータを冷却する。内燃エンジンに駆動される入力軸と冷却ファンを接続するファンカップリング装置は、作動液の粘性を利用してトルクを伝達する。
 日本国特許庁が2007年に発行したJP2007-321622Aは、ファンカップリング装置をフルロックさせた状態で、冷却ファンの回転速度が低い状態に留まる場合に、ファンカップリング装置に故障が生じたと診断するファンカップリング装置の故障診断装置を提案している。
 ファンカップリング装置は、流体カップリングを介して入力軸と冷却ファンの間のトルク伝達を行う。この時の伝達トルクは、流体カプリングの作動液量を調整することで制御可能である。すなわち、例えば流体カプリングへ作動液を電磁バルブを介して供給する一方、流体カプリングの遠心力で流体カプリング内の作動液をタンクに還流させる。
 電磁バルブの開度を変化させると、流体カプリング内の作動液の量が増減し、作動液の粘性に依存する伝達トルクも増減する。
 こうした流体カップリングにおいて、電磁バルブが固着すると伝達トルクの制御に支障が生じる。
 電磁バルブが開いた状態で固着すると、電磁バルブの開度減少を指令しても、ファンの回転速度は低下しない。したがって、電磁バルブへの開度信号と、ファンの回転速度とを比較することで電磁バルブの固着を検出することが考えられる。
 しかしながら、流体カプリング内の作動油は遠心力でタンクに還流するため、電磁バルブを閉じても直ちに流体かプリング内は空にならない。流体カプリングの遠心力は入力軸の回転速度によって異なり、低速では遠心力が小さく、したがって、流体かプリングからタンクに還流する作動液流量も小さい。結果として、低速時には電磁バルブを閉じても伝達トルクは直ちに低下せず、所定の遅れをもって低下する。
 つまり、入力軸の回転速度に依存して、電磁バルブの開度と伝達トルクとの相関関係に変化が生じる。
 この発明の目的は、したがって、入力軸の回転速度変化に影響されずに電磁バルブの固着を正確に診断することである。
 以上の目的を達成するために、この発明は、内燃エンジンと、内燃エンジンの冷媒を冷却するラジエータに冷却風を送風する冷却ファンと、を接続し、内燃エンジンに回転駆動される入力軸と、入力軸から冷却ファンへ流体を介してトルクを伝達する流体カップリングと、流体カップリングに介在する流体量を、流体量を増量させるリフト位置と流体量を減少させる閉鎖位置の間で通電に応じて変位するバルブ本体により調整する電磁バルブと、を備えるファンカップリング装置とともに用いて、バルブ本体がリフト位置に固着したかどうかを診断する診断装置において、冷却ファンの回転速度を検出するセンサとコントローラとを備えている。
 コントローラは、バルブ本体を閉鎖位置に戻す信号を出力し、信号の出力から所定時間経過後に、冷却ファンの回転速度に基づきバルブ本体のリフト位置への固着判定を開始する、ようにプログラムされる。
 この発明はまた、上記のファンカップリング装置とともに用いて、バルブ本体がリフト位置に固着したかどうかを診断する診断において、冷却ファンの回転速度を検出し、ルブ本体を閉鎖位置に戻す信号を出力し、信号の出力から所定時間経過後に、冷却ファンの回転速度に基づきバルブ本体のリフト位置への固着判定を開始する診断方法を提供する。
 この発明の詳細並びに他の特徴や利点は、明細書の以下の記載の中で説明されるとともに、添付された図面に示される。
FIG.1はこの発明の第1の実施例によるファンカップリング装置の概略構成図である。
FIG.2はファンカップリング装置を備えた内燃エンジンの冷却システムの概略構成図である。
FIG.3はON固着が生じている場合と、ON固着が生じていない場合における、入力回転速度とファン回転速度の関係を示すダイアグラムである。
FIG.4はこの発明の第1の実施例によるエンジンコントロールモジュールが実行する故障診断アルゴリズムを説明するタイミングチャートである。
FIG.5はこの発明の第1の実施例によるエンジンコントロールモジュールが実行する電磁バルブの固着診断ルーチンを説明するフローチャートである。
FIG.6はエンジンコントロールモジュールが格納する所定値T1のマップの特性を示すダイアグラムである。
FIG.7はエンジンコントロールモジュールが格納する所定時間のマップの特性を示すダイアグラムである。
FIG.8はこの発明の第2の実施例による故障診断アルゴリズムを説明するタイミングチャートである。
FIG.9はこの発明の第2実施例によるエンジンコントロールモジュールが実行する電磁バルブの固着診断ルーチンを説明するフローチャートである。
FIG.10はこの発明の第2実施例によるエンジンコントロールモジュールが格納するカウントアップ量のマップの特性を示すダイアグラムである。
 図面のFIG.1を参照すると、車両用内燃エンジンの冷却装置に用いるファンカップリング装置1は、ベアリング2を介して入力軸3に相対回転自在に支承されるハウジング4を備える。図において左側が車両の前方に、右側が車両の後方に相当する。
 ハウジング4はベアリング2を介して入力軸3に回転自由に支持されたハウジング本体5と、ハウジング本体5の前面にボルトで固定されたカバー6とからなる。
 FIG.2を参照すると、ハウジング4の外周側にはFIG.2に示す冷却ファン21がボルトによって固定される。
 再びFIG.1を参照すると、ハウジング4の内側にはリング状の仕切板7によって貯溜室8と作動室9とが画成される。仕切板7には貯溜室8と作動室9とを連通する連通孔10が形成される。仕切板7の前方、すなわち図中左側、に位置するカバー6の内側の入力軸3の先端にはディスク11が固定される。
 ディスク11の外周にラビリンス溝11aが形成される。一方、ラビリンス溝11aと共働するラビリンス溝6bがラビリンス溝11aに相対してカバー6に形成される。ラビリンス溝11aとラビリンス溝6bはそれぞれ複数の円形のランド部によって画成された同心円をなす複数の円形溝からなる。ラビリンス溝11aとラビリンス溝6bは一方のランド部がもう一方の円形溝に非接触状態で侵入し、かつもう一方のランド部が一方の円形溝に侵入した状態で配置される。ラビリンス溝6bとラビリンス溝11aがディスク11の回転をハウジング4に伝達する流体カップリング12を構成する。
 ランド部と円形溝との隙間が作動液で満たされている場合には、ディスク11が回転すると、各隙間の作動液を介してディスク11からカバー6に回転トルクが伝達される。この状態を流体カップリング12の係合状態と称する。一方、ランド部と円形溝との隙間に作動液が存在しない場合には、ディスク11が回転しても、ラビリンス溝11aとラビリンス溝6bは任意に相対回転し、ディスク11からカバー6への回転トルクの伝達は行われない。この状態を流体カップリング12の解放状態と称する。流体カップリング12は係合状態と解放状態との間においては、ランド部と円形溝の隙間に存在する作動油量に応じて回転トルクを伝達する。
 入力軸3の周りに貯溜室8を形成するために、ハウジング本体5には入力軸3を囲むボス部5cと、ボス部5cの外側に位置するリング状の凹部5aが形成される。凹部5aの外周に臨むハウジング本体5の外周部5bには、作動室9の作動液を遠心力を利用して貯溜室8に還流させる作動液戻し通路が形成される。
 ハウジング4には、仕切板7の連通孔10を開閉する電磁バルブ13が設けられる。
 電磁バルブ13は励磁コイル15と、鉄心16と、アーマチュア17と、バルブ本体18とを備える。励磁コイル15と、鉄心16と、アーマチュア17は、それぞれリング状に形成される。
 励磁コイル15は車体に固定され、ベアリング14を介して入力軸3と相対回転する。鉄心16は励磁コイル15の前方においてハウジング本体5に固定される。アーマチュア17は鉄心16の前方の貯留室8内において、鉄心16に相対してハウジング本体5のボス部5cに軸方向に摺動自由に嵌合する。バルブ本体18はアーマチュア17に基端を固定され、アーマチュア17の軸方向の変位に応じて連通孔10を開閉する。アーマチュア17はスプリングにより連通孔10を閉じる方向へと付勢される。
 励磁コイル15に通電されていない状態では、したがって、アーマチュア17に基端を固定したバルブ本体18は連通孔10を閉じている。励磁コイル15に通電すると、鉄心16が磁化され、アーマチュア17が鉄心16に引きつけられる。その結果、アーマチュア17はスプリングの付勢力に抗して後退し、バルブ本体18が連通孔10を開放する。
 再びFIG.2を参照すると、車両の内燃エンジン31のクランク軸32にはクランクプーリ33が固定される。ファンカップリング装置1の入力軸3にはプーリ34が固定される。クランクプーリ33とプーリ34はベルト35で結合され、これにより入力軸3はクランク軸32により回転駆動される。
 図において、右側が車両前方、左側が車両後方に相当する。ファンカップリング装置1は、車両のエンジンルームの前方位置、すなわち図の内燃エンジン31の右側に配置される。ファンカップリング装置1のさらに前方には、内燃エンジン31を冷却する冷媒用のラジエータ23が配置される。ラジエータ23はシュラウド22を介してファンカップリング装置1に連結される。
 内燃エンジン31の運転中の、電磁バルブ13を介したファンカップリング装置1の動作を以下に説明する。
 入力軸3が回転している状態で、励磁コイル15に通電すると、バルブ本体18が仕切板7に設けた連通孔10を開く。連通孔10が開くと、貯留室8の作動液が連通孔10を介して作動室9に流入し、流体カップリング12に供給される。流体カップリング12においてはラビリンス溝11aと6bの隙間が作動液に満たされ、作動液の粘性によりディスク11からハウジング4へと回転トルクが伝達される。
 流体カップリング12への作動液の供給量が多いほど、ディスク11からハウジング4の側への伝達トルクが増大し、ハウジング4とハウジング4の外周に固定された冷却ファン21はより高速で傾転する。その結果、車速が同じでもラジエータ23に引き込まれる冷却風の速度が増し、ラジエータ23の放熱量が多くなる。ラジエータ23からの放熱量が多くなると、ラジエータ23内の冷媒温度が低下する。
 励磁コイル15への通電を停止すると、バルブ本体18が仕切板7に設けた連通孔10を閉鎖し、作動液の貯溜室8から作動室9への流入が阻止される。作動室9や流体カップリング12の作動液は、遠心力によって作動室9から作動液戻し通路を介して貯溜室8へ還流するため、流体カップリング12の隙間を満たす作動液が減少する。その結果、作動液を介してディスク11からハウジング4に伝わるトルクも減少し、冷却ファン21の回転速度は低下する。
 電磁バルブ13の開閉制御はコントロールモジュール51によって制御される。この開閉制御はデューティ信号に基づくデューティ制御によって行われる。また、内燃エンジン31の運転はエンジンコントロールモジュール41によって制御される。
 エンジンコントロールモジュール41には、冷却ファン21の回転速度Nfanを検出するファン回転速度センサ42、内燃エンジン31の回転速度Neを検出するクランク角センサ43、内燃エンジン31の冷媒温度Twを検出する冷媒温度センサ44、外気温Taを検出する外気温センサ45、車両が備えるエアコンディショナの運転負荷を検出する負荷センサ46、及び車両の走行速度を検出する車速センサ47から、検出信号がそれぞれ個別に信号入力される。
 エンジンコントロールモジュール41は、各センサからの入力信号から判定される車両もしくは内燃エンジン31の運転条件に応じて、電磁バルブ13への指令デューティを算出する。算出した指令デューティはエンジンコントロールモジュール41からコントロールモジュール51に送信される。
 エンジンコントロールモジュール41とコントロールモジュール51は、それぞれ中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。エンジンコントロールモジュール41とコントロールモジュール51を単一のマイクロコンピュータで構成することも可能である。
 2つのコントロールモジュール41と51はコントロールエキアネットワーク(CAN)通信によって結ばれる。エンジンコントロールモジュール41はCAN通信を介して指令デューティをコントロールモジュール51に出力し、コントロールモジュール51は指令デューティをデューティ信号に変換して電磁バルブ13の励磁コイル15に出力する。2つのコントロールモジュール41、51を2本の通信線でつないでCAN通信を行うことで、多くの情報を少ない配線で通信することが可能である。
 この実施例では、指令デューティが大きいほど励磁コイル15の励磁電流が大きくなるように設定する。励磁コイル15の励磁電流が大きいほど連通孔10とバルブ本体18との間隔が大きくなり、貯溜室8から作動室9への作動液の流入量が増加する。指令デューティが0%の場合には、連通孔10はバルブ本体18に閉鎖され、貯溜室8から作動室9への作動液の流入量はゼロとなる。指令デューティが100%の場合には、貯溜室8から作動室9への作動液の流入量は最大となり、ファン回転速度Nfanは入力軸3の回転速度Ninに等しくなる。
 次に、エンジンコントロールモジュール41で実行されるファン回転速度の制御の概要を説明する。エンジンコントロールモジュール41は内燃エンジン31の運転条件に応じて目標ファン回転速度tNfanを設定する。エンジンコントロールモジュール41は、ファン回転速度センサ42が検出した実際のファン回転速度Nfanが目標ファン回転速度tNfanに一致するように指令デューティをフィードバック制御する。
 目標ファン回転速度tNfanは次のように設定される。
 例えば運転条件が冷媒温度Tw、エアコンディショナー運転負荷、及び車速の3つのパラメータで規定されるとする。エンジンコントロールモジュール41は、エアコンディショナー運転負荷と車速が一定なら、冷媒温度Twが高いほど目標ファン回転速度tNfanを高く設定する。冷媒温度Twが高いことは、ラジエータ23の放熱量を増やす必要があることを意味し、ラジエータ23の放熱量を増やすには、目標ファン回転速度tNfanを高くする必要があるからである。
 エンジンコントロールモジュール41は、冷媒温度Tw及び車速が一定なら、エアコンディショナー運転負荷が大きいほど目標ファン回転速度tNfanを高く設定する。
 また、エンジンコントロールモジュール41は、冷媒温度Twとエアコンディショナー運転負荷が一定ならば、車速が高いほど目標ファン回転速度tNfanを低く設定する。車速が高いほどラジエータ23に当たる走行風の量が増え、ラジエータ23からの放熱量が増える。したがって、同一の放熱量を得るには、ラジエータ23の放熱量の増大分相当、目標ファン回転速度tNfanを低くすれば良い。
 ところで、発明者らの研究によれば、励磁コイル15への通電を停止すべく指令デューティを0%に切り換えているにも拘わらず、バルブ本体18が連通孔10を閉じ得ないバルブ固着が生じることがある。以下の説明では、バルブ本体18が開いた状態で固着することをON固着と称する。
 ON固着が生じる原因として、連通孔10への異物の噛み込み、励磁コイル15を含む電磁バルブ13の電気回路の故障が考えられる。作動液に混入した異物が何かの拍子に連通孔10に噛み込むと、バルブ本体18が連通孔10を閉じることが物理的にできなくなり、貯留室8から作動室9及び流体カップリング12への作動液の供給を遮断できない状態となる。電磁バルブ13の電気回路が故障して、励磁コイル15への通電を停止できない状況に陥ると、バルブ本体18が連通孔10を閉鎖できず、貯留室8から作動室9及び流体カップリング12への作動液の供給を遮断できない状態となる。
 このように、バルブ本体18にON固着が生じると、冷却ファン21は入力軸3と同じ回転速度で回転し続けることになる。
 ファンカップリング装置1の入力軸3は内燃エンジン31に駆動される。バルブ本体18のON固着が生じると、必要がないにもかかわらず、内燃エンジン31が冷却ファン21を回転駆動し続けることになり、内燃エンジン31の負荷が増大する。エンジン負荷の増大は、排気ガスのボリューム増加を招き、排気エミッションを悪化させる可能性がある。
 一方、エンジンルーム内が過度に冷却されると、排気触媒の活性化が遅れる。排気触媒の活性化の生まれも排気エミッションの悪化の要因となる。したがって、バルブ本体18のON固着が生じているか否かを正確に診断して、対処することが必要である。
 バルブ本体18にON固着が生じているか否かを診断するためには、指令デューティを0%に切り換えた状態、すなわち励磁コイル15への通電停止が指示された状態で、ファン回転速度センサ42が検出する実際のファン回転速度Nfanが低下を示すかどうかを判定すれば良い。バルブ本体18にON固着が生じていなければ、励磁コイル15への通電停止が指示された状態で実際のファン回転速度Nfanはゼロに向けて低下するはずである。バルブ本体18にON固着が生じていれば、励磁コイル15への通電停止が指示された状態で実際のファン回転速度Nfanは入力軸3に略等しい回転速度を維持するはずである。
 FIG.3を参照すると、バルブ本体18にON固着が生じている場合には、バルブ本体18にON固着が生じていない場合と比べて、実際のファン回転速度Nfanが高くなる。図の横軸は入力軸3の回転速度Ninである。なお、以下の説明では入力軸3の回転速度Ninをファンカップリング装置1の入力回転速度Ninと称する。
 バルブ本体18にON固着が生じている場合には、実際のファン回転速度Nfanは入力回転速度Ninに一致する。したがって、ON固着が生じている場合のファン回転速度Nfanは図の領域Aに集まる。バルブ本体18にON固着が生じていない場合には、実際のファン回転速度Nfanは入力回転速度Ninから離れていく方向に低下するので、ON固着が生じていない場合のファン回転速度Nfanは領域Bに集まる。
 そこて、図の入力回転速度Ninより所定量低い、図の太実線に相当する回転速度をしきい値に設定し、励磁コイル15への通電停止が指示された状態で、実際のファン回転速度Nfanがしきい値以上であれば、バルブ本体18にON固着が生じていると判定することができる。励磁コイル15への通電停止が指示された状態で、実際のファン回転速度Nfanがしきい値未満であれば、バルブ本体18にON固着は生じていないと判定することができる。
 ただし、バルブ本体18にON固着が生じていない状態であっても励磁コイル15への通電停止を指示した場合に、実際のファン回転速度Nfanが入力回転速度Ninから直ちに低下を開始するわけでなく、しばらくは入力回転速度Ninに近い回転速度を保った後に低下を開始する。
 FIG.4を参照して、入力回転速度Nin、言い替えればエンジン回転速度Neが相対的に低い場合に、電磁バルブ13への指令デューティを100%から0%へと切り換えた場合、つまり励磁コイル15への通電状態から通電停止を指示した場合、の実際のファン回転速度Nfanの変化と、エンジンコントロールモジュール41が行うON固着の診断について説明する。
 バルブ本体18にON固着が生じている場合には、時刻t1に指令デューティを0%へと切り換えた後も、の一点鎖線に示す実際のファン回転速度Nfanは、破線に示す入力回転速度Ninと一致する。
 バルブ本体18にON固着が生じていない場合には、実際のファン回転速度Nfanは、時刻t1に指令デューティを0%へと切り換えた後しばらくの間は入力回転速度Ninに近い値を保ち、その後に入力回転速度Ninから離れてゼロに向けて低下する。
 バルブ本体18にON固着が生じていない場合に、時刻t1に指令デューティを0%に切り換えた後、実際のファン回転速度Nfanの低下が遅れる理由は、次の通りである。すなわち。ファンカップリング装置1ではトルクの伝達を粘性の作動液で行っており、バルブ本体18が連通孔10を閉じて作動室9への作動液の供給を停止しても、遠心力が弱い場合は粘性の作動液が作動室9や流体カップリング12から貯溜室8へと直ぐには戻らない。したがって、指令デューティを0%へと切り換えた後、ただちに実際のファン回転速度Nfanをしきい値と比較してもバルブ本体18のON固着を正確に判定できない。
 エンジンコントロールモジュール41は、指令デューティが0%へと切り換えた後、所定期間が経過したタイミングをバルブ本体18のON固着の診断タイミングに設定する。所定時間には、指令デューティを0%へと切り換えてから作動室9内の作動液が貯溜室8にすべて戻るまでの時間を設定する。具体的には、FIG.4に示すようにバルブ本体18にON固着が生じていない場合の実際のファン回転速度Nfanがしきい値を十分に下回る時刻t2のタイミングで診断を許可する。所定時間T1はしたがって、時刻t1から時刻t2までの時間である。エンジンコントロールモジュール41は、時刻t1から所定値T1が経過した時刻t2に診断許可条件を成立させ、バルブ本体18のON固着が生じているか否かを時刻t2以降に診断する。
 指令デューティを0%へと切り換えてから作動室9内の作動液の全量が貯溜室8に還流するまでの時間は、入力回転速度Ninが低いほど長い。ファンカップリング装置1は、ハウジング4が回転するのに伴って作動室9や流体カップリング12の残存作動液に働く遠心力を利用して、作動液を作動室9や流体カップリング12から貯溜室8へと戻す。この遠心力は入力回転速度Ninが低いほど小さい。したがって、作動室9内の作動液の全量が貯溜室8に還流するまでの時間は入力回転速度Ninが低いほど長くなる。
 入力回転速度Ninが低いほど所定時間T1が長くなるように設定することも好ましい。この設定により、入力回転速度Ninによらずに、作動室9内の作動液の全量が貯溜室8に還流した後に、バルブ本体18のON固着を診断でき、診断の遅れも最小限に留めることができる。
 FIG.5を参照して、この制御を実現するために、エンジンコントロールモジュール41が実行する電磁バルブの固着診断ルーチンを説明する。エンジンコントロールモジュール41はこのルーチンを内燃エンジン31の運転中に例えば10ミリ秒ごとの一定時間隔で繰り返し実行する。
 ステップS1で、エンジンコントロールモジュール41は指令デューティが0%であるかどうかを判定する。
 ステップS1の判定が否定的な場合には、エンジンコントロールモジュール41はステップS12でデューティOFFタイマをリセットしてルーチンを終了する。ステップS1の判定が肯定的な場合には、エンジンコントロールモジュール41はステップS2でデューティOFFタイマの値に1を加えることで、デューティOFFタイマをインクリメントする。デューティOFFタイマ値はしたがって、指令デューティが0%に切り換わってからの継続時間に対応する値であり、指令デューティが0%に維持される限り、ルーチン実行間隔ごとに1つずつカインクリメントされる値である。
 ステップS1は指令デューティが0%以外の場合には、バルブ本体18の固着判定を許可せずに、ルーチンを終了することを意味する。指令デューティが0%以外の場合は、連通孔10は完全に閉鎖されず、貯留室8から作動室9への作動液の供給は遮断されず、実際のファン回転速度Nfanは低下しない。この場合にバルブ本体18の固着判定を許可しないのは、この場合にバルブ本体18の固着診断を行うと、バルブ本体18が正常に機能しているにもかかわらず、ON固着が生じていると誤診断する可能性があるからである。
 なお、ステップS1で判定する指令デューティが0%であるかどうかを判定しているが、これは励磁コイル15への通電停止が指令デューティ0%で実現するという前提に基づく。励磁コイル15への通電停止を指令デューティ0%ではなく、0%に近い指令デューティ値によって実現させることも可能である。その場合には、ステップS1では指令デューティが励磁コイル15への通電停止を実現する指令デューティ値と比較する。
 ステップS3で、エンジンコントロールモジュール41はデューティOFFタイマ値が所定値T1以上であるかどうかを判定する。所定値T1は指令デューティを0%へと切り換えてから作動室9内の作動液の全量が排出されるまでの所要時間に相当する。
 FIG.6を参照すると、好ましくはコントロールモジュール41はROMにFIG.6に示す特性の所定値T1のマップをあらかじめ格納し、ルーチン実行に先立ち入力回転速度Ninからマップを参照して所定値T1を決定する。所定値T1のマップはあらかじめ実験やシミュレーションを行って設定する。FIG.6に示すように、所定値T1は入力回転速度Ninに依存し、入力回転速度Ninが低いほど長い。
 入力回転速度Ninはエンジン回転速度Neを用いて、次式(1)で計算する。
 Nin=Ne×プーリ比   (1)
 プーリ比はクランクプーリ33とプーリ34の径の比である。クランク角センサ43が検出するエンジン回転速度Neを用いる代わりに、入力軸3の回転速度を直接検出する入力回転速度センサを設けて、入力回転速度Ninを直接検出すすることも可能である。
 なお、FIG.6に示す特性のマップを用いる場合には、FIG.6のダイアグラムの横軸に設定された入力回転速度Ninをエンジン回転速度Neに置き換えることも可能である。
 あるいは、マップを参照する代わりに、入力回転速度Ninが低い場合でも作動液が作動室9から確実に排出される時間を、入力回転速度Ninに依存しない固定値としてあらかじめ設定し、この固定値をステップS3で比較対象とする所定値T1としてエンジンコントロールモジュール41のROMに格納することも可能である。
 ステップS3の判定が肯定的な場合は、エンジンコントロールモジュール41はステップS4の処理を行う。ステップS3の判定が否定的な場合は、エンジンコントロールモジュール41は直ちにルーチンを終了する。
 ステップS4で、エンジンコントロールモジュール41は冷媒温度センサ44が検出した冷媒温度Twが所定値T2以上かどうかを判定する。
 冷媒温度Twが低い場合には作動液が凍結している可能性があり、こうした状況でバルブ本体18にON固着が生じているか否かの診断を行うと誤診断を生じやすい。作動液が凍結すると、ファンカップリング装置1が正常に機能しない。ファンカップリング装置1が正常に機能しない状態では、ON固着が生じているか否かの診断を行うこと自体に意味がない。所定値T2は、例えば0℃に設定する。
 ステップS4の判定が肯定的な場合は、エンジンコントロールモジュール41はステップS5の処理を行う。ステップS4の判定が否定的な場合は、エンジンコントロールモジュール41は直ちにルーチンを終了する。
 ステップS5で、外気温センサ45が検出した外気温Taが所定値T3以上かどうかを判定する。外気温Taが低いときには作動液が凍結している可能性があり、こうした状況でバルブ本体18にON固着が生じているか否かの診断を行うと誤診断を生じやすい。作動液が凍結すると、ファンカップリング装置1が正常に機能しない。ファンカップリング装置1が正常に機能しない状態では、ON固着が生じているか否かの診断を行うこと自体に意味がない。所定値T3は例えば所定値T2と同じ0℃に設定する。
 ステップS5の判定が肯定的な場合は、エンジンコントロールモジュール41はステップS6の処理を行う。ステップS5の判定が否定的な場合は、エンジンコントロールモジュール41は直ちにルーチンを終了する。
 ステップS6で、エンジンコントロールモジュール41は内燃エンジン31の始動後、所定時間が経過したかどうかを判定する。内燃エンジン31の始動後の経過時間は、内燃エンジン31の起動を行うエンジンコントロールモジュール41が計測する。つまり、エンジンコントロールモジュール41が内燃エンジン31の始動後の経過時間を検出するセンサとして機能する。ステップS6の判定は次の理由で行われる。
 すなわち、内燃エンジン31が運転されていない状態で、作動室9や流体カップリング12に作動液が溜まっている場合がある。こうした場合に、内燃エンジン31の始動直後の指令デューティが0%であれば、エンジンコントロールモジュール41はステップS2以降の処理を実行する。始動直後の内燃エンジン31はアイドル運転状態にあり、入力回転速度Ninが低いため、作動室9や流体カップリング12に溜まっている作動液が貯溜室8へと還流するのに相当の時間を要する。還流が完了するまでは作動室9や流体カップリング12に作動油が残留し、この間はファン回転速度Nfanはなかなか低下しない。
 しかし、入力回転速度Ninが比較的高く、かつ作動液が凍結しない温度域にあれば、内燃エンジン31の始動後にステップS3からS5の条件が短時間でクリアされる。結果として、ファン回転速度Nfanが十分に低下しないうちに前述のしきい値との比較による固着判定が行われる可能性がある。
 ステップS6はこのように作動室9や流体カップリング12に作動液が溜まっている状態で内燃エンジン31が始動した場合を考慮して設定される。具体的には、内燃エンジン31の始動後、作動室9や流体カップリング12に溜まった作動液の貯留室8への還流が完了するまで、固着判定が行われないようにする。所定時間はこのための所要時間に相当する。エンジンコントロールモジュール41にはあらかじめFIG.7に示す特性の所定時間のマップが格納され、エンジンコントロールモジュール41は入力回転速度Ninからマップを検索して所定時間を算出する。FIG.7に示すように、このマップにおいては、入力回転速度Ninが低いほど所定時間が長くなるように設定される。
 以上のステップS1-S6の実行により、次の条件がすべて満たされるかどうかが判定される。
 (1)指令デューティが0%であること(ステップS1)。
 (2)デューティOFFタイマが所定値T1以上であること(ステップS3)。
 (3)冷媒温度Twが所定値T2以上であること(ステップS4)。
 (4)外気温Taが所定値T3以上であること(ステップS5)。
 (5)エンジン始動後所定時間が経過していること(ステップS6)。
 条件(1)-(5)のすべてを満足する場合に限って、エンジンコントロールモジュール41は診断許可条件が成立したと判断し、ステップS7以降の処理を行う。条件(1)-(5)のいずれかを満足しない場合には、診断を許可せずにルーチンを終了する。
 診断許可条件(1)-(5)がすべて成立する場合には、ステップS7-S12において、バルブ本体18にON固着が生じているか否かを診断する。
 まずステップS7で、ファン回転速度センサ42が検出する実際のファン回転速度Nfanとしきい値を比較する。エンジンコントロールモジュール41にはFIG.3に示す特性のマップがあらかじめROMに格納される。エンジンコントロールモジュール41がルーチン実行に先立って、入力回転速度Ninからマップを検索してしきい値を決定する。ステップS7用いるしきい値はこのようにして決定された値である。ステップS7で実際のファン回転速度Nfanがしきい値未満の場合は、エンジンコントロールモジュール41はステップS11に進み、診断タイマをリセットした後、ルーチンを終了する。
 ステップS7で実際のファン回転速度Nfanがしきい値以上の場合には、バルブ本体18にON固着が生じている可能性がある。この場合には、エンジンコントロールモジュール41はステップS8で、診断タイマ値に1を加えることで、診断タイマをインクリメントする。ルーチン実行間隔を10ミリ秒とすると、診断タイマ値のインクリメント単位は時間に換算して10ミリ秒に相当する。
 ステップS7、S8、及びS11の実行により、実際のファン回転速度Nfanがしきい値以上の状態の継続時間が計測される。
 ステップS9で、エンジンコントロールモジュール41は診断タイマ値が所定値T4以上かどうかを判定する。所定値T4は固定値であり、数秒に設定される。
 ステップS9の判定が肯定的な場合には、エンジンコントロールモジュール41はステップS10でバルブ本体18にON固着が生じていると判定する。この判定により、ON固着フラグをオンにする、あるいは表示装置にON固着の発生を警告するなどの措置が採られる。ステップS9の判定が否定的な場合には、エンジンコントロールモジュール41はルーチンを終了する。
 以上のルーチン実行により、入力軸3の回転速度変化に影響されずに電磁バルブの固着を正確に診断することができる。
 ステップS8とS9を設けたのは、実際のファン回転速度Nfanがしきい値以上となった状態が所定時間に渡って継続した場合に、初めてバルブ本体18にON固着が生じていると判定するためである。何かの拍子に一度のみ、実際のファン回転速度Nfanがしきい値以上となった場合に、バルブ本体18にON固着が生じたと誤判定されるのを防ぐことができる。
 再びFIG.4を参照すると、FIG.5のフローチャートのステップS6の判定が初めて肯定的に転じるタイミングがFIG.4の時刻t2に相当する。時刻t2は、FIG.5ステップS3で用いる所定値T1により定まる。時刻t2の診断タイミングでバルブ本体18にON固着が生じていない場合には、FIG.4の実線に示す実際のファン回転速度Nfanはしきい値より小さい。したがって、FIG.5のフローチャートでは、ステップS7よりステップS11に進んで、診断タイマがリセットされる。
 この診断装置によれば、バルブ本体18にON固着が生じていない場合には診断タイマ値が増加せず、診断タイマ値が所定値T4に達するまで、バルブ本体18にON固着が生じたと判定されない。例えば、時刻t2に実際のファン回転速度Nfanがしきい値を下回る場合でも、バルブ本体18にON固着が生じていないとは判定されず、ステップS11で診断タイマがリセットされるだけである。
 また、入力回転速度Ninが低速の状態で診断が開始される場合には、FIG.3のマップを参照して設定されるしきい値も小さな値となる。入力回転速度Ninが低速の場合は、実際のファン回転速度Nfanも低いが、しきい値も小さい値に設定されるので、実際のファン回転速度Nfanとしきい値との比較の結果、バルブ本体18にON固着が生じていない、との誤判定がなさされるおそれもない。
 時刻t2で実際のファン回転速度Nfanがしきい値を超えている場合でも、直ちにバルブ本体18にON固着が生じていると判定せず、エンジンコントロールモジュール41はステップS8で診断タイマ値をインクリメントする。そして、時刻t2から所定値T4が経過した時刻t3のタイミングまで、実際のファン回転速度Nfanがしきい値以上となる状態が継続することで、エンジンコントロールモジュール41はステップS10において初めてバルブ本体18にON固着が生じていると判定する。
 この診断装置においては指令デューティを0%へと切り換えたタイミングから作動室9内の作動液がすべて排出されるまでの時間を所定値T1として、デューティOFFタイマ値が所定値T1以上とならない限り、診断を許可しない。したがって、作動室9からの作動液の排出が遅れる場合でも、誤診断の恐れがない。さらに、所定値T1を入力回転速度Ninに応じて設定することで、入力回転速度Ninの違いが診断に影響を与えることもない。
 冷媒温度Twや外気温Taがそれぞれ氷温以下の場合には診断を行わないので、作動液の凍結が診断にもたらす影響をも排除できる。
 しきい値は入力回転速度Ninが高いほど大きな値に設定されるので、入力回転速度Ninが診断にもたらす影響も排除される。
 この診断装置によれば、したがって、バルブ本体18のON固着を精度良く判定できる。
 FIG.8とFIG.9を参照して、この発明の第2の実施例を説明する。
 FIG.8には、バルブ本体18にON固着が生じていない状態で指令デューティを0%へと切り換える場合及びバルブ本体18にON固着が生じている状態で指令デューティを0%へと切り換える場合の実際のファン回転速度Nfanの推移が、入力回転速度Ninが高い場合と低い場合について、それぞれ示されている。具体的には次の(1)-(4)のケースである。
 (1)ON固着がなく、入力回転速度Ninが高い場合:図の細実線
 (2)ON固着がなく、入力回転速度Ninが低い場合:図の太実線
 (3)ON固着があり、入力回転速度Ninが高い場合:図の細一点鎖線
 (4)ON固着があり、入力回転速度Ninが低い場合:図の太一点鎖線
 ケース(1)では、実際のファン回転速度Nfanの低下速度が相対的に大きく、実際のファン回転速度Nfanは早期に低下する。ケース(3)では実際のファン回転速度Nfanは低下しない。ケース(2)では、実際のファン回転速度Nfanの低下の速度が相対的に緩やかであるため、ケース(1)より遅れて実際のファン回転速度Nfanが低下する。ケース(4)では実際のファン回転速度Nfanは低下しない。
 したがって、指令デューティを0%へと切り換える時点における実際のファン回転速度Nfanが異なる場合には、適正な診断タイミングに違いが生じる。
 例えば、高入力回転速度用としきい値、低回転速度用のしきい値を図示のように設定し、ケース(1)と(3)で、時刻t11を診断開始タイミングとすれば、ON固着が生じているか否かを正しく判定することができる。一方、ケース(2)と(4)で、同じ時刻t11を診断開始タイミングとすると、ケース(4)に関して、実際のファン回転速度Nfanが低回転速度用しきい値以上となり、結果的にバルブ本体18にON固着が生じていると誤診断される。したがって、ケース(2)と(4)についてはケース(1)と(3)よりも、診断開始タイミングを遅らせる必要がある。
 この実施例では、ケース(2)と(4)では、実際のファン回転速度Nfanが低下して低回転速度用のしきい値を下回る時刻t12を診断開始タイミングに設定する。
 FIG.9を参照して、このためにエンジンコントロールモジュール41が実行する電磁バルブの固着診断ルーチンを説明する。エンジンコントロールモジュール41はこのルーチンをFIG.5のルーチンの代わりに実行する。ルーチン実行条件はFIG.5のルーチンと同じである。なお、説明の都合上、FIG.5のルーチンと同一処理を行うステップには同一のステップ番号を付す。
 このルーチンとFIG.5のルーチンとの主な相違は、次のとおりである。
 1)デューティOFFタイマを廃止し、ステップS2、S3、及びS13を廃止したこと、及び
 2)診断タイマに代えて診断カウンタを導入し、ステップS8、S9、及びS10に代えてステップS21-S24を設けたこと。
 このルーチンにおいては、ステップS1、S4、S5、及びS6の判定がすべて肯定的な場合に、エンジンコントロールモジュール41は診断許可条件が成立したと判定する。
 診断許可条件が成立したと判定すると、エンジンコントロールモジュール41はステップS7でファン回転速度センサ42が検出する実際のファン回転速度Nfanがしきい値以上であるかどうかを判定する。ここで用いるしきい値には、第1の実施例と同じ値が適用される。
 判定が否定的な場合には、エンジンコントロールモジュール41はステップS24に進んで診断カウンタをリセットした後、ルーチンを終了する。
 こを実施例においても、実際のファン回転速度Nfanがしきい値を下回る場合でも、バルブ本体18にON固着が生じていないとは判定されず、診断カウンタがリセットされるだけである。
 また、入力回転速度Ninが低速の状態で診断が開始される場合には、FIG.3のマップを参照して設定されるしきい値も小さな値となる。入力回転速度Ninが低速の場合は、実際のファン回転速度Nfanも低いが、しきい値も小さい値に設定されるので、実際のファン回転速度Nfanとしきい値との比較の結果、バルブ本体18にON固着が生じていない、との誤判定がなさされるおそれもない。
 一方、ステップS7の判定が肯定的な場合には、エンジンコントロールモジュール41はステップS21で、FIG.10に示す特性のあらかじめROMに格納されたマップを検索して、入力回転速度Ninからカウントアップ量を求める。
 次のステップS22で、エンジンコントロールモジュール41は次式(2)によりカウントアップ量を診断カウンタ値に加える。
 診断カウンタ値=診断カウンタ値(n-1)+カウントアップ量   (2)
 ただし、診断カウンタ値(n-1)=診断カウンタ値の前回値。
 診断カウンタは内燃エンジン31の始動とともにゼロにリセットされる。
 FIG.10を参照すると、カウントアップ量は、入力回転速度Ninが低いほど小さくなるように設定される。バルブ本体18にON固着が生じていない場合であっても、指令デューティを0%へと切り換える時刻t1の実際のファン回転速度Nfanが相対的に低い場合には、作動室9から作動液が排出されにくく、したがって実際のファン回転速度Nfanが低下しにくい。このマップによれは、入力回転速度Ninが低下するにつれて、したがって実際のファン回転速度Nfanが低下するにつれて、カウントアップ量も減少する。したがって、入力回転速度Ninが低い場合に、同じカウントアップ量を適用することで、バルブ本体18にON固着が生じていると誤診断するのを防止できる。
 ステップS23では診断カウンタ値が所定値T5以上かどうかを判定する。所定値T5は診断タイミングを定めるための値であり、あらかじめ実験やシミュレーションを行って設定する。エンジンコントロールモジュール41は診断カウンタ値が所定値T5未満である間は診断タイミングに到達していないと判断し、ルーチンを終了する。
 ステップS23において診断カウンタ値が所定値T5以上と判定された場合には、エンジンコントロールモジュール41はバルブ本体18にON固着が生じていると判定する。この判定により、ON固着フラグをオンにする、あるいは表示装置にON固着の発生を警告するなどの措置が採られる。
 この実施例においては、指令デューティを0%に切り換える時刻t1からカウントアップされる診断カウンタ値が所定値T5に達した後に、バルブ本体18のON固着が生じているかどうかを判定する。そして、カウントアップ量を入力回転速度Ninに基づき設定する。
 再びFIG.8を参照すると、FIG.9のルーチン実行により、ケース(4)の診断カウンタのカウントアップ量は、ケース(3)の診断カウンタのカウントアップ量より小さく設定される。ケース(3)の診断カウンタ値は時刻t11に所定値T5に到達し、ケース(4)の診断カウンタ値はケース(3)の診断カウンタ値より遅れた時刻t12に所定値T5に到達する。
 この実施例によれば、指令デューティを0%へと切り換える際の入力回転速度Ninに応じて、バルブ本体18にON固着が生じているかどうかの判定タイミングが変化する。したがって、この実施例によっても入力軸3の回転速度変化に影響されずに電磁バルブの固着を正確に診断することができる。
 以上の説明に関して2009年12月17日を出願日とする日本国における特願2009-286099号、の内容をここに引用により合体する。
 以上、この発明をいくつかの特定の実施例を通じて説明してきたが、この発明は上記の各実施例に限定されるものではない。当業者にとっては、クレームの技術範囲でこれらの実施例にさまざまな修正あるいは変更を加えることが可能である。
 例えば、FIG.5とFIG.9のフローチャートのステップS4-S6の判定は内燃エンジン31の運転条件が、バルブ本体18のON固着の判定に適しているかどうかを判定するステップであるが、冷媒温度Tw、外気温Ta、及びエンジン始動後経過時間を用いて行うステップS4-S6の判定は、内燃エンジン31の運転条件がバルブ本体18のON固着の判定に適しているかどうかの判定のあくまでも一例である。
 例えば、これらのいずれかのパラメータのみを用いて内燃エンジン31の運転条件がバルブ本体18のON固着の判定に適しているかどうかを判定する場合や、これらのパラメータに代えて別のパラメータを用いて同様の判定を行うことも可能である。
 以上のように、この発明は車両用のファンカップリング装置の故障診断に適している。
 この発明の実施例が包含する排他的性質あるいは特長は以下のようにクレームされる。

Claims (11)

  1.  内燃エンジン(31)と、内燃エンジン(31)の冷媒を冷却するラジエータ(23)に冷却風を送風する冷却ファン(21)と、を接続し、
     内燃エンジン(31)に回転駆動される入力軸(3)と;
     入力軸(3)から冷却ファン(21)へ流体を介してトルクを伝達する流体カップリング(12)と;
     流体カップリング(12)に介在する流体量を、流体量を増量させるリフト位置と流体量を減少させる閉鎖位置の間で通電に応じて変位するバルブ本体(18)により調整する電磁バルブ(13)と;
     を備えるファンカップリング装置(1)とともに用いて、バルブ本体(18)がリフト位置に固着したかどうかを診断する診断装置において:
     冷却ファン(21)の回転速度(Nfan)を検出するセンサ(42)と;
     次のようにプログラムされたコントローラ(41);
     バルブ本体(18)を閉鎖位置に戻す信号を出力し(S1);
     信号の出力から所定時間(T1)が経過した後に(S4)、冷却ファン(21)の回転速度(Nfan)に基づきバルブ本体(18)のリフト位置への固着判定を開始する(S7-S10);
     を備えるファンカップリング装置(1)の診断装置。
  2.  所定時間(T1)は、信号の出力から、流体カップリング(12)から流体が排除されるまでの時間である、請求項1のファンカップリング装置(1)の診断装置。
  3.  コントローラ(41)は固着判定の開始がら所定期間に渡って冷却ファン(21)の回転速度(Nfan)がしきい値を上回る場合に、バルブ本体(18)がリフト位置に固着したと判定するよう(S9,S10)、さらにプログラムされる請求項1または2のファンカップリング装置(1)の診断装置。
  4.  入力軸(3)の回転速度を検出するセンサ(43)をさらに備え、コントローラ(41)は入力軸(3)の回転速度が高いほどしきい値を大きく設定するように、さらにプログラムされる、請求項3のファンカップリング装置(1)の診断装置。
  5.  コントローラ(41)は所定時間を入力軸(3)の回転速度が低いほど、長く設定するように、さらにプログラムされる、請求項4のファンカップリング装置(1)の診断装置。
  6.  内燃エンジン(31)の運転条件を検出するセンサをさらに備え、コントローラ(41)は内燃エンジン(31)の運転条件が所定条件を満たしているかどうかを判定し(S4-S6)、内燃エンジン(31)の運転条件が所定条件を満たしていない場合には、バルブ本体(18)のリフト位置への固着判定を開始させないよう、さらにプログラムされる、請求項1から5のいずれかのファンカップリング装置(1)の診断装置。
  7.  内燃エンジン(31)の運転条件を検出するセンサは内燃エンジン(31)が始動してからの経過時間を検出するセンサを含み、コントローラ(41)は内燃エンジン(31)が始動してからの経過時間が所定時間に達していない場合には、内燃エンジン(31)の運転条件が所定条件を満たしていないと判定するよう(S5)、さらにプログラムされる、請求項6のファンカップリング装置(1)の診断装置。
  8.  内燃エンジン(31)の運転条件を検出するセンサは外気温を検出するセンサ(46)を含み、コントローラ(41)は外気温が所定温度より低い場合には、内燃エンジン(31)の運転条件が所定条件を満たしていないと判定するよう(S5)、さらにプログラムされる、請求項6または7のファンカップリング装置(1)の診断装置。
  9.  内燃エンジン(31)の運転条件を検出するセンサは冷媒温度を検出するセンサ(44)を含み、コントローラ(41)は冷媒温度が所定温度より低い場合には、内燃エンジン(31)の運転条件が所定条件を満たしていないと判定するよう(S4)、さらにプログラムされる、請求項6から8のいずれかのファンカップリング装置(1)の診断装置。
  10.  内燃エンジン(31)と、内燃エンジン(31)の冷媒を冷却するラジエータ(23)に冷却風を送風する冷却ファン(21)と、を接続し、
     内燃エンジン(31)に回転駆動される入力軸(3)と;
     入力軸(3)から冷却ファン(21)へ流体を介してトルクを伝達する流体カップリング(12)と;
     流体カップリング(12)に介在する流体量を、流体量を増量させるリフト位置と流体量を減少させる閉鎖位置の間で通電に応じて変位するバルブ本体(18)により調整する電磁バルブ(13)と;
     を備えるファンカップリング装置(1)とともに用いて、バルブ本体(18)がリフト位置に固着したかどうかを診断する診断装置において:
     冷却ファン(21)の回転速度を検出する手段(42)と;
     バルブ本体(18)を閉鎖位置に戻す信号を出力する手段(41)と;
     信号の出力から所定時間(T1)が経過した後に、冷却ファン(21)の回転速度に基づきバルブ本体(18)のリフト位置への固着判定を開始する手段(41)と;
     を備えるファンカップリング装置(1)の診断装置。
  11.  内燃エンジン(31)と、内燃エンジン(31)の冷媒を冷却するラジエータ(23)に冷却風を送風する冷却ファン(21)と、を接続し、
     内燃エンジン(31)に回転駆動される入力軸(3)と;
     入力軸(3)から冷却ファン(21)へ流体を介してトルクを伝達する流体カップリング(12)と;
     流体カップリング(12)に介在する流体量を、流体量を増量させるリフト位置と流体量を減少させる閉鎖位置の間で通電に応じて変位するバルブ本体(18)により調整する電磁バルブ(13)と;
     を備えるファンカップリング装置(1)とともに用いて、バルブ本体(18)がリフト位置に固着したかどうかを診断する診断方法において:
     冷却ファン(21)の回転速度を検出し;
     バルブ本体(18)を閉鎖位置に戻す信号を出力し;
     信号の出力から所定時間(T1)が経過した後に、冷却ファン(21)の回転速度に基づきバルブ本体(18)のリフト位置への固着判定を開始する、
     ファンカップリング装置(1)の診断方法。
     
PCT/JP2010/069585 2009-12-17 2010-11-04 ファンカップリング装置の診断装置及び診断方法 WO2011074343A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080057148.9A CN102656347B (zh) 2009-12-17 2010-11-04 风扇联轴器装置的诊断装置及诊断方法
EP10837372.1A EP2514943B1 (en) 2009-12-17 2010-11-04 Diagnostic method and diagnostic device for fan coupling device
US13/515,352 US8763448B2 (en) 2009-12-17 2010-11-04 Diagnosis device and diagnosis method for fan coupling device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-286099 2009-12-17
JP2009286099A JP5018873B2 (ja) 2009-12-17 2009-12-17 ファンカップリング装置の診断装置

Publications (1)

Publication Number Publication Date
WO2011074343A1 true WO2011074343A1 (ja) 2011-06-23

Family

ID=44167108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069585 WO2011074343A1 (ja) 2009-12-17 2010-11-04 ファンカップリング装置の診断装置及び診断方法

Country Status (5)

Country Link
US (1) US8763448B2 (ja)
EP (1) EP2514943B1 (ja)
JP (1) JP5018873B2 (ja)
CN (1) CN102656347B (ja)
WO (1) WO2011074343A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102758681A (zh) * 2012-06-25 2012-10-31 苏州睿昕汽车配件有限公司 新型电子硅油离合器
JP2014104880A (ja) * 2012-11-28 2014-06-09 Advics Co Ltd 電動ブレーキ制御装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012220406A1 (de) * 2012-11-09 2014-05-28 Robert Bosch Gmbh Verfahren zur Ermittlung der Geschwindigkeit eines Fahrtwindes und einer Windgeschwindigkeit
US9982728B2 (en) * 2014-10-22 2018-05-29 General Electric Company System and method for auxiliary clutch failure detection
US10655688B2 (en) * 2018-02-16 2020-05-19 Standard Motor Products, Inc. Fan-coupling device with unitary magnetic pole construction

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004144142A (ja) * 2002-10-22 2004-05-20 Usui Kokusai Sangyo Kaisha Ltd 外部制御式ファン・カップリング装置
JP2007321622A (ja) 2006-05-31 2007-12-13 Hino Motors Ltd ファンクラッチの異常検知方法及び装置
JP2009057864A (ja) * 2007-08-30 2009-03-19 Toyota Motor Corp 車両の制御装置、制御方法およびその方法をコンピュータで実現されるプログラムならびにそのプログラムを記録した記録媒体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59181217U (ja) * 1983-05-23 1984-12-03 日産ディーゼル工業株式会社 内燃機関の冷却フアン制御装置
US5765672A (en) * 1996-08-16 1998-06-16 Horton, Inc. Overheating protection device for rotational control apparatus
US5931273A (en) * 1997-10-14 1999-08-03 Behr America, Inc. Fluid coupling for engine cooling fan
EP1248007B1 (de) * 2001-04-06 2004-01-14 BorgWarner Inc. Flüssigkeitsreibungskupplung
JP4122731B2 (ja) 2001-06-25 2008-07-23 トヨタ自動車株式会社 蓄熱装置を備えた内燃機関
JP2004340373A (ja) 2003-04-21 2004-12-02 Usui Kokusai Sangyo Kaisha Ltd 外部制御式ファンクラッチの制御方法
US7415945B2 (en) * 2005-05-13 2008-08-26 Borgwarner Inc. Fluid actuated fan control method for a vehicle
US8602190B2 (en) * 2008-05-13 2013-12-10 Borgwarner Inc. Electronically controlled viscous fan drive with bushing
CN201354673Y (zh) 2009-02-27 2009-12-02 苏州睿昕汽车配件有限公司 硅油风扇离合器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004144142A (ja) * 2002-10-22 2004-05-20 Usui Kokusai Sangyo Kaisha Ltd 外部制御式ファン・カップリング装置
JP2007321622A (ja) 2006-05-31 2007-12-13 Hino Motors Ltd ファンクラッチの異常検知方法及び装置
JP2009057864A (ja) * 2007-08-30 2009-03-19 Toyota Motor Corp 車両の制御装置、制御方法およびその方法をコンピュータで実現されるプログラムならびにそのプログラムを記録した記録媒体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102758681A (zh) * 2012-06-25 2012-10-31 苏州睿昕汽车配件有限公司 新型电子硅油离合器
JP2014104880A (ja) * 2012-11-28 2014-06-09 Advics Co Ltd 電動ブレーキ制御装置

Also Published As

Publication number Publication date
EP2514943A1 (en) 2012-10-24
EP2514943B1 (en) 2019-01-23
CN102656347A (zh) 2012-09-05
EP2514943A4 (en) 2018-03-14
US20120247196A1 (en) 2012-10-04
JP2011127496A (ja) 2011-06-30
US8763448B2 (en) 2014-07-01
JP5018873B2 (ja) 2012-09-05
CN102656347B (zh) 2014-09-24

Similar Documents

Publication Publication Date Title
RU2620928C2 (ru) Способ для системы охлаждения двигателя (варианты) и система транспортного средства
RU2620467C2 (ru) Способ диагностирования системы охлаждения двигателя (варианты) и система транспортного средства
RU2637274C2 (ru) Способ, способ для транспортного средства и система транспортного средства
RU2602845C2 (ru) Способ диагностики системы охлаждения транспортного средства (варианты) и транспортное средство
US8770834B2 (en) Thermostat diagnostic apparatus
US6588380B2 (en) Cooling system for a motor vehicle comprising a closing unit for the cooling airflow
US9677458B2 (en) Temperature control device for internal combustion engine
WO2011074343A1 (ja) ファンカップリング装置の診断装置及び診断方法
JP3849707B2 (ja) 筒内噴射式内燃機関の制御装置
US6532808B1 (en) Thermostat failure diagnosis apparatus for internal combustion engine
US5724941A (en) Malfunction diagnosis device of an internal combustion engine controller
JP3419225B2 (ja) エンジン冷却系のサーモスタット故障検出装置
WO2010143265A1 (ja) 内燃機関の制御装置
KR100191686B1 (ko) 라디에이터 냉각팬 시스템의 이상 검출장치
CN107795367A (zh) 内燃机的控制系统
KR20190028087A (ko) 피스톤 쿨링 장치 고장 진단 방법 및 진단 시스템
US7299993B2 (en) Apparatus for detecting a failure of a thermostat for an engine
US10767548B2 (en) Failure diagnosis method of coolant temperature sensor for vehicle
CN110848874B (zh) 一种空调冷媒泄漏的检测方法及装置
JP3905157B2 (ja) ラジエータファンシステムの故障診断装置
US20230181956A1 (en) Vehicle fire suppression system and control method thereof
JP5878052B2 (ja) エンジンの制御装置
JP2013044295A (ja) エンジン冷却装置
KR101724495B1 (ko) 냉각수 제어밸브의 최적 제어를 위한 학습방법 및 냉각수 제어밸브를 갖는 엔진시스템
JP3719515B2 (ja) エンジン冷却系のサーモスタット故障検出装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080057148.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837372

Country of ref document: EP

Kind code of ref document: A1

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837372

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13515352

Country of ref document: US

Ref document number: 2010837372

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE