WO2022228017A1 - P0混动车辆的蠕行控制方法、装置以及p0混动车辆 - Google Patents

P0混动车辆的蠕行控制方法、装置以及p0混动车辆 Download PDF

Info

Publication number
WO2022228017A1
WO2022228017A1 PCT/CN2022/084206 CN2022084206W WO2022228017A1 WO 2022228017 A1 WO2022228017 A1 WO 2022228017A1 CN 2022084206 W CN2022084206 W CN 2022084206W WO 2022228017 A1 WO2022228017 A1 WO 2022228017A1
Authority
WO
WIPO (PCT)
Prior art keywords
creep
vehicle
engine
speed
information
Prior art date
Application number
PCT/CN2022/084206
Other languages
English (en)
French (fr)
Inventor
张春美
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Publication of WO2022228017A1 publication Critical patent/WO2022228017A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18063Creeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2063Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for creeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present disclosure relates to the technical field of vehicles, and in particular, to a creep control method and device for a P0 hybrid vehicle, and a P0 hybrid vehicle.
  • the realization of the creeping function of conventional fuel vehicles depends on the combustion of the engine. On the one hand, it satisfies the stable operation of the engine itself at idle speed, and on the other hand, it meets the creeping torque requirements of the TCU (English: Transmission Control Unit, Chinese: Automatic Transmission Control Unit). Cooperate with DCT (English: Dual Clutch Transmission, Chinese: Dual Clutch Transmission) to achieve stable creeping state of the vehicle.
  • the purpose of the present disclosure is to provide a creep control method and device for a P0 hybrid vehicle and a P0 hybrid vehicle, so as to reduce the running time of the engine when the vehicle creeps.
  • a first aspect of the present disclosure provides a creep control method for a P0 hybrid vehicle, including:
  • the operating parameter information of the vehicle determine whether the vehicle meets the activation condition of the electric creep state
  • controlling the engine of the vehicle to reduce the speed, and controlling the speed of the engine when the difference between the speed of the engine and the preset creep speed is not greater than a preset threshold The engine stops fuel injection;
  • the control BSG (English: Belt-Driven Starter Generator Chinese: Belt Drive Starter/Generation Integrated Motor) motor drives the crankshaft of the engine to rotate, so that the vehicle creeps.
  • the operating parameter information includes first operating parameter information and second operating parameter information, wherein the first operating parameter information includes: gear information, accelerator information, and braking information;
  • the second operating parameter information includes: power information, power battery discharge power information, output torque information of the BSG motor, stop prohibition request information, DC-DC converter working status information, automatic driving information and gradient information.
  • the determining whether the vehicle meets the activation condition of the electric creep state according to the operating parameter information of the vehicle includes:
  • the first operating parameter information includes: gear information, accelerator information, and braking information; correspondingly, the creep activation condition includes: the gear information indicates that the current gear is D gear or R gear gear, the accelerator information indicates that the accelerator control command is not currently received, and the braking information indicates that the braking command is not currently received;
  • the second operating parameter information includes: power information, power battery discharge power information, output torque information of the BSG motor, stop request information, DC-DC converter working status information, automatic driving information, and gradient information; corresponding
  • the activation conditions for the electric creep state include: the power information indicates that the power-on detection is normal and the engine is currently running; the power battery discharge power information indicates that the available discharge power of the power battery is greater than a preset power; The output torque information of the BSG motor represents that the available output torque of the BSG motor is greater than the preset torque, the stop prohibition request information represents that no stop prohibit command is currently received, and the DC-DC converter working state information represents the The DC-DC converter works normally, the automatic driving information indicates that there is currently no automatic driving process, and the gradient information indicates that the current road gradient is lower than a preset gradient value.
  • the method further includes:
  • the engine is controlled to work according to the creeping rotational speed, so that the vehicle creeps.
  • controlling the BSG motor to drive the crankshaft of the engine to rotate according to the creeping speed includes:
  • the target torque is determined, and the BSG motor is controlled to output the target torque.
  • the determining of the creep torque required by the BSG motor to maintain the creep of the vehicle includes:
  • the method further includes:
  • the engine In the case of receiving an acceleration command, the engine is controlled to start with fuel injection.
  • the method further includes:
  • the BSG motor In the case of receiving a braking command, the BSG motor is controlled to stop running.
  • a second aspect of the present disclosure provides a creep control device for a P0 hybrid vehicle, including:
  • a determining module configured to determine whether the vehicle meets the activation condition of the electric creep state according to the operating parameter information of the vehicle
  • a control module configured to control the engine of the vehicle to reduce the speed in response to satisfying the activation condition of the electric creep state, and control the engine speed to reduce the speed when the difference between the speed of the engine and the preset creep speed is not greater than a preset threshold. in the case of controlling the engine to stop fuel injection;
  • the control module is further configured to control the BSG motor to drive the crankshaft of the engine to rotate according to the creep speed, so as to make the vehicle creep.
  • the determining module includes:
  • a first determination submodule configured to determine whether the vehicle meets the creep activation condition according to the first operating parameter information of the vehicle
  • the second determination sub-module is configured to determine whether the vehicle meets the electrical requirements according to the second operating parameter information of the vehicle when the first determination sub-module determines that the vehicle satisfies the creep activation condition. Creep state activation condition.
  • control module is further configured to:
  • the second determination sub-module determines that the vehicle does not meet the electric creep state activation condition, according to the creep
  • the running speed controls the operation of the engine to make the vehicle creep.
  • control module is configured to control the BSG motor to drive the crankshaft of the engine to rotate according to the creep speed in the following manner:
  • the target torque is determined, and the BSG motor is controlled to output the target torque.
  • control module is configured to determine the creep torque required by the BSG motor to maintain vehicle creep by:
  • control module is further configured to:
  • the engine is controlled to inject fuel to start when an acceleration command is received.
  • control module is further configured to:
  • the BSG motor After the BSG motor is controlled to drive the crankshaft of the engine to rotate according to the creep speed, so that the vehicle creeps, the BSG motor is controlled to stop running when a braking command is received.
  • a third aspect of the present disclosure provides a creep control device for a P0 hybrid vehicle, including:
  • a processor when the program is executed by the processor, the method provided by the first aspect of the present disclosure can be implemented.
  • a fourth aspect of the present disclosure provides a P0 hybrid vehicle, including the device provided in the second aspect of the present disclosure, or the device provided in the third aspect of the present disclosure.
  • a fifth aspect of the present disclosure provides a computing processing device, including:
  • the computing processing device executes the creep control of the PO hybrid vehicle provided by the embodiment of the first aspect of the present disclosure method.
  • a sixth aspect of the present disclosure provides a computer program, including computer-readable codes, which, when the computer-readable codes are executed on a computing and processing device, cause the computing and processing device to execute the first aspect of the present disclosure.
  • the creep control method of the P0 hybrid vehicle proposed by the aspect embodiment.
  • the seventh aspect of the present disclosure provides a computer-readable storage medium, in which the computer program proposed by the sixth aspect of the present disclosure is stored.
  • the engine when the vehicle meets the activation condition of the electric creep state, the engine can be controlled to stop fuel injection, and the crankshaft of the engine can be driven to rotate through the BSG motor, so as to drive the vehicle to creep through the BSG motor.
  • the running time of the engine when the vehicle is creeping can be reduced, thereby reducing carbon deposits in the engine caused by incomplete fuel combustion, and facilitating the prolongation of the service life of the engine.
  • it can not only reduce the harmful exhaust gas produced by the engine due to incomplete combustion of fuel, but also prevent the engine from igniting frequently.
  • driving the vehicle to creep through the BSG motor can also reduce noise, improve the stability of the vehicle when creeping, and improve the user's driving experience.
  • the vehicle when the vehicle satisfies the activation condition of the electric creep state, first reduce the speed of the engine, and when the difference between the speed of the engine and the creep speed is not greater than the preset threshold, that is, the speed of the engine is close to the creep speed.
  • control the engine In the case of running speed, control the engine to stop fuel injection, and then control the BSG motor to drive the crankshaft of the engine to rotate according to the creep speed, so that the crankshaft of the engine runs at a speed close to the creep speed, so that the vehicle creeps.
  • FIG. 1 is a partial structural schematic diagram of a P0 hybrid vehicle according to an exemplary embodiment of the present disclosure
  • FIG. 2 is a flowchart of a creep control method for a P0 hybrid vehicle according to an exemplary embodiment of the present disclosure
  • FIG. 3 is a start-stop timing diagram of an engine of a P0 hybrid vehicle according to an exemplary embodiment of the present disclosure
  • FIG. 4 is a flowchart of a creep control method for a P0 hybrid vehicle according to another exemplary embodiment of the present disclosure
  • FIG. 5 is a flowchart of a creep control method for a P0 hybrid vehicle according to another exemplary embodiment of the present disclosure
  • FIG. 6 is a structural block diagram of a creep control device for a P0 hybrid vehicle according to an exemplary embodiment of the present disclosure
  • FIG. 7 is a structural block diagram of a creep control device for a P0 hybrid vehicle according to another exemplary embodiment of the present disclosure.
  • FIG. 8 provides a schematic structural diagram of a computing processing device according to an embodiment of the present disclosure.
  • FIG. 9 provides a schematic diagram of a storage unit for portable or fixed program code implementing the method according to the present disclosure according to an embodiment of the present disclosure.
  • FIG. 1 is a partial structural schematic diagram of a P0 hybrid vehicle according to an exemplary embodiment of the present disclosure
  • FIG. 2 is a flowchart of a creep control method for a P0 hybrid vehicle according to an exemplary embodiment of the present disclosure.
  • a first aspect of the present disclosure provides a creep control method for a P0 hybrid vehicle, the method may include:
  • Step S11 according to the operating parameter information of the vehicle, determine whether the vehicle satisfies the activation condition of the electric creeping state.
  • Step S12 in response to satisfying the activation condition of the electric creep state, control the engine of the vehicle to reduce the speed, and control the engine to stop fuel injection when the difference between the engine speed and the preset creep speed is not greater than a preset threshold.
  • the vehicle should be adjusted to the electric creeping state at this time, that is, the vehicle creeping is driven by the BSG motor (for example, it can be a 48V BSG motor).
  • the BSG motor for example, it can be a 48V BSG motor.
  • the engine of the vehicle is controlled to reduce the rotational speed so that the rotational speed of the engine continues to decrease.
  • the difference between the rotational speed of the engine and the preset creeping rotational speed is not greater than the preset threshold, that is, the current engine rotational speed is close to the creeping rotational speed, Control the engine to stop fuel injection to stop the engine.
  • Step S13 according to the creep speed, the BSG motor is controlled to drive the crankshaft of the engine to rotate, so that the vehicle creeps.
  • the BSG motor is controlled to drive the crankshaft of the engine to rotate, so that the speed of the crankshaft of the engine is close to the creeping speed.
  • the crankshaft of the engine transmits power to the wheels through transmission mechanisms such as gearboxes, and the wheels rotate to drive the vehicle to creep. .
  • the method in this example can be configured in the HCU (English: Hybrid Vehicle Control Unit, Chinese: Hybrid Vehicle Controller), and when the vehicle satisfies the activation condition of the electric creep state, the HCU can send a message to the engine controller.
  • the engine controller controls the engine to reduce the fuel injection amount by the first trigger signal used to indicate the reduction of the rotational speed, thereby reducing the rotational speed of the engine.
  • the HCU Under the condition that the difference between the engine speed and the creep speed is not greater than a preset threshold, the HCU can send a second trigger signal to the engine controller for instructing to stop fuel injection, so that the engine controller controls the engine to stop fuel injection. Oil.
  • the HCU can control the BSG motor to work according to the creep speed, so as to drive the vehicle to creep through the BSG motor.
  • the P0 hybrid vehicle may include a power battery 40 , a BSG motor controller 30 , a BSG motor 20 , an engine 10 , a transmission 50 and wheels 60 .
  • the crankshaft of the engine 10 can be connected with the input end of the gearbox 50, and the output end of the gearbox 50 can be connected with the wheels 60 through a transmission mechanism.
  • the BSG motor 20 can be connected to the crankshaft of the engine 10 through a belt, the power battery 40 supplies power to the BSG motor 20 , and the BSG motor controller 30 is connected in communication with the BSG motor 20 .
  • the BSG motor controller 30 can control the BSG motor 20 to work according to the creeping speed, so that the BSG motor 20 drives the crankshaft of the engine 10 to rotate through the belt, so that the speed of the crankshaft of the engine 10 is close to creeping Rotating speed.
  • the running time of the engine when the vehicle is creeping can be reduced, thereby reducing carbon deposits in the engine caused by incomplete fuel combustion, and facilitating the prolongation of the service life of the engine. At the same time, it can not only reduce the harmful exhaust gas produced by the engine due to incomplete combustion of fuel, but also prevent the engine from igniting frequently. It should also be pointed out that driving the vehicle to creep through the BSG motor can also reduce noise, improve the stability of the vehicle when creeping, and improve the user's driving experience.
  • FIG. 3 is a start-stop timing diagram of an engine of a P0 hybrid vehicle according to an exemplary embodiment of the present disclosure.
  • the state machine of the engine can enter the stop intention phase (Stop prepare phase) from the normal operation phase (Run phase), and the engine speed begins to decrease.
  • the state machine enters the electric creep state stage (Stop eidle stage) from the stop intention stage. At this time, the engine speed gradually decreases.
  • the The engine stops fuel injection (for example, the engine can be requested to stop fuel injection for the HCU), and the BSG motor drives the crankshaft of the engine to rotate (that is, the idle speed of the engine is realized by the BSG motor), so as to realize the creeping of the vehicle.
  • fuel injection for example, the engine can be requested to stop fuel injection for the HCU
  • BSG motor drives the crankshaft of the engine to rotate (that is, the idle speed of the engine is realized by the BSG motor), so as to realize the creeping of the vehicle.
  • FIG. 4 is a flowchart of a creep control method for a P0 hybrid vehicle according to another exemplary embodiment of the present disclosure.
  • the operating parameter information may include first operating parameter information and second operating parameter information, and determining whether the vehicle satisfies the electric creep state activation condition according to the operating parameter information of the vehicle may include the following steps:
  • Step S111 according to the first operating parameter information of the vehicle, determine whether the vehicle satisfies the creep activation condition.
  • the vehicle will enter the creep state.
  • Step S112 in the case that it is determined that the vehicle meets the creeping activation condition, it is determined whether the vehicle meets the electric creeping state activation condition according to the second operating parameter information of the vehicle.
  • steps S12 and S13 are performed to drive the vehicle to creep by the BSG motor.
  • the first operating parameter information may include: gear information, accelerator information, and braking information; correspondingly, the creep activation condition may include: the gear information indicates that the current gear is D gear or R gear, and the accelerator information It indicates that the accelerator control command is not currently received and the braking information indicates that the braking command is not currently received.
  • the first operating parameter information may further include vehicle speed information
  • the creep activation condition may further include vehicle speed information indicating that the current vehicle speed of the vehicle is lower than a preset speed.
  • the second operating parameter information may include: power information, power battery discharge power information, output torque information of the BSG motor, stop-prohibition request information, DC-DC converter working status information, automatic driving information, and gradient information;
  • the creeping state activation conditions may include: power information indicating that the power-on detection is normal and the engine is currently running, power battery discharge power information indicating that the available discharge power of the power battery is greater than the preset power, and the output torque information of the BSG motor indicating the available output of the BSG motor The torque is greater than the preset torque, the stop-stop request information indicates that no stop-stop command is currently received, the DC-DC converter working status information indicates that the DC-DC converter is working normally, the automatic driving information indicates that there is no automatic driving process at present, and the gradient information indicates that the current The road gradient is lower than the preset gradient value.
  • the preset power is greater than the minimum discharge power of the power battery required by the BSG motor to maintain vehicle creep
  • the preset torque is greater than the minimum torque required by the BSG motor to maintain vehicle creep, so as to ensure that the BSG motor can provide sufficient power.
  • the shutdown prohibition request information indicates that the shutdown prohibition command is not currently received, and may include ESP (English: Electronic Stability Program, Chinese: Body Electronic Stability System), TCU, EMS (English: Engine Management System, Chinese: Engine Management System) ) and ACCU (English: Air conditioner condensing unit, Chinese: Air Conditioning Controller Unit) neither issued a shutdown prohibition order.
  • the automatic driving information indicates that there is currently no automatic driving process, and may include ACC (English: Adaptive Cruise Control, Chinese: Adaptive Cruise Control) and APS (English: Automated Parking System, Chinese: Automatic Parking System) currently both. inactivated.
  • ACC English: Adaptive Cruise Control
  • APS English: Automated Parking System
  • Chinese Automatic Parking System
  • the second operating parameter information may further include temperature information of the power battery.
  • the electric creep state activation condition may further include the temperature information of the power battery indicating that the temperature of the power battery is lower than the preset temperature, so that the power The temperature of the battery is within the allowable range to ensure the safety of the power battery.
  • the second operating parameter information may further include state-of-charge information of the power battery.
  • the electric creep state activation condition may further include the state-of-charge information of the power battery indicating that the power of the power battery is higher than the preset power level. value to avoid a low power battery situation when the engine is started.
  • the second operating parameter information may further include rotation angle information of the steering wheel.
  • the electric creep state activation condition may further include rotation angle information of the steering wheel indicating that the current steering angle is smaller than a preset angle.
  • the driver may only make a low-speed turn for safety reasons, and the current driver may not have the intention of creeping. The above solution can prevent the vehicle from entering creeping by mistake and affecting driving. driver's driving experience.
  • FIG. 5 is a flowchart of a creep control method for a P0 hybrid vehicle according to yet another exemplary embodiment of the present disclosure. Referring to Figure 5, the method may include:
  • Step S21 obtaining operating parameter information of the vehicle, wherein the operating parameter information may include first operating parameter information and second operating parameter information;
  • Step S22 according to the first operating parameter information of the vehicle, determine whether the vehicle meets the creeping activation condition, and generate a first judgment result
  • step S23 is executed to determine whether the vehicle meets the activation condition of the electric creeping state according to the second operating parameter information of the vehicle, and a second judgment result is generated;
  • Step S24 the engine operation is controlled according to the creep speed, so that the vehicle creeps. Among them, controlling the creeping behavior of an engine-driven vehicle is the prior art, which will not be repeated here.
  • step S25 is executed at this time to control the engine of the vehicle to reduce the speed, and control the engine under the condition that the difference between the engine speed and the preset creep speed is not greater than the preset threshold Stop fuel injection.
  • Step S26 determining the creep torque required by the BSG motor to maintain the vehicle
  • Step S27 Determine the target torque according to the creep torque and the corresponding relationship between the preset creep torque and the target torque, and control the BSG motor to output the target torque.
  • the target torque may have multiple gradient values
  • the preset corresponding relationship between the creep torque and the target torque may be the corresponding relationship between the creep torque and the multiple gradient values of the target torque.
  • the gradient value of the target torque corresponding to the creep torque is determined according to the correspondence between the creep torque and multiple gradient values of the target torque.
  • the running time of the BSG motor in the high-efficiency rotation speed range can be improved, so as to improve the operation efficiency of the BSG motor, and at the same time, the frequency of adjusting the output torque of the BSG motor can be reduced, so as to prolong the service life of the BSG motor.
  • determining the creep torque required by the BSG motor to maintain the creep of the vehicle may include:
  • the sum of the fourth torques is the creep torque.
  • the first torque required by the engine to maintain the creep speed may be determined by the PI adjustment module.
  • the P parameter and the I parameter may be pre-calibrated, and the PI adjustment module may determine the first torque according to the creep speed, the current actual speed of the engine, the P parameter and the I parameter.
  • the creep torque of the vehicle on the flat ground and the creep torque of the vehicle on the slope can also be calibrated, and the creep torque is updated in real time according to the gradient information of the current road. In this way, the creep torque can be determined more simply.
  • the creep torque when determining the creep torque of the vehicle on the flat ground, it can be determined comprehensively based on the calibration value and the difference between the current vehicle speed and the preset creep speed. Creep torque. For example, when the current vehicle speed is greater than the creeping vehicle speed, the current creeping torque may be reduced, and when the current vehicle speed is less than the creeping vehicle speed, the current creeping torque may be increased.
  • the calibration value of the creeping torque can also be adjusted according to the relationship between the current vehicle speed and the creeping vehicle speed, which will not be repeated here.
  • the method may further include: when an acceleration command is received, controlling the engine to inject fuel to start, so as to make the vehicle creep. The vehicle resumes switching from the creeping state to the normal driving state.
  • the state machine of the engine in the case of receiving an acceleration command, enters the fuel injection ignition phase (Enable fuel phase) from the electric creep state phase to make the engine resume fuel injection, and then the state machine goes from the fuel injection ignition phase to the fuel injection ignition phase.
  • the torque architecture establishment phase Torque on phase
  • the state machine enters the normal operation phase from the torque architecture establishment phase, and the engine resumes normal operation.
  • the method may further include: in the case of receiving a braking command, controlling the BSG motor to stop running, to Switches the vehicle from a creeping state to a parked state.
  • the BSG motor is controlled to stop running, the state machine of the engine enters the stop process stage (Stopping stage) from the electric creep state stage, and the rotation speed of the engine crankshaft decreases until the engine crankshaft The speed of the state machine drops to 0, and the state machine enters the shutdown stage (Stopped stage) from the shutdown process stage.
  • the engine can be controlled to resume fuel injection and output torque, and control the engine work according to the creep speed, so as to drive the vehicle to creep through the engine.
  • the state machine of the engine when the engine starts, the state machine of the engine first enters the BSG motor dragging stage (BSG crank stage) from the shutdown stage, the BSG motor starts and drives the crankshaft of the engine to rotate, and then the state machine goes through the fuel injection ignition stage in turn. And torque architecture build-up phase, and finally into the normal operation phase to get the engine up and running normally.
  • BSG crank stage BSG crank stage
  • torque architecture build-up phase and finally into the normal operation phase to get the engine up and running normally.
  • FIG. 6 is a structural block diagram of a creep control apparatus 300 for a P0 hybrid vehicle according to an exemplary embodiment of the present disclosure.
  • a second aspect of the present disclosure provides a creep control device 300 for a P0 hybrid vehicle, the device 300 may include: a determination module 301 configured to determine whether the vehicle satisfies electric creep according to operating parameter information of the vehicle state activation condition; the control module 302 is configured to, in response to satisfying the electric creep state activation condition, control the engine of the vehicle to reduce the speed, and when the difference between the speed of the engine and the preset creep speed is not greater than a preset threshold The control module 302 is further configured to control the BSG motor to drive the crankshaft of the engine to rotate according to the creep speed, so as to make the vehicle creep.
  • the control module 302 first controls the engine to reduce the speed, and when the difference between the engine speed and the creep speed is not greater than the preset threshold, that is, the engine speed When the rotational speed is close to the creeping rotational speed, the control module 302 controls the engine to stop fuel injection, and then the control module 302 controls the BSG motor to drive the crankshaft of the engine to rotate according to the creeping rotational speed, so that the crankshaft of the engine runs at a rotational speed close to the creeping rotational speed, to make the vehicle creep.
  • the preset threshold that is, the engine speed
  • the control module 302 controls the engine to stop fuel injection, and then the control module 302 controls the BSG motor to drive the crankshaft of the engine to rotate according to the creeping rotational speed, so that the crankshaft of the engine runs at a rotational speed close to the creeping rotational speed, to make the vehicle creep.
  • the running time of the engine when the vehicle is creeping can be reduced, thereby reducing carbon deposits in the engine caused by incomplete fuel combustion, and facilitating the prolongation of the service life of the engine. At the same time, it can not only reduce the harmful exhaust gas produced by the engine due to incomplete combustion of fuel, but also prevent the engine from igniting frequently. It should also be pointed out that driving the vehicle to creep through the BSG motor can also reduce noise, improve the stability of the vehicle when creeping, and improve the user's driving experience.
  • FIG. 7 is a structural block diagram of a creep control apparatus 300 for a P0 hybrid vehicle according to another exemplary embodiment of the present disclosure.
  • the determining module 301 may include:
  • the first determination sub-module 3011 is configured to determine whether the vehicle meets the creep activation condition according to the first operating parameter information of the vehicle;
  • the second determination sub-module 3012 is configured to determine whether the vehicle meets the electric creep state activation condition according to the second operating parameter information of the vehicle when the first determination sub-module 3011 determines that the vehicle meets the creep activation condition.
  • control module 302 is further configured to: in the case that the first determination sub-module 3011 determines that the vehicle meets the creeping activation condition, but the second determining sub-module 3012 determines that the vehicle does not meet the electric creeping state activation condition, according to the creeping The running speed controls the engine operation to make the vehicle creep.
  • control module 302 may be configured to control the BSG motor to rotate the crankshaft of the engine according to the creep speed in the following manner:
  • control module 302 may be configured to determine the creep torque required by the BSG motor to maintain vehicle creep by:
  • the sum of the fourth torques is the creep torque.
  • control module 302 can also be configured to:
  • the BSG motor is controlled to drive the crankshaft of the engine to rotate, so that the vehicle creeps, and the engine is controlled to inject fuel to start when an acceleration command is received.
  • control module 302 can also be configured to:
  • the BSG motor is controlled to drive the crankshaft of the engine to rotate, so that the vehicle creeps, and the BSG motor is controlled to stop running when a braking command is received.
  • a third aspect of the present disclosure provides a creep control device for a P0 hybrid vehicle, including:
  • a processor when the program is executed by the processor, the method provided by the first aspect of the present disclosure can be implemented.
  • a fourth aspect of the present disclosure provides a P0 hybrid vehicle, including the device provided in the second aspect of the present disclosure, or the device provided in the third aspect of the present disclosure.
  • the present disclosure also proposes a computing processing device, including:
  • One or more processors when the computer readable code is executed by the one or more processors, the computing processing device executes the aforementioned creep control method for a PO hybrid vehicle.
  • the present disclosure also proposes a computer program, including computer-readable codes, which, when the computer-readable codes are executed on a computing and processing device, cause the computing and processing device to execute the aforementioned P0 hybrid vehicle creep control method.
  • the present disclosure also proposes a computer-readable storage medium in which the aforementioned computer program is stored.
  • FIG. 8 provides a schematic structural diagram of a computing processing device according to an embodiment of the present disclosure.
  • the computing processing device typically includes a processor 1110 and a computer program product or computer readable medium in the form of a memory 1130 .
  • the memory 1130 may be electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the memory 1130 has storage space 1150 for program code 1151 for performing any of the method steps in the above-described methods.
  • the storage space 1150 for program codes may include various program codes 1151 for implementing various steps in the above methods, respectively. These program codes can be read from or written to one or more computer program products.
  • These computer program products include program code carriers such as hard disks, compact disks (CDs), memory cards or floppy disks. Such computer program products are typically portable or fixed storage units as shown in FIG. 9 .
  • the storage unit may have storage segments, storage spaces, etc. arranged similarly to the storage 1130 in the server of FIG. 8 .
  • the program code may, for example, be compressed in a suitable form.
  • the storage unit includes computer readable code 1151', i.e. code readable by a processor such as 1110, for example, which when executed by a server, causes the server to perform the various steps in the methods described above.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • plurality means at least two, such as two, three, etc., unless expressly and specifically defined otherwise.
  • a "computer-readable medium” can be any device that can contain, store, communicate, propagate, or transport the program for use by or in connection with an instruction execution system, apparatus, or apparatus.
  • computer readable media include the following: electrical connections with one or more wiring (electronic devices), portable computer disk cartridges (magnetic devices), random access memory (RAM), Read Only Memory (ROM), Erasable Editable Read Only Memory (EPROM or Flash Memory), Fiber Optic Devices, and Portable Compact Disc Read Only Memory (CDROM).
  • the computer readable medium may even be paper or other suitable medium on which the program may be printed, as the paper or other medium may be optically scanned, for example, followed by editing, interpretation, or other suitable medium as necessary process to obtain the program electronically and then store it in computer memory.
  • portions of the present disclosure may be implemented in hardware, software, firmware, or a combination thereof.
  • various steps or methods may be implemented in software or firmware stored in memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented by any one of the following techniques known in the art, or a combination thereof: discrete with logic gates for implementing logic functions on data signals Logic circuits, application specific integrated circuits with suitable combinational logic gates, Programmable Gate Arrays (PGA), Field Programmable Gate Arrays (FPGA), etc.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing module, or each unit may exist physically alone, or two or more units may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. If the integrated modules are implemented in the form of software functional modules and sold or used as independent products, they may also be stored in a computer-readable storage medium.
  • the above-mentioned storage medium may be a read-only memory, a magnetic disk or an optical disk, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

一种P0混动车辆的蠕行控制方法、装置以及P0混动车辆,蠕行控制方法包括:根据车辆的运行参数信息,确定车辆是否满足电蠕行状态激活条件;响应于满足电蠕行状态激活条件,控制车辆的发动机降低转速,并在发动机的转速与预设的蠕行转速的差值不大于预设阈值的情况下,控制发动机停止喷油;根据蠕行转速,控制BSG电机带动发动机的曲柄轴转动,以使车辆蠕行。如此,在车辆满足电蠕行状态激活条件的情况下,能控制发动机停止喷油,并通过BSG电机带动发动机的曲柄轴转动,以使车辆蠕行,能减少车辆蠕行时发动机的运行时间,进而减少发动机内的积炭,便于延长发动机的使用寿命,同时还能减少发动机因燃料燃烧不完全产生的有害尾气。

Description

P0混动车辆的蠕行控制方法、装置以及P0混动车辆
相关申请的交叉引用
本公开要求在2021年04月30日提交中国专利局、申请号为202110485315.X、名称为“P0混动车辆的蠕行控制方法、装置以及P0混动车辆”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及车辆技术领域,具体地,涉及一种P0混动车辆的蠕行控制方法、装置以及P0混动车辆。
背景技术
常规燃油车辆蠕行功能的实现,是靠发动机燃烧,一方面满足发动机自身怠速稳定运行,一方面满足TCU(英文:Tra nsmission Control Unit,中文:自动变速箱控制单元)的蠕行扭矩需求,发动机和DCT(英文:Dual Clutch Transmission,中文:双离合变速器)配合实现车辆的稳定蠕行状态。
在车辆蠕行时发动机都是处于怠速运转,燃料雾化不好,燃料燃烧不完全,容易产生积炭,进而堵塞喷油嘴,严重的积炭会使活塞环卡死甚至折断。此外,发动机长时间怠速运转,发动机的尾气排放恶化,排出的有毒气体进入驾驶室会影响车内人员健康,排到外界也会污染环境。
发明内容
本公开的目的是提供一种P0混动车辆的蠕行控制方法、装置以及P0混动车辆,以减少车辆蠕行时发动机的运行时间。
为了实现上述目的,本公开第一方面提供一种P0混动车辆的蠕行控制方法,包括:
根据车辆的运行参数信息,确定所述车辆是否满足电蠕行状态激活条件;
响应于满足所述电蠕行状态激活条件,控制所述车辆的发动机降低转速,并在所述发动机的转速与预设的蠕行转速的差值不大于预设阈值的情况下,控制所述发动机停止喷油;
根据所述蠕行转速,控制BSG(英文:Belt-Driven Starter Generator中文:皮带传动 启动/发电一体化电机)电机带动所述发动机的曲柄轴转动,以使所述车辆蠕行。
可选地,所述运行参数信息包括第一运行参数信息和第二运行参数信息,其中,所述第一运行参数信息包括:挡位信息、油门信息以及制动信息;
所述第二运行参数信息包括:动力信息、动力电池放电功率信息、所述BSG电机的输出扭矩信息、禁止停机请求信息、DC-DC转换器工作状态信息、自动驾驶信息以及坡度信息。
可选地,所述根据车辆的运行参数信息,确定所述车辆是否满足电蠕行状态激活条件,包括:
根据所述车辆的第一运行参数信息,确定所述车辆是否满足蠕行激活条件;
在确定所述车辆满足蠕行激活条件的情况下,根据所述车辆的第二运行参数信息,确定所述车辆是否满足所述电蠕行状态激活条件。
可选地,所述第一运行参数信息包括:挡位信息、油门信息以及制动信息;相对应地,所述蠕行激活条件包括:所述挡位信息表征当前挡位为D挡或R挡、所述油门信息表征当前未接收到油门控制指令以及所述制动信息表征当前未接收到制动指令;
所述第二运行参数信息包括:动力信息、动力电池放电功率信息、所述BSG电机的输出扭矩信息、禁止停机请求信息、DC-DC转换器工作状态信息、自动驾驶信息以及坡度信息;相对应地,所述电蠕行状态激活条件包括:所述动力信息表征上电检测正常且所述发动机当前正在运行、所述动力电池放电功率信息表征所述动力电池的可用放电功率大于预设功率、所述BSG电机的输出扭矩信息表征所述BSG电机的可用输出扭矩大于预设扭矩、所述禁止停机请求信息表征当前未接收到禁止停机指令、所述DC-DC转换器工作状态信息表征所述DC-DC转换器工作正常、所述自动驾驶信息表征当前没有自动驾驶进程以及所述坡度信息表征当前道路坡度低于预设坡度值。
可选地,所述方法还包括:
在所述车辆满足所述蠕行激活条件、但不满足所述电蠕行状态激活条件的情况下,根据所述蠕行转速控制所述发动机工作,以使所述车辆蠕行。
可选地,所述根据所述蠕行转速,控制BSG电机带动所述发动机的曲柄轴转动,包括:
确定所述BSG电机维持所述车辆蠕行需要的蠕行扭矩;
根据所述蠕行扭矩以及预设的蠕行扭矩与目标扭矩的对应关系,确定目标扭矩,并 控制所述BSG电机输出所述目标扭矩。
可选地,所述确定所述BSG电机维持车辆蠕行需要的蠕行扭矩,包括:
确定所述发动机维持所述蠕行转速所需的第一扭矩、车辆蠕行时变速箱维持运转所需的第二扭矩、发动机克服摩擦力所需的第三扭矩以及克服从变速箱到车轮动力损失所需的第四扭矩的和为所述蠕行扭矩。
可选地,在根据所述蠕行转速,控制BSG电机带动所述发动机的曲柄轴转动,以使所述车辆蠕行之后,所述方法还包括:
在接收到加速指令的情况下,控制所述发动机喷油启动。
可选地,在根据所述蠕行转速,控制BSG电机带动所述发动机的曲柄轴转动,以使所述车辆蠕行之后,所述方法还包括:
在接收到制动指令的情况下,控制所述BSG电机停止运行。
本公开第二方面提供一种P0混动车辆的蠕行控制装置,包括:
确定模块,被配置为根据车辆的运行参数信息,确定所述车辆是否满足电蠕行状态激活条件;
控制模块,被配置为响应于满足所述电蠕行状态激活条件,控制所述车辆的发动机降低转速,并在所述发动机的转速与预设的蠕行转速的差值不大于预设阈值的情况下,控制所述发动机停止喷油;
所述控制模块还被配置为根据所述蠕行转速,控制BSG电机带动所述发动机的曲柄轴转动,以使所述车辆蠕行。
可选地,所述确定模块包括:
第一确定子模块,被配置为根据所述车辆的第一运行参数信息,确定所述车辆是否满足蠕行激活条件;
第二确定子模块,被配置为在所述第一确定子模块确定所述车辆满足蠕行激活条件的情况下,根据所述车辆的第二运行参数信息,确定所述车辆是否满足所述电蠕行状态激活条件。
可选地,所述控制模块还被配置为:
在所述第一确定子模块确定所述车辆满足所述蠕行激活条件、但所述第二确定子模块确定所述车辆不满足所述电蠕行状态激活条件的情况下,根据所述蠕行转速控制所述发动机工作,以使所述车辆蠕行。
可选地,所述控制模块被配置为通过以下方式根据所述蠕行转速,控制BSG电机带动所述发动机的曲柄轴转动:
确定所述BSG电机维持所述车辆蠕行需要的蠕行扭矩;
根据所述蠕行扭矩以及预设的蠕行扭矩与目标扭矩的对应关系,确定目标扭矩,并控制所述BSG电机输出所述目标扭矩。
可选地,所述控制模块被配置为通过以下方式确定所述BSG电机维持车辆蠕行需要的蠕行扭矩:
确定所述发动机维持所述蠕行转速所需的第一扭矩、车辆蠕行时变速箱维持运转所需的第二扭矩、发动机克服摩擦力所需的第三扭矩以及克服从变速箱到车轮动力损失所需的第四扭矩的和为所述蠕行扭矩。
可选地,所述控制模块还被配置为:
在根据所述蠕行转速,控制BSG电机带动所述发动机的曲柄轴转动,以使所述车辆蠕行之后,在接收到加速指令的情况下,控制所述发动机喷油启动。
可选地,所述控制模块还被配置为:
在根据所述蠕行转速,控制BSG电机带动所述发动机的曲柄轴转动,以使所述车辆蠕行之后,在接收到制动指令的情况下,控制所述BSG电机停止运行。
本公开第三方面提供一种P0混动车辆的蠕行控制装置,包括:
存储器,其上存储有计算机程序;
处理器,该程序被处理器执行时能实现本公开第一方面所提供的方法。
本公开第四方面提供一种P0混动车辆,包括本公开第二方面所提供的装置,或本公开第三方面所提供的装置。
为达上述目的,本公开第五方面实施例提供一种计算处理设备,包括:
存储器,其中存储有计算机可读代码;以及
一个或多个处理器,当所述计算机可读代码被所述一个或多个处理器执行时,所述计算处理设备执行本公开第一方面实施例所提供的P0混动车辆的蠕行控制方法。
为达上述目的,本公开第六方面实施例提供一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行本公开第一方面实施例所提出的P0混动车辆的蠕行控制方法。
为达上述目的,本公开第七方面实施例提供一种计算机可读存储介质,其中存储了 本公开第六方面实施例所提出的计算机程序。
通过上述技术方案,在车辆满足电蠕行状态激活条件的情况下,能控制发动机停止喷油,并通过BSG电机带动发动机的曲柄轴转动,以通过BSG电机带动车辆蠕行。如此,能够减少车辆蠕行时发动机的运行时间,进而减少发动机内因燃料燃烧不完全导致的积炭,便于延长发动机的使用寿命。同时不仅能减少发动机因燃料燃烧不完全产生的有害尾气,还可以防止发动机频繁地点火熄火。还需指出,通过BSG电机带动车辆蠕行还能够减少噪音,车辆蠕行时的稳定性更好,能够提升用户的驾驶感受。
具体来说,在车辆满足电蠕行状态激活条件的情况下,首先降低发动机的转速,在发动机的转速与蠕行转速的差值不大于预设阈值的情况下,即,发动机的转速接近蠕行转速的情况下,控制发动机停止喷油,随后根据蠕行转速控制BSG电机带动发动机的曲柄轴转动,使发动机的曲柄轴以接近蠕行转速的转速运转,以使车辆蠕行。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是本公开一示例性实施例示出的P0混动车辆的部分结构示意图;
图2是本公开一示例性实施例示出的P0混动车辆的蠕行控制方法的流程图;
图3是本公开一示例性实施例示出的P0混动车辆的发动机的启停时序图;
图4是本公开另一示例性实施例示出的P0混动车辆的蠕行控制方法的流程图;
图5是本公开又一示例性实施例示出的P0混动车辆的蠕行控制方法的流程图;
图6是本公开一示例性实施例示出的P0混动车辆的蠕行控制装置的结构框图;
图7是本公开另一示例性实施例示出的P0混动车辆的蠕行控制装置的结构框图;
图8为本公开实施例提供了一种计算处理设备的结构示意图;
图9为本公开实施例提供了一种用于便携式或者固定实现根据本公开的方法的程序代码的存储单元的示意图。
附图标记说明
10 发动机         20 BSG电机
30 BSG电机控制器  40 动力电池
50 变速箱     60 车轮
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
图1是本公开一示例性实施例示出的P0混动车辆的部分结构示意图,图2是本公开一示例性实施例示出的P0混动车辆的蠕行控制方法的流程图。参照图1和图2,本公开第一方面提供一种P0混动车辆的蠕行控制方法,该方法可以包括:
步骤S11,根据车辆的运行参数信息,确定车辆是否满足电蠕行状态激活条件。
步骤S12,响应于满足电蠕行状态激活条件,控制车辆的发动机降低转速,并在发动机的转速与预设的蠕行转速的差值不大于预设阈值的情况下,控制发动机停止喷油。
在车辆满足电蠕行状态激活条件的情况下,此时要调整车辆至电蠕行状态,即通过BSG电机(例如可以为48V BSG电机)驱动车辆蠕行。
此时,控制车辆的发动机降低转速,使发动机的转速持续降低,在发动机的转速与预设的蠕行转速的差值不大于预设阈值,即当前发动机的转速接近蠕行转速的情况下,控制发动机停止喷油,以使发动机熄火。
步骤S13,根据蠕行转速,控制BSG电机带动发动机的曲柄轴转动,以使车辆蠕行。
根据蠕行转速,控制BSG电机带动发动机的曲柄轴转动,使发动机的曲柄轴的转速接近蠕行转速,发动机的曲柄轴通过变速箱等传动机构将动力传递至车轮,车轮转动以带动车辆蠕行。
例如,本实例中的方法可以配置于HCU(英文:Hybrid Vehicle Control Unit,中文:混合动力整车控制器)中,在车辆满足电蠕行状态激活条件的情况下,HCU可以给发动机控制器发送用于指示降低转速的第一触发信号,发动机控制器控制发动机减少喷油量,进而降低发动机的转速。在发动机的转速降低至与蠕行转速的差值不大于预设阈值的情况下,HCU可以给发动机控制器发送用于指示停止喷油的第二触发信号,以使发动机控制器控制发动机停止喷油。HCU可以根据蠕行转速控制BSG电机工作,以通过BSG电机带动车辆蠕行。
参照图1,P0混动车辆可以包括动力电池40、BSG电机控制器30、BSG电机20、发动机10、变速箱50以及车轮60。
发动机10的曲柄轴可以与变速箱50的输入端连接,变速箱50的输出端可以与车轮60通过传动机构连接。BSG电机20可以通过皮带与发动机10的曲柄轴连接,动力电池40为BSG电机20供电,BSG电机控制器30与BSG电机20通信连接。
在控制发动机停止喷油之后,BSG电机控制器30可以根据蠕行转速控制BSG电机20工作,以使BSG电机20通过皮带带动发动机10的曲柄轴转动,使发动机10的曲柄轴的转速接近蠕行转速。
如此,能够减少车辆蠕行时发动机的运行时间,进而减少发动机内因燃料燃烧不完全导致的积炭,便于延长发动机的使用寿命。同时不仅能减少发动机因燃料燃烧不完全产生的有害尾气,还可以防止发动机频繁地点火熄火。还需指出,通过BSG电机带动车辆蠕行还能够减少噪音,车辆蠕行时的稳定性更好,能够提升用户的驾驶感受。
图3是本公开一示例性实施例示出的P0混动车辆的发动机的启停时序图。参照图3,在检测到驾驶员有停机意图的情况下,发动机的状态机可以从正常运行阶段(Run阶段)进入停机意图阶段(Stop prepare阶段),发动机的转速开始下降。在车辆满足电蠕行状态激活条件的情况下,状态机从停机意图阶段进入电蠕行状态阶段(Stop eidle阶段),此时发动机转速逐渐降低,在发动机的转速接近蠕行转速的情况下,发动机停止喷油(例如可以为HCU请求发动机停止喷油),BSG电机带动发动机的曲柄轴转动(即通过BSG电机实现发动机的怠速运转),以实现车辆的蠕行。
图4是本公开另一示例性实施例示出的P0混动车辆的蠕行控制方法的流程图。参照图4,示例性地,运行参数信息可以包括第一运行参数信息和第二运行参数信息,根据车辆的运行参数信息确定车辆是否满足电蠕行状态激活条件,可以包括以下步骤:
步骤S111,根据车辆的第一运行参数信息,确定车辆是否满足蠕行激活条件。
若车辆满足蠕行激活条件,则车辆要进入蠕行状态。
步骤S112,在确定车辆满足蠕行激活条件的情况下,根据车辆的第二运行参数信息,确定车辆是否满足电蠕行状态激活条件。
在车辆满足电蠕行状态激活条件的情况下,此时车辆可以进入电蠕行状态。因此,执行步骤S12和S13,以通过BSG电机驱动车辆蠕行。
示例性地,第一运行参数信息可以包括:挡位信息、油门信息以及制动信息;相对应地,蠕行激活条件可以包括:挡位信息表征当前挡位为D挡或R挡、油门信息表征当前未接收到油门控制指令以及制动信息表征当前未接收到制动指令。
示例性地,第一运行参数信息还可以包括车速信息,相对应地,蠕行激活条件还可以包括车速信息表征车辆的当前车速低于预设速度。
第二运行参数信息可以包括:动力信息、动力电池放电功率信息、BSG电机的输出扭矩信息、禁止停机请求信息、DC-DC转换器工作状态信息、自动驾驶信息以及坡度信息;相对应地,电蠕行状态激活条件可以包括:动力信息表征上电检测正常且发动机当前正在运行、动力电池放电功率信息表征动力电池的可用放电功率大于预设功率、BSG电机的输出扭矩信息表征BSG电机的可用输出扭矩大于预设扭矩、禁止停机请求信息表征当前未接收到禁止停机指令、DC-DC转换器工作状态信息表征DC-DC转换器工作正常、自动驾驶信息表征当前没有自动驾驶进程以及坡度信息表征当前道路坡度低于预设坡度值。
示例性地,预设功率大于BSG电机维持车辆蠕行需要的动力电池最小放电功率,预设扭矩大于BSG电机维持车辆蠕行所需的最小扭矩,以确保BSG电机能够提供充足的动力。
示例性地,禁止停机请求信息表征当前未接收到禁止停机指令,可以包括ESP(英文:Electronic Stability Program,中文:车身电子稳定系统)、TCU、EMS(英文:Engine Management System,中文:发动机管理系统)以及ACCU(英文:Air conditioner condensing unit,中文:空调控制器单元)均未发出禁止停机指令。
示例性地,自动驾驶信息表征当前没有自动驾驶进程,可以包括ACC(英文:Adaptive Cruise Control,中文:自适应巡航控制)和APS(英文:Automated Parking System,中文:自动泊车入位)当前均未激活。
示例性地,第二运行参数信息还可以包括动力电池的温度信息,相对应地,电蠕行状态激活条件还可以包括动力电池的温度信息表征动力电池的温度低于预设温度,以使动力电池的温度在允许范围内,保证动力电池的安全。
示例性地,第二运行参数信息还可以包括动力电池的荷电状态信息,相对应地,电蠕行状态激活条件还可以包括动力电池的荷电状态信息表征动力电池的电量高于预设电量值,避免在发动机启动时动力电池电量不足的情况。
示例性地,第二运行参数信息还可以包括方向盘的转动角度信息,相对应地,电蠕行状态激活条件还可以包括方向盘的转动角度信息表征当前转向角度小于预设角度。在当前转向角度大于或等于预设角度的情况下,驾驶员可能只是出于安全的考虑低速转弯, 当前驾驶员可能并没有蠕行的意图,通过上述方案能够避免车辆错误进入蠕行导致影响驾驶员的驾驶体验。
图5是本公开又一示例性实施例示出的P0混动车辆的蠕行控制方法的流程图。参照图5,该方法可以包括:
步骤S21,获取车辆的运行参数信息,其中,运行参数信息可以包括第一运行参数信息和第二运行参数信息;
步骤S22,根据车辆的第一运行参数信息,确定车辆是否满足蠕行激活条件,生成第一判断结果;
在第一判断结果为否的情况下,重复执行上述步骤S21和步骤S22;
在第一判断结果为是的情况下,执行步骤S23,根据车辆的第二运行参数信息,确定车辆是否满足电蠕行状态激活条件,生成第二判断结果;
在第二判断结果为否的情况下,此时车辆满足蠕行激活条件但不满足电蠕行状态激活条件,此时车辆要进入蠕行状态,但无法通过BSG电机驱动车辆蠕行。执行步骤S24,根据蠕行转速控制发动机工作,以使车辆蠕行。其中,控制发动机驱动车辆蠕行为现有技术,此处不再赘述。
在第二判断结果为是的情况下,此时执行步骤S25,控制车辆的发动机降低转速,并在发动机的转速与预设的蠕行转速的差值不大于预设阈值的情况下,控制发动机停止喷油。
步骤S26,确定BSG电机维持车辆需要的蠕行扭矩;
步骤S27,根据蠕行扭矩以及预设的蠕行扭矩与目标扭矩的对应关系,确定目标扭矩,并控制BSG电机输出目标扭矩。
例如,目标扭矩可以具有多个梯度值,预设的蠕行扭矩与目标扭矩的对应关系,可以为蠕行扭矩与目标扭矩的多个梯度值的对应关系。在确定蠕行扭矩之后,根据蠕行扭矩与目标扭矩的多个梯度值的对应关系,确定蠕行扭矩对应的目标扭矩的梯度值。
如此,能够提高BSG电机在高效转速区间的运行时间,以提高BSG电机的运行效率,同时能减少对BSG电机输出扭矩调节的频率,便于延长BSG电机的使用寿命。
示例性地,确定BSG电机维持车辆蠕行需要的蠕行扭矩,可以包括:
确定发动机维持蠕行转速所需的第一扭矩、车辆蠕行时变速箱维持运转所需的第二扭矩、发动机克服摩擦力所需的第三扭矩以及克服从变速箱到车轮动力损失所需的第四 扭矩的和为蠕行扭矩。
示例性地,可以通过PI调节模块确定发动机维持蠕行转速所需的第一扭矩。例如,可以预先标定P参数和I参数,PI调节模块可以根据蠕行转速、当前发动机的实际转速、P参数以及I参数确定出第一扭矩。
可替换地,还可对车辆在平地上的蠕行扭矩以及车辆在坡道上的蠕行扭矩进行标定,并实时根据当前道路的坡度信息更新蠕行扭矩。如此,能够更简单地确定蠕行扭矩。
进一步地,为了更加准确地确定蠕行扭矩,在确定车辆在平地上的蠕行扭矩时,可以在标定值的基础上,还可以结合当前车速和预设的蠕行车速的差值,综合确定蠕行扭矩。例如,在当前车速大于蠕行车速时,可以减小当前蠕行扭矩,在当前车速小于蠕行车速时,可以增大当前蠕行扭矩。
同理,在确定车辆在坡道上的蠕行扭矩时,也可以根据当前车速和蠕行车速的关系,对蠕行扭矩的标定值进行调整,此处不再赘述。
示例性地,在根据蠕行转速,控制BSG电机带动发动机的曲柄轴转动,以使车辆蠕行之后,该方法还可以包括:在接收到加速指令的情况下,控制发动机喷油启动,以使车辆恢复从蠕行状态切换至正常行驶状态。
参照图3,在接收到加速指令的情况下,发动机的状态机从电蠕行状态阶段进入喷油点火阶段(Enable fuel阶段),以使发动机恢复喷油,随后该状态机从喷油点火阶段进入扭矩架构建立阶段(Torque on阶段),以建立发动机的扭矩输出,最后该状态机从扭矩架构建立阶段进入正常运行阶段,发动机恢复正常运行。
示例性地,在根据蠕行转速,控制BSG电机带动发动机的曲柄轴转动,以使车辆蠕行之后,该方法还可以包括:在接收到制动指令的情况下,控制BSG电机停止运行,以使车辆从蠕行状态切换至停车状态。
参照图3,在接收到制动指令的情况下,控制BSG电机停止运行,发动机的状态机从电蠕行状态阶段进入停机过程阶段(Stopping阶段),发动机曲柄轴的转速下降,直至发动机曲柄轴的转速降至0,该状态机从停机过程阶段进入停机阶段(Stopped阶段)。
示例性地,在根据蠕行转速,控制BSG电机带动发动机的曲柄轴转动,以使车辆蠕行之后,若运行参数信息表征当前车辆满足蠕行激活条件、但不满足电蠕行状态激活条件,可以控制发动机恢复喷油并输出扭矩,并根据蠕行转速控制发动机工作,以通过发动机带动车辆蠕行。
参照图3,在发动机启动时,发动机的状态机首先从停机阶段进入BSG电机拖动阶段(BSG crank阶段),BSG电机启动并带动发动机的曲柄轴转动,随后该状态机依次经喷油点火阶段和扭矩架构建立阶段,最后进入正常运行阶段,使发动机启动并正常运行。
图6是本公开一示例性实施例示出的P0混动车辆的蠕行控制装置300的结构框图。参照图6,本公开第二方面提供一种P0混动车辆的蠕行控制装置300,该装置300可以包括:确定模块301,被配置为根据车辆的运行参数信息,确定车辆是否满足电蠕行状态激活条件;控制模块302,被配置为响应于满足电蠕行状态激活条件,控制车辆的发动机降低转速,并在发动机的转速与预设的蠕行转速的差值不大于预设阈值的情况下,控制发动机停止喷油;控制模块302还被配置为根据蠕行转速,控制BSG电机带动发动机的曲柄轴转动,以使车辆蠕行。
本方案中,在车辆满足电蠕行状态激活条件的情况下,首先控制模块302控制发动机降低转速,在发动机的转速与蠕行转速的差值不大于预设阈值的情况下,即,发动机的转速接近蠕行转速的情况下,控制模块302控制发动机停止喷油,随后控制模块302根据蠕行转速控制BSG电机带动发动机的曲柄轴转动,使发动机的曲柄轴以接近蠕行转速的转速运转,以使车辆蠕行。
如此,能够减少车辆蠕行时发动机的运行时间,进而减少发动机内因燃料燃烧不完全导致的积炭,便于延长发动机的使用寿命。同时不仅能减少发动机因燃料燃烧不完全产生的有害尾气,还可以防止发动机频繁地点火熄火。还需指出,通过BSG电机带动车辆蠕行还能够减少噪音,车辆蠕行时的稳定性更好,能够提升用户的驾驶感受。
图7是本公开另一示例性实施例示出的P0混动车辆的蠕行控制装置300的结构框图。参照图7,示例性地,确定模块301可以包括:
第一确定子模块3011,被配置为根据车辆的第一运行参数信息,确定车辆是否满足蠕行激活条件;
第二确定子模块3012,被配置为在第一确定子模块3011确定车辆满足蠕行激活条件的情况下,根据车辆的第二运行参数信息,确定车辆是否满足电蠕行状态激活条件。
示例性地,控制模块302还被配置为:在第一确定子模块3011确定车辆满足蠕行激活条件、但第二确定子模块3012确定车辆不满足电蠕行状态激活条件的情况下,根据蠕行转速控制发动机工作,以使车辆蠕行。
示例性地,控制模块302可以被配置为通过以下方式根据蠕行转速,控制BSG电机带动发动机的曲柄轴转动:
确定BSG电机维持车辆蠕行需要的蠕行扭矩;根据蠕行扭矩以及预设的蠕行扭矩与目标扭矩的对应关系,确定目标扭矩,并控制BSG电机输出目标扭矩。
示例性地,控制模块302可以被配置为通过以下方式确定BSG电机维持车辆蠕行需要的蠕行扭矩:
确定发动机维持蠕行转速所需的第一扭矩、车辆蠕行时变速箱维持运转所需的第二扭矩、发动机克服摩擦力所需的第三扭矩以及克服从变速箱到车轮动力损失所需的第四扭矩的和为蠕行扭矩。
示例性地,控制模块302还可以被配置为:
在根据蠕行转速,控制BSG电机带动发动机的曲柄轴转动,以使车辆蠕行之后,在接收到加速指令的情况下,控制发动机喷油启动。
示例性地,控制模块302还可以被配置为:
在根据蠕行转速,控制BSG电机带动发动机的曲柄轴转动,以使车辆蠕行之后,在接收到制动指令的情况下,控制BSG电机停止运行。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开第三方面提供一种P0混动车辆的蠕行控制装置,包括:
存储器,其上存储有计算机程序;
处理器,该程序被处理器执行时能实现本公开第一方面所提供的方法。
本公开第四方面提供一种P0混动车辆,包括本公开第二方面所提供的装置,或本公开第三方面所提供的装置。
为了实现上述实施例,本公开还提出了一种计算处理设备,包括:
存储器,其中存储有计算机可读代码;以及
一个或多个处理器,当所述计算机可读代码被所述一个或多个处理器执行时,所述计算处理设备执行前述的P0混动车辆的蠕行控制方法。
为了实现上述实施例,本公开还提出了一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行前述的P0混动车辆的蠕行控制方法。
为了实现上述实施例,本公开还提出了一种计算机可读存储介质,其中存储了前述的计算机程序。
图8为本公开实施例提供了一种计算处理设备的结构示意图。该计算处理设备通常包括处理器1110和以存储器1130形式的计算机程序产品或者计算机可读介质。存储器1130可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器1130具有用于执行上述方法中的任何方法步骤的程序代码1151的存储空间1150。例如,用于程序代码的存储空间1150可以包括分别用于实现上面的方法中的各种步骤的各个程序代码1151。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为如图9所示的便携式或者固定存储单元。该存储单元可以具有与图8的服务器中的存储器1130类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码1151’,即可以由例如诸如1110之类的处理器读取的代码,这些代码当由服务器运行时,导致该服务器执行上面所描述的方法中的各个步骤。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部 分,并且本公开的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本公开的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本公开的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本公开各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计 算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (13)

  1. 一种P0混动车辆的蠕行控制方法,其特征在于,包括:
    根据车辆的运行参数信息,确定所述车辆是否满足电蠕行状态激活条件;
    响应于满足所述电蠕行状态激活条件,控制所述车辆的发动机降低转速,并在所述发动机的转速与预设的蠕行转速的差值不大于预设阈值的情况下,控制所述发动机停止喷油;
    根据所述蠕行转速,控制BSG电机带动所述发动机的曲柄轴转动,以使所述车辆蠕行。
  2. 根据权利要求1所述的方法,其特征在于,所述根据车辆的运行参数信息,确定所述车辆是否满足电蠕行状态激活条件,包括:
    根据所述车辆的第一运行参数信息,确定所述车辆是否满足蠕行激活条件;
    在确定所述车辆满足蠕行激活条件的情况下,根据所述车辆的第二运行参数信息,确定所述车辆是否满足所述电蠕行状态激活条件。
  3. 根据权利要求2所述的方法,其特征在于,所述第一运行参数信息包括:挡位信息、油门信息以及制动信息;相对应地,所述蠕行激活条件包括:所述挡位信息表征当前挡位为D挡或R挡、所述油门信息表征当前未接收到油门控制指令以及所述制动信息表征当前未接收到制动指令;
    所述第二运行参数信息包括:动力信息、动力电池放电功率信息、所述BSG电机的输出扭矩信息、禁止停机请求信息、DC-DC转换器工作状态信息、自动驾驶信息以及坡度信息;相对应地,所述电蠕行状态激活条件包括:所述动力信息表征上电检测正常且所述发动机当前正在运行、所述动力电池放电功率信息表征所述动力电池的可用放电功率大于预设功率、所述BSG电机的输出扭矩信息表征所述BSG电机的可用输出扭矩大于预设扭矩、所述禁止停机请求信息表征当前未接收到禁止停机指令、所述DC-DC转换器工作状态信息表征所述DC-DC转换器工作正常、所述自动驾驶信息表征当前没有自动驾驶进程以及所述坡度信息表征当前道路坡度低于预设坡度值。
  4. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    在所述车辆满足所述蠕行激活条件、但不满足所述电蠕行状态激活条件的情况下,根据所述蠕行转速控制所述发动机工作,以使所述车辆蠕行。
  5. 根据权利要求1所述的方法,其特征在于,所述根据所述蠕行转速,控制BSG 电机带动所述发动机的曲柄轴转动,包括:
    确定所述BSG电机维持所述车辆蠕行需要的蠕行扭矩;
    根据所述蠕行扭矩以及预设的蠕行扭矩与目标扭矩的对应关系,确定目标扭矩,并控制所述BSG电机输出所述目标扭矩。
  6. 根据权利要求5所述的方法,其特征在于,所述确定所述BSG电机维持车辆蠕行需要的蠕行扭矩,包括:
    确定所述发动机维持所述蠕行转速所需的第一扭矩、车辆蠕行时变速箱维持运转所需的第二扭矩、发动机克服摩擦力所需的第三扭矩以及克服从变速箱到车轮动力损失所需的第四扭矩的和为所述蠕行扭矩。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,在根据所述蠕行转速,控制BSG电机带动所述发动机的曲柄轴转动,以使所述车辆蠕行之后,所述方法还包括:
    在接收到加速指令的情况下,控制所述发动机喷油启动。
  8. 根据权利要求1至6中任一项所述的方法,其特征在于,在根据所述蠕行转速,控制BSG电机带动所述发动机的曲柄轴转动,以使所述车辆蠕行之后,所述方法还包括:
    在接收到制动指令的情况下,控制所述BSG电机停止运行。
  9. 一种P0混动车辆的蠕行控制装置,其特征在于,包括:
    确定模块,被配置为根据车辆的运行参数信息,确定所述车辆是否满足电蠕行状态激活条件;
    控制模块,被配置为响应于满足所述电蠕行状态激活条件,控制所述车辆的发动机降低转速,并在所述发动机的转速与预设的蠕行转速的差值不大于预设阈值的情况下,控制所述发动机停止喷油;
    所述控制模块还被配置为根据所述蠕行转速,控制BSG电机带动所述发动机的曲柄轴转动,以使所述车辆蠕行。
  10. 一种P0混动车辆的蠕行控制装置,其特征在于,包括:
    存储器,其上存储有计算机程序;
    处理器,该程序被处理器执行时能实现如权利要求1至8中任一项所述的方法。
  11. 一种P0混动车辆,其特征在于,包括如权利要求9所述的装置,或如权利要求10所述的装置。
  12. 一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设 备上运行时,导致所述计算处理设备执行根据权利要求1-8中任一项所述的P0混动车辆的蠕行控制方法。
  13. 一种计算机可读存储介质,其中存储了如权利要求12所述的计算机程序。
PCT/CN2022/084206 2021-04-30 2022-03-30 P0混动车辆的蠕行控制方法、装置以及p0混动车辆 WO2022228017A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110485315.X 2021-04-30
CN202110485315.XA CN114347988B (zh) 2021-04-30 2021-04-30 P0混动车辆的蠕行控制方法、装置以及p0混动车辆

Publications (1)

Publication Number Publication Date
WO2022228017A1 true WO2022228017A1 (zh) 2022-11-03

Family

ID=81096056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084206 WO2022228017A1 (zh) 2021-04-30 2022-03-30 P0混动车辆的蠕行控制方法、装置以及p0混动车辆

Country Status (2)

Country Link
CN (1) CN114347988B (zh)
WO (1) WO2022228017A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116118525A (zh) * 2023-04-03 2023-05-16 成都赛力斯科技有限公司 电机扭矩过零控制方法、装置、电子设备及新能源汽车
CN116498412A (zh) * 2023-06-26 2023-07-28 中国第一汽车股份有限公司 车辆发动机的控制方法和车辆

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117445893A (zh) * 2022-07-19 2024-01-26 罗伯特·博世有限公司 控制车辆蠕行的方法、控制器和计算机程序产品

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102529950A (zh) * 2010-12-31 2012-07-04 上海汽车集团股份有限公司 混合动力汽车自动停机后的发动机起动控制方法
CN102529947A (zh) * 2010-12-29 2012-07-04 上海汽车集团股份有限公司 一种混合动力系统的控制方法
US20120295757A1 (en) * 2011-05-19 2012-11-22 Mitsubishi Electric Corporation Vehicle drive control system
CN108545076A (zh) * 2018-04-16 2018-09-18 奇瑞汽车股份有限公司 一种基于bsg电机的车辆控制方法和装置
CN110871780A (zh) * 2019-10-17 2020-03-10 重庆蓝黛动力传动机械股份有限公司 一种基于amt的混联式混合动力汽车系统及控制方法
CN111634285A (zh) * 2020-05-11 2020-09-08 中国第一汽车股份有限公司 一种48v轻混合动力车辆换挡控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9327721B2 (en) * 2014-07-15 2016-05-03 Ford Global Technologies, Llc Methods and systems for starting an engine while a vehicle is creeping
FR3078307A1 (fr) * 2018-02-23 2019-08-30 Psa Automobiles Sa Procede de surveillance d’une trajectoire de roulage en marche rampante pour un vehicule automobile
CN109131330B (zh) * 2018-09-25 2020-02-21 吉林大学 一种电动汽车自适应蠕行控制方法
CN111942170B (zh) * 2019-05-16 2023-08-01 罗伯特·博世有限公司 车辆蠕行控制装置以及车辆蠕行控制方法
CN112644409B (zh) * 2020-12-29 2022-07-22 长城汽车股份有限公司 一种车辆控制方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102529947A (zh) * 2010-12-29 2012-07-04 上海汽车集团股份有限公司 一种混合动力系统的控制方法
CN102529950A (zh) * 2010-12-31 2012-07-04 上海汽车集团股份有限公司 混合动力汽车自动停机后的发动机起动控制方法
US20120295757A1 (en) * 2011-05-19 2012-11-22 Mitsubishi Electric Corporation Vehicle drive control system
CN108545076A (zh) * 2018-04-16 2018-09-18 奇瑞汽车股份有限公司 一种基于bsg电机的车辆控制方法和装置
CN110871780A (zh) * 2019-10-17 2020-03-10 重庆蓝黛动力传动机械股份有限公司 一种基于amt的混联式混合动力汽车系统及控制方法
CN111634285A (zh) * 2020-05-11 2020-09-08 中国第一汽车股份有限公司 一种48v轻混合动力车辆换挡控制方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116118525A (zh) * 2023-04-03 2023-05-16 成都赛力斯科技有限公司 电机扭矩过零控制方法、装置、电子设备及新能源汽车
CN116118525B (zh) * 2023-04-03 2023-06-23 成都赛力斯科技有限公司 电机扭矩过零控制方法、装置、电子设备及新能源汽车
CN116498412A (zh) * 2023-06-26 2023-07-28 中国第一汽车股份有限公司 车辆发动机的控制方法和车辆
CN116498412B (zh) * 2023-06-26 2023-09-01 中国第一汽车股份有限公司 车辆发动机的控制方法和车辆

Also Published As

Publication number Publication date
CN114347988B (zh) 2024-09-20
CN114347988A (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
WO2022228017A1 (zh) P0混动车辆的蠕行控制方法、装置以及p0混动车辆
JP5420154B2 (ja) 電子吸気量制御装置が搭載されたハイブリッド電気自動車のエンジントルク制御方法
US10768635B2 (en) Hybrid electric vehicle and platooning control method therefor
CN108501941B (zh) 发动机起动方法、装置及系统
CN101722953B (zh) 用于起停混合动力车辆的爬行模式推进
CN101342901B (zh) 混合电动车中控制怠速停止模式的方法
US9074572B2 (en) Engine idling control system for hybrid vehicle
US6494809B1 (en) Engine control apparatus and engine control method
US9139205B2 (en) System and method for determining when engine has abnormally stopped in a hybrid electric vehicle
CN102529950B (zh) 混合动力汽车自动停机后的发动机起动控制方法
JP2003138958A (ja) 車両駆動装置及び車両駆動装置用プログラム
US10137882B2 (en) Hybrid electric vehicle and method of controlling the same
US10746255B2 (en) Systems and methods for reducing noise, vibration, and/or harshness during engine shutdown and restart
CN112721905A (zh) 双电机混合动力系统中发动机的启动方法和装置及车辆
JP2000328980A (ja) アイドルストップ車両
JP2000296720A (ja) 油圧制御装置
US8612080B2 (en) Method for operating a hybrid drive
CN113119948B (zh) 混合动力车辆及其发电控制方法、装置和存储介质
JP2000230442A (ja) 動力伝達装置
JP4037587B2 (ja) ハイブリッド車の制御装置
JP3835430B2 (ja) 油圧制御装置
GB2594280A (en) Apparatus and method for controlling an electric machine
KR20180070341A (ko) 하이브리드 자동차 및 그를 위한 모드 전환 제어 방법
JP2001047880A (ja) ハイブリッド車の制御装置
KR102261294B1 (ko) 마일드 하이브리드 차량의 운전자 오조작 방지 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22794490

Country of ref document: EP

Kind code of ref document: A1