WO2022255383A1 - Yfi型ゼオライト、その製造方法、炭化水素吸着剤及び炭化水素の吸着方法 - Google Patents
Yfi型ゼオライト、その製造方法、炭化水素吸着剤及び炭化水素の吸着方法 Download PDFInfo
- Publication number
- WO2022255383A1 WO2022255383A1 PCT/JP2022/022204 JP2022022204W WO2022255383A1 WO 2022255383 A1 WO2022255383 A1 WO 2022255383A1 JP 2022022204 W JP2022022204 W JP 2022022204W WO 2022255383 A1 WO2022255383 A1 WO 2022255383A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- yfi
- type zeolite
- zeolite
- hydrocarbon
- mass
- Prior art date
Links
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 title claims abstract description 144
- 239000010457 zeolite Substances 0.000 title claims abstract description 133
- 229910021536 Zeolite Inorganic materials 0.000 title claims abstract description 130
- 229930195733 hydrocarbon Natural products 0.000 title claims abstract description 89
- 150000002430 hydrocarbons Chemical class 0.000 title claims abstract description 89
- 239000004215 Carbon black (E152) Substances 0.000 title claims abstract description 76
- 239000003463 adsorbent Substances 0.000 title claims abstract description 41
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 22
- 238000001179 sorption measurement Methods 0.000 title claims abstract description 17
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 21
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 40
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 38
- 239000000377 silicon dioxide Substances 0.000 claims description 17
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 15
- 150000001340 alkali metals Chemical class 0.000 claims description 14
- 229910052783 alkali metal Inorganic materials 0.000 claims description 13
- 239000002253 acid Substances 0.000 claims description 12
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 10
- 239000012690 zeolite precursor Substances 0.000 claims description 9
- 229910052681 coesite Inorganic materials 0.000 claims description 8
- 229910052906 cristobalite Inorganic materials 0.000 claims description 8
- 235000012239 silicon dioxide Nutrition 0.000 claims description 8
- 239000011734 sodium Substances 0.000 claims description 8
- 229910052682 stishovite Inorganic materials 0.000 claims description 8
- 229910052905 tridymite Inorganic materials 0.000 claims description 8
- 229910052792 caesium Inorganic materials 0.000 claims description 7
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 claims description 7
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 6
- 229910052708 sodium Inorganic materials 0.000 claims description 6
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 5
- 229910052700 potassium Inorganic materials 0.000 claims description 5
- 239000011591 potassium Substances 0.000 claims description 5
- 229910052701 rubidium Inorganic materials 0.000 claims description 5
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 claims description 5
- 229910052593 corundum Inorganic materials 0.000 claims description 4
- 229910001845 yogo sapphire Inorganic materials 0.000 claims description 4
- 238000003795 desorption Methods 0.000 abstract description 31
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 54
- 239000007789 gas Substances 0.000 description 42
- 229910004298 SiO 2 Inorganic materials 0.000 description 31
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 28
- 238000005259 measurement Methods 0.000 description 28
- 229910021529 ammonia Inorganic materials 0.000 description 27
- 239000002243 precursor Substances 0.000 description 25
- 239000000203 mixture Substances 0.000 description 24
- 238000001228 spectrum Methods 0.000 description 19
- 239000000523 sample Substances 0.000 description 18
- 239000011973 solid acid Substances 0.000 description 18
- 239000002002 slurry Substances 0.000 description 16
- 238000010306 acid treatment Methods 0.000 description 15
- 238000002425 crystallisation Methods 0.000 description 14
- 230000008025 crystallization Effects 0.000 description 14
- 239000001307 helium Substances 0.000 description 14
- 229910052734 helium Inorganic materials 0.000 description 14
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 14
- 125000004429 atom Chemical group 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 12
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 12
- 239000002994 raw material Substances 0.000 description 12
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical class [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 11
- 229910000323 aluminium silicate Inorganic materials 0.000 description 11
- 150000001768 cations Chemical class 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 11
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 10
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 239000003054 catalyst Substances 0.000 description 9
- 229910001868 water Inorganic materials 0.000 description 9
- 238000002441 X-ray diffraction Methods 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 8
- 239000012298 atmosphere Substances 0.000 description 8
- 239000013078 crystal Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 235000019270 ammonium chloride Nutrition 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- -1 dimethyldipropylammonium cation Chemical class 0.000 description 5
- 238000005342 ion exchange Methods 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 235000011118 potassium hydroxide Nutrition 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 235000011121 sodium hydroxide Nutrition 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 3
- 238000001354 calcination Methods 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 239000008119 colloidal silica Substances 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 230000000977 initiatory effect Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000002738 metalloids Chemical group 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000008096 xylene Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 150000001339 alkali metal compounds Chemical class 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000010335 hydrothermal treatment Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 239000012488 sample solution Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 239000004113 Sepiolite Substances 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- YKOWBJJOJNGCAD-SHYZEUOFSA-N [(2r,3s,5r)-3-hydroxy-5-[4-(hydroxyamino)-2-oxopyrimidin-1-yl]oxolan-2-yl]methyl dihydrogen phosphate Chemical compound O=C1N=C(NO)C=CN1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)C1 YKOWBJJOJNGCAD-SHYZEUOFSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 150000001361 allenes Chemical class 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 1
- SWLVFNYSXGMGBS-UHFFFAOYSA-N ammonium bromide Chemical class [NH4+].[Br-] SWLVFNYSXGMGBS-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229960000892 attapulgite Drugs 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- WOYQCKODTASHPN-UHFFFAOYSA-M dimethyl(dipropyl)azanium;chloride Chemical compound [Cl-].CCC[N+](C)(C)CCC WOYQCKODTASHPN-UHFFFAOYSA-M 0.000 description 1
- OSSXLTCIVXOQNK-UHFFFAOYSA-M dimethyl(dipropyl)azanium;hydroxide Chemical compound [OH-].CCC[N+](C)(C)CCC OSSXLTCIVXOQNK-UHFFFAOYSA-M 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 229910052730 francium Inorganic materials 0.000 description 1
- KLMCZVJOEAUDNE-UHFFFAOYSA-N francium atom Chemical compound [Fr] KLMCZVJOEAUDNE-UHFFFAOYSA-N 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 229910052752 metalloid Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 229910052680 mordenite Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052625 palygorskite Inorganic materials 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052624 sepiolite Inorganic materials 0.000 description 1
- 235000019355 sepiolite Nutrition 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000007569 slipcasting Methods 0.000 description 1
- 229910001388 sodium aluminate Inorganic materials 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 229910052815 sulfur oxide Inorganic materials 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/16—Alumino-silicates
- B01J20/18—Synthetic zeolitic molecular sieves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/16—Alumino-silicates
- B01J20/18—Synthetic zeolitic molecular sieves
- B01J20/186—Chemical treatments in view of modifying the properties of the sieve, e.g. increasing the stability or the activity, also decreasing the activity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28057—Surface area, e.g. B.E.T specific surface area
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3085—Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/46—Other types characterised by their X-ray diffraction pattern and their defined composition
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/46—Other types characterised by their X-ray diffraction pattern and their defined composition
- C01B39/48—Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/106—Silica or silicates
- B01D2253/108—Zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/912—HC-storage component incorporated in the catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/70—Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
- B01D2257/702—Hydrocarbons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/01—Engine exhaust gases
- B01D2258/012—Diesel engines and lean burn gasoline engines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present disclosure relates to a YFI-type zeolite, a method for producing the same, a hydrocarbon adsorbent, and a method for adsorbing hydrocarbons.
- Exhaust gas emitted from internal combustion engines used in moving bodies such as automobiles and ships contains a large amount of hydrocarbons, and the hydrocarbons emitted from internal combustion engines are purified by a three-way catalyst.
- a temperature environment of 200 ° C or higher is required. Hydrocarbons are released from the adsorbent in the temperature range where the catalyst begins to function, and are decomposed and purified by the three-way catalyst.
- hydrocarbon adsorbents are required to have high heat resistance.
- mordenite and BEA type zeolite having a silica to alumina molar ratio (hereinafter also referred to as "SiO 2 /Al 2 O 3 molar ratio") of 50 to 2000 are used.
- an adsorption catalyst for purifying exhaust gas containing at least one selected from the group consisting of Pt, Pd and Rh in zeolite such as ZSM-5 (Patent Document 1), Ag-supported molecular sieve (Patent Document 2), Cu and Cu and Co, Ni, Cr, Fe, Mn, Ag, Au, Pt, Pd, Ru, Rh, ZSM-5 zeolite ion-exchanged with at least one metal selected from the group consisting of V (Patent Document 3) Proposed.
- YFI type zeolite is a zeolite having a three-dimensional pore structure in which two-dimensional oxygen 12-membered ring pores and one-dimensional oxygen 8-membered ring pores intersect, and independent one-dimensional oxygen 8-membered ring pores.
- Patent Document 4 There is (Patent Document 4).
- the present disclosure provides a YFI-type zeolite that provides a hydrocarbon adsorbent with a small difference in desorption start temperature before and after hydrothermal durability treatment, a method for producing the same, and at least one of a hydrocarbon adsorbent and a hydrocarbon adsorption method containing the same. intended to provide
- [4] The YFI-type zeolite according to any one of [1] to [3] above, which contains an alkali metal.
- [5] The YFI-type zeolite according to any one of [1] to [3] above, containing at least one selected from the group consisting of sodium, potassium, cesium and rubidium.
- a method for producing YFI zeolite which comprises treating a YFI zeolite precursor with at least one of hydrochloric acid and sulfuric acid at a temperature of 60° C. or higher and 100° C. or lower.
- Production method. [9] A hydrocarbon adsorbent containing the YFI zeolite according to any one of [1] to [5]. [10] A method for adsorbing hydrocarbons using the hydrocarbon adsorbent according to [9].
- FIG. 3 is a diagram showing a difference spectrum in NH 3 -TPD measurement in Example 1.
- Al aluminum
- Si silicon
- O oxygen
- aluminosilicates those having a crystalline XRD peak in the powder X-ray diffraction (hereinafter also referred to as “XRD”) pattern are “crystalline aluminosilicates”, and those that do not have a crystalline XRD peak The thing is “amorphous aluminosilicate”.
- XRD patterns include those obtained from XRD measurements under the following conditions.
- general analysis software eg, SmartLab Studio II, manufactured by Rigaku
- a “zeolite” is a compound having a regular structure in which skeleton atoms (hereinafter also referred to as “T atoms”) are interposed with oxygen (O), and the T atoms are at least one of a metal atom and/or a metalloid atom. It is a compound consisting of Examples of metalloid atoms include at least one selected from the group consisting of boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb) and tellurium (Te).
- a "zeolite-like substance” is a compound having a regular structure in which T atoms are oxygen-mediated, and in which T atoms contain at least atoms other than metals and metalloids (hereinafter also referred to as "non-metallic atoms").
- Phosphorus (P) can be exemplified as a nonmetallic atom.
- Examples of zeolite-like substances include complex phosphorus compounds containing phosphorus (P) as a T atom, such as aluminophosphate (AlPO) and silicoaluminophosphate (SAPO).
- zeolite structure in zeolites and zeolite-like substances is the structure code (hereinafter simply referred to as "structure code”) defined by the Structure Commission of the International Zeolite Association. It is a skeletal structure specified in For example, the YFI structure is the scaffold structure identified as structure code "YFI". The YFI structure is available on the home page of the IZA structure committee http://www. iza-structure.
- the zeolite structure can be identified by comparison with the XRD pattern (hereinafter also referred to as "reference pattern”) described in YFI of Zeolite Framework Types at org/databases/. With respect to zeolite structure, framework structure, crystalline structure or crystalline phase are used interchangeably.
- ⁇ type zeolite such as "YFI type zeolite” means a zeolite having the zeolite structure of the structure code, preferably a crystalline aluminosilicate having the zeolite structure of the structure code.
- the YFI-type zeolite of this embodiment will be described below.
- the ratio of the extra-framework aluminum mass to the aluminum content (that is, the ratio of the extra-framework aluminum to the aluminum in the YFI zeolite; hereinafter, also referred to as the “extra-framework Al ratio”). is 0% by mass or more and 28% by mass or less, preferably 5% by mass or more and 28% by mass or less, more preferably 10% by mass or more and 28% by mass or less, still more preferably 15% by mass or more and 28% by mass % by mass or less, particularly preferably 20% by mass or more and 25% by mass or less.
- the extra-framework Al fraction may be any combination of the above upper and lower limits.
- the extra-skeletal Al ratio is obtained from the following formula.
- Out-of-framework Al ratio (% by mass) (mass of aluminum contained - mass of Al in the framework) (g) ⁇ Mass of aluminum contained (g) x 100
- Contained aluminum is all the aluminum atoms contained in the YFI zeolite of the present embodiment, and the aluminum atoms (framework Al) present as the T atoms of the YFI zeolite of the present embodiment, and the YFI zeolite It is the sum of aluminum atoms other than T atoms (hereinafter also referred to as “extra-framework Al”).
- the "mass of aluminum contained” is the total mass of the intra-framework Al and the extra-framework Al converted into alumina (Al 2 O 3 ), and corresponds to the total mass of the intra-framework Al and the extra-framework Al.
- the mass of aluminum contained can be determined by composition analysis.
- Compositional analysis can include, for example, inductively coupled plasma-optical emission spectroscopy (ICP-AES).
- the mass of aluminum to be contained is arbitrary as long as the above-described extra-framework Al ratio is satisfied.
- the aluminum mass (hereinafter also referred to as "Al Total ") contained per unit mass (1 g) of the YFI-type zeolite of the present embodiment is 15 mg or more or 20 mg or more, and 80 mg or less, 70 mg or less, or It can be exemplified that it is less than 60 mg.
- the upper and lower limits of Al Total per unit mass (1 g) of YFI-type zeolite may be any combination of the above.
- the masses of the intra-framework Al and the extra-framework Al are masses converted to alumina, and are obtained from the following equations.
- Mass of Al in skeleton (g) Amount of solid acid (mol/g) ⁇ 2 ⁇ molecular weight of alumina (101.96 (g/mol))
- Extraskeletal Al mass (g) Al Total (g) - mass of Al in the framework (g)
- the amount of solid acid can be quantified by a general NH 3 -TPD method.
- the NH 3 -TPD measurement can be exemplified by the following method using a conventional catalyst analyzer (eg, BELCATII, manufactured by MicrotracBEL).
- the temperature was raised to 710°C at a heating rate of 10°C/min under helium flow at a flow rate of 30 mL/min, and ammonia was continuously quantified by a gas chromatograph equipped with a thermal conductivity detector (TCD). to obtain the desorption spectrum of ammonia.
- TCD thermal conductivity detector
- a blank spectrum is obtained by measuring in the same manner as the method for obtaining the desorption spectrum of ammonia, except that helium gas is used instead of a mixed gas containing 1% by volume of ammonia and 99% by volume of helium gas. obtain.
- the desorption peak having a peak at 300 ° C. or higher is regarded as the desorption peak of ammonia adsorbed to the solid acid.
- the amount of desorbed ammonia is obtained from the peak area of the peak, and the ratio (mmol/g) of the desorbed amount of ammonia (mmol) to the mass (g) of the sample is taken as the amount of solid acid.
- the analysis of the difference spectrum such as the calculation of the ammonia desorption amount, may be performed using general analysis software (for example, ChemMaster for Windows ver1.4.9, manufactured by Microtrack Bell).
- the YFI-type zeolite of the present embodiment preferably has a SiO 2 /Al 2 O 3 molar ratio of 20 or more, 25 or more, 30 or more, or 40 or more, and 100 or less, 80 or less, 60 or less, or 50 or less. be.
- the upper and lower limits of the SiO 2 /Al 2 O 3 molar ratio may be any combination of the above.
- the YFI-type zeolite of the present embodiment has an XRD peak specified as the YFI structure in its XRD pattern, and includes an XRD pattern including at least the following XRD peaks.
- the XRD pattern may include each XRD peak in the table above, and may include other XRD peaks attributed to the YFI structure.
- the YFI-type zeolite of the present embodiment preferably includes at least the following XRD peaks in its XRD pattern.
- the YFI-type zeolite of the present embodiment may contain an XRD peak with a relative intensity of less than 1% in addition to the above peaks. However, these low intensity XRD peaks need not be considered for identification of the crystal structure.
- the YFI-type zeolite of the present embodiment has excellent hydrocarbon adsorption capacity, and has a BET specific surface area of 300 m 2 /g or more and 700 m 2 /g or less, 300 m 2 /g or more and 600 m 2 /g or less, 400 m 2 /g or more and 600 m 2 /g or less, or 400 m 2 /g or more and 500 m 2 /g or less.
- the upper and lower limits of the BET specific surface area may be any combination of the above.
- YFI-type zeolite of the present embodiment is an alkali metal, preferably at least one selected from the group consisting of sodium, potassium, cesium and rubidium, more preferably at least one selected from the group consisting of potassium, cesium and rubidium, still more preferably preferably contains cesium.
- an alkali metal when this is used as a hydrocarbon adsorbent, the hydrocarbon adsorbing capacity is likely to be improved, such as an increase in the amount of adsorbed hydrocarbons.
- the alkali metal is preferably contained other than the T atom (the alkali metal-containing YFI zeolite), and is supported on the YFI zeolite (alkali metal-supported YFI zeolite is preferred).
- the YFI zeolite production method of the present embodiment comprises a step of treating a YFI zeolite precursor with at least one of hydrochloric acid and sulfuric acid at 60° C. or higher and 100° C. or lower. manufacturing method. It is preferred that the acid with which the YFI-type zeolite precursor is treated is hydrochloric acid. More preferably, the production method of the present embodiment includes a step of treating a YFI-type zeolite precursor having a SiO 2 /Al 2 O 3 molar ratio of less than 25 with hydrochloric acid at 60° C. or higher and 100° C. or lower. A method for producing a YFI-type zeolite.
- YFI-type zeolite having a small difference in desorption start temperature before and after the hydrothermal durability treatment can be obtained by producing the zeolite by the above production method.
- a YFI-type zeolite precursor to be subjected to a step of treatment with at least one of hydrochloric acid and sulfuric acid (hereinafter also referred to as “hydrochloric acid etc.”) at 60° C. or more and 100° C. or less hereinafter also referred to as “acid treatment step”.
- the body hereinafter also referred to as “precursor YFI" may be YFI-type zeolite.
- the acid treatment step may be repeated, and the production method of the present embodiment may include a step of treating the YFI-type zeolite after the acid treatment step with hydrochloric acid or the like.
- YFI-type zeolite is a synthetic zeolite produced by crystallization of a composition containing an organic structure-directing agent, but precursor YFI is a YFI-type zeolite that does not contain an organic structure-directing agent (hereinafter also referred to as "SDA"). is preferably
- the precursor YFI preferably has a SiO 2 /Al 2 O 3 molar ratio of 10 or more, 12 or more, or 15 or more and less than 25, 22 or less, 20 or less, or less than 20.
- the proportion of extra-framework Al in the precursor YFI is arbitrary, but for example, it may be more than 28% by mass or 30% by mass or more, and may be 50% by mass or less or 40% by mass or less. Further, Al Total per unit mass (1 g) of the precursor YFI is 60 mg or more or 75 mg or more, and can be exemplified by 150 mg or less, 100 mg or less or 95 mg or less.
- the precursor YFI is preferably a YFI-type zeolite containing no SDA and having a SiO 2 /Al 2 O 3 molar ratio of less than 25.
- the precursor YFI is preferably YFI-type zeolite in a state after crystallization and removal of SDA. That is, the precursor YFI is preferably at least one of YFI-type zeolite after crystallization and YFI-type zeolite after calcination. It is more preferable to have The calcination of the calcined YFI-type zeolite is intended to remove SDA from the YFI-type zeolite after crystallization.
- the precursor YFI contains SDA
- it is preferable to remove SDA prior to the acid treatment step for example, it is preferable to remove SDA by calcination.
- the conditions for the firing are arbitrary, examples include a firing temperature of 400° C. or more and 800° C. or less and a firing time of 0.5 hours or more and 12 hours or less in an oxidizing atmosphere.
- the acid treatment step includes contacting the precursor YFI with hydrochloric acid or the like at a temperature of 60° C. or higher or 100° C. or lower. °C or less or a method of stirring at 90 °C or less.
- the higher the mixing temperature of the precursor YFI and the acid hereinafter also referred to as "acid treatment temperature"
- the higher the SiO 2 /Al 2 O 3 molar ratio of the YFI-type zeolite of the present embodiment. is lower, the SiO 2 /Al 2 O 3 molar ratio of the YFI-type zeolite of the present embodiment tends to be lower.
- the slurry concentration of the slurry containing precursor YFI and hydrochloric acid is arbitrary, but is 5% by mass or more, 10% by mass or more, or 15% by mass or more, and is 40% by mass or less, 30% by mass or less, or 20% by mass. The following are preferred.
- the slurry concentration is the mass concentration of the precursor YFI in the slurry calculated from the following equation.
- Slurry concentration (% by mass) mass of precursor YFI (g)/mass of slurry (g) x 100
- concentration of hydrochloric acid or the like (hereinafter also referred to as "acid concentration") is arbitrary, but examples include 0.1 mol/L or more and 10 mol/L or less, 0.1 mol/L or more and 0.5 mol/L or more, or It is more than 1.0 mol/L, and preferably 8.0 mol/L or less, 6.0 mol/L or less, or 5.0 mol/L or less.
- the upper and lower limits of acid concentration may be any combination of the above.
- the higher the acid concentration the higher the SiO 2 /Al 2 O 3 molar ratio of the obtained YFI zeolite.
- the lower the acid concentration the lower the SiO 2 /Al 2 O 3 molar ratio of the obtained YFI zeolite.
- the SiO 2 /Al 2 O 3 molar ratio of the YFI-type zeolite after the acid treatment step is higher than the SiO 2 /Al 2 O 3 molar ratio of the precursor YFI.
- ⁇ Method for producing precursor YFI> As long as the precursor YFI is the YFI-type zeolite described above, any production method may be used.
- Precursor YFI has a step of crystallizing a composition containing a silica source, an alumina source, an alkali source and water (hereinafter also referred to as a “raw material composition”) (hereinafter also referred to as a “crystallization step”). YFI type zeolite obtained by the production method is mentioned.
- the silica source may be a compound containing silicon (Si), and examples thereof include at least one selected from the group consisting of colloidal silica, amorphous silica, sodium silicate, tetraethylorthosilicate, aluminosilicate gel, and aluminosilicate. , colloidal silica and amorphous silica are preferred.
- the alumina source may be any compound containing aluminum (Al), for example, at least one selected from the group consisting of aluminum nitrate, aluminum sulfate, sodium aluminate, aluminum hydroxide, aluminum chloride, aluminosilicate gel, metallic aluminum and aluminosilicate. At least one of aluminum hydroxide and aluminosilicate is preferred.
- alkali sources include at least one selected from the group consisting of various salts such as hydroxides, halides and carbonates of lithium, sodium, potassium, rubidium, cesium, francium, magnesium, calcium or strontium.
- various salts such as hydroxides, halides and carbonates of lithium, sodium, potassium, rubidium, cesium, francium, magnesium, calcium or strontium.
- sodium and/or potassium hydroxides are preferred, and sodium and potassium hydroxides (ie, sodium hydroxide and potassium hydroxide) are more preferred.
- the raw material composition may contain SDA as necessary.
- the raw material composition does not have to contain SDA in that the manufacturing operation is simplified.
- the raw material composition contains SDA, the YFI-type zeolite is easily crystallized.
- SDA may be an ammonium cation that directs the YFI structure, and examples thereof include dimethyldipropylammonium cation (hereinafter also referred to as "Me 2 Pr 2 N + ").
- the raw material composition may contain Me 2 Pr 2 N + as a salt, and examples of the salt containing Me 2 Pr 2 N + include dimethyldipropylammonium hydroxide, dimethyldipropylammonium chloride and dimethyldipropyl At least one selected from the group of ammonium bromides can be mentioned.
- the raw material composition may contain seed crystals.
- seed crystals By including seed crystals, the crystallization rate of YFI-type zeolite is increased, the time required for crystallization of YFI-type zeolite can be shortened, and the YFI-type zeolite yield is improved.
- the seed crystal is preferably an aluminosilicate having an LTL structure, LTA structure, MOR structure, MFI structure, * BEA structure, FAU structure, CHA structure or YFI structure.
- the SiO 2 /Al 2 O 3 molar ratio of the seed crystal is preferably 2 or more and 100 or less, more preferably 3 or more and 60 or less.
- the content of the seed crystals is preferably as small as possible, but considering the reaction rate, the effect of suppressing impurities, etc., the content of the silicon contained in the raw material composition (excluding the silicon of the seed crystals) is 0.00% relative to the mass converted to silica. It is preferably 1% by mass or more and 60% by mass or less, more preferably 0.5% by mass or more and 40% by mass or less.
- composition can be exemplified as a preferred composition of the raw material composition.
- the raw material composition is crystallized by hydrothermal treatment.
- Conditions for the hydrothermal treatment include the following conditions.
- Crystallization temperature 140° C. or more and 180° C. or less Crystallization time: 1 day or more and 10 days or less Crystallization pressure: Autogenous pressure
- Precursor YFI is obtained by the above crystallization steps. After the crystallization step, the obtained precursor YFI is preferably recovered by any method, washed, dried and calcined.
- YFI-type zeolite after the acid treatment step is preferably subjected to a step of increasing solid acid in the zeolite (hereinafter also referred to as an “ion exchange step”).
- the ion exchange conditions are arbitrary, YFI-type zeolite and an aqueous ammonium chloride solution may be brought into contact at a temperature of 20° C. or higher and 200° C. or lower. As a result, the cation type of the YFI zeolite becomes an ammonium type.
- an alkali metal compound which is selected from the group of inorganic acid salts containing alkali metals, sulfates, nitrates, acetates and chlorides. It is more preferable to use at least one of
- the alkali metal may be contained in at least one of the ion-exchange sites and pores of the zeolite, and a specific method for incorporating the alkali metal is a method of mixing an aqueous solution containing an alkali metal compound with the zeolite. , an ion exchange method, an evaporation to dryness method, and an impregnation-supporting method. is more preferable.
- the YFI-type zeolite of the present embodiment is used as a hydrocarbon adsorbent containing the YFI-type zeolite of the present embodiment, and may be a hydrocarbon adsorbent consisting only of the YFI-type zeolite of this embodiment.
- YFI-type zeolites other than those of this embodiment may also be used as a carrier for hydrocarbon adsorbents.
- the hydrocarbon adsorbent of the present embodiment may have any shape according to its application, and preferably includes at least one of powder and compact.
- Specific shapes of the formed bodies include at least one selected from the group consisting of spherical, substantially spherical, elliptical, disk-like, columnar, polyhedral, amorphous and petal-like.
- the above hydrocarbon adsorbent can be mixed with a solvent such as water or alcohol to form a slurry, and the slurry can be coated on the base material to form the adsorbent.
- the above hydrocarbon adsorbent may be mixed with a binder if necessary and molded by any method.
- the binder is, for example, at least one selected from the group consisting of silica, alumina, kaolin, attapulgite, montmorillonite, bentonite, allene and sepiolite.
- the molding method include at least one selected from the group consisting of tumbling granulation molding, stirring granulation molding, press molding, extrusion molding, injection molding, slip casting and sheet molding.
- the hydrocarbon adsorbent of this embodiment can be used in a hydrocarbon adsorption method.
- the hydrocarbon adsorbent of this embodiment can adsorb hydrocarbons by a method comprising a step of contacting a hydrocarbon-containing fluid with the hydrocarbon adsorbent of this embodiment.
- hydrocarbon-containing fluids examples include hydrocarbon-containing gases and hydrocarbon-containing liquids.
- the hydrocarbon-containing gas is a gas containing at least one hydrocarbon, preferably a gas containing two or more hydrocarbons.
- the hydrocarbon contained in the hydrocarbon-containing gas includes at least one selected from the group consisting of paraffins, olefins and aromatic hydrocarbons.
- the number of carbon atoms in the hydrocarbon should be 1 or more, preferably 1 or more and 15 or less.
- Hydrocarbons contained in the hydrocarbon-containing gas are selected from the group consisting of methane, ethane, ethylene, propylene, butane, linear paraffins having 5 or more carbon atoms, linear olefins having 5 or more carbon atoms, benzene, toluene and xylene.
- At least two selected are preferred, and at least two selected from the group consisting of methane, ethane, ethylene, propylene, butane, benzene, toluene and xylene are more preferred, and from the group consisting of methane, ethane, ethylene and propylene. At least one selected and at least one selected from the group consisting of benzene, toluene and xylene are more preferable.
- the hydrocarbon-containing gas may contain at least one selected from the group consisting of carbon monoxide, carbon dioxide, hydrogen, oxygen, nitrogen, nitrogen oxides, sulfur oxides and water.
- combustion gas such as exhaust gas from an internal combustion engine can be mentioned.
- the contact temperature between the hydrocarbon-containing fluid and the hydrocarbon adsorbent of the present embodiment in this step is room temperature to 200°C.
- a sample solution was prepared by dissolving the sample in a mixed aqueous solution of hydrofluoric acid and nitric acid.
- a general ICP device device name: OPTIMA5300DV, manufactured by PerkinElmer
- the sample solution was measured by inductively coupled plasma atomic emission spectrometry (ICP-AES). From the measured values of Si and Al obtained, the SiO 2 /Al 2 O 3 molar ratio and Al Total of the sample were obtained.
- NH 3 -TPD was measured by the following method using an ordinary catalyst analyzer (device name: BELCATII, manufactured by MicrotracBEL).
- the amount of solid acid was quantified from the spectrum obtained by subtracting the blank spectrum from the desorption spectrum of ammonia (hereinafter also referred to as "difference spectrum").
- the desorption peak having an apex (extreme value) at 300 ° C. or higher is regarded as the ammonia desorption peak, and the analysis software attached to the catalyst analyzer (ChemMaster for Windows ver1.4.9, manufactured by Microtrack Bell) ) was used to determine the area (integrated value) of the peak, which was used as the amount of ammonia released.
- the ratio of the amount of desorbed ammonia (mmol) to the sample mass (g) was defined as the amount of solid acid (mmol/g). (Measurement of BET specific surface area)
- the measurement sample was degassed from the air atmosphere at 350° C. for 2 hours as a pretreatment.
- a nitrogen adsorption isotherm was measured at a measurement temperature of 77K using a normal nitrogen adsorption device (device name: BELSORP-mini II, manufactured by MicrotracBEL).
- BELSORP-mini II manufactured by MicrotracBEL
- the BET specific surface area was calculated using the BET method for the relative pressure range of 0.01 to 0.15 on the obtained nitrogen adsorption isotherm.
- the extra-skeletal Al ratio was calculated from the following formula.
- Extraskeletal Al ratio (% by mass) [Al Total (g) - (Solid Acid Amount (mol/g) ⁇ 2 x 101.96 (g/mol))] ⁇ Al Total (g) x 100
- Colloidal silica product name: Ludox AS-40, manufactured by Aldrich
- FAU-type zeolite product name: HSZ-350HUA, manufactured by Tosoh Corporation
- Me 2 Pr 2 NOH, NaOH, KOH and H 2 O are mixed, and the following A raw material composition having a molar composition of
- the resulting raw material composition was charged into an autoclave having an internal volume of 80 mL, and crystallized under static conditions at 160° C. for 6 days to obtain zeolite.
- the obtained zeolite was calcined at 550° C. in air.
- the obtained zeolite was a YFI-type zeolite (calcined YFI-type zeolite) having a SiO 2 /Al 2 O 3 molar ratio of 18 and an Al Total of 86.2 mg, and was used as precursor YFI.
- Example 1 1.4 mol/L hydrochloric acid and the precursor YFI obtained in Synthesis Example 1 were mixed so that the slurry concentration was 20% by mass, and the mixture was stirred at 80° C. for 1 hour to obtain a slurry. Solid content was recovered by filtering and washing the obtained slurry. The recovered solid content was mixed with a 20% by mass ammonium chloride aqueous solution, filtered, washed, and then dried overnight at 110° C. in the atmosphere.
- FIG. 1 shows the difference spectrum in NH 3 -TPD measurement of the YFI-type zeolite. Two desorption peaks of ammonia can be confirmed in the difference spectrum. It can be confirmed that the desorption peak of ammonia adsorbed to the solid acid has a peak (extreme value) at 460 ⁇ 5°C.
- Example 2 A YFI-type zeolite whose cation type is NH 4 type was obtained in the same manner as in Example 1, except that 4.8 mol/L of hydrochloric acid was used.
- the YFI-type zeolite has a SiO 2 /Al 2 O 3 molar ratio of 94, an Al Total of 17.7 mg, a BET specific surface area of 489 m 2 /g, a solid acid content of 0.32 mmol / g, and extra-framework Al The proportion was 9% by weight.
- Example 3 A YFI-type zeolite whose cation type is NH 4 type was obtained in the same manner as in Example 1, except that 3.4 mol/L of hydrochloric acid was used.
- the YFI-type zeolite has a SiO 2 /Al 2 O 3 molar ratio of 60, an Al Total of 27.5 mg, a BET specific surface area of 496 m 2 /g, a solid acid content of 0.44 mmol / g, and extra-framework Al The proportion was 18% by weight.
- Example 4 The cation type of this example was NH 4 type in the same manner as in Example 1 except that 0.8 mol / L hydrochloric acid was used, the slurry concentration was 29% by mass, and the stirring was performed at 95 ° C.
- YFI type zeolite was obtained.
- the YFI-type zeolite has a SiO 2 /Al 2 O 3 molar ratio of 25, an Al Total of 63.6 mg, a BET specific surface area of 451 m 2 /g, a solid acid content of 0.90 mmol / g, and extra-framework Al The proportion was 28% by weight.
- Example 5 A YFI-type zeolite whose cation type is NH 4 type was obtained in the same manner as in Example 1, except that 0.7 mol/L of sulfuric acid was used.
- the YFI-type zeolite has a SiO 2 /Al 2 O 3 molar ratio of 32, an Al Total of 50.4 mg, a BET specific surface area of 470 m 2 /g, a solid acid content of 0.75 mmol / g, and extra-framework Al The proportion was 24% by mass.
- Comparative example 1 1.0 mol/L hydrochloric acid and the precursor YFI obtained in Synthesis Example 1 were mixed so that the slurry concentration was 15% by mass, and the mixture was stirred at 25° C. for 18 hours. The slurry obtained after stirring was filtered, washed, treated with a 20 mass % ammonium chloride aqueous solution, and dried overnight at 110° C. in the air. As a result, a YFI-type zeolite having a SiO 2 /Al 2 O 3 molar ratio of 42, an Al Total of 38.8 mg, a BET specific surface area of 452 m 2 /g, and a cation type of NH 4 type was obtained. The YFI-type zeolite had a solid acid content of 0.50 mmol/g and an extra-framework Al ratio of 34% by mass.
- Comparative example 2 A SiO 2 /Al 2 O 3 molar ratio of 18 and an Al Total of 86.0 were obtained in the same manner as in Example 1, except that the precursor YFI was not subjected to the acid treatment step but was treated with a 20 mass % ammonium chloride aqueous solution.
- YFI type zeolite having a BET specific surface area of 2 mg and a BET specific surface area of 424 m 2 /g and a cation type of NH 4 type was obtained.
- the YFI-type zeolite had a solid acid content of 1.06 mmol/g and an extra-framework Al ratio of 37% by mass.
- Comparative example 3 1.4 mol/L nitric acid and the precursor YFI obtained in Synthesis Example 1 were mixed so that the slurry concentration was 20% by mass, and the mixture was stirred at 80° C. for 1 hour. The slurry obtained after stirring was filtered, washed, treated with a 20 mass % ammonium chloride aqueous solution, and dried overnight at 110° C. in the air. As a result, a YFI-type zeolite having a SiO 2 /Al 2 O 3 molar ratio of 43, an Al Total of 38.0 mg, a BET specific surface area of 435 m 2 /g, and a cation type of NH 4 type was obtained. The YFI-type zeolite had a solid acid content of 0.53 mmol/g and an extra-framework Al ratio of 29% by mass.
- Table 3 shows the results of Examples and Comparative Examples.
- the proportion of extra-framework Al decreased even when the acid concentration was low.
- the proportion of extra-framework Al tends to decrease as the acid concentration increases (especially when the acid concentration is 1.0 mol/L or more).
- Measurement example 1 (Preparation and pretreatment of measurement sample) A 2% by mass aqueous solution of cesium chloride was prepared in a liquid amount of 4 equivalents of Cs molar amount to the Al molar amount of the YFI zeolite having a cation type of NH 4 obtained in Examples and Comparative Examples.
- Alkali metal-containing YFI-type zeolite (cesium-containing YFI-type zeolite) was obtained by mixing YFI-type zeolite whose cation type is NH 4 type with the cesium chloride aqueous solution, filtering, washing, and drying overnight at 110 ° C. in the air. and
- the obtained alkali metal-containing YFI zeolite was used as a hydrocarbon adsorbent.
- the hydrocarbon adsorbents are pressure-molded and pulverized to form irregular-shaped molded bodies having an aggregate diameter of 20 to 30 mesh, and the obtained molded bodies are used as measurement samples according to Examples 1 to 5 and Comparative Examples 1 to 3, respectively. and 0.1 g of each sample to be measured was filled in a normal pressure fixed bed flow reaction tube, treated at 500° C. for 1 hour under nitrogen flow at a flow rate of 200 mL/min, and then cooled to 50° C. for pretreatment.
- hydrocarbon adsorption A hydrocarbon-containing gas was passed through each hydrocarbon adsorbent after pretreatment.
- the composition and measurement conditions of the hydrocarbon-containing gas are shown below.
- Hydrocarbon-containing gas toluene 3000 volume ppmC (concentration in terms of methane) Water 3% by volume Nitrogen balance Gas flow rate: 200 mL/min Measurement temperature: 50 to 600°C Heating rate: 10°C/min Measurement time: 55 minutes (Measurement of hydrocarbon desorption start temperature)
- a hydrogen ionization detector (FID) was used to continuously quantitatively analyze the hydrocarbons in the gas after passing through the hydrocarbon adsorbent.
- inlet concentration Hydrocarbon concentration (concentration in terms of methane; hereinafter referred to as "inlet concentration") of the hydrocarbon-containing gas on the inlet side of the atmospheric pressure fixed bed flow reaction tube and carbonization on the outlet side of the atmospheric pressure fixed bed flow reaction tube
- outlet concentration The hydrocarbon concentration (concentration in terms of methane; hereinafter referred to as "outlet concentration") of the hydrogen-containing gas was measured.
- the state in which the inlet hydrocarbon concentration is higher than the outlet hydrocarbon concentration is regarded as the adsorption stage, and the state in which the outlet hydrocarbon concentration is higher than the inlet hydrocarbon concentration is regarded as the desorption stage. was taken as the desorption start temperature.
- Table 4 shows the results.
- Hydrothermal durability treatment was performed by treating the hydrocarbon adsorbent in the same manner as (hydrocarbon adsorption) described above, except that the treatment gas was passed through the hydrocarbon adsorbent after pretreatment under the following conditions.
- Processing gas 10% by volume of water Dry air remainder Gas flow rate: 300 mL/min Space velocity: 6000 hr -1 Processing temperature: 900°C Treatment time: 20 hours (measurement of hydrocarbon desorption start temperature after hydrothermal durability treatment)
- the hydrocarbon desorption start temperature was measured in the same manner as the above (measurement of hydrocarbon desorption start temperature). Table 5 shows the results.
- the hydrocarbon adsorbents of the examples have a higher desorption start temperature than the hydrocarbon adsorbents of the comparative examples, even after the hydrothermal durability treatment.
- Table 6 shows the difference in desorption start temperature before and after the hydrothermal durability treatment.
- the hydrocarbon adsorbent containing YFI-type zeolite with an extra-framework Al ratio of 0% by mass or more and 28% by mass has a small difference in desorption start temperature before and after the hydrothermal durability treatment.
- the hydrocarbon adsorbents containing YFI-type zeolite of Examples 2 to 4 had a difference in the desorption start temperature before and after the hydrothermal durability treatment of 5° C. or less, and the desorption start temperature even after the hydrothermal durability treatment. It can be confirmed that almost no decrease has occurred, and it can be confirmed that stable hydrocarbon adsorption characteristics are exhibited.
- the YFI-type zeolite of the present embodiment can be used for known zeolite applications such as adsorbents, catalysts and their carriers, and can also be used as hydrocarbon adsorbents and their carriers. More preferably, the YFI-type zeolite of the present embodiment can be used in a method for adsorbing hydrocarbons in an environment exposed to high temperature and high humidity. Can be used for adsorption methods.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Separation Of Gases By Adsorption (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Treating Waste Gases (AREA)
Abstract
Description
[1] 含有するアルミニウム質量に対する骨格外アルミニウム質量の割合が0質量%以上28質量%以下であることを特徴とするYFI型ゼオライト。
[2] アルミナに対するシリカのモル比(SiO2/Al2O3)が20以上100以下である上記[1]に記載のYFI型ゼオライト。
[3] BET比表面積が300m2/g以上700m2/g以下である上記[1]または[2]に記載のYFI型ゼオライト。
[4] アルカリ金属を含有する上記[1]乃至[3]のいずれかに記載のYFI型ゼオライト。
[5] ナトリウム、カリウム、セシウム及びルビジウムからなる群から選ばれる少なくとも1種を含有する上記[1]乃至[3]のいずれかに記載のYFI型ゼオライト。
[6] YFI型ゼオライト前駆体を塩酸及び硫酸の少なくともいずれかの酸で、60℃以上100℃以下で処理することを特徴とするYFI型ゼオライトの製造方法。
[7] 前記酸が塩酸である、上記[6]に記載のYFI型ゼオライトの製造方法。
[8] 前記YFI型ゼオライト前駆体のアルミナに対するシリカのモル比(SiO2/Al2O3)が25未満であることを特徴とする上記[6]または[7]に記載のYFI型ゼオライトの製造方法。
[9] [1]乃至[5]のいずれかに記載のYFI型ゼオライトを含む炭化水素吸着剤。
[10] [9]に記載の炭化水素吸着剤を使用する炭化水素の吸着方法。
線源 : CuKα線(λ=1.5405Å)
測定モード : 連続スキャン
スキャン条件 : 40°/分
測定範囲 : 2θ=3°から43°
検出器 : 半導体検出器
結晶性のXRDピークは、一般的な解析ソフト(例えば、SmartLab StudioII、リガク社製)を使用したXRDパターンの解析においてピークトップの2θが特定され検出されるピークであり、半値幅が2θ=0.50°以下のXRDピークが例示できる。
÷含有するアルミニウム質量(g)×100
「含有するアルミニウム」は本実施形態のYFI型ゼオライトに含まれるすべてのアルミニウム原子であり、本実施形態のYFI型ゼオライトのT原子として存在するアルミニウム原子(骨格内Al)、及び、YFI型ゼオライトのT原子以外として存在するアルミニウム原子(以下、「骨格外Al」ともいう。)の合計である。また、「含有するアルミニウム質量」とは、骨格内Al及び骨格外Alの合計をアルミナ(Al2O3)換算した質量であり、骨格内Alと骨格外Alの合計質量に相当する。含有するアルミニウム質量は組成分析により求めることができる。組成分析は例えば、誘導結合プラズマ発光分光分析(ICP-AES)を挙げることができる。
=固体酸量(mol/g)÷2×アルミナの分子量(101.96(g/mol))
骨格外Al質量(g)
=AlTotal(g)-骨格内Alの質量(g)
固体酸量は一般的なNH3-TPD法により定量することができる。NH3-TPD測定は通常の触媒分析装置(例えば、BELCATII、MicrotracBEL社製)を使用した、以下に示す方法が例示できる。
試料 :H型又はNH4型のYFI型ゼオライト 0.05g
<前処理>
雰囲気 :ヘリウム流通下
温度 :500℃
ガス流量:50mL/分
時間 :1時間
<NH3-TPD測定>
前処理後の試料について、100℃で、1体積%のアンモニア及び99体積%のヘリウムガスを含む混合ガスを30分流通させた後、混合ガスからヘリウムガスに切り替え、該ヘリウムガスを15分流通させる雰囲気中の残存アンモニアを除去する。残存アンモニアの除去後、流速30mL/分のヘリウム流通下、昇温速度10℃/分で710℃まで昇温し、熱伝導度検出器(TCD)を備えたガスクロマトグラフによってアンモニアを連続的に定量し、アンモニアの脱離スペクトルを得る。
<酸処理工程>
塩酸及び硫酸の少なくともいずれかの酸(以下、「塩酸等」ともいう。)で、60℃以上100℃以下で処理する工程(以下、「酸処理工程」ともいう。)に供するYFI型ゼオライト前駆体(以下、「前駆YFI」ともいう。)は、YFI型ゼオライトであればよい。また酸処理工程は繰り返し行ってもよく、本実施形態の製造方法は、酸処理工程後のYFI型ゼオライトを塩酸等で処理する工程を含んでいてもよい。YFI型ゼオライトは有機構造指向材を含む組成物を結晶化して製造される合成ゼオライトであるが、前駆YFIは有機構造指向剤(以下、「SDA」ともいう。)を含有していないYFI型ゼオライトであることが好ましい。
塩酸等の濃度(以下、「酸濃度」ともいう。)は任意であるが、0.1mol/L以上、10mol/L以下が挙げられ、0.1mol/L以上、0.5mol/L以上又は1.0mol/L超であり、また、8.0mol/L以下、6.0mol/L以下又は5.0mol/L以下であることが好ましい。酸濃度の上限及び下限は上記の任意の組合せであればよい。酸濃度が高いほど得られるYFI型ゼオライトのSiO2/Al2O3モル比が高くなりやすい。一方、酸濃度が低いほど得られるYFI型ゼオライトのSiO2/Al2O3モル比が低くなりやすい。
<前駆YFIの製造方法>
前駆YFIは上述のYFI型ゼオライトであれば、その製造方法は任意である。前駆YFIは、シリカ源、アルミナ源、アルカリ源及び水を含む組成物(以下、「原料組成物」ともいう。)を結晶化する工程(以下、「結晶化工程」ともいう。)、を有する製造方法で得られるYFI型ゼオライトであることが挙げられる。
Me2Pr2N+/SiO2モル比 =0.05以上0.30以下
Na/SiO2モル比 =0.05以上0.60以下
K/SiO2モル比 =0.05以上0.60以下
H2O/SiO2モル比 =3以上50以下
好ましくは、結晶化工程では水熱処理により原料組成物を結晶化する。水熱処理の条件として、以下の条件を挙げることができる。
結晶化時間 : 1日以上10日以下
結晶化圧力 : 自生圧
以上の結晶化工程によって、前駆YFIが得られる。当該結晶化工程後、得られた前駆YFIは、任意の方法で回収し、洗浄、乾燥、及び焼成することが好ましい。
<イオン交換工程>
酸処理工程後のYFI型ゼオライトは、ゼオライト中の固体酸を増やす工程(以下、「イオン交換工程」ともいう。)に供することが好ましい。イオン交換条件は任意であるが、YFI型ゼオライトと塩化アンモニウム水溶液とを20℃以上200℃以下で接触させることが挙げられる。これによりYFI型ゼオライトのカチオンタイプがアンモニウム型となる。
一般的なX線回折装置(装置名:UltimaIV Protectus、リガク社製)を使用し、試料のXRD測定をした。測定条件は以下のとおりである。
線源 : CuKα線(λ=1.5405Å)
測定モード : 連続スキャン
スキャン条件 : 40°/分
測定範囲 : 2θ=3°から43°
発散縦制限スリット: 10mm
発散/入射スリット: 1°
受光スリット : open
受光ソーラースリット : 5°
検出器 : 半導体検出器(D/teX Ultra)
フィルター : Niフィルター
得られたXRDパターンと参照パターンとを対比することで、ゼオライト構造を同定した。
フッ酸と硝酸の混合水溶液に試料を溶解して試料溶液を調製した。一般的なICP装置(装置名:OPTIMA5300DV、PerkinElmer社製)を使用して、当該試料溶液を誘導結合プラズマ発光分光分析(ICP-AES)で測定した。得られたSi及びAlの測定値から、試料のSiO2/Al2O3モル比、及び、AlTotalを求めた。
NH3-TPD測定は通常の触媒分析装置(装置名:BELCATII、MicrotracBEL社製)を使用して、以下に示す方法で測定した。
試料 :0.05g
<前処理>
雰囲気 :ヘリウム流通下
温度 :500℃
ガス流量:50mL/分
時間 :1時間
<NH3-TPD測定>
前処理後の試料について、100℃で、1体積%のアンモニア及び99体積%のヘリウムガスを含む混合ガスを流通させて、試料にアンモニアを飽和吸着させた。混合ガスを30分流通した後、混合ガスからヘリウムガスに替え、ヘリウムガスを15分流通させることで雰囲気中の残存アンモニアの除去をした。残存アンモニアの除去後、流速30mL/分のヘリウム流通下、昇温速度10℃/分で710℃まで昇温した。これにより、試料に吸着されたアンモニアを試料から脱離させた。試料から脱離されたアンモニアは、熱伝導度検出器(TCD)を備えたガスクロマトグラフによって連続的に定量され、これによりアンモニアの脱離スペクトルを得た。
(BET比表面積の測定)
測定試料を空気雰囲気から、350℃で2時間脱気し、前処理とした。前処理後、通常の窒素吸着装置(装置名:BELSORP-mini II、MicrotracBEL社製)を使用し、測定温度77Kにおける窒素吸着等温線を測定した。得られた窒素吸着等温線の相対圧力0.01以上0.15以下の範囲について、BET法を使用してBET比表面積を算出した。
(骨格外Al割合の算出)
骨格外Al割合は下式から算出した。
=[AlTotal(g)-(固体酸量(mol/g)÷2×101.96(g/mol))]÷AlTotal(g)×100
合成例1
コロイダルシリカ(製品名:Ludox AS-40、アルドリッチ社製)、FAU型ゼオライト(製品名:HSZ-350HUA、東ソー社製)、Me2Pr2NOH、NaOH、KOH及びH2Oを混合し、以下のモル組成を有する原料組成物を得た。
:0.15NaOH:0.17KOH:7H2O
すなわち、原料組成物のモル組成は、
SiO2/Al2O3モル比 =40
Me2Pr2N+/SiO2モル比 =0.17
Na/SiO2モル比 =0.15
K/SiO2モル比 =0.17
H2O/SiO2モル比 =7
である。
1.4mol/Lの塩酸と、合成例1で得られた前駆YFIを、スラリー濃度が20質量%となるように混合し、80℃で1時間撹拌してスラリーを得た。得られたスラリーをろ過、洗浄することで固形分を回収した。回収した固形分は、20質量%塩化アンモニウム水溶液と混合、ろ過、及び、洗浄した後、大気中110℃で一晩乾燥した。これによりSiO2/Al2O3モル比が42、AlTotalが38.0mg及びBET比表面積が479m2/gであり、カチオンタイプがNH4型であるYFI型ゼオライトを得た。該YFI型ゼオライトの固体酸量は0.58mmol/gであり、骨格外Al割合が23質量%であった。該YFI型ゼオライトのNH3-TPD測定における差スペクトルを図1に示す。差スペクトルにおいて、アンモニアの脱離ピークが2つ確認できる。固体酸に吸着したアンモニアの脱離ピークは、460±5℃に頂点(極値)を有する脱離ピークであることが確認できる。
4.8mol/Lの塩酸を使用したこと以外は、実施例1と同様な方法で本実施例のカチオンタイプがNH4型であるYFI型ゼオライトを得た。該YFI型ゼオライトはSiO2/Al2O3モル比が94、AlTotalが17.7mg及びBET比表面積が489m2/gであり、固体酸量は0.32mmol/gであり、骨格外Al割合が9質量%であった。
3.4mol/Lの塩酸を使用したこと以外は、実施例1と同様な方法で本実施例のカチオンタイプがNH4型であるYFI型ゼオライトを得た。該YFI型ゼオライトはSiO2/Al2O3モル比が60、AlTotalが27.5mg及びBET比表面積が496m2/gであり、固体酸量は0.44mmol/gであり、骨格外Al割合が18質量%であった。
0.8mol/Lの塩酸を使用したこと、スラリー濃度を29質量%としたこと、及び95℃で攪拌したこと以外は、実施例1と同様な方法で本実施例のカチオンタイプがNH4型であるYFI型ゼオライトを得た。該YFI型ゼオライトはSiO2/Al2O3モル比が25、AlTotalが63.6mg及びBET比表面積が451m2/gであり、固体酸量は0.90mmol/gであり、骨格外Al割合が28質量%であった。
0.7mol/Lの硫酸を使用したこと以外は実施例1と同様な方法で本実施例のカチオンタイプがNH4型であるYFI型ゼオライトを得た。該YFI型ゼオライトはSiO2/Al2O3モル比が32、AlTotalが50.4mg及びBET比表面積が470m2/gであり、固体酸量は0.75mmol/gであり、骨格外Al割合が24質量%であった。
1.0mol/Lの塩酸と、合成例1で得られた前駆YFIを、スラリー濃度が15質量%となるように混合し、25℃で18時間撹拌した。撹拌後に得られたスラリーをろ過、洗浄し、20質量%塩化アンモニウム水溶液で処理し、大気中110℃で一晩乾燥した。これによりSiO2/Al2O3モル比が42、AlTotalが38.8mg及びBET比表面積が452m2/gであり、カチオンタイプがNH4型であるYFI型ゼオライトを得た。該YFI型ゼオライトの固体酸量は0.50mmol/gであり、骨格外Al割合が34質量%であった。
前駆YFIを、酸処理工程に供さず20質量%塩化アンモニウム水溶液で処理したこと以外は、実施例1と同様な方法により、SiO2/Al2O3モル比が18、AlTotalが86.2mg及びBET比表面積が424m2/gであり、カチオンタイプがNH4型であるYFI型ゼオライトを得た。該YFI型ゼオライトの固体酸量は1.06mmol/gであり、骨格外Al割合が37質量%であった。
1.4mol/Lの硝酸と合成例1で得られた前駆YFIを、スラリー濃度が20質量%となるように混合し、80℃で1時間撹拌した。撹拌後に得られたスラリーをろ過、洗浄し、20質量%塩化アンモニウム水溶液で処理し、大気中110℃で一晩乾燥した。これによりSiO2/Al2O3モル比が43、AlTotalが38.0mg及びBET比表面積が435m2/gであり、カチオンタイプがNH4型であるYFI型ゼオライトを得た。該YFI型ゼオライトの固体酸量は0.53mmol/gであり、骨格外Al割合が29質量%であった。
(測定試料の作製及び前処理)
実施例及び比較例で得られたカチオンタイプがNH4型のYFI型ゼオライトのAlモル量に対し、4当量のCsモル量となる液量の、2質量%の塩化セシウム水溶液を調製した。カチオンタイプがNH4型のYFI型ゼオライトを、それぞれ、該塩化セシウム水溶液と混合、ろ過、洗浄し、大気中110℃で一晩乾燥することによりアルカリ金属含有YFI型ゼオライト(セシウム含有YFI型ゼオライト)とした。
前処理後の各炭化水素吸着剤に炭化水素含有ガスを流通させた。炭化水素含有ガスの組成及び測定条件を以下に示す。
水 3体積%
窒素 残部
ガス流量 :200mL/分
測定温度 :50~600℃
昇温速度 :10℃/分
測定時間 :55分
(炭化水素の脱離開始温度の測定)
水素イオン化検出器(FID)を使用し、炭化水素吸着剤を通過した後のガス中の炭化水素を連続的に定量分析した。常圧固定床流通式反応管の入口側の炭化水素含有ガスの炭化水素濃度(メタン換算濃度;以下、「入口濃度」とする。)と、常圧固定床流通式反応管の出口側の炭化水素含有ガスの炭化水素濃度(メタン換算濃度;以下、「出口濃度」とする。)を測定した。入口炭化水素濃度が出口炭化水素濃度より高い状態を吸着段階、出口炭化水素濃度が入口炭化水素濃度より高い状態を脱離段階とみなし、吸着段階と脱離段階とが切り替わった温度をもって、炭化水素の脱離開始温度とした。結果を表4に示す。
前処理後の炭化水素吸着剤に以下の条件で処理ガスを流通させたこと以外は上述の(炭化水素吸着)と同様な方法で炭化水素吸着剤を処理し、水熱耐久処理とした。
乾燥空気 残部
ガス流量 :300mL/分
空間速度 :6000hr-1
処理温度 :900℃
処理時間 :20時間
(水熱耐久処理後の炭化水素の脱離開始温度の測定)
水熱耐久処理後の炭化水素吸着剤に、上述の(炭化水素の脱離開始温度の測定)と同様な方法で炭化水素の脱離開始温度を測定した。結果を表5に示す。
Claims (10)
- 含有するアルミニウム質量に対する骨格外アルミニウム質量の割合が0以上28質量%以下であることを特徴とするYFI型ゼオライト。
- 前記ゼオライトのアルミナに対するシリカのモル比(SiO2/Al2O3)が20以上100以下である請求項1に記載のYFI型ゼオライト。
- 前記ゼオライトのBET比表面積が300m2/g以上700m2/g以下である請求項1または請求項2に記載のYFI型ゼオライト。
- アルカリ金属を含有する請求項1または請求項2に記載のYFI型ゼオライト。
- ナトリウム、カリウム、セシウム及びルビジウムからなる群から選ばれる少なくとも1種を含有する請求項1または請求項2のいずれかの記載のYFI型ゼオライト。
- YFI型ゼオライト前駆体を塩酸及び硫酸のいずれかで処理することを特徴とするYFI型ゼオライトの製造方法。
- YFI型ゼオライト前駆体を処理する酸が塩酸であり、60℃以上100℃以下で処理することを特徴とする請求項6に記載のYFI型ゼオライトの製造方法。
- YFI型ゼオライト前駆体のアルミナに対するシリカのモル比(SiO2/Al2O3)が25未満であることを特徴とする請求項6または請求項7に記載のYFI型ゼオライトの製造方法。
- 請求項1または請求項2に記載のYFI型ゼオライトを含む炭化水素吸着剤。
- 請求項9に記載の炭化水素吸着剤を使用する炭化水素の吸着方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280038460.6A CN117412923A (zh) | 2021-06-02 | 2022-05-31 | Yfi型沸石、其制造方法、烃吸附剂及烃的吸附方法 |
EP22816129.5A EP4353684A1 (en) | 2021-06-02 | 2022-05-31 | Yfi-type zeolite, production method therefor, hydrocarbon adsorbent, and hydrocarbon adsorption method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021093264 | 2021-06-02 | ||
JP2021-093264 | 2021-06-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022255383A1 true WO2022255383A1 (ja) | 2022-12-08 |
Family
ID=84323464
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/022204 WO2022255383A1 (ja) | 2021-06-02 | 2022-05-31 | Yfi型ゼオライト、その製造方法、炭化水素吸着剤及び炭化水素の吸着方法 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4353684A1 (ja) |
JP (1) | JP2022185584A (ja) |
CN (1) | CN117412923A (ja) |
WO (1) | WO2022255383A1 (ja) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06126165A (ja) | 1992-10-16 | 1994-05-10 | Idemitsu Kosan Co Ltd | 排ガス中の炭化水素類浄化用吸着材 |
JPH06210163A (ja) | 1993-01-20 | 1994-08-02 | Mitsubishi Heavy Ind Ltd | 炭化水素の吸着剤及び吸着浄化方法 |
JPH07213910A (ja) | 1994-01-28 | 1995-08-15 | Nissan Motor Co Ltd | 排ガス浄化用吸着触媒 |
JP2012148968A (ja) * | 2010-12-28 | 2012-08-09 | Tosoh Corp | 銅及びアルカリ土類金属を担持したゼオライト |
WO2018061827A1 (ja) | 2016-09-29 | 2018-04-05 | 国立大学法人横浜国立大学 | ゼオライトとその製造方法 |
JP2020066564A (ja) * | 2018-10-26 | 2020-04-30 | 東ソー株式会社 | Rho型ゼオライト及びその製造方法 |
WO2020121812A1 (ja) * | 2018-12-13 | 2020-06-18 | 国立大学法人 東京大学 | ゼオライトおよびその製造方法 |
JP2020163345A (ja) * | 2019-03-29 | 2020-10-08 | 東ソー株式会社 | 炭化水素吸着剤 |
JP2020533164A (ja) * | 2017-09-07 | 2020-11-19 | ビーエーエスエフ コーポレーション | 骨格外アルミニウムを減じたゼオライト |
JP2021093264A (ja) | 2019-12-09 | 2021-06-17 | トヨタ自動車株式会社 | スイッチ装置 |
-
2022
- 2022-05-31 JP JP2022089038A patent/JP2022185584A/ja active Pending
- 2022-05-31 WO PCT/JP2022/022204 patent/WO2022255383A1/ja active Application Filing
- 2022-05-31 CN CN202280038460.6A patent/CN117412923A/zh active Pending
- 2022-05-31 EP EP22816129.5A patent/EP4353684A1/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06126165A (ja) | 1992-10-16 | 1994-05-10 | Idemitsu Kosan Co Ltd | 排ガス中の炭化水素類浄化用吸着材 |
JPH06210163A (ja) | 1993-01-20 | 1994-08-02 | Mitsubishi Heavy Ind Ltd | 炭化水素の吸着剤及び吸着浄化方法 |
JPH07213910A (ja) | 1994-01-28 | 1995-08-15 | Nissan Motor Co Ltd | 排ガス浄化用吸着触媒 |
JP2012148968A (ja) * | 2010-12-28 | 2012-08-09 | Tosoh Corp | 銅及びアルカリ土類金属を担持したゼオライト |
WO2018061827A1 (ja) | 2016-09-29 | 2018-04-05 | 国立大学法人横浜国立大学 | ゼオライトとその製造方法 |
JP2020533164A (ja) * | 2017-09-07 | 2020-11-19 | ビーエーエスエフ コーポレーション | 骨格外アルミニウムを減じたゼオライト |
JP2020066564A (ja) * | 2018-10-26 | 2020-04-30 | 東ソー株式会社 | Rho型ゼオライト及びその製造方法 |
WO2020121812A1 (ja) * | 2018-12-13 | 2020-06-18 | 国立大学法人 東京大学 | ゼオライトおよびその製造方法 |
JP2020163345A (ja) * | 2019-03-29 | 2020-10-08 | 東ソー株式会社 | 炭化水素吸着剤 |
JP2021093264A (ja) | 2019-12-09 | 2021-06-17 | トヨタ自動車株式会社 | スイッチ装置 |
Also Published As
Publication number | Publication date |
---|---|
EP4353684A1 (en) | 2024-04-17 |
CN117412923A (zh) | 2024-01-16 |
JP2022185584A (ja) | 2022-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6394601B2 (ja) | ゼオライト及びその製造方法と用途 | |
KR102219718B1 (ko) | Lev 형 제올라이트 및 그 제조 방법 | |
JP7283046B2 (ja) | 金属含有cha型ゼオライト及びその製造方法 | |
WO2017090751A1 (ja) | ゼオライト触媒及び低級オレフィンの製造方法 | |
KR20180066053A (ko) | 분자체 ssz-105, 이의 합성 및 용도 | |
US20220193645A1 (en) | Rapid synthesis of a catalyst comprising a zeolite having an afx structure and at least one transition metal for selective nox reduction | |
JP7318193B2 (ja) | 炭化水素吸着剤及び炭化水素の吸着方法 | |
JP2019513112A (ja) | モレキュラーシーブssz−106、その合成及び使用 | |
JP2022068871A (ja) | 炭化水素吸着剤及び炭化水素の吸着方法 | |
EP3597293B1 (en) | Transition metal-carrying zeolite and production method therefor, and nitrogen oxide purification catalyst and method for using same | |
JP6926459B2 (ja) | Szr型ゼオライトを含む炭化水素吸着剤及び炭化水素の吸着方法 | |
JPH11216358A (ja) | 炭化水素吸着剤及び排ガス浄化触媒 | |
JP2018079428A (ja) | 炭化水素吸着剤及び炭化水素の吸着除去方法 | |
WO2022255383A1 (ja) | Yfi型ゼオライト、その製造方法、炭化水素吸着剤及び炭化水素の吸着方法 | |
WO2021200990A1 (ja) | Yfi構造を有するゼオライト組成物、炭化水素吸着剤及び炭化水素の吸着方法 | |
JP7104298B2 (ja) | 新規ゼオライト及びこれを含む炭化水素吸着剤 | |
JP2001293368A (ja) | 炭化水素吸着剤及び炭化水素の吸着除去方法 | |
JP7310229B2 (ja) | 炭化水素吸着剤 | |
WO2021201018A1 (ja) | 炭化水素吸着剤及び炭化水素の吸着方法 | |
JP5387269B2 (ja) | Suz−4ゼオライトからなる自動車排ガス中の炭化水素吸着剤及び炭化水素の吸着除去方法 | |
JP2023056945A (ja) | ゼオライトzts-8及びその製造方法 | |
JP2024011057A (ja) | 銅含有fau型ゼオライト | |
JP2023004610A (ja) | 炭化水素吸着剤及び炭化水素の吸着方法 | |
JP2022108644A (ja) | 炭化水素吸着剤及び炭化水素の吸着方法 | |
JP2022102263A (ja) | 炭化水素吸着剤及び炭化水素の吸着方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22816129 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18563536 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280038460.6 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202317084300 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022816129 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022816129 Country of ref document: EP Effective date: 20240102 |