WO2022257509A1 - 曲面玻璃及其制备方法和电子设备 - Google Patents

曲面玻璃及其制备方法和电子设备 Download PDF

Info

Publication number
WO2022257509A1
WO2022257509A1 PCT/CN2022/078502 CN2022078502W WO2022257509A1 WO 2022257509 A1 WO2022257509 A1 WO 2022257509A1 CN 2022078502 W CN2022078502 W CN 2022078502W WO 2022257509 A1 WO2022257509 A1 WO 2022257509A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
curved
curved glass
temperature
product
Prior art date
Application number
PCT/CN2022/078502
Other languages
English (en)
French (fr)
Inventor
许文彬
刘昆
董长富
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to EP22764639.5A priority Critical patent/EP4129936A4/en
Priority to JP2022566256A priority patent/JP2023534353A/ja
Publication of WO2022257509A1 publication Critical patent/WO2022257509A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/02Other methods of shaping glass by casting molten glass, e.g. injection moulding
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/10Construction of plunger or mould for making hollow or semi-hollow articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • C03B11/122Heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0018Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
    • C03C10/0027Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/10Die base materials
    • C03B2215/11Metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/22Non-oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/24Carbon, e.g. diamond, graphite, amorphous carbon
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/66Means for providing special atmospheres, e.g. reduced pressure, inert gas, reducing gas, clean room
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/69Controlling the pressure applied to the glass via the dies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present application relates to the technical field of electronic products, in particular to a curved glass, a preparation method thereof, and electronic equipment.
  • curved glass is widely used in electronic equipment, for example, curved glass can be used as a cover plate in terminal products (such as mobile phones, tablet computers, etc.).
  • the main purpose of the present application is to provide a curved glass, its preparation method and electronic equipment.
  • the molding process from high temperature to low temperature can be reduced, and the preparation process can be shortened, thereby reducing the waste of resources caused by the high temperature to low temperature in related technologies, and reducing the production cost.
  • the present invention adopts the following technical solutions:
  • the present application provides a method for preparing curved glass, comprising: melting glass batch materials into molten glass, and clarifying the molten glass; introducing the clarified molten glass into a mold with a predetermined shape In the mold cavity, a glass product having a shape corresponding to the curved glass is formed through a compression molding process, and the size of the glass product is larger than that of the curved glass; the formed glass product is annealed; according to the The shape and size of the curved glass, the annealed glass product is processed into the curved glass.
  • the glass melt is directly introduced into the mold, and the 3D shape required for the curved glass is prepared through the molding process, and then gradually cooled to room temperature, and the cooled 3D glass can be processed by subsequent machining to obtain the curved glass, and related technologies Compared with flat glass (that is, 2D glass) formed by hot bending, middle curved glass does not need to go through the forming process of flat glass from high temperature to low temperature, which can reduce the waste of resources caused by high temperature to low temperature, thereby reducing the production of curved glass. cost.
  • the difference between the temperature of the clarified molten glass and the temperature of the mold is greater than or equal to 250°C and less than or equal to 500°C.
  • the difference between the temperature of the clarified glass liquid and the temperature of the mold within the above range, the glass liquid can be prevented from being cooled too quickly, and the glass will be broken due to the tensile stress of the glass introduced by cooling. , and the cooling of the glass liquid is too slow, there is a risk of glass devitrification and loss of transparency.
  • the temperature of the clarified molten glass is 950°C to 1300°C, and the temperature of the mold is 450°C to 800°C.
  • the temperature of the mold is 450°C to 800°C.
  • glass batch materials including silica sand (silicon dioxide or quartz sand), phosphorus pentoxide, aluminum oxide, boron oxide, lithium carbonate, sodium carbonate, potassium carbonate, magnesium carbonate and calcium carbonate, etc. preparation.
  • the curved glass is glass-ceramics; the glass batch material also contains a crystal nucleating agent; After the glass product having a shape corresponding to the curved glass is formed through a compression molding process, before annealing the formed glass product, further comprising: performing crystallization treatment on the formed glass product. After the 3D glass is formed in the mold, the glass product can be crystallized directly to improve the production efficiency. At the same time, by adding a crystal nucleating agent to the glass batch material, it is more beneficial to control the crystallization process, obtain glass-ceramics with higher crystallinity, and increase the crystallization rate.
  • the difference between the temperature of the clarified molten glass and the temperature of the mold is greater than or equal to 500°C and less than or equal to 800°C.
  • the curved glass is glass ceramics
  • by controlling the difference between the temperature of the clarified molten glass and the temperature of the mold within the above range it is different from the basic glass that the curved glass is, and there is no need to consider that the molten glass is cooled too quickly to cause the glass.
  • the problem of cracking on the contrary, when the glass liquid cools too slowly, it is easy to have glass crystallization, and make the crystal nucleus grow fast, which makes the glass easy to break, and, the same as the curved glass is the basic glass, the glass liquid cooling If it is too slow, there will be a problem that glass crystallization loses transparency due to the inability to effectively control the glass crystallization conditions.
  • the temperature of the clarified molten glass is 950°C-1300°C, and the temperature of the mold is 250°C-500°C.
  • it can be used for glass batch materials including silica sand (silicon dioxide or quartz sand), phosphorus pentoxide, alumina, boria, lithium carbonate, sodium carbonate, potassium carbonate, magnesium carbonate, calcium carbonate and zirconia, etc. Preparation of curved glass-ceramics.
  • the crystallization treatment of the shaped glass product includes: performing heat treatment on the shaped glass product, so that components in the shaped glass product phase, nucleate and grow crystals.
  • the heat treatment of the shaped glass product includes: placing the shaped glass product in a heating chamber, and performing heat treatment on the heating chamber; or , transferring the shaped glass products to a plurality of heating chambers whose temperature gradually increases, and in each heating chamber, keep the shaped glass products warm for a preset time, so as to heat the shaped glass Products are heat treated.
  • the temperature range of the heat treatment is from the first temperature to the second temperature; the first temperature is the temperature of the mold corresponding to the shaped glass product, and the second The difference between the second temperature and the first temperature is greater than or equal to 100°C and less than or equal to 400°C.
  • the temperature conditions required for crystal growth in glass-ceramic can be satisfied, and the degree of crystallinity can be improved.
  • the annealing the shaped glass product includes: performing a temperature-programmed cooling process on the shaped glass product to cool the shaped glass product to room temperature .
  • the programmed cooling treatment refers to the process of cooling down through program control.
  • the programmed heating chamber can be used to set the program to lower the temperature of the glass product from the demolded temperature to room temperature, which can realize slow cooling and release thermal stress to room temperature.
  • the performing temperature programming on the shaped glass product to cool the shaped glass product to room temperature includes: placing the shaped glass product in In one heating chamber, the heating chamber is subjected to a temperature-programmed cooling process; or, the shaped glass products are successively transferred to a plurality of heating chambers whose temperature is gradually lowered, and in each heating chamber, the shaped glass products are The glass product is kept warm for a preset time, so as to perform a programmed cooling process on the shaped glass product.
  • the rate of the programmed temperature drop is 1° C./min to 100° C./min.
  • the difference between the size of the clamping gap and the thickness of the curved glass at the corresponding position is greater than or equal to 0 and less than or equal to 0.1 mm.
  • the uniformity of the mold clamping gap can be maintained as much as possible to prevent the mold clamping gap from being too large or too small.
  • the molding pressure is 0.1 MPa-0.5 MPa. Molding quality can be improved.
  • the working environment of the compression molding is a vacuum or an inert gas protection atmosphere.
  • the difference between the size of the glass product and the size of the curved glass is greater than or equal to 0.02 mm and less than or equal to 0.5 mm.
  • the size and shape of glass products can be changed by CNC (Computerized Numerical Control) precision machining to obtain curved glass with stable processing quality, high processing accuracy and high repeatability, which can be used in mass production.
  • a curved glass prepared by the above-mentioned method for preparing curved glass is provided.
  • the curved glass can meet the design requirements of the cover plate of the electronic equipment, and the crystallinity of the curved glass-ceramic can meet the application requirements.
  • the Vickers hardness of the curved glass is 550kgf/mm 2 -650kgf/mm 2 ; In the case of glass, the Vickers hardness of the curved glass is 650kgf/mm 2 to 750kgf/mm 2 . Under the same test conditions, the curved glass has approximately the same hardness as the curved glass prepared in the related art, and can meet application requirements.
  • the Young's modulus of the curved glass when the curved glass is a base glass, the Young's modulus of the curved glass is 70GPa-90GPa; when the curved glass is glass ceramics, The Young's modulus of the curved glass is 90Gpa-105Gpa. Under the same test conditions, the curved glass has a Young's modulus roughly equivalent to that of the curved glass prepared in the related art, which can meet the application requirements.
  • the density of the curved glass is 2.4g/cm 3 -2.5g/cm 3 ; when the curved glass is a crystallite In the case of glass, the density of the curved glass is 2.45 g/cm 3 to 2.65 g/cm 3 . Under the same test conditions, the density of the curved glass is approximately the same as that of the curved glass prepared in the related art, which can meet the application requirements.
  • the thermal expansion coefficient of the curved glass is 60 ⁇ 10 -7 /°C to 110 ⁇ 10 -7 /°C;
  • the thermal expansion coefficient of the curved glass is 100 ⁇ 10 -7 /°C to 110 ⁇ 10 -7 /°C.
  • the thermal expansion coefficient of the curved glass 1 is equivalent to that of the curved glass prepared in the related art, which can meet the application requirements.
  • the curved glass when the curved glass is glass-ceramics, and the main crystal phase of the curved glass includes: one or both of petalite and lithium disilicate , the crystallinity of the curved glass is 75wt%-90wt%; when the main crystal phase of the curved glass is lithium silicate or cordierite, the crystallinity of the curved glass is 30wt%-50wt%.
  • the curved glass has roughly the same crystallinity and main crystal phase as the curved glass prepared in the related art.
  • an electronic device including: the above-mentioned curved glass.
  • the electronic device is a mobile phone, a tablet computer or a wearable smart product.
  • the application provides a kind of curved glass and its preparation method and electronic equipment.
  • the 3D shape required by the curved glass is prepared through a compression molding process, and then gradually cooled to room temperature.
  • the cooled 3D The shape and size of the glass are trimmed by CNC machining to obtain a curved glass.
  • the curved glass is formed by hot bending of flat glass (that is, 2D glass), and there is no need to go through the forming of flat glass from high temperature to low temperature.
  • the process can reduce the waste of resources caused by going from high temperature to low temperature, thereby reducing the production cost of curved glass.
  • Fig. 1 is a kind of curved surface glass provided by the present application as the structural diagram of the front and rear covers of the mobile phone;
  • Fig. 2 is the flowchart of the preparation method of a kind of curved surface glass provided by the present application
  • Fig. 3 is an internal structural diagram of a curved glass provided by the present application.
  • Fig. 4 is an internal structure diagram of another kind of curved glass provided by the present application.
  • Figure 5 is a flow chart of a method for preparing a glass product provided by the present application.
  • Figure 6 is a flow chart of another method for preparing glass products provided by the present application.
  • Fig. 7 is a flow chart of another method for preparing curved glass provided by the present application.
  • Fig. 8 is a flow chart of a method for preparing curved glass provided by the related art
  • Fig. 9 is a flow chart of another method for preparing curved glass provided by the related art.
  • Fig. 10 is a flow chart of another method for preparing curved glass provided by the related art.
  • the electronic device can also be called electronic product or terminal, which can include mobile phone, mobile computer, e-book, tablet computer (portable android device, Pad), smart TV, personal digital assistant (Personal Digital Assistant, PDA) and wearable Smart products, etc.
  • wearable smart products may include, but are not limited to, media players, smart watches, smart glasses, smart bracelets, and the like.
  • the curved glass is relative to the flat glass, depending on whether one surface or both of the curved surfaces are curved, the curved glass can include single curved glass and double curved glass.
  • the electronic device may be a mobile phone, a tablet computer or a wearable smart product.
  • curved surface glass 1 is used for the front and back cover of mobile phone as cover plate, and curved surface glass 1 is the situation of hyperbolic surface glass, as shown in (a) among Fig. 1, is curved surface glass 1 as
  • the cover plate is used for the front view of the front and rear covers of the mobile phone, as shown in (b) in Figure 1, it is the side view of the front and rear covers of the mobile phone used as the cover plate by curved glass.
  • the surface 1a of the curved glass 1 may also be provided with a paint layer and/or an anti-fingerprint layer.
  • the curved glass 1 can be made of silica-alumina glass material
  • the paint layer can be formed by silk screen printing ink
  • the anti-fingerprint layer is a coating formed by coating a colorless and odorless transparent liquid, which can make glass, metal, ceramics, plastics, etc.
  • the material is waterproof, oil-proof, anti-fouling and anti-fingerprint adhesion, which makes the surface of the product smooth and can play the role of anti-fingerprint.
  • Some embodiments of the present disclosure provide a method for preparing curved glass 1, as shown in FIG. 2 , including:
  • the above-mentioned curved glass 1 can be made of silica-alumina glass material.
  • the glass batch material is aluminosilicate glass material.
  • the sum of the mole percentages of Al 2 O 3 and SiO 2 is greater than 75 mol%, which is different from the traditional Compared with soda lime glass, it has better physical and chemical properties.
  • the glass batch material of the curved glass 1 may include silica sand (silicon dioxide or quartz sand), phosphorus pentoxide, aluminum oxide, boron oxide, lithium carbonate, sodium carbonate, potassium carbonate, carbonic acid Magnesium and Calcium Carbonate etc.
  • silica sand silicon dioxide or quartz sand
  • phosphorus pentoxide aluminum oxide
  • boron oxide lithium carbonate
  • sodium carbonate sodium carbonate
  • potassium carbonate carbonic acid Magnesium and Calcium Carbonate etc.
  • the curved glass 1 has better chemical stability, electrical insulation, mechanical strength and lower coefficient of thermal expansion.
  • the above-mentioned curved glass 1 has crystals.
  • the above-mentioned curved glass 1 is glass ceramics. A large number of tiny crystals are a multiphase complex composed of microcrystalline phase and glass phase.
  • the above-mentioned curved glass 1 is not a glass-ceramic, and at this time, there is no crystal in the curved glass 1 , that is, the curved glass 1 is a fragile basic glass.
  • the basic glass is the precursor of glass-ceramics, which is the state when no crystals are precipitated. It is composed of crystals and glass bodies. It has the dual characteristics of glass and ceramics.
  • the above-mentioned curved glass 1 is glass-ceramic.
  • the glass-ceramic may be obtained by crystallizing a base glass.
  • the basic glass is an amorphous solid. From a thermodynamic point of view, it is in a metastable state (that is, the material will exist in a state that is higher than the free energy of the equilibrium state, and is in a non-equilibrium metastable state. state), which has higher internal energy than crystals, so under certain conditions, it can be transformed into a crystalline state. From a kinetic point of view, the viscosity of the glass melt (that is, the glass liquid obtained by melting) increases sharply during the cooling process, which inhibits the formation of crystal nuclei and crystal growth, and prevents the growth of crystals.
  • this complementary physical process can form a new balance, that is Glass-ceramics can be obtained, but the heterogeneous crystallization utilized in this way results in poor uniformity of the obtained glass-ceramics.
  • crystal nuclei are formed in the basic glass, and then the crystal nuclei grow up through heat treatment, so that evenly distributed glass-ceramics can be obtained.
  • the glass batch material of the curved glass 1 when the curved glass 1 is glass ceramics, the glass batch material of the curved glass 1 further contains a crystal nucleating agent.
  • a crystal nucleating agent By adding a crystal nucleating agent to the glass batch material, compared with not adding a crystal nucleating agent, it is more beneficial to control the crystallization process, obtain higher crystallinity and evenly distributed glass ceramics, and increase the crystallization rate.
  • the glass batch material of the curved glass 1 when the curved glass 1 is glass-ceramic, also contains a crystal nucleating agent such as zirconia in addition to the above-mentioned components.
  • the molar percentage of zirconia in the glass batch may be greater than 0 and less than or equal to 10%.
  • the glass batch material pyrolyzes (gasifies) to generate gas, and by adding a clarifier to the molten glass, the bubbles in the molten glass can be eliminated and the viscosity of the molten glass can be reduced.
  • the glass batch material of the above-mentioned curved glass 1 includes: silica sand (silicon dioxide or quartz sand), phosphorus pentoxide, aluminum oxide, boron oxide, lithium carbonate, sodium carbonate, potassium carbonate, magnesium carbonate and calcium carbonate, etc.
  • silica sand silicon dioxide or quartz sand
  • phosphorus pentoxide aluminum oxide
  • boron oxide lithium carbonate
  • sodium carbonate, lithium carbonate, potassium carbonate, magnesium carbonate and calcium carbonate can be decomposed at high temperature to produce carbon dioxide.
  • the composition of glass liquid can include: SiO 2 , Al 2 O 3 , P 2 O, B 2 O 3 , Li 2 O, Na 2 O, K 2 O, MgO and CaO, etc.
  • the molar percentages of SiO 2 , Al 2 O 3 , P 2 O and B 2 O 3 may be 70% to 85%, Li 2
  • the molar percentages of O, Na 2 O and K 2 O may be 7% to 30%, and the molar percentages of MgO and CaO may be 0% to 8%.
  • the molar percentages of SiO 2 , Al 2 O 3 , P 2 O and B 2 O 3 can be 70% to 85%, and Li 2 O, Na 2 O and
  • the mole percentage of K 2 O can be 7%-24%, the mole percentage of MgO and CaO can be 0%-6%, and the mole percentage of zirconia can be 0%-10%.
  • the glass batch of the curved glass 1 also contains a crystal nucleating agent, a glass-ceramic with a relatively high crystallinity and uniform distribution can be obtained.
  • the zirconia The mole percentage is 1% to 10%. That is, the mole percentage of zirconia is greater than or equal to 1%.
  • the clarified molten glass is introduced into the cavity of the mold 2 with a preset shape, and a glass product 3 having a shape corresponding to the curved glass 1 is formed through a compression molding process, wherein, The size of the glass product 3 is larger than that of the curved glass 1 .
  • the mold 2 includes two parts, a movable mold 21 and a fixed mold 22 (or a punch and a die), which can be separated or combined. Take out the parts when they are separated, and inject the molding material into the cavity of the mold 2 when they are closed.
  • Molding is the abbreviation of compression molding, also known as compression molding. It is a processing method in which molding materials are formed into products in a closed mold cavity (that is, a mold cavity) by means of heating and pressure.
  • glass is a mixture, it is amorphous, and unlike crystalline substances, it has no fixed melting and boiling point. It can be known that the transformation of glass from solid to liquid is carried out in a certain temperature range (ie, softening temperature range). It is from Tg to T1, Tg is the transition temperature, T1 is the liquidus temperature, the transition temperature refers to the temperature corresponding to the transition from the glass state to the high elastic state, and the liquidus temperature is the highest temperature at which the object begins to change from liquid to solid .
  • Tg is the transition temperature
  • T1 the liquidus temperature
  • the transition temperature refers to the temperature corresponding to the transition from the glass state to the high elastic state
  • the liquidus temperature is the highest temperature at which the object begins to change from liquid to solid .
  • the clarified molten glass is cooled Cooling from the molten state to the glass state can obtain a glass product 3 whose shape is roughly the same as the surface shape of the cavity of the mold 2.
  • the preset shape of the cavity of the mold 2 can be roughly the same as the shape of the curved glass 1, so that Obtain a glass product 3 having approximately the same shape as the curved glass 1, and by controlling the size of the glass product 3 to be larger than the size of the curved glass 1, and further processing the glass product 3 (such as cutting, grinding, etc.), Get Curved Glass 1.
  • glass state it is generally obtained by rapid cooling of the molten state.
  • the viscosity of the glass increases sharply during the cooling process.
  • Glassy substances contain higher internal energy than crystalline substances, and their energy is between the molten state and the crystalline state, which is a metastable state. From a mechanical point of view, glass is an unstable high-energy state. For example, there is a tendency to transform into a low-energy state, that is, there is a tendency to devitrify.
  • the curved glass 1 is a basic glass
  • the glass liquid is cooled
  • the glass will be broken due to the influence of the glass tensile stress introduced by cooling, and the glass liquid will be cooled too slowly, and there will be a risk of glass devitrification and loss of transparency.
  • the difference between the temperature of the molten glass and the temperature of the mold 2 is greater than or equal to 250°C and less than or equal to 500°C.
  • the curved glass 1 is glass-ceramics, unlike the basic glass, when the glass liquid is cooled too slowly, it is easy to devitrify the glass and make the crystal nuclei grow fast, which makes the glass easy to devitrify. Crack, and, the same as the basic glass of the curved glass 1, the cooling of the glass liquid is too slow, and the crystallization conditions of the glass cannot be effectively controlled, so there is a problem that the crystallization of the glass loses transparency. Therefore, optional, as shown in Figure 6 As shown, when the curved glass 1 is glass-ceramics, the difference between the temperature of the clarified molten glass and the temperature of the mold 2 is greater than or equal to 500°C and less than or equal to 800°C.
  • the glass batch material in the curved glass 1 includes silica sand (silicon dioxide or quartz sand), phosphorus pentoxide, aluminum oxide, boron oxide, lithium carbonate, sodium carbonate, potassium carbonate, magnesium carbonate and calcium carbonate, etc.
  • silica sand silicon dioxide or quartz sand
  • phosphorus pentoxide aluminum oxide
  • boron oxide lithium carbonate
  • sodium carbonate potassium carbonate
  • magnesium carbonate and calcium carbonate etc.
  • the temperature of the clarified molten glass may be 950°C to 1300°C
  • the temperature of the mold 2 may be 450°C to 800°C.
  • the difference between the temperature of the clarified molten glass and the temperature of the mold 2 is greater than or equal to 250°C and less than or equal to 500°C, it can be known that the clarified molten glass
  • the temperature of the mold 2 can be any value between 450 (950 minus 500)°C and 700 (950 minus 250)°C, and the temperature of the clarified molten glass is 1300°C
  • the temperature of mold 2 can be 800 (1300 minus 500) °C
  • the temperature of mold 2 can be 700 (1200 minus 500) °C ⁇ 800 ( Any value between 1200 minus 400) °C
  • the temperature of the mold 2 can be 600 (1100 minus 500) °C ⁇ 800 (1100 minus 300) °C Any value between, when the temperature is 950°C, the temperature of the mold 2 can be 600 (1100 minus 500) °C ⁇ 800 (1100 minus 300) °C Any value between, when the temperature is 950°C, the temperature of the mold 2 can be 600 (1100
  • the glass batch materials in the curved glass 1 include silica sand (silicon dioxide or quartz sand), phosphorus pentoxide, aluminum oxide, boron oxide, lithium carbonate, sodium carbonate, potassium carbonate, magnesium carbonate and calcium carbonate, etc., and the curved glass 1
  • silica sand silicon dioxide or quartz sand
  • phosphorus pentoxide aluminum oxide
  • boron oxide lithium carbonate
  • sodium carbonate potassium carbonate
  • magnesium carbonate and calcium carbonate etc.
  • the temperature of the clarified molten glass may be 950°C to 1300°C
  • the temperature of the mold 2 may be 250°C to 500°C.
  • the difference between the temperature of the clarified molten glass and the temperature of the mold 2 is greater than or equal to 500°C and less than or equal to 800°C, it can be known that the clarified glass
  • the temperature of the mold 2 can be any value between 250 (950 minus 700)°C and 500 (950 minus 450)°C
  • the temperature of the clarified glass liquid is 1300°C
  • the temperature of the mold 2 can be 500 (1300 minus 800) °C
  • the temperature of the mold 2 can be 400 (1200 minus 800) °C ⁇ 700 Any value between (1200 minus 500) °C
  • the temperature of the mold 2 can be 300 (1100 minus 800) ° C ⁇ 500 (1100 minus 600) Any value between °C, when the temperature of the clarified molten glass is 1100 °C, the temperature of the mold 2 can be 300 (1100 minus 800) ° C ⁇ 500 (1100 minus 600) Any value between °C, when the temperature of the clarified molten glass is 1100
  • the clarified molten glass is introduced into the cavity of the mold 2, and then pressurized by clamping the mold to solidify the molten glass into a glass product 3 whose shape is roughly the same as the surface shape of the cavity.
  • the temperature of mold 2 is the temperature of molding
  • the time of molding can be the time required to keep the temperature of the clarified molten glass cooled to the same temperature as mold 2.
  • the difference between the size of the clamping gap and the thickness of the curved glass 1 at the corresponding position is no more than 0.1 mm. That is to say, regardless of products of equal thickness or unequal thickness, the difference between the size of the mold clamping gap and the thickness of the curved glass 1 at the corresponding position is no more than 0.1mm, so that the uniformity of the mold clamping gap can be maintained as much as possible, and at the same time, It can avoid the situation that the clamping gap is too large or too small.
  • the molding pressure is 0.1 MPa ⁇ 0.5 MPa. Molding quality can be improved.
  • the working environment of the molding is a vacuum or an inert gas protection atmosphere.
  • the inert gas can be nitrogen or argon, etc.
  • the material of the above-mentioned mold is not specifically limited, because in the preparation process, it needs to be carried out under high temperature and high pressure environment, therefore, in some embodiments, the material of the mold 2 can be superhard alloy material or graphite material, the superhard alloy material
  • the surface of the hard alloy material can be coated with a superhard coating (such as titanium nitride, diamond-like film, etc.), and the superhard alloy material can be steel.
  • the surface of the graphite material may be coated with silicon carbide or the like.
  • the difference between the size of the glass product 3 and the size of the curved glass 1 is not specifically limited, as long as the size of the glass product 3 is larger than the size of the curved glass 1, and the glass product 3 can be processed into a curved glass by subsequent mechanical processing and other means 1 is enough.
  • the difference between the size of the glass product 3 and the size of the curved glass 1 is greater than or equal to 0.02 mm and less than or equal to 0.5 mm.
  • the size and shape of the glass product 3 can be changed through CNC (Computerized Numerical Control) precision machining to obtain a curved glass 1 with stable processing quality, high processing accuracy, and high repeatability, which can be used in mass production.
  • the temperature is relatively high. If the glass product 3 is directly placed at room temperature and cooled naturally, it will easily burst, thereby causing the glass product 3 to break. Therefore, the glass product 3 needs to be slowly cooled to release the thermal stress. Room temperature, that is, the glass product 3 can be annealed, and the glass product 3 can still be placed in the mold during the annealing process.
  • Annealing is a heat treatment process for materials, including metallic materials and non-metallic materials.
  • annealing refers to the process of slowly heating the glass product to a certain temperature, maintaining it for a sufficient time, and then cooling it at an appropriate rate (usually slow cooling, sometimes controlled cooling).
  • annealing the formed glass product 3 includes:
  • the temperature-programmed cooling process is performed on the formed glass product 3 to cool the formed glass product 3 to room temperature.
  • the room temperature here refers to the indoor temperature.
  • the indoor temperature can be the indoor temperature of the region where the curved glass 1 is made.
  • the indoor temperature can be determined according to seasonal changes and natural environment. , that is, for any region, its indoor temperature can be roughly the same as the local ambient temperature.
  • the room temperature may be 25°C-35°C.
  • the programmed cooling treatment refers to the process of cooling down through program control.
  • the temperature of the glass product 3 after demolding can be lowered to room temperature by using the programmed heating chamber setting program.
  • performing a temperature-programmed cooling process on the formed glass product 3 to cool the formed glass product 3 to room temperature may include:
  • the formed glass product 3 is placed in a heating chamber, and the temperature of the heating chamber is programmed to cool down.
  • the formed glass product 3 is sequentially transferred to a plurality of heating chambers whose temperature gradually decreases, and in each heating chamber, the formed glass product 3 is kept warm for a first preset time, so as to heat the formed glass product 3 Perform programmed cooling.
  • the above-mentioned heating chamber may be an example of a heat preservation chamber of a muffle furnace.
  • the temperature program cooling rate may be 1° C./min ⁇ 100° C./min.
  • the programmed cooling rate of the heating chamber can be set to 1° C./min, thereby completing the programmed cooling.
  • the formed glass products are successively transferred to a plurality of heating chambers whose temperature gradually decreases, and in each heating chamber, the formed glass products 3 are kept warm for a first preset time, so as to heat the formed glass products 3
  • the temperature of multiple heating chambers you can set the temperature of multiple heating chambers to differ by 100°C, and keep warm in each heating chamber for 1 minute (that is, the first preset time is 1 minute), and the programmed cooling can also be completed, and with Compared with placing the shaped glass product 3 in a heating chamber for programmed cooling, the cooling rate can be increased, but the cooled glass product 3 has poorer density.
  • the preparation method further includes a step of crystallizing the glass product 3, which can occur after annealing or before annealing, and is not specifically limited here.
  • the clarified glass liquid is introduced into the cavity of the mold 2 with a preset shape, and the curved glass 1 is formed by a compression molding process.
  • Crystallization is the process of converting an amorphous substance into a crystal.
  • the amorphous substance is a substance whose atomic arrangement does not have long-range order, its melting point is not fixed, it is in a metastable state, and it has a tendency to spontaneously change to a stable state.
  • a crystal is a substance in which internal particles (atoms, molecules, ions) are periodically and repeatedly arranged in three-dimensional space, and has long-range order (regular arrangement larger than the micron scale).
  • performing crystallization treatment on the formed glass product 3 includes: as shown in FIG. nuclei and grow crystals.
  • Heat treatment is the key process to make glass-ceramics produce predetermined crystal phase and glass phase.
  • the structure and properties of the glass-ceramics mainly depend on the heat treatment regime (heat treatment temperature and holding time). During the heat treatment, phenomena such as phase separation, crystal nucleus formation, crystal growth and secondary crystal formation may occur in the glass product 3 .
  • the above-mentioned processes are carried out in different ways.
  • the nucleation and crystal growth of glass-ceramics are usually carried out above the transition temperature Tg and below the melting point of the main crystal phase.
  • the nucleation treatment is performed at a temperature corresponding to a viscosity of 10 ⁇ 10 10 Pa ⁇ s to 10 ⁇ 10 11 Pa ⁇ s for a certain period of time, so that a certain number of uniformly distributed crystal nuclei are formed in the glass product 3 .
  • the nucleation stage can also be omitted and directly heated to the crystal growth temperature, because these glass products 3 Nucleation can be completed during the heating process, resulting in a large number of crystal nuclei. It can be seen that for different types of glass-ceramics, the nucleation temperature is different and the temperature and speed of crystal growth are different, and the holding time at different temperatures is also different.
  • the heat treatment of the formed glass product 3 may include:
  • the shaped glass product 3 is placed in a heating chamber, and heat treatment is performed on the heating chamber.
  • the shaped glass product 3 is sequentially transferred to a plurality of heating chambers whose temperature gradually increases, and in each heating chamber, the formed glass product 3 is kept warm for a second preset time, so as to heat the formed glass product 3 Carry out heat treatment.
  • the heat treatment process may be a temperature-programmed treatment process, similar to the above-mentioned temperature-programmed cooling treatment, the temperature-programmed treatment is a treatment process in which the temperature is raised through program control.
  • the program heating chamber can be used to set the program to raise the glass product 3 from the temperature after demoulding to a certain temperature.
  • the heating chamber mentioned above may also be a heating chamber of a muffle furnace.
  • the speed of temperature programming and holding time can be determined according to the type of glass-ceramics, the size and quantity of microcrystals, and the nature and quantity of residual glass phase, and are not specifically limited here.
  • the temperature range of the heat treatment may be from the first temperature to the second temperature.
  • the first temperature is the temperature of the mold 2 corresponding to the shaped glass product 3 , and the difference between the second temperature and the first temperature is greater than or equal to 100°C and less than or equal to 400°C.
  • the temperature conditions required for crystal growth in glass-ceramic can be satisfied, and the degree of crystallinity can be improved.
  • the temperature of the mold 2 is 250°C-500°C
  • the first temperature can be 250°C-500°C
  • the second temperature may be 350°C-900°C.
  • the second temperature may be 800°C.
  • the first temperature is 250°C
  • by heat-treating the glass product 3 within a temperature range of 250°C to 800°C crystals are precipitated in the glass product 3
  • the first temperature is 500°C
  • crystals are precipitated in the glass product 3 by heat-treating the glass product 3 within a temperature range of 500° C. to 800° C.
  • the holding time of the heat treatment is 5 minutes to 24 hours.
  • the holding time of the heat treatment is related to the level of the first temperature. In the case of a higher first temperature, the crystals can grow to the required size and quantity at a higher temperature for a shorter time. In the case of a lower first temperature, it needs to be kept for a longer time to allow the crystals to grow to the required size and quantity.
  • the holding time here is the total time of the heat treatment process.
  • the curved glass 1 can be obtained by processing the annealed glass product 3 .
  • CNC can be used to process the shape and size of the annealed glass product 3 to obtain the curved glass 1 .
  • the embodiments of the present disclosure provide a method for preparing a curved glass 1, by directly introducing the glass melt into the mold 2, and preparing the 3D shape required by the curved glass 1 through a compression molding process, and then gradually cooling to room temperature, after cooling
  • the shape and size of the 3D glass can be trimmed by CNC machining to obtain the curved glass 1.
  • the curved glass 1 is formed by flat glass (that is, 2D glass) through hot bending, and it does not need to go through the flat glass from high temperature.
  • the molding process from high temperature to low temperature can reduce the waste of resources caused by going from high temperature to low temperature, thereby reducing the production cost of the curved glass 1 .
  • curved glass 1 as an example of base glass of equal thickness
  • its preparation route is shown in FIG.
  • the prepared flat glass is subjected to material cutting, CNC processing, cleaning, and then hot-bending to obtain curved glass.
  • the flat glass can be completed by the glass raw material factory.
  • the flat glass can be prepared into curved glass by the cover factory.
  • a total of two rounds of high temperature to low temperature molding process is shown in Figure 9.
  • the glass melt is first formed by pouring or calendering.
  • This process can be completed in the glass raw material factory. Then, after forming The glass needs to be cut, ground, and polished for the second molding. This process can be completed in the thinning factory. Finally, the glass after the second molding is 3D hot-bent by the cover factory. This is the third time. Forming process, in this process, a total of three high-temperature to low-temperature forming processes are performed. At the same time, when the curved glass 1 is a curved glass with unequal thickness, as shown in Figure 10, the entire surface needs to be processed during CNC machining. , It will also cause the loss of processing resources and further increase the cost.
  • the process capability test is calculated by randomly selecting 32 samples produced by the same process, and the size is controlled according to ⁇ 0.07mm, and the process capability index CPK (Complex Process Capability index) is 1 to 1.5; the process capability index is used
  • CPK Complex Process Capability index
  • Some embodiments of the present disclosure provide a curved glass prepared by the method for preparing curved glass as described above.
  • the curved glass has the same technical effect as the above-mentioned method for preparing the curved glass, which will not be repeated here.
  • the curved glass when the curved glass is glass-ceramic, and the main crystal phase of the curved glass includes: one or both of petalite and lithium disilicate, the crystallinity of the curved glass is 75wt% ⁇ 90wt%; when the main crystal phase of the curved glass is lithium silicate or cordierite, the crystallinity of the curved glass is 30wt%-50wt%.
  • the structure and physical and chemical properties of glass-ceramics are related to the crystallinity and main crystal phase, and the crystallinity and main crystal phase of glass-ceramic are related to the heat treatment system. Therefore, by controlling the heat treatment system, the required crystallinity and main crystal phase can be obtained. Crystallized glass-ceramic, under the same heat treatment system, the curved glass has approximately the same crystallinity and main crystal phase as the curved glass prepared in the related art.
  • the Vickers hardness of the curved glass 1 is 550kgf/mm 2 -650kgf/mm 2 ;
  • the Vickers hardness of the curved glass 1 is 650 kgf/mm 2 to 750 kgf/mm 2 . It can be seen that, under the same test conditions, the curved glass 1 has roughly the same hardness as the curved glass prepared in the related art, and can meet the application requirements.
  • the Vickers hardness can be obtained by testing the curved glass 1 with a Vickers hardness tester.
  • the curved glass is glass-ceramic
  • the main crystal phase of the glass-ceramic is cordierite
  • the crystallinity is 30wt%-50wt%
  • the Vickers hardness of the curved glass 1 can be 650kgf/ mm2 ⁇ 700kgf/mm 2 .
  • the main crystal phase of the glass-ceramic is one or both of lithium disilicate and petalite, and the crystallinity is 75wt%-90wt%
  • the Vickers hardness of the curved glass 1 can be 700kgf/ mm 2 ⁇ 750kgf/mm 2 .
  • the Young's modulus of the curved glass is 70Gpa-90Gpa; when the curved glass is glass ceramics In the case of curved glass, the Young's modulus is 90Gpa to 105Gpa. According to Hooke's law, within the elastic limit of the object, the stress and strain become proportional, and the ratio is called the Young's modulus of the material. The size of the Young's modulus indicates the rigidity of the material. Not easy to deform. It can be seen that under the same test conditions, the curved glass 1 has a Young's modulus roughly equivalent to that of the curved glass prepared in the related art, which can meet the application requirements.
  • the curved glass is glass-ceramic
  • the main crystal phase of the glass-ceramic is one of cordierite or lithium silicate
  • the crystallinity is 30wt%-50wt%
  • the modulus is 90Gpa ⁇ 95Gpa.
  • the Young's modulus of the curved glass 1 is 95Gpa-105Gpa .
  • the density of the curved glass when the curved glass is the base glass, the density of the curved glass is 2.4 g/cm 3 -2.5 g/cm 3 ; when the curved glass is glass ceramics, the density of the curved glass is 2.45 g/cm 3 ⁇ 2.65g/cm 3 . Density can be measured using the drainage method. Similar to the above embodiment, under the same test conditions, the density of the curved glass 1 is approximately the same as that of the curved glass prepared in the related art, which can meet the application requirements.
  • the thermal expansion coefficient of the curved glass is 60 ⁇ 10 -7 /°C to 110 ⁇ 10 -7 /°C;
  • the coefficient of thermal expansion of glass is 100 ⁇ 10 -7 /°C to 110 ⁇ 10 -7 /°C.
  • the coefficient of thermal expansion is the expansion and contraction of objects due to temperature changes. Indicates the change of the length value caused by the change of unit temperature. Taking the coefficient of linear expansion as an example, the coefficient of thermal expansion refers to the change of the length of a solid substance in a certain direction when the temperature changes by 1 degree Celsius and its length at 20°C (that is, the standard experiment Room environment) the ratio of the length. Under the same test conditions, the thermal expansion coefficient of the curved glass 1 is equivalent to that of the curved glass prepared in the related art, which can meet the application requirements.
  • the curved glass is glass-ceramic
  • the main crystal phase of the glass-ceramic is one or both of petalite and lithium disilicate
  • the crystallinity is 75wt%-90wt%
  • the The thermal expansion coefficient of the curved glass 1 is 100 ⁇ 10 -7 /°C to 105 ⁇ 10 -7 /°C.
  • the thermal expansion coefficient of the curved glass 1 is 105 ⁇ 10 -7 /°C to 110 ⁇ 10 -7 /°C when the main crystal phase of the glass-ceramics is lithium silicate and the crystallinity is 30wt%-50wt%.
  • Step 1) based on the composition of the curved glass 1, weigh the components with corresponding weights: and mix them into a glass batch.
  • Step 2) after melting and clarifying the glass batch material in step 1) at a high temperature of 1500°C to 1650°C, a molten glass at 950°C is obtained, in which SiO 2 , Al 2 O 3 , P 2 O 5 and B
  • the molar percentage of 2 O 3 is 70%, and the molar percentage of Li 2 O, Na 2 O and K 2 O is 30%.
  • Step 3 divert the clarified molten glass into a molding die coated with a superhard layer at 450° C., with a diversion amount of 20 g to 30 g.
  • Step 4 the shape of the cavity of the above-mentioned mold 2 is designed based on the shape of the product to be produced, and the difference between the maximum and minimum positions of the clamping gap is less than or equal to 0.1 mm.
  • Step 5 the superhard mold uses a pressure of 0.1Mpa to mold the molten glass, and keep it warm for a certain period of time. After the glass product is formed, release the thermal stress to room temperature through slow cooling, and the cooling rate is 1°C/min. The cooling process is done in a heating chamber.
  • Step 6 the above-mentioned formed glass, using CNC technology, optimizes the size of the curved glass through the alignment of the center point, and trims it into the required external size.
  • the steps of Scheme 2 are basically the same as those of Scheme 1. The difference is that in Scheme 2, the temperature of the clarified molten glass obtained in step 2) is 1300°C, and SiO 2 , Al 2 O 3 , P The molar percentage of 2 O 5 and B 2 O 3 is 85%, the molar percentage of Li 2 O, Na 2 O and K 2 O is 7%, and the molar percentage of MgO and CaO is 8%.
  • the mold temperature in step 3) is 800° C.
  • the molding pressure in step 5) is 0.5 MPa
  • the slow cooling rate is 100° C./min.
  • the steps of scheme three are basically the same as those of scheme one, the difference is that in scheme three, the temperature of the clarified molten glass obtained in step 2) is 1000°C, SiO 2 , Al 2 O 3 , P
  • the molar percentage of 2 O 5 and B 2 O 3 is 80%, the molar percentage of Li 2 O, Na 2 O and K 2 O is 20%, and the molar percentage of MgO and CaO is 0%.
  • the mold temperature in step 3) is 600° C.
  • the molding pressure in step 5) is 0.3 MPa
  • the slow cooling rate is 50° C./min.
  • Step 1) based on the composition of the curved glass 1, weigh the components with corresponding weights: and mix them into a glass batch.
  • Step 2) after melting and clarifying the glass batch material in step 1) at a high temperature of 1500°C to 1650°C, a molten glass at 950°C is obtained, in which SiO 2 , Al 2 O 3 , P 2 O 5 and B
  • the molar percentage of 2 O 3 is 70%
  • the molar percentage of Li 2 O, Na 2 O and K 2 O is 20%
  • the molar percentage of zirconia is 10%.
  • Step 3 divert the clarified molten glass into the mold 2 coated with a superhard layer at 250° C., and the diversion amount is 20 g to 30 g.
  • Step 4 the shape of the cavity of the above-mentioned mold 2 is designed based on the shape of the product to be produced, and the difference between the maximum and minimum positions of the clamping gap is less than or equal to 0.1mm.
  • Step 5 superhard mold 2 adopts the pressure molding glass liquid of 0.1Mpa, and molds and obtains the 3D glass product, then, adjusts the temperature of the 3D glass product to rise from 250 DEG C to 800 DEG C, the holding time of crystallization (also That is, the heat treatment time) is 24 hours to obtain a 3D curved glass-ceramic, and the main crystal phase formed is one or two of lithium disilicate and petalite feldspar.
  • the crystallinity measured by XRD (X-ray Diffraction) was 90 wt%.
  • Step 6 the 3D curved glass-ceramic after crystallization is slowly cooled to release thermal stress to room temperature, and the cooling rate is 1° C./min.
  • the cooling process is completed in a plurality of heating chambers with gradually lowering temperature.
  • Step 7 the glass after the above-mentioned forming, adopts CNC technology, optimizes the size of the curved glass through center point alignment, and repairs it into the required external dimension.
  • the steps of Scheme 5 and Scheme 4 are basically the same, the difference is that in Scheme 5, the temperature of the clarified molten glass obtained in step 2) is 1300°C, SiO 2 , Al 2 O 3 , P
  • the molar percentage of 2 O 5 and B 2 O 3 is 75%, the molar percentage of Li 2 O, Na 2 O and K 2 O is 18%, the molar percentage of MgO and CaO is 6%, the oxidation
  • the molar percentage of zirconium is 1%, and in step 3) the temperature of mold is 800 °C, and in step 5) the pressure of molding is 0.5Mpa, and the holding time of crystallization (being the time of heat treatment) is 5min, step 6)
  • the cooling rate is 100° C./min, the main crystal phase in Scheme 5 is lithium silicate, and the crystallinity is 30 wt%.
  • the steps of Scheme 6 and Scheme 4 are basically the same, the difference is that in Scheme 6, the temperature of the clarified molten glass obtained in step 2) is 1000°C, SiO 2 , Al 2 O 3 , P
  • the molar percentage of 2 O 5 and B 2 O 3 is 85%, the molar percentage of Li 2 O, Na 2 O and K 2 O is 7%, the molar percentage of MgO and CaO is 4%, the oxidation
  • the molar percentage of zirconium is 4%, and in step 3) the temperature of mold is 800 °C, and in step 5) the pressure of mold pressing is 0.5Mpa, and the holding time of crystallization (that is, the time of heat treatment) is 10h, the step 6)
  • the cooling rate is 50°C/min, the main crystal phase in scheme 6 is cordierite, and the crystallinity is 45wt%.
  • the curved glass 1 obtained in the above experimental example 1 and experimental example 2 all meet the design requirements of the mobile phone back cover, and the crystallinity of the curved glass-ceramics can reach more than 30wt%, and can be as high as 90wt%. Glass-ceramic can meet application requirements.
  • the 3D shape required by the curved glass 1 is prepared through the compression molding process, and then gradually cooled to room temperature, and the cooled 3D glass is processed by CNC machining to adjust the shape and shape.
  • the curved glass 1 can be obtained.
  • the curved glass 1 is formed by hot bending of flat glass, it does not need to go through the forming process of flat glass from high temperature to low temperature, and can reduce the forming process from high temperature to low temperature.
  • the preparation process is shortened, thereby reducing the waste of resources caused by the transition from high temperature to low temperature in related technologies, and reducing production costs.
  • the obtained curved glass has the same physical and chemical properties as the curved glass prepared by the preparation method provided by the related art, and can meet the requirements of the cover plate of the electronic equipment.

Abstract

本申请涉及电子产品技术领域,尤其涉及一种曲面玻璃及其制备方法和电子设备。可以减少从高温到低温的成型过程,缩短制备流程,从而可以降低相关技术中从高温到低温的所造成的资源浪费,降低制作成本。本申请提供一种曲面玻璃的制备方法,包括:将玻璃配合料熔制成玻璃液,并对所述玻璃液进行澄清;将澄清后的玻璃液引流入具有预设形状的模具型腔内,通过模压成型工艺形成具有与所述曲面玻璃对应的形状的玻璃制品,所述玻璃制品的尺寸大于所述曲面玻璃的尺寸;对成型后的所述玻璃制品进行退火;根据所述曲面玻璃的形状和尺寸,将退火后的所述玻璃制品加工成所述曲面玻璃。

Description

曲面玻璃及其制备方法和电子设备
本申请要求于2021年06月11日提交国家知识产权局、申请号为202110656751.9、发明名称为“曲面玻璃及其制备方法和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子产品技术领域,尤其涉及一种曲面玻璃及其制备方法和电子设备。
背景技术
目前,曲面玻璃在电子设备中被大规模地应用,如曲面玻璃可以作为盖板应用于终端产品(如手机、平板电脑等)中。
发明内容
本申请的主要目的在于,提供一种曲面玻璃及其制备方法和电子设备。可以减少从高温到低温的成型过程,缩短制备流程,从而可以降低相关技术中从高温到低温的所造成的资源浪费,降低制作成本。
为达到上述目的,本发明采用如下技术方案:
第一方面,本申请提供一种曲面玻璃的制备方法,包括:将玻璃配合料熔制成玻璃液,并对所述玻璃液进行澄清;将澄清后的玻璃液引流入具有预设形状的模具型腔内,通过模压成型工艺形成具有与所述曲面玻璃对应的形状的玻璃制品,所述玻璃制品的尺寸大于所述曲面玻璃的尺寸;对成型后的所述玻璃制品进行退火;根据所述曲面玻璃的形状和尺寸,将退火后的所述玻璃制品加工成所述曲面玻璃。通过将玻璃熔体直接引流入模具中,通过模压成型工艺制备成曲面玻璃所需的3D形态,然后逐渐冷却至室温,冷却后的3D玻璃通过后续机械加工,即可得到曲面玻璃,与相关技术中曲面玻璃由平板玻璃(也即2D玻璃)通过热弯成型相比,无需经过平板玻璃从高温到低温的成型过程,可以降低从高温到低温所造成的资源浪费,从而能够降低曲面玻璃的制作成本。
在第一方面的一种实现方式中,所述澄清后的玻璃液的温度和所述模具的温度之差大于或等于250℃小于或等于500℃。在曲面玻璃为基础玻璃的情况下,通过控制澄清后的玻璃液的温度和所述模具的温度之差在上述范围内,可以避免玻璃液冷却过快,受冷却引入的玻璃张应力影响玻璃破裂,以及玻璃液冷却过慢,存在玻璃析晶失去透明性的风险。
在第一方面的一种实现方式中,所述澄清后的玻璃液的温度为950℃~1300℃,所述模具的温度为450℃~800℃。示例的,可以用于玻璃配合料包括硅砂(二氧化硅或石英砂)、五氧化二磷、氧化铝、氧化硼、碳酸锂、碳酸钠、碳酸钾、碳酸镁和碳酸钙等的曲面玻璃的制备。
在第一方面的一种实现方式中,所述曲面玻璃是微晶玻璃;所述玻璃配合料中还含有晶核剂;在将澄清后的玻璃液引流入具有预设形状的模具型腔内,通过模压成型工艺形成具有与所述曲面玻璃对应的形状的玻璃制品之后,在对成型后的所述玻璃制品进行退火之前,还包括:对成型后的所述玻璃制品进行晶化处理。可以在模具中形 成3D玻璃之后,直接对玻璃制品进行晶化处理,提高制备效率。同时,通过在玻璃配合料中添加晶核剂,更有利于对晶化过程进行控制,获得较高结晶度的微晶玻璃,并能够提高结晶速率。
在第一方面的一种实现方式中,所述澄清后的玻璃液的温度和所述模具的温度之差大于或等于500℃小于或等于800℃。在曲面玻璃是微晶玻璃的情况下,通过控制澄清后的玻璃液的温度和所述模具的温度之差在上述范围内,与曲面玻璃是基础玻璃不同,无需考虑玻璃液冷却过快导致玻璃破裂的问题,相反地,在玻璃液冷却过慢的情况下,容易存在玻璃析晶,并使得晶核长大快,反而使得玻璃容易破裂,并且,与曲面玻璃是基础玻璃相同,玻璃液冷却过慢还会由于无法对玻璃析晶条件进行有效控制,存在玻璃析晶失去透明性的问题,
在第一方面的一种实现方式中,所述澄清后的玻璃液的温度为950℃~1300℃,所述模具的温度为250℃~500℃。示例的,可以用于玻璃配合料包括硅砂(二氧化硅或石英砂)、五氧化二磷、氧化铝、氧化硼、碳酸锂、碳酸钠、碳酸钾、碳酸镁、碳酸钙和氧化锆等的曲面微晶玻璃的制备。
在第一方面的一种实现方式中,所述对成型后的所述玻璃制品进行晶化处理,包括:对所述成型后的玻璃制品进行热处理,使所述成型后的玻璃制品中产生分相、形成晶核并长出晶体。
在第一方面的一种实现方式中,所述对所述成型后的玻璃制品进行热处理,包括:将所述成型后的玻璃制品放置在一个加热腔中,对所述加热腔进行热处理;或者,将所述成型后的玻璃制品依次转移至多个温度逐渐升高的加热腔中,并在各个加热腔中,对所述成型后的玻璃制品保温预设时间,以对所述成型后的玻璃制品进行热处理。
在第一方面的一种实现方式中,所述热处理的温度变化范围为第一温度到第二温度;所述第一温度是成型后的所述玻璃制品所对应的模具的温度,所述第二温度与所述第一温度之差大于或等于100℃小于或等于400℃。可以满足微晶玻璃中的晶体生长所需要的温度条件,提高结晶度。
在第一方面的一种实现方式中,所述对成型后的所述玻璃制品进行退火,包括:对所述成型后的玻璃制品进行程序降温处理,使所述成型后的玻璃制品冷却至室温。程序降温处理是指:通过程序控制进行降温的处理过程。示例的,可以用程序加热腔设定程序将玻璃制品由脱模后的温度降低到室温,可以实现缓慢冷却释放热应力到室温。
在第一方面的一种实现方式中,所述对所述成型后的玻璃制品进行程序降温处理,使所述成型后的玻璃制品冷却至室温,包括:将所述成型后的玻璃制品放置在一个加热腔中,对所述加热腔进行程序降温处理;或者,将所述成型后的玻璃制品依次转移至多个温度逐渐降低的加热腔中,并在各个加热腔中,对所述成型后的玻璃制品保温预设时间,以对所述成型后的玻璃制品进行程序降温处理。
在第一方面的一种实现方式中,所述程序降温的速度为1℃/min~100℃/min。
在第一方面的一种实现方式中,在所述模压成型工艺中,合模间隙的尺寸与所述曲面玻璃在对应位置处的厚度之差大于或等于0小于或等于0.1mm。可以尽可能保持合模间隙的均匀性,防止合模间隙过大或过小的情况发生。
在第一方面的一种实现方式中,在所述模压成型工艺中,模压的压力为0.1MPa~0.5MPa。可以提高成型质量。
在第一方面的一种实现方式中,在所述模压成型工艺中,模压的工作环境为真空或惰性气体保护气氛。
在第一方面的一种实现方式中,所述玻璃制品的尺寸与所述曲面玻璃的尺寸之差大于或等于0.02mm小于或等于0.5mm。可以通过CNC(Computerized Numerical Control,计算机数控)精密机械加工对玻璃制品的尺寸和外形进行改变,即可得到曲面玻璃,加工质量稳定,加工精度高,重复精度高,可用于批量生产。
第二方面,提供一种通过如上所述的曲面玻璃的制备方法制备获得的曲面玻璃。该曲面玻璃可以满足电子设备的盖板的设计要求,且曲面微晶玻璃的结晶度可以满足应用需求。
在第二方面的一种实现方式中,在所述曲面玻璃为基础玻璃的情况下,所述曲面玻璃的维式硬度为550kgf/mm 2~650kgf/mm 2;在所述曲面玻璃为微晶玻璃的情况下,所述曲面玻璃的维式硬度为650kgf/mm 2~750kgf/mm 2。在相同的测试条件下,该曲面玻璃具有与相关技术中制备的曲面玻璃大致相当的硬度,可以达到应用要求。
在第二方面的一种实现方式中,在所述曲面玻璃为基础玻璃的情况下,所述曲面玻璃的杨氏模量为70Gpa~90Gpa;在所述曲面玻璃为微晶玻璃的情况下,所述曲面玻璃的杨氏模量为90Gpa~105Gpa。在相同的测试条件下,该曲面玻璃具有与相关技术中制备的曲面玻璃大致相当的杨氏模量,可以达到应用要求。
在第二方面的一种实现方式中,在所述曲面玻璃为基础玻璃的情况下,所述曲面玻璃的密度为2.4g/cm 3~2.5g/cm 3;在所述曲面玻璃为微晶玻璃的情况下,所述曲面玻璃的密度为2.45g/cm 3~2.65g/cm 3。在相同的测试条件下,该曲面玻璃的密度与相关技术中制备的曲面玻璃的密度大致相同,可以达到应用要求。
在第二方面的一种实现方式中,在所述曲面玻璃为基础玻璃的情况下,所述曲面玻璃的热膨胀系数为60×10 -7/℃~110×10 -7/℃;在所述曲面玻璃为微晶玻璃的情况下,所述曲面玻璃的热膨胀系数为100×10 -7/℃~110×10 -7/℃。在相同的测试条件下,该曲面玻璃1的热膨胀系数与相关技术中制备的曲面玻璃的热膨胀系数相当,可以达到应用要求。
在第二方面的一种实现方式中,在所述曲面玻璃为微晶玻璃,且所述曲面玻璃的主晶相包括:透锂长石和二硅酸锂中的一种或两种的情况下,所述曲面玻璃的结晶度为75wt%~90wt%;在所述曲面玻璃的主晶相为硅酸锂或堇青石的情况下,所述曲面玻璃的结晶度为30wt%~50wt%。在热处理制度相同的情况下,该曲面玻璃具有与相关技术中制备的曲面玻璃大致相同的结晶度和主晶相。
第三方面,提供一种电子设备,包括:如上所述的曲面玻璃。
在第三方面的一种实现方式中,所述电子设备为手机、平板电脑或可穿戴智能产品。
本申请提供一种曲面玻璃及其制备方法和电子设备,通过将玻璃熔体直接引流入模具中,通过模压成型工艺制备成曲面玻璃所需的3D形态,然后逐渐冷却至室温,冷却后的3D玻璃通过CNC机械加工对外形和尺寸进行修整,即可得到曲面玻璃,与 相关技术中曲面玻璃由平板玻璃(也即2D玻璃)通过热弯成型相比,无需经过平板玻璃从高温到低温的成型过程,可以降低从高温到低温所造成的资源浪费,从而能够降低曲面玻璃的制作成本。
附图说明
图1为本申请提供的一种曲面玻璃作为手机前后盖的结构图;
图2为本申请提供的一种曲面玻璃的制备方法的流程图;
图3为本申请提供的一种曲面玻璃的内部结构图;
图4为本申请提供的另一种曲面玻璃的内部结构图;
图5为本申请提供的一种玻璃制品的制备方法的流程图;
图6为本申请提供的另一种玻璃制品的制备方法的流程图;
图7为本申请提供的另一种曲面玻璃的制备方法的流程图;
图8为相关技术提供的一种曲面玻璃的制备方法的流程图;
图9为相关技术提供的另一种曲面玻璃的制备方法的流程图;
图10为相关技术提供的又一种曲面玻璃的制备方法的流程图。
具体实施方式
下面将结合附图,对本申请的实施例进行详细描述。
本公开的一些实施例提供一种电子设备,电子设备包括曲面玻璃。其中,该电子设备也可以称为电子产品或终端,可以包括手机、移动电脑、电子书、平板电脑(portable android device,Pad)、智能电视、个人数字助理(Personal Digital Assistant,PDA)和可穿戴智能产品等。其中,可穿戴智能产品可以包括但不限于媒体播放器、智能手表、智能眼镜、智能手环等。
其中,曲面玻璃是相对于平板玻璃而言的,根据曲面玻璃中一个面是曲面还是两个均是曲面,曲面玻璃可以包括单曲面玻璃和双曲面玻璃。
在一些实施例中,该电子设备可以为手机、平板电脑或可穿戴智能产品。
其中,如图1所示,示出了曲面玻璃1作为盖板用于手机的前后盖,曲面玻璃1为双曲面玻璃的情形,如图1中的(a)所示,为曲面玻璃1作为盖板用于手机的前后盖的正面视图,如图1中的(b)所示,为曲面玻璃作为盖板用于手机的前后盖的侧面视图。
在一些实施例中,该曲面玻璃1在作为盖板应用于电子设备的情况下,该曲面玻璃1的表面1a还可以设置有漆层和/或防指纹层。
其中,曲面玻璃1可以采用硅铝玻璃材料制成,漆层可以采用丝印油墨形成,防指纹层是通过涂覆无色无味的透明液体形成的涂层,可以使玻璃、金属、陶瓷、塑料等材质具有防水防油防污防指纹附着,使产品表面光滑,可以起到防指纹的作用。
本公开的一些实施例提供一种曲面玻璃1的制备方法,如图2所示,包括:
S1、将玻璃配合料熔制成玻璃液,并对玻璃液进行澄清。
其中,上述曲面玻璃1可以采用硅铝玻璃材料制成,这时,玻璃配合料是铝硅玻璃材料,示例的,Al 2O 3和SiO 2的摩尔百分含量之和大于75mol%,与传统的钠钙玻璃相比,具有更好的物理、化学特性。
示例的,在一些实施例中,该曲面玻璃1的玻璃配合料可以包括硅砂(二氧化硅 或石英砂)、五氧化二磷、氧化铝、氧化硼、碳酸锂、碳酸钠、碳酸钾、碳酸镁和碳酸钙等。
在这些实施例中,该曲面玻璃1具有较好的化学稳定性、电绝缘性、机械强度以及较低的热膨胀系数。
其中,根据上述曲面玻璃1是否有晶体存在,可以有两种可能的情况,第一种情况,如图3所示,上述曲面玻璃1是微晶玻璃,此时,该曲面玻璃1中析出有大量的微小晶体,为微晶相和玻璃相组成的多相复合体。第二种情况,如图4所示,上述曲面玻璃1不是微晶玻璃,此时,该曲面玻璃1中不存在晶体,也即该曲面玻璃1是易碎的基础玻璃。基础玻璃是微晶玻璃的前驱体,是未析出晶体时的状态,由晶体和玻璃体共同组成,具有玻璃和陶瓷的双重特性,其比陶瓷的透明性高,比玻璃韧性强,具有较好的应用前景,可以用作机械上的结构材料,电子、电工上的绝缘材料,大规模集成电路的底板材料、微波炉耐热列器皿、化工与防腐材料和矿山耐磨材料等,具有机械强度高,绝缘性能优良,介电损耗少,介电常数稳定,热膨胀系数可在很大范围调节,耐化学腐蚀,耐磨,热稳定性好,使用温度高等优点。
在一些实施例中,如图3所示,上述曲面玻璃1是微晶玻璃。
在这些实施例中,微晶玻璃可以通过对基础玻璃进行晶化获得。基础玻璃是一种非晶态的固体,从热力学的观点来看,它处于一种亚稳状态(也即材料会以高于平衡态时自由能的状态存在,处于一种非平衡的亚稳态),较之晶体有较高的内能,所以在一定条件下,可以转化为结晶态。从动力学观点来看,玻璃熔体(也就是熔制所获得的玻璃液)在冷却过程中,粘度急剧增加,抑制晶核的形成和晶体长大,阻止了结晶体的生长壮大。在不加晶核剂的情况下,利用非均相结晶化机理,充分利用热力学上的可能和动力学上的抑制,在一定条件下,使这种相辅相成的物理过程形成一个新的平衡,即可得到微晶玻璃,但这种方式利用的非均相结晶,获得的微晶玻璃均匀性较差。而在加晶核剂的情况下,通过在基础玻璃中形成晶核,再经热处理使晶核长大,即可得到均匀分布的微晶玻璃。
因此,在本公开的一些实施例中,在曲面玻璃1是微晶玻璃的情况下,该曲面玻璃1的玻璃配合料中还含有晶核剂。通过在玻璃配合料中添加晶核剂,与不添加晶核剂相比,更有利于对晶化过程进行控制,获得较高结晶度且均匀分布的微晶玻璃,并能够提高结晶速率。
在上述示例中,在曲面玻璃1是微晶玻璃的情况下,该曲面玻璃1的玻璃配合料除包括上述各组成成分之外,还包含有氧化锆等晶核剂。氧化锆在上述玻璃配合料中的摩尔百分占比可以大于0小于或等于10%。
在对曲面玻璃1的玻璃配合料熔制过程中,玻璃配合料高温分解(气化)产生气体,通过在玻璃液中添加澄清剂,可以消除玻璃液中的气泡,并降低玻璃液的粘度。
其中,以上述曲面玻璃1的玻璃配合料包括:硅砂(二氧化硅或石英砂)、五氧化二磷、氧化铝、氧化硼、碳酸锂、碳酸钠、碳酸钾、碳酸镁和碳酸钙等为例,在玻璃熔制过程中,碳酸钠、碳酸锂、碳酸钾、碳酸镁和碳酸钙等均可以在高温下分解产生二氧化碳,澄清后,玻璃液的组成可以包括:SiO 2、Al 2O 3、P 2O、B 2O 3、Li 2O、Na 2O、K 2O以及MgO和CaO等。
其中,在一些示例中,在上述曲面玻璃1是基础玻璃的情况下,SiO 2、Al 2O 3、P 2O和B 2O 3的摩尔百分含量可以为70%~85%,Li 2O、Na 2O和K 2O的摩尔百分含量可以为7%~30%,MgO和CaO的摩尔百分含量可以为0%~8%。
在上述曲面玻璃1是微晶玻璃的情况下,SiO 2、Al 2O 3、P 2O和B 2O 3的摩尔百分含量可以为70%~85%,Li 2O、Na 2O和K 2O的摩尔百分含量可以为7%~24%,MgO和CaO的摩尔百分含量可以为0%~6%,氧化锆的摩尔百分含量可以为0%~10%。
其中,根据上述在该曲面玻璃1的玻璃配合料中还含有晶核剂的情况下,可以获得较高结晶度且均匀分布的微晶玻璃,可以得知,在一些实施例中,氧化锆的摩尔百分含量为1%~10%。也即,氧化锆的摩尔百分含量大于或等于1%。
S2、如图5和图6所示,将澄清后的玻璃液引流入具有预设形状的模具2型腔内,通过模压成型工艺形成具有与曲面玻璃1对应的形状的玻璃制品3,其中,玻璃制品3的尺寸大于曲面玻璃1的尺寸。
模具2包括动模21和定模22(或凸模和凹模)两个部分,二者可分可合。分开时取出制件,合拢时使成型材料注入模具2型腔成形。
模压是压缩模塑的简称,又称压塑。是成型材料在闭合模腔(也即模具型腔)内借助加热、加压而成型为制品的加工方法。
其中,根据玻璃是混合物,是非晶体,与结晶物质不同,无固定的熔沸点,可以得知,玻璃由固体转变为液体是在一定温度区域(即软化温度范围)内进行的,该软化温度范围是从Tg到T1,Tg为转变温度,T1为液相线温度,转变温度是指由玻璃态转变为高弹态所对应的温度,液相线温度是物体开始由液态变为固态的最高温度。
在上述实施例中,通过将澄清后的玻璃液引流入具有预设形状的模具2型腔内,并对模具2的温度进行控制,在加压下,使澄清后的玻璃液在冷却过程中从熔融态冷却至玻璃态,即可得到外形与模具2型腔的表面形状大致相同的玻璃制品3,该模具2型腔的预设形状可以与曲面玻璃1的形状大致相同,这样,即可得到与曲面玻璃1的形状大致相同的玻璃制品3,而通过控制该玻璃制品3的尺寸大于曲面玻璃1的尺寸,通过对该玻璃制品3进行进一步加工(如切削,打磨等工艺),即可得到曲面玻璃1。
根据上述玻璃态一般是由熔融态快速冷却而得到,从熔融态向玻璃态转变时,冷却过程中玻璃黏度急剧增大,质点来不及做有规则排列而形成晶体,没有释出结晶潜热,因此,玻璃态物质比结晶态物质含有较高的内能,其能量介于熔融态和结晶态之间,属于亚稳状态。从力学观点看,玻璃是一种不稳定的高能状态,比如存在低能量状态转化的趋势,即有析晶倾向,因此,在该曲面玻璃1是基础玻璃的情况下,在对玻璃液冷却过程中,为了避免玻璃液冷却过快,受冷却引入的玻璃张应力影响玻璃破裂,以及玻璃液冷却过慢,存在玻璃析晶失去透明性的风险,可选的,如图5所示,澄清后的玻璃液的温度和模具2的温度之差大于或等于250℃小于或等于500℃。而在曲面玻璃1是微晶玻璃的情况下,与曲面玻璃1是基础玻璃不同,在玻璃液冷却过慢的情况下,容易存在玻璃析晶,并使得晶核长大快,反而使得玻璃容易破裂,并且,与曲面玻璃1是基础玻璃相同,玻璃液冷却过慢还会由于无法对玻璃析晶条件进行有效控制,存在玻璃析晶失去透明性的问题,因此,可选的,如图6所示,在曲面玻璃1是微晶玻璃的情况下,澄清后的玻璃液的温度和模具2的温度之差大于或等于500 ℃小于或等于800℃。
基于以上示例,在曲面玻璃1的玻璃配合料包括硅砂(二氧化硅或石英砂)、五氧化二磷、氧化铝、氧化硼、碳酸锂、碳酸钠、碳酸钾、碳酸镁和碳酸钙等,且曲面玻璃1是基础玻璃的情况下,澄清后的玻璃液的温度可以为950℃~1300℃,模具2的温度可以为450℃~800℃。也即,根据在曲面玻璃1是基础玻璃的情况下,澄清后的玻璃液的温度和模具2的温度之差大于或等于250℃小于或等于500℃,可以得知,在澄清后的玻璃液的温度为950℃的情况下,模具2的温度可以为450(950减去500)℃~700(950减去250)℃之间的任意值,在澄清后的玻璃液的温度为1300℃的情况下,模具2的温度可以为800(1300减去500)℃,在澄清后的玻璃液的温度为1200℃的情况下,模具2的温度可以为700(1200减去500)℃~800(1200减去400)℃之间的任意值,在澄清后的玻璃液的温度为1100℃的情况下,模具2的温度可以为600(1100减去500)℃~800(1100减去300)℃之间的任意值,在澄清后的玻璃液的温度为1000℃的情况下,模具2的温度可以为500(1000减去500)℃~750(1000减去250)℃之间的任意值。
在曲面玻璃1的玻璃配合料包括硅砂(二氧化硅或石英砂)、五氧化二磷、氧化铝、氧化硼、碳酸锂、碳酸钠、碳酸钾、碳酸镁和碳酸钙等,且曲面玻璃1是微晶玻璃的情况下,澄清后的玻璃液的温度可以为950℃~1300℃,模具2的温度可以为250℃~500℃。也即,根据在曲面玻璃1是微晶玻璃的情况下,澄清后的玻璃液的温度和模具2的温度之差大于或等于500℃小于或等于800℃,可以得知,在澄清后的玻璃液的温度为950℃的情况下,模具2的温度可以为250(950减去700)℃~500(950减去450)℃之间的任意值,在澄清后的玻璃液的温度为1300℃的情况下,模具2的温度可以为500(1300减去800)℃,在澄清后的玻璃液的温度为1200℃的情况下,模具2的温度可以为400(1200减去800)℃~700(1200减去500)℃之间的任意值,在澄清后的玻璃液的温度为1100℃的情况下,模具2的温度可以为300(1100减去800)℃~500(1100减去600)℃之间的任意值,在澄清后的玻璃液的温度为1000℃的情况下,模具2的温度可以为250(1000减去750)℃~500(1000减去500)℃之间的任意值。
在模压成型工艺中,通过将澄清后的玻璃液引流入模具2型腔中,再通过合模加压,使玻璃液固化为外形与型腔的表面形状大致相同的玻璃制品3,在此过程中,模具2的温度即为模压的温度,模压的时间可以是保持澄清后的玻璃液的温度冷却到与模具2的温度相同所需要的时间。
在上述合模过程中,合模间隙过大或过小都会影响产品的成型,合模间隙过大,产品可能会不饱满而产生缺陷,合模间隙过小,产品会出现过多的毛刺和飞边,因此,合模间隙不可过大或过小。
在一些实施例中,合模间隙的尺寸与曲面玻璃1在对应位置处的厚度之差均不超过0.1mm。也即,不论等厚产品或不等厚产品,合模间隙的尺寸与曲面玻璃1在对应位置处的厚度之差均不超过0.1mm,可以尽可能保持合模间隙的均匀性,同时,还能够避免合模间隙过大或过小的情况发生。
在一些实施例中,在模压成型工艺中,模压的压力为0.1MPa~0.5Mpa。可以提高 成型质量。
在一些实施例中,在模压成型工艺中,模压的工作环境为真空或惰性气体保护气氛。可以在模压机中进行。惰性气体可以为氮气或氩气等。
其中,对上述模具的材料不做具体限定,由于在制备过程中,需要在高温高压环境下进行,因此,在一些实施例中,模具2的材料可以为超硬合金材料或者石墨材料,该超硬合金材料的表面可以镀有超硬涂层(如氮化钛、类金刚石膜等),该超硬合金材料可以为钢。该石墨材料的表面可以镀有碳化硅等。
其中,对玻璃制品3的尺寸与曲面玻璃1的尺寸之差不做具体限定,只要玻璃制品3的尺寸大于曲面玻璃1的尺寸,并可以通过后续机械加工等手段将玻璃制品3加工成曲面玻璃1即可。
在一些实施例中,玻璃制品3的尺寸与曲面玻璃1的尺寸之差大于或等于0.02mm小于或等于0.5mm。可以通过CNC(Computerized Numerical Control,计算机数控)精密机械加工对玻璃制品3的尺寸和外形进行改变,即可得到曲面玻璃1,加工质量稳定,加工精度高,重复精度高,可用于批量生产。
S3、对成型后的玻璃制品3进行退火。
上述玻璃制品3在脱模之后,温度较高,若直接将玻璃制品3放在室温下自然冷却,则容易炸裂,从而导致玻璃制品3破碎,因此,玻璃制品3需要通过缓慢冷却释放热应力到室温,也即,可以对玻璃制品3进行退火处理,在退火过程中,玻璃制品3可以仍然放置于模具中。
退火是一种对材料的热处理工艺,包括金属材料和非金属材料。例如,对于玻璃制品而言,退火是指将玻璃制品缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却(通常是缓慢冷却,有时是控制冷却)的工艺。
在一些实施例中,对成型后的玻璃制品3进行退火,包括:
对成型后的玻璃制品3进行程序降温处理,使成型后的玻璃制品3冷却至室温。
这里的室温是指室内温度,对于不同的地区而言,室内温度可以是制作曲面玻璃1所在的地区的室内温度,对于任意一个地区而言,其室内温度可以根据季节变化和自然环境来进行确定,也即,对于任意一个地区而言,其室内温度可以与当地的环境温度大致相同。
示例的,室温可以为25℃~35℃。
程序降温处理是指:通过程序控制进行降温的处理过程。示例的,可以用程序加热腔设定程序将玻璃制品3由脱模后的温度降低到室温。
在一些实施例中,对成型后的玻璃制品3进行程序降温处理,使成型后的玻璃制品3冷却至室温,可以包括:
将成型后的玻璃制品3放置在一个加热腔中,对加热腔进行程序降温处理。
或者,将成型后的玻璃制品3依次转移至多个温度逐渐降低的加热腔中,并在各个加热腔中,对成型后的玻璃制品3保温第一预设时间,以对成型后的玻璃制品3进行程序降温处理。
在这些实施例中,上述加热腔示例的可以为马弗炉所具有的保温腔。
在一些实施例中,程序降温的速度可以为1℃/min~100℃/min。示例的,在将成型 后的玻璃制品3放置在一个加热腔中,对加热腔进行程序降温处理的情况下,可以设定该加热腔的程序降温速度为1℃/min,从而完成程序降温,而在将成型后的玻璃制品依次转移至多个温度逐渐降低的加热腔中,并在各个加热腔中,对成型后的玻璃制品3保温第一预设时间,以对成型后的玻璃制品3进行程序降温处理的情况下,可以设定多个加热腔的温度分别相差100℃,并在每个加热腔中保温1min(也即第一预设时间为1min),同样能够完成程序降温,并且与上述将成型后的玻璃制品3放置在一个加热腔中进行程序降温相比,可以提高降温速度,但是,降温后的玻璃制品3的致密度较差。
在此,需要说明的是,上述仅描述了曲面玻璃1是基础玻璃时,在玻璃制品3成型之后,对玻璃制品3进行退火的情形,本领域技术人员能够理解的是,在曲面玻璃1是微晶玻璃的情况下,该制备方法还包括对玻璃制品3进行晶化处理的步骤,该步骤可以发生在退火之后,也可以发生在退火之前,在此不做具体限定。
在一些实施例中,在曲面玻璃1是微晶玻璃的情况下,在将澄清后的玻璃液引流入具有预设形状的模具2型腔内,通过模压成型工艺形成具有与曲面玻璃1对应的形状的玻璃制品3之后,在对成型后的玻璃制品3进行退火之前,如图7所示,还包括:S4、对成型后的玻璃制品3进行晶化处理。
晶化,即非晶态物质转化为晶体的过程。其中非晶态物质是原子排布不具有长程有序性的物质,熔点不固定,处于亚稳态,具有自发地向稳态转变的趋势。晶体是内部质点(原子、分子、离子)在三维空间成周期性重复排列的物质,具有长程有序性(大于微米尺度范围内规则排列)。
在一些实施例中,对成型后的玻璃制品3进行晶化处理,包括:如图6所示,对成型后的玻璃制品3进行热处理,使成型后的玻璃制品3中产生分相、形成晶核并长出晶体。
热处理是使微晶玻璃产生预定结晶相和玻璃相的关键工序。在玻璃制品3的组成确定后,微晶玻璃的结构与性能主要取决于热处理制度(热处理温度与保温时间)。在热处理过程中,玻璃制品3中可能产生分相、晶核形成、晶体生长及二次结晶形成等现象。对于不同种类的微晶玻璃,上述各过程进行的方式也不同。
微晶玻璃的成核与晶体生长通常是在转变温度Tg以上、主晶相熔点以下进行的。一般在相当于10×10 10Pa·s~10×10 11Pa·s粘度的温度下保持一定时间来进行核化处理,使玻璃制品3中形成一定数量且分布均匀的晶核。对于一些极易析晶的玻璃制品3(如熔体粘度较小、碱金属氧化物含量较多的体系),也可以省去核化阶段而将其直接加热到晶体生长温度,因为这些玻璃制品3在升温过程中就可以完成核化,产生大量晶核。由此可见,对于不同种类的微晶玻璃,成核温度不同及晶体长大的温度和速度不同,在不同的温度下的保温时间也不相同。
在一些实施例中,对成型后的玻璃制品3进行热处理,可以包括:
将成型后的玻璃制品3放置在一个加热腔中,对加热腔进行热处理。
或者,将成型后的玻璃制品依次转移至多个温度逐渐升高的加热腔中,并在各个加热腔中,对成型后的玻璃制品3保温第二预设时间,以对成型后的玻璃制品3进行热处理。
该热处理过程可以是程序升温处理过程,与上述程序降温处理相类似的,程序升温处理,是通过程序控制进行升温的处理过程。可以用程序加热腔设定程序将玻璃制品3由脱模后的温度升高到一定的温度。
在这些实施例中,上述加热腔示例的也可以为马弗炉所具有的加热腔。
其中,程序升温的速度和保温时间可以根据微晶玻璃的种类、微晶体的尺寸和数量以及残余玻璃相的性质和数量来确定,在此不做具体限定。
在一些实施例中,针对不同种类的微晶玻璃,在上述制备过程中,热处理的温度变化范围可以为第一温度到第二温度。第一温度是成型后的玻璃制品3所对应的模具2的温度,第二温度与第一温度之差大于或等于100℃小于或等于400℃。可以满足微晶玻璃中的晶体生长所需要的温度条件,提高结晶度。
其中,根据上述在曲面玻璃1是微晶玻璃的情况下,模具2的温度为250℃~500℃,可以得知,第一温度可以是250℃~500℃,这时,根据上述第二温度与第一温度之差大于或等于100℃小于或等于400℃,可以得知,第二温度可以是350℃~900℃。
示例的,在一些实施例中,第二温度可以为800℃。这时,在第一温度为250℃的情况下,通过将玻璃制品3在250℃~800℃的温度范围内进行热处理,在玻璃制品3中析出晶体,在第一温度为500℃的情况下,通过将玻璃制品3在500℃~800℃的温度范围内进行热处理,在玻璃制品3中析出晶体。
在一些实施例中,热处理的保温时间为5min~24h。这里,热处理的保温时间与第一温度的高低有关,在第一温度较高的情况下,可以在较高的温度下保温较短的时间即可使晶体生长到所需要的尺寸和数量,在第一温度较低的情况下,则需要保温较长的时间以使晶体生长到所需要的尺寸和数量。
在此,需要说明的是,这里的保温时间是热处理过程的总时间。
S5、根据曲面玻璃1的形状和尺寸,将退火后的玻璃制品3加工成曲面玻璃。
在制作好玻璃制品3之后,由于玻璃制品3的尺寸大于曲面玻璃的尺寸,因此,通过对退火后的玻璃制品3进行加工,即可得到曲面玻璃1。
例如,可以采用CNC方法对退火后的玻璃制品3的外形和尺寸进行加工,得到曲面玻璃1。
本公开的实施例提供一种曲面玻璃1的制备方法,通过将玻璃熔体直接引流入模具2中,通过模压成型工艺制备成曲面玻璃1所需的3D形态,然后逐渐冷却至室温,冷却后的3D玻璃通过CNC机械加工对外形和尺寸进行修整,即可得到曲面玻璃1,与相关技术中曲面玻璃1由平板玻璃(也即2D玻璃)通过热弯成型相比,无需经过平板玻璃从高温到低温的成型过程,可以降低从高温到低温所造成的资源浪费,从而能够降低曲面玻璃1的制作成本。
示例的,在相关技术中,以曲面玻璃1为等厚的基础玻璃为例,其制备路线如图8所示,首先,通过浮法或溢流法制作平板玻璃(2D玻璃),然后,将制备好的平板玻璃进行开料、CNC加工、清洗后进行热弯成型,获得曲面玻璃。在此过程中,平板玻璃可以由玻璃原材料厂完成,经过第一次高温到低温的成型过程,将平板玻璃制备成曲面玻璃可以由盖板厂完成,经过第二次高温到低温的成型过程,总共经过两轮高温到低温的成型过程。以曲面玻璃1为等厚的微晶玻璃为例,其制备路线如图9所示, 首先,玻璃熔体经过浇筑或压延第一次成型,此过程可以在玻璃原材料厂完成,然后,成型后的玻璃需要经过切割、研磨、抛光进行第二次成型,此过程可以在减薄厂完成,最后,再由盖板厂对第二次成型后的玻璃进行3D热弯成型,这是第三次成型过程,在此过程中,总共经过三次高温到低温的成型过程,同时,在曲面玻璃1为不等厚的曲面玻璃的情况下,如图10所示,在CNC加工时需要进行整面处理,还会造成加工资源的损耗,进一步增加成本。
在制作好曲面玻璃1之后,通过随机抽取32片同一工艺生产的样品计算过程能力测试,按±0.07mm管控尺寸,过程能力指数CPK(Complex Process Capability index)为1~1.5;过程能力指数是用于表征处于控制状态(稳定状态)下的实际加工能力,说明本公开的实施例提供的制备方法的工序保证质量的能力较强,所获得的曲面玻璃具有良好的尺寸稳定性。
本公开的一些实施例提供一种通过如上所述的曲面玻璃的制备方法制备获得的曲面玻璃。
该曲面玻璃具有与上述所述的曲面玻璃的制备方法相同的技术效果,在此不再赘述。
在一些实施例中,在曲面玻璃为微晶玻璃,且曲面玻璃的主晶相包括:透锂长石和二硅酸锂中的一种或两种的情况下,曲面玻璃的结晶度为75wt%~90wt%;在曲面玻璃的主晶相为硅酸锂或堇青石的情况下,曲面玻璃的结晶度为30wt%~50wt%。
微晶玻璃的结构和理化性能与结晶度以及主晶相有关,而微晶玻璃的结晶度和主晶相又与热处理制度有关,因此,通过控制热处理制度,可以得到所需要的结晶度和主晶相的微晶玻璃,在热处理制度相同的情况下,该曲面玻璃具有与相关技术中制备的曲面玻璃大致相同的结晶度和主晶相。
在一些实施例中,通过实验发现,通过上述制备方法制备获得的曲面玻璃中,在曲面玻璃1为基础玻璃的情况下,曲面玻璃1的维式硬度为550kgf/mm 2~650kgf/mm 2;在曲面玻璃1为微晶玻璃的情况下,曲面玻璃1的维式硬度为650kgf/mm 2~750kgf/mm 2。由此可知,在相同的测试条件下,该曲面玻璃1具有与相关技术中制备的曲面玻璃大致相当的硬度,可以达到应用要求。
其中,维式硬度可以采用维式硬度计对曲面玻璃1测试获得。
示例性地,在曲面玻璃为微晶玻璃,且微晶玻璃的主晶相为堇青石,结晶度为30wt%~50wt%的情况下,该曲面玻璃1的维式硬度可以为650kgf/mm 2~700kgf/mm 2。在微晶玻璃的主晶相为二硅酸锂和透锂长石中的一种或两种,结晶度为75wt%~90wt%的情况下,该曲面玻璃1的维式硬度可以为700kgf/mm 2~750kgf/mm 2
在一些实施例中,通过实验发现,通过上述制备方法制备获得的曲面玻璃中,在曲面玻璃为基础玻璃的情况下,曲面玻璃的杨氏模量为70Gpa~90Gpa;在曲面玻璃为微晶玻璃的情况下,曲面玻璃的杨氏模量为90Gpa~105Gpa。根据胡克定律,在物体的弹性限度内,应力与应变成正比,比值被称为材料的杨氏模量,杨氏模量的大小标志了材料的刚性,杨氏模量越大,越不容易发生形变。由此可见,在相同的测试条件下,该曲面玻璃1具有与相关技术中制备的曲面玻璃大致相当的杨氏模量,可以达到应用要求。
示例性地,在曲面玻璃为微晶玻璃,且微晶玻璃的主晶相为堇青石或硅酸锂中的一种,结晶度为30wt%~50wt%的情况下,该曲面玻璃1的杨氏模量为90Gpa~95Gpa。在微晶玻璃的主晶相为透锂长石和二硅酸锂中的一种或两种,结晶度为75wt%~90wt%的情况下,该曲面玻璃1的杨氏模量为95Gpa~105Gpa。
在一些实施例中,在曲面玻璃为基础玻璃的情况下,曲面玻璃的密度为2.4g/cm 3~2.5g/cm 3;在曲面玻璃为微晶玻璃的情况下,曲面玻璃的密度为2.45g/cm 3~2.65g/cm 3。密度可以利用排水法测量得到。与上述实施例相类似地,在相同的测试条件下,该曲面玻璃1的密度与相关技术中制备的曲面玻璃的密度大致相同,可以达到应用要求。
在一些实施例中,在曲面玻璃为基础玻璃的情况下,曲面玻璃的热膨胀系数为60×10 -7/℃~110×10 -7/℃;在曲面玻璃为微晶玻璃的情况下,曲面玻璃的热膨胀系数为100×10 -7/℃~110×10 -7/℃。热膨胀系数是物体由于温度改变而有胀缩现象。表示单位温度变化所导致的长度量值的变化,以线膨胀系数为例,热膨胀系数是指固态物质当温度改变1摄氏度时,其某一方向上的长度的变化和它在20℃(即标准实验室环境)时的长度的比值。在相同的测试条件下,该曲面玻璃1的热膨胀系数与相关技术中制备的曲面玻璃的热膨胀系数相当,可以达到应用要求。
示例性地,在曲面玻璃为微晶玻璃,且微晶玻璃的主晶相为透锂长石和二硅酸锂中的一种或两种,结晶度为75wt%~90wt%的情况下,该曲面玻璃1的热膨胀系数为100×10 -7/℃~105×10 -7/℃。在微晶玻璃的主晶相为硅酸锂,结晶度为30wt%~50wt%的情况下,该曲面玻璃1的热膨胀系数为105×10 -7/℃~110×10 -7/℃。
为了对本公开的实施例的有益技术效果进行客观评价,将通过如下实验例对本公开的实施例进行详细地示例性地说明。
实验例1
在实验例1中,设置如下几个实验方案对曲面玻璃1的制备方法进行详细描述,分别记为方案一、方案二和方案三,在方案一、方案二和方案三中,曲面玻璃的玻璃配合料的组成成分均相同,均包括:硅砂、五氧化二磷、氧化铝、氧化硼、碳酸锂、碳酸钠和碳酸钾,该曲面玻璃1是基础玻璃,且该曲面玻璃的外观形状为用作手机后盖所需要的形状。
方案一
步骤1)、基于曲面玻璃1的组成,称取相应重量的各组分:并混合成玻璃配合料。
步骤2)、将步骤1)中的玻璃配合料,在1500℃~1650℃高温熔融并澄清后,得到950℃的玻璃液,玻璃液中SiO 2、Al 2O 3、P 2O 5和B 2O 3的摩尔百分含量为70%,Li 2O、Na 2O和K 2O的摩尔百分含量为30%。
步骤3)、将上述澄清后的玻璃液引流入450℃的镀有超硬层模压模具中,引流量20g~30g。
步骤4)、上述的模具2型腔的形状基于所需生产的产品外形设计,合模间隙最大与最小位置差异小于或等于0.1mm。
步骤5)、超硬模具采用0.1Mpa的压力模压玻璃液,并保温一定的时间,至玻璃 制品成型后,通过缓慢冷却释放热应力到室温,冷却速度为1℃/min。冷却过程在一个加热腔内完成。
步骤6)、上述成型后的玻璃,采用CNC技术,通过中心点对位对曲面玻璃尺寸进行优化,修成所需要的外形尺寸。
方案二
方案二与方案一的各步骤基本相同,不同的是,在方案二中,步骤2)中所得到的澄清后的玻璃液的温度为1300℃,玻璃液中SiO 2、Al 2O 3、P 2O 5和B 2O 3的摩尔百分含量为85%,Li 2O、Na 2O和K 2O的摩尔百分含量为7%,MgO和CaO的摩尔百分含量为8%,在步骤3)中模具的温度为800℃,在步骤5)中模压的压力为0.5Mpa,缓慢冷却的速度为100℃/min。
方案三
方案三与方案一的各步骤基本相同,不同的是,在方案三中,步骤2)中所得到的澄清后的玻璃液的温度为1000℃,玻璃液中SiO 2、Al 2O 3、P 2O 5和B 2O 3的摩尔百分含量为80%,Li 2O、Na 2O和K 2O的摩尔百分含量为20%,MgO和CaO的摩尔百分含量为0%,在步骤3)中模具的温度为600℃,在步骤5)中模压的压力为0.3Mpa,缓慢冷却的速度为50℃/min。
实验例2
在实验例2中,设置如下几个实验方案对曲面玻璃1的制备方法进行详细描述,分别记为方案四、方案五和方案六,在方案四、方案五和方案六中,曲面玻璃的玻璃配合料的组成成分均相同,均包括:硅砂、五氧化二磷、氧化铝、氧化硼、碳酸锂、碳酸钠和碳酸钾以及晶核剂氧化锆,该曲面玻璃是微晶玻璃,且该曲面玻璃1的外观形状为用作手机后盖所需要的形状。
方案四
步骤1)、基于曲面玻璃1的组成,称取相应重量的各组分:并混合成玻璃配合料。
步骤2)、将步骤1)中的玻璃配合料,在1500℃~1650℃高温熔融并澄清后,得到950℃的玻璃液,玻璃液中SiO 2、Al 2O 3、P 2O 5和B 2O 3的摩尔百分含量为70%,Li 2O、Na 2O和K 2O的摩尔百分含量为20%,氧化锆的摩尔百分含量为10%。
步骤3)、将上述澄清后的玻璃液引流入250℃的镀有超硬层模压模具2中,引流量20g~30g。
步骤4)、上述的模具2型腔的形状基于所需生产的产品外形设计,合模间隙最大与最小位置差异小于或等于0.1mm。
步骤5)、超硬模具2采用0.1Mpa的压力模压玻璃液,并模压得到3D的玻璃制品,然后,调整3D的玻璃制品的温度从250℃升高到800℃,析晶的保温时间(也即热处理的时间)为24h,得到3D曲面微晶玻璃,形成的主晶相为二硅酸锂,透锂长石中的一种或两种。采用XRD(X射线衍射)测试的结晶度为90wt%。
步骤6)、析晶后的3D曲面微晶玻璃通过缓慢冷却释放热应力到室温,冷却速度为1℃/min。冷却过程在多个逐步降温的加热腔内完成。
步骤7)、上述成型后的玻璃,采用CNC技术,通过中心点对位对曲面玻璃尺寸 进行优化,修成所需要的外形尺寸。
方案五
方案五与方案四的各步骤基本相同,不同的是,在方案五中,步骤2)中所得到的澄清后的玻璃液的温度为1300℃,玻璃液中SiO 2、Al 2O 3、P 2O 5和B 2O 3的摩尔百分含量为75%,Li 2O、Na 2O和K 2O的摩尔百分含量为18%,MgO和CaO的摩尔百分含量为6%,氧化锆的摩尔百分含量为1%,在步骤3)中模具的温度为800℃,在步骤5)中模压的压力为0.5Mpa,析晶的保温时间(也即热处理的时间)为5min,步骤6)中冷却速度为100℃/min,方案五中主晶相为硅酸锂,结晶度为30wt%。
方案六
方案六与方案四的各步骤基本相同,不同的是,在方案六中,步骤2)中所得到的澄清后的玻璃液的温度为1000℃,玻璃液中SiO 2、Al 2O 3、P 2O 5和B 2O 3的摩尔百分含量为85%,Li 2O、Na 2O和K 2O的摩尔百分含量为7%,MgO和CaO的摩尔百分含量为4%,氧化锆的摩尔百分含量为4%,在步骤3)中模具的温度为800℃,在步骤5)中模压的压力为0.5Mpa,析晶的保温时间(也即热处理的时间)为10h,步骤6)中冷却速度为50℃/min,方案六中主晶相为堇青石,结晶度为45wt%。
结论:上述实验例1和实验例2所获得的各个曲面玻璃1均符合手机后盖的设计要求,且曲面微晶玻璃的结晶度可以达到30wt%以上,并可以高达90wt%,因此,该曲面微晶玻璃可以满足应用要求。
综上所述,通过将玻璃熔体直接引流入模具2中,通过模压成型工艺制备成曲面玻璃1所需的3D形态,然后逐渐冷却至室温,冷却后的3D玻璃通过CNC机械加工对外形和尺寸进行修整,即可得到曲面玻璃1,与相关技术中曲面玻璃1由平板玻璃通过热弯成型相比,无需经过平板玻璃从高温到低温的成型过程,可以减少从高温到低温的成型过程,缩短制备流程,从而可以降低相关技术中从高温到低温的所造成的资源浪费,降低制作成本。所得到的曲面玻璃具有与相关技术提供的制备方法制备获得的曲面玻璃相同的物化性能,可以满足电子设备的盖板要求。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种曲面玻璃的制备方法,其特征在于,包括:
    将玻璃配合料熔制成玻璃液,并对所述玻璃液进行澄清;
    将澄清后的玻璃液引流入具有预设形状的模具型腔内,通过模压成型工艺形成具有与所述曲面玻璃对应的形状的玻璃制品,其中,所述玻璃制品的尺寸大于所述曲面玻璃的尺寸;
    对成型后的所述玻璃制品进行退火;
    根据所述曲面玻璃的形状和尺寸,将退火后的所述玻璃制品加工成所述曲面玻璃。
  2. 根据权利要求1所述的曲面玻璃的制备方法,其特征在于,
    所述澄清后的玻璃液的温度和所述模具的温度之差大于或等于250℃小于或等于500℃。
  3. 根据权利要求2所述的曲面玻璃的制备方法,其特征在于,
    所述澄清后的玻璃液的温度为950℃~1300℃,所述模具的温度为450℃~800℃。
  4. 根据权利要求1所述的曲面玻璃的制备方法,其特征在于,
    所述曲面玻璃是微晶玻璃;
    所述玻璃配合料中还含有晶核剂;
    在将澄清后的玻璃液引流入具有预设形状的模具型腔内,通过模压成型工艺形成具有与所述曲面玻璃对应的形状的玻璃制品之后,在对成型后的所述玻璃制品进行退火之前,还包括:
    对成型后的所述玻璃制品进行晶化处理。
  5. 根据权利要求4所述的曲面玻璃的制备方法,其特征在于,
    所述澄清后的玻璃液的温度和所述模具的温度之差大于或等于500℃小于或等于800℃。
  6. 根据权利要求5所述的曲面玻璃的制备方法,其特征在于,
    所述澄清后的玻璃液的温度为950℃~1300℃,所述模具的温度为250℃~500℃。
  7. 根据权利要求4~6任一项所述的曲面玻璃的制备方法,其特征在于,
    所述对成型后的所述玻璃制品进行晶化处理,包括:
    对所述成型后的玻璃制品进行热处理,使所述成型后的玻璃制品中产生分相、形成晶核并长出晶体。
  8. 根据权利要求7所述的曲面玻璃的制备方法,其特征在于,
    所述对所述成型后的玻璃制品进行热处理,包括:
    将所述成型后的玻璃制品放置在一个加热腔中,对所述加热腔进行热处理;
    或者,
    将所述成型后的玻璃制品依次转移至多个温度逐渐升高的加热腔中,并在各个加热腔中,对所述成型后的玻璃制品保温预设时间,以对所述成型后的玻璃制品进行热处理。
  9. 根据权利要求7所述的曲面玻璃的制备方法,其特征在于,
    所述热处理的温度变化范围为第一温度到第二温度;
    所述第一温度是成型后的所述玻璃制品所对应的模具的温度,所述第二温度与所 述第一温度之差大于或等于100℃小于或等于400℃。
  10. 根据权利要求1~6任一项所述的曲面玻璃的制备方法,其特征在于,
    所述对成型后的所述玻璃制品进行退火,包括:
    对所述成型后的玻璃制品进行程序降温处理,使所述成型后的玻璃制品冷却至室温。
  11. 根据权利要求10所述的曲面玻璃的制备方法,其特征在于,
    所述对所述成型后的玻璃制品进行程序降温处理,使所述成型后的玻璃制品冷却至室温,包括:
    将所述成型后的玻璃制品放置在一个加热腔中,对所述加热腔进行程序降温处理;
    或者,
    将所述成型后的玻璃制品依次转移至多个温度逐渐降低的加热腔中,并在各个加热腔中,对所述成型后的玻璃制品保温预设时间,以对所述成型后的玻璃制品进行程序降温处理。
  12. 根据权利要求10所述的曲面玻璃的制备方法,其特征在于,
    所述程序降温的速度为1℃/min~100℃/min。
  13. 根据权利要求1~6任一项所所述的曲面玻璃的制备方法,其特征在于,
    在所述模压成型工艺中,合模间隙的尺寸与所述曲面玻璃在对应位置处的厚度之差大于或等于0小于或等于0.1mm。
  14. 根据权利要求1~6任一项所所述的曲面玻璃的制备方法,其特征在于,
    在所述模压成型工艺中,模压的压力为0.1MPa~0.5MPa。
  15. 根据权利要求1~6任一项所所述的曲面玻璃的制备方法,其特征在于,
    在所述模压成型工艺中,模压的工作环境为真空或惰性气体保护气氛。
  16. 根据权利要求1~6任一项所述的曲面玻璃的制备方法,其特征在于,
    所述玻璃制品的尺寸与所述曲面玻璃的尺寸之差大于或等于0.02mm小于或等于0.5mm。
  17. 一种通过如权利要求1~16任一项所述的曲面玻璃的制备方法制备获得的曲面玻璃。
  18. 根据权利要求17所述的曲面玻璃,其特征在于,
    在所述曲面玻璃为基础玻璃的情况下,所述曲面玻璃的维式硬度为550kgf/mm 2~650kgf/mm 2
    在所述曲面玻璃为微晶玻璃的情况下,所述曲面玻璃的维式硬度为650kgf/mm 2~750kgf/mm 2
  19. 根据权利要求17所述的曲面玻璃,其特征在于,
    在所述曲面玻璃为基础玻璃的情况下,所述曲面玻璃的杨氏模量为70Gpa~90Gpa;
    在所述曲面玻璃为微晶玻璃的情况下,所述曲面玻璃的杨氏模量为90Gpa~105Gpa。
  20. 根据权利要求17所述的曲面玻璃,其特征在于,
    在所述曲面玻璃为基础玻璃的情况下,所述曲面玻璃的密度为2.4g/cm 3~2.5g/cm 3
    在所述曲面玻璃为微晶玻璃的情况下,所述曲面玻璃的密度为2.45g/cm 3~2.65g/cm 3
  21. 根据权利要求17所述的曲面玻璃,其特征在于,
    在所述曲面玻璃为基础玻璃的情况下,所述曲面玻璃的热膨胀系数为60×10 -7/℃~110×10 -7/℃;
    在所述曲面玻璃为微晶玻璃的情况下,所述曲面玻璃的热膨胀系数为100×10 -7/℃~110×10 -7/℃。
  22. 根据权利要求17所述的曲面玻璃,其特征在于,
    在所述曲面玻璃为微晶玻璃,且所述曲面玻璃的主晶相包括:透锂长石和二硅酸锂中的一种或两种的情况下,所述曲面玻璃的结晶度为75wt%~90wt%;在所述曲面玻璃的主晶相为硅酸锂或堇青石的情况下,所述曲面玻璃的结晶度为30wt%~50wt%。
  23. 一种电子设备,其特征在于,包括:如权利要求17~22任一项所述的曲面玻璃。
  24. 根据权利要求23所述的电子设备,其特征在于,
    所述电子设备为手机、平板电脑或可穿戴智能产品。
PCT/CN2022/078502 2021-06-11 2022-02-28 曲面玻璃及其制备方法和电子设备 WO2022257509A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22764639.5A EP4129936A4 (en) 2021-06-11 2022-02-28 CURVED GLASS AND PRODUCTION METHOD THEREOF AND ELECTRONIC DEVICE
JP2022566256A JP2023534353A (ja) 2021-06-11 2022-02-28 曲げガラスおよびその作製方法、ならびに電子デバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110656751.9A CN115466039A (zh) 2021-06-11 2021-06-11 曲面玻璃及其制备方法和电子设备
CN202110656751.9 2021-06-11

Publications (1)

Publication Number Publication Date
WO2022257509A1 true WO2022257509A1 (zh) 2022-12-15

Family

ID=84047612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078502 WO2022257509A1 (zh) 2021-06-11 2022-02-28 曲面玻璃及其制备方法和电子设备

Country Status (4)

Country Link
EP (1) EP4129936A4 (zh)
JP (1) JP2023534353A (zh)
CN (1) CN115466039A (zh)
WO (1) WO2022257509A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014091655A (ja) * 2012-11-05 2014-05-19 Konica Minolta Inc ガラス成形品の製造方法および製造装置
CN108821574A (zh) * 2018-07-13 2018-11-16 河北省沙河玻璃技术研究院 一种应用于5g通信移动终端的微晶玻璃制备方法
CN109320056A (zh) * 2018-10-15 2019-02-12 基智精密科技(深圳)有限公司 玻璃生产设备及玻璃制备方法
CN109626816A (zh) * 2019-01-28 2019-04-16 田英良 满足5g通信和3d模压成型的手机盖板玻璃及工艺方法
CN110372216A (zh) * 2018-04-12 2019-10-25 深圳市东丽华科技有限公司 平面玻璃、钢化玻璃、3d曲面微晶玻璃及其制备工艺
CN110963709A (zh) * 2019-12-26 2020-04-07 深圳市汇隆源科技有限公司 一种精密3d玻璃板的制造方法
CN113646278A (zh) * 2019-04-05 2021-11-12 Agc株式会社 微晶玻璃和化学强化玻璃以及它们的制造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6426311B1 (en) * 2000-02-01 2002-07-30 Kabushiki Kaisha Ohara Glass-ceramics
WO2018074335A1 (ja) * 2016-10-18 2018-04-26 旭硝子株式会社 化学強化用ガラス、化学強化ガラスおよび化学強化ガラスの製造方法
CN111757858A (zh) * 2018-02-27 2020-10-09 Agc株式会社 三维形状的晶化玻璃、三维形状的化学强化玻璃以及它们的制造方法
CN117069372A (zh) * 2018-06-01 2023-11-17 日本电气硝子株式会社 强化玻璃以及强化用玻璃
CN109095755A (zh) * 2018-08-16 2018-12-28 中国建筑材料科学研究总院有限公司 玻璃预形件的加工方法
CN109320091A (zh) * 2018-10-26 2019-02-12 成都创客之家科技有限公司 电子设备盖板用微晶玻璃制品和微晶玻璃
CN111320391B (zh) * 2020-03-04 2021-09-24 景德镇陶瓷大学 一种无色透明堇青石微晶玻璃及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014091655A (ja) * 2012-11-05 2014-05-19 Konica Minolta Inc ガラス成形品の製造方法および製造装置
CN110372216A (zh) * 2018-04-12 2019-10-25 深圳市东丽华科技有限公司 平面玻璃、钢化玻璃、3d曲面微晶玻璃及其制备工艺
CN108821574A (zh) * 2018-07-13 2018-11-16 河北省沙河玻璃技术研究院 一种应用于5g通信移动终端的微晶玻璃制备方法
CN109320056A (zh) * 2018-10-15 2019-02-12 基智精密科技(深圳)有限公司 玻璃生产设备及玻璃制备方法
CN109626816A (zh) * 2019-01-28 2019-04-16 田英良 满足5g通信和3d模压成型的手机盖板玻璃及工艺方法
CN113646278A (zh) * 2019-04-05 2021-11-12 Agc株式会社 微晶玻璃和化学强化玻璃以及它们的制造方法
CN110963709A (zh) * 2019-12-26 2020-04-07 深圳市汇隆源科技有限公司 一种精密3d玻璃板的制造方法

Also Published As

Publication number Publication date
EP4129936A4 (en) 2023-09-06
CN115466039A (zh) 2022-12-13
JP2023534353A (ja) 2023-08-09
EP4129936A1 (en) 2023-02-08

Similar Documents

Publication Publication Date Title
US20110092353A1 (en) Durable glass-ceramic housings/enclosures for electronic device
WO2022228583A1 (zh) 一种微晶玻璃材料及其制备方法和在半导体器件中的应用
CN111348835A (zh) 高硬度透明微晶玻璃及其制备方法
JP2004131371A (ja) ガラスまたはガラスセラミックの成形方法
KR102291897B1 (ko) 곡면 형상을 갖는 결정화 유리 부재의 제조 방법
CN111592225A (zh) 锂铝硅酸盐纳米晶透明陶瓷、其制备方法及产品
CN111348834B (zh) 一种3d微晶玻璃及其制备方法
CN113248152B (zh) 一种三维微晶玻璃及其制备方法
CN111592224A (zh) 镁铝硅酸盐纳米晶透明陶瓷、其制备方法及产品
EP2065346A1 (en) High thermal conductivity cordierite glass-ceramic materials
CN111606572A (zh) 钠铝硅酸盐纳米晶透明陶瓷、其制备方法及产品
CN113620608A (zh) 一种锂铝硅酸透明微晶玻璃及其制备方法
CN110156333A (zh) 晶体有序生长的微晶玻璃的制备方法
JP5762707B2 (ja) 結晶化ガラスの製造方法および結晶化ガラス物品
CN113149444A (zh) 一种一步法化学强化钠霞石微晶玻璃的方法及化学强化钠霞石微晶玻璃
CN111763012B (zh) 微晶玻璃及其钢化方法和应用
WO2022257509A1 (zh) 曲面玻璃及其制备方法和电子设备
CN111170642A (zh) 一种高强高韧的低膨胀锂铝硅系透明微晶玻璃及其制备方法
CN111116040A (zh) 一种具有非单一表面压应力斜率的钢化玻璃制品及其制备方法
CN101786796B (zh) 用高硅铁尾矿制造低膨胀微晶玻璃的方法
CN115259844A (zh) 一种陶瓷材料及其制备方法和应用
CN113831021A (zh) 微晶玻璃及其制备方法、玻璃保护层、玻璃盖板与电子器件
CN115490427A (zh) 一种高结晶度锂铝硅透明微晶玻璃及其制备方法
CN115925260A (zh) 一种具有多晶相结构的高强度微晶玻璃、其制备方法及应用
CN111646704A (zh) 掺杂β-锂霞石晶须的玻璃陶瓷及其制备方法、化学强化玻璃陶瓷

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022764639

Country of ref document: EP

Effective date: 20220913

ENP Entry into the national phase

Ref document number: 2022566256

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE