WO2022262231A1 - Électrolyte non aqueux et batterie secondaire associée - Google Patents

Électrolyte non aqueux et batterie secondaire associée Download PDF

Info

Publication number
WO2022262231A1
WO2022262231A1 PCT/CN2021/139143 CN2021139143W WO2022262231A1 WO 2022262231 A1 WO2022262231 A1 WO 2022262231A1 CN 2021139143 W CN2021139143 W CN 2021139143W WO 2022262231 A1 WO2022262231 A1 WO 2022262231A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
electrolytic solution
unsaturated
battery
aqueous
Prior art date
Application number
PCT/CN2021/139143
Other languages
English (en)
Chinese (zh)
Inventor
欧霜辉
王霹霹
白晶
毛冲
黄秋洁
戴晓兵
Original Assignee
珠海市赛纬电子材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海市赛纬电子材料股份有限公司 filed Critical 珠海市赛纬电子材料股份有限公司
Publication of WO2022262231A1 publication Critical patent/WO2022262231A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of energy storage devices, in particular to a non-aqueous electrolyte and a secondary battery thereof.
  • lithium-ion batteries are currently the most ideal and potential rechargeable batteries in the world. Compared with other batteries, lithium-ion batteries have a series of advantages such as no memory effect, fast charging and discharging, high energy density, long cycle life and no environmental pollution, so they are widely used in small electronic devices, such as notebook computers, cameras, mobile phones , electronic watches, etc.
  • lithium-ion battery capacity requirements for pure electric vehicles, hybrid vehicles and portable energy storage devices people expect to develop lithium-ion batteries with higher energy density and power density to achieve energy storage and long-term battery life.
  • Electrolyte as an important part of lithium-ion batteries, has a significant impact on performance degradation such as charge and discharge cycles of batteries.
  • high-voltage (4.35V-5V) cathode materials are one of the more popular research directions. It achieves high energy density of batteries by increasing the charging depth of cathode active materials.
  • the performance of the battery such as charge and discharge cycles decreases.
  • the electrolyte as an important part of the lithium-ion battery, has a significant impact on the performance degradation of the battery charge and discharge cycle. Therefore, there is an urgent need to develop a non-aqueous electrolyte with optimal performance in all aspects to meet the requirements of high energy density ternary material batteries.
  • the purpose of this application is to provide a kind of nonaqueous electrolytic solution and secondary battery thereof, and this nonaqueous electrolytic solution can reduce the surface activity of anode material and suppress the oxidative decomposition of electrolytic solution, to improve high voltage (more than 4.35V) ternary lithium High-temperature storage and cycling performance of ion batteries.
  • the first aspect of the present application provides a non-aqueous electrolytic solution, including lithium salt, non-aqueous organic solvent and additive, and the additive includes the unsaturated cyclic sulfonyl oxide shown in structural formula I Amine salt and unsaturated phosphoric acid ester shown in structural formula II,
  • M + is an alkali metal ion
  • R is H or C 1 -C 3 alkyl
  • at least one of R 1 , R 2 and R 3 is C 2 -C 5 alkenyl or C 2 -C 5 the alkynyl group.
  • the additive of the electrolytic solution of the present application includes the unsaturated cyclic sulfonimide salt shown in structural formula I and the unsaturated phosphoric acid ester shown in structural formula II, the high-temperature storage and circulation of its secondary battery
  • the performance has been significantly improved, which may be due to the fact that the unsaturated phosphate ester can effectively control the decline in the discharge capacity of the secondary battery as the charge-discharge cycle proceeds and the decrease in battery characteristics during high-temperature storage, which can improve high-temperature storage and battery performance.
  • R in the structural formula I is a methyl group, more preferably, the mass percentage of the unsaturated cyclic sulfonimide salt in the non-aqueous electrolyte is 0.1-5.0%, specifically but not limited to 0.1%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5.0%, unsaturated cyclic sulfonimide salts are selected from at least one of compound A to compound E kind,
  • R 1 and R 2 are each independently C 1 -C 2 alkyl, C 1 -C 2 haloalkyl, C 2 -C 3 alkenyl or C 2 -C 3 alkyne
  • R 3 is C 2 -C 3 alkenyl or C 2 -C 3 alkynyl.
  • the mass percentage of unsaturated phosphoric acid ester in the non-aqueous electrolyte is 0.1-5.0%, specifically but not limited to 0.1%, 0.5%, 1%, 1.5%, 1.8%, 2%, 2.5%, 2.8%, 3.5%, 4%, 4.5%, 5.0%
  • unsaturated phosphate is selected from at least one of compound F to compound I,
  • the lithium salt is selected from lithium hexafluorophosphate (LiPF 6 ), lithium perchlorate (LiClO 4 ), lithium tetrafluoroborate (LiBF 4 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), bistrifluoromethanesulfonate Lithium fluoromethylsulfonyl imide (LiN(CF 3 SO 2 ) 2 ), lithium bisoxalate borate (C 4 BLiO 8 ), lithium difluorooxalate borate (C 2 BF 2 LiO 4 ), lithium difluorophosphate (LiPO 2 F 2 ), lithium difluorodioxalate phosphate (LiDFBP) and lithium bisfluorosulfonyl imide (LiFSI), the concentration of the lithium salt is 0.5-1.5M.
  • the lithium salt is LiPF 6 or a mixture of LiPF 6 and other lithium salts.
  • the non-aqueous organic solvent is at least one selected from chain carbonates, cyclic carbonates and carboxylates. More preferably, non-aqueous organic solvent can be ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), propylene carbonate (PC), acetic acid At least one of butyl ester (n-Ba), ⁇ -butyrolactone ( ⁇ -Bt), propyl propionate (n-Pp), ethyl propionate (EP) and ethyl butyrate (Eb).
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • PC propylene carbonate
  • acetic acid At least one of butyl ester (n-Ba), ⁇ -butyrolactone ( ⁇ -Bt), propyl propionate (n-Pp), eth
  • additives are selected from vinylene carbonate, vinyl ethylene carbonate, fluoroethylene carbonate, vinyl sulfite, 1,3 propane sultone and at least one of vinyl sulfate.
  • the second aspect of the present application provides a secondary battery, including positive electrode material, negative electrode material and electrolyte, and the positive electrode material includes nickel cobalt manganese oxide, the negative electrode material is selected from artificial graphite, natural graphite, titanic acid At least one of lithium, silicon-carbon composite material and silicon oxide.
  • the electrolytic solution is the aforementioned non-aqueous electrolytic solution.
  • the additives of the non-aqueous electrolyte of the secondary battery of the present application include the unsaturated cyclic sulfonimide salt shown in structural formula I and the unsaturated phosphate ester shown in structural formula II, which can make the secondary battery have excellent high-temperature cycle performance , normal temperature cycle performance and high temperature storage performance, so it can meet the requirements of high energy density and high voltage ternary material batteries.
  • the active material of the positive electrode is LiNi x Co y Mn (1-xy) M z O 2 , wherein, 0.6 ⁇ x ⁇ 0.9, x+y ⁇ 1, 0 ⁇ z ⁇ 0.08, M is Al, Mg, Zr and at least one of Ti.
  • LiNi 0.8 Mn 0.1 Co 0.1 O 2 ternary material LiNi 0.8 Mn 0.1 Co 0.1 O 2 , binder PVDF and conductive agent SuperP are uniformly mixed at a mass ratio of 98:1:1 to make lithium ions with a certain viscosity
  • the positive electrode slurry of the battery after coating the mixed slurry on both sides of the aluminum foil, drying and rolling to obtain the positive electrode sheet.
  • lithium-ion battery the positive electrode, diaphragm and negative electrode are stacked into square batteries, packed in polymer, filled with the non-aqueous electrolyte of lithium-ion battery prepared above, and processed by chemical formation, volume separation, etc. Lithium-ion batteries are made after the process.
  • the synthetic route of unsaturated cyclic sulfonylimide salt compound A-E can be as follows:
  • the synthesis routes of unsaturated phosphate ester compounds F, H, and I can be as follows, and compound G (CAS: 1623-19-4) is commercially available.
  • the lithium-ion batteries produced in Examples 1-15 and Comparative Examples 1-6 were subjected to normal-temperature cycle performance, high-temperature cycle performance, and high-temperature storage tests respectively.
  • the specific test conditions are as follows, and the performance test results are shown in Table 2.
  • High temperature cycle test Under the condition of high temperature (45°C), charge and discharge the lithium-ion battery once at 1.0C/1.0C (battery discharge capacity is C0), the upper limit voltage is 4.35V, and then charge and discharge the lithium-ion battery at high temperature (45°C) Charge and discharge at 1.0C/1.0C for 500 cycles (battery discharge capacity is C1).
  • High-temperature storage performance test Under normal temperature (25°C), charge and discharge the lithium-ion battery once at 0.5C/0.5C (the discharge capacity is denoted as C0), the upper limit voltage is 4.35V, and then at 0.5C constant current and constant voltage Charge the battery to 4.35V under the same conditions, and measure the battery thickness d0; put the lithium-ion battery in a high-temperature box at 60°C for 30 days, take it out and measure the battery thickness d1; discharge it at 0.5C at 25°C (the discharge capacity is recorded as C1); Continue to charge and discharge the lithium-ion battery at 0.5C/0.5C once at room temperature (25°C) (the discharge capacity is denoted as C2), and the upper limit voltage is 4.35V.
  • C2 the discharge capacity retention rate of the lithium-ion battery
  • Thickness expansion rate d1/d0*100%
  • Examples 1 to 15 have better performance in normal temperature cycle, high temperature cycle and high temperature storage.
  • Cyclic sulfonimide salts and unsaturated phosphate esters shown in structural formula II the unsaturated double bonds in the ring of saturated cyclic sulfonimide salts can polymerize at the positive and negative electrode interfaces to form a thinner SEI layer, thereby inhibiting The excessive film formation of unsaturated phosphate can obtain a lithium-ion battery with relatively low impedance, so it can maintain the balance of normal temperature cycle, high temperature cycle and high temperature storage performance.
  • Comparative Document 5 only contains unsaturated cyclic sulfonimide salts, which cannot effectively control the decline in discharge capacity of the secondary battery and the decline in battery characteristics during high-temperature storage as the charge-discharge cycle progresses, so high-temperature cycles and high-temperature storage The performance is poor, while the comparative document 6 only contains unsaturated phosphate, which has a low oxidation-reduction potential at the positive and negative interface, and forms a thick SEI layer, which causes lithium ions to shuttle through the SEI layer. The resistance is too high, so the normal temperature cycle performance is very poor Difference.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Électrolyte non aqueux et batterie secondaire associée, l'électrolyte non aqueux comprenant un sel de lithium, un solvant organique non aqueux, et un additif comprenant un sel de sulfonimide cyclique insaturé représenté par la formule développée I et un ester de phosphate insaturé représenté par la formule développée II, et M+ étant un ion de métal alcalin ; R représente H ou un groupe alkyle en C1-C3 ; et au moins l'un de R1, R2 et R3 représentent un groupe alcényle en C2-C5 ou un groupe alcynyle en C2-C5. L'ester de phosphate insaturé peut efficacement contrôler les phénomènes de, en tant que cycles de charge/décharge, la capacité de décharge d'une batterie diminuant et la performance d'une batterie diminuant lorsque la batterie est stockée à une température élevée. La double liaison insaturée dans l'anneau du sel de sulfonimide cyclique insaturé est polymérisée au niveau de l'interface d'électrode positive et négative pour former une couche SEI mince, supprimant la formation de film en excès de l'ester de phosphate insaturé, et obtenant ainsi une batterie lithium-ion ayant une impédance relativement faible. Par conséquent, le stockage à haute température, ainsi que la performance de cycle à température normale et à haute température, d'une batterie ion lithium ternaire à haute tension (4,35 V ou plus) peuvent être améliorés par la combinaison des deux.
PCT/CN2021/139143 2021-06-17 2021-12-17 Électrolyte non aqueux et batterie secondaire associée WO2022262231A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110676306.9 2021-06-17
CN202110676306.9A CN113437364B (zh) 2021-06-17 2021-06-17 非水电解液及其二次电池

Publications (1)

Publication Number Publication Date
WO2022262231A1 true WO2022262231A1 (fr) 2022-12-22

Family

ID=77756371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139143 WO2022262231A1 (fr) 2021-06-17 2021-12-17 Électrolyte non aqueux et batterie secondaire associée

Country Status (2)

Country Link
CN (1) CN113437364B (fr)
WO (1) WO2022262231A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116154293A (zh) * 2023-04-20 2023-05-23 河北省科学院能源研究所 一种电解液及其制备方法和应用
CN116247300A (zh) * 2023-05-09 2023-06-09 蓝固(湖州)新能源科技有限公司 一种高压电解液添加剂、电解液和锂离子电池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113363581B (zh) * 2021-06-16 2022-07-29 珠海市赛纬电子材料股份有限公司 非水电解液及其二次电池
CN113437364B (zh) * 2021-06-17 2022-07-12 珠海市赛纬电子材料股份有限公司 非水电解液及其二次电池
CN114566708B (zh) * 2022-02-23 2024-04-26 珠海市赛纬电子材料股份有限公司 一种锂离子电池非水电解液及锂离子电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105009347A (zh) * 2013-02-12 2015-10-28 昭和电工株式会社 二次电池用非水电解液及非水电解液二次电池
CN108110311A (zh) * 2016-11-25 2018-06-01 深圳新宙邦科技股份有限公司 一种锂离子电池
CN108140890A (zh) * 2015-10-08 2018-06-08 株式会社村田制作所 电池、电池组、电子设备、电动车辆、蓄电装置以及电力系统
CN111934017A (zh) * 2020-08-28 2020-11-13 珠海市赛纬电子材料股份有限公司 锂离子电池非水电解液及含该非水电解液的锂离子电池
CN113437364A (zh) * 2021-06-17 2021-09-24 珠海市赛纬电子材料股份有限公司 非水电解液及其二次电池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108110319A (zh) * 2016-11-25 2018-06-01 惠州市宙邦化工有限公司 锂离子电池非水电解液及锂离子电池
CN110299562B (zh) * 2019-07-17 2021-10-08 珠海市赛纬电子材料股份有限公司 一种锂盐添加剂及其锂离子电池非水电解液
CN112635822B (zh) * 2019-09-24 2021-11-09 宁德时代新能源科技股份有限公司 一种锂离子电池
CN111477960B (zh) * 2020-05-29 2021-11-30 珠海市赛纬电子材料股份有限公司 一种电解液及使用该电解液的锂离子电池
CN111934014B (zh) * 2020-08-27 2022-09-27 珠海市赛纬电子材料股份有限公司 电解液及含该电解液的锂离子电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105009347A (zh) * 2013-02-12 2015-10-28 昭和电工株式会社 二次电池用非水电解液及非水电解液二次电池
CN108140890A (zh) * 2015-10-08 2018-06-08 株式会社村田制作所 电池、电池组、电子设备、电动车辆、蓄电装置以及电力系统
CN108110311A (zh) * 2016-11-25 2018-06-01 深圳新宙邦科技股份有限公司 一种锂离子电池
CN111934017A (zh) * 2020-08-28 2020-11-13 珠海市赛纬电子材料股份有限公司 锂离子电池非水电解液及含该非水电解液的锂离子电池
CN113437364A (zh) * 2021-06-17 2021-09-24 珠海市赛纬电子材料股份有限公司 非水电解液及其二次电池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116154293A (zh) * 2023-04-20 2023-05-23 河北省科学院能源研究所 一种电解液及其制备方法和应用
CN116154293B (zh) * 2023-04-20 2023-06-30 河北省科学院能源研究所 一种电解液及其制备方法和应用
CN116247300A (zh) * 2023-05-09 2023-06-09 蓝固(湖州)新能源科技有限公司 一种高压电解液添加剂、电解液和锂离子电池

Also Published As

Publication number Publication date
CN113437364B (zh) 2022-07-12
CN113437364A (zh) 2021-09-24

Similar Documents

Publication Publication Date Title
CN109904521B (zh) 电解液及包括该电解液的电池
JP6472888B2 (ja) 非水電解液用添加剤、非水電解液、及び、蓄電デバイス
CN113437364B (zh) 非水电解液及其二次电池
CN113437363B (zh) 非水电解液及其二次电池
CN113113669B (zh) 电解液添加剂和含有该添加剂的非水电解液及锂离子电池
CN113363581B (zh) 非水电解液及其二次电池
WO2022262232A1 (fr) Électrolyte non aqueux et batterie rechargeable
CN114342143A (zh) 一种硅氰基磺酸内酯化合物、锂离子电池电解液和锂离子二次电池
WO2023050597A1 (fr) Additif, additif contenant un électrolyte et batterie au lithium-ion
CN110911748B (zh) 一种锂二次电池电解液和锂二次电池
CN114552010A (zh) 锂金属电池用添加剂、电解液及其锂金属电池
WO2022213668A1 (fr) Additif d'électrolyte et électrolyte non aqueux et batterie au lithium-ion contenant l'additif
CN109473717B (zh) 一种适用于高电压高镍动力电池的电解液及高电压高镍电池
CN114566712B (zh) 含有二氟磷酸锂的高电压锂离子电池电解液及其制备方法和锂离子电池
CN113871712B (zh) 锂离子电池电解液及其制备方法和锂离子电池
CN113851642B (zh) 非水电解液及其锂离子电池
CN114843609A (zh) 非水电解液及其二次电池
CN110649317B (zh) 硅基锂离子电池电解液和锂离子二次电池
WO2022095772A1 (fr) Électrolyte non aqueux de batterie au lithium-ion et batterie au lithium-ion
CN114566708B (zh) 一种锂离子电池非水电解液及锂离子电池
CN116435601B (zh) 一种电解液及其应用
KR20210147965A (ko) 이차전지용 전해액 및 이를 포함하는 이차전지
KR20220018220A (ko) 이차전지용 전해액 및 이를 포함하는 이차전지
CN116365034A (zh) 非水电解液及锂离子电池
CN114759261A (zh) 非水电解液及其二次电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE