WO2022250314A1 - 열가소성 수지 조성물 - Google Patents

열가소성 수지 조성물 Download PDF

Info

Publication number
WO2022250314A1
WO2022250314A1 PCT/KR2022/006246 KR2022006246W WO2022250314A1 WO 2022250314 A1 WO2022250314 A1 WO 2022250314A1 KR 2022006246 W KR2022006246 W KR 2022006246W WO 2022250314 A1 WO2022250314 A1 WO 2022250314A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
resin composition
weight
polymer
artificial marble
Prior art date
Application number
PCT/KR2022/006246
Other languages
English (en)
French (fr)
Inventor
박상후
최정수
이원석
이루다
김여주
이종주
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP22811507.7A priority Critical patent/EP4215584A4/en
Priority to US18/034,044 priority patent/US20230391999A1/en
Priority to CN202280007199.3A priority patent/CN116368192A/zh
Priority to JP2023523280A priority patent/JP2023546443A/ja
Publication of WO2022250314A1 publication Critical patent/WO2022250314A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/06Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • C08L101/08Carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/20Recycled plastic

Definitions

  • the present invention relates to a thermoplastic resin composition, and more particularly, to a thermoplastic resin composition having excellent scratch resistance and impact resistance.
  • artificial marble is a building material that has recently been in the limelight, and it produces about 300,000 tons worldwide and has a market of about 600 billion won. Domestic production is 100,000 tons, and artificial marble currently used in Korea is made from (meth)acrylate-based monomers, (meth)acrylate-based polymers, and fillers as raw materials.
  • natural marble currently used in Korea is made from (meth)acrylate-based monomers, (meth)acrylate-based polymers, and fillers as raw materials.
  • scrap and dust are generated when processing to the required size, which is discarded by simple landfill or incineration because it cannot be used for other products, causing soil contamination. Therefore, research on ways to utilize waste artificial marble is being conducted.
  • Patent Document 1 KR2009-0092882A
  • An object to be solved by the present invention is to provide a thermoplastic resin composition having excellent scratch resistance and impact resistance.
  • the present invention is a graft polymer comprising a diene-based rubbery polymer to which a (meth)acrylate-based monomer unit and a vinyl aromatic-based monomer unit are grafted; a non-grafted polymer comprising a (meth)acrylate-based monomer unit and a vinyl aromatic-based monomer unit; and 3 to 30% by weight of waste artificial marble.
  • the present invention provides a thermoplastic resin composition according to (1), wherein the waste artificial marble includes a (meth)acrylate-based monomer unit.
  • thermoplastic resin composition according to (1) or (2) comprising 10 to 30% by weight of the waste artificial marble.
  • the present invention also provides the thermoplastic resin composition according to any one of (1) to (3) above, comprising 10 to 50% by weight of the graft polymer.
  • the present invention also provides the thermoplastic resin composition according to any one of (1) to (4) above, wherein a vinyl cyanide-based monomer unit is grafted onto the diene-based rubbery polymer.
  • the present invention according to any one of (1) to (5) above, wherein the graft polymer is not grafted onto the diene-based rubbery polymer, and the (meth)acrylate-based monomer unit and the vinyl aromatic-based monomer It provides a thermoplastic resin composition comprising a pre-polymer comprising a unit.
  • the present invention provides the thermoplastic resin composition according to any one of (1) to (6) above, wherein the diene-based rubbery polymer has an average particle diameter of 200 to 500 nm.
  • the present invention also provides the thermoplastic resin composition according to any one of (1) to (7) above, comprising 30 to 80% by weight of the non-grafted polymer.
  • the present invention also provides the thermoplastic resin composition according to any one of (1) to (8) above, wherein the non-grafted polymer contains a vinyl cyanide-based monomer unit.
  • thermoplastic resin composition comprises 5 to 20% by weight of the diene rubber polymer; 20 to 70% by weight of the (meth)acrylate-based monomer units; Provided is a thermoplastic resin composition comprising 10 to 30% by weight of the vinyl aromatic monomer unit and 3 to 30% by weight of the waste artificial marble.
  • thermoplastic resin composition of the present invention can implement excellent scratch resistance and impact resistance.
  • the 'diene-based rubbery polymer' may refer to a polymer prepared by cross-linking a diene-based monomer alone or a diene-based monomer and a comonomer copolymerizable therewith.
  • the diene-based monomer may be at least one selected from the group consisting of 1,3-butadiene, isoprene, chloroprene and piperylene, among which 1,3-butadiene is preferred.
  • the comonomer include aromatic vinyl monomers, vinyl cyanide monomers, and olefin monomers.
  • the diene-based rubber polymer may be at least one selected from the group consisting of a butadiene rubber polymer, a butadiene-styrene rubber polymer, a butadiene-acrylonitrile rubber polymer, and an ethylene-propylene rubber polymer.
  • the '(meth)acrylate-based monomer' may be a C 1 to C 10 alkyl (meth)acrylate-based monomer, and the C 1 to C 10 alkyl (meth)acrylate-based monomer is methyl (meth) It may be at least one selected from the group consisting of acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and decyl (meth) acrylate, among which methyl methacryl rate is preferred.
  • the 'vinyl aromatic monomer' may be at least one selected from the group consisting of styrene, ⁇ -methyl styrene, ⁇ -ethyl styrene, and p-methyl styrene, of which styrene is preferred.
  • the 'vinyl cyanide-based monomer' may be at least one selected from the group consisting of acrylonitrile, methacrylonitrile, phenylacrylonitrile, and ⁇ -chloroacrylonitrile, of which acrylonitrile is preferred. do.
  • the 'average particle diameter' may mean the arithmetic average particle diameter in the particle size distribution measured by dynamic light scattering, specifically, the scattering intensity average particle diameter.
  • the average particle diameter can be measured using Nicomp 370HPL equipment (product name, manufacturer: PSS Nicomp).
  • thermoplastic resin composition includes a graft polymer including a diene-based rubbery polymer to which a (meth)acrylate-based monomer unit and a vinyl aromatic-based monomer unit are grafted; a non-grafted polymer comprising a (meth)acrylate-based monomer unit and a vinyl aromatic-based monomer unit; and 3 to 30% by weight of waste artificial marble.
  • artificial marble can create various textures, colors, and patterns, so it has good decorative effects, is easy to grind and precisely process, has excellent chemical resistance, stain resistance, heat resistance, workability, and impact resistance, and is easy to maintain. It is used in various fields.
  • waste artificial marble such as scrap and dust is generated.
  • waste artificial marble is pyrolyzed and used as a raw material, or pulverized and recycled as a raw material for artificial marble.
  • thermoplastic resin composition according to an embodiment of the present invention may include 3 to 30% by weight of the waste artificial marble, preferably 10 to 30% by weight. If included below the above conditions, the effect of improving scratch resistance is not realized. If the above conditions are exceeded, processability deteriorates and injection molding is impossible.
  • the thermoplastic resin composition may include 10 to 50% by weight, preferably 20 to 40% by weight of the graft polymer. If the above conditions are satisfied, a thermoplastic resin composition having excellent impact resistance can be prepared.
  • the thermoplastic resin composition may include 30 to 80% by weight of the matrix polymer, preferably 35 to 70% by weight. If the above conditions are satisfied, a thermoplastic resin composition having excellent processability can be produced.
  • thermoplastic resin composition may include 5 to 20% by weight of the diene-based rubber polymer, preferably 10 to 15% by weight. When the above conditions are satisfied, the impact resistance and surface gloss characteristics of the thermoplastic resin composition may be improved.
  • thermoplastic resin composition may include 20 to 70% by weight of the (meth)acrylate-based monomer units, preferably 30 to 50% by weight. If the above conditions are satisfied, the impact resistance and processability of the thermoplastic resin composition can be improved.
  • thermoplastic resin composition may include 10 to 30% by weight of the vinyl aromatic monomer unit, preferably 15 to 30% by weight. When the above conditions are satisfied, the processability of the thermoplastic resin composition can be improved.
  • thermoplastic resin composition may include 3 to 30% by weight of the waste artificial marble, preferably 10 to 30% by weight.
  • scratch resistance may be improved while minimizing a decrease in impact resistance of the thermoplastic resin composition.
  • the graft polymer is a component that improves the impact resistance of the thermoplastic resin composition.
  • the graft polymer includes a diene-based rubbery polymer to which a (meth)acrylate-based monomer unit and a vinyl aromatic monomeric unit are grafted, and is not grafted onto the diene-based rubbery polymer, and a (meth)acrylate-based monomer unit and A free polymer containing a vinyl aromatic monomer unit may be further included.
  • the graft polymer may include 20 to 70% by weight, preferably 30 to 60% by weight of the diene-based rubbery polymer.
  • the (meth)acrylate-based monomer unit and the vinyl aromatic-based monomer are grafted to the diene-based rubber polymer at an appropriate level to prepare a graft polymer having excellent impact resistance and excellent surface gloss properties. have.
  • the average particle diameter of the diene-based rubbery polymer may be 200 to 500 nm, preferably 250 to 400 nm.
  • a graft polymer having excellent impact resistance and surface gloss properties can be prepared.
  • the graft polymer may include 20 to 60% by weight, preferably 30 to 50% by weight of (meth)acrylate-based monomer units. If the above conditions are satisfied, a graft polymer capable of maximizing the improvement of scratch resistance and impact resistance, which is an effect of the waste artificial marble, can be prepared because it has excellent compatibility with the waste artificial marble, which will be described later, as well as the non-grafted polymer. can
  • the graft polymer may include 3 to 30% by weight, preferably 5 to 20% by weight of the vinyl aromatic monomer unit. When the above conditions are satisfied, a graft polymer with improved processability can be prepared.
  • a (meth)acrylate-based monomer unit and a vinyl aromatic-based monomer unit as well as a vinyl cyanide-based monomer may be grafted to the diene-based rubbery polymer.
  • the graft polymer may include 7% by weight or less of the vinyl cyanide-based monomer unit. If the above conditions are satisfied, a graft polymer with improved chemical resistance can be prepared while minimizing yellowing. In addition, it is possible to minimize the generation of solid content (congeal) during the manufacturing process of the graft polymer.
  • the graft polymer may be produced by emulsion polymerization, suspension polymerization, and bulk polymerization, but among these, it is preferable to manufacture the graft polymer by emulsion polymerization capable of producing a graft polymer excellent in both impact resistance and surface gloss properties.
  • the non-grafted polymer is a component that improves the processability of the thermoplastic resin composition.
  • the non-grafted polymer includes a (meth)acrylate-based monomer unit and a vinyl aromatic-based monomer unit.
  • the non-grafted polymer may include 60 to 85% by weight of (meth)acrylate-based monomer units, preferably 65 to 80% by weight. If the above conditions are satisfied, it is possible to prepare a non-grafted polymer that has excellent compatibility with waste artificial marble as well as the non-grafted polymer, which will be described later, and can maximize the improvement effect of scratch resistance and impact resistance, which are effects of the waste artificial marble. can
  • the non-grafted polymer may include 15 to 40% by weight of the vinyl aromatic monomer unit, preferably 20 to 35% by weight. If the above conditions are satisfied, a non-grafted polymer having excellent processability can be produced.
  • the non-grafted polymer may further include a vinyl cyanide-based monomer to improve chemical resistance.
  • a vinyl cyanide-based monomer to improve chemical resistance.
  • the non-grafted polymer may be prepared by at least one method selected from the group consisting of emulsion polymerization, suspension polymerization, and bulk polymerization, and among these, it is preferably produced by bulk polymerization capable of producing a high-purity polymer.
  • Waste artificial marble is included to improve the scratch resistance of the thermoplastic resin composition.
  • artificial marble is a waste of artificial marble, it can be manufactured in the same way as artificial marble.
  • artificial marble may use a composition for artificial marble including a (meth)acrylate-based monomer, a (meth)acrylate-based polymer, an initiator, and a filler as a raw material.
  • the composition for artificial marble may be extruded, cured by press molding, and then demolded and post-treated.
  • post-processing may mean cooling, polishing, and sanding.
  • the (meth)acrylate-based polymer which is a component of the composition for artificial marble, may be polymethyl methacrylate.
  • the initiator is t-butylperbenzoate, t-butylperoxybenzoate, t-butylperoxy isopropyl carbonate, t-butylperoxy-2-ethylhexanoate and 1,1-bis(t-butylper It may be one or more selected from the group consisting of oxy)-3,3,5-trimethylcyclohexane.
  • the filler may be one or more selected from the group consisting of aluminum hydroxide, magnesium hydroxide, calcium carbonate, silica, alumina, and potassium aluminic acid.
  • the waste artificial marble may include a (meth)acrylate-based monomer unit.
  • the compatibility between the graft polymer and the non-graft polymer described above is excellent, and as a result, while minimizing the decrease in impact resistance, the thermoplastic resin composition The scratch resistance can be remarkably improved.
  • the waste artificial marble may be at least one selected from the group consisting of scraps and dust generated during processing of artificial marble, and may be a processed product obtained by pulverizing it, but since waste artificial marble can be used regardless of its shape, it is not particularly limited. .
  • the scratch resistance of the thermoplastic resin composition can be significantly improved because the compatibility between the graft polymer and the non-graft polymer described above is excellent due to the raw material characteristics of the waste artificial marble. have.
  • the waste artificial marble is preferably 2 mm or less in consideration of the ease of processing of the thermoplastic resin composition, and preferably has a powder form. Waste artificial marble having a desired particle diameter can be obtained using a mesh.
  • This graft polymer latex was put into an aqueous solution containing 2 parts by weight of magnesium acetate and 0.5 part by weight of formic acid, and then coagulated by applying mechanical shear (Mechanical Coagulation). Thereafter, aging, washing, dehydration and drying were carried out to obtain a graft polymer powder.
  • mechanical shear Mechanical Coagulation
  • a mixture of 68 parts by weight of methyl methacrylate, 22 parts by weight of styrene, 7 parts by weight of acrylonitrile, 3 parts by weight of methacrylic acid, 30 parts by weight of toluene and 0.15 part by weight of t-dodecyl mercaptan was mixed with a raw material having an average residence time of 3 Polymerization was performed while being continuously introduced into the reactor so as to allow time. At this time, the temperature of the reactor was maintained at 148 °C. The polymer solution continuously discharged from the reactor was heated in a pre-heating tank, and unreacted monomers were volatilized in a volatilization tank. Subsequently, while maintaining the temperature of the polymerization solution at 210 °C, non-grafted polymer pellets were prepared using a polymer transfer pump extrusion processor.
  • thermoplastic resin composition was prepared by mixing the graft polymer of Preparation Example 1, the non-graft polymer of Preparation Example 2, and the waste artificial marble of Preparation Example 3 in the contents shown in Table 1 below.
  • thermoplastic resin composition was prepared by mixing the graft polymer of Preparation Example 1, the non-graft polymer of Preparation Example 2, and the waste artificial marble of Preparation Example 3 in the contents shown in Table 2 below.
  • Graft polymer (ABS, manufacturer: LG Chem, trade name: DP270) containing styrene and acrylonitrile grafted butadiene rubbery polymer having an average particle diameter of 250 nm, styrene/acrylonitrile polymer (SAN, manufacturer: Co., Ltd. LG Chem, trade name: 92HR) and the waste artificial marble powder of Preparation Example 3 were mixed in the contents shown in Table 2 below to prepare a thermoplastic resin composition.
  • ABS manufacturer: LG Chem, trade name: DP270
  • Graft polymer (ABS, manufacturer: LG Chem, trade name: DP270) containing styrene and acrylonitrile grafted butadiene rubbery polymer having an average particle diameter of 250 nm, styrene/acrylonitrile polymer (SAN, manufacturer: Co., Ltd. LG Chem, trade name: 92HR) was mixed in the contents shown in Table 2 below to prepare a thermoplastic resin composition.
  • thermoplastic resin compositions of Examples and Comparative Examples After mixing 100 parts by weight of the thermoplastic resin compositions of Examples and Comparative Examples, 0.5 parts by weight of a lubricant (N,N'-ethylenebis (stearamide)), and 0.3 parts by weight of an antioxidant, extrusion and injection were performed to prepare specimens. The physical properties of the specimen were evaluated by the method described below, and the results are shown in Tables 1 and 2 below.
  • a lubricant N,N'-ethylenebis (stearamide)
  • Pencil hardness In accordance with ASTM D3363, a specimen of 10 cm ⁇ 10 cm ⁇ 3 mm left for 48 hours at 23 ° C. and 50% relative humidity was tested with various hardnesses under a load of 500 g at 23 ° C. After scratching with a pencil 5 times, the degree of scratching was visually evaluated. When pencil scratch marks occurred more than once on the surface of the specimen, the pencil hardness grade was classified as follows.
  • Izod impact strength (kgf cm/cm, 1/4 In): measured according to ASTM D256-10 at 25°C.
  • Example 2 Example 3
  • Example 4 Example 5 graft polymer Preparation Example 1
  • 30 30
  • 30 30
  • 30 30
  • non-grafted polymers Preparation Example 2 67 65
  • 50 40 waste artificial marble
  • Preparation Example 3 3 5
  • 10 20
  • Comparative Example 4 and Comparative Example 5 containing an excessive amount of waste artificial marble could not be injected, so specimens could not be prepared.
  • Comparative Example 6 including the diene-based graft polymer and waste artificial marble had improved scratch resistance compared to Comparative Example 7 not containing waste artificial marble, but the improvement effect was insignificant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

본 발명은 (메트)아크릴레이트계 단량체 단위 및 비닐 방향족계 단량체 단위가 그라프트된 디엔계 고무질 중합체를 포함하는 그라프트 중합체; (메트)아크릴레이트계 단량체 단위 및 비닐 방향족계 단량체 단위를 포함하는 비그라프트 중합체; 및 폐인조대리석 3 내지 30 중량%를 포함하는 열가소성 수지 조성물에 관한 것이다.

Description

열가소성 수지 조성물
[관련출원과의 상호인용]
본 발명은 2021년 5월 24일에 출원된 한국 특허 출원 제10-2021-0066306호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
[기술분야]
본 발명은 열가소성 수지 조성물에 관한 것으로서, 상세하게는 내스크래치성 및 내충격성이 우수한 열가소성 수지 조성물에 관한 것이다.
세계적으로 플라스틱으로 인한 해양오염 등의 환경오염으로 인해 대책을 마련하는 국가들이 늘고 있으며 폐플라스틱의 재활용 방안을 다각적으로 모색하는 추세이다. 이와 같은 세계적 흐름을 고려하면 국내도 예외일 수 없다. 최근 사회적 문제로 제기되었던 재활용가능자원의 수거 거부 사태 역시 넓은 시각에서 바라보면 앞서 세계적 동향과 무관해 보이지 않는다. 이러한 배경을 토대로 향후 폐플라스틱을 대상으로 최대한 발생 억제를 유도할 수 있는 제도 도입이나 보완이 이뤄진 후 발생된 폐플라스틱에 대해서는 물질 재활용이 이뤄질 필요가 있으며 이에 따라 국내 업체에서도 생분해성 플라스틱이나 재생가능 플라스틱에 대한 연구가 활발히 이루어지고 있다.
이러한 관점에서 인조대리석은 최근 각광 받고있는 건축자재로써 전세계적으로 300,000 톤 정도 생산되며 약 6,000억원의 시장을 가지고있다. 국내 생산량은 100,000 톤이며 현재 국내에서 사용되는 인조대리석은 (메트)아크릴레이트계 단량체, (메트)아크릴레이트계 중합체, 충진재 등을 원료로 하여 만들어지고 있다. 하지만 인조대리석의 제조과정 중에 필요한 크기로 가공할 때 다량의 스크랩과 분진이 발생되며, 이는 다른 제품에 사용할 수 없어 단순 매립하거나 소각에 의해 버려지고 있어 토양오염을 유발하고 있다. 이에 폐인조대리석을 활용할 수 있는 방안에 대한 연구가 이루어지고 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) KR2009-0092882A
본 발명이 해결하고자 하는 과제는 내스크래치성 및 내충격성이 우수한 열가소성 수지 조성물을 제공하는 것이다.
상술한 과제를 해결하기 위하여, (1) 본 발명은 (메트)아크릴레이트계 단량체 단위 및 비닐 방향족계 단량체 단위가 그라프트된 디엔계 고무질 중합체를 포함하는 그라프트 중합체; (메트)아크릴레이트계 단량체 단위 및 비닐 방향족계 단량체 단위를 포함하는 비그라프트 중합체; 및 폐인조대리석 3 내지 30 중량%를 포함하는 열가소성 수지 조성물을 제공한다.
또한, (2) 본 발명은 상기 (1)에 있어서, 상기 폐인조대리석은 (메트)아크릴레이트계 단량체 단위를 포함하는 것인 열가소성 수지 조성물을 제공한다.
또한, (3) 본 발명은 상기 (1) 또는 (2)에 있어서, 상기 폐인조대리석을 10 내지 30 중량%로 포함하는 것인 열가소성 수지 조성물을 제공한다.
또한, (4) 본 발명은 상기 (1) 내지 (3) 중 어느 하나에 있어서, 상기 그라프트 중합체 10 내지 50 중량%를 포함하는 것인 열가소성 수지 조성물을 제공한다.
또한, (5) 본 발명은 상기 (1) 내지 (4) 중 어느 하나에 있어서, 상기 디엔계 고무질 중합체에는 비닐 시아나이드계 단량체 단위가 그라프트된 것인 열가소성 수지 조성물을 제공한다.
또한, (6) 본 발명은 상기 (1) 내지 (5) 중 어느 하나에 있어서, 상기 그라프트 중합체는 상기 디엔계 고무질 중합체에 그라프트되지 않고 (메트)아크릴레이트계 단량체 단위 및 비닐 방향족계 단량체 단위를 포함하는 프리 중합체를 포함하는 것인 열가소성 수지 조성물을 제공한다.
또한, (7) 본 발명은 상기 (1) 내지 (6) 중 어느 하나에 있어서, 상기 디엔계 고무질 중합체는 평균입경이 200 내지 500 ㎚인 열가소성 수지 조성물을 제공한다.
또한, (8) 본 발명은 상기 (1) 내지 (7) 중 어느 하나에 있어서, 상기 비그라프트 중합체 30 내지 80 중량%를 포함하는 것인 열가소성 수지 조성물을 제공한다.
또한, (9) 본 발명은 상기 (1) 내지 (8) 중 어느 하나에 있어서, 상기 비그라프트 중합체는 비닐 시아나이드계 단량체 단위를 포함하는 것인 열가소성 수지 조성물을 제공한다.
또한, (10) 본 발명은 상기 (1) 내지 (9) 중 어느 하나에 있어서, 상기 열가소성 수지 조성물은 상기 디엔계 고무질 중합체 5 내지 20 중량%; 상기 (메트)아크릴레이트계 단량체 단위 20 내지 70 중량%; 상기 비닐 방향족계 단량체 단위 10 내지 30 중량% 및 상기 폐인조대리석 3 내지 30 중량%를 포함하는 열가소성 수지 조성물을 제공한다.
본 발명의 열가소성 수지 조성물은 우수한 내스크래치성 및 내충격성을 구현할 수 있다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서 ‘디엔계 고무질 중합체’는 디엔계 단량체 단독 또는 디엔계 단량체와 이와 공중합 가능한 공단량체를 가교 반응시켜 제조한 중합체를 의미할 수 있다. 상기 디엔계 단량체는 1,3-부타디엔, 이소프렌, 클로로프렌 및 피페릴렌으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 1,3-부타디엔이 바람직하다. 상기 공단량체는 방향족 비닐계 단량체 및 시안화 비닐계 단량체, 올레핀계 단량체 등을 들 수 있다. 상기 디엔계 고무질 중합체는 부타디엔 고무질 중합체, 부타디엔-스티렌 고무질 중합체, 부타디엔-아크릴로니트릴 고무질 중합체 및 에틸렌-프로필렌 고무질 중합체로 이루어진 군에서 선택되는 1종 이상일 수 있다.
본 발명에서 ‘(메트)아크릴레이트계 단량체’는 C1 내지 C10의 알킬 (메트)아크릴레이트계 단량체일 수 있으며, C1 내지 C10의 알킬 (메트)아크릴레이트계 단량체는 메틸 (메트)아크릴레이트, 에틸 (메트)아크릴레이트, 프로필 (메트)아크릴레이트, 2-에틸헥실 (메트)아크릴레이트 및 데실 (메트)아크릴레이트로 이루어진 군에서 선택되는 1종 이상일 수 있으며, 이 중 메틸 메타크릴레이트가 바람직하다.
본 발명에서 ‘비닐 방향족계 단량체’는 스티렌, α-메틸 스티렌, α-에틸 스티렌 및 p-메틸 스티렌으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 스티렌이 바람직하다.
본 발명에서 ‘비닐 시아나이드계 단량체’는 아크릴로니트릴, 메타크릴로니트릴, 페닐아크릴로니트릴 및 α-클로로아크릴로니트릴로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 아크릴로니트릴이 바람직하다.
본 발명에서 ‘평균입경’은 동적 광산란법(dynamic light scattering)에 의해 측정되는 입도분포에 있어서의 산술 평균입경, 구체적으로는 산란강도 평균입경을 의미할 수 있다. 평균입경은 Nicomp 370HPL 장비(제품명, 제조사: PSS Nicomp)를 이용하여 측정할 수 있다.
1. 열가소성 수지 조성물
본 발명의 일실시예에 따른 열가소성 수지 조성물은 (메트)아크릴레이트계 단량체 단위 및 비닐 방향족계 단량체 단위가 그라프트된 디엔계 고무질 중합체를 포함하는 그라프트 중합체; (메트)아크릴레이트계 단량체 단위 및 비닐 방향족계 단량체 단위를 포함하는 비그라프트 중합체; 및 폐인조대리석 3 내지 30 중량%를 포함한다.
일반적으로 인조대리석은 다양한 질감, 색상 및 무늬를 창출할 수 있어 장식 효과가 좋고, 연삭 및 정밀가공이 용이하며, 내화학성, 내오염성, 내열성, 가공성, 내충격성이 우수하고, 유지보수가 용이하여 다양한 분야에서 이용되고 있다. 하지만, 인조대리석이 건축자재 및 주방용자재로 가공 시 약 15 내지 20 %가 스크랩 및 분진 등의 폐인조대리석이 발생되게 된다. 이러한 폐인조대리석은 열분해시켜 원료로 사용하거나 분쇄하여 인조대리석의 원료로 재활용하고 있다.
하지만, 본 발명자들은 폐인조대리석을 열가소성 수지 조성물에 적정량으로 사용할 경우, 내충격성의 저하를 최소화시키면서, 내스크래치성을 현저하게 개선시키고, 우수한 가공성을 가져 폭넓은 분야에 적용될 수 있다는 것을 알게 되었고, 본 발명을 완성하게 되었다.
본 발명의 일 실시예에 따른 열가소성 수지 조성물은 상기 폐인조대리석을 3 내지 30 중량%로 포함하고, 바람직하게는 10 내지 30 중량%로 포함할 수 있다. 상술한 조건 미만으로 포함하면, 내스크래치성 개선 효과가 구현되지 않는다. 상술한 조건을 초과하면, 가공성이 저하되어 사출 성형이 불가능하다.
상기 열가소성 수지 조성물은 상기 그라프트 중합체를 10 내지 50 중량%, 바람직하게는 20 내지 40 중량%로 포함할 수 있다. 상술한 조건을 만족하면, 내충격성이 우수한 열가소성 수지 조성물을 제조할 수 있다.
상기 열가소성 수지 조성물은 상기 매트릭스 중합체를 30 내지 80 중량%, 바람직하게는 35 내지 70 중량%로 포함할 수 있다. 상술한 조건을 만족하면, 가공성이 우수한 열가소성 수지 조성물을 제조할 수 있다.
한편, 상기 열가소성 수지 조성물은 상기 디엔계 고무질 중합체 5 내지 20 중량%, 바람직하게는 10 내지 15 중량%로 포함할 수 있다. 상술한 조건을 만족하면, 열가소성 수지 조성물의 내충격성 및 표면광택 특성이 개선될 수 있다.
또한, 상기 열가소성 수지 조성물은 상기 (메트)아크릴레이트계 단량체 단위 20 내지 70 중량%, 바람직하게는 30 내지 50 중량%로 포함할 수 있다. 상술한 조건을 만족하면, 열가소성 수지 조성물의 내충격성 및 가공성을 개선시킬 수 있다.
또한, 상기 열가소성 수지 조성물은 상기 비닐 방향족계 단량체 단위 10 내지 30 중량%, 바람직하게는 15 내지 30 중량%로 포함할 수 있다. 상술한 조건을 만족하면, 열가소성 수지 조성물의 가공성을 개선시킬 수 있다.
또한, 상기 열가소성 수지 조성물은 상기 폐인조대리석 3 내지 30 중량%, 바람직하게는 10 내지 30 중량%로 포함할 수 있다. 상술한 조건을 만족하면, 열가소성 수지 조성물의 내충격성의 저하를 최소화하면서, 내스크래치성을 개선시킬 수 있다.
이하, 본 발명의 구성요소에 대하여 상세하게 설명한다.
1) 그라프트 중합체
그라프트 중합체는 열가소성 수지 조성물의 내충격성을 개선시키는 구성요소이다. 상기 그라프트 중합체는 (메트)아크릴레이트계 단량체 단위 및 비닐 방향족계 단량체 단위가 그라프트된 디엔계 고무질 중합체를 포함하고, 상기 디엔계 고무질 중합체에 그라프트되지 않고 (메트)아크릴레이트계 단량체 단위 및 비닐 방향족계 단량체 단위를 포함하는 프리 중합체를 더 포함할 수 있다.
한편, 상기 그라프트 중합체는 디엔계 고무질 중합체를 20 내지 70 중량%, 바람직하게는 30 내지 60 중량%로 포함할 수 있다. 상술한 조건을 만족하면, (메트)아크릴레이트계 단량체 단위 및 비닐 방향족계 단량체가 디엔계 고무질 중합체에 적정 수준으로 그라프트되어 내충격성이 우수하면서, 표면광택 특성이 우수한 그라프트 중합체를 제조할 수 있다.
그리고, 상기 디엔계 고무질 중합체의 평균입경은 200 내지 500 ㎚, 바람직하게는 250 내지 400 ㎚일 수 있다. 상술한 조건을 만족하면, 내충격성 및 표면광택 특성이 우수한 그라프트 중합체를 제조할 수 있다.
상기 그라프트 중합체는 (메트)아크릴레이트계 단량체 단위를 20 내지 60 중량%, 바람직하게는 30 내지 50 중량%로 포함할 수 있다. 상술한 조건을 만족하면, 비그라프트 중합체뿐만 아니라, 후술할 폐인조대리석과 상용성이 우수하여, 폐인조대리석으로 인한 효과인 내스크래치성과 내충격성의 개선효과를 극대화시킬 수 있는 그라프트 중합체를 제조할 수 있다.
상기 그라프트 중합체는 비닐 방향족계 단량체 단위를 3 내지 30 중량%, 바람직하게는 5 내지 20 중량%로 포함할 수 있다. 상술한 조건을 만족하면, 가공성이 개선된 그라프트 중합체를 제조할 수 있다.
한편, 상기 디엔계 고무질 중합체에는 (메트)아크릴레이트계 단량체 단위 및 비닐 방향족계 단량체 단위뿐만 아니라 비닐 시아나이드계 단량체도 그라프트될 수 있다. 이 경우, 상기 그라프트 중합체는 비닐 시아나이드계 단량체 단위를 7 중량% 이하로 포함할 수 있다. 상술한 조건을 만족하면, 황변현상을 최소화하면서, 내화학성이 개선된 그라프트 중합체를 제조할 수 있다. 또한, 그라프트 중합체의 제조공정 중에 고형분(응괴물)의 생성을 최소화할 수 있다.
상기 그라프트 중합체는 유화중합, 현탁중합 및 괴상중합으로 제조될 수 있으나, 이 중 내충격성 및 표면광택 특성이 모두 우수한 그라프트 중합체를 제조할 수 있는 유화중합으로 제조되는 것이 바람직하다.
2) 비그라프트 중합체
비그라프트 중합체는 열가소성 수지 조성물의 가공성을 개선시키는 구성요소이다. 상기 비그라프트 중합체는 (메트)아크릴레이트계 단량체 단위 및 비닐 방향족계 단량체 단위를 포함한다.
상기 비그라프트 중합체는 (메트)아크릴레이트계 단량체 단위를 60 내지 85 중량%, 바람직하게는 65 내지 80 중량%로 포함할 수 있다. 상술한 조건을 만족하면, 비그라프트 중합체뿐만 아니라, 후술할 폐인조대리석과 상용성이 우수하여, 폐인조대리석으로 인한 효과인 내스크래치성과 내충격성의 개선효과를 극대화시킬 수 있는 비그라프트 중합체를 제조할 수 있다.
상기 비그라프트 중합체는 비닐 방향족계 단량체 단위를 15 내지 40 중량%, 바람직하게는 20 내지 35 중량%로 포함할 수 있다. 상술한 조건을 만족하면, 가공성이 우수한 비그라프트 중합체를 제조할 수 있다.
상기 비그라프트 중합체는 내화학성을 개선시키기 위하여, 비닐 시아나이드계 단량체를 더 포함할 수 있다. 이 경우, 황색발현을 최소화시키기 위하여, 20 중량% 이하로 포함하는 것이 바람직하다.
상기 비그라프트 중합체는 유화중합, 현탁중합 및 괴상중합으로 이루어진 군에서 선택되는 1 종 이상의 방법으로 제조될 수 있는데, 이 중 고순도의 중합체를 제조할 수 있는 괴상중합으로 제조되는 것이 바람직하다.
3) 폐인조대리석
폐인조대리석은 열가소성 수지 조성물의 내스크래치성을 개선시키기 위하여 포함되는 것이다.
폐인조대리석은 인조대리석의 폐기물이므로, 인조대리석과 동일한 방법으로 제조될 수 있다. 구체적으로는 인조대리석은 (메트)아크릴레이트계 단량체, (메트)아크릴레이트계 중합체, 개시제 및 충진재를 포함하는 인조대리석용 조성물을 원료로 이용할 수 있다. 그리고, 이러한 인조대리석용 조성물을 압출하고, 프레스 성형으로 경화시킨 후, 탈형 및 후처리하여 제조할 수 있다. 여기서, 후처리는 냉각, 연마, 샌딩을 의미할 수 있다.
인조대리석용 조성물의 구성요소인 (메트)아크릴레이트계 중합체는 폴리메틸메타크릴레이트일 수 있다. 상기 개시제는 t-부틸퍼벤조에이트, t-부틸퍼옥시벤조에이트, t-부틸퍼옥시 이소프로필 카보네이트, t-부틸퍼옥시-2-에틸헥사노에이트 및 1,1-비스(t-부틸퍼옥시)-3,3,5-트리메틸시클로헥산으로 이루어진 군에서 선택되는 1종 이상일 수 있다. 상기 충진재는 수산화 알루미늄, 수산화 마그네슘, 탄산칼슘, 실리카, 알루미나 및 칼륨 알루민산으로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 폐인조대리석의 주요 원료는 (메트)아크릴레이트계 단량체 및 (메트)아크릴레이트계 중합체이므로, 상기 폐인조대리석은 (메트)아크릴레이트계 단량체 단위를 포함할 수 있다. 그리고, 이러한 폐인조대리석에 포함된 (메트)아크릴레이트계 단량체 단위로 인해 상술한 그라프트 중합체와 비그라프트 중합체와의 상용성이 우수하며, 그 결과, 내충격성의 저하를 최소화하면서, 열가소성 수지 조성물의 내스크래치성을 현저하게 개선시킬 수 있다.
상기 폐인조대리석은 인조대리석의 가공 시 발생한 스크랩 및 분진으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이를 분쇄한 가공품일 수 있으나, 폐인조대리석이라면 형태와 무관하게 이용할 수 있으므로, 특별히 한정하지 않는다. 그리고, 분진보다 부피가 큰 스크랩을 이용하더라도, 폐인조대리석의 원료 특성으로 인해 상술한 그라프트 중합체와 비그라프트 중합체와의 상용성이 우수하므로, 열가소성 수지 조성물의 내스크래치성이 현저하게 개선될 수 있다. 그리고, 폐인조대리석은 열가소성 수지 조성물의 가공 용이성을 고려하여 2 ㎜ 이하인 것이 바람직하고, 분말 형태를 갖는 것이 바람직하다. 원하는 입경을 갖는 폐인조대리석은 메쉬를 이용해 얻을 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
제조예 1
이온교환수 100 중량부, 소듐 도데실벤젠 설포네이트 1.0 중량부, 메틸 메타크릴레이트 35 중량부, 스티렌 11.9 중량부, 아크릴로니트릴 3 중량부, t-도데실 머캅탄 0.5 중량부, 소듐 포름알데히드설폭실레이트 0.048 중량부, 디소듐 에틸렌디아민테트라아세테이트 0.015 중량부, 황산철(Ⅱ) 0.001 중량부 및 큐멘하이드로퍼옥사이드 0.04 중량부를 포함하는 혼합 용액을 준비하였다.
반응기에 부타디엔 고무질 중합체 라텍스 중합체(라텍스 내 고무질 중합체 평균 입경이 250 ㎚, 겔함량: 90 %) 50 중량부를 투입한 후, 상기 반응기의 온도를 75 ℃로 승온하였다. 상기 반응기에 상기 혼합 용액을 3 시간 동안 연속 투입하면서 중합하였다. 이어서, 상기 반응기의 온도를 80 ℃로 승온하였고, 1 시간 동안 숙성시킨 후, 중합을 종료하여 그라프트 중합체 라텍스를 수득하였다.
이 그라프트 중합체 라텍스를, 아세트산 마그네슘 2 중량부 및 개미산 0.5 중량부를 포함하는 수용액에 투입하고, 기계적인 전단를 가하여 응집하였다(Mechanical Coagulation). 그 후 숙성, 세척, 탈수 및 건조하여 그라프트 중합체 분말을 수득하였다.
제조예 2
메틸 메타크릴레이트 68 중량부, 스티렌 22 중량부, 아크릴로니트릴 7 중량부, 메타크릴산 3 중량부, 톨루엔 30 중량부와 t-도데실 머캅탄 0.15 중량부를 혼합한 원료를 평균 체류시간이 3 시간이 되도록 반응기에 연속적으로 투입하면서 중합하였다. 이 때, 상기 반응기의 온도를 148 ℃로 유지하였다. 상기 반응기에서 연속 배출된 중합액은 예비 가열조에서 가열하고 휘발조에서 미반응 단량체를 휘발시켰다. 이어서, 중합액의 온도를 210 ℃로 유지하면서, 폴리머 이송 펌프 압출 가공기를 이용하여 비그라프트 중합체 펠렛을 제조하였다.
제조예 3
폴리메틸메타크릴레이트, 메틸 메타크릴레이트, t-부틸퍼옥시벤조에이트, 에틸렌글리콜 디메타크릴레이트, 2-(메타크릴로일옥시)에틸 포스페이트, 및 수산화알루미늄을 포함하는 인조대리석용 조성물을 압출, 프레스 성형 및 후처리하여 제조된 인조대리석의 제품화 과정에서 발생되는 인조대리석의 스크랩과 분진을 회수하여 분말 형태의 폐인조대리석을 얻었다.
실시예 1 내지 실시예 5
제조예 1의 그라프트 중합체, 제조예 2의 비그라프트 중합체 및 제조예 3의 폐인조대리석을 하기 표 1에 기재된 함량으로 혼합하여 열가소성 수지 조성물을 제조하였다.
비교예 1 내지 비교예 5
제조예 1의 그라프트 중합체, 제조예 2의 비그라프트 중합체 및 제조예 3의 폐인조대리석을 하기 표 2에 기재된 함량으로 혼합하여 열가소성 수지 조성물을 제조하였다.
비교예 6
스티렌 및 아크릴로니트릴이 그라프트된 평균입경이 250 ㎚인 부타디엔 고무질 중합체를 포함하는 그라프트 중합체(ABS, 제조사: 주식회사 엘지화학, 상품명: DP270), 스티렌/아크릴로니트릴 중합체(SAN, 제조사: 주식회사 엘지화학, 상품명: 92HR) 및 제조예 3의 폐인조대리석 분말을 하기 표 2에 기재된 함량으로 혼합하여 열가소성 수지 조성물을 제조하였다.
비교예 7
스티렌 및 아크릴로니트릴이 그라프트된 평균입경이 250 ㎚인 부타디엔 고무질 중합체를 포함하는 그라프트 중합체(ABS, 제조사: 주식회사 엘지화학, 상품명: DP270), 스티렌/아크릴로니트릴 중합체(SAN, 제조사: 주식회사 엘지화학, 상품명: 92HR)을 하기 표 2에 기재된 함량으로 혼합하여 열가소성 수지 조성물을 제조하였다.
실험예 1
실시예 및 비교예의 열가소성 수지 조성물 100 중량부, 활제(N,N’-에틸렌비스(스테아르아미드)) 0.5 중량부, 및 산화방지제 0.3 중량부를 혼합한 후, 압출 및 사출하여 시편을 제조하였다. 상기 시편을 하기에 기재된 방법을 물성을 평가하고, 그 결과를 하기 표 1 및 표 2에 기재하였다.
(1) 연필경도: 23 ℃, 상대습도 50 %에서 48 시간 동안 방치한 10 ㎝×10 ㎝×3 ㎜의 시편을 ASTM D3363에 의거하여 시편 표면을 23 ℃에서 500 g의 하중으로 다양한 경도를 가진 연필로 5 회씩 긁은 후, 긁힘 정도를 육안으로 평가하였다. 시편 표면에 연필 긁힘 표시가 2 회 이상 발생 시 연필 경도 등급을 아래와 같이 분류하였다.
(연질) 6B-5B-4B-3B-2B-B-HB-F-H-2H-3H-4H-5H-6H (경질)
(2) 아이조드 충격강도(㎏f·㎝/㎝, 1/4 In): 25 ℃에서 ASTM D256-10에 의거하여 측정하였다.
구분 실시예 1 실시예 2 실시예 3 실시예 4 실시예 5
그라프트 중합체 제조예 1 30 30 30 30 30
비그라프트 중합체 제조예 2 67 65 60 50 40
폐인조대리석 제조예 3 3 5 10 20 30
연필경도 2H 2H 3H 3H 4H
충격강도 16 14 12 11 10
구분 비교예 1 비교예 2 비교예 3 비교예 4 비교예 5 비교예 6 비교예 7
그라프트 중합체 제조예 1 30 30 30 30 30 0 0
ABS 0 0 0 0 0 30 30
비그라프트 중합체 제조예 2 70 69 68 39 30 0 0
SAN 0 0 0 0 0 60 70
폐인조대리석 제조예 3 0 1 2 31 40 10 0
연필경도 F F F 가공
불가
가공
불가
H F
충격강도 16 16 16 6 15
상기 표 1 및 표 2를 참조하면, 폐인조 대리석을 적정량으로 포함하는 실시예 1 내지 실시예 5는 내스크래치성 및 내충격성이 우수하였다. 하지만, 폐인조대리석을 포함하지 않는 비교예 1은 내스크래치성이 우수하지 못하였다.또한 폐인조대리석을 소량으로 포함하는 비교예 2 및 비교예 3은 비교예 1과 비교하여 내스크래치성이 전혀 개선되지 않았다.
또한 폐인조대리석을 과량으로 포함하는 비교예 4 및 비교예 5는 사출이 불가능하여 시편을 제조할 수 없었다.
또한 디엔계 그라프트 중합체과 폐인조대리석을 포함하는 비교예 6은 폐인조대리석을 포함하지 않는 비교예 7과 비교하여 내스크래치성은 개선되었지만, 개선 효과는 미비하였다. 또한, 비교예 6은 실시예 3과 동일한 양으로 폐인조대리석을 포함하여도 상용성 저하로 인해 내스크래치성 개선 효과가 미비하였다.

Claims (10)

  1. (메트)아크릴레이트계 단량체 단위 및 비닐 방향족계 단량체 단위가 그라프트된 디엔계 고무질 중합체를 포함하는 그라프트 중합체;
    (메트)아크릴레이트계 단량체 단위 및 비닐 방향족계 단량체 단위를 포함하는 비그라프트 중합체; 및
    폐인조대리석 3 내지 30 중량%를 포함하는 열가소성 수지 조성물.
  2. 청구항 1에 있어서,
    상기 폐인조대리석은 (메트)아크릴레이트계 단량체 단위를 포함하는 것인 열가소성 수지 조성물.
  3. 청구항 1에 있어서,
    상기 폐인조대리석을 10 내지 30 중량%로 포함하는 것인 열가소성 수지 조성물.
  4. 청구항 1에 있어서,
    상기 그라프트 중합체 10 내지 50 중량%를 포함하는 것인 열가소성 수지 조성물.
  5. 청구항 1에 있어서,
    상기 디엔계 고무질 중합체에는 비닐 시아나이드계 단량체 단위가 그라프트된 것인 열가소성 수지 조성물.
  6. 청구항 1에 있어서,
    상기 그라프트 중합체는 상기 디엔계 고무질 중합체에 그라프트되지 않고 (메트)아크릴레이트계 단량체 단위 및 비닐 방향족계 단량체 단위를 포함하는 프리 중합체를 포함하는 것인 열가소성 수지 조성물.
  7. 청구항 1에 있어서,
    상기 디엔계 고무질 중합체는 평균입경이 200 내지 500 ㎚인 열가소성 수지 조성물.
  8. 청구항 1에 있어서,
    상기 비그라프트 중합체 30 내지 80 중량%를 포함하는 것인 열가소성 수지 조성물.
  9. 청구항 1에 있어서,
    상기 비그라프트 중합체는 비닐 시아나이드계 단량체 단위를 포함하는 것인 열가소성 수지 조성물.
  10. 청구항 1에 있어서,
    상기 열가소성 수지 조성물은
    상기 디엔계 고무질 중합체 5 내지 20 중량%;
    상기 (메트)아크릴레이트계 단량체 단위 20 내지 70 중량%;
    상기 비닐 방향족계 단량체 단위 10 내지 30 중량% 및
    상기 폐인조대리석 3 내지 30 중량%를 포함하는 열가소성 수지 조성물.
PCT/KR2022/006246 2021-05-24 2022-05-02 열가소성 수지 조성물 WO2022250314A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22811507.7A EP4215584A4 (en) 2021-05-24 2022-05-02 THERMOPLASTIC RESIN COMPOSITION
US18/034,044 US20230391999A1 (en) 2021-05-24 2022-05-02 Thermoplastic resin composition
CN202280007199.3A CN116368192A (zh) 2021-05-24 2022-05-02 热塑性树脂组合物
JP2023523280A JP2023546443A (ja) 2021-05-24 2022-05-02 熱可塑性樹脂組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210066306A KR20220158464A (ko) 2021-05-24 2021-05-24 열가소성 수지 조성물
KR10-2021-0066306 2021-05-24

Publications (1)

Publication Number Publication Date
WO2022250314A1 true WO2022250314A1 (ko) 2022-12-01

Family

ID=84230018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/006246 WO2022250314A1 (ko) 2021-05-24 2022-05-02 열가소성 수지 조성물

Country Status (7)

Country Link
US (1) US20230391999A1 (ko)
EP (1) EP4215584A4 (ko)
JP (1) JP2023546443A (ko)
KR (1) KR20220158464A (ko)
CN (1) CN116368192A (ko)
TW (1) TW202311427A (ko)
WO (1) WO2022250314A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09207134A (ja) * 1995-11-28 1997-08-12 Toto Ltd 熱可塑性樹脂素材の成形材料及びその製造方法
JP2006175718A (ja) * 2004-12-22 2006-07-06 Kubota Matsushitadenko Exterior Works Ltd 成形品の製造方法
JP2007039640A (ja) * 2005-06-29 2007-02-15 Kubota Matsushitadenko Exterior Works Ltd 樹脂成形品
KR20080078241A (ko) * 2007-02-22 2008-08-27 주식회사 엘지화학 인조대리석 폐기물의 분쇄물을 포함하는 바닥재 및 그제조방법
KR20090092882A (ko) 2008-02-28 2009-09-02 조선대학교산학협력단 인조대리석 폐분말과 콜애시를 이용한 난연화 조성물 및이의 제조방법
KR20190047185A (ko) * 2017-10-27 2019-05-08 주식회사 엘지화학 그라프트 공중합체, 이를 포함하는 열가소성 수지 조성물 및 이의 제조방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120121003A (ko) * 2011-04-26 2012-11-05 주식회사 라이온켐텍 아크릴 인조대리석 폐분진을 재활용한 bmc 상판의 제조
CN110229417B (zh) * 2019-07-03 2022-02-18 海南蓝岛环保产业股份有限公司 一种基于人造大理石废渣填料的塑料制品及制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09207134A (ja) * 1995-11-28 1997-08-12 Toto Ltd 熱可塑性樹脂素材の成形材料及びその製造方法
JP2006175718A (ja) * 2004-12-22 2006-07-06 Kubota Matsushitadenko Exterior Works Ltd 成形品の製造方法
JP2007039640A (ja) * 2005-06-29 2007-02-15 Kubota Matsushitadenko Exterior Works Ltd 樹脂成形品
KR20080078241A (ko) * 2007-02-22 2008-08-27 주식회사 엘지화학 인조대리석 폐기물의 분쇄물을 포함하는 바닥재 및 그제조방법
KR20090092882A (ko) 2008-02-28 2009-09-02 조선대학교산학협력단 인조대리석 폐분말과 콜애시를 이용한 난연화 조성물 및이의 제조방법
KR20190047185A (ko) * 2017-10-27 2019-05-08 주식회사 엘지화학 그라프트 공중합체, 이를 포함하는 열가소성 수지 조성물 및 이의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4215584A4

Also Published As

Publication number Publication date
EP4215584A4 (en) 2024-05-15
TW202311427A (zh) 2023-03-16
EP4215584A1 (en) 2023-07-26
US20230391999A1 (en) 2023-12-07
CN116368192A (zh) 2023-06-30
KR20220158464A (ko) 2022-12-01
JP2023546443A (ja) 2023-11-02

Similar Documents

Publication Publication Date Title
WO2016093616A1 (ko) 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체 제조 방법 및 이를 포함하는 아크릴로니트릴-부타디엔-스티렌 열가소성 수지
EP0763560B1 (en) Molded article laminated with acrylic polymer film and acrylic polymer film
WO2016052832A1 (ko) 내화학성 및 투명성이 우수한 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2013062170A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2017095060A1 (ko) 열가소성 수지 조성물 및 이로부터 제조되는 성형품
WO2017039157A1 (ko) 열가소성 수지 조성물 및 이의 제조방법
WO2012053698A1 (ko) 폴리카보네이트 수지 조성물 및 이를 이용한 성형품
WO2012087056A2 (en) Graft monomer composition for thermoplastic transparent resin, composition for theremoplastic transparent resin using the same, and theremoplastic transparent resin having good transparency and color with low rubber amounts
WO2019066375A2 (ko) 열가소성 수지 조성물 및 이로부터 제조된 열가소성 수지 성형품
WO2018139775A1 (ko) 그라프트 공중합체, 이의 제조방법, 이를 포함하는 열가소성 수지 조성물 및 성형품
WO2014208857A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2015030415A1 (ko) 투명 abs 수지 및 투명 abs 수지 조성물
WO2017105007A1 (ko) 고무변성 비닐계 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물
WO2012091295A1 (ko) 고무변성 비닐계 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물
WO2022250314A1 (ko) 열가소성 수지 조성물
WO2020130700A2 (ko) 아크릴계 라미네이트 필름, 이의 제조방법 및 이로부터 제조된 데코 시트
KR100616723B1 (ko) 재생 폴리아미드 나노복합체 조성물
WO2017160011A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2014208965A1 (ko) 표면선명성과 광택도가 우수한 열가소성 수지 조성물의 제조방법
WO2016080758A1 (ko) 폴리메틸메타크릴레이트 아크릴계 공중합체 얼로이 고광택 조성물 및 성형품
WO2020091279A1 (ko) 금속질감의 외관을 갖는 고강성 열가소성 수지 및 이를 이용하여 제조된 성형품
WO2023055140A1 (ko) 투명 수지 조성물 및 성형품
WO2020251215A1 (ko) 열가소성 수지 조성물
WO2021060709A1 (ko) 코어-쉘 공중합체 및 이를 포함하는 수지 조성물
WO2020060110A1 (ko) 열가소성 수지 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22811507

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023523280

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022811507

Country of ref document: EP

Effective date: 20230418

WWE Wipo information: entry into national phase

Ref document number: 18034044

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE