WO2022262232A1 - Électrolyte non aqueux et batterie rechargeable - Google Patents

Électrolyte non aqueux et batterie rechargeable Download PDF

Info

Publication number
WO2022262232A1
WO2022262232A1 PCT/CN2021/139145 CN2021139145W WO2022262232A1 WO 2022262232 A1 WO2022262232 A1 WO 2022262232A1 CN 2021139145 W CN2021139145 W CN 2021139145W WO 2022262232 A1 WO2022262232 A1 WO 2022262232A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
compound
structural formula
electrolytic solution
electrolyte
Prior art date
Application number
PCT/CN2021/139145
Other languages
English (en)
Chinese (zh)
Inventor
白晶
毛冲
王霹霹
欧霜辉
黄秋洁
陈子勇
戴晓兵
Original Assignee
珠海市赛纬电子材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海市赛纬电子材料股份有限公司 filed Critical 珠海市赛纬电子材料股份有限公司
Publication of WO2022262232A1 publication Critical patent/WO2022262232A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of energy storage devices, in particular to a non-aqueous electrolyte and a secondary battery thereof.
  • Lithium-ion batteries are a common secondary battery.
  • the positive electrode materials of commercial lithium-ion batteries mainly include lithium manganese oxide, lithium cobalt oxide, ternary materials, and lithium iron phosphate.
  • the charging cut-off voltage generally does not exceed 4.2V.
  • high-voltage (4.35V-5V) cathode materials are one of the more popular research directions. It achieves high energy density of batteries by increasing the charging depth of cathode active materials.
  • the performance of the battery such as charge and discharge cycles decreases.
  • the electrolyte as an important part of the lithium-ion battery, has a significant impact on the performance degradation of the battery charge and discharge cycle.
  • the electrolyte determines the migration rate of lithium ions (Li + ) in the liquid phase, and also participates in the formation of the solid electrolyte interface (SEI) film, which plays a key role in the performance of the SEI film.
  • SEI solid electrolyte interface
  • High-temperature storage performance is poor, high-temperature cycle performance is poor, and normal temperature cycle performance is poor; at the same time, the viscosity of the electrolyte increases at low temperatures, the conductivity decreases, and the impedance of the SEI film increases, so the electrolyte may also cause low-temperature discharge of lithium-ion batteries. The performance is poor, and there is even a risk of low-temperature lithium precipitation.
  • the purpose of this application is to provide a non-aqueous electrolyte and its secondary battery.
  • This non-aqueous electrolyte can not only improve the high-temperature cycle performance, normal temperature cycle performance, rate performance, and low-temperature discharge performance of the secondary battery, but more importantly, it can Effectively avoid low-temperature lithium precipitation, so it can meet the requirements of high energy density and high voltage ternary material batteries.
  • the first aspect of the present application provides a non-aqueous electrolyte, including lithium salt, non-aqueous organic solvent and additives
  • the additives include cyclic sulfonimide compounds and fluorinated cyclic carbonates compound
  • the structural formula of the cyclic sulfonimide compound is structural formula 1 or structural formula 2
  • the structural formula of the fluorinated cyclic carbonate compound is structural formula 3, structural formula 4 or structural formula 5
  • M + is Li + , Na + , K + , Cs + , and R 1 is H or an alkyl group.
  • the additives in this application include cyclic sulfonimide compounds and fluorinated cyclic carbonate compounds.
  • the fluorinated cyclic carbonate compounds can form a LiF-rich interfacial film on the negative electrode during the first charge and discharge stage. This layer of interfacial film can significantly increase the penetration and diffusion ability of lithium ions at the negative electrode interface, so it can effectively increase the lithium ion density. Low temperature and rate performance of ion batteries.
  • the fluorinated cyclic carbonate compounds will be gradually consumed with the cycle of lithium-ion batteries, and more interfacial films containing LiF will be formed, but components such as LiF will be scattered in the later stage or after long cycles at low temperatures.
  • adding cyclic sulfonylimide compounds can form an outer interface film containing a large amount of LiSO 3 , ROSO 2 Li, Li x N y O z , sulfur atoms and oxygen on the positive and negative electrodes during the first charge and discharge stage. Atoms all contain lone pairs of electrons and can attract Li + , thereby speeding up Li + shuttling in the solid electrolyte interface film.
  • the interface film components formed by nitrogen atoms are tough, not easy to break, and have strong high temperature resistance, while the double bonds in the ring can Polymerization to form a "layered" structure of the negative electrode interface film can make LiF and other components evenly dispersed on the surface of the negative electrode, so that the transition metal ions dissolved from the positive electrode cannot enter the interior of the negative electrode and cause the battery to "suddenly dive".
  • the combination of the two can effectively avoid the further consumption of a single fluorinated cyclic carbonate compound in the electrolyte and the reaction between the electrolyte and the negative electrode interface, thus greatly enhancing the high temperature and cycle performance of the lithium-ion battery.
  • the combination of these additives can enhance the high-temperature cycle performance, normal-temperature cycle performance, low-temperature discharge performance and rate performance of the lithium-ion battery while inhibiting its lithium precipitation.
  • M + is preferably Li + , K + , Cs +
  • R 1 is preferably H or a C 1 -C 3 alkyl group.
  • the mass percentage of cyclic sulfonimide compounds in the non-aqueous electrolyte is 0.1-0.5%, specifically but not limited to 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, cyclic sulfonyl
  • the imine compound is selected from at least one of compound A to compound E,
  • Compound C was synthesized similarly to Compound A, with the difference that LiOH was replaced by CsOH.
  • Compound A, Compound C and Compound E can all be obtained by reacting Compound B as a raw material.
  • the mass percentage of the fluorinated cyclic carbonate compound in the non-aqueous electrolyte is 0.5-10%, specifically but not limited to 0.5%, 0.7%, 0.9%, 1.0%, 1.2%, 1.5%, 2.0%, 2.3%, 2.5%, 3.0%, 3.5%, 3.8%, 4.3%, 5.0%, 5.7%, 6.0%, 7.0%, 8.0%, 8.5%, 9.0%, 9.3%, 9.6%, 10% .
  • the lithium salt is selected from lithium hexafluorophosphate (LiPF 6 ), lithium difluorophosphate (LiPO 2 F 2 ), lithium bisoxalate borate (C 4 BLiO 8 ), lithium difluorooxalate borate (C 2 BF 2 LiO 4 ), di Lithium fluorodioxalate phosphate (LiDFBP), lithium tetrafluoroborate (LiBF 4 ), lithium tetrafluorooxalate phosphate (LiPF 4 C 2 O 4 ), lithium bistrifluoromethanesulfonimide (LiN(CF 3 SO 2 ) 2 ) and at least one of lithium bisfluorosulfonyl imide (LiFSI), the concentration of the lithium salt in the non-aqueous electrolyte is 0.5-2.5 mol/L.
  • the lithium salt is LiPF 6 or a mixture of LiPF 6 and other lithium salts.
  • the non-aqueous organic solvent is selected from ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), propylene carbonate (PC), ethyl acetate (Ea), butyl acetate (n-Ba), ⁇ -butyrolactone ( ⁇ -Bt), propyl propionate (n-Pp), ethyl propionate (EP) and ethyl butyrate (Eb) at least one of .
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • PC propylene carbonate
  • Ea ethyl acetate
  • n-Ba butyl acetate
  • ⁇ -butyrolactone ⁇ -Bt
  • propyl propionate n-Pp
  • EP ethyl propionate
  • Eb e
  • the secondary battery of the present application includes a positive electrode, a negative electrode, an electrolyte and a separator for isolating the positive electrode and the negative electrode, and the electrolyte is the aforementioned non-aqueous electrolyte.
  • the additives of the non-aqueous electrolyte of the secondary battery of the present application include cyclic sulfonimide compounds and fluorinated cyclic carbonate compounds, which can make the secondary battery have excellent high-temperature cycle performance, normal temperature cycle performance, and rate performance And low-temperature discharge performance, and can effectively avoid low-temperature lithium precipitation, so it can meet the requirements of high-energy density, high-voltage ternary material batteries.
  • the positive active material is LiNixCoyMnzM (1- xyz ) O2 or LiNixCoyAlzN ( 1- xyz ) O2 , wherein M is Mg, Cu, Zn, Al, Any one of Sn, B, Ga, Cr, Sr, V and Ti, N is any one of Mn, Mg, Cu, Zn, Sn, B, Ga, Cr, Sr, V and Ti, 0.5 ⁇ x ⁇ 1,0 ⁇ y ⁇ 1,0 ⁇ z ⁇ 1, x+y+z ⁇ 1, and the highest charging voltage is 4.35-4.5V.
  • the active material of the negative electrode is at least one selected from artificial graphite, natural graphite, lithium titanate, silicon-carbon composite material and silicon oxide.
  • LiNi 0.6 Mn 0.2 Co 0.2 O 2 ternary material LiNi 0.6 Mn 0.2 Co 0.2 O 2 , binder PVDF and conductive agent SuperP are uniformly mixed at a mass ratio of 97.5:1.5:1 to make lithium ions with a certain viscosity
  • the positive electrode slurry of the battery after coating the mixed slurry on both sides of the aluminum foil, drying and rolling to obtain the positive electrode sheet.
  • lithium-ion battery the positive electrode, diaphragm and negative electrode are stacked into square batteries, packed in polymer, filled with the non-aqueous electrolyte of lithium-ion battery prepared above, and processed by chemical formation, volume separation, etc. After the process, a lithium-ion battery with a capacity of 2000mAh is made.
  • the lithium-ion batteries made in Examples 1-8 and Comparative Examples 1-3 were respectively subjected to normal temperature cycle performance, high temperature cycle performance, low-temperature discharge test, high-rate discharge test and low-temperature lithium analysis test.
  • the specific test conditions are as follows, and the performance test results As shown in table 2.
  • Capacity retention discharge capacity of the last cycle/discharge capacity of the first cycle ⁇ 100%.
  • Capacity retention discharge capacity of the last cycle/discharge capacity of the first cycle ⁇ 100%.
  • Battery capacity retention rate (%) retention capacity/initial capacity ⁇ 100%.
  • Battery capacity retention rate (%) retention capacity/initial capacity ⁇ 100%.
  • the lithium-ion battery in an oven at a constant temperature of -10°C, charge it with a constant current of 0.5C to 4.5V, then charge it with a constant voltage until the current drops to 0.05C, and then discharge it with a constant current of 0.5C to 3.0V, so Cycle for 40 cycles, disassemble the battery, and observe the lithium-ion battery negative electrode surface lithium precipitation.
  • the interface film components formed by nitrogen atoms are tough, not easy to break, and have strong high temperature resistance, while the double bonds in the ring can be polymerized to form "
  • the layered structure of the negative electrode interface film can make LiF and other components evenly dispersed on the surface of the negative electrode, so that the transition metal ions dissolved from the positive electrode cannot enter the interior of the negative electrode and cause the battery to "suddenly dive".
  • comparative example 2 contains a cyclic sulfonimide compound, the interfacial film formed by it can inhibit lithium precipitation and has high stability, and can improve the cycle performance to a certain extent, but the ability to conduct electrons is not good, so low temperature and discharge Performance is poor.
  • the fluorinated cyclic carbonate compound in Comparative Example 3 can form a LiF-rich interfacial film on the negative electrode during the first charge and discharge stage.
  • This layer of interfacial film can significantly increase the penetration and diffusion ability of lithium ions at the negative electrode interface, so it can Increase the low-temperature and rate performance of lithium-ion batteries, but after cycling to the later stage or long-term cycling under low temperature conditions, the problem of lithium precipitation cannot be solved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

L'invention concerne un électrolyte non aqueux et une batterie rechargeable. L'électrolyte non aqueux comprend un sel de lithium, un solvant organique non aqueux et un additif. L'additif comprend un composé sulfonylimine cyclique et un composé carbonate cyclique fluoré. La formule structurale du composé de sulfonylimine cyclique est de formule structurale 1 ou de formule structurale 2, et la formule structurale du composé carbonate cyclique fluoré est la formule structurale 3, la formule structurale 4, ou la formule structurale 5, dans laquelle M+ représente Li+, Na+, K+ +, ou Cs+, et R1 représente H ou un alkyle. Dans la présente invention, la combinaison du composé de sulfonylimine cyclique et du composé de carbonate cyclique fluoré peut efficacement éviter une consommation supplémentaire d'un unique composé carbonate cyclique fluoré dans l'électrolyte et la réaction entre l'électrolyte et une interface d'électrode négative, et ainsi, le placage de lithium peut être supprimé tandis que les performances de cycle à haute température, les performances de cycle à température normale, les performances de décharge à basse température et la capacité de vitesse de la batterie au lithium-ion peuvent être améliorées.
PCT/CN2021/139145 2021-06-16 2021-12-17 Électrolyte non aqueux et batterie rechargeable WO2022262232A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110669332.9A CN113363580A (zh) 2021-06-16 2021-06-16 非水电解液及其二次电池
CN202110669332.9 2021-06-16

Publications (1)

Publication Number Publication Date
WO2022262232A1 true WO2022262232A1 (fr) 2022-12-22

Family

ID=77534784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139145 WO2022262232A1 (fr) 2021-06-16 2021-12-17 Électrolyte non aqueux et batterie rechargeable

Country Status (2)

Country Link
CN (1) CN113363580A (fr)
WO (1) WO2022262232A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117410568A (zh) * 2023-09-01 2024-01-16 华南师范大学 一种宽温域的高电压锂电池电解液及其制备方法
CN117410568B (zh) * 2023-09-01 2024-05-31 华南师范大学 一种宽温域的高电压锂电池电解液及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113363580A (zh) * 2021-06-16 2021-09-07 珠海市赛纬电子材料股份有限公司 非水电解液及其二次电池
CN113851716B (zh) * 2021-09-24 2022-05-17 珠海市赛纬电子材料股份有限公司 非水电解液及其锂离子电池
CN115911547A (zh) * 2021-09-30 2023-04-04 宁德时代新能源科技股份有限公司 锂离子电池、电池模组、电池包及用电装置
CN115036570A (zh) * 2022-06-29 2022-09-09 珠海冠宇动力电池有限公司 一种电解液和含有该电解液的电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105009347A (zh) * 2013-02-12 2015-10-28 昭和电工株式会社 二次电池用非水电解液及非水电解液二次电池
CN108140890A (zh) * 2015-10-08 2018-06-08 株式会社村田制作所 电池、电池组、电子设备、电动车辆、蓄电装置以及电力系统
US20190074546A1 (en) * 2017-09-05 2019-03-07 Samsung Sdi Co., Ltd. Rechargeable lithium battery
CN111333595A (zh) * 2020-02-28 2020-06-26 惠州市大道新材料科技有限公司 乙酰磺胺酸锂及其制备方法和其在非水电解液中的应用
CN111934014A (zh) * 2020-08-27 2020-11-13 珠海市赛纬电子材料股份有限公司 电解液及含该电解液的锂离子电池
CN113363580A (zh) * 2021-06-16 2021-09-07 珠海市赛纬电子材料股份有限公司 非水电解液及其二次电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105009347A (zh) * 2013-02-12 2015-10-28 昭和电工株式会社 二次电池用非水电解液及非水电解液二次电池
CN108140890A (zh) * 2015-10-08 2018-06-08 株式会社村田制作所 电池、电池组、电子设备、电动车辆、蓄电装置以及电力系统
US20190074546A1 (en) * 2017-09-05 2019-03-07 Samsung Sdi Co., Ltd. Rechargeable lithium battery
CN111333595A (zh) * 2020-02-28 2020-06-26 惠州市大道新材料科技有限公司 乙酰磺胺酸锂及其制备方法和其在非水电解液中的应用
CN111934014A (zh) * 2020-08-27 2020-11-13 珠海市赛纬电子材料股份有限公司 电解液及含该电解液的锂离子电池
CN113363580A (zh) * 2021-06-16 2021-09-07 珠海市赛纬电子材料股份有限公司 非水电解液及其二次电池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117410568A (zh) * 2023-09-01 2024-01-16 华南师范大学 一种宽温域的高电压锂电池电解液及其制备方法
CN117410568B (zh) * 2023-09-01 2024-05-31 华南师范大学 一种宽温域的高电压锂电池电解液及其制备方法

Also Published As

Publication number Publication date
CN113363580A (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
CN109950620B (zh) 一种锂离子电池用非水电解液及锂离子电池
CN109904521B (zh) 电解液及包括该电解液的电池
WO2022262232A1 (fr) Électrolyte non aqueux et batterie rechargeable
CN113437363B (zh) 非水电解液及其二次电池
CN113437364B (zh) 非水电解液及其二次电池
CN110611121B (zh) 电解液及包含该电解液的锂离子电池
CN109888384B (zh) 电解液和含有电解液的电池
CN113363581B (zh) 非水电解液及其二次电池
WO2017185703A1 (fr) Solution électrolytique de batterie lithium-ion haute température et son procédé de préparation, et batterie lithium-ion haute température
CN111129590A (zh) 一种高电压锂离子电池非水电解液及高电压锂离子电池
WO2023050597A1 (fr) Additif, additif contenant un électrolyte et batterie au lithium-ion
CN114552010A (zh) 锂金属电池用添加剂、电解液及其锂金属电池
CN113851716B (zh) 非水电解液及其锂离子电池
WO2023159797A1 (fr) Additif d'électrolyte, électrolyte non aqueux et batterie au lithium-ion
CN114512721A (zh) 一种锂离子电池非水电解液及锂离子电池
CN114039094A (zh) 一种锂离子电池非水电解液和锂离子电池
CN111342134B (zh) 一种宽温域锂离子电池非水电解液及其制备方法
CN114520370B (zh) 一种锂离子电池电解液及锂离子电池
CN113851642B (zh) 非水电解液及其锂离子电池
WO2023206925A1 (fr) Batterie au lithium-ion
CN114142086A (zh) 一种耐低温锂离子电池电解液及锂离子电池
WO2022095772A1 (fr) Électrolyte non aqueux de batterie au lithium-ion et batterie au lithium-ion
CN110649317B (zh) 硅基锂离子电池电解液和锂离子二次电池
CN108400382A (zh) 电解液及二次电池
CN114566708B (zh) 一种锂离子电池非水电解液及锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945808

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE