WO2023175830A1 - 半導体素子及び半導体素子の製造方法 - Google Patents

半導体素子及び半導体素子の製造方法 Download PDF

Info

Publication number
WO2023175830A1
WO2023175830A1 PCT/JP2022/012244 JP2022012244W WO2023175830A1 WO 2023175830 A1 WO2023175830 A1 WO 2023175830A1 JP 2022012244 W JP2022012244 W JP 2022012244W WO 2023175830 A1 WO2023175830 A1 WO 2023175830A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
insulating film
semiconductor
conductivity type
semiconductor layer
Prior art date
Application number
PCT/JP2022/012244
Other languages
English (en)
French (fr)
Inventor
弘幸 河原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/012244 priority Critical patent/WO2023175830A1/ja
Priority to TW112108882A priority patent/TW202339255A/zh
Publication of WO2023175830A1 publication Critical patent/WO2023175830A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action

Definitions

  • the present disclosure relates to a semiconductor device and a method for manufacturing a semiconductor device.
  • InP-based semiconductor lasers used for optical communication applications are required to widen the modulation frequency band of each element in order to cope with the increase in communication capacity. Furthermore, in order to reduce the power consumption of the entire optical communication system, it is required to improve the luminous efficiency of each element.
  • the element resistance of a semiconductor element has a large influence on both the frequency band and luminous efficiency, but the mobility of holes is lower than that of electrons and holes, and among the element resistances of semiconductor layers, the resistance of the p-type semiconductor layer is It accounts for a large proportion of the resistance of the entire semiconductor layer.
  • an n-type semiconductor substrate is generally used in an InP-based semiconductor laser for optical communication in order to apply a low-resistance n-type semiconductor layer to a long portion of the current path. That is, the n-type semiconductor substrate is located on the back side of the element, and the p-type semiconductor layer is located on the front side of the element.
  • InP-based semiconductor lasers for optical communication generally have a configuration in which a p-type semiconductor layer is formed on the surface side of the element.
  • An insulating film is formed on the front side of the element to protect the surface of the semiconductor layer. Characteristics required of the insulating film include good step coverage on the semiconductor surface and dense film quality.
  • CVD plasma chemical vapor deposition
  • Non-Patent Document 1 points out that hydrogen in the p-type semiconductor layer causes a decrease in carrier concentration. Since a decrease in the carrier concentration of the p-type semiconductor layer is directly linked to an increase in the element resistance of the semiconductor element, there is a risk that the element characteristics will vary due to variations in conditions such as processing, storage, operation, and usage environment. Further, it is known that hydrogen in the semiconductor layer moves relatively easily, and there is a concern that in the worst case, it may affect the long-term reliability of the semiconductor element.
  • Non-Patent Document 2 describes that by providing an n-type semiconductor layer on the surface of the semiconductor layer, diffusion of hydrogen from the insulating film into the p-type semiconductor layer can be suppressed.
  • the present disclosure has been made to solve the above-mentioned problems, and by suppressing hydrogen diffusion from an insulating film into a p-type semiconductor layer and preventing an increase in element resistance of a semiconductor element, It is an object of the present invention to provide a semiconductor element that can operate in a wide frequency band and with high luminous efficiency.
  • the semiconductor device includes: a semiconductor substrate; a stacked semiconductor layer formed on the semiconductor substrate and including a first semiconductor layer of a first conductivity type, an active layer, and a semiconductor layer of a second conductivity type; a second semiconductor layer of a first conductivity type formed on the laminated semiconductor layer; an insulating film formed in contact with the second semiconductor layer of the first conductivity type.
  • a method for manufacturing a semiconductor device includes: a first crystal growth step of sequentially growing a first semiconductor layer of a first conductivity type, an active layer, and a semiconductor layer of a second conductivity type on a semiconductor substrate to form a stacked semiconductor layer; a mesa structure forming step of processing the laminated semiconductor layer into a striped mesa structure; a second crystal growth step of growing a buried layer on both sides of the mesa structure; a third crystal growth step of growing a semiconductor layer including a second semiconductor layer of a first conductivity type on the buried layer; an insulating film forming step of forming an insulating film on the second semiconductor layer of the first conductivity type by a plasma CVD method; an opening forming step of forming an opening in a portion of the insulating film facing the top surface of the mesa structure; including.
  • the n-type semiconductor layer is provided directly under the insulating film provided on the outermost surface of each semiconductor layer, the n-type semiconductor layer prevents diffusion of hydrogen contained in the insulating film. Therefore, it is possible to obtain a semiconductor element that can operate in a wide frequency band and with high luminous efficiency.
  • the n-type semiconductor layer is crystal-grown on the outermost surface of each semiconductor layer, and the insulating film in contact with the n-type semiconductor layer is formed by plasma CVD, so that the insulating film contains Since the n-type semiconductor layer prevents the diffusion of hydrogen, it is possible to easily manufacture a semiconductor element that can operate in a wide frequency band and with high luminous efficiency.
  • FIG. 1 is a cross-sectional view showing the configuration of a semiconductor element according to Embodiment 1.
  • FIG. 1 is a cross-sectional view showing the configuration of a buried semiconductor laser to which the semiconductor element structure according to the first embodiment is applied.
  • 3 is a cross-sectional view showing the configuration of a semiconductor element according to Modification 1 of Embodiment 1.
  • FIG. 3 is a cross-sectional view showing the configuration of an embedded semiconductor laser to which the semiconductor element structure according to Modification 1 of Embodiment 1 is applied.
  • 3 is a cross-sectional view showing the configuration of a semiconductor element according to a second modification of the first embodiment.
  • FIG. 7 is a cross-sectional view showing another configuration of the semiconductor element according to Modification 2 of Embodiment 1.
  • FIG. 3 is a cross-sectional view showing the configuration of a buried semiconductor laser to which a semiconductor element structure according to a second embodiment is applied.
  • FIG. 7 is a cross-sectional view showing an example of the configuration of a semiconductor element to which the semiconductor element structure according to Embodiment 3 is applied.
  • 12 is a cross-sectional view showing an example of the configuration of a ridge-type semiconductor laser to which the semiconductor element structure according to Modification 1 of Embodiment 3 is applied.
  • FIG. FIG. 7 is a cross-sectional view showing an example of the configuration of a buried semiconductor laser to which a semiconductor element structure according to a second modification of the third embodiment is applied.
  • FIG. 7 is a cross-sectional view showing the configuration of a semiconductor element according to a fourth embodiment.
  • FIG. 7 is a cross-sectional view showing the configuration of a buried semiconductor laser to which a semiconductor element structure according to a fourth embodiment is applied.
  • FIG. 1 is a cross-sectional view showing the configuration of a semiconductor element 500 according to the first embodiment.
  • FIG. 1 shows, as an example of the semiconductor element 500 according to the first embodiment, a buried semiconductor laser using an n-type InP (indium phosphide) substrate 101 and having an AlGaInAs active layer 103.
  • InP indium phosphide
  • the semiconductor element 500 includes an S-doped n-type InP cladding layer (a first semiconductor layer of a first conductivity type) 102 that is sequentially laminated on an S-doped n-type InP substrate 101 with a (100) plane, and an AlGaInAs light film on the top and bottom surfaces.
  • Each semiconductor layer consisting of a first conductivity type first semiconductor layer, an active layer, and a second conductivity type semiconductor layer is also called a laminated semiconductor layer.
  • the doping concentration of the S-doped n-type InP substrate 101 is 5.0 ⁇ 10 18 cm ⁇ 3
  • the layer thickness of the S-doped n-type InP cladding layer 102 is 1.0 ⁇ m
  • the doping concentration is 1.0 ⁇ 10 18 cm ⁇ 3 .
  • the layer thickness of the undoped AlGaInAs active layer 103 is 0.3 ⁇ m
  • the layer thickness of the Zn-doped p-type InP first cladding layer 104 is 0.3 ⁇ m
  • the doping concentration is 1.0 ⁇ 10 18 cm ⁇ 3 .
  • the height of the striped mesa structure 150 is 2.0 ⁇ m.
  • any active layer made of undoped AlGaInAs is given as an example of the active layer, any active layer made of a semiconductor layer containing Ga (gallium) and As (arsenic) may be used, and n-type other than undoped Alternatively, it may be a p-type semiconductor layer.
  • the layer thickness of the Fe-doped semi-insulating InP buried layer 105 is 1.8 ⁇ m and the doping concentration is 5.0 ⁇ 10 16 cm ⁇ 3
  • the layer thickness of the S-doped n-type InP buried layer 106 is 0.2 ⁇ m and the doping concentration. is 5.0 ⁇ 10 18 cm ⁇ 3 .
  • the layer thickness of the Zn-doped p-type InP second cladding layer 107 is 2.0 ⁇ m and the doping concentration is 1.0 ⁇ 10 18 cm ⁇ 3
  • the layer thickness of the Zn-doped p-type InGaAs contact layer 108 is 0.3 ⁇ m and the doping concentration is
  • the layer thickness of the S-doped n -type InP barrier layer 109 is 0.5 ⁇ m, and the doping concentration is 1.0 ⁇ 10 18 cm -3 .
  • a method of manufacturing semiconductor device 500 according to the first embodiment will be described below.
  • an S-doped n-type InP cladding layer 102 On a (100) plane S-doped n-type InP substrate 101, an S-doped n-type InP cladding layer 102, an undoped AlGaInAs active layer 103 whose upper and lower surfaces are sandwiched between AlGaInAs optical confinement layers, and a Zn-doped p-type InP substrate 101 are formed.
  • a laminated semiconductor layer consisting of one cladding layer 104 is sequentially crystal-grown by a crystal growth method such as metal organic chemical vapor deposition (MOCVD) (first crystal growth step).
  • MOCVD metal organic chemical vapor deposition
  • a striped SiO 2 mask with a width of 1.5 ⁇ m in the ⁇ 011> direction is formed on the surface of the Zn-doped p-type InP first cladding layer 104 using photolithography and etching techniques. .
  • a striped mesa structure 150 is formed (mesa structure formation step).
  • an Fe-doped semi-insulating InP buried layer 105 and an S-doped n-type InP buried layer 106 are sequentially crystal-grown on both sides of the striped mesa structure 150 by MOCVD ( second crystal growth step).
  • the Fe-doped semi-insulating InP buried layer 105 and the S-doped n-type InP buried layer 106 function as current blocking layers when driving the semiconductor element 500.
  • the SiO 2 mask is removed by wet etching using hydrofluoric acid as an etchant.
  • a Zn-doped p-type InP second cladding layer 107 and a Zn-doped p-type InGaAs contact layer 108 are formed by MOCVD on the top surface of the striped mesa structure 150 and the surface of the S-doped n-type InP buried layer 106.
  • each layer of the S-doped n-type InP barrier layer 109 is successively crystal grown (third crystal growth step).
  • a SiO 2 insulating film 110 is formed on the entire surface using the plasma CVD method (insulating film forming step), thereby completing the semiconductor element 500 shown in FIG.
  • the SiO 2 insulating film 110 formed using the plasma CVD method is also referred to as a plasma CVD insulating film.
  • n-type InP barrier layer 109 is provided directly under the SiO 2 insulating film 110, the diffusion of hydrogen contained in the SiO 2 insulating film 110 is prevented from occurring in the n-type InP barrier layer 109. Therefore, it is possible to obtain a semiconductor element that can operate in a wide frequency band and with high luminous efficiency.
  • FIG. 2 is a cross-sectional view showing the configuration of a buried semiconductor laser 550 to which the semiconductor element 500 shown in FIG. 1 is applied.
  • the device structure of the embedded semiconductor laser 550 is based on the semiconductor device 500.
  • the embedded semiconductor laser 550 includes an opening 110a formed in the SiO 2 insulating film 110 of the semiconductor element 500, a surface electrode 111 provided on the SiO 2 insulating film 110 including the opening 110a, and an n-type InP substrate 101.
  • This is an element structure in which a back electrode 112 is provided on the back side of the device.
  • the method for manufacturing the embedded semiconductor laser 550 according to the first embodiment is the same as the method for manufacturing the semiconductor element 500 up to the formation of the SiO 2 insulating film 110 using the plasma CVD method, so the subsequent manufacturing method will be described below. explain.
  • an opening 110a having an opening width of 3 ⁇ m is formed in a portion of the SiO 2 insulating film 110 facing the top surface of the striped mesa structure 150 using photolithography and dry etching. (opening formation step).
  • a surface electrode 111 is formed on the SiO 2 insulating film 110 including the opening 110a. After forming the front electrode 111, the back surface is polished and a back electrode 112 is formed on the back side of the n-type InP substrate 101 (electrode formation step), thereby forming a buried semiconductor laser 550 as shown in FIG. The element structure is completed.
  • the InP layer and the InGaAs layer are doped with S, they have n-type conductivity, and when they are doped with Zn, they have p-type conductivity.
  • the S-doped n-type InP barrier layer 109 exists between the SiO 2 insulating film 110 and the Zn-doped p-type InGaAs contact layer 108, the S-doped n-type The InP barrier layer 109 can suppress hydrogen contained in the SiO 2 insulating film 110 from diffusing into each semiconductor layer.
  • the current blocking layer was constructed using the Fe-doped semi-insulating InP buried layer 105 and the S-doped n-type InP buried layer 106, but other buried structures such as a thyristor type etc. It may be.
  • n-type InP barrier layer 109 is provided directly under the SiO 2 insulating film 110, the diffusion of hydrogen contained in the SiO 2 insulating film 110 is prevented from being caused by the n-type InP barrier layer 109. Since the barrier layer 109 prevents this, it is possible to obtain an embedded semiconductor laser that has a wide frequency band and can operate with high luminous efficiency.
  • FIG. 3 is a cross-sectional view showing the configuration of a semiconductor element 600 according to a first modification of the first embodiment.
  • FIG. 4 is a cross-sectional view showing the configuration of a buried semiconductor laser 650 to which the semiconductor element structure according to Modification 1 of Embodiment 1 is applied.
  • the semiconductor element 600 according to the first modification of the first embodiment has a structure that is opposite to the top surface of the striped mesa structure 150 in the structure of the semiconductor element 500 according to the first embodiment.
  • An opening 110b is provided in the n-type InP barrier layer (first conductivity type second semiconductor layer) 109 and the SiO 2 insulating film 110.
  • the opening width of the opening 110b is 3 ⁇ m, and the p-type InGaAs contact layer 108 is exposed at the bottom of the opening 110b.
  • the method for manufacturing the semiconductor element 600 according to the first modification of the first embodiment is the same as the method for manufacturing the embedded semiconductor laser 550 up to the formation of the opening in the SiO 2 insulating film 110, so the subsequent manufacturing method is This will be explained below.
  • the S-doped n-type InP barrier layer 109 is etched using a chemical solution that is selective to InGaAs until it reaches the Zn-doped p-type InGaAs contact layer 108. By etching, an opening 110b shown in FIG. 3 is formed. Since a chemical solution with etching selectivity is used, etching progresses within the S-doped n-type InP barrier layer 109 but stops at the surface of the Zn-doped p-type InGaAs contact layer 108. Therefore, the Zn-doped p-type InGaAs contact layer 108 is exposed at the bottom of the opening 110b.
  • FIG. 4 is a cross-sectional view showing the configuration of a buried semiconductor laser 650 to which the semiconductor element structure according to the first modification of the first embodiment is applied.
  • the buried semiconductor laser 650 has an opening 110b formed in the SiO 2 insulating film 110 and the n-type InP barrier layer (second semiconductor layer of the first conductivity type) 109 of the semiconductor element 500, and the SiO 2 laser including the opening 110b.
  • the device has a structure in which a front electrode 111 is provided on an insulating film 110 and a back electrode 112 is provided on the back side.
  • the n-type InP barrier layer 109 is inserted over the entire surface between the p-type InGaAs contact layer 108 and the SiO 2 insulating film 110 . It is possible to suppress hydrogen contained in 110 from diffusing into each semiconductor layer.
  • the n-type InP barrier layer 109 is removed between the surface electrode 111 and the p-type InGaAs contact layer 108 in the opening 110b of the SiO 2 insulating film 110. It also has the effect of reducing the contact resistance between the semiconductor layer and the semiconductor layer.
  • n-type InP barrier layer 109 is provided directly under the SiO 2 insulating film 110, hydrogen contained in the SiO 2 insulating film 110 can be diffused. Since the n-type InP barrier layer 109 prevents this, it is possible to obtain an embedded semiconductor laser that has a wide frequency band and can operate with high luminous efficiency.
  • FIG. 5 is a cross-sectional view showing the configuration of a semiconductor element according to a second modification of the first embodiment.
  • FIG. 6 is a cross-sectional view showing another configuration of the semiconductor element according to the second modification of the first embodiment.
  • a semiconductor device 700 according to a second modification of the first embodiment includes an S-doped n-type InP cladding layer sequentially stacked on a (100)-plane S-doped n-type InP substrate 101.
  • the SiO 2 insulating film 110 is provided with an opening 110c.
  • an active layer made of undoped AlGaInAs is given as an example of the active layer, any active layer made of a semiconductor layer containing Ga (gallium) and As (arsenic) may be used, and n-type other than undoped Alternatively, it may be a p-type semiconductor layer.
  • the semiconductor element 750 according to the second modification of the first embodiment has an opening 110d that reaches the n-type InP barrier layer (second semiconductor layer of the first conductivity type) 109 in addition to the SiO 2 insulating film 110 of the semiconductor element 700. This is an element structure provided with.
  • FIG. 7 is a cross-sectional view showing the configuration of a semiconductor element 800 according to the second embodiment.
  • FIG. 7 shows, as an example of a semiconductor element 800 according to the second embodiment, a buried semiconductor laser using an n-type InP substrate 101 and having an AlGaInAs active layer 103, as in the first embodiment.
  • the semiconductor element 800 includes an S-doped n-type InP cladding layer (a first semiconductor layer of a first conductivity type) 102 that is sequentially laminated on an S-doped n-type InP substrate 101 with a (100) plane, and an AlGaInAs optical film on the top and bottom surfaces.
  • the doping concentration of the S-doped n-type InP substrate 101 is 5.0 ⁇ 10 18 cm ⁇ 3
  • the layer thickness of the S-doped n-type InP cladding layer 102 is 1.0 ⁇ m
  • the doping concentration is 1.0 ⁇ 10 18 cm ⁇ 3 .
  • the layer thickness of the undoped AlGaInAs active layer 103 is 0.3 ⁇ m
  • the layer thickness of the Zn-doped p-type InP cladding layer 104a is 2.3 ⁇ m
  • the doping concentration is 1.0 ⁇ 10 18 cm ⁇ 3 .
  • the Zn-doped p-type InGaAs contact layer 108 has a layer thickness of 0.3 ⁇ m and a doping concentration of 1.0 ⁇ 10 19 cm ⁇ 3 .
  • an active layer made of undoped AlGaInAs is given as an example of the active layer, any active layer made of a semiconductor layer containing Ga (gallium) and As (arsenic) may be used, and n-type other than undoped Alternatively, it may be a p-type semiconductor layer.
  • the layer thickness of the Fe-doped semi-insulating InP buried layer 105 is 4.0 ⁇ m, the doping concentration is 5.0 ⁇ 10 16 cm ⁇ 3 , the layer thickness of the S-doped n-type InP buried barrier layer 109a is 0.5 ⁇ m, and the doping concentration is 5.0 ⁇ 10 16 cm ⁇ 3 . The concentration is 5.0 ⁇ 10 18 cm ⁇ 3 .
  • the height of the striped mesa structure 160 is 4.5 ⁇ m.
  • a method of manufacturing semiconductor element 800 according to the second embodiment will be described below.
  • a (100) plane S-doped n-type InP substrate 101 an S-doped n-type InP cladding layer 102, an undoped AlGaInAs active layer 103 whose upper and lower surfaces are sandwiched between AlGaInAs optical confinement layers, and a Zn-doped p-type InP cladding layer 104a.
  • a laminated semiconductor layer consisting of the Zn-doped p-type InGaAs contact layer 108 is successively crystal-grown by a crystal growth method such as MOCVD (first crystal growth step).
  • a striped SiO 2 mask with a width of 1.5 ⁇ m in the ⁇ 011> direction is formed on the surface of the Zn-doped p-type InGaAs contact layer 108 using photolithography and etching techniques.
  • a mesa structure 160 is formed (mesa structure forming step).
  • an Fe-doped semi-insulating InP buried layer 105 and an S-doped n-type InP buried barrier layer 109a are successively crystal-grown on both sides of the striped mesa structure 160 by MOCVD. (Second crystal growth step).
  • the Fe-doped semi-insulating InP buried layer 105 and the S-doped n-type InP buried barrier layer 109a function as a current blocking layer when driving the semiconductor element 800.
  • the SiO 2 mask is removed by wet etching using hydrofluoric acid as an etchant.
  • a SiO 2 insulating film 110 is formed over the entire surface using a plasma CVD method (insulating film forming step).
  • an opening 110e with an opening width of 3 ⁇ m is formed in a portion of the SiO 2 insulating film 110 facing the top surface of the striped mesa structure 160 using photolithography and dry etching. (opening formation step).
  • a surface electrode 111 is formed on the SiO 2 insulating film 110 including the opening 110a. After forming the front surface electrode 111, the back surface is polished and a back surface electrode 112 is formed on the back surface side of the n-type InP substrate 101 (electrode formation process), thereby forming an element as a buried semiconductor laser as shown in FIG. The structure is completed.
  • the n-type InP buried barrier layer 109a exists between the SiO 2 insulating film 110 and the semi-insulating InP buried layer 105, the n-type InP buried barrier layer 109a makes SiO 2 It is possible to suppress hydrogen contained in the insulating film 110 from diffusing into each semiconductor layer.
  • n-type InP buried barrier layer 109a is provided directly under the SiO 2 insulating film 110, the diffusion of hydrogen contained in the SiO 2 insulating film 110 is suppressed by the n-type InP buried barrier layer 109a. Since the barrier layer 109a prevents this from occurring, it is possible to obtain a semiconductor element that has a wide frequency band and can operate with high luminous efficiency.
  • FIG. 8 is a cross-sectional view showing the configuration of a semiconductor element 850 according to the third embodiment.
  • FIG. 8 shows, as an example of a semiconductor element 850 according to the second embodiment, a ridge-type semiconductor laser using an n-type InP substrate 101 and having an AlGaInAs active layer 103, as in the first embodiment.
  • the semiconductor element 850 includes an S-doped n-type InP cladding layer (a first semiconductor layer of a first conductivity type) 102 stacked in sequence on a (100)-plane S-doped n-type InP substrate 101, and an AlGaInAs upper and lower surface.
  • a laminated semiconductor layer consisting of an undoped AlGaInAs active layer 103 sandwiched between optical confinement layers, a Zn-doped p-type InP cladding layer (second conductivity type semiconductor layer) 104a, and a Zn-doped p-type InGaAs contact layer 108 is formed in a stripe shape.
  • the formed ridge structure 170, the S-doped n-type InP barrier layer (first conductivity type second semiconductor layer) 109 formed on both sides of the striped ridge structure 170, and the S-doped n-type InP barrier layer 109 A SiO 2 insulating film 110 formed thereon and having an opening 110f at the top surface of the ridge structure 170, a surface electrode 111 provided on the SiO 2 insulating film 110 including the opening 110f, and an S-doped It is composed of a back electrode 112 provided on the back side of the n-type InP substrate 101.
  • the doping concentration of the S-doped n-type InP substrate 101 is 5.0 ⁇ 10 18 cm ⁇ 3
  • the layer thickness of the S-doped n-type InP cladding layer 102 is 1.0 ⁇ m
  • the doping concentration is 1.0 ⁇ 10 18 cm ⁇ 3 .
  • the layer thickness of the undoped AlGaInAs active layer 103 is 0.3 ⁇ m
  • the layer thickness of the Zn-doped p-type InP cladding layer 104a is 2.3 ⁇ m
  • the doping concentration is 1.0 ⁇ 10 18 cm ⁇ 3 .
  • the Zn-doped p-type InGaAs contact layer 108 has a layer thickness of 0.3 ⁇ m and a doping concentration of 1.0 ⁇ 10 19 cm ⁇ 3 .
  • an active layer made of undoped AlGaInAs is given as an example of the active layer, any active layer made of a semiconductor layer containing Ga (gallium) and As (arsenic) may be used, and n-type other than undoped Alternatively, it may be a p-type semiconductor layer.
  • the S-doped n-type InP barrier layer 109 has a layer thickness of 0.5 ⁇ m and a doping concentration of 1.0 ⁇ 10 18 cm ⁇ 3 .
  • the height of the striped ridge structure 170 is 2.6 ⁇ m.
  • a method of manufacturing semiconductor element 850 according to the third embodiment will be described below.
  • an S-doped n-type InP substrate 101 On a (100) plane S-doped n-type InP substrate 101, an S-doped n-type InP cladding layer 102, an undoped AlGaInAs active layer 103 whose upper and lower surfaces are sandwiched between AlGaInAs optical confinement layers, and a Zn-doped p-type InP cladding layer 102 are formed.
  • a laminated semiconductor layer consisting of the layer 104a and the Zn-doped p-type InGaAs contact layer 108 is successively crystal-grown by a crystal growth method such as MOCVD (first crystal growth step).
  • a striped SiO 2 mask with a width of 1.5 ⁇ m in the ⁇ 011> direction is formed on the surface of the Zn-doped p-type InGaAs contact layer 108 using photolithography and etching techniques.
  • a striped SiO 2 mask as an etching mask, dry etching is performed on the Zn-doped p-type InGaAs contact layer 108 and the Zn-doped p-type InP cladding layer 104a to form a ridge shape, thereby reducing the height from the bottom surface.
  • a striped ridge structure 170 having a thickness of 2.6 ⁇ m is formed (ridge structure formation step).
  • an S-doped n-type InP barrier layer 109 is crystal-grown on the striped ridge structure 170 by MOCVD (second crystal growth step).
  • the SiO 2 mask is removed by wet etching using hydrofluoric acid as an etchant.
  • an SiO 2 insulating film 110 is formed on the entire surface using a plasma CVD method (insulating film forming step).
  • an opening 110f with an opening width of 3 ⁇ m is formed in the SiO 2 insulating film 110 on the top surface of the striped ridge structure 170 using photolithography and dry etching. (opening formation step).
  • a surface electrode 111 is formed on the SiO 2 insulating film 110 including the opening 110f. After forming the front electrode 111, the back surface is polished and a back electrode 112 is formed on the back side of the S-doped n-type InP substrate 101 (electrode formation process), thereby forming a ridge-type semiconductor laser as shown in FIG. The element structure is completed.
  • the n-type InP barrier layer 109 prevents the content of the SiO 2 insulating film 110 from being contained. It is possible to suppress hydrogen from diffusing into each semiconductor layer.
  • n-type InP barrier layer 109 is provided directly under the SiO 2 insulating film 110, the diffusion of hydrogen contained in the SiO 2 insulating film 110 is prevented from occurring in the n-type InP barrier layer 109. Therefore, it is possible to obtain a semiconductor element that can operate in a wide frequency band and with high luminous efficiency.
  • FIG. 9 is a cross-sectional view showing the configuration of a ridge type semiconductor laser 900 to which the semiconductor element structure of the third embodiment is applied.
  • the ridge type semiconductor laser 900 has an opening 110g formed at a portion of the SiO 2 insulating film 110 and the n-type InP barrier layer 109 on the top surface of the ridge structure 170 of the semiconductor element 850, and the SiO 2 insulating film including the opening 110g.
  • the element structure is such that a front surface electrode 111 is provided on the n-type InP substrate 110, and a back surface electrode 112 is provided on the back surface side of the n-type InP substrate 101.
  • an n-type InP barrier layer 109 is provided between a portion of each of the undoped AlGaInAs active layer 103, the p-type InGaAs contact layer 108, and the Zn-doped p-type InP cladding layer 104a and the SiO 2 insulating film 110. Because of the insertion, the n-type InP barrier layer 109 can suppress hydrogen contained in the SiO 2 insulating film 110 from diffusing into each semiconductor layer.
  • the contact resistance between the surface electrode 111 and the semiconductor layer can also be reduced. It is also effective.
  • FIG. 10 is a cross-sectional view showing the configuration of a buried semiconductor laser 950 to which the semiconductor element structure of Embodiment 3 is applied.
  • the embedded semiconductor laser 950 has a structure in which the mesa structure 150 of the embedded semiconductor laser 550 according to the first embodiment is further processed into a mesa-shaped structure 180.
  • the buried semiconductor laser 950 has an opening 110h provided in the SiO 2 insulating film 110 and the n-type InP barrier layer 109 on the top surface of the mesa-shaped structure 180 .
  • the device has a structure in which a front surface electrode 111 is provided on the top side, and a back surface electrode 112 is provided on the back surface side.
  • the buried semiconductor laser 950 In the buried semiconductor laser 950, a portion of each of the semi-insulating InP buried layer 105, the n-type InP buried layer 106, the p-type InP second cladding layer 107, and the p-type InGaAs contact layer 108 and a SiO 2 insulating film are used. Since the n-type InP barrier layer (second semiconductor layer of the first conductivity type) 109 is inserted between the SiO 2 insulating film 110 and the n-type InP barrier layer 109, the hydrogen contained in the SiO 2 insulating film 110 is absorbed into each semiconductor layer by the n-type InP barrier layer 109. It is possible to suppress the spread of
  • the contact resistance between the surface electrode 111 and the semiconductor layer can also be reduced. It also has this effect.
  • n-type InP barrier layer 109 is provided directly under the SiO 2 insulating film 110, hydrogen contained in the SiO 2 insulating film 110 can be diffused.
  • the n-type InP barrier layer 109 prevents this, and the contact resistance between the surface electrode 111 and the semiconductor layer can also be reduced, making it possible to obtain a buried semiconductor laser that has a wide frequency band and can operate with high luminous efficiency. It has the effect of being
  • FIG. 11 is a cross-sectional view showing the configuration of a semiconductor device 1000 according to the fourth embodiment.
  • FIG. 11 shows, as an example of the semiconductor device 1000 according to the first embodiment, a buried semiconductor laser using an n-type InP substrate 101 and having an AlGaInAs active layer 103.
  • the semiconductor element 1000 includes an S-doped n-type InP cladding layer (a first semiconductor layer of a first conductivity type) 102 that is sequentially laminated on a (100) plane S-doped n-type InP substrate 101, and an AlGaInAs upper and lower surface.
  • S-doped n-type InP cladding layer a first semiconductor layer of a first conductivity type
  • each semiconductor layer consisting of an S-doped n-type InP barrier layer (first conductivity type second semiconductor layer) 109, an SiO 2 first insulating film 115a formed on the S-doped n-type InP barrier layer 109, and It is composed of a two-layer SiO 2 insulating film including a second SiO 2 insulating film 115b.
  • the doping concentration of the S-doped n-type InP substrate 101 is 5.0 ⁇ 10 18 cm ⁇ 3
  • the layer thickness of the S-doped n-type InP cladding layer 102 is 1.0 ⁇ m
  • the doping concentration is 1.0 ⁇ 10 18 cm ⁇ 3 .
  • the layer thickness of the undoped AlGaInAs active layer 103 is 0.3 ⁇ m
  • the layer thickness of the Zn-doped p-type InP first cladding layer 104 is 0.3 ⁇ m
  • the doping concentration is 1.0 ⁇ 10 18 cm ⁇ 3 .
  • the height of the striped mesa structure 150 is 2.0 ⁇ m.
  • any active layer made of undoped AlGaInAs is given as an example of the active layer, any active layer made of a semiconductor layer containing Ga (gallium) and As (arsenic) may be used, and n-type other than undoped Alternatively, it may be a p-type semiconductor layer.
  • the layer thickness of the Fe-doped semi-insulating InP buried layer 105 is 1.8 ⁇ m and the doping concentration is 5.0 ⁇ 10 16 cm ⁇ 3
  • the layer thickness of the S-doped n-type InP buried layer 106 is 0.2 ⁇ m and the doping concentration. is 5.0 ⁇ 10 18 cm ⁇ 3 .
  • the layer thickness of the Zn-doped p-type InP second cladding layer 107 is 2.0 ⁇ m and the doping concentration is 1.0 ⁇ 10 18 cm ⁇ 3
  • the layer thickness of the Zn-doped p-type InGaAs contact layer 108 is 0.3 ⁇ m and the doping concentration is
  • the layer thickness of the S-doped n -type InP barrier layer 109 is 0.2 ⁇ m, and the doping concentration is 1.0 ⁇ 10 18 cm -3 .
  • ⁇ Method for manufacturing semiconductor device according to Embodiment 4> The difference between the method of manufacturing a semiconductor device according to the fourth embodiment and the method of manufacturing a semiconductor device according to the first embodiment is that the method of manufacturing a semiconductor device according to the fourth embodiment is different from the method of manufacturing a semiconductor device according to the first embodiment . Since this is only the step of forming an insulating film, the formation of the SiO 2 insulating film will be described below.
  • a SiO 2 first insulating film 115a is formed on the entire surface of the S-doped n-type InP barrier layer 109 using a sputtering method, and a SiO 2 second insulating film 115a is further formed on the SiO 2 first insulating film 115a using a plasma CVD method.
  • the film 115b insulating film forming step
  • Non-Patent Document 2 points out that when the n-type InP layer is thin, the effect of preventing hydrogen diffusion is small.
  • the SiO 2 insulating film is constituted by the SiO 2 insulating film consisting of two layers, the SiO 2 first insulating film 115a and the SiO 2 second insulating film 115b. Since it is possible to reduce the layer thickness of the n-type InP barrier layer 109 immediately below, it is possible to obtain a semiconductor element that can operate in a wide frequency band and with high luminous efficiency.
  • FIG. 12 is a cross-sectional view showing the configuration of a buried semiconductor laser 1100 to which the semiconductor element structure of Embodiment 4 is applied.
  • the embedded semiconductor laser 1100 has an opening 110i in the SiO 2 first insulating film 115a, the SiO 2 second insulating film 115b, and the n-type InP barrier layer 109 facing the top surface of the mesa structure 150 of the semiconductor element 1000.
  • a front electrode 111 is provided on the SiO 2 second insulating film 115b that is formed and includes an opening 110i
  • a back electrode 112 is provided on the back side of the n-type InP substrate 101.
  • the opening 110i of the buried semiconductor laser 1100 is first formed by forming a 3- ⁇ m thick SiO 2 first insulating film 115a and a SiO 2 second insulating film 115b facing the top surface of the mesa structure 150 using photolithography and dry etching techniques. A wide opening is formed, and the n-type InP barrier layer 109 is further etched with a chemical solution having etching selectivity to InGaAs.
  • the SiO 2 first insulating film 115a formed using the sputtering method Since there is no hydrogen mixed in the SiO 2 first insulating film 115a formed using the sputtering method, the influence of hydrogen diffusion from the SiO 2 second insulating film 115b formed using the plasma CVD method into each semiconductor layer. can be suppressed. Therefore, the layer thickness of the n-type InP barrier layer 109 on the semiconductor surface can be reduced.
  • the SiO 2 insulating film is composed of two layers, the SiO 2 first insulating film 115a and the SiO 2 second insulating film 115b. Since the layer thickness of the InP type barrier layer 109 can be made thinner, it is possible to obtain an embedded semiconductor laser that has a wide frequency band and can operate with high luminous efficiency.
  • the SiO 2 insulating film is composed of two layers, the SiO 2 first insulating film 115a and the SiO 2 second insulating film 115b, but the semiconductor element or semiconductor laser according to Embodiments 1 to 3 Alternatively, such a two-layer SiO 2 insulating film may be applied.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本開示の半導体素子(550)は、第1導電型のInP半導体基板(101)と、第1導電型の半導体基板(101)上に順次形成された第1導電型の第1半導体層(102)、アンドープ活性層(103)、第2導電型の半導体層(104)からなる積層半導体層と、積層半導体層上に形成された第1導電型の第2半導体層(109)と、第1導電型の第2半導体層(109)に接して形成された絶縁膜(110)と、を備え、絶縁膜(110)に底部に第1導電型の第2半導体層(109)が露出する開口部(110a)が設けられたことを特徴とする。

Description

半導体素子及び半導体素子の製造方法
 本開示は、半導体素子及び半導体素子の製造方法に関する。
 光通信の用途に用いられるInP系半導体レーザーでは、通信の大容量化に対応するために、素子単体での変調周波数の広帯域化が要求される。また、光通信システム全体の消費電力を低減するために、素子単体での発光効率の向上が要求される。周波数帯域及び発光効率のいずれにおいても半導体素子の素子抵抗が大きく影響するが、電子及びホールにおいてはホールの方が移動度は小さく、半導体層の素子抵抗の中では、p型半導体層の抵抗が半導体層全体の抵抗に対して大きな割合を占める。
 上述の事情を考慮し、光通信用のInP系半導体レーザーでは、電流経路の長い部分に低抵抗であるn型半導体層を適用するために、一般にn型の半導体基板が用いられる。つまり、n型半導体基板が素子の裏面側、p型半導体層が素子の表面側に位置することになる。
J Chevallier, A Jalil, B Theys, J C Pesant, M Aucouturier, B Rose and A Mircea、"Hydrogen passivation of shallow acceptors in p-type InP"、Semicond. Sci. Technol. 4 (1989) pp.87-90 Hiroshi Ito, Shoji Yamahata, Naoteru Shigekawa and Kenji Kurishima、"Heavily Carbon Doped Base InP/InGaAs Heterojunction Bipolar Transistors Grown by Two-Step Metalorganic Chemical Vapor Deposition"、Jpn. J. Appl. Phys.、vol.35 (1996) pp.6139-6144
 上述のとおり、光通信用のInP系半導体レーザーでは素子の表面側にp型半導体層が形成される構成が一般的である。素子の表面側には半導体層の表面保護のために絶縁膜が形成される。絶縁膜に対して要求される特性として、半導体表面での段差被覆性が良好であること、緻密な膜質であることなどが挙げられる。これらの要求に対応できる絶縁膜の成膜技術として、プラズマCVD(Plasma Chemical Vapor Deposition)法を用いることが一般的である。
 しかしながら、半導体層の表面保護を目的とした絶縁膜の成膜方法としてプラズマCVD法を用いた場合、絶縁膜の成膜中に発生する水素ラジカルから絶縁膜の内部に水素が入り込まれてしまうという現象が発生する。絶縁膜中に取り込まれた水素は、成膜後の製造工程におけるアニールなどのプロセス中に、p型半導体層中に拡散するおそれがあった。さらに、素子完成後の半導体素子の保存、動作、使用環境などの条件によっても、p型半導体層中に水素が拡散するおそれがあった。
 非特許文献1では、p型半導体層中の水素がキャリア濃度低下を引き起こすことが指摘されている。p型半導体層のキャリア濃度の低下は半導体素子の素子抵抗の増大に直結するため、プロセス、保存、動作、使用環境などの条件のばらつきによって素子特性がばらついてしまうおそれがあった。また、半導体層中の水素は比較的容易に動くことが知られており、最悪の場合は半導体素子の長期信頼性に影響することも懸念される。一方、非特許文献2には、半導体層の表面にn型半導体層を設けることで、絶縁膜からのp型半導体層中への水素の拡散が抑制できることが記載されている。
 本開示は、上記のような問題点を解消するためになされたもので、絶縁膜からp型半導体層中への水素の拡散を抑制して半導体素子の素子抵抗の増大を防止することにより、周波数帯域が広く、かつ、高い発光効率で動作可能な半導体素子を提供することを目的とする。
 本開示に係る半導体素子は、
 半導体基板と、
 前記半導体基板上に形成された第1導電型の第1半導体層、活性層、第2導電型の半導体層からなる積層半導体層と、
 前記積層半導体層上に形成された第1導電型の第2半導体層と、
 前記第1導電型の第2半導体層に接して形成された絶縁膜と、を備える。
 本開示に係る半導体素子の製造方法は、
 半導体基板上に第1導電型の第1半導体層、活性層、第2導電型の半導体層を順次結晶成長して積層半導体層を形成する第1結晶成長工程と、
 前記積層半導体層をストライプ状のメサ構造に加工するメサ構造形成工程と、
 前記メサ構造の両側面に埋込層を結晶成長する第2結晶成長工程と、
 前記埋込層上に第1導電型の第2半導体層を含む半導体層を結晶成長する第3結晶成長工程と、
 前記第1導電型の第2半導体層上にプラズマCVD法によって絶縁膜を成膜する絶縁膜形成工程と、
 前記メサ構造の頂面に対向する前記絶縁膜の部位に開口部を形成する開口部形成工程と、
を含む。
 本開示に係る半導体素子によれば、半導体各層の最表面に設けられた絶縁膜の直下にn型半導体層を設けたので、絶縁膜に含有される水素の拡散をn型半導体層が防止するため、周波数帯域が広く、かつ、高い発光効率で動作可能な半導体素子が得られるという効果を奏する。
 本開示に係る半導体素子の製造方法によれば、半導体各層の最表面にn型半導体層が結晶成長され、n型半導体層に接する絶縁膜をプラズマCVD法によって成膜するので、絶縁膜に含有される水素の拡散をn型半導体層が防止するため、周波数帯域が広く、かつ、高い発光効率で動作可能な半導体素子を容易に製造方法できるという効果を奏する。
実施の形態1に係る半導体素子の構成を示す断面図である。 実施の形態1に係る半導体素子構造を適用した埋込型半導体レーザーの構成を示す断面図である。 実施の形態1の変形例1に係る半導体素子の構成を示す断面図である。 実施の形態1の変形例1に係る半導体素子構造を適用した埋込型半導体レーザーの構成を示す断面図である。 実施の形態1の変形例2に係る半導体素子の構成を示す断面図である。 実施の形態1の変形例2に係る半導体素子の他の構成を示す断面図である。 実施の形態2に係る半導体素子構造を適用した埋込型半導体レーザーの構成を示す断面図である。 実施の形態3に係る半導体素子構造を適用した半導体素子の構成の一例を示す断面図である。 実施の形態3の変形例1に係る半導体素子構造を適用したリッジ型半導体レーザーの構成の一例を示す断面図である。 実施の形態3の変形例2に係る半導体素子構造を適用した埋込型半導体レーザーの構成の一例を示す断面図である。 実施の形態4に係る半導体素子の構成を示す断面図である。 実施の形態4に係る半導体素子構造を適用した埋込型半導体レーザーの構成を示す断面図である。
実施の形態1.
 図1は、実施の形態1に係る半導体素子500の構成を示す断面図である。図1では、実施の形態1に係る半導体素子500の一例として、n型InP(インジウムリン)基板101を用い、AlGaInAs活性層103を有する埋込型半導体レーザーを示している。
<実施の形態1に係る半導体素子の構成>
 半導体素子500は、(100)面のSドープn型InP基板101上に、順次積層されたSドープn型InPクラッド層(第1導電型の第1半導体層)102、上面及び下面をAlGaInAs光閉じ込め層に挟まれたアンドープAlGaInAs活性層103、Znドープp型InP第1クラッド層(第2導電型の半導体層)104からなる積層半導体層がストライプ状に形成されたメサ構造150と、ストライプ状のメサ構造150の両側面に形成されたFeドープ半絶縁性InP埋込層105及びSドープn型InP埋込層106と、ストライプ状のメサ構造150の頂面及びSドープn型InP埋込層106の表面を覆うように形成されたZnドープp型InP第2クラッド層(第2導電型のクラッド層)107と、Znドープp型InGaAsコンタクト層(第2導電型のコンタクト層)108と、Sドープn型InP障壁層(第1導電型の第2半導体層)109からなる各層と、Sドープn型InP障壁層109上に形成されたSiO絶縁膜110で構成される。
 第1導電型の第1半導体層、活性層、及び第2導電型の半導体層からなる半導体各層を積層半導体層とも呼ぶ。
 半導体素子500を構成する各層について、以下に説明する。
 Sドープn型InP基板101のドーピング濃度は5.0×1018cm-3、Sドープn型InPクラッド層102の層厚は1.0μm、ドーピング濃度は1.0×1018cm-3である。アンドープAlGaInAs活性層103の層厚は0.3μm、Znドープp型InP第1クラッド層104の層厚は0.3μm、ドーピング濃度は1.0×1018cm-3である。ストライプ状のメサ構造150の高さは2.0μmである。なお、活性層の一例として、アンドープAlGaInAsで構成される活性層を挙げたが、Ga(ガリウム)及びAs(ヒ素)を含む半導体層で構成される活性層であれば良く、アンドープ以外のn型またはp型の半導体層であっても良い。
 Feドープ半絶縁性InP埋込層105の層厚は1.8μm、ドーピング濃度は5.0×1016cm-3、Sドープn型InP埋込層106の層厚は0.2μm、ドーピング濃度は5.0×1018cm-3である。
 Znドープp型InP第2クラッド層107の層厚は2.0μm、ドーピング濃度は1.0×1018cm-3、Znドープp型InGaAsコンタクト層108の層厚は0.3μm、ドーピング濃度は1.0×1019cm-3、Sドープn型InP障壁層109の層厚は0.5μm、ドーピング濃度は1.0×1018cm-3である。
<実施の形態1に係る半導体素子の製造方法>
 実施の形態1に係る半導体素子500の製造方法を以下に説明する。
 (100)面のSドープn型InP基板101上に、Sドープn型InPクラッド層102と、上面及び下面をAlGaInAs光閉じ込め層に挟まれたアンドープAlGaInAs活性層103と、Znドープp型InP第1クラッド層104からなる積層半導体層を有機金属気相成長法(Metal Organic Chemical Vapor Deposition:MOCVD)などの結晶成長方法によって順次結晶成長する(第1結晶成長工程)。
 上記各層の結晶成長後、Znドープp型InP第1クラッド層104の表面に、フォトリソグラフィ技術及びエッチング技術を用いて、<011>方向において幅1.5μmのストライプ状のSiOマスクを形成する。
 ストライプ状のSiOマスクをエッチングマスクとして用いて、Znドープp型InP第1クラッド層104からSドープn型InP基板101までドライエッチングを行うことで、底面からの高さが2.0μmであるストライプ状のメサ構造150を形成する(メサ構造形成工程)。
 ストライプ状のメサ構造150を形成後、MOCVD法によって、ストライプ状のメサ構造150の両側面にFeドープ半絶縁性InP埋込層105及びSドープn型InP埋込層106を順次結晶成長する(第2結晶成長工程)。Feドープ半絶縁性InP埋込層105及びSドープn型InP埋込層106は、半導体素子500を駆動する際に電流ブロック層として機能する。各埋込層の形成後、フッ酸をエッチャントとしたウエットエッチングにより、SiOマスクを除去する。
 次に、ストライプ状のメサ構造150の頂面及びSドープn型InP埋込層106の表面上に、MOCVD法によって、Znドープp型InP第2クラッド層107、Znドープp型InGaAsコンタクト層108、Sドープn型InP障壁層109の各層を順次結晶成長する(第3結晶成長工程)。
 次いで、全面にプラズマCVD法を用いてSiO絶縁膜110を成膜することで(絶縁膜形成工程)、図1に示す半導体素子500が完成する。なお、プラズマCVD法を用いて成膜したSiO絶縁膜110を、プラズマCVD絶縁膜とも呼ぶ。
<実施の形態1の効果1>
 実施の形態1に係る半導体素子によれば、SiO絶縁膜110の直下にn型InP障壁層109を設けたので、SiO絶縁膜110に含有される水素の拡散をn型InP障壁層109が防止するため、周波数帯域が広く、かつ、高い発光効率で動作可能な半導体素子が得られるという効果を奏する。
<実施の形態1に係る埋込型半導体レーザーの構成>
 図2は、図1に示す半導体素子500を適用した埋込型半導体レーザー550の構成を示す断面図である。埋込型半導体レーザー550の素子構造は、半導体素子500を基本としている。埋込型半導体レーザー550は、半導体素子500のSiO絶縁膜110に開口部110aが形成され、開口部110aを含むSiO絶縁膜110上に、表面電極111が設けられ、n型InP基板101の裏面側に裏面電極112が設けられた素子構造である。
<実施の形態1に係る埋込型半導体レーザーの製造方法>
 実施の形態1に係る埋込型半導体レーザー550の製造方法は、プラズマCVD法を用いたSiO絶縁膜110の成膜までは半導体素子500の製造方法と同一なので、以降の製造方法を以下に説明する。
 SiO絶縁膜110の成膜後、フォトリソグラフィ技術及びドライエッチング技術を用いて、ストライプ状のメサ構造150の頂面に対向するSiO絶縁膜110の部位に、開口幅が3μmの開口部110aを形成する(開口部形成工程)。
 開口部110aを含むSiO絶縁膜110上に、表面電極111を成膜する。表面電極111の形成後、裏面を研磨し、n型InP基板101の裏面側に裏面電極112を成膜することで(電極形成工程)、図2に示すような埋込型半導体レーザー550としての素子構造が完成する。
 InP層及びInGaAs層に対して、Sをドープした場合はn型、Znをドープした場合はp型の導電型となる。半導体素子500及び埋込型半導体レーザー550の素子構造では、SiO絶縁膜110とZnドープp型InGaAsコンタクト層108との間にSドープn型InP障壁層109が存在するので、Sドープn型InP障壁層109によってSiO絶縁膜110に含有される水素が半導体各層中に拡散することを抑制できる。
 上述の説明では埋込型半導体レーザー550の一例を示したが、後述するリッジ型半導体レーザーでも同様の効果が得られる。
 上述の事例では、半導体層へのドーパントとして硫黄(S)、亜鉛(Zn)を示したが、それぞれn型、p型を示す種類のドーパントであればどんなドーパントを使用しても同様の効果が得られる。
 また、上述の実施の形態の説明では、Feドープ半絶縁性InP埋込層105及びSドープn型InP埋込層106を用いて電流ブロック層を構成したが、サイリスタ型などの他の埋め込み構造であってもよい。
<実施の形態1の効果2>
 実施の形態1に係る埋込型半導体レーザーによれば、SiO絶縁膜110の直下にn型InP障壁層109を設けたので、SiO絶縁膜110に含有される水素の拡散をn型InP障壁層109が防止するため、周波数帯域が広く、かつ、高い発光効率で動作可能な埋込型半導体レーザーが得られるという効果を奏する。
実施の形態1の変形例1.
 図3は、実施の形態1の変形例1に係る半導体素子600の構成を示す断面図である。また、図4は、実施の形態1の変形例1に係る半導体素子構造を適用した埋込型半導体レーザー650の構成を示す断面図である。
<実施の形態1の変形例1に係る半導体素子の構成>
 実施の形態1の変形例1に係る半導体素子600は、図3の断面図に示すように、実施の形態1に係る半導体素子500の構成において、ストライプ状のメサ構造150の頂面に対向するn型InP障壁層(第1導電型の第2半導体層)109及びSiO絶縁膜110の部位に開口部110bが設けられている。
 開口部110bの開口幅は3μmであり、開口部110bの底部には、p型InGaAsコンタクト層108が露出している。
<実施の形態1の変形例1に係る半導体素子の製造方法>
 実施の形態1の変形例1に係る半導体素子600の製造方法は、SiO絶縁膜110への開口部の形成までは、埋込型半導体レーザー550の製造方法と同一なので、以降の製造方法を以下に説明する。
 素子表面のSiO絶縁膜110に開口部を形成した後に、InGaAsに対してエッチング選択性のある薬液を用いて、Sドープn型InP障壁層109をZnドープp型InGaAsコンタクト層108に達するまでエッチングすることにより、図3に示す開口部110bを形成する。エッチング選択性のある薬液を用いるため、Sドープn型InP障壁層109内ではエッチングは進行するが、Znドープp型InGaAsコンタクト層108の表面で停止する。したがって、開口部110bの底部には、Znドープp型InGaAsコンタクト層108が露出する。
<実施の形態1の変形例1の効果1>
 実施の形態1の変形例1に係る半導体素子によれば、SiO絶縁膜110の直下にn型InP障壁層109を設けたので、SiO絶縁膜110に含有される水素の拡散をn型InP障壁層109が防止するため、周波数帯域が広く、かつ、高い発光効率で動作可能な半導体素子が得られるという効果を奏する。
<実施の形態1の変形例1に係る埋込型半導体レーザーの構成>
 図4は、実施の形態1の変形例1に係る半導体素子構造を適用した埋込型半導体レーザー650の構成を示す断面図である。埋込型半導体レーザー650は、半導体素子500のSiO絶縁膜110及びn型InP障壁層(第1導電型の第2半導体層)109に開口部110bが形成され、開口部110bを含むSiO絶縁膜110上に、表面電極111が設けられ、裏面側に裏面電極112が設けられた素子構造である。
 埋込型半導体レーザー650では、p型InGaAsコンタクト層108とSiO絶縁膜110との間の全面にn型InP障壁層109が挿入されているため、n型InP障壁層109によってSiO絶縁膜110に含有される水素が半導体各層中に拡散することを抑制できる。
 また、埋込型半導体レーザー650では、SiO絶縁膜110の開口部110bにおいて、表面電極111とp型InGaAsコンタクト層108の間でn型InP障壁層109が除去されているため、表面電極111と半導体層の間のコンタクト抵抗も小さくできるという効果も奏する。
<実施の形態1の変形例1の効果2>
 実施の形態1の変形例1に係る埋込型半導体レーザーによれば、SiO絶縁膜110の直下にn型InP障壁層109を設けたので、SiO絶縁膜110に含有される水素の拡散をn型InP障壁層109が防止するため、周波数帯域が広く、かつ、高い発光効率で動作可能な埋込型半導体レーザーが得られるという効果を奏する。
実施の形態1の変形例2.
 図5は、実施の形態1の変形例2に係る半導体素子の構成を示す断面図である。また、図6は、実施の形態1の変形例2に係る半導体素子の他の構成を示す断面図である。
<実施の形態1の変形例2に係る半導体素子の構成>
 実施の形態1の変形例2に係る半導体素子700は、図5の断面図に示すように、(100)面のSドープn型InP基板101上に、順次積層されたSドープn型InPクラッド層(第1導電型の第1半導体層)102と、上面及び下面をAlGaInAs光閉じ込め層に挟まれたアンドープAlGaInAs活性層103と、Znドープp型InPクラッド層(第2導電型の半導体層)104aと、Znドープp型InGaAsコンタクト層108と、Sドープn型InP障壁層(第1導電型の第2半導体層)109からなる各半導体層と、Sドープn型InP障壁層109上に形成され、開口部110cが設けられたSiO絶縁膜110で構成される。なお、活性層の一例として、アンドープAlGaInAsで構成される活性層を挙げたが、Ga(ガリウム)及びAs(ヒ素)を含む半導体層で構成される活性層であれば良く、アンドープ以外のn型またはp型の半導体層であっても良い。
<実施の形態1の変形例2に係る半導体素子の他の構成>
 実施の形態1の変形例2に係る半導体素子750は、半導体素子700のSiO絶縁膜110に加えて、n型InP障壁層(第1導電型の第2半導体層)109に達する開口部110dが設けられた素子構造である。
<実施の形態1の変形例2の効果>
 実施の形態1の変形例2に係る半導体素子によれば、SiO絶縁膜110の直下にn型InP障壁層109を設けたので、SiO絶縁膜110に含有される水素の拡散をn型InP障壁層109が防止するため、周波数帯域が広く、かつ、高い発光効率で動作可能な半導体素子が得られるという効果を奏する。
実施の形態2.
 図7は、実施の形態2に係る半導体素子800の構成を示す断面図である。図7では、実施の形態2に係る半導体素子800の一例として、実施の形態1と同様に、n型InP基板101を用い、AlGaInAs活性層103を有する埋込型半導体レーザーを示している。
<実施の形態2に係る半導体素子の構成>
 半導体素子800は、(100)面のSドープn型InP基板101上に、順次積層されたSドープn型InPクラッド層(第1導電型の第1半導体層)102、上面及び下面をAlGaInAs光閉じ込め層に挟まれたアンドープAlGaInAs活性層103、Znドープp型InPクラッド層(第2導電型の半導体層)104a、Znドープp型InGaAsコンタクト層108からなる積層半導体層がストライプ状に形成されたメサ構造160と、ストライプ状のメサ構造160の両側面に形成されたFeドープ半絶縁性InP埋込層105及びSドープn型InP埋込障壁層(第1導電型の第2半導体層)109aからなる各半導体層と、Sドープn型InP埋込障壁層109a上に形成され開口部110eが形成されたSiO絶縁膜110と、開口部110eを含むSiO絶縁膜110上に設けられた表面電極111と、Sドープn型InP基板101の裏面側に設けられた裏面電極112とで構成される。
 半導体素子800を構成する各層について、以下に説明する。
 Sドープn型InP基板101のドーピング濃度は5.0×1018cm-3、Sドープn型InPクラッド層102の層厚は1.0μm、ドーピング濃度は1.0×1018cm-3である。アンドープAlGaInAs活性層103の層厚は0.3μm、Znドープp型InPクラッド層104aの層厚は2.3μm、ドーピング濃度は1.0×1018cm-3.Znドープp型InGaAsコンタクト層108の層厚は0.3μm、ドーピング濃度は1.0×1019cm-3である。なお、活性層の一例として、アンドープAlGaInAsで構成される活性層を挙げたが、Ga(ガリウム)及びAs(ヒ素)を含む半導体層で構成される活性層であれば良く、アンドープ以外のn型またはp型の半導体層であっても良い。
 Feドープ半絶縁性InP埋込層105の層厚は4.0μm、ドーピング濃度は5.0×1016cm-3、Sドープn型InP埋込障壁層109aの層厚は0.5μm、ドーピング濃度は5.0×1018cm-3である。ストライプ状のメサ構造160の高さは4.5μmである。
<実施の形態2に係る半導体素子の製造方法>
 実施の形態2に係る半導体素子800の製造方法を以下に説明する。
 (100)面のSドープn型InP基板101上に、Sドープn型InPクラッド層102、上面及び下面をAlGaInAs光閉じ込め層に挟まれたアンドープAlGaInAs活性層103、Znドープp型InPクラッド層104a、Znドープp型InGaAsコンタクト層108からなる積層半導体層を、MOCVD法などの結晶成長方法によって順次結晶成長する(第1結晶成長工程)。
 上記各層の結晶成長後、Znドープp型InGaAsコンタクト層108の表面に、フォトリソグラフィ技術及びエッチング技術を用いて、<011>方向において幅1.5μmのストライプ状のSiOマスクを形成する。
 ストライプ状のSiOマスクをエッチングマスクとして用いて、Znドープp型InGaAsコンタクト層108からSドープn型InP基板101までドライエッチングを行うことで、底面からの高さが4.5μmであるストライプ状のメサ構造160を形成する(メサ構造形成工程)。
 ストライプ状のメサ構造160を形成後、MOCVD法によって、ストライプ状のメサ構造160の両側面にFeドープ半絶縁性InP埋込層105及びSドープn型InP埋込障壁層109aを順次結晶成長する(第2結晶成長工程)。Feドープ半絶縁性InP埋込層105及びSドープn型InP埋込障壁層109aは、半導体素子800を駆動する際に電流ブロック層として機能する。
 各埋込層の形成後、フッ酸をエッチャントとしたウエットエッチングにより、SiOマスクを除去する。次いで、プラズマCVD法を用いてSiO絶縁膜110を全面に成膜する(絶縁膜形成工程)。
 SiO絶縁膜110の成膜後、フォトリソグラフィ技術及びドライエッチング技術を用いて、ストライプ状のメサ構造160の頂面に対向するSiO絶縁膜110の部位に、開口幅が3μmの開口部110eを形成する(開口部形成工程)。
 開口部110aを含むSiO絶縁膜110上に、表面電極111を成膜する。表面電極111の形成後、裏面を研磨し、n型InP基板101の裏面側に裏面電極112を成膜することで(電極形成工程)、図7に示すような埋込型半導体レーザーとしての素子構造が完成する。
 半導体素子800の素子構造では、SiO絶縁膜110と半絶縁性InP埋込層105との間にn型InP埋込障壁層109aが存在するので、n型InP埋込障壁層109aによってSiO絶縁膜110に含有される水素が半導体各層中に拡散することを抑制できる。
<実施の形態2の効果>
 実施の形態2に係る半導体素子によれば、SiO絶縁膜110の直下にn型InP埋込障壁層109aを設けたので、SiO絶縁膜110に含有される水素の拡散をn型InP埋込障壁層109aが防止するため、周波数帯域が広く、かつ、高い発光効率で動作可能な半導体素子が得られるという効果を奏する。
実施の形態3.
 図8は、実施の形態3に係る半導体素子850の構成を示す断面図である。図8では、実施の形態2に係る半導体素子850の一例として、実施の形態1と同様に、n型InP基板101を用い、AlGaInAs活性層103を有するリッジ型半導体レーザーを示している。
<実施の形態3に係る半導体素子の構成>
 半導体素子850は、(100)面のSドープn型InP基板101上に、順次積層されたSドープn型InPクラッド層(第1導電型の第1半導体層)102と、上面及び下面をAlGaInAs光閉じ込め層に挟まれたアンドープAlGaInAs活性層103と、Znドープp型InPクラッド層(第2導電型の半導体層)104aと、Znドープp型InGaAsコンタクト層108からなる積層半導体層がストライプ状に形成されたリッジ構造170と、ストライプ状のリッジ構造170の両側面に形成されたSドープn型InP障壁層(第1導電型の第2半導体層)109と、Sドープn型InP障壁層109上に形成され、リッジ構造170の頂面の部位に開口部110fが設けられたSiO絶縁膜110と、開口部110fを含むSiO絶縁膜110上に設けられた表面電極111と、Sドープn型InP基板101の裏面側に設けられた裏面電極112とで構成される。
 半導体素子850を構成する各層について、以下に説明する。
 Sドープn型InP基板101のドーピング濃度は5.0×1018cm-3、Sドープn型InPクラッド層102の層厚は1.0μm、ドーピング濃度は1.0×1018cm-3である。アンドープAlGaInAs活性層103の層厚は0.3μm、Znドープp型InPクラッド層104aの層厚は2.3μm、ドーピング濃度は1.0×1018cm-3.Znドープp型InGaAsコンタクト層108の層厚は0.3μm、ドーピング濃度は1.0×1019cm-3である。なお、活性層の一例として、アンドープAlGaInAsで構成される活性層を挙げたが、Ga(ガリウム)及びAs(ヒ素)を含む半導体層で構成される活性層であれば良く、アンドープ以外のn型またはp型の半導体層であっても良い。
 Sドープn型InP障壁層109の層厚は0.5μm、ドーピング濃度は1.0×1018cm-3である。ストライプ状のリッジ構造170の高さは2.6μmである。
<実施の形態3に係る半導体素子の製造方法>
 実施の形態3に係る半導体素子850の製造方法を以下に説明する。
 (100)面のSドープn型InP基板101上に、Sドープn型InPクラッド層102と、上面及び下面をAlGaInAs光閉じ込め層に挟まれたアンドープAlGaInAs活性層103と、Znドープp型InPクラッド層104aと、Znドープp型InGaAsコンタクト層108からなる積層半導体層を、MOCVD法などの結晶成長方法によって順次結晶成長する(第1結晶成長工程)。
 上記各層の結晶成長後、Znドープp型InGaAsコンタクト層108の表面に、フォトリソグラフィ技術及びエッチング技術を用いて、<011>方向において幅1.5μmのストライプ状のSiOマスクを形成する。
 ストライプ状のSiOマスクをエッチングマスクとして用いて、Znドープp型InGaAsコンタクト層108及びZnドープp型InPクラッド層104aにドライエッチングを行ってリッジ形状に加工することで、底面からの高さが2.6μmであるストライプ状のリッジ構造170を形成する(リッジ構造形成工程)。
 ストライプ状のリッジ構造170を形成後、MOCVD法によって、ストライプ状のリッジ構造170上にSドープn型InP障壁層109を結晶成長する(第2結晶成長工程)。
 各埋込層の形成後、フッ酸をエッチャントとしたウエットエッチングにより、SiOマスクを除去する。次いで、全面にプラズマCVD法を用いてSiO絶縁膜110を成膜する(絶縁膜形成工程)。
 SiO絶縁膜110の成膜後、フォトリソグラフィ技術及びドライエッチング技術を用いて、ストライプ状のリッジ構造170の頂面のSiO絶縁膜110の部位に、開口幅が3μmの開口部110fを形成する(開口部形成工程)。
 開口部110fを含むSiO絶縁膜110上に、表面電極111を成膜する。表面電極111の形成後、裏面を研磨し、Sドープn型InP基板101の裏面側に裏面電極112を成膜することで(電極形成工程)、図8に示すようなリッジ型半導体レーザーとしての素子構造が完成する。
 半導体素子850では、アンドープAlGaInAs活性層103とSiO絶縁膜110との間の全面にn型InP障壁層109が挿入されているため、n型InP障壁層109によってSiO絶縁膜110に含有される水素が半導体各層中に拡散することを抑制できる。
<実施の形態3の効果>
 実施の形態3に係る半導体素子によれば、SiO絶縁膜110の直下にn型InP障壁層109を設けたので、SiO絶縁膜110に含有される水素の拡散をn型InP障壁層109が防止するため、周波数帯域が広く、かつ、高い発光効率で動作可能な半導体素子が得られるという効果を奏する。
実施の形態3の変形例1.
 図9は、実施の形態3の半導体素子構造を適用したリッジ型半導体レーザー900の構成を示す断面図である。リッジ型半導体レーザー900は、半導体素子850のリッジ構造170の頂面上のSiO絶縁膜110及びn型InP障壁層109の部位に開口部110gが形成され、開口部110gを含むSiO絶縁膜110上に、表面電極111が設けられ、n型InP基板101の裏面側に裏面電極112が設けられた素子構造である。
 リッジ型半導体レーザー900では、アンドープAlGaInAs活性層103、p型InGaAsコンタクト層108及びZnドープp型InPクラッド層104aのそれぞれの一部とSiO絶縁膜110との間にn型InP障壁層109が挿入されているため、n型InP障壁層109によってSiO絶縁膜110に含有される水素が半導体各層中に拡散することを抑制できる。
 また、リッジ型半導体レーザー900では、表面電極111とp型InGaAsコンタクト層108の間でn型InP障壁層109が除去されているため、表面電極111と半導体層の間のコンタクト抵抗も小さくできるという効果も奏する。
<実施の形態3の変形例1の効果>
 実施の形態3の変形例1に係る半導体レーザーによれば、SiO絶縁膜110の直下にn型InP障壁層109を設けたので、SiO絶縁膜110に含有される水素の拡散をn型InP障壁層109が防止し、さらに、表面電極111と半導体層の間のコンタクト抵抗も低減できるため、より周波数帯域が広く、かつ、高い発光効率で動作可能なリッジ型半導体レーザーが得られるという効果を奏する。
実施の形態3の変形例2.
 図10は、実施の形態3の半導体素子構造を適用した埋込型半導体レーザー950の構成を示す断面図である。埋込型半導体レーザー950は、実施の形態1に係る埋込型半導体レーザー550のメサ構造150を、さらにメサ形状構造180へと加工した構成からなる。
 埋込型半導体レーザー950は、メサ形状構造180の頂面上のSiO絶縁膜110及びn型InP障壁層109の部位に開口部110hが設けられ、開口部110hを含むSiO絶縁膜110上に、表面電極111が設けられ、裏面側に裏面電極112が設けられた素子構造である。
 埋込型半導体レーザー950では、半絶縁性InP埋込層105、n型InP埋込層106、p型InP第2クラッド層107及びp型InGaAsコンタクト層108のそれぞれの一部とSiO絶縁膜110との間にn型InP障壁層(第1導電型の第2半導体層)109が挿入されているため、n型InP障壁層109によってSiO絶縁膜110に含有される水素が半導体各層中に拡散することを抑制できる。
 また、埋込型半導体レーザー950では、表面電極111とp型InGaAsコンタクト層108の間でn型InP障壁層109が除去されているため、表面電極111と半導体層の間のコンタクト抵抗も小さくできるという効果も奏する。
<実施の形態3の変形例2の効果>
 実施の形態3の変形例2に係る埋込型半導体レーザーによれば、SiO絶縁膜110の直下にn型InP障壁層109を設けたので、SiO絶縁膜110に含有される水素の拡散をn型InP障壁層109が防止し、さらに、表面電極111と半導体層の間のコンタクト抵抗も低減できるため、周波数帯域が広く、かつ、高い発光効率で動作可能な埋込型半導体レーザーが得られるという効果を奏する。
実施の形態4.
 図11は、実施の形態4に係る半導体素子1000の構成を示す断面図である。図11では、実施の形態1に係る半導体素子1000の一例として、n型InP基板101を用い、AlGaInAs活性層103を有する埋込型半導体レーザーを示している。
<実施の形態4に係る半導体素子の構成>
 半導体素子1000は、(100)面のSドープn型InP基板101上に、順次積層されたSドープn型InPクラッド層(第1導電型の第1半導体層)102と、上面及び下面をAlGaInAs光閉じ込め層に挟まれたアンドープAlGaInAs活性層103と、Znドープp型InP第1クラッド層(第2導電型の半導体層)104からなる積層半導体層がストライプ状に形成されたメサ構造150と、ストライプ状のメサ構造150の両側面に形成されたFeドープ半絶縁性InP埋込層105及びSドープn型InP埋込層106と、ストライプ状のメサ構造150の頂面及びSドープn型InP埋込層106の表面を覆うように形成されたZnドープp型InP第2クラッド層(第2導電型のクラッド層)107と、Znドープp型InGaAsコンタクト層(第2導電型のコンタクト層)108と、Sドープn型InP障壁層(第1導電型の第2半導体層)109からなる各半導体層と、Sドープn型InP障壁層109上に形成されたSiO第1絶縁膜115a及びSiO第2絶縁膜115bの2層からなるSiO絶縁膜で構成される。
 半導体素子1000を構成する各層について、以下に説明する。
 Sドープn型InP基板101のドーピング濃度は5.0×1018cm-3、Sドープn型InPクラッド層102の層厚は1.0μm、ドーピング濃度は1.0×1018cm-3である。アンドープAlGaInAs活性層103の層厚は0.3μm、Znドープp型InP第1クラッド層104の層厚は0.3μm、ドーピング濃度は1.0×1018cm-3である。ストライプ状のメサ構造150の高さは2.0μmである。なお、活性層の一例として、アンドープAlGaInAsで構成される活性層を挙げたが、Ga(ガリウム)及びAs(ヒ素)を含む半導体層で構成される活性層であれば良く、アンドープ以外のn型またはp型の半導体層であっても良い。
 Feドープ半絶縁性InP埋込層105の層厚は1.8μm、ドーピング濃度は5.0×1016cm-3、Sドープn型InP埋込層106の層厚は0.2μm、ドーピング濃度は5.0×1018cm-3である。
 Znドープp型InP第2クラッド層107の層厚は2.0μm、ドーピング濃度は1.0×1018cm-3、Znドープp型InGaAsコンタクト層108の層厚は0.3μm、ドーピング濃度は1.0×1019cm-3、Sドープn型InP障壁層109の層厚は0.2μm、ドーピング濃度は1.0×1018cm-3である。
<実施の形態4に係る半導体素子の製造方法>
 実施の形態4に係る半導体素子の製造方法と実施の形態1に係る半導体素子の製造方法の相違点は、SiO第1絶縁膜115a及びSiO第2絶縁膜115bの2層からなるSiO絶縁膜の形成工程のみであるので、SiO絶縁膜の形成について以下に説明する。
 Sドープn型InP障壁層109の全面にスパッタ法を用いてSiO第1絶縁膜115aを成膜し、さらにSiO第1絶縁膜115aの上にプラズマCVD法を用いてSiO第2絶縁膜115bを成膜することで(絶縁膜形成工程)、図11に示す半導体素子1000の構造が完成する。
 スパッタ法を用いて形成したSiO第1絶縁膜115aには水素混入がないため、プラズマCVD法を用いて形成したSiO第2絶縁膜115bから半導体各層中への水素の拡散の影響を抑制できる。したがって、半導体表面のn型InP障壁層109の層厚を薄くすることができる。なお、非特許文献2では、n型InP層の層厚が薄い場合は水素拡散の防止効果が小さいことが指摘されている。
<実施の形態4に係る半導体素子の効果>
 実施の形態4に係る半導体素子によれば、SiO絶縁膜をSiO第1絶縁膜115a及びSiO第2絶縁膜115bの2層からなるSiO絶縁膜によって構成したので、SiO絶縁膜直下のn型InP障壁層109の層厚を薄くすることが可能となるため、周波数帯域が広く、かつ、高い発光効率で動作可能な半導体素子が得られるという効果を奏する。
<実施の形態4に係る埋込型半導体レーザーの構成>
 図12は、実施の形態4の半導体素子構造を適用した埋込型半導体レーザー1100の構成を示す断面図である。埋込型半導体レーザー1100は、半導体素子1000のメサ構造150の頂面に対向するSiO第1絶縁膜115a及びSiO第2絶縁膜115b並びにn型InP障壁層109の部位に開口部110iが形成され、開口部110iを含むSiO第2絶縁膜115b上に表面電極111が設けられ、n型InP基板101裏面側に裏面電極112が設けられた素子構造である。
 埋込型半導体レーザー1100の開口部110iは、フォトリソグラフィ技術及びドライエッチング技術を用いて、まずメサ構造150の頂面に対向するSiO第1絶縁膜115a及びSiO第2絶縁膜115bに3μm幅の開口部を形成し、さらに、n型InP障壁層109をInGaAsに対するエッチング選択性のある薬液でエッチングすることによって形成する。
 スパッタ法を用いて成膜したSiO第1絶縁膜115aには水素混入がないため、プラズマCVD法を用いて成膜したSiO第2絶縁膜115bから半導体各層中への水素の拡散の影響を抑制できる。したがって、半導体表面のn型InP障壁層109の層厚を薄くすることができる。
<実施の形態4に係る埋込型半導体レーザーの効果>
 実施の形態4に係る埋込型半導体レーザーによれば、SiO絶縁膜をSiO第1絶縁膜115a及びSiO第2絶縁膜115bの2層で構成したので、SiO絶縁膜直下のn型InP障壁層109の層厚を薄くすることが可能となるため、周波数帯域が広く、かつ、高い発光効率で動作可能な埋込型半導体レーザーが得られるという効果を奏する。
 実施の形態4においてSiO絶縁膜をSiO第1絶縁膜115a及びSiO第2絶縁膜115bの2層で構成することについて説明したが、実施の形態1から3に係る半導体素子または半導体レーザーに、かかる2層からなるSiO絶縁膜を適用しても良い。
 本開示は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
 従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
101 n型InP基板、102 n型InPクラッド層、103 アンドープAlGaInAs活性層、104 p型InP第1クラッド層、104a p型InPクラッド層、105 半絶縁性InP埋込層、106 n型InP埋込層、107 p型InP第2クラッド層、108 p型InGaAsコンタクト層、109 n型InP障壁層、109a n型InP埋込障壁層、110 SiO絶縁膜、110a、110b、110c、110d、110e、110f、110g、110i 開口部、115a SiO第1絶縁膜、115b SiO第2絶縁膜、150、160 メサ構造、170 リッジ構造、180 メサ形状構造、500、600、700、750、800、850、1000 半導体素子、550、650、950、1100 埋込型半導体レーザー、900 リッジ型半導体レーザー

Claims (17)

  1.  半導体基板と、
     前記半導体基板上に形成された第1導電型の第1半導体層、活性層、第2導電型の半導体層からなる積層半導体層と、
     前記積層半導体層上に形成された第1導電型の第2半導体層と、
     前記第1導電型の第2半導体層に接して形成された絶縁膜と、
    を備える半導体素子。
  2.  前記絶縁膜に底部に前記第1導電型の第2半導体層が露出する開口部が設けられたことを特徴とする請求項1に記載の半導体素子。
  3.  半導体基板と、
     前記半導体基板上に形成された第1導電型の第1半導体層、活性層、第2導電型の半導体層からなる積層半導体層がストライプ状に形成されたメサ構造と、
     前記メサ構造の両側面に埋め込まれた埋込層と、
     前記埋込層上に形成された第1導電型の第2半導体層と、
     前記第1導電型の第2半導体層に接して形成された絶縁膜と、
    を備える半導体素子。
  4.  前記メサ構造の上面側に前記第1導電型の第2半導体層がさらに形成されることを特徴する請求項3に記載の半導体素子。
  5.  前記メサ構造の頂面に対向する前記絶縁膜の部位に開口部が設けられ、前記開口部の底部に前記第1導電型の第2半導体層が露出していることを特徴とする請求項4に記載の半導体素子。
  6.  前記メサ構造の頂面に対向する前記絶縁膜及び前記第1導電型の第2半導体層の部位に開口部が設けられることを特徴とする請求項4に記載の半導体素子。
  7.  前記メサ構造及び前記埋込層を含む領域がさらにメサ形状を呈することを特徴とする請求項6に記載の半導体素子。
  8.  前記第2導電型の半導体層と前記第1導電型の第2半導体層との間に、さらに第2導電型のクラッド層及び第2導電型のコンタクト層が形成されることを特徴とする請求項3から6のいずれか1項に記載の半導体素子。
  9.  半導体基板と、
     前記半導体基板上に順次形成された第1導電型の第1半導体層及び活性層と、前記活性層上に形成された少なくとも第2導電型の半導体層がストライプ状に形成されたリッジ構造と、
     前記リッジ構造を覆うように形成された第1導電型の第2半導体層と、
     前記第1導電型の第2半導体層に接して形成された絶縁膜と、
    を備える半導体素子。
  10.  前記リッジ構造の上面側の前記絶縁膜の部位に開口部が設けられることを特徴とする請求項9に記載の半導体素子。
  11.  前記リッジ構造の上面側の前記絶縁膜及び前記第1導電型の第2半導体層の部位に開口部が設けられることを特徴とする請求項9に記載の半導体素子。
  12.  前記絶縁膜が第1絶縁膜及び第2絶縁膜で構成され、前記第1絶縁膜はプラズマCVD絶縁膜からなることを特徴とする請求項1から11のいずれか1項に記載の半導体素子。
  13.  前記半導体基板、前記第1導電型の第1半導体層、及び前記第2導電型の半導体層がインジウムリンで構成され、前記活性層がガリウム及びヒ素を含む半導体層で構成されることを特徴とする請求項1から12のいずれか1項に記載の半導体素子。
  14.  前記第1導電型はn型であり、前記第2導電型はp型であることを特徴とする請求項1から13のいずれか1項に記載の半導体素子。
  15.  半導体基板上に第1導電型の第1半導体層、活性層、第2導電型の半導体層を順次結晶成長して積層半導体層を形成する第1結晶成長工程と、
     前記積層半導体層をストライプ状のメサ構造に加工するメサ構造形成工程と、
     前記メサ構造の両側面に埋込層を結晶成長する第2結晶成長工程と、
     前記埋込層上に第1導電型の第2半導体層を含む半導体層を結晶成長する第3結晶成長工程と、
     前記第1導電型の第2半導体層上にプラズマCVD法によって絶縁膜を成膜する絶縁膜形成工程と、
     前記メサ構造の頂面に対向する前記絶縁膜の部位に開口部を形成する開口部形成工程と、
    を含む半導体素子の製造方法。
  16.  前記開口部形成工程は、前記メサ構造の頂面に対向する前記絶縁膜及び前記第1導電型の第2半導体層の部位に前記開口部を形成することを特徴とする請求項15に記載の半導体素子の製造方法。
  17.  前記絶縁膜は、前記第1導電型の第2半導体層に接する第1絶縁膜及び前記第1絶縁膜上の第2絶縁膜の2層で構成され、
     前記絶縁膜形成工程では、前記第1絶縁膜をスパッタ法によって成膜し、前記第2絶縁膜をプラズマCVD法によって成膜することを特徴とする請求項15または16に記載の半導体素子の製造方法。
PCT/JP2022/012244 2022-03-17 2022-03-17 半導体素子及び半導体素子の製造方法 WO2023175830A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/012244 WO2023175830A1 (ja) 2022-03-17 2022-03-17 半導体素子及び半導体素子の製造方法
TW112108882A TW202339255A (zh) 2022-03-17 2023-03-10 半導體元件及半導體元件的製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/012244 WO2023175830A1 (ja) 2022-03-17 2022-03-17 半導体素子及び半導体素子の製造方法

Publications (1)

Publication Number Publication Date
WO2023175830A1 true WO2023175830A1 (ja) 2023-09-21

Family

ID=88022589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012244 WO2023175830A1 (ja) 2022-03-17 2022-03-17 半導体素子及び半導体素子の製造方法

Country Status (2)

Country Link
TW (1) TW202339255A (ja)
WO (1) WO2023175830A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190074404A1 (en) * 2015-07-10 2019-03-07 The Regents Of The University Of California Hybrid growth method for iii-nitride tunnel junction devices
WO2019241159A1 (en) * 2018-06-12 2019-12-19 Ostendo Technologies, Inc. Device and method for iii-v light emitting micropixel array device having hydrogen diffusion barrier layer
JP2020501345A (ja) * 2016-10-28 2020-01-16 ルミレッズ リミテッド ライアビリティ カンパニー 紫外線照射下で発光デバイスを成長させる方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190074404A1 (en) * 2015-07-10 2019-03-07 The Regents Of The University Of California Hybrid growth method for iii-nitride tunnel junction devices
JP2020501345A (ja) * 2016-10-28 2020-01-16 ルミレッズ リミテッド ライアビリティ カンパニー 紫外線照射下で発光デバイスを成長させる方法
WO2019241159A1 (en) * 2018-06-12 2019-12-19 Ostendo Technologies, Inc. Device and method for iii-v light emitting micropixel array device having hydrogen diffusion barrier layer

Also Published As

Publication number Publication date
TW202339255A (zh) 2023-10-01

Similar Documents

Publication Publication Date Title
JP2001352131A (ja) InAlAs又はInGaAlAsを使用する光電装置に関するドーパント拡散阻止
US7741654B2 (en) Group III nitride semiconductor optical device
JP2016031970A (ja) 光半導体装置
JP4057802B2 (ja) 半導体光素子
US6990131B2 (en) Semiconductor optical device and method of manufacturing the same
US6556605B1 (en) Method and device for preventing zinc/iron interaction in a semiconductor laser
JP2006253212A (ja) 半導体レーザ
US7215691B2 (en) Semiconductor laser device and method for fabricating the same
US20080283852A1 (en) Light-emitting device and a method for producing the same
WO2023175830A1 (ja) 半導体素子及び半導体素子の製造方法
JPH09214045A (ja) 半導体レーザ及びその製造方法
JP2019192879A (ja) 光半導体素子およびその製造方法ならびに光集積半導体素子およびその製造方法
JP3645320B2 (ja) 半導体レーザ素子
JP2685720B2 (ja) 半導体レーザ及びその製造方法
JPH03250684A (ja) メサ埋め込み型光半導体装置の製造方法
JP7168138B1 (ja) 半導体レーザ素子および半導体レーザ素子の製造方法
WO2022264347A1 (ja) 光半導体素子及びその製造方法
TWI734229B (zh) 光學半導體裝置以及光學半導體裝置的製造方法
CN114503382B (zh) 半导体装置
JP2005286032A (ja) 光半導体デバイス、および光半導体デバイスを製造する方法
JP2956255B2 (ja) リッジ導波型半導体レーザの製造方法
KR100596510B1 (ko) 반도체 광소자의 제조방법
KR20020078189A (ko) 매립형 리지 구조의 전류 차단층을 갖는 광소자 및 그제조 방법
JPH06104532A (ja) 化合物半導体薄膜
JPH1140897A (ja) 半導体レーザ素子及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932106

Country of ref document: EP

Kind code of ref document: A1