WO2022264347A1 - 光半導体素子及びその製造方法 - Google Patents

光半導体素子及びその製造方法 Download PDF

Info

Publication number
WO2022264347A1
WO2022264347A1 PCT/JP2021/022984 JP2021022984W WO2022264347A1 WO 2022264347 A1 WO2022264347 A1 WO 2022264347A1 JP 2021022984 W JP2021022984 W JP 2021022984W WO 2022264347 A1 WO2022264347 A1 WO 2022264347A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
conductivity type
semi
insulating
type
Prior art date
Application number
PCT/JP2021/022984
Other languages
English (en)
French (fr)
Inventor
弘幸 河原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021567979A priority Critical patent/JP7080414B1/ja
Priority to PCT/JP2021/022984 priority patent/WO2022264347A1/ja
Priority to KR1020237041899A priority patent/KR20240004977A/ko
Priority to US18/557,315 priority patent/US20240213744A1/en
Priority to CN202180099189.2A priority patent/CN117461226A/zh
Priority to TW111120024A priority patent/TWI832267B/zh
Publication of WO2022264347A1 publication Critical patent/WO2022264347A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2222Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties
    • H01S5/2224Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties semi-insulating semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2222Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties
    • H01S5/2226Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties semiconductors with a specific doping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • H01S5/3072Diffusion blocking layer, i.e. a special layer blocking diffusion of dopants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34306Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000nm, e.g. InP based 1300 and 1500nm lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2304/00Special growth methods for semiconductor lasers
    • H01S2304/04MOCVD or MOVPE

Definitions

  • This application relates to an optical semiconductor device and a manufacturing method thereof.
  • embedded semiconductor lasers which are structures in which both sides of the active layer are buried with semiconductors for the purpose of confining current to the active layer and dissipating heat from the active layer, are often used.
  • InP (Indium Phosphide)-based embedded semiconductor lasers used for optical communication applications require a wider modulation frequency band and improved luminous efficiency for the semiconductor laser element alone in order to cope with the increased capacity of communication. be done.
  • an n-type InP substrate and iron (Ferrum: Fe) are used.
  • a combination of InP buried layers doped with semi-insulating materials such as .
  • an n-type InP buried layer was placed above the buried layer and in contact with the p-type clad layer.
  • a device structure is commonly used. In such a device structure, the n-type InP buried layer is provided to form a barrier against holes in the p-type InP clad layer.
  • a method of narrowing the mesa width of the mesa structure including the active layer of the semiconductor laser, or a method of shortening the resonator of the semiconductor laser, etc. can be considered.
  • the mesa width of the mesa structure is narrowed, there arises a new problem that the heat dissipation of the semiconductor laser deteriorates.
  • the cutoff frequency will decrease due to the increase in device resistance, or the luminous efficiency will decrease due to the decrease in the volume of the active layer. I didn't. Assuming optical communication applications of 50 Gbps or more, there is a problem that it is difficult to deal with the device structure including the above-mentioned pn junction interface.
  • the electro-absorption modulator constituting a part of the optical integrated device described in Patent Document 1 is different from the application of the semiconductor laser, as shown in FIG.
  • a buried layer having a three-layer structure consisting of a semi-insulating Fe-doped InP electron trapping layer, an n-type InP hole blocking layer, and an undoped InP layer is formed in the layer.
  • an undoped InP layer is provided between the n-type InP hole blocking layer and the p-type InP clad layer.
  • the pn junction capacitance can be reduced due to the presence of the undoped InP layer.
  • such a laminated structure has a pin structure, it is not possible to suppress carrier recombination at the site, and the problem of a decrease in luminous efficiency has not yet been solved.
  • the present disclosure has been made to solve the above-described problems, by reducing the pn junction capacitance resulting from the pn junction region formed between the buried layer and the clad layer of the second conductivity type. , an optical semiconductor device that enables high-speed modulation and that enables high luminous efficiency by suppressing carrier recombination at the interface between the buried layer and the clad layer of the second conductivity type, and a method for manufacturing the same intended to provide
  • the optical semiconductor device disclosed in the present application is a first conductivity type semiconductor substrate; a striped mesa structure composed of a laminate of a first conductivity type clad layer, an active layer, and a second conductivity type first clad layer stacked on the first conductivity type semiconductor substrate; A first semi-insulating buried layer, a second buried layer of the first conductivity type, and a semi-insulating material doped with a transition metal are sequentially provided on both sides of the mesa structure on the semiconductor substrate of the first conductivity type. and a mesa buried layer comprising a third buried layer of the same thickness.
  • the method for manufacturing an optical semiconductor device disclosed in the present application includes: a first crystal growth step of sequentially crystal-growing a first conductivity type clad layer, an active layer and a second conductivity type first clad layer on a first conductivity type semiconductor substrate by MOCVD; a mesa structure forming step of etching the first conductivity type clad layer, the active layer, the second conductivity type first clad layer and part of the first conductivity type semiconductor substrate into a striped mesa structure; On both sides of the mesa structure on the semiconductor substrate of the first conductivity type, a semi-insulating first buried layer, a second buried layer of the first conductivity type, and a semiconductor doped with one or more transition metals are formed.
  • the pn junction capacitance caused by the pn junction formed between the mesa buried layer and the clad layer of the second conductivity type can be reduced. Since carrier recombination at the interface between the embedded layer and the second-conductivity-type clad layer can be suppressed, it is possible to achieve high-speed modulation and high optical efficiency of the optical semiconductor device. Moreover, there is an effect that such an optical semiconductor element can be easily manufactured.
  • FIG. 1 is a cross-sectional view showing an element structure of an optical semiconductor element according to Embodiment 1;
  • FIG. FIG. 4 is a cross-sectional view showing a method for manufacturing an optical semiconductor device according to Embodiment 1;
  • FIG. 4 is a cross-sectional view showing a method for manufacturing an optical semiconductor device according to Embodiment 1;
  • FIG. 4 is a cross-sectional view showing a method for manufacturing an optical semiconductor device according to Embodiment 1;
  • FIG. 4 is a cross-sectional view showing a method for manufacturing an optical semiconductor device according to Embodiment 1;
  • FIG. 4 is a cross-sectional view showing a method for manufacturing an optical semiconductor device according to Embodiment 1;
  • FIG. 4 is a cross-sectional view showing a method for manufacturing an optical semiconductor device according to Embodiment 1; It is a sectional view showing the element structure of the optical semiconductor element by a comparative example.
  • FIG. 8 is a cross-sectional view showing the element structure of an optical semiconductor element according to Embodiment 2;
  • FIG. 10 is a cross-sectional view showing a method for manufacturing an optical semiconductor device according to Embodiment 2;
  • FIG. 10 is a cross-sectional view showing a method for manufacturing an optical semiconductor device according to Embodiment 2;
  • FIG. 10 is a cross-sectional view showing a method for manufacturing an optical semiconductor device according to Embodiment 2;
  • FIG. 10 is a cross-sectional view showing a method for manufacturing an optical semiconductor device according to Embodiment 2;
  • FIG. 10 is a cross-sectional view showing a method for manufacturing an optical semiconductor device according to Embodiment 2;
  • FIG. 11 is a cross-sectional view showing the element structure of an optical semiconductor element according to Embodiment 3;
  • FIG. 11 is a cross-sectional view showing a method for manufacturing an optical semiconductor device according to Embodiment 3;
  • FIG. 11 is a cross-sectional view showing a method for manufacturing an optical semiconductor device according to Embodiment 3;
  • FIG. 11 is a cross-sectional view showing the element structure of an optical semiconductor element according to Embodiment 4;
  • FIG. 11 is a cross-sectional view showing a method for manufacturing an optical semiconductor device according to Embodiment 4;
  • FIG. 11 is a cross-sectional view showing a method for manufacturing an optical semiconductor device according to Embodiment 4;
  • FIG. 11 is a cross-sectional view showing a method for manufacturing an optical semiconductor device according to Embodiment 4;
  • FIG. 1 shows a cross-sectional view of the device structure of an optical semiconductor device 100 according to Embodiment 1.
  • the optical semiconductor device 100 according to the first embodiment includes an n-type InP substrate 1 (first conductivity type semiconductor substrate) and an n-type InP clad layer 2 (first conductivity type semiconductor substrate) sequentially laminated on the n-type InP substrate 1 .
  • first optical confinement layer 3a active layer 4
  • second optical confinement layer 3b p-type InP first cladding layer 5 (second conductivity type first cladding layer) and n-type InP substrate 1 and a semi-insulating InP first buried layer 7a (semi-insulating first buried layer ), an n-type InP second buried layer 7b (second conductive type second buried layer) and a semi-insulating InP third buried layer 7c (semi-insulating third buried layer).
  • a p-type InP second clad layer 8 (second conductivity type second clad layer) formed to partially cover the top surface of the mesa structure 6 and the surface and side surfaces of the mesa buried layer 7;
  • a p-type InGaAs contact layer 9 (second conductivity type contact layer) and a p-side electrode 31 ( second conductivity type side electrode) and an n-side electrode 32 (first conductivity type side electrode) provided on the back side of the n-type InP substrate 1 .
  • the n-type InP substrate 1 is doped with sulfur (S) and has a ⁇ 100> surface.
  • the n-type InP cladding layer 2 is doped with S, with a typical layer thickness of 1.0 ⁇ m and a typical doping concentration of S of 1.0 ⁇ 10 18 cm ⁇ 3 .
  • the active layer 4 is composed of AlGaInAs (Aluminum Gallium Indium Arsenide) and is undoped. A typical layer thickness of the active layer 4 is 0.3 ⁇ m.
  • the first optical confinement layer 3a and the second optical confinement layer 3b provided above and below the active layer 4 are made of AlGaInAs and are undoped.
  • the p-type InP first clad layer 5 is doped with zinc (Zinc: Zn).
  • Zinc zinc
  • a typical layer thickness of the p-type InP first cladding layer 5 is 0.3 ⁇ m, and a typical doping concentration of Zn is 1.0 ⁇ 10 18 cm ⁇ 3 .
  • the semi-insulating InP first buried layer 7a is doped with a transition metal.
  • the transition metal is a general term for elements existing between the elements of Group 3 to the elements of Group 11 in the periodic table. Specific examples of transition metals include Fe, ruthenium (Ru), and titanium (Ti).
  • a typical layer thickness of the semi-insulating InP first buried layer 7a is 1.8 ⁇ m, and a typical doping concentration of Fe is 5.0 ⁇ 10 16 cm ⁇ 3 .
  • S is doped in the n-type InP second buried layer 7b.
  • a typical layer thickness of the n-type InP second buried layer 7b is 0.2 ⁇ m, and a typical doping concentration of S is 5.0 ⁇ 10 18 cm ⁇ 3 .
  • the semi-insulating InP third buried layer 7c is doped with a transition metal.
  • transition metals include Fe, Ru and Ti.
  • a typical layer thickness of the semi-insulating InP third buried layer 7c is 0.5 ⁇ m, and a typical doping concentration of the transition metal is 5.0 ⁇ 10 16 cm ⁇ 3 .
  • the p-type InP second clad layer 8 is doped with Zn.
  • a typical layer thickness of the p-type InP second cladding layer 8 is 2.0 ⁇ m, and a typical doping concentration of Zn is 1.0 ⁇ 10 18 cm ⁇ 3 .
  • the p-type InGaAs (Indium Gallium Arsenide) contact layer 9 is doped with Zn.
  • a typical layer thickness of the p-type InGaAs contact layer 9 is 0.3 ⁇ m, and a typical doping concentration of Zn is 1.0 ⁇ 10 19 cm ⁇ 3 .
  • the laser drive circuit is electrically connected to the p-side electrode 31 and the n-side electrode 32, and the optical semiconductor device 100 is forward-biased.
  • a current injected from the p-side electrode 31 of the optical semiconductor element 100 by forward biasing flows through the p-type InGaAs contact layer 9 to the mesa structure 6 , and laser light is generated in the active layer 4 .
  • the mesa buried layer 7 does not remain in the mesa buried layer. No current flows through the embedded layer 7 . That is, the mesa buried layer 7 functions as a current blocking layer.
  • the current injected into the optical semiconductor element 100 flows intensively into the mesa structure 6 due to the current constriction effect of the mesa buried layers 7 provided on both sides of the mesa structure 6 and functioning as current blocking layers. Therefore, the optical semiconductor device 100 can emit a laser beam with high efficiency with respect to the injected current due to the effect of current constriction by the mesa buried layer 7 .
  • the Fe-doped semi-insulating InP third buried layer is interposed between the S-doped n-type InP second buried layer 7b and the Zn-doped p-type InP second clad layer 8. 7c is provided. Therefore, in the optical semiconductor device 100 according to the first embodiment, the S-doped n-type InP second buried layer 7b and the Zn-doped p-type InP second clad layer 8 are in contact with each other like the optical semiconductor device 200 of the comparative example described later.
  • Fe doped in the semi-insulating InP third buried layer 7c functions as an acceptor having a deep trap level for electrons.
  • carrier recombination can also be suppressed.
  • the layer thickness of the semi-insulating InP third buried layer 7c is equal to that of the n-type InP second buried layer 7b adjacent on the n-type InP substrate 1 side. If the thickness is set thicker than the thickness of the depletion layer, the trapping effect of Fe on electrons can be used more effectively, which is advantageous in terms of suppressing carrier recombination. Further, the thickness of the semi-insulating InP third buried layer 7c is set thicker than the thickness of the depletion layer formed by the semi-insulating InP third buried layer 7c and the p-type InP second cladding layer 8. By doing so, carrier recombination can be further suppressed. It is more effective if the semi-insulating InP third buried layer 7c is made thicker than either of the depletion layers.
  • the semi-insulating InP third buried layer 7c is doped with Ru or Ti, which is a type of transition metal, instead of Fe, the same deep level trapping holes as in the case of doping with Fe can be obtained. , the same effect as in the case of doping with Fe occurs. Furthermore, when Ru or Ti is used as a dopant, interdiffusion between Ru or Ti itself and the p-type dopant can be reduced compared to Fe doping. Therefore, the use of Ru or Ti as a dopant is more effective in terms of reducing the capacity and suppressing carrier recombination than when Fe is doped.
  • the semi-insulating InP third buried layer 7c By co-doping the semi-insulating InP third buried layer 7c with at least two of Fe, Ru and Ti, both electrons and holes can be trapped. Carrier recombination at the interface between the third buried layer 7c and the p-type InP second clad layer 8 can be further suppressed. Further, the semi-insulating InP third buried layer 7c has a two-layer structure, an Fe-doped layer is provided on the n-type InP second buried layer 7b side, and a Ru or Ti-doped layer is provided on the p-type InP second clad layer 8 side. can further improve the effect of suppressing carrier recombination occurring at the interface between the semi-insulating InP third buried layer 7c and the p-type InP second clad layer 8.
  • Embodiment 1 A method for manufacturing the optical semiconductor device 100 according to Embodiment 1 will be described below.
  • the AlGaInAs active layer 4 and the Zn-doped p-type InP first clad layer 5 are sequentially crystal-grown by a crystal growth method such as metal organic chemical vapor deposition (MOCVD) (first crystal growth step).
  • MOCVD metal organic chemical vapor deposition
  • a SiO 2 film is formed on the surface of the p-type InP first clad layer 5 .
  • the SiO 2 film forming method include a CVD (Chemical Vapor Deposition) method and the like.
  • the SiO 2 film is patterned into a stripe-shaped SiO 2 mask 22 in the ⁇ 011> direction using photolithography technology and etching technology.
  • An example of the mask width of the SiO 2 mask 22 is 1.5 ⁇ m.
  • a striped mesa structure 6 is formed (mesa structure forming step).
  • a typical height of the mesa structure 6 from the surface of the n-type InP substrate 1 is 2.0 ⁇ m.
  • the etching mask is not limited to the SiO2 mask 22 but may be a SiN mask. Etching is not limited to dry etching, and wet etching may be used.
  • a mesa burying layer 7 made of an insulating InP third burying layer 7c is buried and grown so as to cover both side surfaces of the mesa structure 6 (second crystal growth step).
  • the striped SiO 2 mask 22 is removed by wet etching using hydrofluoric acid as an etchant.
  • a p-type InP second cladding layer 8 and a p-type InGaAs contact layer 9 are successively crystal-grown by MOCVD on the top surface of the mesa structure 6 and part of the surface and side surfaces of the mesa buried layer 7 (third layer). crystal growth process).
  • FIG. 6 shows a cross-sectional view of each layer after crystal growth.
  • a striped SiO 2 mask in the ⁇ 011> direction is formed in a 5 ⁇ m wide region including the mesa structure 6 by photolithography and etching techniques, and hydrogen bromide (HBr) is formed.
  • HBr hydrogen bromide
  • the portion of the epitaxial crystal growth layer unnecessary for laser operation in the mesa buried layer 7 is etched until it reaches the n-type InP substrate 1 .
  • the striped SiO 2 mask is removed by wet etching using hydrofluoric acid as an etchant.
  • a SiO 2 insulating film is formed on the entire surface of the wafer, and the opening width of the SiO 2 insulating film 21 at the position corresponding to the upper side of the mesa structure 6 on the p-type InGaAs contact layer 9 is determined by photolithography and dry etching techniques. A 3 ⁇ m opening is formed. A p-side electrode 31 is formed in this opening so as to be in contact with the surface of the p-type InGaAs contact layer 9, and an n-side electrode 32 is formed on the back side of the n-type InP substrate 1 (electrode forming step).
  • the basic structure of a semiconductor laser which is an example of the optical semiconductor device 100, is completed through the above manufacturing steps.
  • the third buried layer 7c in contact with the p-type InP second cladding layer 8 among the three-layered mesa buried layer 7 is doped with a transition metal.
  • a semi-insulating InP layer is used, a pn junction is not formed between the semi-insulating InP third buried layer 7c and the p-type InP second cladding layer 8, so that pn junction capacitance can be prevented.
  • the operating band of the LED is expanded, and the luminous efficiency is also improved. In addition, there is an effect that an optical semiconductor device with a wide operating band and high luminous efficiency can be easily manufactured.
  • FIG. 7 shows a cross-sectional view of an optical semiconductor device 200 as a comparative example.
  • the structural difference from the optical semiconductor device 100 according to the first embodiment is that the mesa buried layer 7 of the optical semiconductor device 100 according to the first embodiment is composed of the Fe-doped semi-insulating InP first buried layer 7a, While the optical semiconductor device 200 of the comparative example is composed of the three layers of the n-type InP second buried layer 7b and the Fe-doped semi-insulating InP third buried layer 7c, the Fe-doped semi-insulating InP It has a two-layer structure of a first buried layer 7a and an n-type InP second buried layer 7b, that is, it does not have an Fe-doped semi-insulating InP third buried layer 7c.
  • the n-type InP second buried layer 7b and the p-type InP second clad layer 8 are in contact with each other. Therefore, a pn junction region 15 is formed at the interface between the two.
  • the n-type InP second buried layer 7 b forms a barrier against holes existing in the p-type InP second cladding layer 8 .
  • the Fe doped in the Fe-doped semi-insulating InP first buried layer 7a acts as an acceptor for trapping electrons in InP, but does not have a trapping effect on holes. This is because a barrier against holes existing in the second cladding layer 8 is required.
  • a large-area pn junction region 15 exists at the interface between the n-type InP second buried layer 7b and the p-type InP second cladding layer 8. Since the CR time constant becomes large, there arises a problem that the cutoff frequency is lowered. When the cutoff frequency is lowered, there is a problem that the operating band of the optical semiconductor device 200 is limited in applications such as optical communication, which require high-speed operation. In addition, there is also the problem that current leakage increases due to carrier recombination in the pn junction region 15, resulting in a decrease in light emission efficiency.
  • FIG. 8 shows a cross-sectional view of the device structure of the optical semiconductor device 110 according to the second embodiment.
  • An optical semiconductor device 110 according to the second embodiment includes an n-type InP substrate 1 (first conductivity type semiconductor substrate) and an n-type InP clad layer 2 (first conductivity type semiconductor substrate) sequentially laminated on the n-type InP substrate 1 .
  • first optical confinement layer 3a active layer 4
  • second optical confinement layer 3b p-type InP cladding layer 5a (second conductivity type first cladding layer)
  • p-type InGaAs contact layer 9 second conductivity type and a striped mesa structure 6 composed of a part of the n-type InP substrate 1 and a semi-insulating InP first layer formed on the n-type InP substrate 1 on both sides of the mesa structure 6 .
  • Buried layer 7a (semi-insulating first buried layer), n-type InP second buried layer 7b (first conductivity type second buried layer), and semi-insulating InP third buried layer 7d (semi-insulating third buried layer).
  • n-type InP cladding layer 2 first optical confinement layer 3a, active layer 4, second optical confinement layer 3b, p-type InGaAs contact layer 9, semi-insulating InP first buried layer 7a and n-type InP second buried layer
  • the layer thickness, dopant, and doping concentration of the layer 7b are the same as those of the optical semiconductor device 100 according to the first embodiment.
  • the p-type InP clad layer 5a is doped with Zn.
  • a typical layer thickness of the p-type InP cladding layer 5a is 2.3 ⁇ m, and a typical doping concentration of Zn is 1.0 ⁇ 10 18 cm ⁇ 3 .
  • the semi-insulating InP third buried layer 7d is doped with a transition metal.
  • transition metals include Fe, Ru and Ti.
  • a typical layer thickness of the semi-insulating InP third buried layer 7d is 2.0 ⁇ m, and a typical doping concentration of the transition metal is 5.0 ⁇ 10 16 cm ⁇ 3 .
  • the semi-insulating InP third buried layer 7d is in contact only with both side surfaces of the mesa structure 6 of the p-type InP cladding layer 5a. Therefore, the contact area between the semi-insulating InP third buried layer 7d and the p-type InP cladding layer 5a is the same as the semi-insulating InP third buried layer 7c and the p-type InP in the optical semiconductor device 100 according to the first embodiment. Compared to the contact area of the second clad layer 8, it is much smaller.
  • the contact area between the semi-insulating InP third buried layer 7d and the p-type InP cladding layer 5a is small, the dopant of the p-type InP cladding layer 5a will be removed by heat treatment during the crystal growth of the semi-insulating InP third buried layer 7d. Some Zn diffuses to the semi-insulating InP third buried layer 7d side, and it becomes possible to suppress the area of a region in the semi-insulating InP third buried layer 7d that changes from semi-insulating to p-type.
  • the volume of the p-type InP clad layer 5a is smaller than the volume of the p-type InP second clad layer 8 of the optical semiconductor device 100 according to the first embodiment, an increase in device resistance of the optical semiconductor device 110 is avoided to some extent.
  • the AlGaInAs active layer 4, the Zn-doped p-type InP cladding layer 5a and the Zn-doped p-type InGaAs contact layer 9 are sequentially crystal-grown by MOCVD (first crystal growth step).
  • FIG. 9 shows a cross-sectional view of each layer after crystal growth.
  • a SiO 2 film is formed on the surface of the p-type InGaAs contact layer 9 .
  • a method for forming a film of SiO 2 for example, a CVD method or the like can be used.
  • the SiO 2 film is patterned into a stripe-shaped SiO 2 mask 22 in the ⁇ 011> direction using photolithography technology and etching technology.
  • An example width of the SiO 2 mask 22 is 1.5 ⁇ m.
  • a shaped mesa structure 6 is formed (mesa structure forming step).
  • a typical height of the mesa structure 6 from the surface of the n-type InP substrate 1 is 4.0 ⁇ m.
  • the etching mask is not limited to the SiO2 mask 22 but may be a SiN mask. Etching is not limited to dry etching, and wet etching may be used.
  • the striped SiO 2 mask 22 is removed by wet etching using hydrofluoric acid as an etchant.
  • a striped SiO 2 mask in the ⁇ 011> direction is formed in a 5 ⁇ m wide region including the mesa structure 6 by photolithography and etching techniques, and wet etching is performed using HBr as an etchant. , the portion of the epitaxial crystal growth layer unnecessary for laser operation in the mesa buried layer 7 is etched until it reaches the n-type InP substrate 1 . After that, the striped SiO 2 mask is removed by wet etching using hydrofluoric acid as an etchant.
  • a SiO 2 insulating film is formed on the entire surface of the wafer, and photolithography and dry etching techniques are used to form an upper side of the mesa structure 6 on the p-type InGaAs contact layer 9 and the Fe-doped semi-insulating InP third buried layer 7d.
  • An opening with an opening width of 3 ⁇ m is formed in the SiO 2 insulating film 21 at a position corresponding to .
  • a p-side electrode 31 is formed in this opening so as to be in contact with the surface of the p-type InGaAs contact layer 9, and an n-side electrode 32 is formed on the back side of the n-type InP substrate 1 (electrode forming step).
  • the basic structure of a semiconductor laser which is an example of the optical semiconductor element 110, is completed through the above manufacturing steps.
  • the number of times of crystal growth is three.
  • the number of times of crystal growth is two, which is one less than in the case of the first embodiment.
  • the number of times of heat treatment for recrystallization growth after forming the Zn-doped p-type InP clad layer is smaller than in the case of the first embodiment.
  • the Fe-doped semi-insulating InP resulting from the diffusion of Zn in the Zn-doped p-type InP clad layer 5a is less than the first embodiment. It is easy to suppress the p-type conversion of the third buried layer 7d.
  • the semi-insulating InP third buried layer 7d is in contact only with both side surfaces of the mesa structure 6 of the p-type InP cladding layer 5a.
  • the contact area between the InP third buried layer 7d and the p-type InP clad layer 5a can be significantly reduced, and carrier recombination can be prevented more effectively. This has the effect of further expanding the operating band and further improving the luminous efficiency. Moreover, there is an effect that such a high-performance optical semiconductor device can be easily manufactured.
  • FIG. 13 shows a cross-sectional view of the device structure of the optical semiconductor device 120 according to the third embodiment.
  • An optical semiconductor device 120 according to the third embodiment includes an n-type InP substrate 1 (first conductivity type semiconductor substrate) and an n-type InP clad layer 2 (first conductivity type semiconductor substrate) sequentially laminated on the n-type InP substrate 1 .
  • first optical confinement layer 3a active layer 4
  • second optical confinement layer 3b p-type InP first cladding layer 5 (second conductivity type first cladding layer) and n-type InP substrate 1 and a semi-insulating InP first buried layer 7a (semi-insulating first buried layer ), an n-type InP second buried layer 7b (second conductive type second buried layer), and a semi-insulating InP third buried layer 7e (semi-insulating third buried layer) to form a mesa structure.
  • a mesa burying layer 7 having a tapered side surface extending from the top surface of the mesa burying layer 7;
  • a cladding layer 8 second conductivity type second cladding layer
  • a p-type InGaAs contact layer 9 second conductivity type contact layer
  • an opening in an insulating film 21 provided on the surface of the p-type InGaAs contact layer 9
  • a p-side electrode 31 second conductivity type side electrode
  • an n-side electrode 32 first conductivity type side electrode
  • n-type InP clad layer 2 first light confinement layer 3a, active layer 4, second light confinement layer 3b, p-type InP first clad layer 5, p-type InP second clad layer 8, p-type InGaAs contact layer 9,
  • the layer thicknesses, dopants, and doping concentrations of the semi-insulating InP first buried layer 7a and the n-type InP second buried layer 7b are the same as those of the optical semiconductor device 100 according to the first embodiment.
  • the semi-insulating InP third buried layer 7e is doped with a transition metal.
  • transition metals include Fe, Ru and Ti.
  • a typical layer thickness of the semi-insulating InP third buried layer 7e is 2.0 ⁇ m, and a typical doping concentration of the transition metal is 5.0 ⁇ 10 16 cm ⁇ 3 .
  • the side surface of the semi-insulating InP third buried layer 7e on the side of the mesa structure 6 tapers from the top surface of the mesa structure 6 as shown in the cross-sectional view of FIG. It has a lateral shape that spreads out into a shape.
  • the p-type InP second cladding layer 8 is in contact with the semi-insulating InP third buried layer 7e only on both tapered side surfaces.
  • the contact area between the semi-insulating InP third buried layer 7e and the p-type InP second cladding layer 8 is the same as the semi-insulating InP third buried layer 7c and p in the optical semiconductor device 100 according to the first embodiment. Compared to the contact area of the InP-type second cladding layer 8, the contact area is much smaller.
  • the heat treatment during the crystal growth of the semi-insulating InP third buried layer 7e will cause the p-type InP second clad layer Zn, which is the dopant of No. 8, diffuses toward the semi-insulating InP third buried layer 7e, and suppresses the area of the semi-insulating InP third buried layer 7e to become p-type. It becomes possible.
  • the p-type InP second cladding layer 8 embeds the semi-insulating InP third embedded layer 7e having a tapered side surface extending from the top surface of the mesa structure 6. Therefore, the mesa structure 6 has a tapered shape extending from the top surface side toward the surface.
  • the angle between the tapered side surfaces and the surface of the n-type InP substrate 1 is set to 50° or more and 60° or less.
  • the volume of the p-type InP second clad layer 8 of the optical semiconductor device 120 according to the third embodiment is larger than the volume of the p-type InP clad layer 5a of the optical semiconductor device 110 according to the second embodiment. Therefore, the device resistance of the optical semiconductor device 120 according to the third embodiment is lower than the device resistance of the optical semiconductor device 110 according to the second embodiment.
  • a mesa burying layer 7 made of an insulating InP third burying layer 7e is buried and grown so as to cover both side surfaces of the mesa structure 6 (second crystal growth step).
  • the typical layer thickness of the Fe-doped semi-insulating InP third buried layer 7e is 2.0 ⁇ m, and the typical layer thickness of the Fe-doped semi-insulating InP third buried layer 7c in the first embodiment is 0 ⁇ m. Thicker than .5 ⁇ m.
  • a typical layer thickness of the entire mesa buried layer 7 is 4.0 ⁇ m, which is 2.0 ⁇ m higher than the typical height of the mesa structure 6 from the surface of the n-type InP substrate 1 of 2.0 ⁇ m. 0 ⁇ m is also high. Therefore, the crystal growth plane is located higher than the top surface of the mesa structure 6 at the time of crystal growth of the Fe-doped semi-insulating InP third buried layer 7 e of the mesa buried layer 7 .
  • the crystal growth temperature is 500° C. to 650° C. and the V/III ratio is If the thickness is about 30 to 200, the mesa buried layer 7 is crystal-grown from the top surface of the mesa structure 6 so as to widen the opening while exposing the ⁇ 111>B planes on both sides. That is, the opposing side surfaces of the Fe-doped semi-insulating InP third buried layer 7e have a tapered shape as shown in the cross-sectional view of FIG. 14 as the crystal growth progresses. Since both tapered side surfaces are ⁇ 111>B planes, the angle between the tapered side surfaces and the ⁇ 100> surface of the n-type InP substrate 1 ranges from 50° to 60°.
  • the striped SiO 2 mask 22 is removed by wet etching using hydrofluoric acid as an etchant.
  • a p-type InP second cladding layer 8 and a p-type InGaAs contact layer 9 are successively crystal-grown by MOCVD on the top surface of the mesa structure 6 and the tapered side surfaces of the mesa-buried layer 7 (third crystal growth). process).
  • FIG. 15 shows a cross-sectional view of each layer after crystal growth.
  • a striped SiO 2 mask in the ⁇ 011> direction is formed in a 5 ⁇ m wide region including the mesa structure 6 by photolithography and etching techniques, and wet etching is performed using HBr as an etchant. , the portion of the epitaxial crystal growth layer unnecessary for laser operation in the mesa buried layer 7 is etched until it reaches the n-type InP substrate 1 . After that, the striped SiO 2 mask is removed by wet etching using hydrofluoric acid as an etchant.
  • a SiO 2 insulating film is formed on the entire surface of the wafer, and the opening width of the SiO 2 insulating film 21 at the position corresponding to the upper side of the mesa structure 6 on the p-type InGaAs contact layer 9 is determined by photolithography and dry etching techniques. A 3 ⁇ m opening is formed. A p-side electrode 31 is formed in this opening so as to be in contact with the surface of the p-type InGaAs contact layer 9, and an n-side electrode 32 is formed on the back side of the n-type InP substrate 1 (electrode forming step).
  • the basic structure of a semiconductor laser which is an example of the optical semiconductor element 120, is completed through the above manufacturing processes.
  • the p-type InP second cladding layer 8 is in contact with the semi-insulating InP third buried layer 7e only at both tapered side surfaces. Therefore, the contact area between the semi-insulating InP third buried layer 7e and the p-type InP second clad layer 8 can be significantly reduced, and carrier recombination can be prevented more effectively. Furthermore, since the volume of the p-type InP second cladding layer 8 is also large, in the optical semiconductor device, the device resistance is small, the operating band is further expanded, and the luminous efficiency is further improved. Moreover, there is an effect that such a high-performance optical semiconductor device can be easily manufactured.
  • FIG. 16 shows a cross-sectional view of the element structure of the optical semiconductor element 130 according to the fourth embodiment.
  • An optical semiconductor device 130 according to the fourth embodiment includes an n-type InP substrate 1 (first conductivity type semiconductor substrate) and an n-type InP clad layer 2 (first conductivity type semiconductor substrate) sequentially laminated on the n-type InP substrate 1 .
  • a semi-insulating InP first buried layer 7a (semi-insulating first buried layer) formed on the n-type InP substrate 1 on both sides of the mesa structure 6, and Mesa burying layer 7 made of n-type InP second burying layer 7b (second burying layer of first conductivity type), the top surface of mesa structure 6, and part of the surface and side surface of mesa burying layer 7 are A semi-insulating InP cladding layer 7f and a p-type InGaAs contact layer 9 (second conductivity type contact layer) formed to cover the p-type InGaAs contact layer 9, the semi-insulating InP cladding layer 7f and the p-type InP cladding A Zn diffusion p-type region 18 (second conductivity
  • n-type InP cladding layer 2 first optical confinement layer 3a, active layer 4, second optical confinement layer 3b, p-type InGaAs contact layer 9, semi-insulating InP first buried layer 7a and n-type InP second buried layer
  • the layer thickness, dopant, and doping concentration of the layer 7b are the same as those of the optical semiconductor device 100 according to the first embodiment.
  • the p-type InP clad layer 5b is doped with Zn.
  • a typical layer thickness of the p-type InP cladding layer 5b is 0.3 ⁇ m, and a typical doping concentration of Zn is 1.0 ⁇ 10 18 cm ⁇ 3 .
  • the semi-insulating InP clad layer 7f is doped with a transition metal.
  • transition metals include Fe, Ru and Ti.
  • a typical layer thickness of the semi-insulating InP cladding 7f is 2.0 ⁇ m, and a typical doping concentration of transition metal is 5.0 ⁇ 10 16 cm ⁇ 3 .
  • the p-type InGaAs contact layer 9 is formed inside the p-type InGaAs contact layer 9, the semi-insulating InP cladding layer 7f, and the p-type InP cladding layer 5b.
  • a Zn-diffused p-type region 18 is provided from the surface to the p-type InP clad layer 5b. The tip of the Zn-diffused p-type region 18 may reach the second optical confinement layer 3 b or the active layer 4 .
  • the Zn diffused p-type region 18 in the semi-insulating InP cladding layer 7f is changed from its original semi-insulating property to p-type, so that it substantially functions as a p-type InP cladding layer.
  • the Zn diffused p-type region 18 is formed during the vapor phase diffusion process performed after all the crystal growth processes are completed, as will be described later. Therefore, in the process after forming the Zn diffused p-type region 18, since there is no high-temperature heat treatment that would cause Zn to diffuse, the Fe-doped semi-insulating InP first buried layer 7a becomes p-type due to further diffusion of Zn. can suppress erosion.
  • the device resistance can be further reduced.
  • An embedded layer 7 is buried and grown so as to cover both side surfaces of the mesa structure 6 (second crystal growth step).
  • the striped SiO 2 mask 22 is removed by wet etching using hydrofluoric acid as an etchant.
  • FIG. 18 shows a cross-sectional view of each layer after crystal growth.
  • a SiO 2 film 25 is formed on the surface of the wafer, and stripe-shaped openings in the ⁇ 011> direction are formed by photolithography and etching techniques.
  • the opening width of the opening is 2 ⁇ m.
  • the SiO2 film 25 functions as a diffusion mask.
  • Zn is diffused into a region from the p-type InGaAs contact layer 9 exposed in the opening to a part of the p-type InP cladding layer 5b by a vapor phase diffusion method in an MOCVD apparatus, thereby forming the p-type InGaAs contact layer 9.
  • a Zn-diffused p-type region 18 is formed inside the semi-insulating InP clad layer 7f and the p-type InP clad layer 5b (dopant diffusion step). Since the Zn-diffused region inside the semi-insulating InP clad layer 7f becomes p-type, it functions as a p-type InP clad layer.
  • the tip of the Zn-diffused p-type region 18 may reach the second optical confinement layer 3 b or the active layer 4 .
  • a striped SiO 2 mask in the ⁇ 011> direction is formed in a 5 ⁇ m wide region including the mesa structure 6 by photolithography and etching techniques, and wet etching is performed using HBr as an etchant.
  • the epitaxial crystal growth layer of the portion of the mesa buried layer 7 that is unnecessary for laser operation is etched until it reaches the n-type InP substrate 1 .
  • the striped SiO 2 mask is removed by wet etching using hydrofluoric acid as an etchant.
  • a SiO 2 insulating film is formed on the entire surface of the wafer, and the opening width of the SiO 2 insulating film 21 at the position corresponding to the upper side of the mesa structure 6 on the p-type InGaAs contact layer 9 is determined by photolithography and dry etching techniques. A 3 ⁇ m opening is formed. A p-side electrode 31 is formed in this opening so as to be in contact with the surface of the p-type InGaAs contact layer 9, and an n-side electrode 32 is formed on the back side of the n-type InP substrate 1 (electrode forming step).
  • the basic structure of a semiconductor laser which is an example of the optical semiconductor element 130, is completed through the above manufacturing steps.
  • the region in which Zn is diffused inside the semi-insulating InP clad layer 7f functions as a p-type InP clad layer. Since the region and the semi-insulating InP clad layer 7f are in contact only on both side surfaces, the contact area between the semi-insulating InP clad layer 7f and the p-type InP clad layered region can be significantly reduced, Since it is possible to prevent carrier recombination more effectively, and the volume of the p-type InP clad layered region is large, the optical semiconductor device has a small device resistance, a wider operating band, and , the luminous efficiency is further improved. Moreover, there is an effect that such a high-performance optical semiconductor device can be easily manufactured.
  • 1 n-type InP substrate first conductivity type semiconductor substrate
  • 2 n-type InP clad layer first conductivity type clad layer
  • 3a first light confinement layer 3b second light confinement layer
  • 4 active layer 5 p-type InP first cladding layer (second conductivity type first cladding layer) 5a, 5b p-type InP cladding layer (second conductivity type first cladding layer) 6 mesa structure 7 mesa buried layer 7a semi-insulating InP first buried layer (semi-insulating first buried layer), 7b n-type InP second buried layer (first conductivity type second buried layer), 7c, 7d, 7e semi-insulating 7f semi-insulating InP cladding layer (semi-insulating cladding layer); 8 p-type InP second cladding layer (second conductivity type second cladding layer); 2 clad layer), 9 p-type InGaAs contact layer (second conductivity type contact layer), 15 pn

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本開示の光半導体素子は、第1導電型の半導体基板(1)と、第1導電型の半導体基板(1)上に積層された第1導電型のクラッド層(2)、活性層(4)及び第2導電型の第1クラッド層(5)の積層体からなるストライプ状のメサ構造(6)と、第1導電型の半導体基板(1)上でメサ構造(6)の両側面に順次設けられた半絶縁性の第1埋込層(7a)、第1導電型の第2埋込層(7b)及び、遷移金属がドープされた半絶縁性の第3埋込層(7c)からなるメサ埋込層(7)と、を備える。

Description

光半導体素子及びその製造方法
 本願は、光半導体素子及びその製造方法に関する。
 半導体レーザーを代表とする光半導体素子では、活性層への電流狭窄と活性層からの放熱を目的として活性層の両側面を半導体で埋め込んだ構造、いわゆる埋込型半導体レーザーが多用される。光通信用途に用いられるInP(インジウムリン、Indium Phosphide)系の埋込型半導体レーザーでは、通信の大容量化に対応するために半導体レーザー素子単体での変調周波数の広帯域化、発光効率向上が要求される。
 変調周波数の広帯域化を目的として半導体レーザーの容量を低減し、かつ、発光効率向上を目的として、活性層からの放熱性の向上を図るために、n型InP基板と、鉄(Ferrum:Fe)等の半絶縁性材料をドーピングしたInP埋込層の組み合わせが用いられている。
 FeはInP中で電子をトラップするアクセプタとして作用する一方、ホールに対してはトラップ効果を持たないため、埋込層の上部でp型クラッド層に接する部分にn型InP埋込層を配置した素子構造が一般に用いられる。かかる素子構造では、n型InP埋込層を設けることで、p型InPクラッド層のホールに対する障壁を形成している。
特開2004-047743号公報
 しかしながら、上述の素子構造では、n型InP埋込層とp型InPクラッド層の界面に面積の大きいpn接合領域が存在するため、pn接合容量によってCR時定数が大きくなるので、半導体レーザーの遮断周波数が低下するという不具合が発生した。光通信等のような高速動作が要求される用途では、遮断周波数の低下によって、半導体レーザーの動作帯域が制限されるという問題が生じた。また、pn接合領域でのキャリア再結合によって電流リークが増大し、半導体レーザーの発光効率が低下するという問題も生じた。
 pn接合領域の面積を減らす手段として、半導体レーザーの活性層を含むメサ構造のメサ幅を狭くする方法、あるいは、半導体レーザーの共振器を短くする方法等が考えられる。しかしながら、メサ構造のメサ幅を狭くすると半導体レーザーの放熱性が悪化するという新たな問題が生じた。
 一方、半導体レーザーの共振器を短くすると、素子抵抗の増大による遮断周波数の低下、あるいは、活性層の体積減少による発光効率の低下も生じるため、動作帯域と発光効率のトレードオフの関係は解消できなかった。50Gbps以上の光通信用途を想定すると、上述のpn接合界面を含む素子構造では対応が難しいという課題があった。
 特許文献1に記載の光集積デバイスの一部を構成する電界吸収型変調器は半導体レーザーの用途とは異なるものの、特許文献1の図2(b)に示されるように、メサ構造の両側面に半絶縁性FeドープInP電子トラップ層、n型InPホールブロック層、及びアンドープInP層からなる3層構造の埋込層が形成されている。
 つまり、n型InPホールブロック層とp型InPクラッド層との間にアンドープInP層が設けられている。かかる積層構造を半導体レーザーの埋込層として適用すると、アンドープInP層の存在によって、pn接合容量を低減させることができる。しかしながら、かかる積層構造はpin構造となっているため、当該箇所でのキャリア再結合を抑制することはできず、発光効率の低下という問題は依然として解決されなかった。
 本開示は上記のような問題点を解消するためになされたもので、埋込層と第2導電型のクラッド層の間に形成されるpn接合領域に起因するpn接合容量を低減することにより、高速変調を可能とし、また、埋込層と第2導電型のクラッド層の界面でのキャリア再結合を抑制することで、発光効率の高効率化を可能とする光半導体素子及びその製造方法を提供することを目的とする。
 本願に開示される光半導体素子は、
 第1導電型の半導体基板と、
 前記第1導電型の半導体基板上に積層された第1導電型のクラッド層、活性層及び第2導電型の第1クラッド層の積層体からなるストライプ状のメサ構造と、
 前記第1導電型の半導体基板上で前記メサ構造の両側面に順次設けられた半絶縁性の第1埋込層、第1導電型の第2埋込層及び遷移金属がドープされた半絶縁性の第3埋込層からなるメサ埋込層と、を備える。
 本願に開示される光半導体素子の製造方法は、
 第1導電型の半導体基板に、第1導電型のクラッド層、活性層及び第2導電型の第1クラッド層をMOCVD法によって順次結晶成長する第1結晶成長工程と、
 前記第1導電型のクラッド層、前記活性層、前記第2導電型の第1クラッド層及び前記第1導電型の半導体基板の一部をストライプ状のメサ構造にエッチングするメサ構造形成工程と、
 前記第1導電型の半導体基板上で前記メサ構造の両側面に、半絶縁性の第1埋込層、第1導電型の第2埋込層及び1種類以上の遷移金属がドープされた半絶縁性の第3埋込層からなるメサ埋込層をMOCVD法によって順次結晶成長する第2結晶成長工程と、
 前記メサ構造の頂面並びに前記メサ埋込層の表面及び側面の一部に、第2導電型の第2クラッド層及び第2導電型のコンタクト層をMOCVD法によって順次積層する第3結晶成長工程と、
を含む。
 本願に開示される光半導体素子及びその製造方法によれば、メサ埋込層と第2導電型のクラッド層の間に形成されるpn接合に起因するpn接合容量を低減でき、また、メサ埋込層と第2導電型のクラッド層の界面でのキャリア再結合を抑制できるので、光半導体素子の高速変調及び光効率の高効率化が可能となるという効果を奏する。また、かかる光半導体素子を容易に製造できるという効果を奏する。
実施の形態1に係る光半導体素子の素子構造を示す断面図である。 実施の形態1に係る光半導体素子の製造方法を示す断面図である。 実施の形態1に係る光半導体素子の製造方法を示す断面図である。 実施の形態1に係る光半導体素子の製造方法を示す断面図である。 実施の形態1に係る光半導体素子の製造方法を示す断面図である。 実施の形態1に係る光半導体素子の製造方法を示す断面図である。 比較例による光半導体素子の素子構造を示す断面図である。 実施の形態2に係る光半導体素子の素子構造を示す断面図である。 実施の形態2に係る光半導体素子の製造方法を示す断面図である。 実施の形態2に係る光半導体素子の製造方法を示す断面図である。 実施の形態2に係る光半導体素子の製造方法を示す断面図である。 実施の形態2に係る光半導体素子の製造方法を示す断面図である。 実施の形態3に係る光半導体素子の素子構造を示す断面図である。 実施の形態3に係る光半導体素子の製造方法を示す断面図である。 実施の形態3に係る光半導体素子の製造方法を示す断面図である。 実施の形態4に係る光半導体素子の素子構造を示す断面図である。 実施の形態4に係る光半導体素子の製造方法を示す断面図である。 実施の形態4に係る光半導体素子の製造方法を示す断面図である。 実施の形態4に係る光半導体素子の製造方法を示す断面図である。
実施の形態1.
 実施の形態1に係る光半導体素子100の素子構造の断面図を図1に示す。実施の形態1に係る光半導体素子100は、n型InP基板1(第1導電型の半導体基板)と、n型InP基板1に順次積層されたn型InPクラッド層2(第1導電型のクラッド層)、第1光閉じ込め層3a、活性層4、第2光閉じ込め層3b、p型InP第1クラッド層5(第2導電型の第1クラッド層)の積層体とn型InP基板1の一部からなるストライプ状のメサ構造6と、メサ構造6の両側面のn型InP基板1上に形成された半絶縁性InP第1埋込層7a(半絶縁性の第1埋込層)、n型InP第2埋込層7b(第1導電型の第2埋込層)及び半絶縁性InP第3埋込層7c(半絶縁性の第3埋込層)からなるメサ埋込層7と、メサ構造6の頂面並びにメサ埋込層7の表面及び側面の一部を覆うように形成されたp型InP第2クラッド層8(第2導電型の第2クラッド層)及びp型InGaAsコンタクト層9(第2導電型のコンタクト層)と、p型InGaAsコンタクト層9の表面に設けられた絶縁膜21の開口部でp型InGaAsコンタクト層9と接触するp側電極31(第2導電型側電極)と、n型InP基板1の裏面側に設けられたn側電極32(第1導電型側電極)と、で構成される。
 n型InP基板1は硫黄(Sulfur:S)がドープされ、表面は<100>面である。n型InPクラッド層2はSがドープされ、典型的な層厚は1.0μmでありSの、典型的なドーピング濃度は1.0×1018cm-3である。
 活性層4はAlGaInAs(Aluminum Gallium Indium Arsenide)で構成され、アンドープである。活性層4の典型的な層厚は、0.3μmである。活性層4を挟んで上下に設けられた、第1光閉じ込め層3a及び第2光閉じ込め層3bはAlGaInAsで構成され、アンドープである。
 p型InP第1クラッド層5には、亜鉛(Zinc:Zn)がドープされている。p型InP第1クラッド層5の典型的な層厚は0.3μmであり、Znの典型的なドーピング濃度は1.0×1018cm-3である。
 半絶縁性InP第1埋込層7aには、遷移金属がドーピングされている。なお、遷移金属とは、周期表で第3族元素から第11族元素の間に存在する元素の総称である。遷移金属の具体例として、Fe、ルテニウム(Ruthenium:Ru)、チタン(Titanium:Ti)等が挙げられる。半絶縁性InP第1埋込層7aの典型的な層厚は1.8μm、Feの典型的なドーピング濃度は5.0×1016cm-3である。
 n型InP第2埋込層7bには、Sがドープされている。n型InP第2埋込層7bの典型的な層厚は0.2μm、Sの典型的なドーピング濃度は5.0×1018cm-3である。
 半絶縁性InP第3埋込層7cには、遷移金属がドーピングされている。遷移金属の具体例として、Fe、Ru、Ti等が挙げられる。半絶縁性InP第3埋込層7cの典型的な層厚は0.5μm、遷移金属の典型的なドーピング濃度は5.0×1016cm-3である。
 p型InP第2クラッド層8には、Znがドーピングされている。p型InP第2クラッド層8の典型的な層厚は2.0μm、Znの典型的なドーピング濃度は1.0×1018cm-3である。
 p型InGaAs(Indium Gallium Arsenide)コンタクト層9には、Znがドーピングされている。p型InGaAsコンタクト層9の典型的な層厚は0.3μm、Znの典型的なドーピング濃度は1.0×1019cm-3である。
 以下に、実施の形態1に係る光半導体素子100の動作について説明する。
 光半導体素子100においてレーザー光を出射させるには、レーザー駆動回路とp側電極31及びn側電極32を電気的に接続し、光半導体素子100に対して順方向バイアスをかける。順方向バイアスによって光半導体素子100のp側電極31から注入された電流は、p型InGaAsコンタクト層9を経てメサ構造6に流れ、活性層4においてレーザー光が発生する。
 一方、メサ埋込層7に対しては、順バイアスをかけても、半絶縁性InP第1埋込層7a及び半絶縁性InP第3埋込層7cが高抵抗層であるため、メサ埋込層7には電流は流れない。つまり、メサ埋込層7は電流ブロック層として機能する。この結果、光半導体素子100に注入された電流は、メサ構造6の両側に設けられ電流ブロック層として機能するメサ埋込層7による電流狭窄の作用によって、メサ構造6に集中して流れる。したがって、光半導体素子100は、メサ埋込層7による電流狭窄の作用によって、注入電流に対して高い効率でレーザー光を出射することが可能となる。
 次に、実施の形態1に係る光半導体素子100の素子構造上の特徴について説明する。
 実施の形態1に係る光半導体素子100では、Sドープn型InP第2埋込層7bとZnドープp型InP第2クラッド層8との間に、Feドープ半絶縁性InP第3埋込層7cが設けられている。したがって、実施の形態1に係る光半導体素子100では、後述する比較例の光半導体素子200のようなSドープn型InP第2埋込層7bとZnドープp型InP第2クラッド層8が接する素子構造によって両者の界面で不可避的に生じるpn接合によってもたらされるpn接合容量の発生を防止することが可能となる。Feドープ半絶縁性InP第3埋込層7cとp型InP第2クラッド層8との界面では、pn接合は形成されないからである。
 また、実施の形態1に係る光半導体素子100では、半絶縁性InP第3埋込層7c中にドープされたFeは電子に対して深いトラップ準位をもつアクセプタとして機能することから、Feドープ半絶縁性InP第3埋込層7cとp型InP第2クラッド層8との界面では、キャリア再結合も抑制できる。
 したがって、特許文献1に記載された素子構造で問題となった、n型InPホールブロック層とp型InPクラッド層との間にアンドープInP層が設けられている場合に生じるpin接合領域においてキャリア再結合を抑制できないという不具合に対しても、実施の形態1に係る光半導体素子100では、遷移金属の一種である例えばFeをドープした半絶縁性InP第3埋込層7cの適用によって防止することが可能となる。
 実施の形態1に係る光半導体素子100において、半絶縁性InP第3埋込層7cの層厚を、n型InP基板1の側で隣接するn型InP第2埋込層7bとで形成される空乏層の層厚よりも厚く設定しておけば、電子に対するFeのトラップ効果をさらに有効に利用できるため、キャリア再結合を抑制する点で有利となる。また、半絶縁性InP第3埋込層7cの層厚を、半絶縁性InP第3埋込層7cとp型InP第2クラッド層8とで形成される空乏層の層厚よりも厚く設定しておけば、キャリア再結合をより抑制できる。半絶縁性InP第3埋込層7cの層厚を、両者の空乏層の層厚のいずれよりも厚くすれば、より効果的である。
 また、Feの代わりに、遷移金属の一種であるRuあるいはTiをドープした半絶縁性InP第3埋込層7cであっても、Feをドープした場合と同様に、ホールをトラップする深い準位を形成することから、Feをドープした場合と同様な作用が生じる。さらに、RuあるいはTiをドーパントとして用いると、Feをドープした場合と比較して、RuあるいはTi自身とp型ドーパントとの相互拡散を低減できる。したがって、RuあるいはTiをドーパントとして用いる場合は、Feをドープした場合と比べて、容量低減及びキャリア再結合の抑制の点で一層の効果を奏する。
 また、半絶縁性InP第3埋込層7cに、Fe、Ru及びTiのいずれか2種類以上をコドープすることで、電子とホールの両方をトラップさせることが可能となるので、半絶縁性InP第3埋込層7cとp型InP第2クラッド層8の界面でのキャリア再結合を一層抑制することができる。さらに、半絶縁性InP第3埋込層7cを2層構造とし、n型InP第2埋込層7b側にFeドープ層を設け、p型InP第2クラッド層8側にRuあるいはTiドープ層を設けた構造を適用することによっても、半絶縁性InP第3埋込層7cとp型InP第2クラッド層8の界面で生じるキャリア再結合に対する抑制効果を一段と向上させることができる。
<実施の形態1に係る光半導体素子100の製造方法>
 実施の形態1に係る光半導体素子100の製造方法を以下に説明する。
 表面が<100>面であるSドープn型InP基板1上に、Sドープn型InPクラッド層2、上下面をAlGaInAs第1光閉じ込め層3a及びAlGaInAs第2光閉じ込め層3bに挟まれたアンドープAlGaInAs活性層4、Znドープp型InP第1クラッド層5を、有機金属気相成長法(Metal Organic Chemical Vapor Deposition:MOCVD)等の結晶成長方法によって順次結晶成長する(第1結晶成長工程)。各層の結晶成長後の断面図を図2に示す。
 第1結晶成長工程の後、p型InP第1クラッド層5の表面に、SiO膜を成膜する。SiOの成膜方法としては、例えば、CVD(Chemical Vapor Deposition)法等が挙げられる。SiO膜の成膜後、図3の断面図に示すように、フォトリソグラフィ技術及びエッチング技術を用いて、SiO膜を<011>方向のストライプ状のSiOマスク22にパターニングする。SiOマスク22のマスク幅の一例としては、1.5μmが挙げられる。
 次に、ストライプ状のSiOマスク22をエッチングマスクとして用いて、図4の断面図に示すように、p型InP第1クラッド層5からn型InP基板1の途中までをドライエッチングすることで、ストライプ状のメサ構造6を形成する(メサ構造形成工程)。メサ構造6のn型InP基板1の表面からの典型的な高さは2.0μmである。ここで、エッチングマスクはSiOマスク22に限らずSiNマスクでも良い。また、エッチングはドライエッチングに限らず、ウェットエッチングを用いても良い。
 ストライプ状のメサ構造6の形成後、図5の断面図に示すように、MOCVD法によって、Feドープ半絶縁性InP第1埋込層7a、n型InP第2埋込層7b及びFeドープ半絶縁性InP第3埋込層7cからなるメサ埋込層7を、メサ構造6の両側面を覆うように埋め込み成長する(第2結晶成長工程)。
 メサ埋込層7の結晶成長後、フッ酸をエッチャントとして用いたウェットエッチングにより、ストライプ状のSiOマスク22を除去する。
 メサ構造6の頂面並びにメサ埋込層7の表面及び側面の一部の上に、MOCVD法により、p型InP第2クラッド層8及びp型InGaAsコンタクト層9を順次結晶成長する(第3結晶成長工程)。上記各層の結晶成長後の断面図を図6に示す。
 第3結晶成長工程の後に、メサ構造6を含む幅5μmの領域に、フォトリソグラフィ技術及びエッチング技術によって、<011>方向のストライプ状のSiOマスクを形成し、臭化水素(Hydrogen Bromide:HBr)をエッチャントとして用いたウェットエッチングを行うことで、メサ埋込層7におけるレーザー動作に不要な部分のエピタキシャル結晶成長層をn型InP基板1に達するまでエッチングする。その後、フッ酸をエッチャントとして用いたウェットエッチングにより、ストライプ状のSiOマスクを除去する。
 さらに、ウエハの全面にSiO絶縁膜を形成して、フォトリソグラフィ技術とドライエッチング技術によって、p型InGaAsコンタクト層9上でメサ構造6の上側に対応する位置のSiO絶縁膜21に開口幅3μmの開口部を形成する。この開口部でp型InGaAsコンタクト層9の表面に接するようにp側電極31を形成し、n型InP基板1の裏面側にn側電極32を形成する(電極形成工程)。
 以上の各製造工程を経て、光半導体素子100の一例である半導体レーザーの基本構造が完成する。
<実施の形態1の効果>
 実施の形態1に係る光半導体素子及びその製造方法によれば、3層からなるメサ埋込層7のうちp型InP第2クラッド層8と接する第3埋込層7cを遷移金属がドープされた半絶縁性InP層で構成したので、半絶縁性InP第3埋込層7cとp型InP第2クラッド層8の間ではpn接合が形成されないため、pn接合容量を防止することが可能となり、さらに、半絶縁性InP第3埋込層7cとp型InP第2クラッド層8の界面でのキャリア再結合を抑制することにより電流リーク成分を低減することが可能となるため、光半導体素子の動作帯域が拡大し、かつ、発光効率も向上するという効果を奏する。また、動作帯域が広く、かつ、発光効率の高い光半導体素子を容易に製造できるという効果を奏する。
比較例.
 比較例である光半導体素子200の断面図を図7に示す。実施の形態1に係る光半導体素子100との構造上の相違点は、実施の形態1に係る光半導体素子100のメサ埋込層7が、Feドープ半絶縁性InP第1埋込層7a、n型InP第2埋込層7b及びFeドープ半絶縁性InP第3埋込層7cの3層で構成されているのに対して、比較例の光半導体素子200では、Feドープ半絶縁性InP第1埋込層7a、n型InP第2埋込層7bの2層構造である点、すなわち、Feドープ半絶縁性InP第3埋込層7cが無い点である。
 比較例である光半導体素子200では、n型InP第2埋込層7bとp型InP第2クラッド層8が接している。したがって、両者の界面でpn接合領域15が形成されている。n型InP第2埋込層7bは、p型InP第2クラッド層8内に存在するホールに対する障壁を形成している。これは、Feドープ半絶縁性InP第1埋込層7aにドープされているFeはInP中で電子をトラップするアクセプタとして作用するものの、ホールに対してはトラップ効果を持たないため、p型InP第2クラッド層8内に存在するホールに対する障壁が必要となるからである。
 比較例である光半導体素子200の素子構造では、n型InP第2埋込層7bとp型InP第2クラッド層8の界面に大面積のpn接合領域15が存在するため、pn接合容量によってCR時定数が大きくなるので、遮断周波数が低下するという不具合が発生する。遮断周波数が低下すると、光通信等のような高速動作が要求される用途では、光半導体素子200の動作帯域が制限される問題があった。また、pn接合領域15でのキャリア再結合によって電流リークが増大し、発光効率が低下するという問題もあった。
実施の形態2.
 実施の形態2に係る光半導体素子110の素子構造の断面図を図8に示す。実施の形態2に係る光半導体素子110は、n型InP基板1(第1導電型の半導体基板)と、n型InP基板1に順次積層されたn型InPクラッド層2(第1導電型のクラッド層)、第1光閉じ込め層3a、活性層4、第2光閉じ込め層3b、p型InPクラッド層5a(第2導電型の第1クラッド層)、p型InGaAsコンタクト層9(第2導電型のコンタクト層)の積層体とn型InP基板1の一部からなるストライプ状のメサ構造6と、メサ構造6の両側面のn型InP基板1上に形成された半絶縁性InP第1埋込層7a(半絶縁性の第1埋込層)、n型InP第2埋込層7b(第1導電型の第2埋込層)及び半絶縁性InP第3埋込層7d(半絶縁性の第3埋込層)からなるメサ埋込層7と、メサ構造6の頂面並びにメサ埋込層7の表面に設けられた絶縁膜21の開口部でp型InGaAsコンタクト層9と接触するp側電極31(第2導電型側電極)と、n型InP基板1の裏面側に設けられたn側電極32(第1導電型側電極)と、で構成される。
 n型InPクラッド層2、第1光閉じ込め層3a、活性層4、第2光閉じ込め層3b、p型InGaAsコンタクト層9、半絶縁性InP第1埋込層7a及びn型InP第2埋込層7bの層厚、ドーパント、ドーピング濃度の構成は、実施の形態1に係る光半導体素子100と同様である。
 p型InPクラッド層5aには、Znがドーピングされている。p型InPクラッド層5aの典型的な層厚は2.3μm、Znの典型的なドーピング濃度は1.0×1018cm-3である。
 半絶縁性InP第3埋込層7dには、遷移金属がドーピングされている。遷移金属の具体例として、Fe、Ru、Ti等が挙げられる。半絶縁性InP第3埋込層7dの典型的な層厚は2.0μm、遷移金属の典型的なドーピング濃度は5.0×1016cm-3である。
 実施の形態2に係る光半導体素子110の素子構造上の特徴について説明する。
 実施の形態2に係る光半導体素子110では、半絶縁性InP第3埋込層7dは、p型InPクラッド層5aのメサ構造6の両側面においてのみ接している。このため、半絶縁性InP第3埋込層7dとp型InPクラッド層5aの接触面積は、実施の形態1に係る光半導体素子100における半絶縁性InP第3埋込層7cとp型InP第2クラッド層8の接触面積と比較して各段に小さい。
 半絶縁性InP第3埋込層7dとp型InPクラッド層5aの接触面積が小さいと、半絶縁性InP第3埋込層7dの結晶成長中の熱処理によってp型InPクラッド層5aのドーパントであるZnが半絶縁性InP第3埋込層7d側に拡散して半絶縁性InP第3埋込層7d中に半絶縁性からp型化する領域の面積を抑制することも可能となる。
 さらに、メサ埋込層7内に設けられたn型InP第2埋込層7bが存在することで、ホールトラップ効果のない半絶縁性InP第3埋込層7dを通過したホールが、n側領域にリークする経路を狭窄することが可能となる。
 なお、p型InPクラッド層5aの体積が実施の形態1に係る光半導体素子100のp型InP第2クラッド層8の体積よりも小さいため、光半導体素子110の素子抵抗の増大はある程度は避けられない。
<実施の形態2に係る光半導体素子110の製造方法>
 実施の形態2に係る光半導体素子110の製造方法を以下に説明する。
 表面が<100>面であるSドープn型InP基板1上に、Sドープn型InPクラッド層2、上下面をAlGaInAs第1光閉じ込め層3a及びAlGaInAs第2光閉じ込め層3bに挟まれたアンドープAlGaInAs活性層4、Znドープp型InPクラッド層5a及びZnドープp型InGaAsコンタクト層9を、MOCVD法によって順次結晶成長する(第1結晶成長工程)。各層の結晶成長後の断面図を図9に示す。
 第1結晶成長工程の後、p型InGaAsコンタクト層9の表面に、SiO膜を成膜する。SiOの成膜方法としては、例えば、CVD法等が挙げられる。SiO膜の成膜後、図10の断面図に示すように、フォトリソグラフィ技術及びエッチング技術を用いて、SiO膜を<011>方向のストライプ状のSiOマスク22にパターニングする。SiOマスク22の幅の一例としては、1.5μmである。
 次に、ストライプ状のSiOマスク22をエッチングマスクとして用いて、図11の断面図に示すように、p型InGaAsコンタクト層9からn型InP基板1の途中までをドライエッチングすることで、ストライプ状のメサ構造6を形成する(メサ構造形成工程)。メサ構造6のn型InP基板1の表面からの典型的な高さは4.0μmである。ここで、エッチングマスクはSiOマスク22に限らずSiNマスクでも良い。また、エッチングはドライエッチングに限らず、ウェットエッチングを用いても良い。
 ストライプ状のメサ構造6の形成後、図12の断面図に示すように、MOCVD法によって、Feドープ半絶縁性InP第1埋込層7a、Sドープn型InP第2埋込層7b及びFeドープ半絶縁性InP第3埋込層7dからなるメサ埋込層7を、メサ構造6の両側面を覆うように埋め込み成長する(第2結晶成長工程)。
 メサ埋込層7の結晶成長後、フッ酸をエッチャントとして用いたウェットエッチングにより、ストライプ状のSiOマスク22を除去する。
 第2結晶成長工程の後に、メサ構造6を含む幅5μmの領域に、フォトリソグラフィ技術及びエッチング技術によって、<011>方向のストライプ状のSiOマスクを形成し、HBrをエッチャントとして用いたウェットエッチングを行うことで、メサ埋込層7におけるレーザー動作に不要な部分のエピタキシャル結晶成長層をn型InP基板1に達するまでエッチングする。その後、フッ酸をエッチャントとして用いたウェットエッチングにより、ストライプ状のSiOマスクを除去する。
 さらに、ウエハの全面にSiO絶縁膜を形成して、フォトリソグラフィ技術とドライエッチング技術によって、p型InGaAsコンタクト層9及びFeドープ半絶縁性InP第3埋込層7d上でメサ構造6の上側に対応する位置のSiO絶縁膜21に開口幅3μmの開口部を形成する。この開口部でp型InGaAsコンタクト層9の表面に接するようにp側電極31を形成し、n型InP基板1の裏面側にn側電極32を形成する(電極形成工程)。
 以上の各製造工程を経て、光半導体素子110の一例である半導体レーザーの基本構造が完成する。
 実施の形態1に係る光半導体素子100の製造方法における結晶成長回数は3回を要する。一方、実施の形態2に係る光半導体素子110の製造方法では、上述のように、結晶成長回数は2回と、実施の形態1の場合と比べて1回少ない。また、Znドープp型InPクラッド層を形成した後の再結晶成長による熱処理の回数が実施の形態1の場合に比べて少ない。
 したがって、実施の形態2に係る光半導体素子110の製造方法によると、実施の形態1の場合と比べて、Znドープp型InPクラッド層5a中のZnの拡散に起因するFeドープ半絶縁性InP第3埋込層7dのp型化を抑制しやすい。
<実施の形態2の効果>
 実施の形態2に係る光半導体素子及びその製造方法によれば、半絶縁性InP第3埋込層7dはp型InPクラッド層5aのメサ構造6の両側面においてのみ接しているので、半絶縁性InP第3埋込層7dとp型InPクラッド層5aの接触面積を各段に小さくすることができ、キャリア再結合をより一層効果的に防止することが可能となるため、光半導体素子の動作帯域がより拡大し、かつ、発光効率もより向上するという効果を奏する。また、かかる高性能の光半導体素子を容易に製造できるという効果を奏する。
実施の形態3.
 実施の形態3に係る光半導体素子120の素子構造の断面図を図13に示す。実施の形態3に係る光半導体素子120は、n型InP基板1(第1導電型の半導体基板)と、n型InP基板1に順次積層されたn型InPクラッド層2(第1導電型のクラッド層)、第1光閉じ込め層3a、活性層4、第2光閉じ込め層3b、p型InP第1クラッド層5(第2導電型の第1クラッド層)の積層体とn型InP基板1の一部からなるストライプ状のメサ構造6と、メサ構造6の両側面のn型InP基板1上に形成された半絶縁性InP第1埋込層7a(半絶縁性の第1埋込層)、n型InP第2埋込層7b(第1導電型の第2埋込層)及び半絶縁性InP第3埋込層7e(半絶縁性の第3埋込層)からなり、メサ構造6の頂面からテーパー状に広がる側面形状を呈するメサ埋込層7と、メサ構造6の頂面並びにメサ埋込層7のテーパー状に広がる側面を埋め込むように形成されたp型InP第2クラッド層8(第2導電型の第2クラッド層)及びp型InGaAsコンタクト層9(第2導電型のコンタクト層)と、p型InGaAsコンタクト層9の表面に設けられた絶縁膜21の開口部でp型InGaAsコンタクト層9と接触するp側電極31(第2導電型側電極)と、n型InP基板1の裏面側に設けられたn側電極32(第1導電型側電極)と、で構成される。
 n型InPクラッド層2、第1光閉じ込め層3a、活性層4、第2光閉じ込め層3b、p型InP第1クラッド層5、p型InP第2クラッド層8、p型InGaAsコンタクト層9、半絶縁性InP第1埋込層7a及びn型InP第2埋込層7bの層厚、ドーパント、ドーピング濃度の構成は、実施の形態1に係る光半導体素子100と同様である。
 半絶縁性InP第3埋込層7eには、遷移金属がドーピングされている。遷移金属の具体例として、Fe、Ru、Ti等が挙げられる。半絶縁性InP第3埋込層7eの典型的な層厚は2.0μm、遷移金属の典型的なドーピング濃度は5.0×1016cm-3である。
 実施の形態3に係る光半導体素子120の素子構造上の特徴について説明する。
 実施の形態3に係る光半導体素子120では、半絶縁性InP第3埋込層7eのメサ構造6側の側面は、図13の断面図に示されるように、メサ構造6の頂面からテーパー状に広がる側面形状を呈している。p型InP第2クラッド層8は、半絶縁性InP第3埋込層7eに対して、テーパー状に広がる両側面においてのみ接している。このため、半絶縁性InP第3埋込層7eとp型InP第2クラッド層8の接触面積は、実施の形態1に係る光半導体素子100における半絶縁性InP第3埋込層7cとp型InP第2クラッド層8の接触面積と比較して各段に小さい。
 半絶縁性InP第3埋込層7eとp型InP第2クラッド層8の接触面積が小さいと、半絶縁性InP第3埋込層7eの結晶成長中の熱処理によってp型InP第2クラッド層8のドーパントであるZnが半絶縁性InP第3埋込層7e側に拡散して半絶縁性InP第3埋込層7e中に半絶縁性からp型化する領域の面積を抑制することも可能となる。
 さらに、メサ埋込層7内に設けられたn型InP第2埋込層7bが存在することで、ホールトラップ効果のない半絶縁性InP第3埋込層7eを通過したホールが、n側領域にリークする経路を狭窄することが可能となる。
 実施の形態3に係る光半導体素子120では、p型InP第2クラッド層8は、メサ構造6の頂面からテーパー状に広がる側面形状を呈する半絶縁性InP第3埋込層7eを埋め込むように形成されているので、メサ構造6の頂面側から表面に向かってテーパー状に広がる形状を呈している。テーパー状の両側面とn型InP基板1の表面とがなす角度は、50°以上60°以下に設定されている。
 したがって、実施の形態3に係る光半導体素子120のp型InP第2クラッド層8の体積は、実施の形態2に係る光半導体素子110のp型InPクラッド層5aの体積よりも大きい。よって、実施の形態3に係る光半導体素子120の素子抵抗は、実施の形態2に係る光半導体素子110の素子抵抗よりも低減する。
<実施の形態3に係る光半導体素子120の製造方法>
 実施の形態3に係る光半導体素子120の製造方法を以下に説明する。
 メサ構造6の形成までは、実施の形態1に係る光半導体素子100の製造方法を示す図2から図4までの製造工程と同様であるので省略する。
 ストライプ状のメサ構造6の形成後、図14の断面図に示すように、MOCVD法によって、Feドープ半絶縁性InP第1埋込層7a、n型InP第2埋込層7b及びFeドープ半絶縁性InP第3埋込層7eからなるメサ埋込層7を、メサ構造6の両側面を覆うように埋め込み成長する(第2結晶成長工程)。
 Feドープ半絶縁性InP第3埋込層7eの典型的な層厚は2.0μmと、実施の形態1におけるFeドープ半絶縁性InP第3埋込層7cの典型的な層厚である0.5μmよりも厚い。また、メサ埋込層7の全体の典型的な層厚は4.0μmとなり、メサ構造6のn型InP基板1の表面からの典型的な高さである2.0μmよりも、さらに2.0μmも高い。したがって、メサ埋込層7のうちFeドープ半絶縁性InP第3埋込層7eを結晶成長する時点で、結晶成長面はメサ構造6の頂面より高い位置にある。
 上述のように、メサ埋込層7をメサ構造6の高さよりも厚く設定しているものの、MOCVDの一般的な結晶成長条件である結晶成長温度が500℃から650℃、V/III比が30から200程度であれば、メサ埋込層7はメサ構造6の頂面を起点として、両側に<111>B面を露出しながら開口を広げるように結晶成長する。すなわち、Feドープ半絶縁性InP第3埋込層7eの対向する両側面は、結晶成長が進行するにともない、図14の断面図に示すようなテーパー状に広がる形状を呈する。テーパー状の両側面は<111>B面であるので、テーパー状の両側面とn型InP基板1の<100>面である表面がなす角度は、50°以上60°以下の範囲となる。
 メサ埋込層7の結晶成長後、フッ酸をエッチャントとして用いたウェットエッチングにより、ストライプ状のSiOマスク22を除去する。
 メサ構造6の頂面及びメサ埋込層7のテーパー状を呈する両側面に、MOCVD法により、p型InP第2クラッド層8及びp型InGaAsコンタクト層9を順次結晶成長する(第3結晶成長工程)。上記各層の結晶成長後の断面図を図15に示す。
 第3結晶成長工程の後に、メサ構造6を含む幅5μmの領域に、フォトリソグラフィ技術及びエッチング技術によって、<011>方向のストライプ状のSiOマスクを形成し、HBrをエッチャントとして用いたウェットエッチングを行うことで、メサ埋込層7におけるレーザー動作に不要な部分のエピタキシャル結晶成長層をn型InP基板1に達するまでエッチングする。その後、フッ酸をエッチャントとして用いたウェットエッチングにより、ストライプ状のSiOマスクを除去する。
 さらに、ウエハの全面にSiO絶縁膜を形成して、フォトリソグラフィ技術とドライエッチング技術によって、p型InGaAsコンタクト層9上でメサ構造6の上側に対応する位置のSiO絶縁膜21に開口幅3μmの開口部を形成する。この開口部でp型InGaAsコンタクト層9の表面に接するようにp側電極31を形成し、n型InP基板1の裏面側にn側電極32を形成する(電極形成工程)。
 以上の各製造工程を経て、光半導体素子120の一例である半導体レーザーの基本構造が完成する。
<実施の形態3の効果>
 実施の形態3に係る光半導体素子及びその製造方法によれば、p型InP第2クラッド層8は、半絶縁性InP第3埋込層7eとは、テーパー状を呈する両側面においてのみ接しているので、半絶縁性InP第3埋込層7eとp型InP第2クラッド層8の接触面積を各段に小さくすることができ、キャリア再結合をより一層効果的に防止することが可能となり、さらに、p型InP第2クラッド層8の体積も大きいので、光半導体素子において、素子抵抗が小さく、動作帯域がより拡大し、かつ、発光効率もより向上するという効果を奏する。また、かかる高性能の光半導体素子を容易に製造できるという効果を奏する。
実施の形態4.
 実施の形態4に係る光半導体素子130の素子構造の断面図を図16に示す。実施の形態4に係る光半導体素子130は、n型InP基板1(第1導電型の半導体基板)と、n型InP基板1に順次積層されたn型InPクラッド層2(第1導電型のクラッド層)、第1光閉じ込め層3a、活性層4、第2光閉じ込め層3b及びp型InPクラッド層5b(第2導電型の第1クラッド層)の積層体とn型InP基板1の一部からなるストライプ状のメサ構造6と、メサ構造6の両側面のn型InP基板1上に形成された半絶縁性InP第1埋込層7a(半絶縁性の第1埋込層)及びn型InP第2埋込層7b(第1導電型の第2埋込層)からなるメサ埋込層7と、メサ構造6の頂面並びにメサ埋込層7の表面及び側面の一部を覆うように形成された半絶縁性InPクラッド層7f及びp型InGaAsコンタクト層9(第2導電型のコンタクト層)と、p型InGaAsコンタクト層9、半絶縁性InPクラッド層7f及びp型InPクラッド層5bの内部に形成され、p型InGaAsコンタクト層9の表面からp型InPクラッド層5bに至るZn拡散p型化領域18(第2導電型のドーパント拡散領域)と、p型InGaAsコンタクト層9の表面に設けられた絶縁膜21の開口部でp型InGaAsコンタクト層9と接触するp側電極31(第2導電型側電極)と、n型InP基板1の裏面側に設けられたn側電極32(第1導電型側電極)と、で構成される。
 n型InPクラッド層2、第1光閉じ込め層3a、活性層4、第2光閉じ込め層3b、p型InGaAsコンタクト層9、半絶縁性InP第1埋込層7a及びn型InP第2埋込層7bの層厚、ドーパント、ドーピング濃度の構成は、実施の形態1に係る光半導体素子100と同様である。
 p型InPクラッド層5bには、Znがドープされている。p型InPクラッド層5bの典型的な層厚は0.3μmであり、Znの典型的なドーピング濃度は1.0×1018cm-3である。
 半絶縁性InPクラッド層7fには、遷移金属がドーピングされている。遷移金属の具体例として、Fe、Ru、Ti等が挙げられる。半絶縁性InPクラッド7fの典型的な層厚は2.0μm、遷移金属の典型的なドーピング濃度は5.0×1016cm-3である。
 実施の形態4に係る光半導体素子130の素子構造上の特徴について説明する。
 実施の形態4に係る光半導体素子130では、上述のように、p型InGaAsコンタクト層9、半絶縁性InPクラッド層7f及びp型InPクラッド層5bの内部に形成され、p型InGaAsコンタクト層9の表面からp型InPクラッド層5bに至るZn拡散p型化領域18が設けられている。Zn拡散p型化領域18の先端部は、第2光閉じ込め層3bあるいは活性層4まで達していても良い。
 半絶縁性InPクラッド層7f内のZn拡散p型化領域18では、本来の半絶縁性からp型化されるため、実質的にp型InPクラッド層として機能する。Zn拡散p型化領域18は、後述するように、全ての結晶成長工程の終了後に行う気相拡散工程の際に形成される。したがって、Zn拡散p型化領域18を形成した後の工程では、Znが拡散するような高温の熱処理は無いため、Znのさらなる拡散によるFeドープ半絶縁性InP第1埋込層7aのp型化を抑制できる。
 また、Zn拡散p型化領域18によって形成されたp型InPクラッド層の体積が実施の形態2の場合に比べて大きいため、素子抵抗をより低減できる。
<実施の形態4に係る光半導体素子130の製造方法>
 実施の形態4に係る光半導体素子130の製造方法を以下に説明する。
 メサ構造6の形成までは、実施の形態1に係る光半導体素子100の製造方法を示す図2から図4までの製造工程と同様であるので省略する。
 ストライプ状のメサ構造6の形成後、図17の断面図に示すように、MOCVD法によって、Feドープ半絶縁性InP第1埋込層7a及びn型InP第2埋込層7bからなるメサ埋込層7を、メサ構造6の両側面を覆うように埋め込み成長する(第2結晶成長工程)。
 メサ埋込層7の結晶成長後、フッ酸をエッチャントとして用いたウェットエッチングにより、ストライプ状のSiOマスク22を除去する。
 メサ構造6の頂面並びにメサ埋込層7の表面及び側面の一部に、MOCVD法により、半絶縁性InPクラッド層7f及びp型InGaAsコンタクト層9を順次結晶成長する(第3結晶成長工程)。上記各層の結晶成長後の断面図を図18に示す。
 ウエハの表面にSiO膜25を形成して、フォトリソグラフィ技術及びエッチング技術によって、<011>方向のストライプ状の開口部を形成する。開口部の開口幅は2μmである。SiO膜25は拡散マスクとして機能する。
 MOCVD装置内での気相拡散法により、開口部に露出したp型InGaAsコンタクト層9からp型InPクラッド層5bの一部に至るまでの領域にZnを拡散させて、p型InGaAsコンタクト層9、半絶縁性InPクラッド層7f及びp型InPクラッド層5bの内部にZn拡散p型化領域18を形成する(ドーパント拡散工程)。半絶縁性InPクラッド層7fの内部でZnが拡散した領域はp型化するため、p型InPクラッド層として機能する。Zn拡散p型化領域18の先端部は、第2光閉じ込め層3bあるいは活性層4まで達していても良い。
 ドーパント拡散工程の後に、メサ構造6を含む幅5μmの領域に、フォトリソグラフィ技術及びエッチング技術によって、<011>方向のストライプ状のSiOマスクを形成し、HBrをエッチャントとして用いたウェットエッチングを行うことで、メサ埋込層7におけるレーザー動作に不要な部分のエピタキシャル結晶成長層をn型InP基板1に達するまでエッチングする。その後、フッ酸をエッチャントとして用いたウェットエッチングにより、ストライプ状のSiOマスクを除去する。
 さらに、ウエハの全面にSiO絶縁膜を形成して、フォトリソグラフィ技術とドライエッチング技術によって、p型InGaAsコンタクト層9上でメサ構造6の上側に対応する位置のSiO絶縁膜21に開口幅3μmの開口部を形成する。この開口部でp型InGaAsコンタクト層9の表面に接するようにp側電極31を形成し、n型InP基板1の裏面側にn側電極32を形成する(電極形成工程)。
 以上の各製造工程を経て、光半導体素子130の一例である半導体レーザーの基本構造が完成する。
<実施の形態4の効果>
 実施の形態4に係る光半導体素子及びその製造方法によれば、半絶縁性InPクラッド層7fの内部でZnが拡散した領域はp型InPクラッド層として機能するが、このp型InPクラッド層化した領域と半絶縁性InPクラッド層7fとは両側面においてのみ接しているので、半絶縁性InPクラッド層7fとp型InPクラッド層化した領域の接触面積を各段に小さくすることができ、キャリア再結合をより一層効果的に防止することが可能となり、さらに、p型InPクラッド層化した領域の体積も大きいので、光半導体素子において、素子抵抗が小さく、動作帯域がより拡大し、かつ、発光効率もより向上するという効果を奏する。また、かかる高性能の光半導体素子を容易に製造できるという効果を奏する。
 本開示は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
 従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
1 n型InP基板(第1導電型の半導体基板)、2 n型InPクラッド層(第1導電型のクラッド層)、3a 第1光閉じ込め層、3b 第2光閉じ込め層、4 活性層、5 p型InP第1クラッド層(第2導電型の第1クラッド層)、5a、5b p型InPクラッド層(第2導電型の第1クラッド層)、6 メサ構造、7 メサ埋込層、7a 半絶縁性InP第1埋込層(半絶縁性の第1埋込層)、7b n型InP第2埋込層(第1導電型の第2埋込層)、7c、7d、7e 半絶縁性InP第3埋込層(半絶縁性の第3埋込層)、7f 半絶縁性InPクラッド層(半絶縁性のクラッド層)、8 p型InP第2クラッド層(第2導電型の第2クラッド層)、9 p型InGaAsコンタクト層(第2導電型のコンタクト層)、15 pn接合領域、18 Zn拡散p型化領域(第2導電型のドーパント拡散領域)、21 絶縁膜、22 SiOマスク、25 SiO膜、31 p側電極(第2導電型側電極)、32 n側電極(第1導電型側電極)、100、110、120、130、200 光半導体素子

Claims (19)

  1.  第1導電型の半導体基板と、
     前記第1導電型の半導体基板上に積層された第1導電型のクラッド層、活性層及び第2導電型の第1クラッド層の積層体からなるストライプ状のメサ構造と、
     前記第1導電型の半導体基板上で前記メサ構造の両側面に順次設けられた半絶縁性の第1埋込層、第1導電型の第2埋込層及び遷移金属がドープされた半絶縁性の第3埋込層からなるメサ埋込層と、
    を備える光半導体素子。
  2.  前記メサ構造の頂面並びに前記メサ埋込層の表面及び側面の一部に形成された第2導電型の第2クラッド層をさらに備えることを特徴とする請求項1に記載の光半導体素子。
  3.  前記半絶縁性の第3埋込層の層厚が、前記第1導電型の第2埋込層と前記半絶縁性の第3埋込層によって形成される空乏層の層厚と、前記半絶縁性の第3埋込層と前記第2導電型の第2クラッド層によって形成される空乏層の層厚のいずれか一方の層厚よりも厚いか、または、両方の層厚よりも厚いことを特徴とする請求項2に記載の光半導体素子。
  4.  前記第2導電型の第2クラッド層が、前記メサ構造の頂面及び前記メサ埋込層のテーパー状を呈する両側面の上に形成され、テーパー状の両側面と前記第1導電型の半導体基板の表面がなす角度が50°以上60°以下であることを特徴する請求項2または3に記載の光半導体素子。
  5.  前記メサ構造が、前記第2導電型の第1クラッド層上にさらに第2導電型の第2クラッド層及び第2導電型のコンタクト層が積層された形状を呈し、前記メサ構造の頂面及び前記半絶縁性の第3埋込層の表面が同一の平面をなすことを特徴とする請求項1に記載の光半導体素子。
  6.  第1導電型の半導体基板と、
     前記第1導電型の半導体基板上に積層された第1導電型のクラッド層、活性層及び第2導電型の第1クラッド層からなるストライプ状のメサ構造と、
     前記第1導電型の半導体基板上で前記メサ構造の両側面に設けられた半絶縁性の第1埋込層及び第1導電型の第2埋込層からなるメサ埋込層と、
     前記メサ構造の頂面及び前記第1導電型の第2埋込層の少なくとも表面に形成され遷移金属がドープされた半絶縁性のクラッド層と、
     前記半絶縁性のクラッド層上に形成された第2導電型のコンタクト層と、
     前記第2導電型のコンタクト層及び前記半絶縁性のクラッド層の内部並びに第2導電型の第1クラッド層の少なくとも一部に形成される第2導電型のドーパント拡散領域と、
    を備える光半導体素子。
  7.  前記遷移金属は、Fe、Ru及びTiのいずれか1つまたは2つ以上の組み合わせからなり、前記半絶縁性の第1埋込層にはFeがドープされていることを特徴とする請求項1から6のいずれか1項に記載の光半導体素子。
  8.  前記第1導電型の半導体基板、前記第1導電型のクラッド層、前記第2導電型の第1クラッド層、前記メサ埋込層がいずれもInPからなり、前記活性層が少なくともIn及びGaを含む材料からなることを特徴とする請求項1から7のいずれか1項に記載の光半導体素子。
  9.  第1導電型がn型であり、第2導電型がp型であることを特徴とする請求項1から8のいずれか1項に記載の光半導体素子。
  10.  前記活性層の前記第1導電型の半導体基板側の一面に接する第1光閉じ込め層及び前記活性層の他面に接する第2光閉じ込め層がさらに設けられていることを特徴とする請求項1から9のいずれか1項に記載の光半導体素子。
  11.  前記メサ構造が、前記第1導電型の半導体基板の一部をさらに含むことを特徴とする請求項1から10のいずれか1項に記載の光半導体素子。
  12.  第1導電型の半導体基板に、第1導電型のクラッド層、活性層及び第2導電型の第1クラッド層をMOCVD法によって順次結晶成長する第1結晶成長工程と、
     前記第1導電型のクラッド層、前記活性層、前記第2導電型の第1クラッド層及び前記第1導電型の半導体基板の一部をストライプ状のメサ構造にエッチングするメサ構造形成工程と、
     前記第1導電型の半導体基板上で前記メサ構造の両側面に、半絶縁性の第1埋込層、第1導電型の第2埋込層及び1種類以上の遷移金属がドープされた半絶縁性の第3埋込層からなるメサ埋込層をMOCVD法によって順次結晶成長する第2結晶成長工程と、
     前記メサ構造の頂面並びに前記メサ埋込層の表面及び側面の一部に、第2導電型の第2クラッド層及び第2導電型のコンタクト層をMOCVD法によって順次積層する第3結晶成長工程と、
    を含む光半導体素子の製造方法。
  13.  前記第2結晶成長工程において、前記半絶縁性の第3埋込層の両側面がテーパー状を呈するように結晶成長することを特徴とする請求項12に記載の光半導体素子の製造方法。
  14.  前記半絶縁性の第3埋込層のテーパー状の両側面と前記第1導電型の半導体基板の表面がなす角度が50°以上60°以下であることを特徴する請求項13に記載の光半導体素子の製造方法。
  15.  第1導電型の半導体基板に、第1導電型のクラッド層、活性層及び第2導電型の第1クラッド層をMOCVD法によって順次結晶成長する第1結晶成長工程と、
     前記第1導電型のクラッド層、前記活性層、前記第2導電型の第1クラッド層及び前記第1導電型の半導体基板の一部をストライプ状のメサ構造にエッチングするメサ構造形成工程と、
     前記第1導電型の半導体基板上で前記メサ構造の両側面に、半絶縁性の第1埋込層及び第1導電型の第2埋込層からなるメサ埋込層をMOCVD法によって順次結晶成長する第2結晶成長工程と、
     前記メサ構造の頂面及び前記第1導電型の第2埋込層の少なくとも表面に形成され遷移金属がドープされた半絶縁性のクラッド層と第2導電型のコンタクト層とをMOCVD法によって順次結晶成長する第3結晶成長工程と、
     前記第2導電型のコンタクト層及び前記半絶縁性のクラッド層の内部並びに第2導電型の第1クラッド層の少なくとも一部に第2導電型のドーパントを拡散するドーパント拡散工程と、
    を含む光半導体素子の製造方法。
  16.  前記ドーパント拡散工程は、第2導電型のドーパントの拡散を、MOCVD装置を用いた気相拡散法によって行うことを特徴とする請求項15に記載の光半導体素子の製造方法。
  17.  前記遷移金属は、Fe、Ru及びTiのいずれか1つまたは2つ以上の組み合わせからなり、前記半絶縁性の第1埋込層にはFeがドープされていることを特徴とする請求項12から16のいずれか1項に記載の光半導体素子の製造方法。
  18.  前記第1導電型の半導体基板、前記第1導電型のクラッド層、前記第2導電型の第1クラッド層、前記メサ埋込層がいずれもInPからなり、前記活性層が少なくともIn及びGaを含む材料からなることを特徴とする請求項12から17のいずれか1項に記載の光半導体素子の製造方法。
  19.  第1導電型がn型であり、第2導電型がp型であることを特徴とする請求項12から18のいずれか1項に記載の光半導体素子の製造方法。
PCT/JP2021/022984 2021-06-17 2021-06-17 光半導体素子及びその製造方法 WO2022264347A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2021567979A JP7080414B1 (ja) 2021-06-17 2021-06-17 光半導体素子及びその製造方法
PCT/JP2021/022984 WO2022264347A1 (ja) 2021-06-17 2021-06-17 光半導体素子及びその製造方法
KR1020237041899A KR20240004977A (ko) 2021-06-17 2021-06-17 광반도체 소자 및 그 제조 방법
US18/557,315 US20240213744A1 (en) 2021-06-17 2021-06-17 Optical semiconductor element
CN202180099189.2A CN117461226A (zh) 2021-06-17 2021-06-17 光半导体元件及其制造方法
TW111120024A TWI832267B (zh) 2021-06-17 2022-05-30 光半導體元件及其製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/022984 WO2022264347A1 (ja) 2021-06-17 2021-06-17 光半導体素子及びその製造方法

Publications (1)

Publication Number Publication Date
WO2022264347A1 true WO2022264347A1 (ja) 2022-12-22

Family

ID=81852643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022984 WO2022264347A1 (ja) 2021-06-17 2021-06-17 光半導体素子及びその製造方法

Country Status (6)

Country Link
US (1) US20240213744A1 (ja)
JP (1) JP7080414B1 (ja)
KR (1) KR20240004977A (ja)
CN (1) CN117461226A (ja)
TW (1) TWI832267B (ja)
WO (1) WO2022264347A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11266051A (ja) * 1998-03-17 1999-09-28 Fujitsu Ltd 半導体発光素子
US6028875A (en) * 1996-10-11 2000-02-22 Nortel Networks Corporation Buried heterostructure laser with quaternary current blocking layer
US6556605B1 (en) * 2000-02-29 2003-04-29 Triquent Technology Holding, Co. Method and device for preventing zinc/iron interaction in a semiconductor laser
JP2003218466A (ja) * 2002-01-22 2003-07-31 Sharp Corp 半導体レーザ素子およびその製造方法
JP2009004450A (ja) * 2007-06-19 2009-01-08 Sumitomo Electric Ind Ltd 半導体光素子及びその製造方法
JP2009283822A (ja) * 2008-05-26 2009-12-03 Mitsubishi Electric Corp 半導体レーザ及びその製造方法
JP2010258273A (ja) * 2009-04-27 2010-11-11 Sumitomo Electric Ind Ltd 半導体レーザの製造方法
JP2011249767A (ja) * 2010-04-27 2011-12-08 Sumitomo Electric Device Innovations Inc 光半導体装置の製造方法
JP2014192369A (ja) * 2013-03-27 2014-10-06 Mitsubishi Electric Corp 半導体素子の製造方法、半導体素子の製造装置
WO2019220514A1 (ja) * 2018-05-14 2019-11-21 三菱電機株式会社 光半導体装置及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047743A (ja) 2002-07-12 2004-02-12 Furukawa Electric Co Ltd:The 光集積デバイス
US7807489B2 (en) * 2007-05-15 2010-10-05 Sumitomo Electric Industries, Ltd. Light-emitting device with a protection layer to prevent the inter-diffusion of zinc (Zn) atoms
CN113906640B (zh) * 2019-06-11 2023-10-10 三菱电机株式会社 半导体光集成元件及半导体光集成元件的制造方法
JP7457485B2 (ja) * 2019-08-09 2024-03-28 日本ルメンタム株式会社 埋め込み型半導体光素子
US11462886B2 (en) * 2019-08-09 2022-10-04 Lumentum Japan, Inc. Buried-type semiconductor optical device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6028875A (en) * 1996-10-11 2000-02-22 Nortel Networks Corporation Buried heterostructure laser with quaternary current blocking layer
JPH11266051A (ja) * 1998-03-17 1999-09-28 Fujitsu Ltd 半導体発光素子
US6556605B1 (en) * 2000-02-29 2003-04-29 Triquent Technology Holding, Co. Method and device for preventing zinc/iron interaction in a semiconductor laser
JP2003218466A (ja) * 2002-01-22 2003-07-31 Sharp Corp 半導体レーザ素子およびその製造方法
JP2009004450A (ja) * 2007-06-19 2009-01-08 Sumitomo Electric Ind Ltd 半導体光素子及びその製造方法
JP2009283822A (ja) * 2008-05-26 2009-12-03 Mitsubishi Electric Corp 半導体レーザ及びその製造方法
JP2010258273A (ja) * 2009-04-27 2010-11-11 Sumitomo Electric Ind Ltd 半導体レーザの製造方法
JP2011249767A (ja) * 2010-04-27 2011-12-08 Sumitomo Electric Device Innovations Inc 光半導体装置の製造方法
JP2014192369A (ja) * 2013-03-27 2014-10-06 Mitsubishi Electric Corp 半導体素子の製造方法、半導体素子の製造装置
WO2019220514A1 (ja) * 2018-05-14 2019-11-21 三菱電機株式会社 光半導体装置及びその製造方法

Also Published As

Publication number Publication date
TW202301766A (zh) 2023-01-01
JP7080414B1 (ja) 2022-06-03
US20240213744A1 (en) 2024-06-27
JPWO2022264347A1 (ja) 2022-12-22
TWI832267B (zh) 2024-02-11
KR20240004977A (ko) 2024-01-11
CN117461226A (zh) 2024-01-26

Similar Documents

Publication Publication Date Title
US20040152224A1 (en) Methods of forming semiconductor mesa structures including self-aligned contact layers and related devices
US20080037607A1 (en) Semiconductor laser diode with a ridge structure buried by a current blocking layer made of un-doped semiconductor grown at a low temperature and a method for producing the same
US7741654B2 (en) Group III nitride semiconductor optical device
US20080049804A1 (en) Semiconductor laser diode with a mesa stripe buried by a current blocking layer made of un-doped semiconductor grown at a low temperature and a method for producing the same
JP2009059918A (ja) 光半導体デバイス
WO2020240644A1 (ja) 光半導体装置および光半導体装置の製造方法
JP2006245222A (ja) 光半導体装置の製造方法および光半導体装置
JP2006253212A (ja) 半導体レーザ
JP5151231B2 (ja) 半導体光素子及びその製造方法
WO2022264347A1 (ja) 光半導体素子及びその製造方法
JPH0786678A (ja) 半導体レーザ装置
WO2021152686A1 (ja) 光半導体装置とその製造方法
CN116491036A (zh) 光半导体装置及其制造方法
JP2018006590A (ja) 光半導体素子
WO2019193679A1 (ja) 半導体レーザおよびその製造方法
TWI734229B (zh) 光學半導體裝置以及光學半導體裝置的製造方法
JP2005286032A (ja) 光半導体デバイス、および光半導体デバイスを製造する方法
TWI819895B (zh) 半導體雷射及半導體雷射製造方法
WO2023175830A1 (ja) 半導体素子及び半導体素子の製造方法
JP2000277857A (ja) 半導体光素子およびその製造方法
JP6702523B1 (ja) 半導体装置
JP2007013100A (ja) 半導体レーザ
JP2555984B2 (ja) 半導体レーザおよびその製造方法
JP2007005642A (ja) 半導体発光素子
JP2009266891A (ja) 半導体レーザおよびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021567979

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946024

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18557315

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237041899

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237041899

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202180099189.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21946024

Country of ref document: EP

Kind code of ref document: A1