WO2022248963A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2022248963A1
WO2022248963A1 PCT/IB2022/054455 IB2022054455W WO2022248963A1 WO 2022248963 A1 WO2022248963 A1 WO 2022248963A1 IB 2022054455 W IB2022054455 W IB 2022054455W WO 2022248963 A1 WO2022248963 A1 WO 2022248963A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
layer
circuit
wiring
insulator
Prior art date
Application number
PCT/IB2022/054455
Other languages
English (en)
French (fr)
Inventor
黒川義元
郷戸宏充
津田一樹
豊高耕平
大下智
力丸英史
魚地秀貴
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to JP2023523688A priority Critical patent/JPWO2022248963A1/ja
Publication of WO2022248963A1 publication Critical patent/WO2022248963A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/50Adding; Subtracting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/52Multiplying; Dividing
    • G06F7/523Multiplying only
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06GANALOGUE COMPUTERS
    • G06G7/00Devices in which the computing operation is performed by varying electric or magnetic quantities
    • G06G7/48Analogue computers for specific processes, systems or devices, e.g. simulators
    • G06G7/60Analogue computers for specific processes, systems or devices, e.g. simulators for living beings, e.g. their nervous systems ; for problems in the medical field
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/063Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Definitions

  • One embodiment of the present invention relates to a semiconductor device.
  • one embodiment of the present invention is not limited to the above technical field.
  • the technical field of the invention disclosed in this specification and the like relates to products, methods, or manufacturing methods.
  • one aspect of the invention relates to a process, machine, manufacture, or composition of matter. Therefore, the technical fields of one embodiment of the present invention disclosed in this specification more specifically include semiconductor devices, display devices, liquid crystal display devices, light-emitting devices, power storage devices, imaging devices, storage devices, processors, electronic devices, Examples include driving methods thereof, manufacturing methods thereof, inspection methods thereof, or systems thereof.
  • An artificial neural network (hereinafter referred to as a neural network) is an information processing system modeled after a neural network.
  • a neural network By using neural networks, it is expected that computers with higher performance than conventional von Neumann computers can be realized, and in recent years, various researches have been conducted to construct neural networks on electronic circuits.
  • Non-Patent Document 1 describes a technique related to a chip having a self-learning function using a neural network.
  • CNNs convolutional neural network (CNN) and a recurrent neural network (RNN).
  • CNNs are used, for example, to identify patterns or objects from images.
  • RNN is used, for example, when handling time series information or continuous information.
  • RC Reservoir Computing
  • An object of one embodiment of the present invention is to provide a semiconductor device with low power consumption. Another object is to provide a semiconductor device that can operate at high speed. Another object is to provide a semiconductor device that occupies a small area. Another object is to provide a highly reliable semiconductor device. Another object is to provide a novel semiconductor device.
  • one embodiment of the present invention does not necessarily have to solve all of the above problems as long as at least one of the problems can be solved. Also, the above description of the problem does not preclude the existence of other problems. Problems other than these are naturally apparent from the descriptions of the specification, claims, drawings, etc., and extract problems other than these from the descriptions of the specification, claims, drawings, etc. is possible.
  • One aspect of the present invention includes a first circuit, a second circuit, a third circuit, a first wiring, a second wiring, and a third wiring, wherein the first circuit includes a first transistor and a third wiring.
  • the first wiring is electrically connected to the second circuit, the gate of the first transistor, and the gate of the second transistor, and the second wiring is connected to the third circuit and the source of the first transistor.
  • One of the drains is electrically connected
  • the third wiring is electrically connected to the third circuit and one of the source or the drain of the second transistor, and the third circuit is connected to the current flowing through the second wiring and the third transistor.
  • the semiconductor device has a function of outputting a voltage corresponding to the difference in currents flowing through three wirings, and the threshold voltage of the first transistor and the threshold voltage of the second transistor are different.
  • Another aspect of the present invention provides a plurality of first circuits arranged in a matrix of M rows and N columns (each of M and N is an integer of 2 or more), and M second circuits. , N third circuits, M first wirings, N second wirings, and N third wirings, and each of the plurality of first circuits includes a first transistor and a first wiring.
  • the i-th (i is an integer of 1 or more and M or less) first wiring includes two transistors, and the i-th second circuit and the i-th row of the first circuit include the gates of the first transistors, and
  • the j-th (j is an integer of 1 or more and N or less) second wiring is electrically connected to the gate of the second transistor provided in each of the i-th first circuits, and the j-th third circuit and
  • the j-th third wiring is electrically connected to one of the source or drain of the first transistor included in each of the j-th column first circuits, and the j-th third wiring is connected to the j-th third circuit and the j-th column first circuit.
  • the third circuit has a function of outputting a voltage corresponding to the difference between the current flowing through the second wiring and the current flowing through the third wiring. and a semiconductor device in which the difference between the threshold voltage of a first transistor and the threshold voltage of a second transistor varies irregularly in each of a plurality of first circuits.
  • the threshold voltage of the second transistor is preferably 0.9 times or less or 1.1 times or more the threshold voltage of the first transistor.
  • the channel length of the second transistor is preferably 0.9 times or less or 1.1 times or more the channel length of the first transistor.
  • a transistor including an oxide semiconductor may be used as the first transistor.
  • a transistor including an oxide semiconductor may be used as the second transistor.
  • the oxide semiconductor preferably contains at least one of indium and zinc.
  • Another aspect of the present invention provides a plurality of first circuits arranged in a matrix of M rows and N columns (each of M and N is an integer of 2 or more), and M second circuits. , N third circuits, M first wirings, and N second wirings, each of the plurality of first circuits includes a transistor, and i-th (i is 1 or more and M or less) integer.) is electrically connected to the gates of the transistors included in each of the i-th second circuit and the i-th first circuit, and j-th (j is 1 or more and N or less) integer.) is electrically connected to one of the source or the drain of the transistor included in each of the j-th third circuit and the j-th column first circuit, and the third circuit
  • This semiconductor device has a function of outputting a voltage according to the difference between a current flowing through two wirings and a reference current, and has a plurality of transistors electrically connected to the j-th second wiring, in which channel lengths are irregularly different.
  • Another aspect of the present invention provides a plurality of first circuits arranged in a matrix of M rows and N columns (each of M and N is an integer of 2 or more), and M second circuits. , N third circuits, M first wirings, and N second wirings, each of the plurality of first circuits includes a transistor, and i-th (i is 1 or more and M or less) integer.) is electrically connected to the gates of the transistors included in each of the i-th second circuit and the i-th first circuit, and j-th (j is 1 or more and N or less) integer.) is electrically connected to one of the source or the drain of the transistor included in each of the j-th third circuit and the j-th column first circuit, and the third circuit
  • the semiconductor device has a function of outputting a voltage corresponding to a difference between a current flowing through two wirings and a reference current, and has irregularly different channel lengths in transistors included in a plurality of first circuits.
  • a semiconductor device with low power consumption can be provided.
  • a semiconductor device capable of high-speed operation can be provided.
  • a semiconductor device with a small occupation area can be provided.
  • a highly reliable semiconductor device can be provided.
  • a novel semiconductor device can be provided.
  • FIG. 1 is a diagram explaining an RC model.
  • 2A and 2B are diagrams for explaining the current mirror circuit.
  • FIG. 3 is a diagram for explaining a product calculation circuit.
  • FIG. 4A is a diagram illustrating a semiconductor device;
  • FIG. 4B is a diagram illustrating a part of a configuration example of a reservoir computing model;
  • FIG. 5 is a diagram for explaining a semiconductor device.
  • FIG. 6 is a block diagram illustrating the configuration of the RC model.
  • FIG. 7 is a perspective view illustrating a configuration example of a semiconductor device.
  • FIG. 8A is a diagram showing a planar layout of a product calculation unit.
  • FIG. 8B is a diagram showing a planar layout of the product operation array.
  • FIG. 9A is a plan view showing a transistor.
  • FIG. 9A is a plan view showing a transistor.
  • FIG. 9B is a diagram showing a planar layout of the product operation array.
  • FIG. 10 is a diagram showing a planar layout of the product operation array.
  • FIG. 11 is an equivalent circuit diagram of the product operation array.
  • FIG. 12 is a diagram illustrating a configuration example of a semiconductor device.
  • FIG. 13 is a diagram showing a planar layout of the product operation array.
  • FIG. 14 is a diagram showing a planar layout of the product operation array.
  • FIG. 15A is a diagram illustrating a display device.
  • 15B1 to 15B7 are diagrams illustrating configuration examples of pixels.
  • 16A to 16D are diagrams illustrating configuration examples of pixels.
  • 17A to 17D are diagrams showing circuit configuration examples of pixels.
  • 18A to 18D are diagrams illustrating configuration examples of light-emitting elements.
  • 19A to 19D are diagrams showing configuration examples of light-emitting elements.
  • 20A to 20D are diagrams showing configuration examples of light-emitting elements.
  • 21A and 21B are perspective views of the display device.
  • 22A-22C are perspective schematic views of the display module.
  • FIG. 23 is a cross-sectional view showing an example of a display device.
  • FIG. 24 is a cross-sectional view showing an example of a display device.
  • FIG. 25 is a cross-sectional view showing an example of a display device.
  • FIG. 26 is a cross-sectional view showing an example of a display device.
  • FIG. 27A is a top view showing a configuration example of a transistor.
  • 27B and 27C are cross-sectional views showing configuration examples of transistors.
  • FIG. 28A is a diagram explaining the classification of crystal structures.
  • FIG. 28B is a diagram explaining the XRD spectrum of the CAAC-IGZO film.
  • FIG. 28C is a diagram illustrating an ultrafine electron diffraction pattern of a CAAC-IGZO film.
  • 29A to 29F are diagrams illustrating examples of electronic devices.
  • 30A to 30F are diagrams illustrating examples of electronic devices.
  • 31A and 31B are diagrams illustrating an example of an electronic device.
  • FIG. 32 is a diagram illustrating an example of an electronic device;
  • connection relationships other than the connection relationships shown in the drawings or the text are not limited to the predetermined connection relationships, for example, the connection relationships shown in the drawings or the text. It is assumed that X and Y are objects (for example, devices, elements, circuits, wiring, electrodes, terminals, conductive films, layers, etc.).
  • X and Y are electrically connected is an element that enables electrical connection between X and Y (for example, switch, transistor, capacitive element, inductor, resistive element, diode, display devices, light emitting devices, loads, etc.) can be connected between X and Y.
  • the switch is controlled to be on and off. In other words, the switch has a function of controlling whether it is in a conducting state (on state) or a non-conducting state (off state) to allow current to flow.
  • a circuit that enables functional connection between X and Y eg, a logic circuit (inverter, NAND circuit, NOR circuit, etc.), a signal conversion Circuits (digital-to-analog conversion circuit, analog-to-digital conversion circuit, gamma correction circuit, etc.), potential level conversion circuit (power supply circuit (booster circuit, step-down circuit, etc.), level shifter circuit that changes the potential level of signals, etc.), voltage source, current source , switching circuit, amplifier circuit (circuit that can increase signal amplitude or current amount, operational amplifier, differential amplifier circuit, source follower circuit, buffer circuit, etc.), signal generation circuit, memory circuit, control circuit, etc.) It is possible to connect one or more between As an example, even if another circuit is interposed between X and Y, when a signal output from X is transmitted to Y, X and Y are considered to be functionally connected. do.
  • X and Y are electrically connected, it means that X and Y are electrically connected (that is, another element or another circuit is interposed), and the case where X and Y are directly connected (that is, the case where X and Y are connected without another element or another circuit between them). (if any).
  • X and Y, the source (or the first terminal, etc.) and the drain (or the second terminal, etc.) of the transistor are electrically connected to each other, and X, the source of the transistor (or the 1 terminal, etc.), the drain of the transistor (or the second terminal, etc.), and are electrically connected in the order of Y.”
  • the source (or first terminal, etc.) of the transistor is electrically connected to X
  • the drain (or second terminal, etc.) of the transistor is electrically connected to Y
  • X is the source of the transistor ( or the first terminal, etc.), the drain of the transistor (or the second terminal, etc.), and Y are electrically connected in this order.
  • X is electrically connected to Y through the source (or first terminal, etc.) and drain (or second terminal, etc.) of the transistor, and X is the source (or first terminal, etc.) of the transistor; terminal, etc.), the drain of the transistor (or the second terminal, etc.), and Y are provided in this connection order.
  • the source (or the first terminal, etc.) and the drain (or the second terminal, etc.) of the transistor can be distinguished by defining the order of connection in the circuit configuration.
  • the technical scope can be determined.
  • these expression methods are examples, and are not limited to these expression methods.
  • X and Y are objects (for example, devices, elements, circuits, wiring, electrodes, terminals, conductive films, layers, etc.).
  • circuit diagram shows independent components electrically connected to each other, if one component has the functions of multiple components.
  • one component has the functions of multiple components.
  • the term "electrically connected" in this specification includes cases where one conductive film functions as a plurality of constituent elements.
  • the term “capacitance element” refers to, for example, a circuit element having a capacitance value higher than 0 F, a wiring region having a capacitance value higher than 0 F, a parasitic capacitance, a transistor can be the gate capacitance of Therefore, in this specification and the like, the term “capacitance element” means not only a circuit element including a pair of electrodes and a dielectric material contained between the electrodes, but also a parasitic element occurring between wirings. Capacitance, gate capacitance generated between one of the source or drain of the transistor and the gate, and the like are included.
  • capacitor element in addition, terms such as “capacitance element”, “parasitic capacitance”, and “gate capacitance” can be replaced with terms such as “capacitance”, and conversely, the term “capacitance” can be replaced with terms such as “capacitance element”, “parasitic capacitance”, and “capacitance”. term such as “gate capacitance”.
  • a pair of electrodes” in the “capacitance” can be replaced with a "pair of conductors," a “pair of conductive regions,” a “pair of regions,” and the like.
  • the value of the capacitance can be, for example, 0.05 fF or more and 10 pF or less. Also, for example, it may be 1 pF or more and 10 ⁇ F or less.
  • a transistor has three terminals called a gate, a source, and a drain.
  • a gate is a control terminal that controls the conduction state of a transistor.
  • the two terminals functioning as source or drain are the input and output terminals of the transistor.
  • One of the two input/output terminals functions as a source and the other as a drain depending on the conductivity type of the transistor (n-channel type, p-channel type) and the level of potentials applied to the three terminals of the transistor. Therefore, in this specification and the like, the terms “source” and “drain” can be used interchangeably.
  • a transistor may have a back gate in addition to the three terminals described above, depending on the structure of the transistor.
  • one of the gate and back gate of the transistor may be referred to as a first gate
  • the other of the gate and back gate of the transistor may be referred to as a second gate.
  • the terms "gate” and “backgate” may be used interchangeably for the same transistor.
  • the respective gates may be referred to as a first gate, a second gate, a third gate, or the like in this specification and the like.
  • a “node” can be replaced with a terminal, a wiring, an electrode, a conductive layer, a conductor, an impurity region, or the like, depending on the circuit configuration, device structure, and the like. Also, terminals, wirings, etc. can be rephrased as “nodes”.
  • ordinal numbers such as “first”, “second”, and “third” are added to avoid confusion of constituent elements. Therefore, the number of components is not limited. Also, the order of the components is not limited. For example, a component referred to as “first” in one embodiment such as this specification is a component referred to as “second” in other embodiments or claims. It is possible. Further, for example, a component referred to as “first” in one of the embodiments in this specification may be omitted in other embodiments or the scope of claims.
  • electrode B on insulating layer A does not require that electrode B be formed on insulating layer A in direct contact with another configuration between insulating layer A and electrode B. Do not exclude those containing elements.
  • electrode B overlapping the insulating layer A is not limited to the state in which the electrode B is formed on the insulating layer A, but the state in which the electrode B is formed under the insulating layer A or A state in which the electrode B is formed on the right (or left) side of the insulating layer A is not excluded.
  • the terms “adjacent” and “proximity” do not limit that components are in direct contact with each other.
  • electrode B adjacent to insulating layer A it is not necessary that insulating layer A and electrode B are formed in direct contact, and another component is provided between insulating layer A and electrode B. Do not exclude what is included.
  • Electrode any electrode that is used as part of a “wiring” and vice versa.
  • the term “electrode” or “wiring” includes the case where a plurality of “electrodes” or “wiring” are integrally formed.
  • terminal may be used as part of “wiring” or “electrode” and vice versa.
  • terminal includes a case where a plurality of "electrodes", “wirings”, “terminals”, etc. are integrally formed.
  • an “electrode” can be part of a “wiring” or a “terminal”, and a “terminal” can be part of a “wiring” or an “electrode”, for example.
  • Terms such as “electrode”, “wiring”, and “terminal” may be replaced with terms such as "region” in some cases.
  • terms such as “wiring”, “signal line”, and “power line” can be interchanged depending on the case or situation. For example, it may be possible to change the term “wiring” to the term “signal line”. Also, for example, it may be possible to change the term “wiring” to a term such as "power supply line”. Also, vice versa, terms such as “signal line” and “power line” may be changed to the term “wiring”. It may be possible to change terms such as “power line” to terms such as “signal line”. Also, vice versa, terms such as “signal line” may be changed to terms such as "power line”. In addition, the term “potential” applied to the wiring may be changed to the term “signal” depending on the circumstances. And vice versa, terms such as “signal” may be changed to the term “potential”.
  • Voltage refers to a potential difference between two points, and potential refers to electrostatic energy (electrical potential energy) possessed by a unit charge in an electrostatic field at one point.
  • a potential difference between a potential at a certain point and a reference potential is simply referred to as potential or voltage, and potential and voltage are often used synonymously. Therefore, in this specification and the like, potential may be read as voltage, and voltage may be read as potential unless otherwise specified.
  • a relatively high potential side potential or a relatively low potential side potential can be used as the power supply potential.
  • the power supply potential on the high potential side is referred to as a high power supply potential (also referred to as "Vdd")
  • the power supply potential on the low potential side is referred to as a low power supply potential (also referred to as "Vss”).
  • a ground potential also referred to as “GND”
  • the high power supply potential is the ground potential
  • the low power supply potential is lower than the ground potential
  • the low power supply potential is the ground potential
  • the high power supply potential is higher than the ground potential.
  • parallel means a state in which two straight lines are arranged at an angle of -10° or more and 10° or less. Therefore, the case of ⁇ 5° or more and 5° or less is also included.
  • substantially parallel or “substantially parallel” refers to a state in which two straight lines are arranged at an angle of -30° or more and 30° or less.
  • Perpendicular means that two straight lines are arranged at an angle of 80° or more and 100° or less. Therefore, the case of 85° or more and 95° or less is also included. Moreover, “substantially perpendicular” or “substantially perpendicular” means a state in which two straight lines are arranged at an angle of 60° or more and 120° or less.
  • perpendicular means a state in which two straight lines intersect or are connected at an angle of 80° or more and 100° or less. Therefore, the case of 85° or more and 95° or less is also included.
  • substantially orthogonal or substantially orthogonal means a state in which two straight lines intersect or are connected at an angle of 60° or more and 120° or less.
  • transistors described in this specification and the like are enhancement-mode (normally-off) n-channel field-effect transistors unless otherwise specified. Therefore, its threshold voltage (also referred to as “Vth”) is assumed to be higher than 0V.
  • LSM Liquid State Machine
  • ESN Echo State Network
  • FORCE First Order Reduced and Controlled Error
  • FIG. 1 shows a configuration example of an ESN as an RC model 100.
  • RC model 100 is composed of input layer 110 , reservoir layer 120 and output layer 130 .
  • the reservoir layer 120 corresponds to a hidden layer.
  • the input layer 110 comprises nodes 111 .
  • Data u(t) indicates the value of the node 111 at time t. Note that although one node 111 is shown in FIG. 1 , the input layer 110 may have a plurality of nodes 111 .
  • the input layer 110 may include M (M is an integer equal to or greater than 1) nodes 111 .
  • the reservoir layer 120 comprises multiple nodes 121 .
  • Data x(t) indicates the value of node 121 at time t. Although six nodes 121 are shown in FIG. 1, the number of nodes 121 is not limited to this.
  • the reservoir layer 120 may include N nodes 121 (where N is an integer equal to or greater than 2).
  • Output layer 130 comprises node 131 .
  • Data z(t) indicates the value of node 131 at time t. Note that although one node 131 is shown in FIG. 1 , the output layer 130 may have a plurality of nodes 131 .
  • the output layer 130 may include K nodes 131 (K is an integer equal to or greater than 1).
  • the weight Win of the connection between the node 111 and the node 121 is indicated as “Win”.
  • the weight Wout of the connection between the node 121 and the node 131 is indicated as “Wout”.
  • the N nodes 121 included in the reservoir layer 120 are irregularly coupled to each other.
  • the weight Wres of the connection between the nodes 121 is indicated as “Wres”.
  • Node 111 is coupled with multiple nodes 121 .
  • each weight Win is determined as an irregular positive or negative value and fixed. Also, a value obtained by multiplying the data u(t) and the weight Win is supplied to the node 121 .
  • the weight Wres of the connection between the nodes 121 is determined and fixed as an irregular positive or negative value. Therefore, the data supplied from reservoir layer 120 to output layer 130 is non-linear data.
  • a value obtained by multiplying the data x(t) of the node 121 on the data supplying side by the weight Wres is supplied to the node 121 on the data receiving side.
  • the RNN determines the weights Win, Wres, and Wout using the error backpropagation method, a large amount of teacher data and a large amount of learning time are required. Therefore, RNNs are computationally expensive.
  • weight Win and weight Wres are fixed, and only weight Wout is learned (optimized). Therefore, the optimization of the weight Wout can be completed with less teacher data and less learning time. Therefore, RC consumes less power during learning than RNN.
  • RC has a lower computational cost than RNN.
  • the RC model 100 shown in FIG. 1 can be represented by Equations 1 to 3.
  • Formula 1 is a formula regarding data x(t).
  • Formula 2 is a formula for obtaining the weight Wout.
  • Formula 3 is a formula for obtaining data z(t).
  • X denotes the matrix of x(t).
  • f denotes an activation function.
  • indicates the leakage rate.
  • T indicates a transposed matrix.
  • indicates a normalization parameter.
  • I indicates an identity matrix.
  • Ytarget indicates teacher data.
  • RNN when analyzing time-series changes in images captured by an image sensor, such as detection of eye blinks, RNN is difficult to implement in hardware due to its high computational cost and complicated layer structure.
  • arithmetic processing can be performed with low power consumption.
  • a semiconductor device 200A shown in FIG. 2A and a semiconductor device 200B shown in FIG. 2B each include a photodiode 210 and a current mirror circuit 220 .
  • Current mirror circuit 220 comprises transistor M1 and transistor M2.
  • the drain of transistor M1 is electrically connected to the gate of transistor M1 and the gate of transistor M2.
  • a region where the drain of the transistor M1, the gate of the transistor M1, and the gate of the transistor M2 are electrically connected is called a node ND.
  • a source of the transistor M1 and a source of the transistor M2 are electrically connected to the wiring 202.
  • FIG. A drain of the transistor M2 is electrically connected to the wiring 203 .
  • the anode of the photodiode 210 is electrically connected to the drain of the transistor M1.
  • a cathode of the photodiode 210 is electrically connected to the wiring 201 .
  • a reverse bias is applied to the photodiode 210 . Therefore, in the semiconductor device 200A, the wiring 201 is supplied with a potential higher than that of the wiring 202 . Further, a potential higher than that of the wiring 202 is supplied to the wiring 203 .
  • the wirings 201 and 203 are supplied with Vdd, and the wiring 202 is supplied with Vss or GND.
  • the photodiode 210 changes the value of the resistance (internal resistance) between the anode and the cathode according to the illuminance of the irradiated light.
  • the internal resistance of the photodiode 210 decreases as the illuminance increases.
  • the current I1 flowing between the source and drain of the transistor M1 is equal to the current Iphoto flowing between the anode and cathode of the photodiode 210 . Therefore, the current I1 flowing between the source and drain of the transistor M1 is determined according to the illuminance. Note that in some drawings, the direction of current is indicated by an arrow.
  • the gate of the transistor M1 and the gate of the transistor M2 are electrically connected, the gate voltage of the transistor M1 and the gate voltage of the transistor M2 are equal. Therefore, when the transistor M1 and the transistor M2 have the same transistor characteristics and both operate in the saturation region or both in the subthreshold region, the current I2 flowing between the source and drain of the transistor M2 is equal to the current I1. Further, for example, if the channel lengths of the transistors M1 and M2 are the same and the channel width of the transistor M2 is twice the channel width of the transistor M1, the current I2 is twice the current I1.
  • the connection of the photodiode 210 is opposite to that in the semiconductor device 200A.
  • the anode of the photodiode 210 is electrically connected to the wiring 201
  • the cathode of the photodiode 210 is electrically connected to the drain of the transistor M1.
  • the semiconductor device 200B also includes a transistor M0.
  • the source of transistor M0 is electrically connected to the drain of transistor M1.
  • the gate of transistor M0 is electrically connected to the source of transistor M0.
  • a drain of the transistor M0 is electrically connected to the wiring 205 .
  • the current I1 flowing between the source and drain of the transistor M1 is equal to the current I0 flowing between the source and drain of the transistor M0 minus the current Iphoto.
  • the wiring 205 is supplied with a potential higher than that of the wiring 201 and the wiring 202 .
  • a potential lower than that of the wiring 202 is supplied to the wiring 201 .
  • the wiring 202 is supplied with 0 V (GND)
  • the wiring 205 is supplied with 5 V
  • the wiring 201 is supplied with -2 V.
  • the current mirror circuit 220 of the semiconductor device 200B functions similarly to the current mirror circuit 220 of the semiconductor device 200A.
  • the transistor M1 and the transistor M2 when equalizing the current I1 and the current I2, it is necessary to equalize the transistor characteristics of the transistor M1 and the transistor M2.
  • includes natural fluctuations (errors) and therefore changes irregularly.
  • includes natural fluctuations (errors) and therefore changes irregularly.
  • corresponds to the Vth variation of the transistor.
  • the transistor characteristics of the transistor M1 and the transistor M2 are different, ⁇ will also increase.
  • the multiple weights Win between the input layer 110 and the reservoir layer 120 are preferably random and fixed.
  • an arithmetic circuit of Win ⁇ u(t) can be realized by using Vth variation of a transistor as a weight Win.
  • FIG. 3 shows a configuration example of a semiconductor device 230 that uses the illuminance detected by the sensor unit 240 including the photodiode 210 as data u(t) and uses the Vth variation of transistors as the weight Win.
  • the semiconductor device 230 can also be said to be an application example of the semiconductor device 200A.
  • Semiconductor device 230 functions as a product operation circuit.
  • the semiconductor device 230 has a function of multiplying the data u(t) and the weight Win.
  • Semiconductor device 230 includes product operation section 250 (also referred to as “product operation circuit” or “first circuit”), sensor section 240 (also referred to as “sensor circuit” or “second circuit”), and comparison section 260 (also referred to as “sensor circuit” or “second circuit”). Also referred to as a “comparison circuit” or a “third circuit”).
  • the sensor section 240 includes a photodiode 210 and a transistor M1.
  • One of the source or drain (eg, drain) of transistor M1 is electrically connected to the gate of transistor M1 and the anode of photodiode 210 .
  • the other of the source and the drain (eg, source) of the transistor M1 is electrically connected to the wiring 205 .
  • the wiring 201 is supplied with Vdd, for example, and the wiring 205 is supplied with GND, for example.
  • the sensor unit 240 detects force, displacement, position, speed, acceleration, angular velocity, number of revolutions, distance, light, magnetism, temperature, sound, time, electric field, current, voltage, power, radiation, humidity, gradient, vibration, smell, and infrared sensing capabilities.
  • the sensor unit 240 may detect temperature, humidity, or odor.
  • the product calculation unit 250 includes a transistor M2a and a transistor M2b.
  • the gates of the transistors M2a and M2b are electrically connected to the gate of the transistor M1 through a wiring 204.
  • the anode or cathode of the photodiode 210 is electrically connected to the node ND. In FIG. 3, the anode of photodiode 210 is electrically connected to node ND.
  • One of the source and drain (eg, drain) of the transistor M2a is electrically connected to the wiring 203a.
  • GND is supplied to the other of the source and drain of the transistor M2a (for example, the source).
  • One of the source and the drain of transistor M2b is electrically connected to wiring 203b.
  • GND is supplied to the other of the source and the drain of the transistor M2b.
  • the potential supplied to the source of the transistor M2a and the potential supplied to the source of the transistor M2b are preferably the same. Further, the potential supplied to the source of the transistor M2a and the potential supplied to the source of the transistor M2b may not be the same potential or fixed potential.
  • a current mirror circuit is configured with the transistor M1, the transistor M2a, and the transistor M2b.
  • a potential higher than that of the wiring 205 is supplied to the wiring 201 .
  • Vdd is supplied to the wiring 201 . Note that the potentials supplied to the wirings 201 and 205 do not have to be fixed potentials.
  • the comparison unit 260 includes terminals 261 a , 261 b and a terminal 262 .
  • the comparison unit 260 is electrically connected to the wiring 203a through a terminal 261a and electrically connected to the wiring 203b through a terminal 261b.
  • the comparison unit 260 also has a function of supplying the current I3a to the wiring 203a via the terminal 261a and a function of supplying the current I3b to the wiring 203b via the terminal 261b.
  • the comparison unit 260 also has a function of converting the difference between the current value of the current I3a and the current value of the current I3b (also referred to as “current difference”) into a voltage Vout and supplying the voltage to the terminal 262 .
  • terminals 261a and 261b are supplied with a potential higher than the potentials supplied to the sources of the transistors M2a and M2b.
  • the potential of the node ND changes according to the illuminance, and the current I1 flows between the source and drain of the transistor M1.
  • the potential of the node ND at this time corresponds to data u(t). Note that the potential of the node ND at this time is a potential that turns on the transistors M1, M2a, and M2b.
  • a current I2a flowing between the source and drain of the transistor M2a is determined by the potential of the node ND and Vth of the transistor M2a.
  • a current I2b flowing between the source and drain of the transistor M2b is determined by the potential of the node ND and Vth of the transistor M2b.
  • the comparison unit 260 also supplies the terminal 262 with a voltage Vout corresponding to the difference between the currents I3a and I3b.
  • the voltage Vout can be positive when the current I3a is larger than the current I3b, and negative when it is smaller.
  • the voltage Vout may be positive when the current I3a is smaller than the current I3b, and may be negative when it is larger.
  • the positive voltage Vout means that the potential of the voltage Vout is higher than the reference potential.
  • the voltage Vout being negative indicates that the potential of the voltage Vout is lower than the reference potential.
  • the voltage Vout corresponds to the product (Win ⁇ u(t)) of the weight Win and the data u(t). Integration can be performed in this way.
  • each of the current I2a and the current I2b is preferably 10 times or less, more preferably 5 times or less, the current I1.
  • the difference between the currents I2a and I2b ⁇ 0.1 ⁇ A It corresponds to the weight Win.
  • the current I2b is preferably 0.95 times or less or 1.05 times or more the current I2a, more preferably 0.7 times or less or 1.3 times or more, and further preferably 0.3 times or less or 3 times or more.
  • the magnitude of the difference between the currents I2a and I2b is determined by the difference between the Vth of the transistor M2a and the Vth of the transistor M2b (also referred to as “Vth variation” or “dVth”). Therefore, the difference in Vth between the transistor M2a and the transistor M2b corresponds to the weight Win.
  • Vth of the transistor M2a and Vth of the transistor M2b are preferably different.
  • the Vth of the transistor M2b is preferably 0.9 times or less or 1.1 times or more, more preferably 0.85 times or less or 1.15 times or more, and 0.8 times or less or 1.2 times the Vth of the transistor M2a. The above is more preferable.
  • a product operation using Vth variations of transistors as weights can be realized.
  • FIG. 4A shows a configuration example of a semiconductor device 270 that uses the illuminance detected by the sensor unit 240 including the photodiode 210 as data u(t) and uses the Vth variation of transistors as the weight Win.
  • FIG. 4B is a diagram showing a configuration example of an RC model corresponding to the semiconductor device 270. As shown in FIG.
  • Semiconductor device 270 functions as a sum-of-products circuit in which each of M nodes 111 provided in input layer 110 is coupled to each of N nodes 121 provided in reservoir layer 120 .
  • FIGS. 4A and 4B show the case where M and N are 3, respectively.
  • the semiconductor device 270 has a function of performing a sum-of-products operation of a plurality of data u(t) and a plurality of weights Win.
  • the sensor units 240[1] to 240[3] illustrated in FIG. 4A correspond to the nodes 111[1] to 111[3] illustrated in FIG. 4B.
  • the output destinations of the comparing units 260[1] to 260[3] shown in FIG. 4A correspond to the nodes 121[1] to 121[3] shown in FIG. 4B.
  • an arbitrary sensor unit 240 may be indicated as sensor unit 240[i] (i is an integer of 1 or more and M or less).
  • an arbitrary comparison unit 260 may be indicated as a comparison unit 260[j] (j is an integer equal to or greater than 1 and equal to or less than N).
  • the semiconductor device 270 includes sensor units 240[1] to 240[3], a sum-of-products operation unit 300, M wirings 204, N wirings 203a, and N wirings 203b. .
  • the sum-of-products operation unit 300 includes a product operation array 280 including a plurality of product operation units 250 arranged in a matrix of M rows and N columns.
  • FIG. 4A shows a configuration example in which M and N are 3, respectively. Therefore, sensor unit 240[3] can be expressed as sensor unit 240[M]. Also, comparison unit 260[3] can be expressed as comparison unit 260[N].
  • the product operation unit 250 in the first row and the first column is indicated as the product operation unit 250 [1, 1]
  • the product operation unit 250 in the second row and the first column is indicated as the product operation unit 250 [2, 1]
  • the product operation unit 250 in the 3rd row, 1st column is indicated as the product operation unit 250[3,1].
  • the product operation unit 250 in the first row and the second column is indicated as the product operation unit 250[1,2]
  • the product operation unit 250 in the third row and the second column is indicated as the product operation unit 250[3,2].
  • An arbitrary product calculator 250 may be indicated as product calculator 250[i,j].
  • the product operation unit 250[i,j] shown in FIG. 4A is the product operation unit 250 where i and j are 2, respectively.
  • the product operation unit 250 in the first row and the third column is indicated as the product operation unit 250[1,3]
  • the product operation unit 250 in the second row and the third column is indicated as the product operation unit 250[2,3].
  • the product operation unit 250 on the third row and the third column is shown as the product operation unit 250[3,3].
  • the product operation unit 250[3,3] can be expressed as the product operation unit 250[M,N].
  • the product calculation unit 250 in the first row is electrically connected to the sensor unit 240[1] through the wiring 204[1].
  • the product calculation unit 250 in the second row is electrically connected to the sensor unit 240[2] via the wiring 204[2].
  • the product calculation unit 250 in the third row is electrically connected to the sensor unit 240[3] through the wiring 204[3].
  • the data u(t) output from the sensor unit 240[1] is indicated as data u 1 (t)
  • the data u(t) output from the sensor unit 240[2] is indicated as data u 2 (t).
  • the data u(t) output from the sensor unit 240[3] is represented as data u 3 (t).
  • the product operation unit 250 in the first column is electrically connected to the comparison unit 260[1] through the wiring 203a[1] and the wiring 203b[1].
  • the product operation unit 250 in the second column is electrically connected to the comparison unit 260[2] through the wiring 203a[2] and the wiring 203b[2].
  • the product calculation unit 250 in the third column is electrically connected to the comparison unit 260[3] via the wiring 203a[3] and the wiring 203b[3].
  • the description of the sensor unit 240, the product calculation unit 250, and the comparison unit 260 will be omitted here.
  • FIG. 5 shows a partially enlarged view of a semiconductor device 270 including the product operation section 250 in the first column.
  • the current obtained by adding the current I2b[1,1], the current I2b[2,1], and the current I2b[3,1] is output from the comparison unit 260[1] in the first column as the current I3b[1]. It is supplied to the wiring 203b[1] through the terminal 261b[1].
  • the comparison unit 260[1] supplies a voltage Vout[1] corresponding to the difference between the current I3a[1] and the current I3b[1] to the terminal 262[1]. Therefore, the voltage Vout[1] is the product of the weight Win[1,1] (not shown) of the product operation unit 250[1,1] and the data u 1 (t), and the product operation unit 250[2,1] weight Win[2,1] (not shown) and data u 2 (t), and weight Win[3,1] (not shown) and data u 3 (t) corresponds to the sum of the products.
  • the comparison unit 260[2] Similar to the comparison unit 260[1], the comparison unit 260[2] outputs the product of the weight Win[1,2] (not shown) of the product calculation unit 250[1,2] and the data u 1 (t). , the product of the weight Win[2,2] (not shown) of the product calculator 250[2,2] and the data u 2 (t), and the weight Win[3, 2] (not shown) and data u 3 (t) is supplied to terminal 262[2].
  • comparison section 260[3] outputs weight Win[1,3] (not shown) of product calculation section 250[1,3] and data
  • the product of u 1 (t), the product of the weight Win[2,3] (not shown) of the product calculator 250[2,3] and the data u 2 (t), and the product of the product calculator 250[3,3] ] and the data u 3 (t) are supplied to the terminal 262[3].
  • the semiconductor device 270 can perform the sum-of-products operation of the weight Win and the data u(t).
  • the voltage Vout[1] supplied to the terminal 262[1] is input to the first node 121 (node 121[1]) included in the reservoir layer 120 .
  • the data x 1 (t) of node 121[1] is determined using Equation 1.
  • the voltage Vout[1] corresponds to “Win ⁇ u(t)” in Equation (1).
  • the voltage Vout[2] supplied to the terminal 262[2] is input to the second node 121 (node 121[2]) included in the reservoir layer 120 .
  • the voltage Vout[3] supplied to the terminal 262[3] is input to the third node 121 (node 121[3]) included in the reservoir layer 120 .
  • Data x 2 (t) and data x 3 (t) are also determined using Equation 1.
  • the voltage supplied to the terminal 262[2] and the voltage supplied to the terminal 262[3] respectively correspond to “Win ⁇ u(t)” in Equation 1.
  • the Vth of the transistor M2a and the Vth of the transistor M2b included in the product calculation unit 250 are different.
  • the Vth of the transistor M2b is preferably 0.9 times or less or 1.1 times or more, more preferably 0.85 times or less or 1.15 times or more, and 0.8 times or less or 1.2 times the Vth of the transistor M2a. The above is more preferable.
  • the product operation array 280 has a plurality of product operation units 250 each having a different difference (dVth) between the Vth of the transistor M2a and the Vth of the transistor M2b.
  • dVth difference between the Vth of the transistor M2a and the Vth of the transistor M2b.
  • the product calculation array 280 as a whole has irregular dVth values. should be regarded as
  • a sum-of-products operation using dVth as a weight can be realized. That is, it is possible to realize sum-of-products operation using Vth variations of transistors as weights. As described above, the Vth variation of transistors is not constant but irregular. Therefore, Vth variations of transistors can be suitably used as weights for reservoir computing.
  • Vth variation of the transistor As the weight, a circuit configuration for storing the weight becomes unnecessary. Therefore, the area occupied by hardware is reduced, and circuit design is facilitated. That is, hardware implementation of the product operation circuit and the product-sum operation circuit is facilitated. Further, by using the Vth variation of the transistor as a weight, it is not necessary to rewrite the weight data, and arithmetic processing can be performed with low power consumption.
  • S is the product of m and n
  • sensor units 240 arranged in a matrix of m rows and n columns (each of m and n is an integer of 2 or more).
  • a configuration example using the sum-of-products operation unit 300 in an RC model 150 including an input layer 110, a reservoir layer 120 having N nodes 121, and an output layer 130 having K nodes 131 will be described. do.
  • FIG. 6 is a block diagram for explaining the configuration of the RC model 150.
  • RC model 150 is a modification of RC model 100, and sensor unit 240 corresponds to node 111 shown in the above embodiment. Matters not described in this embodiment can be understood by citing the descriptions of other embodiments.
  • the sensor unit 240 arranged in the first row and first column is indicated as sensor unit 240[1,1]. Further, the sensor unit 240 arranged in the second row and first column is indicated as sensor unit 240 [2, 1], the sensor unit 240 arranged in the first row and second column is indicated as sensor unit 240 [1, 2], The sensor unit 240 arranged in the second row and the second column is indicated as the sensor unit 240[2,2], the sensor unit 240 arranged in the m row and the first column is indicated as the sensor unit 240[m,1].
  • the sensor unit 240 arranged in the n-th column is denoted by sensor unit 240[1,n]
  • the sensor unit 240 arranged in the 2nd row and n-th column is denoted by sensor unit 240[2,n]
  • the sensor unit 240 arranged in m rows and n columns is indicated as sensor unit 240[m,n].
  • the sensor unit 240[1,1] corresponds to the node 111[1,1].
  • the first node 121 is indicated as node 121[1]
  • the second node 121 is indicated as node 121[2]
  • the Nth node 121 is indicated as node 121[N].
  • the first node 131 is indicated as node 131[1]
  • the K-th node 131 is indicated as node 131[K].
  • the sum-of-products operation section 300 can be used for the connection section between the input layer 110 and the reservoir layer 120 of the RC model 150 .
  • FIG. 7 shows a connection configuration example of a semiconductor device 290 including the input layer 110 and the sum-of-products operation section 300 .
  • FIG. 7 is a perspective block diagram of the semiconductor device 290.
  • the sum-of-products operation unit 300 includes n product operation arrays 280 and N comparison units 260 .
  • the first product operation array 280 (product operation array 280 [ 1 ]) is electrically connected to the m sensor units 240 arranged in the first column of the input layer 110 .
  • the nth product calculation array 280 (product calculation array 280[n]) is electrically connected to the m sensor units 240 arranged in the nth column of the input layer 110 .
  • connection configuration of the sensor unit 240 for each column of the input layer 110 and the product calculation array 280 is the same as that of the semiconductor device 270 .
  • M shown in Embodiment 1 corresponds to m. Therefore, detailed description in this embodiment is omitted.
  • the wiring 203a[1] included in each of the n product arrays 280 is electrically connected to the terminal 261a[1].
  • the wiring 203b[1] included in each of the n product arrays 280 is electrically connected to the terminal 261b[1].
  • the voltage Vout[1] supplied to the terminal 262[1] by the comparator 260[1] is supplied from the first column weight Win of each of the n product arrays 280 and the S sensor units 240. It corresponds to the sum-of-products operation result of the data u(t) to be processed.
  • wiring 203a[N] of n product arrays 280 is electrically connected to terminal 261a[N].
  • the wiring 203b[N] included in each of the n product arrays 280 is electrically connected to the terminal 261b[N].
  • the voltage Vout[N] supplied to the terminal 262[N] by the comparator 260[N] is supplied from the N-th column weight Win of each of the n product arrays 280 and the S sensor units 240. It corresponds to the sum-of-products operation result of the data u(t) to be processed.
  • a voltage Vout is input to a node 121 provided in the reservoir layer 120 .
  • voltage Vout[1] is input to node 121[1] and voltage Vout[2] is input to node 121[2].
  • the voltage Vout[N] is input to the node 121[N].
  • Reservoir layer 120 and output layer 130 may be constructed in software.
  • the input layer 110 and the sum-of-products operation unit 300 implemented by hardware perform the sum-of-products operation of the data u(t) and the weight Win. I do.
  • the sum-of-products operation unit 300 which does not require weight changes in the RC model, in hardware, arithmetic processing can be performed with low power consumption. Moreover, high-speed arithmetic processing becomes possible.
  • the weight Wres is irregular within the reservoir layer 120, there is no need to change it, so it may be implemented by hardware. That is, layers whose weights do not change afterward may be implemented in hardware.
  • the weight Wout may be changed by learning. Therefore, it is preferable to configure the output layer 130 with software that facilitates changing the weights. Weight Wout corresponds to the strength of coupling between node 121 included in reservoir layer 120 and node 131 included in output layer 130 . Therefore, it is preferable to configure the reservoir layer 120 and the output layer 130 with software.
  • FIG. 8A is a diagram showing a planar layout example of the product calculation unit 250.
  • a region where the semiconductor layer 221a and the conductive layer 222a overlap functions as a channel formation region of the transistor M2a. Therefore, the conductive layer 222a functions as the gate of the transistor M2a.
  • the conductive layer 222a is electrically connected to the wiring 204 through the conductive layer 223a.
  • the semiconductor layer 221a is electrically connected to the wiring 203a through the conductive layer 224a. In addition, the semiconductor layer 221a is electrically connected to the wiring 202 through the conductive layer 225a.
  • a region where the semiconductor layer 221b and the conductive layer 222b overlap functions as a channel formation region of the transistor M2b. Therefore, the conductive layer 222b functions as the gate of the transistor M2b.
  • the conductive layer 222b is electrically connected to the wiring 204 through the conductive layer 223b.
  • the semiconductor layer 221b is electrically connected to the wiring 203b through the conductive layer 224b. In addition, the semiconductor layer 221b is electrically connected to the wiring 202 through the conductive layer 225b.
  • An electrical connection between the conductive layer, the semiconductor layer and the wiring is realized in the contact hole portion.
  • the conductive layer 224a and the wiring 203a are electrically connected through a contact hole 226a.
  • the conductive layer 224b and the wiring 203b are electrically connected through a contact hole 226b.
  • FIG. 8B is a diagram showing a planar layout example of the product operation array 280. As shown in FIG. FIG. 8B shows a planar layout example of a product calculation array 280 having product calculation units 250 arranged in four rows and two columns.
  • the product operation unit 250 on the first row and first column is indicated as the product operation unit 250[1,1]. Further, the product operation unit 250 on the 4th row and the 1st column is indicated as the product operation unit 250[4,1], and the product operation unit 250 on the 4th row and the 2nd column is indicated as the product operation unit 250[4,2].
  • the product calculation units 250 arranged at other positions are also indicated in the same manner as above.
  • the wiring 204 electrically connected to the product calculation unit 250 in the first row is indicated as wiring 204[1]
  • the wiring 204 electrically connected to the product calculation unit 250 in the second row is indicated as wiring 204[2].
  • the wiring 204 electrically connected to the product calculation unit 250 in the third row is indicated as wiring 204[3]
  • the wiring 204 electrically connected to the product calculation unit 250 in the fourth row is indicated as wiring 204[4]. ].
  • the wiring 202 electrically connected to the product calculation unit 250 in the first row is indicated as wiring 202[1]
  • the wiring 202 electrically connected to the product calculation unit 250 in the second row is indicated as wiring 202[2].
  • the wiring 202 electrically connected to the product calculation unit 250 on the third row is indicated as wiring 202[3]
  • the wiring 202 electrically connected to the product calculation unit 250 on the fourth row is indicated by wiring 202[4]. ].
  • wiring 203a and the wiring 203b electrically connected to the product operation unit 250 in the first column are indicated as wiring 203a[1] and wiring 203b[1], respectively.
  • the wiring 203a and the wiring 203b electrically connected to the product operation unit 250 in the second column are indicated as wiring 203a[2] and wiring 203b[2], respectively.
  • ⁇ Modification 1> Irregularly changing one or both of the channel length and the channel width in one or both of the transistor M2a and the transistor M2b included in one product operation unit 250 in the plurality of product operation units 250 constituting the product operation array 280 , the Vth variation corresponding to the weight Win can be increased. That is, it is possible to increase the variation of the weight Win (increase irregularity). Further, the product operation units 250 may be arranged irregularly within the product operation array 280 .
  • “irregular” means that the repetition period or the like cannot be said to have regularity, or that the repetition period or the like cannot be represented by a linear formula (linear function formula).
  • FIG. 9A shows an enlarged plan view of transistor M2 (one or both of transistor M2a and transistor M2b).
  • the channel length (L) is the direction parallel to the direction in which the drain current flows.
  • the channel width (W) is the direction orthogonal to the direction in which the drain current flows.
  • the channel length of the transistor M2 can be rephrased as the length of the conductive layer 222 in the region where the semiconductor layer 221 and the conductive layer 222 overlap in the direction parallel to the direction of drain current flow.
  • the channel width of the transistor M2 can be rephrased as the length of the semiconductor layer 221 in the region where the semiconductor layer 221 and the conductive layer 222 overlap in the direction perpendicular to the direction in which the drain current flows.
  • the channel length of transistor M2 can be changed by adjusting the size of conductive layer 222.
  • the channel width of the transistor M2 can be changed by adjusting the size of the semiconductor layer 221 (semiconductor layer 221a and semiconductor layer 221b).
  • FIG. 9B shows a planar layout of a product array 280A, which is a modification of the product array 280.
  • product operation array 280A conductive layer 222a of product operation unit 250[1,1], conductive layer 222a of product operation unit 250[1,2], and conductive layer of product operation unit 250[2,2] 222b, conductive layer 222a of product operation unit 250[3,1], conductive layer 222b of product operation unit 250[3,1], and conductive layer 222b of product operation unit 250[4,1]
  • FIG. 11 shows a planar layout of a regularly varied product array 280A; FIG.
  • the transistor M2a and the transistor M2b included in the product operation unit 250 when only the transistor M2a is provided, at least one of the semiconductor layer 221b, the conductive layer 222b, the conductive layer 223b, the conductive layer 224b, and the conductive layer 225b is provided. I wish I didn't. Alternatively, at least one of these contact holes may not be provided. Similarly, when only the transistor M2b is provided, at least one of the semiconductor layer 221a, the conductive layer 222a, the conductive layer 223a, the conductive layer 224a, and the conductive layer 225a is not provided. Alternatively, at least one of these contact holes may not be provided.
  • FIG. 10 shows a planar layout of a product array 280B, which is a modification of the product array 280.
  • the contact hole 226a of the product operation part 250[1,1] the contact hole 226a of the product operation part 250[2,1], the contact hole 226b of the product operation part 250[4,1], the product operation part 250
  • the planar layout of the product operation array 280B without forming the contact hole 226b of [1,2] and the contact hole 226a of the product operation part 250[3,2] is shown.
  • FIG. 11 shows an equivalent circuit diagram of the product operation array 280B.
  • FIG. 12 shows a configuration example of a semiconductor device 270A.
  • the semiconductor device 270A includes a sum-of-products operation section 300A and M sensor sections 240 .
  • the sum-of-products operation section 300A includes a product operation array 280C and N comparison sections 260 .
  • the product operation array 280C includes a plurality of product operation units 250A arranged in a matrix of M rows and N columns. Note that the product array 280C is a modification of the product array 280.
  • FIG. 12 shows a configuration example of a semiconductor device 270A.
  • the semiconductor device 270A includes a sum-of-products operation section 300A and M sensor sections 240 .
  • the sum-of-products operation section 300A includes a product operation array 280C and N comparison sections 260 .
  • the product operation array 280C includes a plurality of product operation units 250A arranged in a matrix of M rows and N columns. Note that the product array 280C is a modification of the product
  • the dVth between the two transistors is increased by changing one or both of the channel length and the channel width of the transistor M2a and the transistor M2b included in one product operation unit 250. rice field.
  • the product calculation array 280 including a plurality of product calculation units 250 a configuration is shown in which each dVth is set irregularly.
  • product operation unit 250A includes one transistor M2.
  • the product operation unit 250A can be said to have a configuration in which one of the transistor M2a and the transistor M2b is removed from the product operation unit 250.
  • FIG. 12 the transistor M2 included in the product operation unit 250A in the first row and first column is indicated as a transistor M2[1,1], and the current flowing between the source and the drain of the transistor M2[1,1] is the current I2[1]. , 1].
  • the transistor M2 included in the M-th row, N-th column product operation unit 250A is denoted as transistor M2[M,N], and the current flowing between the source and drain of transistor M2[M,N] is current I2[M, N].
  • the magnitude of Vth of each transistor M2 is set to vary irregularly. Specifically, one or both of the channel length and channel width of each of the plurality of transistors M2 included in the product operation array 280C is set irregularly.
  • the channel length of the transistor M2 can be rephrased as the length of the conductive layer 222 in the region where the semiconductor layer 221 and the conductive layer 222 overlap in the direction parallel to the direction in which the drain current flows. (See Figure 9A).
  • the channel width of the transistor M2 can be rephrased as the length of the semiconductor layer 221 in the region where the semiconductor layer 221 and the conductive layer 222 overlap in the direction crossing the direction of drain current flow (see FIG. 9A).
  • FIGS. 13 and 14 show plan layout diagrams of product array 280C.
  • FIG. 13 shows a planar layout when the channel lengths (sizes of the conductive layers 222 (see FIG. 9A)) of the multiple transistors M2 included in the product operation array 280C are varied irregularly.
  • FIG. 14 shows a planar layout when the channel width (the size of the semiconductor layer 221 (see FIG. 9A)) of each of the plurality of transistors M2 included in the product operation array 280C is irregularly changed. Both the channel length and the channel width may be changed irregularly.
  • the product calculation section 250A in the first row is electrically connected to the sensor section 240[1] through the wiring 204[1]. Further, the M-th product calculation unit 250A is electrically connected to the sensor unit 240[M] through the wiring 204[M]. In FIG. 12, the data u(t) output from the sensor unit 240[M] is indicated as data u M (t).
  • 13 and 14 show how the gate of the transistor M2 included in the product operation unit 250A in the first row is electrically connected to the wiring 204[1].
  • one of the source and the drain of the transistor M2 included in the product operation unit 250A in the first row is electrically connected to the wiring 202[1].
  • 13 and 14 show how the gate of the transistor M2 included in the M-th product operation unit 250A is electrically connected to the wiring 204[M]. Also, the diagram shows that one of the source and the drain of the transistor M2 included in the M-th product operation unit 250A is electrically connected to the wiring 202[M].
  • the product calculation unit 250A in the first column is electrically connected to the terminal 261a[1] of the comparison unit 260[1] through the wiring 203[1].
  • the N-th product calculation unit 250A is electrically connected to the terminal 261a[N] of the comparison unit 260[N] through the wiring 203[N] (see FIG. 12).
  • a current obtained by adding the currents I2[1,1] to I2[M,1] is supplied as the current I3a[1] from the comparison unit 260[1] in the first column to the wiring 203[1] via the terminal 261a[1]. 1].
  • a reference current Iref is supplied to the terminals 261b (terminals 261b[1] to 261b[N]). For example, the reference current Iref flows from the terminal 261b toward GND.
  • the reference current Iref corresponds to the current I3b shown in the above embodiment.
  • the comparator 260[1] supplies a voltage Vout[1] corresponding to the difference between the current I3a[1] and the reference current Iref to the terminal 262[1].
  • the voltage Vout[1] is the product-sum operation result of the data u 1 (t) through the data u M (t) and the product operation units 250A[1,1] through the product operation units 250A[M,1] in the first column. corresponds to For example, when the current I3a[1] is larger than the reference current Iref, the result of the sum-of-products operation can be positive, and when it is smaller than the reference current Iref, the result of the sum-of-products operation can be negative.
  • the current I3a[1] may be converted into a voltage or digital data without using the comparison unit 260[1]. By converting the current I3a[1] into voltage or digital data and then comparing it with a reference value, it is possible to determine whether the result of the sum-of-products operation is positive or negative.
  • Each of voltage Vout[1] to voltage Vout[N] corresponds to “Win ⁇ u(t)” in Equation (1). Further, data obtained by converting each of the currents I3a[1] to I3a[N] into voltages corresponds to “Win ⁇ u(t)” in Equation (1). Further, digital data obtained by converting each of the currents I3a[1] to I3a[N] corresponds to “Win ⁇ u(t)” in Equation (1).
  • the power consumption of the semiconductor device increases when the current I3a is large.
  • the current I2 is preferably 10 times or less the current I1, more preferably 5 times or less.
  • the magnitude of the current I2 flowing through the transistor M2 included in the product calculation unit 250A is different for at least three or more transistors M2 in the same column.
  • the magnitude of the current I2 in the same column is preferably 0.95 times or less or 1.05 times or more the average value of the current I2 in the same column, more preferably 0.7 times or less or 1.3 times or more, 0.3 times or less or 3 times or more is more preferable.
  • Vth of the transistor M2 included in the product calculation unit 250A is different for at least three or more transistors M2 in the same column.
  • Vth in the same column is preferably 0.9 times or less or 1.1 times or more, more preferably 0.85 times or less or 1.15 times or more, and 0.8 times or less the average value of Vth in the same column. Or 1.2 times or more is more preferable.
  • the channel lengths of the transistors M2 included in the product operation section 250A are different for at least three or more transistors M2 in the same column.
  • the channel length in the same row is preferably 0.9 times or less or 1.1 times or more, more preferably 0.85 times or less or 1.15 times or more the average value of the channel lengths in the same row, and 0.8 It is more preferably less than 1.2 times or more than 1.2 times.
  • the channel length can be rephrased as the length of the conductive layer 222 in the direction parallel to the direction in which the drain current flows.
  • the channel widths of the transistors M2 included in the product operation section 250A are preferably different for at least three or more transistors M2 in the same column.
  • the channel width in the same column is preferably 0.9 times or less or 1.1 times or more, more preferably 0.85 times or less or 1.15 times or more the average value of the channel widths in the same column, and 0.8 It is more preferably less than 1.2 times or more than 1.2 times.
  • the channel length can be rephrased as the length of the semiconductor layer 221 in the direction crossing the direction in which the drain current flows.
  • the plurality of product operation units 250A included in the product operation array 280C it is preferable that at least three or more arbitrary transistors M2 in the same column have different Vths irregularly. Even if the Vth of the transistors M2 included in each of two or more product operation units 250A among the plurality of product operation units 250A is the same, even if the Vth of the transistors M2 in at least the same column or in the entire product operation array 280C is irregular. Just do it.
  • the multiple product operation units 250A included in the product operation array 280C it is preferable that at least three or more arbitrary transistors M2 in the same column have irregularly different channel lengths. Even if the channel lengths of the transistors M2 provided in two or more product operation units 250A among the plurality of product operation units 250A are the same, the channel lengths of the transistors M2 are irregular at least in the same column or in the entire product operation array 280C. If it is
  • the channel widths of at least three or more arbitrary transistors M2 in the same column are irregularly different. Even if the channel widths of the transistors M2 provided in two or more product operation units 250A among the plurality of product operation units 250A are the same, the channel widths of the transistors M2 are irregular at least in the same column or in the entire product operation array 280C. If it is
  • the semiconductor device 270A according to one embodiment of the present invention can reduce the number of transistors used in the product operation portion. Therefore, it is possible to reduce the power consumption related to the sum-of-products operation. Also, the area occupied by the product calculation section is reduced. Therefore, the mounting density of the product calculation section can be increased.
  • FIG. 15A is a block diagram illustrating the display device 10.
  • the display device 10 has a display area 335 , a first drive circuit section 331 and a second drive circuit section 332 .
  • the display area 335 has a plurality of pixels 330 arranged in a matrix.
  • a circuit included in the first drive circuit section 331 functions, for example, as a scanning line drive circuit.
  • a circuit included in the second drive circuit unit 332 functions, for example, as a signal line drive circuit. Some circuit may be provided at a position facing the first drive circuit section 331 with the display area 335 interposed therebetween. Some kind of circuit may be provided at a position facing the second drive circuit section 332 with the display area 335 interposed therebetween.
  • the general term for the circuits included in the first drive circuit section 331 and the second drive circuit section 332 may be called "peripheral drive circuit".
  • a transistor, a capacitor, or the like can be used for the peripheral driver circuit.
  • a transistor included in the peripheral driver circuit may be formed in the same process as the transistor included in the pixel 330 .
  • a transistor using an oxide semiconductor as a semiconductor in which a channel is formed (also referred to as an "OS transistor") is used as a transistor forming the pixel 330, and a channel is formed in a transistor forming a peripheral driver circuit.
  • a transistor using silicon as a semiconductor (also referred to as a “Si transistor”) may be used. Since the OS transistor has low off-state current, power consumption can be reduced. In addition, since Si transistors operate faster than OS transistors, they are suitable for use in peripheral driver circuits. Further, depending on the display device, OS transistors may be used for both the transistor forming the pixel 330 and the transistor forming the peripheral driver circuit.
  • Si transistors may be used for both the transistors forming the pixels 330 and the transistors forming the peripheral drive circuit and the peripheral drive circuit.
  • a Si transistor may be used as the transistor forming the pixel 330 and an OS transistor may be used as the transistor forming the peripheral driver circuit.
  • both Si transistors and OS transistors may be used as the transistors forming the pixel 330 . Further, both Si transistors and OS transistors may be used for the transistors forming the peripheral driver circuit.
  • Materials used for the Si transistor include single crystal silicon, polycrystalline silicon, amorphous silicon, and the like.
  • a transistor including low-temperature polysilicon (LTPS) in a semiconductor layer (hereinafter also referred to as an LTPS transistor) can be used.
  • the LTPS transistor has high field effect mobility and good frequency characteristics.
  • a Si transistor such as an LTPS transistor
  • a circuit that needs to be driven at a high frequency for example, a source driver circuit
  • OS transistors have much higher field-effect mobility than transistors using amorphous silicon.
  • an OS transistor has extremely low off-state current and can hold charge accumulated in a capacitor connected in series with the transistor for a long time. Further, by using the OS transistor, power consumption of the display device can be reduced.
  • the off current value of the OS transistor per 1 ⁇ m of channel width at room temperature is 1 aA (1 ⁇ 10 ⁇ 18 A) or less, 1 zA (1 ⁇ 10 ⁇ 21 A) or less, or 1 yA (1 ⁇ 10 ⁇ 24 A) or less.
  • the off current value of the Si transistor per 1 ⁇ m channel width at room temperature is 1 fA (1 ⁇ 10 ⁇ 15 A) or more and 1 pA (1 ⁇ 10 ⁇ 12 A) or less. Therefore, it can be said that the off-state current of the OS transistor is about ten digits lower than the off-state current of the Si transistor.
  • the display device 10 includes p wirings 336 (p is an integer equal to or greater than 2), which are arranged substantially parallel to each other and whose potentials are controlled by circuits included in the first driving circuit section 331; are arranged substantially in parallel, and q (q is an integer of 2 or more) wirings 337 whose potentials are controlled by a circuit included in the second driving circuit section 332 .
  • FIG. 15A shows an example in which the wiring 336 and the wiring 337 are connected to the pixel 330 .
  • the wiring 336 and the wiring 337 are examples, and the wiring connected to the pixel 330 is not limited to the wiring 336 and the wiring 337 .
  • the display area 335 includes a plurality of pixels 330 arranged in a matrix of [p rows and q columns].
  • the pixels 330 arranged in the r-th row (r indicates an arbitrary number and is an integer of 1 or more and p or less in the present embodiment and the like) are connected to the first drive via the r-th wiring 336 . It is electrically connected to the circuit section 331 .
  • the pixel 330 arranged in the sth column (s indicates an arbitrary number and is an integer of 1 or more and q or less in this embodiment or the like) is connected to the second driving line 337 via the sth wiring 337 . It is electrically connected to the circuit section 332 .
  • the pixel 330 arranged in the first row and q column is denoted by pixel 330 [1, q]
  • the pixel 330 arranged in p row and first column is denoted by pixel 330 [p, 1]
  • p row A pixel 330 arranged in the q-th column is indicated as a pixel 330[p,q].
  • the pixel 330 arranged in the r-th row and the s-th column is indicated as a pixel 330[r, s].
  • a pixel 330 that controls red light, a pixel 330 that controls green light, and a pixel 330 that controls blue light are arranged in stripes and collectively function as one pixel 340, and the light emission amount of each pixel 330 is determined.
  • Full-color display can be realized by controlling (light emission luminance). Therefore, each of the three pixels 330 functions as a sub-pixel. That is, each of the three sub-pixels controls the amount of red light, green light, or blue light emitted (see FIG. 15B1).
  • the color of light controlled by each of the three sub-pixels is not limited to a combination of red (R), green (G), and blue (B), but may be cyan (C), magenta (M), and yellow (Y). There may be (see FIG. 15B2).
  • the arrangement of the three pixels 330 forming one pixel 340 may be a delta arrangement (see FIG. 15B3). Specifically, the lines connecting the center points of the three pixels 330 forming one pixel 340 may form a triangle.
  • the areas of the three sub-pixels do not have to be the same. If the luminous efficiency, reliability, etc. differ depending on the luminescent color, the area of the sub-pixel may be changed for each luminescent color (see FIG. 15B4). Note that the arrangement of sub-pixels shown in FIG. 15B4 may be referred to as "S stripe arrangement".
  • four sub-pixels may be collectively functioned as one pixel.
  • a sub-pixel controlling white light may be added to three sub-pixels controlling red light, green light, and blue light, respectively (see FIG. 15B5).
  • a sub-pixel for controlling yellow light may be added to the three sub-pixels for controlling red light, green light, and blue light, respectively (see FIG. 15B6).
  • a sub-pixel for controlling white light may be added to the three sub-pixels for controlling cyan, magenta, and yellow light (see FIG. 15B7).
  • Reproducibility of halftones can be improved by increasing the number of sub-pixels that function as one pixel, and by appropriately combining sub-pixels that control lights such as red, green, blue, cyan, magenta, and yellow. can. Therefore, display quality can be improved.
  • the pixel 340 may be provided with the sensor section 240 and the product calculation section 250.
  • FIG. 16A is a modification of the pixel 340 shown in FIG. 15B1
  • FIG. 16B is a modification of the pixel 340 shown in FIG. 15B4.
  • the sensor unit 240 is denoted by "PS”
  • the product calculation unit 250 is denoted by "MC”.
  • the detection sensitivity of the sensor units 240 can be increased.
  • the sensor section 240 includes a photodiode
  • the light detection sensitivity can be increased by connecting the sensor sections 240 in parallel.
  • sensor section 240a, sensor section 240b, sensor section 240c, and sensor section 240d may be connected in parallel to function as one sensor section 240.
  • FIG. 16C sensor section 240a, sensor section 240b, sensor section 240c, and sensor section 240d may be connected in parallel to function as one sensor section 240.
  • FIG. 16D shows a pixel 340a including the sensor unit 240 and a pixel 340b including the product calculation unit 250 may be provided.
  • FIG. 16D shows one pixel 340a and three pixels 340b as an example.
  • the display device can reproduce color gamuts of various standards.
  • PAL Phase Alternating Line
  • NTSC National Television System Committee
  • sRGB standard RGB
  • ITU-R BT. 709 International Telecommunication Union Radiocommunication Sector Broadcasting Service(Television) 709) ⁇ DCI ⁇ P3(Digital Cinema Initiatives P3) ⁇ UHDTV(Ultra High Definition Television ⁇ ) ⁇ ITU ⁇ RBT. 2020 (REC.2020 (Recommendation 2020)) standard color gamut can be reproduced.
  • the display device 10 capable of full-color display at a resolution of so-called full high-definition also referred to as “2K resolution”, “2K1K”, or “2K”
  • the display device 10 capable of full-color display at a resolution of so-called ultra high-definition also referred to as “4K resolution”, “4K2K”, or “4K”.
  • the display device 10 capable of full-color display at a resolution of so-called Super Hi-Vision (also referred to as “8K resolution”, “8K4K”, or “8K”). can be realized.
  • Super Hi-Vision also referred to as “8K resolution”, “8K4K”, or “8K”.
  • the pixel density of the display area 335 is preferably 100 ppi or more and 10000 ppi or less, more preferably 1000 ppi or more and 10000 ppi or less. For example, it may be 2000 ppi or more and 6000 ppi or less, or 3000 ppi or more and 5000 ppi or less.
  • the display area 335 of the display device 10 can accommodate various aspect ratios such as 1:1 (square), 4:3, 16:9, and 16:10.
  • the diagonal size of the display area 335 may be 0.1 inch or more and 100 inches or less, and may be 100 inches or more.
  • the diagonal size of the display area 335 is 0.1 inch or more and 5.0 inches or less. , preferably 0.5 inches or more and 2.0 inches or less, more preferably 1 inch or more and 1.7 inches or less.
  • the diagonal size of the display area 335 may be 1.5 inches or near 1.5 inches.
  • the refresh rate of the display region 335 can be made variable. For example, it is possible to reduce power consumption by adjusting the refresh rate (for example, in the range of 0.01 Hz to 240 Hz) according to the content displayed in the display area 335 . Further, the driving that reduces the power consumption of the display area 335 by driving with a reduced refresh rate may be called idling stop (IDS) driving.
  • IDS idling stop
  • a touch sensor or a near-touch sensor may be provided in the display area 335 .
  • the drive frequency of the touch sensor or the near touch sensor may be changed according to the refresh rate. For example, when the refresh rate of the display device is 120 Hz, the driving frequency of the touch sensor or the near-touch sensor can be higher than 120 Hz (typically 240 Hz). With this structure, low power consumption can be achieved and the response speed of the touch sensor or the near touch sensor can be increased.
  • a touch sensor or a non-contact sensor is a sensor having a function of detecting proximity or contact of an object (a finger, hand, pen, or the like).
  • a touch sensor can detect an object when the object comes into direct contact with the sensor.
  • a non-contact sensor can detect an object even if the object does not come into direct contact with the sensor.
  • the sensor can detect the object when the distance between the semiconductor device (or the display region 335) and the object is 0.1 mm or more and 300 mm or less, preferably 3 mm or more and 50 mm or less.
  • the semiconductor device can be operated without direct contact with the object, in other words, the semiconductor device can be operated without contact.
  • the risk of staining or scratching the semiconductor device can be reduced, or the semiconductor device can be cleaned without direct contact of the object with stains (for example, dust or viruses) attached to the semiconductor device. It becomes possible to operate the device.
  • the non-contact sensor function can also be called a hover sensor function, a hover touch sensor function, a near touch sensor function, a touchless sensor function, or the like.
  • the touch sensor function can also be called a direct touch sensor function.
  • FIG. 17A is a diagram showing a circuit configuration example of the pixel 330. As shown in FIG. Pixel 330 has a pixel circuit 431 and a display element 432 .
  • each wiring 336 is electrically connected to q pixel circuits 431 arranged in any row among the pixel circuits 431 arranged in p rows and q columns in the display region 335 .
  • each wiring 337 is electrically connected to p pixel circuits 431 arranged in any column among the pixel circuits 431 arranged in p rows and q columns.
  • a pixel circuit 431 includes a transistor 436 , a capacitor 433 , a transistor 438 , and a transistor 434 .
  • the pixel circuit 431 is electrically connected to the display element 432 .
  • One of the source electrode and the drain electrode of transistor 436 is electrically connected to a wiring (hereinafter referred to as signal line DL) to which a data signal (also referred to as "video signal") is applied. Further, a gate electrode of the transistor 436 is electrically connected to a wiring supplied with a gate signal (hereinafter referred to as a scan line GL).
  • the signal line DL and the scanning line GL correspond to the wiring 337 and the wiring 336, respectively.
  • the transistor 436 has a function of controlling writing of the data signal to the node 435 .
  • One of the pair of electrodes of the capacitor 433 is electrically connected to the node 435 and the other is electrically connected to the node 437 .
  • the other of the source and drain electrodes of transistor 436 is electrically connected to node 435 .
  • the capacitor 433 functions as a storage capacitor that holds data written to the node 435 .
  • One of the source electrode and the drain electrode of transistor 438 is electrically connected to potential supply line VL_a, and the other is electrically connected to node 437 . Additionally, the gate electrode of transistor 438 is electrically connected to node 435 .
  • One of the source and drain electrodes of transistor 434 is electrically connected to potential supply line V 0 , and the other is electrically connected to node 437 . Further, a gate electrode of the transistor 434 is electrically connected to the scanning line GL.
  • One of the anode and cathode of the display element 432 is electrically connected to the potential supply line VL_b and the other is electrically connected to the node 437 .
  • a light-emitting element such as a “light-emitting device”
  • an organic electroluminescence element also referred to as an "organic EL element”
  • the display element 432 is not limited to this, and for example, an inorganic EL element made of an inorganic material may be used.
  • the "organic EL element” and the “inorganic EL element” are collectively referred to as the "EL element”.
  • the emission color of the EL element can be white, red, green, blue, cyan, magenta, yellow, or the like, depending on the material forming the EL element.
  • a method for realizing color display there are a method in which a display element 432 emitting white light and a colored layer are combined, and a method in which a display element 432 emitting light in a different color is provided for each pixel.
  • the former method is more productive than the latter method.
  • the latter method requires different display elements 432 for each pixel, and is therefore inferior in productivity to the former method.
  • the latter method can obtain an emission color with higher color purity than the former method.
  • the color purity can be further enhanced by providing the display element 432 with a microcavity structure.
  • Either a low-molecular-weight compound or a high-molecular-weight compound can be used for the display element 432, and an inorganic compound may be included.
  • Each of the layers forming the display element 432 can be formed by a vapor deposition method (including a vacuum vapor deposition method), a transfer method, a printing method, an inkjet method, a coating method, or the like.
  • the display element 432 may have inorganic compounds such as quantum dots. For example, by using quantum dots in the light-emitting layer, it can function as a light-emitting material.
  • one of the potential supply line VL_a and the potential supply line VL_b is supplied with the high power supply potential Vdd, and the other is supplied with the low power supply potential Vss.
  • the pixel circuits 431 in each row are sequentially selected by a circuit included in the peripheral driver circuit, the transistors 436 and 434 are turned on, and a data signal is written to the node 435 .
  • the pixel circuit 431 in which data is written to the node 435 enters a holding state when the transistors 436 and 434 are turned off. Further, the amount of current flowing between the source electrode and the drain electrode of the transistor 438 is controlled according to the potential of the data written to the node 435, and the display element 432 emits light with luminance according to the amount of current. An image can be displayed by sequentially performing this for each row. Transistor 438 is also called a "drive transistor.”
  • the amount of current flowing through the light emitting device in order to increase the emission luminance of the light emitting device included in the pixel 330, it is necessary to increase the amount of current flowing through the light emitting device. For that purpose, it is necessary to increase the source-drain voltage of the driving transistor included in the pixel circuit 431 . Since the OS transistor has a higher breakdown voltage between the source and the drain than the Si transistor, a high voltage can be applied between the source and the drain of the OS transistor. Accordingly, by using an OS transistor as the driving transistor included in the pixel circuit 431, the amount of current flowing through the light emitting device can be increased, and the light emission luminance of the light emitting device can be increased.
  • the OS transistor when the transistor operates in the saturation region, the OS transistor has a smaller change in the source-drain current with respect to the change in the gate-source voltage than the Si transistor. Therefore, by applying an OS transistor as the driving transistor included in the pixel circuit 431, the current flowing between the source and the drain can be finely determined according to the change in the voltage between the gate and the source. can be finely controlled. Therefore, the number of gradations in the pixel 330 can be increased.
  • the OS transistor flows a more stable current (saturation current) than the Si transistor even when the source-drain voltage gradually increases. be able to. Therefore, by using the OS transistor as the driving transistor, a stable current can be supplied to the light-emitting device even if the current-voltage characteristics of the light-emitting device including the EL material are varied. That is, when the OS transistor operates in the saturation region, even if the source-drain voltage is increased, the source-drain current hardly changes, so that the light emission luminance of the light-emitting device can be stabilized.
  • an OS transistor as a driving transistor included in a pixel circuit, it is possible to suppress black floating, increase emission luminance, provide multiple gradations, and suppress variations in light emitting devices. can be planned.
  • FIG. 17B shows a modification of the circuit configuration of the pixel 330 shown in FIG. 17A.
  • the gate electrode of transistor 436 is electrically connected to a line to which the first scanning signal is applied (hereinafter referred to as scanning line GL1).
  • a gate electrode of the transistor 434 is electrically connected to a line to which a second scanning signal is applied (hereinafter referred to as scanning line GL2).
  • the circuit configuration shown in FIG. 17B has a transistor 439 in addition to the circuit configuration shown in FIG. 17A.
  • One of the source and drain electrodes of transistor 439 is electrically connected to potential supply line V 0 , and the other is electrically connected to node 435 .
  • the gate electrode of the transistor 439 is electrically connected to a line to which the third scanning signal is applied (hereinafter referred to as scanning line GL3).
  • the scanning line GL1 corresponds to the wiring 336 shown in FIG. 15A. Although wiring corresponding to each of the scanning lines GL2 and GL3 is not illustrated in FIG. 15A, the scanning lines GL2 and GL3 are electrically connected to the first drive circuit section 331. FIG.
  • both the transistor 434 and the transistor 439 are turned on. Then, the potentials of the source electrode and the gate electrode of the transistor 438 become equal. Therefore, the gate voltage of the transistor 438 becomes 0 V, and the current flowing through the display element 432 can be cut off.
  • part or all of the transistors included in the pixel circuit 431 may be transistors having back gates.
  • a transistor having a back gate is used as the transistor.
  • each of the transistors 434, 436, and 439 shows an example in which the gate and the back gate are electrically connected.
  • 17B shows an example in which the back gate is electrically connected to the node 437 in the transistor 438 shown in FIG. 17B.
  • FIG. 17C shows a modification of the circuit configuration of the pixel 330 shown in FIG. 17A.
  • the circuit configuration shown in FIG. 17C has a configuration obtained by removing transistor 434 and potential supply line V0 from the circuit configuration shown in FIG. 17A.
  • Other configurations can be understood by referring to the description of the circuit configuration shown in FIG. 17A. Therefore, in order to reduce repetition of the description, detailed description of the circuit configuration shown in FIG. 17C is omitted.
  • some or all of the transistors forming the pixel circuit 431 may be formed of transistors having back gates.
  • a transistor having a back gate may be used as the transistor 436 and the back gate and gate may be electrically connected.
  • the back gate may be electrically connected to one of the source and the drain of the transistor as in a transistor 438 illustrated in FIG. 17D.
  • a light-emitting element that can be used for a semiconductor device according to one embodiment of the present invention is described.
  • the light-emitting element 61 can be used for the display element 432 .
  • the light emitting element 61 includes an EL layer 172 between a pair of electrodes (conductive layers 171 and 173).
  • the EL layer 172 can be composed of multiple layers such as a layer 4420, a light-emitting layer 4411, and a layer 4430.
  • FIG. The layer 4420 can include, for example, a layer containing a highly electron-injecting substance (electron-injecting layer) and a layer containing a highly electron-transporting substance (electron-transporting layer).
  • the light-emitting layer 4411 includes, for example, a light-emitting compound.
  • Layer 4430 can include, for example, a layer containing a substance with high hole-injection properties (hole-injection layer) and a layer containing a substance with high hole-transport properties (hole-transport layer).
  • a structure including layer 4420, light-emitting layer 4411, and layer 4430 provided between a pair of electrodes can function as a single light-emitting unit, and the structure of FIG. 18A is referred to as a single structure in this specification and the like.
  • FIG. 18B is a modification of the EL layer 172 included in the light emitting element 61 shown in FIG. 18A.
  • layer 4430-1 functions as a hole injection layer
  • layer 4430-2 functions as a hole transport layer
  • layer 4420-1 functions as an electron Functioning as a transport layer
  • layer 4420-2 functions as an electron injection layer.
  • layer 4430-1 functions as an electron-injecting layer
  • layer 4430-2 functions as an electron-transporting layer
  • layer 4420-1 functions as a hole-transporting layer.
  • a structure in which a plurality of light-emitting layers (light-emitting layers 4411, 4412, and 4413) are provided between layers 4420 and 4430 as shown in FIG. 18C is also an example of a single structure.
  • tandem structure a structure in which a plurality of light-emitting units (EL layers 172a and 172b) are connected in series via an intermediate layer (charge-generating layer) 4440 is referred to herein as a tandem structure or It is called stack structure. Note that a tandem structure can realize a light-emitting element capable of emitting light with high luminance.
  • the EL layers 172a and 172b may emit the same color.
  • both the EL layer 172a and the EL layer 172b may emit green light.
  • the pixel 340 includes three sub-pixels of R, G, and B, and each sub-pixel includes a light-emitting element, the light-emitting elements of each sub-pixel may have a tandem structure.
  • the EL layers 172a and 172b of the R sub-pixel each have a material capable of emitting red light
  • the EL layers 172a and 172b of the G sub-pixel each have a material capable of emitting green light.
  • the EL layer 172a and the EL layer 172b of the B sub-pixel each comprise a material capable of emitting blue light.
  • the materials of the light-emitting layers 4411 and 4412 may be the same.
  • the emission color of the light-emitting element can be red, green, blue, cyan, magenta, yellow, white, or the like depending on the material forming the EL layer 172 . Further, the color purity can be further enhanced by providing the light-emitting element with a microcavity structure.
  • the light-emitting layer may contain two or more light-emitting substances that emit light such as R (red), G (green), B (blue), Y (yellow), and O (orange).
  • a light-emitting element that emits white light preferably has a structure in which a light-emitting layer contains two or more kinds of light-emitting substances.
  • two or more light-emitting substances may be selected so that the light emission of each light-emitting substance has a complementary color relationship. For example, by setting the emission color of the first light-emitting layer and the emission color of the second light-emitting layer to have a complementary color relationship, a light-emitting element that emits white light as a whole can be obtained. The same applies to a light-emitting element having three or more light-emitting layers.
  • the light-emitting layer preferably contains two or more light-emitting substances that emit light such as R (red), G (green), B (blue), Y (yellow), and O (orange).
  • R red
  • G green
  • B blue
  • Y yellow
  • O orange
  • Examples of light-emitting substances include substances that emit fluorescence (fluorescent materials), substances that emit phosphorescence (phosphorescent materials), inorganic compounds (quantum dot materials, etc.), and substances that exhibit thermally activated delayed fluorescence (thermally activated delayed fluorescence Fluorescence (TADF) materials) and the like.
  • TADF thermally activated delayed fluorescence Fluorescence
  • the TADF material a material in which a singlet excited state and a triplet excited state are in thermal equilibrium may be used. Since such a TADF material has a short emission lifetime (excitation lifetime), it is possible to suppress a decrease in efficiency in a high-luminance region of the light-emitting element.
  • a method for forming the light-emitting element 61 that can be used as the display element 432 is described below.
  • FIG. 19A shows a schematic top view of the light emitting element 61.
  • the light emitting element 61 has a plurality of light emitting elements 61R exhibiting red, light emitting elements 61G exhibiting green, and light emitting elements 61B exhibiting blue.
  • the light emitting region of each light emitting element is labeled with R, G, and B.
  • the configuration of the light emitting element 61 shown in FIG. 19A may be called an SBS (side-by-side) structure.
  • the configuration shown in FIG. 19A has three colors of red (R), green (G), and blue (B), the configuration is not limited to this. For example, it may be configured to have four or more colors.
  • the light emitting elements 61R, 61G, and 61B are arranged in a matrix.
  • FIG. 19A shows a so-called stripe arrangement in which light emitting elements of the same color are arranged in one direction. Note that the arrangement method of the light emitting elements is not limited to this, and an arrangement method such as a delta arrangement or a zigzag arrangement may be applied, or a pentile arrangement may be used.
  • an organic EL device such as an OLED (Organic Light Emitting Diode) or a QOLED (Quantum-dot Organic Light Emitting Diode).
  • OLED Organic Light Emitting Diode
  • QOLED Quantum-dot Organic Light Emitting Diode
  • light-emitting substances that EL devices have include substances that emit fluorescence (fluorescent materials), substances that emit phosphorescence (phosphorescent materials), inorganic compounds (quantum dot materials, etc.), and substances that exhibit heat-activated delayed fluorescence (heat-activated delayed fluorescence (thermally activated delayed fluorescence: TADF) material) and the like.
  • FIG. 19B is a schematic cross-sectional view corresponding to the dashed-dotted line A1-A2 in FIG. 19A.
  • FIG. 19B shows cross sections of the light emitting element 61R, the light emitting element 61G, and the light emitting element 61B.
  • the light-emitting element 61R, the light-emitting element 61G, and the light-emitting element 61B are each provided over the insulating layer 363 and have a conductive layer 171 functioning as a pixel electrode and a conductive layer 173 functioning as a common electrode.
  • An inorganic insulating film is preferably used as the insulating layer 363 .
  • inorganic insulating films include oxide insulating films and nitride insulating films such as a silicon oxide film, a silicon oxynitride film, a silicon nitride oxide film, a silicon nitride film, an aluminum oxide film, an aluminum oxynitride film, and a hafnium oxide film. mentioned.
  • the light emitting element 61R has an EL layer 172R between a conductive layer 171 functioning as a pixel electrode and a conductive layer 173 functioning as a common electrode.
  • the EL layer 172R contains a light-emitting organic compound that emits light having an intensity in at least the red wavelength range.
  • the EL layer 172G included in the light-emitting element 61G includes a light-emitting organic compound that emits light having an intensity in at least the green wavelength range.
  • the EL layer 172B included in the light-emitting element 61B contains a light-emitting organic compound that emits light having an intensity in at least a blue wavelength range.
  • Each of the EL layer 172R, the EL layer 172G, and the EL layer 172B includes an electron injection layer, an electron transport layer, a hole injection layer, and a hole transport layer in addition to a layer containing a light-emitting organic compound (light-emitting layer). You may have one or more of them.
  • a conductive layer 171 functioning as a pixel electrode is provided for each light-emitting element. Further, the conductive layer 173 functioning as a common electrode is provided as a continuous layer common to each light emitting element. A conductive film that transmits visible light is used for one of the conductive layer 171 functioning as a pixel electrode and the conductive layer 173 that functions as a common electrode, and a conductive film having reflective properties is used for the other.
  • the conductive layer 171 functioning as a pixel electrode is light-transmitting and the conductive layer 173 functioning as a common electrode is reflective, a bottom emission display device can be obtained.
  • a top emission display device When the conductive layer 171 functioning as a common electrode is reflective and the conductive layer 173 functioning as a common electrode is light-transmitting, a top emission display device can be obtained. Note that both the conductive layer 171 functioning as a pixel electrode and the conductive layer 173 functioning as a common electrode are light-transmitting, so that a dual-emission display device can be obtained.
  • the light emitting element 61R when the light emitting element 61R is of the top emission type, the light 175R emitted from the light emitting element 61R is emitted to the conductive layer 173 side.
  • the light 175G emitted from the light emitting element 61G is emitted to the conductive layer 173 side.
  • the light emitting element 61B is of the top emission type, the light 175B emitted from the light emitting element 61B is emitted to the conductive layer 173 side.
  • An insulating layer 272 is provided to cover an end portion of the conductive layer 171 functioning as a pixel electrode.
  • the ends of the insulating layer 272 are preferably tapered.
  • a material similar to the material that can be used for the insulating layer 363 can be used for the insulating layer 272 .
  • the insulating layer 272 is provided to prevent the adjacent light emitting elements 61 from being electrically shorted unintentionally and erroneously emitting light. It also has a function of preventing the metal mask from contacting the conductive layer 171 when a metal mask is used for forming the EL layer 172 .
  • Each of the EL layer 172R, the EL layer 172G, and the EL layer 172B has a region in contact with the top surface of the conductive layer 171 functioning as a pixel electrode and a region in contact with the surface of the insulating layer 272 .
  • end portions of the EL layer 172R, the EL layer 172G, and the EL layer 172B are located on the insulating layer 272 .
  • a gap is provided between the two EL layers between the light emitting elements of different colors.
  • the EL layer 172R, the EL layer 172G, and the EL layer 172B are preferably provided so as not to be in contact with each other. This can suitably prevent current from flowing through two adjacent EL layers to cause unintended light emission (also referred to as crosstalk). Therefore, the contrast can be increased, and a display device with high display quality can be realized.
  • the EL layer 172R, the EL layer 172G, and the EL layer 172B can be formed separately by a vacuum evaporation method using a shadow mask such as a metal mask. Alternatively, these may be produced separately by photolithography. By using the photolithography method, it is possible to realize a high-definition display device that is difficult to achieve when using a metal mask.
  • a device manufactured using an MM may be referred to as a device with an MM (metal mask) structure.
  • a device manufactured using an FMM fine metal mask, high-definition metal mask
  • the MM structure device may include the FMM structure device.
  • a device manufactured without using MM or FMM may be referred to as a device with an MML (metal maskless) structure. Since a display device with an MML structure is manufactured without using MM, it has a higher degree of freedom in designing pixel arrangement, pixel shape, etc. than a display device with an FMM structure or an MM structure.
  • the island-shaped EL layer is not formed by the pattern of the metal mask, but is formed by forming the EL layer over the entire surface and then processing it. Therefore, it is possible to realize a high-definition display device or a display device with a high aperture ratio, which has hitherto been difficult to achieve. Furthermore, since the EL layer can be separately formed for each color, a display device with extremely vivid, high-contrast, and high-quality display can be realized. Further, by providing the sacrificial layer over the EL layer, damage to the EL layer during the manufacturing process of the display device can be reduced, and the reliability of the light-emitting device can be improved.
  • the display device has a fine metal mask (FMM) structure
  • FMM fine metal mask
  • a metal mask also referred to as FMM
  • FMM metal mask having openings so that the EL material is deposited in desired regions during EL deposition
  • the EL material is vapor-deposited in a desired region by performing EL vapor deposition through FMM.
  • the substrate size for EL vapor deposition increases, the size and weight of the FMM also increase.
  • heat or the like is applied to the FMM during EL vapor deposition, the FMM may be deformed.
  • the weight and strength of the FMM are important parameters.
  • the display device of one embodiment of the present invention is manufactured using the MML structure, an excellent effect such as a higher degree of freedom in pixel arrangement and the like than in the FMM structure can be obtained.
  • this structure is highly compatible with, for example, a flexible device, and one or both of the pixel and the driver circuit can have various circuit arrangements.
  • a protective layer 271 is provided on the conductive layer 173 functioning as a common electrode to cover the light emitting elements 61R, 61G, and 61B.
  • the protective layer 271 has a function of preventing impurities such as water from diffusing into each light emitting element from above.
  • the protective layer 271 can have, for example, a single-layer structure or a laminated structure including at least an inorganic insulating film.
  • inorganic insulating films include oxide films and nitride films such as silicon oxide films, silicon oxynitride films, silicon nitride oxide films, silicon nitride films, aluminum oxide films, aluminum oxynitride films, and hafnium oxide films.
  • a semiconductor material such as indium gallium oxide or indium gallium zinc oxide (IGZO) may be used as the protective layer 271 .
  • the protective layer 271 may be formed using an atomic layer deposition (ALD) method, a chemical vapor deposition (CVD) method, or a sputtering method.
  • the present invention is not limited to this.
  • the protective layer 271 may have a laminated structure of an inorganic insulating film and an organic insulating film.
  • a nitrided oxide refers to a compound containing more nitrogen than oxygen.
  • An oxynitride is a compound containing more oxygen than nitrogen.
  • the content of each element can be measured using, for example, Rutherford Backscattering Spectrometry (RBS).
  • processing can be performed using a wet etching method or a dry etching method.
  • a chemical solution such as oxalic acid, phosphoric acid, or a mixed chemical solution (for example, a mixed chemical solution of phosphoric acid, acetic acid, nitric acid, and water (also referred to as a mixed acid aluminum etchant)) is used.
  • FIG. 19C shows an example different from the above. Specifically, FIG. 19C has a light emitting element 61W that emits white light.
  • the light emitting element 61W has an EL layer 172W that emits white light between a conductive layer 171 functioning as a pixel electrode and a conductive layer 173 functioning as a common electrode.
  • the EL layer 172W for example, a structure in which two or more light-emitting layers are stacked so that each light-emitting color is complementary can be used.
  • a laminated EL layer in which a charge generation layer is sandwiched between light emitting layers may be used.
  • FIG. 19C shows three light emitting elements 61W side by side.
  • a colored layer 264R is provided above the left light emitting element 61W.
  • the colored layer 264R functions as a bandpass filter that transmits red light.
  • a colored layer 264G that transmits green light is provided over the central light emitting element 61W
  • a colored layer 264B that transmits blue light is provided over the right light emitting element 61W. This allows the display device to display a color image.
  • the EL layer 172W and the conductive layer 173 functioning as a common electrode are separated from each other. This can prevent current from flowing through the EL layer 172W in the two adjacent light emitting elements 61W and causing unintended light emission.
  • the EL layer 172W and the conductive layer 173 functioning as a common electrode are preferably separated by a photolithography method. As a result, the distance between the light emitting elements can be narrowed, so that a display device with a high aperture ratio can be realized as compared with the case of using a shadow mask such as a metal mask.
  • a colored layer may be provided between the conductive layer 171 functioning as a pixel electrode and the insulating layer 363 .
  • FIG. 19D shows an example different from the above. Specifically, FIG. 19D shows a configuration in which the insulating layer 272 covering the end portion of the conductive layer 171 is not provided between the light emitting element 61R, the light emitting element 61G, and the light emitting element 61B. In other words, an insulator is not provided between the conductive layer 171 and the EL layer 172 . With such a structure, light emission from the EL layer can be efficiently extracted, so that viewing angle dependency can be extremely reduced.
  • the viewing angle (the maximum angle at which a constant contrast ratio is maintained when the screen is viewed obliquely) is 100° or more and less than 180°, preferably 150°.
  • the display device can have a high aperture ratio.
  • the protective layer 271 covers the side surfaces of the EL layer 172R, the EL layer 172G, and the EL layer 172B. With such a structure, impurities (typically, water or the like) that can enter from side surfaces of the EL layers 172R, 172G, and 172B can be suppressed.
  • impurities typically, water or the like
  • the top surface shapes of the conductive layer 171, the EL layer 172R, and the conductive layer 173 are substantially the same.
  • Such a structure can be collectively formed using a resist mask or the like after the conductive layer 171, the EL layer 172R, and the conductive layer 173 are formed. Since such a process processes the EL layer 172R and the conductive layer 173 using the conductive layer 173 as a mask, it can also be called self-aligned patterning. Note that although the EL layer 172R is described here, the EL layers 172G and 172B can also have the same structure.
  • FIG. 19D shows a structure in which a protective layer 273 is further provided on the protective layer 271.
  • the protective layer 271 is formed using an apparatus capable of forming a film with high coverage (typically an ALD apparatus or the like), and the protective layer 273 is formed using a film with lower coverage than the protective layer 271.
  • a region 275 can be provided between the protective layer 271 and the protective layer 273 by forming with an apparatus (typically, a sputtering apparatus or the like). In other words, the region 275 is positioned between the EL layer 172R and the EL layer 172G and between the EL layer 172G and the EL layer 172B.
  • the region 275 has one or more selected from, for example, air, nitrogen, oxygen, carbon dioxide, and Group 18 elements (typically, helium, neon, argon, xenon, krypton, etc.). .
  • the region 275 may contain a gas used for forming the protective layer 273, for example.
  • the region 275 may contain any one or more of the group 18 elements described above.
  • the region 275 contains a gas
  • the gas can be identified by a gas chromatography method or the like.
  • the film of the protective layer 273 may contain the gas used for sputtering. In this case, an element such as argon may be detected when the protective layer 273 is analyzed by energy dispersive X-ray analysis (EDX analysis) or the like.
  • EDX analysis energy dispersive X-ray analysis
  • the refractive index of the region 275 is lower than that of the protective layer 271 , light emitted from the EL layer 172 R, the EL layer 172 G, or the EL layer 172 B is reflected at the interface between the protective layer 271 and the region 275 . Accordingly, light emitted from the EL layer 172R, the EL layer 172G, or the EL layer 172B can be prevented from entering adjacent pixels in some cases. As a result, it is possible to suppress the mixture of different emission colors from adjacent pixels, so that the display quality of the display device can be improved.
  • the region between the light emitting elements 61R and 61G or the region between the light emitting elements 61G and 61B can be narrowed.
  • the distance between the light emitting elements is 1 ⁇ m or less, preferably 500 nm or less, more preferably 200 nm or less, 100 nm or less, 90 nm or less, 70 nm or less, 50 nm or less, 30 nm or less, 20 nm or less, 15 nm or less, or 10 nm.
  • the distance between the side surface of the EL layer 172R and the side surface of the EL layer 172G or the distance between the side surface of the EL layer 172G and the side surface of the EL layer 172B is 1 ⁇ m or less, preferably 0.5 ⁇ m (500 nm). ), more preferably 100 nm or less.
  • the region 275 contains gas, it is possible to suppress color mixture or crosstalk of light from each light emitting element while separating the light emitting elements.
  • the region 275 may be filled with a filler.
  • Fillers include epoxy resin, acrylic resin, silicone resin, phenol resin, polyimide resin, polyamide resin, polyimideamide resin, siloxane resin, benzocyclobutene resin, PVC (polyvinyl chloride) resin, PVB (polyvinyl butyral) resin. , EVA (ethylene vinyl acetate) resin, and the like.
  • a photosensitive resin for example, a resist material, etc.
  • a photosensitive resin used as a filler may be of a positive type or a negative type.
  • the filling of the region 275 can be realized only by the steps of exposure and development.
  • the region 275 may be filled with a negative photosensitive resin as a filler.
  • the white light emitting device when comparing the white light emitting device (single structure or tandem structure) and the light emitting device having the SBS structure, the light emitting device having the SBS structure can consume less power than the white light emitting device. If it is desired to keep power consumption low, it is preferable to use a light-emitting device with an SBS structure. On the other hand, the white light emitting device is preferable because the manufacturing process is simpler than that of the SBS structure light emitting device, so that the manufacturing cost can be lowered or the manufacturing yield can be increased.
  • FIG. 20A shows an example different from the above. Specifically, the configuration shown in FIG. 20A differs from the configuration shown in FIG. 19D in the configuration of the insulating layer 363 .
  • the insulating layer 363 has a concave portion due to a part of the upper surface thereof being shaved during processing of the light emitting elements 61R, 61G, and 61B.
  • a protective layer 271 is formed in the recess. In other words, in a cross-sectional view, the lower surface of the protective layer 271 has a region located below the lower surface of the conductive layer 171 .
  • impurities typically, water, etc.
  • the above-described concave portion is used when removing impurities (also referred to as residue) that may adhere to the side surfaces of the light emitting elements 61R, 61G, and 61B by wet etching or the like during processing of the light emitting elements 61R, 61G, and 61B. can be formed.
  • a protective layer 271 By covering the side surface of each light-emitting element with a protective layer 271 after removing the above residue, a highly reliable display device can be obtained.
  • FIG. 20B shows an example different from the above.
  • the configuration shown in FIG. 20B has an insulating layer 276 and a microlens array 277 in addition to the configuration shown in FIG. 20A.
  • the insulating layer 276 functions as an adhesive layer.
  • the microlens array 277 can collect light emitted from the light emitting elements 61R, 61G, and 61B. . Thereby, the light extraction efficiency of the display device can be improved.
  • a bright image can be visually recognized, which is preferable.
  • various curable adhesives such as photocurable adhesives such as ultraviolet curable adhesives, reaction curable adhesives, thermosetting adhesives, and anaerobic adhesives can be used.
  • These adhesives include epoxy resins, acrylic resins, silicone resins, phenol resins, polyimide resins, imide resins, PVC (polyvinyl chloride) resins, PVB (polyvinyl butyral) resins, EVA (ethylene vinyl acetate) resins, and the like.
  • a material with low moisture permeability such as epoxy resin is preferable.
  • a two-liquid mixed type resin may be used.
  • an adhesive sheet or the like may be used.
  • FIG. 20C shows an example different from the above.
  • the configuration shown in FIG. 20C has three light emitting elements 61W instead of the light emitting elements 61R, 61G, and 61B in the configuration shown in FIG. 20A.
  • an insulating layer 276 is provided above the three light emitting elements 61W, and a colored layer 264R, a colored layer 264G, and a colored layer 264B are provided above the insulating layer 276.
  • a colored layer 264R that transmits red light is provided at a position overlapping the left light emitting element 61W
  • a colored layer 264G that transmits green light is provided at a position overlapping the central light emitting element 61W
  • a colored layer 264G that transmits green light is provided at a position overlapping the left light emitting element 61W.
  • a colored layer 264B that transmits blue light is provided at a position overlapping the light emitting element 61W. Accordingly, the semiconductor device can display a color image.
  • the configuration shown in FIG. 20C is also a modification of the configuration shown in FIG. 19C.
  • a colored layer may be called a "color filter.”
  • the light emitting element 61W shown in FIG. 20C can have a structure (single structure or tandem structure) capable of emitting white light as described above. Note that a tandem structure is preferable because high-brightness light emission can be obtained.
  • a display having a high contrast ratio is obtained by combining the above structure capable of emitting white light (one or both of a single structure and a tandem structure), a color filter, and an MML structure of one embodiment of the present invention.
  • FIG. 20D shows an example different from the above. Specifically, in the configuration shown in FIG. 20D , a protective layer 271 is provided adjacent to side surfaces of the conductive layer 171 and the EL layer 172 . Further, the conductive layer 173 is provided as a continuous layer common to each light emitting element. Also, in the configuration shown in FIG. 20D, the region 275 is preferably filled with a filler material.
  • the color purity of the emitted light can be enhanced.
  • the product (optical distance) of the distance d between the conductive layers 171 and 173 and the refractive index n of the EL layer 172 is m times half the wavelength h. (m is an integer equal to or greater than 1).
  • the distance d can be calculated by Equation 4.
  • the distance d of the light emitting element 61 having a microcavity structure is determined according to the wavelength (emission color) of the emitted light.
  • the distance d corresponds to the thickness of the EL layer 172 . Therefore, the EL layer 172G may be thicker than the EL layer 172B, and the EL layer 172R may be thicker than the EL layer 172G.
  • the distance d is the distance from the reflective region of the conductive layer 171 functioning as a reflective electrode to the reflective region of the conductive layer 173 functioning as semi-transmissive and semi-reflective.
  • the conductive layer 171 is a laminate of silver and ITO (Indium Tin Oxide), which is a transparent conductive film, and the ITO is on the side of the EL layer 172
  • the thickness of the ITO can be adjusted to adjust the distance d depending on the emission color. can be set. That is, even if the thicknesses of the EL layer 172R, the EL layer 172G, and the EL layer 172B are the same, the distance d suitable for the emission color can be obtained by changing the thickness of the ITO.
  • the light emitting element 61 is composed of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like.
  • the optical distance from the conductive layer 171 functioning as a reflective electrode to the light emitting layer is preferably an odd multiple of h/4. In order to realize the optical distance, it is preferable to appropriately adjust the thickness of each layer constituting the light emitting element 61 .
  • the reflectance of the conductive layer 173 is preferably higher than the transmittance.
  • the light transmittance of the conductive layer 173 is preferably 2% to 50%, more preferably 2% to 30%, further preferably 2% to 10%.
  • FIG. 21A and 21B show perspective views of the display device 10.
  • FIG. The display device 10 shown in FIG. 21A comprises a layer 60 overlying the layer 50 .
  • the layer 50 includes a plurality of pixel circuits 431 arranged in a matrix, a first drive circuit section 331, a second drive circuit section 332, and an input/output terminal section 29.
  • FIG. Layer 60 comprises a plurality of display elements 432 arranged in a matrix.
  • the display device 10 shown in FIGS. 21A and 21B has one pixel circuit 431 and one display element 432 electrically connected to function as one pixel 330 . Therefore, a region where the plurality of pixel circuits 431 included in the layer 50 and the plurality of display elements 432 included in the layer 60 overlap functions as a display region 335 .
  • the display element 432 for example, the light-emitting element 61 described in the above embodiment can be used.
  • the transistor included in the peripheral driver circuit and the transistor included in the pixel 330 can be formed in the same process.
  • the display device 10 may have a structure in which the layer 40, the layer 50, and the layer 60 are stacked. 21B, a plurality of pixel circuits 431 arranged in a matrix are provided on the layer 50, and the first driver circuit section 331 and the second driver circuit section 332 are provided on the layer 40.
  • the width of the frame around the display region 335 can be narrowed, so that the area occupied by the display region 335 can be increased. .
  • the resolution of the display area 335 can be increased. If the resolution of the display area 335 is constant, the occupied area per pixel can be increased. Therefore, the emission luminance of the display area 335 can be increased.
  • the ratio of the light-emitting area to the area occupied by one pixel also referred to as "aperture ratio" can be increased.
  • the pixel aperture ratio can be 40% or more and less than 100%, preferably 50% or more and 95% or less, more preferably 60% or more and 95% or less.
  • the density of current supplied to the display element 432 can be reduced by increasing the area occupied by one pixel. Therefore, the load applied to the display element 432 is reduced, and the reliability of the display device 10 can be improved.
  • the layer 40 may include a CPU 23 (Central Processing Unit), a GPU 24 (Graphics Processing Unit), and a memory circuit section 25 in addition to the peripheral drive circuit.
  • the peripheral drive circuit, CPU 23, GPU 24, and memory circuit unit 25 may be collectively referred to as "function circuit".
  • the CPU 23 has a function of controlling the operations of the circuits provided in the GPU 24 and the layer 40 according to a program stored in the storage circuit section 25 .
  • the GPU 24 has a function of performing arithmetic processing for forming image data. Also, since the GPU 24 can perform many matrix operations (product-sum operations) in parallel, it is possible to perform, for example, arithmetic processing using a neural network at high speed.
  • the GPU 24 has a function of correcting image data using correction data stored in the storage circuit unit 25, for example.
  • the GPU 24 has a function of generating image data with corrected brightness, hue, and/or contrast.
  • GPU 24 may be used to up-convert or down-convert image data.
  • a super-resolution circuit may also be provided in layer 40 .
  • the super-resolution circuit has a function of determining the potential of an arbitrary pixel included in the display area 335 by performing a product-sum operation of the potentials of the pixels surrounding the pixel and the weight.
  • the super-resolution circuit has a function of up-converting image data whose resolution is lower than that of the display area 335 .
  • the super-resolution circuit also has a function of down-converting image data having a resolution higher than that of the display area 335 .
  • the load on the GPU 24 can be reduced.
  • the load on the GPU 24 can be reduced by performing processing up to 2K resolution (or 4K resolution) on the GPU 24 and up-converting to 4K resolution (or 8K resolution) by the super-resolution circuit. Down-conversion may be performed in the same manner.
  • the functional circuit included in the layer 40 may not include all of these configurations, or may include configurations other than these.
  • a potential generation circuit that generates a plurality of different potentials and/or a power management circuit that controls power supply and stop for each circuit included in the display device 10 may be provided.
  • Power supply and stop may be performed for each circuit constituting the CPU 23 .
  • power consumption can be reduced by stopping power supply to a circuit that has been determined not to be used for a while among circuits constituting the CPU 23 and restarting power supply when necessary.
  • Data necessary for resuming power supply may be stored in the storage circuit in the CPU 23, the storage circuit section 25, or the like before the circuit is stopped. By storing the data necessary for circuit recovery, a stopped circuit can be recovered at high speed. Note that the circuit operation may be stopped by stopping the supply of the clock signal.
  • a DSP circuit may be provided as functional circuits.
  • a sensor circuit may be provided as a DSP circuit, a sensor circuit, a communication circuit and/or an FPGA (Field Programmable Gate Array) may be provided as functional circuits.
  • FPGA Field Programmable Gate Array
  • the functional circuit may include Si transistors and OS transistors.
  • the pixel circuit 431 may include a Si transistor and an OS transistor.
  • the transistor included in the display device 10 may be an n-channel transistor or a p-channel transistor. Both n-channel and p-channel transistors may be used.
  • the circuit included in the display device 10 may have a CMOS structure in which an n-channel transistor and a p-channel transistor are combined.
  • the display area 335 may be provided with the sensor section 240 and the product calculation section 250 .
  • a comparison section 260 may be provided in the layer 40 .
  • the layer 40 may be provided with the product calculation section 250 and the comparison section 260 .
  • FIG. 22A-22C are perspective schematic views of the display module 400.
  • FIG. A display module 400 shown in FIG. 22A has a configuration in which a display device 10 is provided on a printed wiring board 401 .
  • the printed wiring board 401 has a structure in which wiring is provided inside or on the surface of a substrate made of an insulator, or inside and on the surface.
  • Wire 403 can be formed by a wire bonding method. After the wire 403 is formed, the wire 403 may be covered with a resin material or the like. The electrical connection between the display device 10 and the printed wiring board 401 may be made by a method other than the wire bonding method.
  • the display module 400 shown in FIG. 22A is electrically connected to an FPC 404 (FPC: flexible printed circuits).
  • the FPC 404 has a structure in which a film made of an insulator is provided with wiring. Also, the FPC 404 has flexibility.
  • the FPC 404 functions as wiring for externally supplying the display device 10 with a video signal, a control signal, a power supply potential, and the like. Also, an IC may be mounted on the FPC 404 .
  • Various elements such as a resistor element, a capacitor element, and a semiconductor element can be provided on the printed wiring board 401 . Also, by using the wiring formed on the printed wiring board 401 , the intervals (pitch) between the electrodes of the input/output terminal portion 29 can be changed to the intervals of the electrodes of the terminal portion 402 . That is, even when the pitch of the electrodes provided in the input/output terminal portion 29 and the pitch of the electrodes provided in the FPC 404 are different, the electrodes can be electrically connected.
  • the display module 400 may directly connect the FPC 404 to the input/output terminal section 29 of the display device 10 as shown in FIG. 22B. If the pitch of the electrodes provided in the input/output terminal section 29 and the pitch of the electrodes provided in the FPC 404 are equal, the input/output terminal section 29 and the FPC 404 may be electrically connected without using the printed wiring board 401 .
  • the terminal portion 402 is electrically connected to the connection portion 405 provided on the lower surface of the printed wiring board 401 (the surface on which the display device 10 is not provided). good too.
  • the connecting portion 405 a socket-type connecting portion, the display module 400 can be easily attached to and detached from another device.
  • FIG. 23 shows a cross-sectional configuration example of part of the display device 10 shown in FIG. 21A.
  • a display device 10 shown in FIG. 23 includes a layer 50 including a substrate 301 , a capacitor 246 and a transistor 310 and a layer 60 including a display element 432 .
  • Layer 60 is provided on insulating layer 363 provided by layer 50 .
  • 23 to 26 show cross-sectional configuration examples when the light emitting elements 61 (the light emitting elements 61R, 61G, and 61B) are used as display elements.
  • a transistor 310 is a transistor including a channel formation region in the substrate 301 .
  • the substrate 301 for example, a semiconductor substrate such as a single crystal silicon substrate can be used.
  • Transistor 310 comprises a portion of substrate 301 , conductive layer 311 , low resistance region 312 , insulating layer 313 and insulating layer 314 .
  • the conductive layer 311 functions as a gate electrode.
  • An insulating layer 313 is located between the substrate 301 and the conductive layer 311 and functions as a gate insulating layer.
  • the low-resistance region 312 is a region in which the substrate 301 is doped with impurities and functions as either a source or a drain.
  • the insulating layer 314 is provided to cover the side surface of the conductive layer 311 and functions as an insulating layer.
  • a device isolation layer 315 is provided between two adjacent transistors 310 so as to be embedded in the substrate 301 .
  • An insulating layer 261 is provided to cover the transistor 310 and a capacitor 246 is provided over the insulating layer 261 .
  • Capacitor 246 includes conductive layer 241, conductive layer 245, and insulating layer 243 positioned therebetween.
  • the conductive layer 241 functions as one electrode of the capacitor 246
  • the conductive layer 245 functions as the other electrode of the capacitor 246
  • the insulating layer 243 functions as the dielectric of the capacitor 246 .
  • the conductive layer 241 is provided over the insulating layer 261 and embedded in the insulating layer 254 .
  • Conductive layer 241 is electrically connected to one of the source or drain of transistor 310 by plug 266 embedded in insulating layer 261 .
  • An insulating layer 243 is provided over the conductive layer 241 .
  • the conductive layer 245 is provided in a region overlapping with the conductive layer 241 with the insulating layer 243 provided therebetween.
  • An insulating layer 255 is provided to cover the capacitor 246 , an insulating layer 363 is provided over the insulating layer 255 , and the light emitting elements 61 R, 61 G, and 61 B are provided over the insulating layer 363 .
  • a protective layer 415 is provided on the light emitting elements 61R, 61G, and 61B, and a substrate 420 is provided on the upper surface of the protective layer 415 with a resin layer 419 interposed therebetween.
  • the pixel electrode of the light emitting element is connected to the source or drain of the transistor 310 by the plug 256 embedded in the insulating layer 255 and the insulating layer 363, the conductive layer 241 embedded in the insulating layer 254, and the plug 266 embedded in the insulating layer 261. It is electrically connected to one side.
  • FIG. 24 shows a modification of the cross-sectional configuration example shown in FIG.
  • the cross-sectional configuration example of the display device 10 shown in FIG. 24 is mainly different from the cross-sectional configuration example shown in FIG. 23 in that a transistor 320 is provided instead of the transistor 310 . Note that the description of the same parts as in FIG. 23 may be omitted.
  • the transistor 320 is a transistor in which a metal oxide (also referred to as an oxide semiconductor) is applied to a semiconductor layer in which a channel is formed.
  • a metal oxide also referred to as an oxide semiconductor
  • the transistor 320 includes a semiconductor layer 321 , an insulating layer 323 , a conductive layer 324 , a pair of conductive layers 325 , an insulating layer 326 and a conductive layer 327 .
  • an insulating substrate or a semiconductor substrate can be used as the substrate 351.
  • An insulating layer 352 is provided over the substrate 351 .
  • the insulating layer 352 functions as a barrier layer that prevents impurities such as water or hydrogen from diffusing from the substrate 351 into the transistor 320 and oxygen from the semiconductor layer 321 toward the insulating layer 352 side.
  • a film into which hydrogen or oxygen is less likely to diffuse than a silicon oxide film such as an aluminum oxide film, a hafnium oxide film, or a silicon nitride film, can be used.
  • a conductive layer 327 is provided over the insulating layer 352 and an insulating layer 326 is provided to cover the conductive layer 327 .
  • the conductive layer 327 functions as a first gate electrode of the transistor 320, and part of the insulating layer 326 functions as a first gate insulating layer.
  • An oxide insulating film such as a silicon oxide film is preferably used for at least a portion of the insulating layer 326 that is in contact with the semiconductor layer 321 .
  • the upper surface of the insulating layer 326 is preferably planarized.
  • the semiconductor layer 321 is provided over the insulating layer 326 .
  • the semiconductor layer 321 preferably includes a metal oxide (also referred to as an oxide semiconductor) film having semiconductor characteristics. Details of materials that can be suitably used for the semiconductor layer 321 will be described later.
  • a pair of conductive layers 325 is provided on and in contact with the semiconductor layer 321 and functions as a source electrode and a drain electrode.
  • An insulating layer 328 is provided to cover the top and side surfaces of the pair of conductive layers 325 , the side surface of the semiconductor layer 321 , and the like, and the insulating layer 264 is provided over the insulating layer 328 .
  • the insulating layer 328 functions as a barrier layer that prevents impurities such as water or hydrogen from diffusing into the semiconductor layer 321 from the insulating layer 264 or the like and oxygen from leaving the semiconductor layer 321 .
  • an insulating film similar to the insulating layer 352 can be used as the insulating layer 328.
  • An opening reaching the semiconductor layer 321 is provided in the insulating layer 328 and the insulating layer 264 .
  • the insulating layer 323 and the conductive layer 324 are buried in contact with the side surfaces of the insulating layer 264 , the insulating layer 328 , and the conductive layer 325 and the top surface of the semiconductor layer 321 .
  • the conductive layer 324 functions as a second gate electrode, and the insulating layer 323 functions as a second gate insulating layer.
  • An upper surface of the conductive layer 324, an upper surface of the insulating layer 323, and an upper surface of the insulating layer 264 are planarized so that their heights are approximately the same, and an insulating layer 329 and an insulating layer 265 are provided to cover them. .
  • the insulating layers 264 and 265 function as interlayer insulating layers.
  • the insulating layer 329 functions as a barrier layer that prevents impurities such as water or hydrogen from diffusing into the transistor 320 from the insulating layer 265 or the like.
  • an insulating film similar to the insulating layer 328 and the insulating layer 352 can be used.
  • a plug 274 electrically connected to one of the pair of conductive layers 325 is provided so as to be embedded in the insulating layers 265 , 329 and 264 .
  • the plug 274 includes a conductive layer 274a covering the side surfaces of the openings of the insulating layers 265, the insulating layers 329, the insulating layers 264, and the insulating layers 328 and part of the upper surface of the conductive layer 325, and the conductive layer 274a. It is preferable to have a conductive layer 274b in contact with the top surface. At this time, a conductive material into which hydrogen and oxygen are difficult to diffuse is preferably used for the conductive layer 274a.
  • FIG. 25 shows a cross-sectional configuration example of part of the display device 10 shown in FIG. 21B.
  • the display device 10 shown in FIG. 25 has a structure in which a transistor 310A whose channel is formed in a substrate 301A included in the layer 40 and a transistor 310B whose channel is formed in the substrate 301A included in the layer 40 are stacked.
  • a material similar to that of the substrate 301 can be used for the substrate 301A.
  • the display device 10 shown in FIG. 25 includes a layer 60 provided with a light emitting element 61 as a display element 432, a layer 50 provided with a substrate 301B, a transistor 310B, and a capacitor 246, a substrate 301A, and a transistor 310A. It has a structure in which the layers 40 and 40 are bonded together.
  • the substrate 301B is provided with a plug 343 penetrating through the substrate 301B.
  • the plug 343 functions as a Si through electrode (TSV: Through Silicon Via).
  • TSV Through Silicon Via
  • the plug 343 is electrically connected to a conductive layer 342 provided on the back surface of the substrate 301 (the surface opposite to the substrate 420 side).
  • the conductive layer 341 is provided on the insulating layer 261 on the substrate 301A.
  • the layer 40 and the layer 50 are electrically connected by bonding the conductive layer 341 and the conductive layer 342 .
  • the same conductive material is preferably used for the conductive layers 341 and 342 .
  • a metal film containing an element selected from Al, Cr, Cu, Ta, Sn, Zn, Au, Ag, Pt, Ti, Mo, and W, or a metal nitride film (nitriding A titanium film, a molybdenum nitride film, a tungsten nitride film) or the like can be used.
  • a Cu—Cu (copper-copper) direct bonding technique (a technique for achieving electrical continuity by connecting Cu (copper) pads) can be applied.
  • the conductive layer 341 and the conductive layer 342 may be bonded via a bump.
  • FIG. 26 shows a modification of the cross-sectional configuration example shown in FIG.
  • a cross-sectional structure example of the display device 10 illustrated in FIG. 26 includes a structure in which a transistor 310A in which a channel is formed in a substrate 301A and a transistor 320 including a metal oxide in a semiconductor layer in which the channel is formed are stacked. 23 to 25 may be omitted from description.
  • a layer 50 shown in FIG. 26 has a configuration in which the substrate 351 is removed from the layer 50 shown in FIG.
  • an insulating layer 261 is provided to cover the transistor 310A, and a conductive layer 251 is provided over the insulating layer 261 .
  • An insulating layer 267 is provided to cover the conductive layer 251 , and a conductive layer 252 is provided over the insulating layer 267 .
  • the conductive layers 251 and 252 each function as wiring.
  • An insulating layer 263 and an insulating layer 352 are provided to cover the conductive layer 252 , and the transistor 320 is provided over the insulating layer 352 .
  • An insulating layer 265 is provided to cover the transistor 320 and a capacitor 246 is provided over the insulating layer 265 . Capacitor 246 and transistor 320 are electrically connected by plug 274 .
  • the layer 50 is provided over the insulating layer 263 included in the layer 40 .
  • the transistor 320 can be used as a transistor included in the pixel circuit 431 .
  • the transistor 310 can be used as a transistor forming the pixel circuit 431 or a transistor forming a peripheral driver circuit.
  • the transistors 310 and 320 can be used as transistors included in a functional circuit such as an arithmetic circuit or a memory circuit.
  • the pixel circuit 431 not only the pixel circuit 431 but also the peripheral driver circuit and the like can be formed directly under the layer 60 including the display element 432 . Therefore, the size of the display device can be reduced as compared with the case where a driver circuit is provided around the display area.
  • ⁇ Structure example of transistor> 27A, 27B, and 27C are a top view and a cross-sectional view of a transistor 500 that can be used in a semiconductor device according to one embodiment of the present invention.
  • the transistor 500 can be applied to the semiconductor device according to one embodiment of the present invention.
  • FIG. 27A is a top view of transistor 500.
  • FIG. 27B and 27C are cross-sectional views of transistor 500.
  • FIG. 27B is a cross-sectional view of the portion indicated by the dashed-dotted line A1-A2 in FIG. 27A, and is also a cross-sectional view of the transistor 500 in the channel length direction.
  • 27C is a cross-sectional view of the portion indicated by the dashed-dotted line A3-A4 in FIG. 27A, and is also a cross-sectional view of the transistor 500 in the channel width direction.
  • some elements are omitted for clarity of illustration.
  • the transistor 500 includes a metal oxide 531a over a substrate (not shown), a metal oxide 531b over the metal oxide 531a, and a metal oxide 531b.
  • Conductors 542a and 542b spaced apart from each other and an insulator 580 positioned over the conductors 542a and 542b with an opening formed between the conductors 542a and 542b.
  • the conductor 560 arranged in the opening, the metal oxide 531b, the conductor 542a, the conductor 542b, and the insulator 580, the insulator 550 arranged between the conductor 560, and the metal It has an oxide 531 b , a conductor 542 a , a conductor 542 b , an insulator 580 , and a metal oxide 531 c interposed between the insulator 550 .
  • the top surface of the conductor 560 preferably substantially coincides with the top surfaces of the insulator 550, the insulator 554, the metal oxide 531c, and the insulator 580.
  • the metal oxide 531a, the metal oxide 531b, and the metal oxide 531c may be collectively referred to as the metal oxide 531 below.
  • the conductor 542a and the conductor 542b may be collectively referred to as a conductor 542 in some cases.
  • the side surfaces of the conductor 542a and the conductor 542b on the conductor 560 side are substantially vertical. Note that the transistor 500 illustrated in FIG. 27 is not limited to this, and the angle between the side surfaces and the bottom surfaces of the conductors 542a and 542b is 10° to 80°, preferably 30° to 60°. may be Also, the opposing side surfaces of the conductor 542a and the conductor 542b may have a plurality of surfaces.
  • an insulator 554 is provided between an insulator 524, a metal oxide 531a, a metal oxide 531b, a conductor 542a, a conductor 542b, and a metal oxide 531c, and an insulator 580. preferably.
  • the insulator 554 includes the side surface of the metal oxide 531c, the top and side surfaces of the conductor 542a, the top and side surfaces of the conductor 542b, the metal oxide 531a and the metal oxide 531b. , and the top surface of insulator 524 .
  • a region where a channel is formed (hereinafter also referred to as a channel formation region) and three layers of the metal oxide 531a, the metal oxide 531b, and the metal oxide 531c are stacked in the vicinity thereof.
  • the invention is not limited to this.
  • a two-layer structure of the metal oxide 531b and the metal oxide 531c or a stacked structure of four or more layers may be provided.
  • the conductor 560 has a two-layer structure in the transistor 500, the present invention is not limited to this.
  • the conductor 560 may have a single-layer structure or a laminated structure of three or more layers.
  • each of the metal oxide 531a, the metal oxide 531b, and the metal oxide 531c may have a stacked structure of two or more layers.
  • the metal oxide 531c has a stacked structure of a first metal oxide and a second metal oxide on the first metal oxide
  • the first metal oxide is the metal oxide 531b.
  • the second metal oxide preferably has a similar composition to metal oxide 531a.
  • the conductor 560 functions as a gate electrode of the transistor, and the conductors 542a and 542b function as source and drain electrodes, respectively.
  • the conductor 560 is formed to be embedded in the opening of the insulator 580 and the region sandwiched between the conductors 542a and 542b.
  • the arrangement of conductor 560, conductor 542a and conductor 542b is selected in a self-aligned manner with respect to the opening of insulator 580.
  • the display device can have high definition.
  • the display device can have a narrow frame.
  • the conductor 560 preferably has a conductor 560a provided inside the insulator 550 and a conductor 560b provided so as to be embedded inside the conductor 560a.
  • the transistor 500 includes an insulator 514 provided over a substrate (not shown), an insulator 516 provided over the insulator 514, and a conductor 505 embedded in the insulator 516. , insulator 522 overlying insulator 516 and conductor 505 , and insulator 524 overlying insulator 522 .
  • a metal oxide 531 a is preferably disposed over the insulator 524 .
  • An insulator 574 functioning as an interlayer film and an insulator 581 are preferably provided over the transistor 500 .
  • the insulator 574 is preferably arranged in contact with top surfaces of the conductor 560 , the insulator 550 , the insulator 554 , the metal oxide 531 c , and the insulator 580 .
  • the insulator 522, the insulator 554, and the insulator 574 preferably have a function of suppressing diffusion of hydrogen (eg, at least one of hydrogen atoms, hydrogen molecules, and the like).
  • insulators 522 , 554 , and 574 preferably have lower hydrogen permeability than insulators 524 , 550 , and 580 .
  • the insulator 522 and the insulator 554 preferably have a function of suppressing diffusion of oxygen (eg, at least one of oxygen atoms, oxygen molecules, and the like).
  • insulator 522 and insulator 554 preferably have lower oxygen permeability than insulator 524 , insulator 550 and insulator 580 .
  • insulator 524 , metal oxide 531 , and insulator 550 are separated by insulators 580 and 581 and insulators 554 and 574 . Therefore, impurities such as hydrogen and excess oxygen contained in the insulators 580 and 581 are added to the insulator 524, the metal oxide 531a, and the insulator 550, and the insulator 524, the metal oxide 531a, and the metal oxide 531b. , and contamination into the insulator 550 can be suppressed.
  • a conductor 545 (a conductor 545a and a conductor 545b) electrically connected to the transistor 500 and functioning as a plug is preferably provided.
  • insulators 541 (insulators 541a and 541b) are provided in contact with side surfaces of conductors 545 functioning as plugs. That is, the insulator 541 is provided in contact with the inner walls of the openings of the insulator 554 , the insulator 580 , the insulator 574 , and the insulator 581 .
  • a first conductor of the conductor 545 may be provided in contact with the side surface of the insulator 541 and a second conductor of the conductor 545 may be provided inside.
  • the height of the top surface of the conductor 545 and the height of the top surface of the insulator 581 can be made approximately the same.
  • the transistor 500 shows the structure in which the first conductor of the conductor 545 and the second conductor of the conductor 545 are stacked, the present invention is not limited to this.
  • the conductor 545 may be provided as a single layer or a laminated structure of three or more layers. When the structure has a laminated structure, an ordinal number may be assigned in order of formation for distinction.
  • a metal oxide functioning as an oxide semiconductor (hereinafter also referred to as an oxide semiconductor) is added to the metal oxide 531 (the metal oxide 531a, the metal oxide 531b, and the metal oxide 531c) including a channel formation region. ) is preferably used.
  • the metal oxide preferably contains at least indium (In) or zinc (Zn). In particular, it preferably contains indium (In) and zinc (Zn). Moreover, it is preferable that the element M is included in addition to these.
  • element M aluminum (Al), gallium (Ga), yttrium (Y), tin (Sn), boron (B), titanium (Ti), iron (Fe), nickel (Ni), germanium (Ge), zirconium (Zr), molybdenum (Mo), lanthanum (La), cerium (Ce), neodymium (Nd), hafnium (Hf), tantalum (Ta), tungsten (W), magnesium (Mg) or cobalt (Co)
  • the element M is preferably one or more of aluminum (Al), gallium (Ga), yttrium (Y), and tin (Sn). Moreover, it is more preferable that the element M has either one or both of Ga and Sn.
  • the thickness of the metal oxide 531b in a region that does not overlap with the conductor 542 is thinner than that in a region that overlaps with the conductor 542 in some cases. This is formed by removing a portion of the top surface of metal oxide 531b when forming conductors 542a and 542b.
  • a conductive film to be the conductor 542 is formed over the top surface of the metal oxide 531b, a region with low resistance is formed near the interface with the conductive film in some cases. By removing the region with low resistance located between the conductors 542a and 542b on the top surface of the metal oxide 531b in this manner, formation of a channel in this region can be prevented.
  • a high-definition display device including a small-sized transistor can be provided.
  • a display device including a transistor with high on-state current and high luminance can be provided.
  • a fast-operating display device can be provided with a fast-operating transistor.
  • a highly reliable display device including a transistor with stable electrical characteristics can be provided.
  • a display device including a transistor with low off-state current and low power consumption can be provided.
  • transistor 500 A detailed structure of the transistor 500 that can be used in the display device that is one embodiment of the present invention is described.
  • the conductor 505 is arranged so as to have regions that overlap with the metal oxide 531 and the conductor 560 . Further, the conductor 505 is preferably embedded in the insulator 516 .
  • the conductor 505 has a conductor 505a, a conductor 505b, and a conductor 505c.
  • Conductor 505 a is provided in contact with the bottom surface and sidewalls of the opening provided in insulator 516 .
  • the conductor 505b is provided so as to be embedded in a recess formed in the conductor 505a.
  • the top surface of the conductor 505b is lower than the top surface of the conductor 505a and the top surface of the insulator 516 .
  • the conductor 505c is provided in contact with the top surface of the conductor 505b and the side surface of the conductor 505a.
  • the height of the top surface of the conductor 505 c is substantially the same as the height of the top surface of the conductor 505 a and the height of the top surface of the insulator 516 . That is, the conductor 505b is surrounded by the conductors 505a and 505c.
  • the conductor 505a and the conductor 505c have a function of suppressing diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitrogen oxide molecules (N 2 O, NO, NO 2 and the like), and copper atoms. It is preferable to use a conductive material having Alternatively, it is preferable to use a conductive material having a function of suppressing diffusion of oxygen (eg, at least one of oxygen atoms, oxygen molecules, and the like).
  • a conductive material having a function of reducing diffusion of hydrogen for the conductor 505a and the conductor 505c impurities such as hydrogen contained in the conductor 505b pass through the insulator 524 or the like to the metal oxide 531. can be suppressed. Further, by using a conductive material having a function of suppressing diffusion of oxygen for the conductors 505a and 505c, it is possible to suppress reduction in conductivity due to oxidation of the conductor 505b.
  • the conductive material having a function of suppressing diffusion of oxygen titanium, titanium nitride, tantalum, tantalum nitride, ruthenium, ruthenium oxide, or the like is preferably used, for example. Therefore, as the conductor 505a, a single layer or a laminate of the above conductive materials may be used. For example, titanium nitride may be used for the conductor 505a.
  • a conductive material containing tungsten, copper, or aluminum as its main component is preferably used for the conductor 505b.
  • tungsten may be used for the conductor 505b.
  • the conductor 560 may function as a first gate (also referred to as a top gate) electrode.
  • the conductor 505 functions as a second gate (also referred to as a bottom gate) electrode.
  • V th of the transistor 500 can be controlled by changing the potential applied to the conductor 505 independently of the potential applied to the conductor 560 .
  • V th of the transistor 500 can be made higher than 0 V and the off-state current can be reduced. Therefore, when a negative potential is applied to the conductor 505, the drain current when the potential applied to the conductor 560 is 0 V can be made smaller than when no potential is applied.
  • the conductor 505 is preferably provided larger than the channel formation region in the metal oxide 531 .
  • the conductor 505 preferably extends even in a region outside the edge crossing the channel width direction of the metal oxide 531 .
  • the conductor 505 and the conductor 560 preferably overlap with each other with an insulator interposed therebetween on the outside of the side surface of the metal oxide 531 in the channel width direction.
  • the electric field of the conductor 560 functioning as the first gate electrode and the electric field of the conductor 505 functioning as the second gate electrode cause the channel formation region of the metal oxide 531 to be expanded. It can be surrounded electrically.
  • the conductor 505 is extended so that it also functions as a wire.
  • a structure in which a conductor functioning as a wiring is provided under the conductor 505 may be employed.
  • the insulator 514 preferably functions as a barrier insulating film that prevents impurities such as water or hydrogen from entering the transistor 500 from the substrate side. Therefore, the insulator 514 has a function of suppressing diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitrogen oxide molecules (such as N 2 O, NO, NO 2 ), and copper atoms. (It is difficult for the above impurities to permeate.) It is preferable to use an insulating material. Alternatively, it is preferable to use an insulating material that has a function of suppressing the diffusion of oxygen (eg, at least one of oxygen atoms, oxygen molecules, and the like) (the oxygen hardly permeates).
  • oxygen eg, at least one of oxygen atoms, oxygen molecules, and the like
  • the insulator 514 is preferably made of aluminum oxide, silicon nitride, or the like. Accordingly, diffusion of impurities such as water or hydrogen from the substrate side to the transistor 500 side of the insulator 514 can be suppressed. Alternatively, diffusion of oxygen contained in the insulator 524 or the like to the substrate side of the insulator 514 can be suppressed.
  • the insulator 516 , the insulator 580 , and the insulator 581 functioning as interlayer films preferably have lower dielectric constants than the insulator 514 .
  • the parasitic capacitance generated between wirings can be reduced.
  • the insulator 516, the insulator 580, and the insulator 581 include silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, and carbon and nitrogen are added. Silicon oxide, silicon oxide having holes, or the like may be used as appropriate.
  • Insulator 522 and insulator 524 function as gate insulators.
  • the insulator 524 in contact with the metal oxide 531 preferably releases oxygen by heating.
  • the oxygen released by heating is sometimes referred to as excess oxygen.
  • silicon oxide, silicon oxynitride, or the like may be used as appropriate for the insulator 524 .
  • an oxide material from which part of oxygen is released by heating is preferably used as the insulator 524 .
  • the oxide from which oxygen is released by heating means that the amount of oxygen released in terms of oxygen atoms is 1.0 ⁇ 10 18 atoms/cm 3 or more, preferably 1.0, in TDS (Thermal Desorption Spectroscopy) analysis.
  • the oxide film has a density of 10 19 atoms/cm 3 or more, more preferably 2.0 x 10 19 atoms/cm 3 or more, or 3.0 10 20 atoms/cm 3 or more.
  • the surface temperature of the film during the TDS analysis is preferably in the range of 100° C. or higher and 700° C. or lower, or 100° C. or higher and 400° C. or lower.
  • the insulator 524 may have a thinner film thickness in a region that does not overlap with the insulator 554 and does not overlap with the metal oxide 531b than in other regions.
  • a region of the insulator 524 which does not overlap with the insulator 554 and does not overlap with the metal oxide 531b preferably has a thickness with which oxygen can be diffused sufficiently.
  • the insulator 522 preferably functions as a barrier insulating film that prevents impurities such as water or hydrogen from entering the transistor 500 from the substrate side.
  • insulator 522 preferably has a lower hydrogen permeability than insulator 524 .
  • the insulator 522 preferably has a function of suppressing the diffusion of oxygen (eg, at least one of oxygen atoms, oxygen molecules, and the like) (the oxygen is less permeable).
  • oxygen eg, at least one of oxygen atoms, oxygen molecules, and the like
  • insulator 522 preferably has a lower oxygen permeability than insulator 524 .
  • the insulator 522 preferably has a function of suppressing diffusion of oxygen and impurities, so that diffusion of oxygen in the metal oxide 531 to the substrate side can be reduced.
  • the conductor 505 can be prevented from reacting with oxygen contained in the insulator 524 and the metal oxide 531 .
  • the insulator 522 preferably contains an oxide of one or both of aluminum and hafnium, which are insulating materials.
  • the insulator containing oxide of one or both of aluminum and hafnium aluminum oxide, hafnium oxide, oxide containing aluminum and hafnium (hafnium aluminate), or the like is preferably used.
  • oxygen is released from the metal oxide 531 and impurities such as hydrogen enter the metal oxide 531 from the peripheral portion of the transistor 500 . It functions as a layer that suppresses
  • aluminum oxide, bismuth oxide, germanium oxide, niobium oxide, silicon oxide, titanium oxide, tungsten oxide, yttrium oxide, or zirconium oxide may be added to these insulators.
  • these insulators may be nitrided. Silicon oxide, silicon oxynitride, or silicon nitride may be stacked over the above insulator.
  • the insulator 522 is made of, for example, a so-called high oxide such as aluminum oxide, hafnium oxide, tantalum oxide, zirconium oxide, lead zirconate titanate (PZT), strontium titanate (SrTiO 3 ) or (Ba,Sr)TiO 3 (BST).
  • Insulators including -k materials may be used in single layers or stacks. As transistors are miniaturized and highly integrated, thinning of gate insulators may cause problems such as leakage current. By using a high-k material for the insulator functioning as the gate insulator, the gate potential during transistor operation can be reduced while maintaining the physical film thickness.
  • the insulator 522 and the insulator 524 may have a stacked structure of two or more layers. In that case, it is not limited to a laminated structure made of the same material, and a laminated structure made of different materials may be used. For example, an insulator similar to the insulator 524 may be provided under the insulator 522 .
  • the metal oxide 531 has a metal oxide 531a, a metal oxide 531b over the metal oxide 531a, and a metal oxide 531c over the metal oxide 531b.
  • a metal oxide 531a By providing the metal oxide 531a under the metal oxide 531b, diffusion of impurities from the structure formed below the metal oxide 531a to the metal oxide 531b can be suppressed.
  • the metal oxide 531c over the metal oxide 531b, diffusion of impurities from the structure formed above the metal oxide 531c to the metal oxide 531b can be suppressed.
  • the metal oxide 531 preferably has a stacked structure of a plurality of oxide layers with different atomic ratios of metal atoms.
  • the metal oxide 531 contains at least indium (In) and the element M
  • the number of atoms of the element M contained in the metal oxide 531a with respect to the number of atoms of all elements constituting the metal oxide 531a The ratio is preferably higher than the ratio of the number of atoms of the element M contained in the metal oxide 531b to the number of atoms of all elements forming the metal oxide 531b.
  • the atomic ratio of the element M contained in the metal oxide 531a to In is preferably higher than the atomic ratio of the element M contained in the metal oxide 531b to In.
  • the metal oxide 531c can be a metal oxide that can be used for the metal oxide 531a or the metal oxide 531b.
  • the energy of the conduction band bottom of the metal oxide 531a and the metal oxide 531c be higher than the energy of the conduction band bottom of the metal oxide 531b.
  • the electron affinities of the metal oxides 531a and 531c are preferably smaller than the electron affinities of the metal oxide 531b.
  • a metal oxide that can be used for the metal oxide 531a is preferably used as the metal oxide 531c.
  • the ratio of the number of atoms of the element M contained in the metal oxide 531c to the number of atoms of all the elements forming the metal oxide 531c is higher than the number of atoms of all the elements forming the metal oxide 531b.
  • the ratio of the number of atoms of the element M contained in the oxide 531b is preferably higher than that of the oxide 531b. Further, the atomic ratio of the element M contained in the metal oxide 531c to In is preferably higher than the atomic ratio of the element M contained in the metal oxide 531b to In.
  • the energy level at the bottom of the conduction band changes gently at the junction of the metal oxide 531a, the metal oxide 531b, and the metal oxide 531c.
  • the energy level of the bottom of the conduction band at the junction of the metal oxide 531a, the metal oxide 531b, and the metal oxide 531c continuously changes or continuously joins.
  • the defect level density of the mixed layers formed at the interface between the metal oxide 531a and the metal oxide 531b and at the interface between the metal oxide 531b and the metal oxide 531c should be lowered.
  • the metal oxide 531a and the metal oxide 531b, and the metal oxide 531b and the metal oxide 531c have a common element (main component) other than oxygen, so that the defect level density is low.
  • Mixed layers can be formed.
  • the metal oxide 531b is an In-Ga-Zn oxide
  • an In-Ga-Zn oxide, a Ga-Zn oxide, gallium oxide, or the like may be used as the metal oxide 531a and the metal oxide 531c.
  • the metal oxide 531c may have a stacked structure.
  • a stacked structure of In--Ga--Zn oxide and Ga--Zn oxide over the In--Ga--Zn oxide, or an In--Ga--Zn oxide and over the In--Ga--Zn oxide can be used.
  • a stacked structure of an In--Ga--Zn oxide and an oxide containing no In may be used as the metal oxide 531c.
  • the metal oxide 531c has a stacked structure
  • In: Ga: Zn 4:2:3 [atomic number ratio] and a laminated structure with gallium oxide.
  • the main path of carriers becomes the metal oxide 531b.
  • the defect level density at the interface between the metal oxide 531a and the metal oxide 531b and at the interface between the metal oxide 531b and the metal oxide 531c can be reduced. can be lowered. Therefore, the influence of interface scattering on carrier conduction is reduced, and the transistor 500 can obtain high on-current and high frequency characteristics.
  • the constituent elements of the metal oxide 531c are It is expected to suppress the diffusion to the insulator 550 side.
  • the metal oxide 531c has a stacked structure, and the oxide that does not contain In is positioned above the stacked structure, so that In that can diffuse toward the insulator 550 can be suppressed. Since the insulator 550 functions as a gate insulator, the characteristics of the transistor are deteriorated when In is diffused. Therefore, by using a stacked-layer structure for the metal oxide 531c, a highly reliable display device can be provided.
  • a conductor 542 (a conductor 542a and a conductor 542b) functioning as a source electrode and a drain electrode is provided over the metal oxide 531b.
  • Conductors 542 include aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, indium, ruthenium, iridium, strontium, and lanthanum. It is preferable to use a metal element selected from, an alloy containing the above-described metal elements as a component, or an alloy in which the above-described metal elements are combined.
  • tantalum nitride, titanium nitride, tungsten, nitride containing titanium and aluminum, nitride containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxide containing strontium and ruthenium, oxide containing lanthanum and nickel, and the like are used. is preferred.
  • tantalum nitride, titanium nitride, nitrides containing titanium and aluminum, nitrides containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxides containing strontium and ruthenium, and oxides containing lanthanum and nickel are difficult to oxidize. It is preferable because it is a conductive material or a material that maintains conductivity even after absorbing oxygen.
  • the oxygen concentration in the vicinity of the conductor 542 of the metal oxide 531 may be reduced.
  • a metal compound layer containing the metal contained in the conductor 542 and the components of the metal oxide 531 is formed near the conductor 542 of the metal oxide 531 .
  • the carrier concentration increases in a region of the metal oxide 531 near the conductor 542, and the region becomes a low-resistance region.
  • a region between the conductor 542 a and the conductor 542 b is formed so as to overlap with the opening of the insulator 580 . Accordingly, the conductor 560 can be arranged in a self-aligned manner between the conductor 542a and the conductor 542b.
  • Insulator 550 functions as a gate insulator.
  • the insulator 550 is preferably placed in contact with the top surface of the metal oxide 531c.
  • silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, silicon oxide to which carbon and nitrogen are added, or silicon oxide having vacancies is used. be able to.
  • silicon oxide and silicon oxynitride are preferable because they are stable against heat.
  • the insulator 550 preferably has a reduced impurity concentration such as water or hydrogen.
  • the thickness of the insulator 550 is preferably 1 nm or more and 20 nm or less.
  • a metal oxide may be provided between the insulator 550 and the conductor 560 .
  • the metal oxide preferably suppresses diffusion of oxygen from the insulator 550 to the conductor 560 . Accordingly, oxidation of the conductor 560 by oxygen in the insulator 550 can be suppressed.
  • the metal oxide may function as part of the gate insulator. Therefore, in the case where silicon oxide, silicon oxynitride, or the like is used for the insulator 550, a metal oxide that is a high-k material with a high dielectric constant is preferably used as the metal oxide.
  • the gate insulator has a stacked-layer structure of the insulator 550 and the metal oxide, the stacked-layer structure can be stable against heat and have a high relative dielectric constant. Therefore, the gate potential applied during transistor operation can be reduced while maintaining the physical film thickness of the gate insulator. Also, the equivalent oxide thickness (EOT) of the insulator that functions as the gate insulator can be reduced.
  • EOT equivalent oxide thickness
  • a metal oxide containing one or more selected from hafnium, aluminum, gallium, yttrium, zirconium, tungsten, titanium, tantalum, nickel, germanium, magnesium, or the like can be used.
  • the conductor 560 is shown as having a two-layer structure in FIG. 27, it may have a single-layer structure or a laminated structure of three or more layers.
  • the conductor 560a has a function of suppressing the diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitrogen oxide molecules (N 2 O, NO, NO 2 and the like), and copper atoms. It is preferable to use a conductor having a Alternatively, it is preferable to use a conductive material having a function of suppressing diffusion of oxygen (eg, at least one of oxygen atoms, oxygen molecules, and the like).
  • the conductor 560a has a function of suppressing diffusion of oxygen
  • oxygen contained in the insulator 550 can suppress oxidation of the conductor 560b and a decrease in conductivity.
  • the conductive material having a function of suppressing diffusion of oxygen tantalum, tantalum nitride, ruthenium, ruthenium oxide, or the like is preferably used, for example.
  • a conductive material containing tungsten, copper, or aluminum as its main component is preferably used for the conductor 560b.
  • a conductor with high conductivity is preferably used.
  • a conductive material whose main component is tungsten, copper, or aluminum can be used.
  • the conductor 560b may have a layered structure, for example, a layered structure of titanium or titanium nitride and any of the above conductive materials.
  • the side surface of the metal oxide 531 is covered with the conductor 560 in the region of the metal oxide 531b that does not overlap with the conductor 542, in other words, in the channel formation region of the metal oxide 531. are placed.
  • the insulator 554 preferably functions as a barrier insulating film that prevents impurities such as water or hydrogen from entering the transistor 500 from the insulator 580 side.
  • insulator 554 preferably has a lower hydrogen permeability than insulator 524 .
  • the insulator 554 includes the side surfaces of the metal oxide 531c, the top and side surfaces of the conductor 542a, the top and side surfaces of the conductor 542b, and the metal oxide 531a and the metal oxide 531b. It preferably touches the side surfaces as well as the top surface of the insulator 524 .
  • hydrogen contained in the insulator 580 enters the metal oxide 531 from the top surface or the side surface of the conductor 542a, the conductor 542b, the metal oxide 531a, the metal oxide 531b, and the insulator 524. can be suppressed.
  • the insulator 554 preferably has a function of suppressing diffusion of oxygen (eg, at least one of oxygen atoms, oxygen molecules, and the like) (the above-described oxygen is difficult to permeate).
  • oxygen eg, at least one of oxygen atoms, oxygen molecules, and the like
  • insulator 554 preferably has a lower oxygen permeability than insulator 580 or insulator 524 .
  • the insulator 554 is preferably deposited using a sputtering method.
  • oxygen can be added to the vicinity of a region of the insulator 524 which is in contact with the insulator 554 . Accordingly, oxygen can be supplied from the region into the metal oxide 531 through the insulator 524 .
  • the insulator 554 has a function of suppressing upward diffusion of oxygen, so that diffusion of oxygen from the metal oxide 531 to the insulator 580 can be prevented.
  • the insulator 522 has a function of suppressing diffusion of oxygen downward, oxygen can be prevented from diffusing from the metal oxide 531 to the substrate side.
  • oxygen is supplied to the channel forming region of the metal oxide 531 . Accordingly, oxygen vacancies in the metal oxide 531 can be reduced, and normally-on of the transistor can be suppressed.
  • an insulator containing an oxide of one or both of aluminum and hafnium is preferably deposited.
  • the insulator containing oxides of one or both of aluminum and hafnium aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), or the like is preferably used.
  • the insulator 524 , the insulator 550 , and the metal oxide 531 are covered with the insulator 554 having a barrier property against hydrogen; and isolated from the insulator 550 . Accordingly, entry of impurities such as hydrogen from the outside of the transistor 500 can be suppressed, so that the transistor 500 can have favorable electrical characteristics and reliability.
  • the insulator 580 is provided over the insulator 524 , the metal oxide 531 , and the conductor 542 with the insulator 554 interposed therebetween.
  • the insulator 580 is formed using silicon oxide, silicon oxynitride, silicon nitride oxide, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, silicon oxide to which carbon and nitrogen are added, silicon oxide having holes, or the like. It is preferable to have In particular, silicon oxide and silicon oxynitride are preferable because they are thermally stable. In particular, a material such as silicon oxide, silicon oxynitride, or silicon oxide having vacancies is preferable because a region containing oxygen that is released by heating can be easily formed.
  • the concentration of impurities such as water or hydrogen in the insulator 580 is reduced. Also, the top surface of the insulator 580 may be planarized.
  • the insulator 574 preferably functions as a barrier insulating film that prevents impurities such as water or hydrogen from entering the insulator 580 from above.
  • an insulator that can be used for the insulator 514, the insulator 554, or the like may be used, for example.
  • An insulator 581 functioning as an interlayer film is preferably provided over the insulator 574 .
  • the insulator 581 preferably has a reduced concentration of impurities such as water or hydrogen in the film.
  • the conductors 545 a and 545 b are placed in the openings formed in the insulators 581 , 574 , 580 , and 554 .
  • the conductor 545a and the conductor 545b are provided to face each other with the conductor 560 interposed therebetween. Note that the top surfaces of the conductors 545 a and 545 b may be flush with the top surface of the insulator 581 .
  • the insulator 541a is provided in contact with the inner walls of the openings of the insulator 581, the insulator 574, the insulator 580, and the insulator 554, and the first conductor of the conductor 545a is formed in contact with the side surface thereof. ing.
  • a conductor 542a is positioned at least part of the bottom of the opening, and the conductor 545a is in contact with the conductor 542a.
  • the insulator 541b is provided in contact with the inner walls of the openings of the insulator 581, the insulator 574, the insulator 580, and the insulator 554, and the first conductor of the conductor 545b is formed in contact with the side surface thereof. It is The conductor 542b is positioned at least part of the bottom of the opening, and the conductor 545b is in contact with the conductor 542b.
  • a conductive material containing tungsten, copper, or aluminum as its main component is preferably used for the conductors 545a and 545b.
  • the conductor 545a and the conductor 545b may have a stacked structure.
  • the conductor 545 has a layered structure
  • a conductor having a function of suppressing diffusion of impurities such as hydrogen is preferably used.
  • tantalum, tantalum nitride, titanium, titanium nitride, ruthenium, ruthenium oxide, or the like is preferably used.
  • the conductive material having a function of suppressing diffusion of impurities such as water or hydrogen may be used in a single layer or a stacked layer. By using the conductive material, absorption of oxygen added to the insulator 580 by the conductors 545a and 545b can be suppressed.
  • impurities such as water or hydrogen from a layer above the insulator 581 can be prevented from entering the metal oxide 531 through the conductors 545a and 545b.
  • An insulator that can be used for the insulator 554 or the like may be used as the insulator 541a and the insulator 541b, for example. Since the insulators 541a and 541b are provided in contact with the insulator 554, impurities such as water or hydrogen from the insulator 580 or the like are prevented from entering the metal oxide 531 through the conductors 545a and 545b. can. In addition, absorption of oxygen contained in the insulator 580 by the conductors 545a and 545b can be suppressed.
  • a conductor functioning as a wiring may be arranged in contact with the top surface of the conductor 545a and the top surface of the conductor 545b.
  • a conductive material containing tungsten, copper, or aluminum as a main component is preferably used for the conductor functioning as the wiring.
  • the conductor may have a laminated structure, for example, a laminated structure of titanium or titanium nitride and the above conductive material. The conductor may be formed so as to be embedded in an opening provided in the insulator.
  • an insulator substrate, a semiconductor substrate, or a conductor substrate may be used, for example.
  • insulator substrates include glass substrates, quartz substrates, sapphire substrates, stabilized zirconia substrates (yttria stabilized zirconia substrates, etc.), resin substrates, and the like.
  • semiconductor substrates include semiconductor substrates such as silicon and germanium, and compound semiconductor substrates made of silicon carbide, silicon germanium, gallium arsenide, indium phosphide, zinc oxide, and gallium oxide.
  • semiconductor substrate having an insulator region inside the semiconductor substrate such as an SOI (Silicon On Insulator) substrate.
  • Examples of conductive substrates include graphite substrates, metal substrates, alloy substrates, and conductive resin substrates. Alternatively, there are a substrate having a metal nitride, a substrate having a metal oxide, and the like. Furthermore, there are a substrate in which a conductor or a semiconductor is provided on an insulating substrate, a substrate in which a semiconductor substrate is provided with a conductor or an insulator, a substrate in which a conductor substrate is provided with a semiconductor or an insulator, and the like. Alternatively, these substrates provided with elements may be used. Elements provided on the substrate include a capacitive element, a resistance element, a switch element, a light emitting element, a memory element, and the like.
  • Insulators examples include oxides, nitrides, oxynitrides, oxynitrides, metal oxides, metal oxynitrides, metal oxynitrides, and the like having insulating properties.
  • thinning of gate insulators may cause problems such as leakage current.
  • a high-k material for an insulator functioning as a gate insulator voltage reduction during transistor operation can be achieved while maintaining a physical film thickness.
  • a material with a low dielectric constant for the insulator functioning as an interlayer film parasitic capacitance generated between wirings can be reduced. Therefore, the material should be selected according to the function of the insulator.
  • Insulators with a low dielectric constant include silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, fluorine-added silicon oxide, carbon-added silicon oxide, carbon- and nitrogen-added silicon oxide, and vacancies. There are silicon oxide, resin, and the like.
  • a transistor including an oxide semiconductor is surrounded by an insulator (such as the insulator 514, the insulator 522, the insulator 554, and the insulator 574) that has a function of suppressing permeation of impurities such as hydrogen and oxygen.
  • an insulator such as the insulator 514, the insulator 522, the insulator 554, and the insulator 574 that has a function of suppressing permeation of impurities such as hydrogen and oxygen.
  • Insulators having a function of suppressing permeation of impurities such as hydrogen and oxygen include, for example, boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, yttrium, zirconium, Insulators containing lanthanum, neodymium, hafnium, or tantalum may be used in single layers or stacks.
  • insulators having a function of suppressing permeation of impurities such as hydrogen and oxygen
  • a metal oxide such as tantalum oxide, or a metal nitride such as aluminum nitride, aluminum titanium nitride, titanium nitride, silicon nitride oxide, or silicon nitride can be used.
  • An insulator that functions as a gate insulator preferably has a region containing oxygen that is released by heating. For example, by forming a structure in which silicon oxide or silicon oxynitride having a region containing oxygen released by heating is in contact with the metal oxide 531, oxygen vacancies in the metal oxide 531 can be compensated.
  • Conductors include aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, indium, ruthenium, iridium, strontium, lanthanum, etc. It is preferable to use a metal element selected from, an alloy containing the above-described metal elements as a component, or an alloy in which the above-described metal elements are combined.
  • tantalum nitride, titanium nitride, tungsten, nitride containing titanium and aluminum, nitride containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxide containing strontium and ruthenium, oxide containing lanthanum and nickel, and the like are used. is preferred. Also, tantalum nitride, titanium nitride, nitrides containing titanium and aluminum, nitrides containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxides containing strontium and ruthenium, and oxides containing lanthanum and nickel are difficult to oxidize.
  • a conductive material or a material that maintains conductivity even after absorbing oxygen.
  • a semiconductor with high electrical conductivity typified by polycrystalline silicon containing an impurity element such as phosphorus, or a silicide such as nickel silicide may be used.
  • a plurality of conductors formed of any of the above materials may be stacked and used.
  • a laminated structure in which the material containing the metal element described above and the conductive material containing oxygen are combined may be used.
  • a laminated structure may be employed in which the material containing the metal element described above and the conductive material containing nitrogen are combined.
  • a laminated structure may be employed in which the material containing the metal element described above, the conductive material containing oxygen, and the conductive material containing nitrogen are combined.
  • a conductor functioning as a gate electrode has a stacked-layer structure in which a material containing the above metal element and a conductive material containing oxygen are combined. is preferred.
  • a conductive material containing oxygen is preferably provided on the channel formation region side.
  • a conductive material containing oxygen and a metal element contained in a metal oxide in which a channel is formed is preferably used as a conductor functioning as a gate electrode.
  • a conductive material containing the metal element and nitrogen described above may be used.
  • a conductive material containing nitrogen such as titanium nitride or tantalum nitride may be used.
  • indium tin oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium zinc oxide, and silicon were added.
  • Indium tin oxide may also be used.
  • indium gallium zinc oxide containing nitrogen may be used.
  • This embodiment can be implemented by appropriately combining at least part of it with other embodiments described herein.
  • FIG. 28A is a diagram illustrating classification of crystal structures of an oxide semiconductor, typically IGZO (a metal oxide containing In, Ga, and Zn).
  • IGZO a metal oxide containing In, Ga, and Zn
  • oxide semiconductors are roughly classified into “amorphous”, “crystalline”, and “crystal".
  • “Amorphous” includes completely amorphous.
  • “Crystalline” includes CAAC (c-axis-aligned crystalline), nc (nanocrystalline), and CAC (cloud-aligned composite). The classification of “Crystalline” excludes single crystal, poly crystal, and completely amorphous.
  • “Crystal” includes single crystal and poly crystal.
  • the structure within the thick frame shown in FIG. 28A is an intermediate state between "Amorphous” and "Crystal", and is a structure belonging to the new crystalline phase. . That is, the structure can be rephrased as a structure completely different from “Crystal” or energetically unstable "Amorphous".
  • FIG. 28B shows an XRD spectrum obtained by GIXD (Grazing-Incidence XRD) measurement of a CAAC-IGZO film classified as "Crystalline".
  • the GIXD method is also called a thin film method or a Seemann-Bohlin method.
  • the XRD spectrum obtained by the GIXD measurement shown in FIG. 28B is simply referred to as the XRD spectrum.
  • the thickness of the CAAC-IGZO film shown in FIG. 28B is 500 nm.
  • the crystal structure of a film or substrate can be evaluated by a diffraction pattern (also referred to as a nano beam electron diffraction pattern) observed by nano beam electron diffraction (NBED).
  • a diffraction pattern also referred to as a nano beam electron diffraction pattern
  • NBED nano beam electron diffraction
  • oxide semiconductors may be classified differently from that in FIG. 28A when its crystal structure is focused.
  • oxide semiconductors are classified into single-crystal oxide semiconductors and non-single-crystal oxide semiconductors.
  • Non-single-crystal oxide semiconductors include, for example, the above CAAC-OS and nc-OS.
  • Non-single-crystal oxide semiconductors include polycrystalline oxide semiconductors, amorphous-like oxide semiconductors (a-like OS), amorphous oxide semiconductors, and the like.
  • CAAC-OS is an oxide semiconductor that includes a plurality of crystal regions, and the c-axes of the plurality of crystal regions are oriented in a specific direction. Note that the specific direction is the thickness direction of the CAAC-OS film, the normal direction to the formation surface of the CAAC-OS film, or the normal direction to the surface of the CAAC-OS film.
  • a crystalline region is a region having periodicity in atomic arrangement. If the atomic arrangement is regarded as a lattice arrangement, the crystalline region is also a region with a uniform lattice arrangement.
  • CAAC-OS has a region where a plurality of crystal regions are connected in the a-b plane direction, and the region may have strain.
  • the strain refers to a portion where the orientation of the lattice arrangement changes between a region with a uniform lattice arrangement and another region with a uniform lattice arrangement in a region where a plurality of crystal regions are connected. That is, CAAC-OS is an oxide semiconductor that is c-axis oriented and has no obvious orientation in the ab plane direction.
  • each of the plurality of crystal regions is composed of one or a plurality of minute crystals (crystals having a maximum diameter of less than 10 nm).
  • the maximum diameter of the crystalline region is less than 10 nm.
  • the size of the crystal region may be about several tens of nanometers.
  • CAAC-OS is a layer containing indium (In) and oxygen ( It tends to have a layered crystal structure (also referred to as a layered structure) in which an In layer) and a layer containing the element M, zinc (Zn), and oxygen (hereinafter, a (M, Zn) layer) are laminated.
  • the (M, Zn) layer may contain indium.
  • the In layer contains the element M.
  • the In layer may contain Zn.
  • the layered structure is observed as a lattice image, for example, in a high-resolution TEM image.
  • a plurality of bright points are observed in the electron beam diffraction pattern of the CAAC-OS film.
  • a certain spot and another spot are observed at point-symmetrical positions with respect to the spot of the incident electron beam that has passed through the sample (also referred to as a direct spot) as the center of symmetry.
  • the lattice arrangement in the crystal region is basically a hexagonal lattice, but the unit lattice is not always regular hexagon and may be non-regular hexagon. Moreover, the distortion may have a lattice arrangement of pentagons, heptagons, or the like. Note that in CAAC-OS, no clear crystal grain boundary can be observed even near the strain. That is, it can be seen that the distortion of the lattice arrangement suppresses the formation of grain boundaries. This is because the CAAC-OS can tolerate strain due to the fact that the arrangement of oxygen atoms is not dense in the ab plane direction, the bond distance between atoms changes due to the substitution of metal atoms, and the like. It is considered to be for
  • a crystal structure in which clear grain boundaries are confirmed is called a so-called polycrystal.
  • a grain boundary becomes a recombination center, and there is a high possibility that carriers are trapped and cause a decrease in the on-state current of a transistor, a decrease in field-effect mobility, and the like. Therefore, a CAAC-OS in which no clear grain boundaries are observed is one of crystalline oxides having a crystal structure suitable for a semiconductor layer of a transistor.
  • a structure containing Zn is preferable for forming a CAAC-OS.
  • In--Zn oxide and In--Ga--Zn oxide are preferable because they can suppress the generation of grain boundaries more than In oxide.
  • a CAAC-OS is an oxide semiconductor with high crystallinity and no clear grain boundaries. Therefore, it can be said that the decrease in electron mobility due to grain boundaries is less likely to occur in CAAC-OS.
  • the CAAC-OS can be said to be an oxide semiconductor with few impurities and defects (such as oxygen vacancies). Therefore, an oxide semiconductor including CAAC-OS has stable physical properties. Therefore, an oxide semiconductor including CAAC-OS is resistant to heat and has high reliability.
  • CAAC-OS is also stable against high temperatures (so-called thermal budget) in the manufacturing process. Therefore, the use of the CAAC-OS for the OS transistor can increase the degree of freedom in the manufacturing process.
  • nc-OS has periodic atomic arrangement in a minute region (eg, a region of 1 nm to 10 nm, particularly a region of 1 nm to 3 nm).
  • the nc-OS has minute crystals.
  • the size of the minute crystal is, for example, 1 nm or more and 10 nm or less, particularly 1 nm or more and 3 nm or less, the minute crystal is also called a nanocrystal.
  • nc-OS does not show regularity in crystal orientation between different nanocrystals. Therefore, no orientation is observed in the entire film.
  • an nc-OS may be indistinguishable from an a-like OS and an amorphous oxide semiconductor depending on the analysis method.
  • an nc-OS film is subjected to structural analysis using an XRD apparatus, out-of-plane XRD measurement using ⁇ /2 ⁇ scanning does not detect a peak indicating crystallinity.
  • an nc-OS film is subjected to electron beam diffraction (also referred to as selected area electron beam diffraction) using an electron beam with a probe diameter larger than that of nanocrystals (for example, 50 nm or more), a diffraction pattern such as a halo pattern is obtained. is observed.
  • an nc-OS film is subjected to electron diffraction (also referred to as nanobeam electron diffraction) using an electron beam with a probe diameter close to or smaller than the size of a nanocrystal (for example, 1 nm or more and 30 nm or less)
  • an electron beam diffraction pattern is obtained in which a plurality of spots are observed within a ring-shaped area centered on the direct spot.
  • An a-like OS is an oxide semiconductor having a structure between an nc-OS and an amorphous oxide semiconductor.
  • An a-like OS has void or low density regions. That is, a-like OS has lower crystallinity than nc-OS and CAAC-OS. In addition, the a-like OS has a higher hydrogen concentration in the film than the nc-OS and the CAAC-OS.
  • CAC-OS relates to material composition.
  • CAC-OS is, for example, one structure of a material in which elements constituting a metal oxide are unevenly distributed with a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or in the vicinity thereof.
  • the metal oxide one or more metal elements are unevenly distributed, and the region having the metal element has a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size in the vicinity thereof.
  • the mixed state is also called mosaic or patch.
  • CAC-OS is a structure in which the material is separated into a first region and a second region to form a mosaic shape, and the first region is distributed in the film (hereinafter, also referred to as a cloud shape). ). That is, CAC-OS is a composite metal oxide in which the first region and the second region are mixed.
  • the atomic ratios of In, Ga, and Zn to the metal elements constituting the CAC-OS in the In—Ga—Zn oxide are represented by [In], [Ga], and [Zn], respectively.
  • the first region is a region where [In] is larger than [In] in the composition of the CAC-OS film.
  • the second region is a region where [Ga] is greater than [Ga] in the composition of the CAC-OS film.
  • the first region is a region in which [In] is larger than [In] in the second region and [Ga] is smaller than [Ga] in the second region.
  • the second region is a region in which [Ga] is larger than [Ga] in the first region and [In] is smaller than [In] in the first region.
  • the first region is a region mainly composed of indium oxide, indium zinc oxide, or the like.
  • the second region is a region containing gallium oxide, gallium zinc oxide, or the like as a main component. That is, the first region can be rephrased as a region containing In as a main component. Also, the second region can be rephrased as a region containing Ga as a main component.
  • a region containing In as the main component (first 1 region) and a region containing Ga as a main component (second region) are unevenly distributed and can be confirmed to have a mixed structure.
  • the conductivity attributed to the first region and the insulation attributed to the second region complementarily act to provide a switching function (on/off function).
  • a switching function on/off function
  • CAC-OS a part of the material has a conductive function
  • a part of the material has an insulating function
  • the whole material has a semiconductor function.
  • Oxide semiconductors have various structures and each has different characteristics.
  • An oxide semiconductor of one embodiment of the present invention includes two or more of an amorphous oxide semiconductor, a polycrystalline oxide semiconductor, an a-like OS, a CAC-OS, an nc-OS, and a CAAC-OS. may
  • an oxide containing indium (In), gallium (Ga), and zinc (Zn) is preferably used for a semiconductor layer in which a channel is formed.
  • an oxide containing indium (In), aluminum (Al), and zinc (Zn) also referred to as “IAZO” may be used for the semiconductor layer.
  • an oxide containing indium (In), aluminum (Al), gallium (Ga), and zinc (Zn) also referred to as “IAGZO” may be used for the semiconductor layer.
  • an oxide semiconductor with low carrier concentration is preferably used for a transistor.
  • the carrier concentration of the oxide semiconductor is 1 ⁇ 10 17 cm ⁇ 3 or less, preferably 1 ⁇ 10 15 cm ⁇ 3 or less, more preferably 1 ⁇ 10 13 cm ⁇ 3 or less, more preferably 1 ⁇ 10 11 cm ⁇ 3 or less . 3 or less, more preferably less than 1 ⁇ 10 10 cm ⁇ 3 and 1 ⁇ 10 ⁇ 9 cm ⁇ 3 or more.
  • the impurity concentration in the oxide semiconductor film may be lowered to lower the defect level density.
  • a low impurity concentration and a low defect level density are referred to as high-purity intrinsic or substantially high-purity intrinsic.
  • an oxide semiconductor with a low carrier concentration is sometimes referred to as a highly purified intrinsic or substantially highly purified intrinsic oxide semiconductor.
  • the trap level density may also be low.
  • a charge trapped in a trap level of an oxide semiconductor takes a long time to disappear and may behave like a fixed charge. Therefore, a transistor whose channel formation region is formed in an oxide semiconductor with a high trap level density might have unstable electrical characteristics.
  • Impurities include hydrogen, nitrogen, alkali metals, alkaline earth metals, iron, nickel, silicon, and the like.
  • the concentration of silicon and carbon in the oxide semiconductor and the concentration of silicon and carbon in the vicinity of the interface with the oxide semiconductor are 2 ⁇ 10 18 atoms/cm 3 or less, preferably 2 ⁇ 10 17 atoms/cm 3 or less.
  • the concentration of alkali metal or alkaline earth metal in the oxide semiconductor obtained by SIMS is set to 1 ⁇ 10 18 atoms/cm 3 or less, preferably 2 ⁇ 10 16 atoms/cm 3 or less.
  • the nitrogen concentration in the oxide semiconductor obtained by SIMS is less than 5 ⁇ 10 19 atoms/cm 3 , preferably 5 ⁇ 10 18 atoms/cm 3 or less, more preferably 1 ⁇ 10 18 atoms/cm 3 or less. , more preferably 5 ⁇ 10 17 atoms/cm 3 or less.
  • Hydrogen contained in an oxide semiconductor reacts with oxygen that bonds to a metal atom to form water, which may cause oxygen vacancies. When hydrogen enters the oxygen vacancies, electrons, which are carriers, may be generated. In addition, part of hydrogen may bond with oxygen that bonds with a metal atom to generate an electron, which is a carrier. Therefore, a transistor including an oxide semiconductor containing hydrogen is likely to have normally-on characteristics. Therefore, hydrogen in the oxide semiconductor is preferably reduced as much as possible.
  • the hydrogen concentration obtained by SIMS is less than 1 ⁇ 10 20 atoms/cm 3 , preferably less than 1 ⁇ 10 19 atoms/cm 3 , more preferably less than 5 ⁇ 10 18 atoms/cm. Less than 3 , more preferably less than 1 ⁇ 10 18 atoms/cm 3 .
  • a semiconductor device can be applied to a display portion of an electronic device. Therefore, an electronic device with high display quality can be realized. Alternatively, an extremely high-definition electronic device can be realized. Alternatively, a highly reliable electronic device can be realized.
  • Electronic devices using the semiconductor device or the like include display devices such as televisions and monitors, lighting devices, desktop or notebook personal computers, word processors, and recording media such as DVDs (Digital Versatile Discs).
  • Image playback devices for playing back stored still images or moving images portable CD players, radios, tape recorders, headphone stereos, stereos, table clocks, wall clocks, cordless telephones, transceivers, car phones, mobile phones, personal digital assistants, Tablet terminals, portable game machines, stationary game machines such as pachinko machines, calculators, electronic notebooks, electronic book terminals, electronic translators, voice input devices, video cameras, digital still cameras, electric shavers, high frequencies such as microwave ovens Heating devices, electric rice cookers, electric washing machines, electric vacuum cleaners, water heaters, fans, hair dryers, air conditioners, humidifiers, dehumidifiers and other air conditioning equipment, dishwashers, dish dryers, clothes dryers, futon dryers instruments, electric refrigerators, electric freezers, electric refrigerator-freezers
  • a mobile object that is propelled by an engine that uses fuel or an electric motor that uses power from a power storage unit may also be included in the category of electronic devices.
  • the moving body include an electric vehicle (EV), a hybrid vehicle (HV) having both an internal combustion engine and an electric motor, a plug-in hybrid vehicle (PHV), a tracked vehicle in which these wheels are changed to endless tracks, and an electrically assisted vehicle.
  • EV electric vehicle
  • HV hybrid vehicle
  • PSV plug-in hybrid vehicle
  • a tracked vehicle in which these wheels are changed to endless tracks and an electrically assisted vehicle.
  • motorized bicycles including bicycles, motorcycles, electric wheelchairs, golf carts, small or large ships, submarines, helicopters, aircraft, rockets, artificial satellites, space probes, planetary probes, and spacecraft.
  • An electronic device may include a secondary battery (battery), and preferably can charge the secondary battery using contactless power transmission.
  • a secondary battery battery
  • Secondary batteries include, for example, lithium-ion secondary batteries, nickel-hydrogen batteries, nickel-cadmium batteries, organic radical batteries, lead-acid batteries, air secondary batteries, nickel-zinc batteries, and silver-zinc batteries.
  • An electronic device may have an antenna. Images, information, and the like can be displayed on the display portion by receiving signals with the antenna. Also, if the electronic device has an antenna and a secondary battery, the antenna may be used for contactless power transmission.
  • An electronic device includes sensors (force, displacement, position, speed, acceleration, angular velocity, number of revolutions, distance, light, liquid, magnetism, temperature, chemical substances, sound, time, hardness, electric field, current , voltage, power, radiation, flow, humidity, gradient, vibration, odor or infrared).
  • An electronic device can have various functions. For example, functions to display various information (still images, moving images, text images, etc.) on the display, touch panel functions, functions to display calendars, dates or times, functions to execute various software (programs), wireless communication function, a function of reading a program or data recorded on a recording medium, and the like.
  • an electronic device having a plurality of display units a function of mainly displaying image information on a part of the display unit and mainly displaying character information on another part, or an image with parallax consideration on the plurality of display units
  • a function of displaying a stereoscopic image it is possible to have a function of displaying a stereoscopic image.
  • the function of shooting still images or moving images the function of automatically or manually correcting the captured image, the function of saving the captured image to a recording medium (external or built into the electronic device) , a function of displaying a captured image on a display portion, and the like.
  • the electronic device of one embodiment of the present invention is not limited to these functions, and can have various functions.
  • a semiconductor device can display a high-definition image. Therefore, it can be suitably used particularly for portable electronic devices, wearable electronic devices (wearable devices), electronic book terminals, and the like. For example, it can be suitably used for xR equipment such as VR equipment or AR equipment.
  • FIG. 29A is a diagram showing the appearance of camera 8000 with finder 8100 attached.
  • a camera 8000 includes a housing 8001, a display portion 8002, operation buttons 8003, a shutter button 8004, and the like.
  • a detachable lens 8006 is attached to the camera 8000 . Note that the camera 8000 may be integrated with the lens 8006 and the housing.
  • the camera 8000 can capture an image by pressing the shutter button 8004 or by touching the display portion 8002 functioning as a touch panel.
  • a housing 8001 has a mount having electrodes, and can be connected to a finder 8100, a strobe device, or the like.
  • a viewfinder 8100 includes a housing 8101, a display portion 8102, buttons 8103, and the like.
  • Housing 8101 is attached to camera 8000 by mounts that engage mounts of camera 8000 .
  • a viewfinder 8100 can display an image or the like received from the camera 8000 on a display portion 8102 .
  • a button 8103 has a function as a power button or the like.
  • the semiconductor device according to one embodiment of the present invention can be applied to the display portion 8002 of the camera 8000 and the display portion 8102 of the viewfinder 8100 .
  • the viewfinder 8100 may be built in the camera 8000. FIG.
  • FIG. 29B is a diagram showing the appearance of the head mounted display 8200.
  • FIG. 29B is a diagram showing the appearance of the head mounted display 8200.
  • the head mounted display 8200 has a mounting portion 8201, a lens 8202, a main body 8203, a display portion 8204, a cable 8205 and the like.
  • a battery 8206 is built in the mounting portion 8201 .
  • a main body 8203 includes a wireless receiver or the like, and can display received video information on a display portion 8204 .
  • the main body 8203 is equipped with a camera, and information on the movement of the user's eyeballs or eyelids can be used as input means.
  • the mounting portion 8201 may be provided with a plurality of electrodes capable of detecting a current that flows along with the movement of the user's eyeballs at a position that touches the user, and may have a function of recognizing the line of sight. Moreover, it may have a function of monitoring the user's pulse based on the current flowing through the electrode.
  • the mounting unit 8201 may have various sensors such as a temperature sensor, a pressure sensor, an acceleration sensor, etc., and has a function of displaying biological information of the user on the display unit 8204, In addition, a function of changing an image displayed on the display portion 8204 may be provided.
  • the semiconductor device according to one embodiment of the present invention can be applied to the display portion 8204 .
  • FIG. 29C to 29E are diagrams showing the appearance of the head mounted display 8300.
  • FIG. A head mounted display 8300 includes a housing 8301 , a display portion 8302 , a band-shaped fixture 8304 , and a pair of lenses 8305 .
  • the user can see the display on the display portion 8302 through the lens 8305 .
  • the display portion 8302 it is preferable to arrange the display portion 8302 in a curved manner because the user can feel a high presence.
  • three-dimensional display or the like using parallax can be performed.
  • the configuration is not limited to the configuration in which one display portion 8302 is provided, and two display portions 8302 may be provided and one display portion may be arranged for one eye of the user.
  • the semiconductor device according to one embodiment of the present invention can be applied to the display portion 8302 .
  • a semiconductor device according to one embodiment of the present invention can achieve extremely high definition. For example, even when the display is magnified using the lens 8305 as shown in FIG. 29E, it is difficult for the user to visually recognize the pixels. In other words, the display portion 8302 can be used to allow the user to view highly realistic images.
  • FIG. 29F is a diagram showing the appearance of a goggle-type head mounted display 8400.
  • the head mounted display 8400 has a pair of housings 8401, a mounting section 8402, and a cushioning member 8403.
  • a display portion 8404 and a lens 8405 are provided in the pair of housings 8401, respectively. By displaying different images on the pair of display portions 8404, three-dimensional display using parallax can be performed.
  • a user can view the display portion 8404 through the lens 8405 .
  • the lens 8405 has a focus adjustment mechanism, and its position can be adjusted according to the user's visual acuity.
  • the display portion 8404 is preferably square or horizontally long rectangular. This makes it possible to enhance the sense of presence.
  • the mounting portion 8402 preferably has plasticity and elasticity so that it can be adjusted according to the size of the user's face and does not slip off.
  • a part of the mounting portion 8402 preferably has a vibration mechanism that functions as a bone conduction earphone. As a result, you can enjoy video and audio without the need for separate audio equipment such as earphones and speakers.
  • the housing 8401 may have a function of outputting audio data by wireless communication.
  • the mounting portion 8402 and the cushioning member 8403 are portions that come into contact with the user's face (forehead, cheeks, etc.). Since the cushioning member 8403 is in close contact with the user's face, it is possible to prevent light leakage and enhance the sense of immersion. It is preferable to use a soft material for the cushioning member 8403 so that the cushioning member 8403 comes into close contact with the user's face when the head mounted display 8400 is worn by the user. For example, materials such as rubber, silicone rubber, urethane, and sponge can be used.
  • a member that touches the user's skin is preferably detachable for easy cleaning or replacement.
  • FIG. 30A shows an example of a television device.
  • a television set 7100 has a display portion 7000 incorporated in a housing 7101 .
  • a configuration in which a housing 7101 is supported by a stand 7103 is shown.
  • the semiconductor device of one embodiment of the present invention can be applied to the display portion 7000 .
  • the operation of the television apparatus 7100 shown in FIG. 30A can be performed using operation switches provided in the housing 7101 and a separate remote controller 7111 .
  • the display portion 7000 may be provided with a touch sensor, and the television device 7100 may be operated by touching the display portion 7000 with a finger or the like.
  • the remote controller 7111 may have a display section for displaying information output from the remote controller 7111 .
  • a channel and a volume can be operated with operation keys or a touch panel included in the remote controller 7111 , and an image displayed on the display portion 7000 can be operated.
  • television apparatus 7100 is configured to include a receiver, a modem, and the like.
  • the receiver can receive general television broadcasts. Also, by connecting to a wired or wireless communication network via a modem, one-way (from the sender to the receiver) or two-way (between the sender and the receiver, or between the receivers, etc.) information communication is performed. is also possible.
  • FIG. 30B shows an example of a notebook personal computer.
  • a notebook personal computer 7200 has a housing 7211, a keyboard 7212, a pointing device 7213, an external connection port 7214, and the like.
  • the display portion 7000 is incorporated in the housing 7211 .
  • the semiconductor device of one embodiment of the present invention can be applied to the display portion 7000 .
  • FIGS. 30C and 30D An example of digital signage is shown in FIGS. 30C and 30D.
  • a digital signage 7300 illustrated in FIG. 30C includes a housing 7301, a display portion 7000, speakers 7303, and the like. Furthermore, it can have an LED lamp, an operation key (including a power switch or an operation switch), a connection terminal, various sensors, a microphone, and the like.
  • FIG. 30D is a digital signage 7400 mounted on a cylindrical post 7401.
  • FIG. A digital signage 7400 has a display section 7000 provided along the curved surface of a pillar 7401 .
  • the semiconductor device of one embodiment of the present invention can be applied to the display portion 7000 in FIGS. 30C and 30D.
  • the display portion 7000 As the display portion 7000 is wider, the amount of information that can be provided at one time can be increased. In addition, the wider the display unit 7000, the more conspicuous it is, and the more effective the advertisement can be, for example.
  • a touch panel By applying a touch panel to the display portion 7000, not only an image or a moving image can be displayed on the display portion 7000 but also the user can intuitively operate the display portion 7000, which is preferable. Further, when used for providing information such as route information or traffic information, usability can be enhanced by intuitive operation.
  • the digital signage 7300 or digital signage 7400 is preferably capable of cooperating with an information terminal 7311 or information terminal 7411 such as a smartphone possessed by the user through wireless communication.
  • advertisement information displayed on the display unit 7000 can be displayed on the screen of the information terminal 7311 or the information terminal 7411 .
  • display on the display portion 7000 can be switched.
  • the digital signage 7300 or the digital signage 7400 can execute a game using the screen of the information terminal 7311 or 7411 as an operation means (controller). This allows an unspecified number of users to simultaneously participate in and enjoy the game.
  • An information terminal 7550 illustrated in FIG. 30E includes a housing 7551, a display portion 7552, a microphone 7557, a speaker portion 7554, a camera 7553, operation switches 7555, and the like.
  • the semiconductor device according to one embodiment of the present invention can be applied to the display portion 7552 .
  • the display portion 7552 has a function as a touch panel.
  • the information terminal 7550 also includes an antenna, a battery, and the like inside a housing 7551 .
  • the information terminal 7550 can be used as, for example, a smartphone, a mobile phone, a tablet information terminal, a tablet personal computer, an e-book reader, or the like.
  • FIG. 30F shows an example of a wristwatch type information terminal.
  • An information terminal 7660 includes a housing 7661, a display portion 7662, a band 7663, a buckle 7664, an operation switch 7665, an input/output terminal 7666, and the like.
  • the information terminal 7660 also includes an antenna, a battery, and the like inside a housing 7661 .
  • Information terminal 7660 is capable of running a variety of applications such as mobile telephony, e-mail, text viewing and composition, music playback, Internet communication, computer games, and the like.
  • the display portion 7662 includes a touch sensor and can be operated by touching the screen with a finger, a stylus, or the like. For example, by touching an icon 7667 displayed on the display portion 7662, the application can be activated.
  • the operation switch 7665 can have various functions such as time setting, power on/off operation, wireless communication on/off operation, manner mode execution/cancellation, and power saving mode execution/cancellation. .
  • the operating system installed in the information terminal 7660 can set the function of the operation switch 7665 .
  • the information terminal 7660 is capable of performing short-range wireless communication that conforms to communication standards. For example, by intercommunicating with a headset capable of wireless communication, hands-free communication is also possible.
  • the information terminal 7660 has an input/output terminal 7666 and can transmit/receive data to/from another information terminal through the input/output terminal 7666 .
  • charging can be performed through the input/output terminal 7666 . Note that the charging operation may be performed by wireless power supply without using the input/output terminal 7666 .
  • FIG. 31A shows the appearance of automobile 9700.
  • FIG. 31B The driver's seat of automobile 9700 is shown in FIG. 31B.
  • An automobile 9700 includes a vehicle body 9701, wheels 9702, a dashboard 9703, lights 9704, and the like.
  • the display device according to one embodiment of the present invention can be used for the display portion of the automobile 9700 or the like.
  • the display device of one embodiment of the present invention can be provided in the display portions 9710 to 9715 illustrated in FIG. 31B.
  • a display portion 9710 and a display portion 9711 are display devices provided on the windshield of an automobile.
  • a display device according to one embodiment of the present invention can be a so-called see-through display device in which the opposite side can be seen through by forming an electrode included in the display device using a light-transmitting conductive material.
  • a display device in a see-through state does not obstruct the view even when the automobile 9700 is driven. Therefore, the display device according to one embodiment of the present invention can be installed on the windshield of the automobile 9700 .
  • a light-transmitting transistor such as an organic transistor using an organic semiconductor material or a transistor using an oxide semiconductor is preferably used. .
  • a display portion 9712 is a display device provided in a pillar portion. For example, by displaying an image from an imaging means provided on the vehicle body on the display portion 9712, the field of view blocked by the pillar can be complemented.
  • a display unit 9713 is a display device provided in the dashboard portion. For example, by displaying an image from an imaging means provided on the vehicle body on the display portion 9713, the field of view blocked by the dashboard can be complemented. That is, by projecting an image from the imaging means provided outside the automobile, blind spots can be compensated for and safety can be enhanced. In addition, by projecting an image that supplements the invisible part, safety confirmation can be performed more naturally and without discomfort.
  • FIG. 32 shows the interior of an automobile in which bench seats are used for the driver's seat and the front passenger's seat.
  • the display unit 9721 is a display device provided on the door. For example, by displaying an image from an imaging unit provided in the vehicle body on the display portion 9721, the field of view blocked by the door can be complemented.
  • a display unit 9722 is a display device provided on the steering wheel.
  • the display unit 9723 is a display device provided in the center of the seating surface of the bench seat.
  • a display unit 9714, a display unit 9715, or a display unit 9722 displays navigation information, travel speed, engine speed, travel distance, remaining amount of fuel, gear status, air conditioner settings, etc., thereby providing various information. can provide.
  • the display items and layout displayed on the display unit can be appropriately changed according to the user's preference. Note that the above information can also be displayed on the display portions 9710 to 9713 , 9721 , and 9723 . Further, the display portions 9710 to 9715 and the display portions 9721 to 9723 can also be used as lighting devices.

Abstract

新規な半導体装置を提供する。 入力層、リザバー層、および出力層を用いるリザバーコンピューティングにおいて、積演算処理に用いる重みにトランジスタのしきい値電圧のばらつきを用いる。1つの積演算回路に2つのトランジスタを設け、2つのトランジスタのゲートにデータuを供給する。それぞれのドレイン電流は、データuとトランジスタのしきい値電圧によって決定される。それぞれのドレイン電流の差が積演算結果に相当する。それぞれのドレイン電流の差を電圧に変換して出力する。複数の積演算回路を並列に接続することで、積和演算回路を実現する。

Description

半導体装置
本発明の一態様は、半導体装置に関する。
なお本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の技術分野は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。そのため、より具体的に本明細書で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、液晶表示装置、発光装置、蓄電装置、撮像装置、記憶装置、プロセッサ、電子機器、それらの駆動方法、それらの製造方法、それらの検査方法、またはそれらのシステムを一例として挙げることができる。
人工ニューラルネットワーク(以後、ニューラルネットワークと呼称する。)は、神経回路網をモデルにした情報処理システムである。ニューラルネットワークを利用することで、従来のノイマン型コンピュータよりも高性能なコンピュータが実現できると期待されており、近年、電子回路上でニューラルネットワークを構築する種々の研究が進められている。
ニューラルネットワークでは、ニューロンを模したユニットが、シナプスを模したユニットを介して、互いに結合された構成となっている。この結合の強度を変更することで、様々な入力パターンに対して学習し、パターン認識および連想記憶などを高速に実行できると考えられている。また、非特許文献1には、ニューラルネットワークによる自己学習機能を備えたチップに関する技術が記載されている。
ニューラルネットワークとしては、畳み込みニューラルネットワーク(CNN:Convolutional Neural Network)、および再帰型ニューラルネットワーク(RNN:Recurrent Neural Network)などが知られている。CNNは、例えば、画像からパターンもしくは物体などを識別する目的で使用される。RNNは、例えば、時系列情報または連続した情報を扱う場合に使用される。
また近年、時系列情報を扱うニューラルネットワークの新たな手法として、リザバーコンピューティング(RC:Reservoir Computing)が提案されている。
Yutaka Arima et al,"A Self−Learning Neural Network Chip with 125 Neurons and 10K Self−Organization Synapses",IEEE JOURNAL OF SOLID−STATE CIRCUITS,VOL.26,NO.4,APRIL 1991,pp.607−611
本発明の一態様は、消費電力の小さい半導体装置の提供を課題の一とする。または、高速動作が可能な半導体装置の提供を課題の一とする。または、占有面積の小さい半導体装置の提供を課題の一とする。または、信頼性の高い半導体装置の提供を課題の一とする。または、新規な半導体装置の提供を課題の一とする。
なお、本発明の一態様は、必ずしも上記の課題の全てを解決する必要はなく、少なくとも一の課題を解決できるものであればよい。また、上記の課題の記載は、他の課題の存在を妨げるものではない。これら以外の課題は、明細書、特許請求の範囲、図面などの記載から、自ずと明らかとなるものであり、明細書、特許請求の範囲、図面などの記載から、これら以外の課題を抽出することが可能である。
本発明の一態様は、第1回路と、第2回路と、第3回路と、第1配線と、第2配線と、第3配線と、を備え、第1回路は、第1トランジスタおよび第2トランジスタを備え、第1配線は、第2回路、第1トランジスタのゲート、および第2トランジスタのゲートと電気的に接続され、第2配線は、第3回路、および、第1トランジスタのソースまたはドレインの一方と電気的に接続され、第3配線は、第3回路、および、第2トランジスタのソースまたはドレインの一方と電気的に接続され、第3回路は、第2配線に流れる電流と第3配線に流れる電流の差に応じた電圧を出力する機能を備え、第1トランジスタのしきい値電圧と、第2トランジスタのしきい値電圧が異なる半導体装置である。
本発明の別の一態様は、M行N列(MおよびNのそれぞれは、2以上の整数である。)のマトリクス状に配置された複数の第1回路と、M個の第2回路と、N個の第3回路と、M本の第1配線と、N本の第2配線と、N本の第3配線と、を備え、複数の第1回路のそれぞれは、第1トランジスタおよび第2トランジスタを備え、i本目(iは1以上M以下の整数。)の第1配線は、i個目の第2回路、i行目の第1回路のそれぞれが備える第1トランジスタのゲート、およびi行目の第1回路のそれぞれが備える第2トランジスタのゲートと電気的に接続され、j本目(jは1以上N以下の整数。)の第2配線は、j個目の第3回路およびj列目の第1回路のそれぞれが備える第1トランジスタのソースまたはドレインの一方と電気的に接続され、j本目の第3配線は、j個目の第3回路およびj列目の第1回路のそれぞれが備える第2トランジスタのソースまたはドレインの一方と電気的に接続され、第3回路は、第2配線に流れる電流と第3配線に流れる電流の差に応じた電圧を出力する機能を備え、複数の第1回路のそれぞれにおいて、第1トランジスタのしきい値電圧と第2トランジスタのしきい値電圧の差が不規則に異なる半導体装置である。
第2トランジスタのしきい値電圧は、第1トランジスタのしきい値電圧の0.9倍以下または1.1倍以上が好ましい。
第2トランジスタのチャネル長は、第1トランジスタのチャネル長の0.9倍以下または1.1倍以上が好ましい。
第1トランジスタとして、酸化物半導体を含むトランジスタを用いてもよい。第2トランジスタとして、酸化物半導体を含むトランジスタを用いてもよい。
酸化物半導体は、インジウムまたは亜鉛の少なくとも一方を含むことが好ましい。
本発明の別の一態様は、M行N列(MおよびNのそれぞれは、2以上の整数である。)のマトリクス状に配置された複数の第1回路と、M個の第2回路と、N個の第3回路と、M本の第1配線と、N本の第2配線と、を備え、複数の第1回路のそれぞれはトランジスタを備え、i本目(iは1以上M以下の整数。)の第1配線は、i個目の第2回路、および、i行目の第1回路のそれぞれが備えるトランジスタのゲートと電気的に接続され、j本目(jは1以上N以下の整数。)の第2配線は、j個目の第3回路、および、j列目の第1回路のそれぞれが備えるトランジスタのソースまたはドレインの一方と電気的に接続され、第3回路は、第2配線に流れる電流と参照電流の差に応じた電圧を出力する機能を備え、j本目の第2配線と電気的に接続する複数のトランジスタにおいて、チャネル長が不規則に異なる半導体装置である。
本発明の別の一態様は、M行N列(MおよびNのそれぞれは、2以上の整数である。)のマトリクス状に配置された複数の第1回路と、M個の第2回路と、N個の第3回路と、M本の第1配線と、N本の第2配線と、を備え、複数の第1回路のそれぞれはトランジスタを備え、i本目(iは1以上M以下の整数。)の第1配線は、i個目の第2回路、および、i行目の第1回路のそれぞれが備えるトランジスタのゲートと電気的に接続され、j本目(jは1以上N以下の整数。)の第2配線は、j個目の第3回路、および、j列目の第1回路のそれぞれが備えるトランジスタのソースまたはドレインの一方と電気的に接続され、第3回路は、第2配線に流れる電流と参照電流の差に応じた電圧を出力する機能を備え、複数の第1回路が備えるトランジスタにおいて、チャネル長が不規則に異なる半導体装置である。
本発明の一態様により、消費電力の小さい半導体装置を提供できる。または、高速動作が可能な半導体装置を提供できる。または、占有面積の小さい半導体装置を提供できる。または、信頼性の高い半導体装置を提供できる。または、新規な半導体装置を提供できる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。また、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。これら以外の効果は、明細書、特許請求の範囲、図面などの記載から、自ずと明らかとなるものであり、明細書、特許請求の範囲、図面などの記載から、これら以外の効果を抽出することが可能である。
図1は、RCモデルを説明する図である。
図2Aおよび図2Bは、カレントミラー回路を説明する図である。
図3は、積演算回路を説明する図である。
図4Aは、半導体装置を説明する図である。図4Bは、リザバーコンピューティングモデルの構成例の一部を示す図である。
図5は、半導体装置を説明する図である。
図6は、RCモデルの構成を説明するブロック図である。
図7は、半導体装置の構成例を説明する斜視図である。
図8Aは、積演算部の平面レイアウトを示す図である。図8Bは、積演算アレイの平面レイアウトを示す図である。
図9Aはトランジスタを示す平面図である。図9Bは、積演算アレイの平面レイアウトを示す図である。
図10は、積演算アレイの平面レイアウトを示す図である。
図11は、積演算アレイの等価回路図である。
図12は、半導体装置の構成例を説明する図である。
図13は、積演算アレイの平面レイアウトを示す図である。
図14は、積演算アレイの平面レイアウトを示す図である。
図15Aは、表示装置を説明する図である。図15B1乃至図15B7は、画素の構成例を説明する図である。
図16A乃至図16Dは、画素の構成例を説明する図である。
図17A乃至図17Dは、画素の回路構成例を示す図である。
図18A乃至図18Dは、発光素子の構成例を説明する図である。
図19A乃至図19Dは、発光素子の構成例を示す図である。
図20A乃至図20Dは、発光素子の構成例を示す図である。
図21Aおよび図21Bは、表示装置の斜視図である。
図22A乃至図22Cは、表示モジュールの斜視概略図である。
図23は、表示装置の一例を示す断面図である。
図24は、表示装置の一例を示す断面図である。
図25は、表示装置の一例を示す断面図である。
図26は、表示装置の一例を示す断面図である。
図27Aは、トランジスタの構成例を示す上面図である。図27Bおよび図27Cは、トランジスタの構成例を示す断面図である。
図28Aは、結晶構造の分類を説明する図である。図28Bは、CAAC−IGZO膜のXRDスペクトルを説明する図である。図28Cは、CAAC−IGZO膜の極微電子線回折パターンを説明する図である。
図29A乃至図29Fは、電子機器の一例を説明する図である。
図30A乃至図30Fは、電子機器の一例を説明する図である。
図31Aおよび図31Bは、電子機器の一例を説明する図である。
図32は、電子機器の一例を説明する図である。
以下、実施の形態について図面を参照しながら説明する。ただし、実施の形態は多くの異なる態様で実施することが可能であり、趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。
また、本明細書等において、XとYとが接続されていると記載されている場合は、XとYとが電気的に接続されている場合と、XとYとが機能的に接続されている場合と、XとYとが直接接続されている場合とが、本明細書等に開示されているものとする。したがって、所定の接続関係、例えば、図または文章に示された接続関係に限定されず、図または文章に示された接続関係以外のものも、図または文章に開示されているものとする。X、Yは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層など)であるとする。
XとYとが電気的に接続されている場合の一例としては、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示デバイス、発光デバイス、負荷など)が、XとYとの間に1個以上接続されることが可能である。なお、スイッチは、オン状態とオフ状態が制御される。つまり、スイッチは、導通状態(オン状態)、または、非導通状態(オフ状態)になり、電流を流すか流さないかを制御する機能を有している。
XとYとが機能的に接続されている場合の一例としては、XとYとの機能的な接続を可能とする回路(例えば、論理回路(インバータ、NAND回路、NOR回路など)、信号変換回路(デジタルアナログ変換回路、アナログデジタル変換回路、ガンマ補正回路など)、電位レベル変換回路(電源回路(昇圧回路、降圧回路など)、信号の電位レベルを変えるレベルシフタ回路など)、電圧源、電流源、切り替え回路、増幅回路(信号振幅または電流量などを大きく出来る回路、オペアンプ、差動増幅回路、ソースフォロワ回路、バッファ回路など)、信号生成回路、記憶回路、制御回路など)が、XとYとの間に1個以上接続されることが可能である。なお、一例として、XとYとの間に別の回路を挟んでいても、Xから出力された信号がYへ伝達される場合は、XとYとは機能的に接続されているものとする。
なお、XとYとが電気的に接続されている、と明示的に記載する場合は、XとYとが電気的に接続されている場合(つまり、XとYとの間に別の素子または別の回路を挟んで接続されている場合)と、XとYとが直接接続されている場合(つまり、XとYとの間に別の素子または別の回路を挟まずに接続されている場合)とを含むものとする。
また、例えば、「XとYとトランジスタのソース(または第1の端子など)とドレイン(または第2の端子など)とは、互いに電気的に接続されており、X、トランジスタのソース(または第1の端子など)、トランジスタのドレイン(または第2の端子など)、Yの順序で電気的に接続されている。」と表現することができる。または、「トランジスタのソース(または第1の端子など)は、Xと電気的に接続され、トランジスタのドレイン(または第2の端子など)はYと電気的に接続され、X、トランジスタのソース(または第1の端子など)、トランジスタのドレイン(または第2の端子など)、Yは、この順序で電気的に接続されている」と表現することができる。または、「Xは、トランジスタのソース(または第1の端子など)とドレイン(または第2の端子など)とを介して、Yと電気的に接続され、X、トランジスタのソース(または第1の端子など)、トランジスタのドレイン(または第2の端子など)、Yは、この接続順序で設けられている」と表現することができる。これらの例と同様な表現方法を用いて、回路構成における接続の順序について規定することにより、トランジスタのソース(または第1の端子など)と、ドレイン(または第2の端子など)とを、区別して、技術的範囲を決定することができる。なお、これらの表現方法は、一例であり、これらの表現方法に限定されない。ここで、X、Yは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。
なお、回路図上は独立している構成要素同士が電気的に接続しているように図示されている場合であっても、1つの構成要素が、複数の構成要素の機能を併せ持っている場合もある。例えば配線の一部が電極としても機能する場合は、一の導電膜が、配線の機能、および電極の機能の両方の構成要素の機能を併せ持っている。したがって、本明細書における電気的に接続とは、このような、一の導電膜が、複数の構成要素の機能を併せ持っている場合も、その範疇に含める。
また、本明細書等において、「容量素子」とは、例えば、0Fよりも高い静電容量の値を有する回路素子、0Fよりも高い静電容量の値を有する配線の領域、寄生容量、トランジスタのゲート容量などとすることができる。そのため、本明細書等において、「容量素子」は、1対の電極と、当該電極の間に含まれている誘電体と、を含む回路素子だけでなく、配線と配線との間に生じる寄生容量、トランジスタのソースまたはドレインの一方とゲートとの間に生じるゲート容量などを含むものとする。また、「容量素子」「寄生容量」「ゲート容量」などという用語は、「容量」などの用語に言い換えることができ、逆に、「容量」という用語は、「容量素子」「寄生容量」「ゲート容量」などの用語に言い換えることができる。また、「容量」の「1対の電極」という用語は、「一対の導電体」「一対の導電領域」「一対の領域」などに言い換えることができる。なお、静電容量の値としては、例えば、0.05fF以上10pF以下とすることができる。また、例えば、1pF以上10μF以下としてもよい。
また、本明細書等において、トランジスタは、ゲート、ソース、およびドレインと呼ばれる3つの端子を有する。ゲートは、トランジスタの導通状態を制御する制御端子である。ソースまたはドレインとして機能する二つの端子は、トランジスタの入出力端子である。二つの入出力端子は、トランジスタの導電型(nチャネル型、pチャネル型)およびトランジスタの3つの端子に与えられる電位の高低によって、一方がソースとなり他方がドレインとなる。このため、本明細書等においては、ソースおよびドレインの用語は、言い換えることができるものとする。また、本明細書等では、トランジスタの接続関係を説明する際、「ソースまたはドレインの一方」(または第1電極、または第1端子)、「ソースまたはドレインの他方」(または第2電極、または第2端子)という表記を用いる。なお、トランジスタの構造によっては、上述した3つの端子に加えて、バックゲートを有する場合がある。この場合、本明細書等において、トランジスタのゲートまたはバックゲートの一方を第1ゲートと呼称し、トランジスタのゲートまたはバックゲートの他方を第2ゲートと呼称することがある。更に、同じトランジスタにおいて、「ゲート」と「バックゲート」の用語は互いに入れ換えることができる場合がある。また、トランジスタが、3以上のゲートを有する場合は、本明細書等においては、それぞれのゲートを第1ゲート、第2ゲート、第3ゲートなどと呼称することがある。
また、本明細書等において、「ノード」は、回路構成、デバイス構造等に応じて、端子、配線、電極、導電層、導電体、不純物領域等と言い換えることが可能である。また、端子、配線等を「ノード」と言い換えることが可能である。
また、本明細書等において、「第1」、「第2」、「第3」という序数詞は、構成要素の混同を避けるために付したものである。従って、構成要素の数を限定するものではない。また、構成要素の順序を限定するものではない。例えば、本明細書などの実施の形態の一において「第1」に言及された構成要素が、他の実施の形態、あるいは特許請求の範囲などにおいて「第2」に言及された構成要素とすることもありうる。また例えば、本明細書等の実施の形態の一において「第1」に言及された構成要素を、他の実施の形態、あるいは特許請求の範囲などにおいて省略することもありうる。
また、本明細書等において、「上に」、「下に」、「上方に」、または「下方に」などの配置を示す語句は、構成要素同士の位置関係を、図面を参照して説明するために、便宜上用いている場合がある。また、構成要素同士の位置関係は、各構成を描写する方向に応じて適宜変化するものである。従って、明細書等で説明した語句に限定されず、状況に応じて適切に言い換えることができる。例えば、「導電体の上面に位置する絶縁体」の表現では、示している図面の向きを180度回転することによって、「導電体の下面に位置する絶縁体」と言い換えることができる。
また、「上」および「下」の用語は、構成要素の位置関係が直上または直下で、かつ、直接接していることを限定するものではない。例えば、「絶縁層A上の電極B」の表現であれば、絶縁層Aの上に電極Bが直接接して形成されている必要はなく、絶縁層Aと電極Bとの間に他の構成要素を含むものを除外しない。
また、本明細書等において、マトリクス状に配置された構成要素、およびその位置関係を説明するために、「行」、「列」などの語句を使用する場合がある。また、構成同士の位置関係は、各構成を描写する方向に応じて適宜変化するものである。従って、明細書等で説明した語句に限定されず、状況に応じて適切に言い換えることができる。例えば、「行方向」という表現は、示している図面の向きを90度回転することによって、「列方向」と言い換えることができる場合がある。
また、本明細書等において、「重なる」などの用語は、構成要素の積層順などの状態を限定するものではない。例えば、「絶縁層Aに重なる電極B」の表現であれば、絶縁層Aの上に電極Bが形成されている状態に限らず、絶縁層Aの下に電極Bが形成されている状態または絶縁層Aの右側(もしくは左側)に電極Bが形成されている状態などを除外しない。
また、本明細書等において、「隣接」および「近接」の用語は、構成要素が直接接していることを限定するものではない。例えば、「絶縁層Aに隣接する電極B」の表現であれば、絶縁層Aと電極Bが直接接して形成されている必要はなく、絶縁層Aと電極Bの間に他の構成要素を含むものを除外しない。
また、本明細書等において、「膜」、「層」などの語句は、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能な場合がある。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能な場合がある。または、場合によっては、または、状況に応じて、「膜」、「層」などの語句を使わずに、別の用語に入れ替えることが可能である。例えば、「導電層」または「導電膜」という用語を、「導電体」という用語に変更することが可能な場合がある。または、「導電体」という用語を、「導電層」または「導電膜」という用語に変更することが可能な場合がある。または、例えば、「絶縁層」または「絶縁膜」という用語を、「絶縁体」という用語に変更することが可能な場合がある。または、「絶縁体」という用語を、「絶縁層」または「絶縁膜」という用語に変更することが可能な場合がある。
また、本明細書等において「電極」「配線」「端子」などの用語は、これらの構成要素を機能的に限定するものではない。例えば、「電極」は「配線」の一部として用いられることがあり、その逆もまた同様である。さらに、「電極」または「配線」の用語は、複数の「電極」または「配線」が一体となって形成されている場合なども含む。また、例えば、「端子」は「配線」または「電極」の一部として用いられることがあり、その逆もまた同様である。更に、「端子」の用語は、複数の「電極」「配線」「端子」などが一体となって形成されている場合なども含む。そのため、例えば、「電極」は「配線」または「端子」の一部とすることができ、また、例えば、「端子」は「配線」または「電極」の一部とすることができる。また、「電極」「配線」「端子」などの用語は、場合によって、「領域」などの用語に置き換える場合がある。
また、本明細書等において、「配線」、「信号線」、「電源線」などの用語は、場合によっては、または、状況に応じて、互いに入れ替えることが可能である。例えば、「配線」という用語を、「信号線」という用語に変更することが可能な場合がある。また、例えば、「配線」という用語を、「電源線」などの用語に変更することが可能な場合がある。また、その逆も同様で、「信号線」「電源線」などの用語を、「配線」という用語に変更することが可能な場合がある。「電源線」などの用語は、「信号線」などの用語に変更することが可能な場合がある。また、その逆も同様で「信号線」などの用語は、「電源線」などの用語に変更することが可能な場合がある。また、配線に印加されている「電位」という用語を、場合によっては、または、状況に応じて、「信号」などという用語に変更することが可能な場合がある。また、その逆も同様で、「信号」などの用語は、「電位」という用語に変更することが可能な場合がある。
なお、電圧とは2点間における電位差のことをいい、電位とはある一点における静電場の中にある単位電荷が持つ静電エネルギー(電気的な位置エネルギー)のことをいう。ただし、一般的に、ある一点における電位と基準となる電位(例えば接地電位)との電位差のことを、単に電位もしくは電圧と呼び、電位と電圧が同義語として用いられることが多い。このため、本明細書などでは、明示する場合を除き、電位を電圧と読み替えてもよいし、電圧を電位と読み替えてもよいこととする。
電源電位としては、例えば相対的に高電位側の電位または低電位側の電位を用いることができる。高電位側の電源電位を高電源電位(「Vdd」ともいう。)といい、低電位側の電源電位を低電源電位(「Vss」ともいう。)という。また、接地電位(「GND」ともいう。)を高電源電位または低電源電位として用いることもできる。例えば高電源電位が接地電位の場合には、低電源電位は接地電位より低い電位であり、低電源電位が接地電位の場合には、高電源電位は接地電位より高い電圧である。
本明細書において、「平行」とは、二つの直線が−10°以上10°以下の角度で配置されている状態をいう。したがって、−5°以上5°以下の場合も含まれる。また、「略平行」または「概略平行」とは、二つの直線が−30°以上30°以下の角度で配置されている状態をいう。
また、「垂直」とは、二つの直線が80°以上100°以下の角度で配置されている状態をいう。したがって、85°以上95°以下の場合も含まれる。また、「略垂直」または「概略垂直」とは、二つの直線が60°以上120°以下の角度で配置されている状態をいう。
また、「直交」とは、二つの直線が80°以上100°以下の角度で交差または接続されている状態をいう。したがって、85°以上95°以下の場合も含まれる。また、「略直交」または「概略直交」とは、二つの直線が60°以上120°以下の角度で交差または接続されている状態をいう。
なお、本明細書等において、計数値および計量値に関して「同一」、「同じ」、「等しい」または「均一」(これらの同意語を含む)などと言う場合は、明示されている場合を除き、プラスマイナス20%の誤差を含むものとする。
本明細書に記載の実施の形態については、図面を参照しながら説明する。但し、実施の形態は多くの異なる態様で実施することが可能であり、趣旨およびその範囲から逸脱することなく、その形態および詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、実施の形態の記載内容に限定して解釈されるものではない。なお、実施の形態の発明の構成において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する場合がある。また、同様の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。また、図面を理解しやすくするため、斜視図または上面図などにおいて、一部の構成要素の記載を省略している場合がある。
また、本明細書に係る図面等において、大きさ、層の厚さ、または領域は、明瞭化のために誇張されている場合がある。よって、必ずしもその大きさもしくは縦横比などに限定されない。なお図面は、理想的な例を模式的に示したものであり、図面に示す形状または値などに限定されない。例えば、ノイズによる信号、電圧、若しくは電流のばらつき、または、タイミングのずれによる信号、電圧、若しくは電流のばらつきなどを含むことが可能である。
本明細書等において、複数の要素に同じ符号を用いる場合、特に、それらを区別する必要があるときには、符号に“A”、“b”、“_1”、“[i]”、“[m,n]”などの識別用の符号を付記して記載する場合がある。
また、本明細書等に示すトランジスタは、明示されている場合を除き、エンハンスメント型(ノーマリーオフ型)のnチャネル型電界効果トランジスタとする。よって、そのしきい値電圧(「Vth」ともいう。)は、0Vより大きいものとする。
(実施の形態1)
本発明の一態様に係る半導体装置について説明する。
まず、リザバーコンピューティングについて説明する。リザバーコンピューティングに用いるアルゴリズム(「RCモデル」ともいう。)として、LSM(Liquid State Machine)、ESN(Echo State Network)、およびFORCE(First Order Reduced and Controlled Error)などが知られている。
図1に、RCモデル100として、ESNの構成例を示す。RCモデル100は、入力層110、リザバー層120、および出力層130で構成される。リザバー層120は、隠れ層に相当する。
入力層110はノード111を備える。データu(t)は、時刻tにおけるノード111の値を示す。なお、図1ではノード111を1つ示しているが、入力層110はノード111を複数備えてもよい。例えば、入力層110はM個(Mは1以上の整数。)のノード111を備えてもよい。
リザバー層120は複数のノード121を備える。データx(t)は、時刻tにおけるノード121の値を示す。なお、図1ではノード121を6つ示しているが、ノード121はこれに限定されない。例えば、リザバー層120はN個(Nは2以上の整数。)のノード121を備えてもよい。
出力層130はノード131を備える。データz(t)は、時刻tにおけるノード131の値を示す。なお、図1ではノード131を1つ示しているが、出力層130はノード131を複数備えてもよい。例えば、出力層130はK個(Kは1以上の整数。)のノード131を備えてもよい。
また、図1では、ノード111とノード121の結合の重みWinを「Win」と示している。また、ノード121とノード131の結合の重みWoutを「Wout」と示している。また、リザバー層120が備えるN個のノード121は互いに不規則に結合される。図1では、ノード121同士の結合の重みWresを「Wres」と示している。
ノード111は、複数のノード121と結合される。この時、図1に示すRCモデル100では、それぞれの重みWinは不規則な正負の値に決定され、固定される。また、データu(t)と重みWinを積算した値がノード121に供給される。
また、リザバー層120において、ノード121同士の結合の重みWresは、不規則な正負の値に決定され、固定される。このため、リザバー層120から出力層130に供給されるデータは非線形データになる。ノード121同士の結合において、データを供給する側のノード121のデータx(t)に重みWresを積算した値が、データを供給される側のノード121に供給される。
RNNでは、誤差逆伝搬法を用いて重みWin、重みWres、および重みWoutを決定するため、多くの教師データと多くの学習時間が必要である。よって、RNNは計算コストが高い。一方、RCでは、重みWinと重みWresが固定されており、重みWoutの学習(最適化)のみを行なう。よって、少ない教師データと少ない学習時間で重みWoutの最適化が完了できる。よって、RCはRNNよりも学習時の消費電力が小さい。RCはRNNよりも計算コストが低い。
図1に示すRCモデル100は、数式1乃至数式3で表すことができる。数式1はデータx(t)に関する数式である。数式2は重みWoutを求める数式である。数式3はデータz(t)を求める数式である。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Xはx(t)の行列を示す。fは活性化関数を示す。δは漏れ率を示す。Tは転置行列を示す。λは正規化パラメータを示す。Iは単位行列を示す。Ytargetは教師データを示す。
例えば、目の瞬きの検知など、イメージセンサで撮像した画像の時系列変化を解析する場合、RNNは計算コストが高く、層構造が複雑なためハードウェアに実装することが難しい。RCのアルゴリズムの少なくとも一部をイメージセンサまたはプロセッサなどに組み込むことで、少ない消費電力で演算処理が可能になる。
続いて、上記数式1中のWin×u(t)を実現するための回路構成例について説明する。
[カレントミラー回路]
まず、カレントミラー回路について説明する。図2Aに示す半導体装置200A、および図2Bに示す半導体装置200Bのそれぞれは、フォトダイオード210およびカレントミラー回路220を備える。
カレントミラー回路220は、トランジスタM1およびトランジスタM2を備える。トランジスタM1のドレインは、トランジスタM1のゲートおよびトランジスタM2のゲートと電気的に接続される。トランジスタM1のドレイン、トランジスタM1のゲート、およびトランジスタM2のゲートが電気的に接続される領域をノードNDと呼ぶ。
また、トランジスタM1のソースおよびトランジスタM2のソースは配線202と電気的に接続される。トランジスタM2のドレインは配線203と電気的に接続される。
また、半導体装置200Aでは、フォトダイオード210のアノードは、トランジスタM1のドレインと電気的に接続される。フォトダイオード210のカソードは、配線201と電気的に接続される。
フォトダイオード210には逆バイアスを印加する。よって、半導体装置200Aでは、配線201に配線202より高い電位が供給される。また、配線203に配線202より高い電位が供給される。例えば、配線201および配線203にVddが供給され、配線202にVssまたはGNDが供給される。
フォトダイオード210は、照射された光の照度に応じてアノードとカソード間の抵抗(内部抵抗)の値が変化する。フォトダイオード210の内部抵抗は、照度が高いほど小さくなる。半導体装置200Aにおいて、トランジスタM1のソースとドレイン間に流れる電流I1は、フォトダイオード210のアノードとカソードの間に流れる電流Iphotoと等しい。よって、照度に応じてトランジスタM1のソースとドレイン間に流れる電流I1が決定される。なお、図面などにおいて、電流の向きを矢印で示す場合がある。
また、トランジスタM1のゲートとトランジスタM2のゲートは電気的に接続されているため、トランジスタM1のゲート電圧とトランジスタM2のゲート電圧は等しくなる。よって、トランジスタM1とトランジスタM2のトランジスタ特性が同じで、共に飽和領域、もしくは、共にサブスレッショルド領域で動作する場合、トランジスタM2のソースとドレイン間に流れる電流I2は電流I1と等しくなる。また、例えば、トランジスタM1とトランジスタM2のチャネル長が同じで、トランジスタM2のチャネル幅がトランジスタM1のチャネル幅の2倍である場合は、電流I2は電流I1の2倍になる。
半導体装置200Bは、フォトダイオード210の接続が、半導体装置200Aと逆である。具体的には、フォトダイオード210のアノードが配線201と電気的に接続され、フォトダイオード210のカソードがトランジスタM1のドレインと電気的に接続される。また、半導体装置200BはトランジスタM0を備える。トランジスタM0のソースはトランジスタM1のドレインと電気的に接続される。トランジスタM0のゲートは、トランジスタM0のソースと電気的に接続される。トランジスタM0のドレインは配線205と電気的に接続される。
半導体装置200Bにおいて、トランジスタM1のソースとドレイン間に流れる電流I1は、トランジスタM0のソースとドレインの間に流れる電流I0から、電流Iphotoを引いた値と等しい。
半導体装置200Bでは、配線205に、配線201および配線202よりも高い電位が供給される。また、配線201に配線202よりも低い電位が供給される。例えば、配線202に0V(GND)を供給し、配線205に5Vを供給し、配線201に−2Vを供給する。半導体装置200Bのカレントミラー回路220は、半導体装置200Aのカレントミラー回路220と同様に機能する。
カレントミラー回路220において、電流I1と電流I2を等しくする場合、トランジスタM1とトランジスタM2のトランジスタ特性を等しくする必要がある。ただし、トランジスタM1とトランジスタM2のトランジスタ特性が同じになるように設計したとしても、トランジスタ特性のばらつきにより、両者のトランジスタ特性が必ずしも同じになるとは限らない。例えば、トランジスタM1のしきい値電圧をVth1とし、トランジスタM2のしきい値電圧をVth2とすると、Vth2=Vth1とはならずに、Vth2=Vth1+αとなる場合が多い。
ここで、αは自然な揺らぎ(誤差)を含むため、不規則に変化する。例えば、トランジスタ特性が同じトランジスタM1とトランジスタM2を複数組用意し、各組のαを調べると、各組のαは全て同じになるとは限らない。αはトランジスタのVthばらつきに相当する。また、トランジスタM1とトランジスタM2のトランジスタ特性が異なれば、αも大きくなる。
前述した通り、RCモデル100において、入力層110とリザバー層120の間の、複数の重みWinは、不規則かつ固定されていることが好ましい。本発明の一態様は、トランジスタのVthばらつきを重みWinとして用いることにより、Win×u(t)の演算回路を実現できる。
[積演算回路]
図3に、フォトダイオード210を含むセンサ部240で検知した照度をデータu(t)として用い、トランジスタのVthばらつきを重みWinとして用いる半導体装置230の構成例を示す。なお、半導体装置230は半導体装置200Aの応用例とも言える。半導体装置230は積演算回路として機能する。半導体装置230は、データu(t)と重みWinの積演算を行う機能を備える。
半導体装置230は、積演算部250(「積演算回路」または「第1回路」ともいう。)、センサ部240(「センサ回路」または「第2回路」ともいう。)、および比較部260(「比較回路」または「第3回路」ともいう。)を備える。センサ部240は、フォトダイオード210およびトランジスタM1を備える。トランジスタM1のソースまたはドレインの一方(例えば、ドレイン)は、トランジスタM1のゲートおよびフォトダイオード210のアノードと電気的に接続される。トランジスタM1のソースまたはドレインの他方(例えば、ソース)は配線205と電気的に接続される。配線201には、例えば、Vddが供給され、配線205には、例えば、GNDが供給される。
なお、本実施の形態などでは、センサ部240が備えるフォトダイオードで光の照度を検知する構成を例示しているが、センサ部240で検知する情報はこれに限定されるものではない。センサ部240は、力、変位、位置、速度、加速度、角速度、回転数、距離、光、磁気、温度、音声、時間、電場、電流、電圧、電力、放射線、湿度、傾度、振動、におい、および赤外線の一または複数を検知する機能を備えてもよい。例えば、センサ部240で、温度、湿度、または臭気などを検知してもよい。
積演算部250は、トランジスタM2aおよびトランジスタM2bを備える。トランジスタM2aおよびトランジスタM2bそれぞれのゲートは、配線204を介してトランジスタM1のゲートと電気的に接続される。なお、半導体装置230において、トランジスタM1、トランジスタM2a、およびトランジスタM2bそれぞれのゲートと、トランジスタM1のソースまたはドレインの一方と、が電気的に接続される領域をノードNDとよぶ。また、ノードNDには、フォトダイオード210のアノードまたはカソードが電気的に接続される。図3では、フォトダイオード210のアノードがノードNDと電気的に接続される。
トランジスタM2aのソースまたはドレインの一方(例えば、ドレイン)は配線203aと電気的に接続される。トランジスタM2aのソースまたはドレインの他方(例えば、ソース)には、例えば、GNDが供給される。トランジスタM2bのソースまたはドレインの一方は配線203bと電気的に接続される。トランジスタM2bのソースまたはドレインの他方には、例えば、GNDが供給される。
トランジスタM2aのソースに供給される電位と、トランジスタM2bのソースに供給される電位は同じであることが好ましい。また、トランジスタM2aのソースに供給される電位と、トランジスタM2bのソースに供給される電位は、同電位でなくてもよいし、固定電位でなくてもよい。
半導体装置230では、トランジスタM1、トランジスタM2a、およびトランジスタM2bでカレントミラー回路が構成されている。配線201には、配線205よりも高い電位が供給される。例えば、配線201にVddが供給される。なお、配線201および配線205に供給される電位は固定電位でなくてもよい。
比較部260は、端子261a、端子261b、および端子262を備える。また、比較部260は、端子261aを介して配線203aと電気的に接続され、端子261bを介して配線203bと電気的に接続される。また、比較部260は、端子261aを介して配線203aに電流I3aを供給する機能と、端子261bを介して配線203bに電流I3bを供給する機能と、を備える。また、比較部260は、電流I3aの電流値と電流I3bの電流値の差(「電流差」ともいう。)を電圧Voutに変換し、当該電圧を端子262に供給する機能を備える。
なお、端子261aおよび端子261bには、トランジスタM2aのソースに供給される電位およびトランジスタM2bのソースに供給される電位よりも高い電位が供給される。
次に、半導体装置230の動作について説明する。センサ部240に光が照射されると、照度に応じてノードNDの電位が変化し、トランジスタM1のソースとドレインの間に電流I1が流れる。この時のノードNDの電位がデータu(t)に相当する。なお、この時のノードNDの電位は、トランジスタM1、トランジスタM2a、およびトランジスタM2bをオン状態にする電位とする。
また、トランジスタM2aのソースとドレインの間に流れる電流I2aは、ノードNDの電位とトランジスタM2aのVthによって決定される。また、トランジスタM2bのソースとドレインの間に流れる電流I2bは、ノードNDの電位とトランジスタM2bのVthによって決定される。
図3に示す半導体装置230では、配線203aにトランジスタM2aのみが電気的に接続され、配線203bにトランジスタM2bのみが電気的に接続されている。よって、比較部260から供給される電流I3aは電流I2aと等しく、電流I3bは電流I2bと等しい。
また、比較部260は、電流I3aと電流I3bの差分に相当する電圧Voutを端子262に供給する。例えば、電流I3bよりも電流I3aが大きい場合に電圧Voutを正、小さい場合に負とすることができる。電流I3bよりも電流I3aが小さい場合に電圧Voutを正、大きい場合に負としてもよい。なお、電圧Voutが正とは、電圧Voutの電位が基準電位よりも高いことを示す。また、電圧Voutが負とは、電圧Voutの電位が基準電位よりも低いことを示す。電圧Voutは、重みWinとデータu(t)の積(Win×u(t))に相当する。このようにして積算を行うことができる。
なお、電流I3(電流I3aおよび電流I3b)が大きいと、半導体装置の消費電力が大きくなる。電流I3が大きくなり過ぎないようにするため、電流I2aおよび電流I2bのそれぞれは、電流I1の10倍以下が好ましく、5倍以下がより好ましい。
なお、例えば、ノードNDの電位を1と仮定し、この時の電流I2aが1.0μAであり、電流I2bが1.1μAである場合、電流I2aと電流I2bの差分である−0.1μAが重みWinに相当する。
よって、電流I2aと電流I2bの大きさは異なることが好ましい。電流I2bは電流I2aの0.95倍以下または1.05倍以上が好ましく、0.7倍以下または1.3倍以上がより好ましく、0.3倍以下または3倍以上がさらに好ましい。
また、電流I2aと電流I2bの差分の大きさは、トランジスタM2aのVthとトランジスタM2bのVthの差(「Vthばらつき」または「dVth」ともいう。)によって決定される。よって、トランジスタM2aとトランジスタM2bのVthの差が重みWinに相当する。
トランジスタM2aのVthと、トランジスタM2bのVthは、異なることが好ましい。トランジスタM2bのVthは、トランジスタM2aのVthの0.9倍以下または1.1倍以上が好ましく、0.85倍以下または1.15倍以上がより好ましく、0.8倍以下または1.2倍以上がさらに好ましい。
本発明の一態様によれば、トランジスタのVthばらつきを重みとして用いた積演算が実現できる。
[積和演算回路]
図4Aに、フォトダイオード210を含むセンサ部240で検知した照度をデータu(t)として用い、トランジスタのVthばらつきを重みWinとして用いる半導体装置270の構成例を示す。図4Bは、半導体装置270に対応するRCモデルの構成例を示す図である。
半導体装置270は、入力層110が備えるM個のノード111のそれぞれが、リザバー層120が備えるN個のノード121のそれぞれと結合する積和演算回路として機能する。図4Aおよび図4Bでは、MとNがそれぞれ3である場合を示している。
半導体装置270は、複数のデータu(t)と複数の重みWinの積和演算を行う機能を備える。図4Aに示すセンサ部240[1]乃至センサ部240[3]が、図4Bに示すノード111[1]乃至ノード111[3]に相当する。また、図4Aに示す比較部260[1]乃至比較部260[3]の出力先が、図4Bに示すノード121[1]乃至ノード121[3]に相当する。なお、本明細書などにおいて、任意のセンサ部240をセンサ部240[i](iは1以上M以下の整数。)と示す場合がある。また、本明細書などにおいて、任意の比較部260を比較部260[j](jは1以上N以下の整数。)と示す場合がある。
半導体装置270は、センサ部240[1]乃至センサ部240[3]と、積和演算部300と、M本の配線204と、N本の配線203aと、N本の配線203bと、を備える。積和演算部300は、M行N列のマトリクス状に配置された複数の積演算部250を含む積演算アレイ280を備える。図4Aでは、MとNがそれぞれ3である場合の構成例を示している。よって、センサ部240[3]をセンサ部240[M]と表すことができる。また、比較部260[3]を比較部260[N]と表すことができる。
図4Aでは、1行1列目の積演算部250を積演算部250[1,1]と示し、2行1列目の積演算部250を積演算部250[2,1]と示し、3行1列目の積演算部250を積演算部250[3,1]と示している。
また、1行2列目の積演算部250を積演算部250[1,2]と示し、3行2列目の積演算部250を積演算部250[3,2]と示している。なお、任意の積演算部250を積演算部250[i,j]と示す場合がある。図4Aに示す積演算部250[i,j]は、iおよびjがそれぞれ2の積演算部250である。
また、図4Aでは、1行3列目の積演算部250を積演算部250[1,3]と示し、2行3列目の積演算部250を積演算部250[2,3]と示し、3行3列目の積演算部250を積演算部250[3,3]と示している。なお、図4Aに示す積演算アレイ280では、積演算部250[3,3]を積演算部250[M,N]と表すことができる。
1行目の積演算部250は、配線204[1]を介してセンサ部240[1]と電気的に接続される。2行目の積演算部250は、配線204[2]を介してセンサ部240[2]と電気的に接続される。3行目の積演算部250は、配線204[3]を介してセンサ部240[3]と電気的に接続される。
図4では、センサ部240[1]から出力されるデータu(t)をデータu(t)と示し、センサ部240[2]から出力されるデータu(t)をデータu(t)と示し、センサ部240[3]から出力されるデータu(t)をデータu(t)と示している。
また、1列目の積演算部250は、配線203a[1]および配線203b[1]を介して、比較部260[1]と電気的に接続される。2列目の積演算部250は、配線203a[2]および配線203b[2]を介して、比較部260[2]と電気的に接続される。3列目の積演算部250は、配線203a[3]および配線203b[3]を介して、比較部260[3]と電気的に接続される。
なお、説明の重複を避けるため、ここでのセンサ部240、積演算部250、および比較部260に係る説明は省略する。
続いて、1列目の積演算部250を用いた積和演算について説明する。図5に1列目の積演算部250を含む半導体装置270の部分拡大図を示す。
積演算部250[1,1]に、データu(t)に相当する電圧が供給されると、積演算部250[1,1]が備えるトランジスタM2a[1,1]のソースとドレインの間に電流I2a[1,1]が流れ、トランジスタM2b[1,1]のソースとドレインの間に電流I2b[1,1]が流れる。
積演算部250[2,1]に、データu(t)に相当する電圧が供給されると、積演算部250[2,1]が備えるトランジスタM2a[2,1]のソースとドレインの間に電流I2a[2,1]が流れ、トランジスタM2b[2,1]のソースとドレインの間に電流I2b[2,1]が流れる。
積演算部250[3,1]に、データu(t)に相当する電圧が供給されると、積演算部250[3,1]が備えるトランジスタM2a[3,1]のソースとドレインの間に電流I2a[3,1]が流れ、トランジスタM2b[3,1]のソースとドレインの間に電流I2b[3,1]が流れる。
よって、電流I2a[1,1]、電流I2a[2,1]、および電流I2a[3,1]が加算された電流が、電流I3a[1]として1列目の比較部260[1]から端子261a[1]を介して配線203a[1]に供給される。
また、電流I2b[1,1]、電流I2b[2,1]、および電流I2b[3,1]が加算された電流が、電流I3b[1]として1列目の比較部260[1]から端子261b[1]を介して配線203b[1]に供給される。
また、比較部260[1]は、電流I3a[1]と電流I3b[1]の差に相当する電圧Vout[1]を端子262[1]に供給する。よって、電圧Vout[1]は、積演算部250[1,1]の重みWin[1,1](図示せず)とデータu(t)の積、積演算部250[2,1]の重みWin[2,1](図示せず)とデータu(t)の積、および、積演算部250[3,1]の重みWin[3,1](図示せず)とデータu(t)の積の総和に相当する。
比較部260[1]と同様に、比較部260[2]からは、積演算部250[1,2]の重みWin[1,2](図示せず)とデータu(t)の積、積演算部250[2,2]の重みWin[2,2](図示せず)とデータu(t)の積、および、積演算部250[3,2]の重みWin[3,2](図示せず)とデータu(t)の積の総和に相当する電圧Vout[2]が端子262[2]に供給される。
比較部260[1]および比較部260[2]と同様に、比較部260[3]からは、積演算部250[1,3]の重みWin[1,3](図示せず)とデータu(t)の積、積演算部250[2,3]の重みWin[2,3](図示せず)とデータu(t)の積、および、積演算部250[3,3]の重みWin[3,3](図示せず)とデータu(t)の積の総和に相当する電圧Vout[3]が端子262[3]に供給される。
このようにして、半導体装置270において重みWinとデータu(t)の積和演算を行うことができる。端子262[1]に供給された電圧Vout[1]は、リザバー層120が備える1つ目のノード121(ノード121[1])に入力される。ノード121[1]のデータx(t)は数式1を用いて決定される。電圧Vout[1]は、数式1の「Win×u(t)」に相当する。
また、端子262[2]に供給された電圧Vout[2]は、リザバー層120が備える2つ目のノード121(ノード121[2])に入力される。端子262[3]に供給された電圧Vout[3]は、リザバー層120が備える3つ目のノード121(ノード121[3])に入力される。データx(t)およびデータx(t)も数式1を用いて決定される。端子262[2]に供給された電圧および端子262[3]に供給された電圧は、それぞれ数式1の「Win×u(t)」に相当する。
前述した通り、積演算部250が備えるトランジスタM2aのVthと、トランジスタM2bのVthは、異なることが好ましい。トランジスタM2bのVthは、トランジスタM2aのVthの0.9倍以下または1.1倍以上が好ましく、0.85倍以下または1.15倍以上がより好ましく、0.8倍以下または1.2倍以上がより好ましい。
また、積演算アレイ280が備える複数の積演算部250は、積演算部250毎にトランジスタM2aのVthとトランジスタM2bのVthの差(dVth)が不規則に異なることが好ましい。なお、積演算アレイ280が備える複数の積演算部250のうち、2以上の積演算部250において、それぞれのdVthが等しくても、積演算アレイ280全体としてdVthの値が不規則にばらついていると見なせればよい。
本発明の一態様によれば、dVthを重みとして用いた積和演算が実現できる。すなわち、トランジスタのVthばらつきを重みとして用いた積和演算が実現できる。前述した通り、トランジスタのVthばらつきは一定ではなく不規則である。よって、トランジスタのVthばらつきはリザバーコンピューティングの重みとして好適に用いることができる。
また、トランジスタのVthばらつきを重みとして用いることにより、重みを記憶するための回路構成が不要になる。よって、ハードウェア実装時の占有面積が低減され、回路設計が容易となる。すなわち、積演算回路および積和演算回路のハードウェア実装が容易になる。また、トランジスタのVthばらつきを重みとして用いることにより、重みデータの書き換えが不要であり、少ない消費電力で演算処理が可能になる。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態2)
本実施の形態では、m行n列(mおよびnのそれぞれは、2以上の整数。)のマトリクス状に配置されたS個(Sは、mとnの積。)のセンサ部240を備えた入力層110と、N個のノード121を備えたリザバー層120と、K個のノード131を備えた出力層130と、を含むRCモデル150に、積和演算部300を用いる構成例について説明する。
図6はRCモデル150の構成を説明するブロック図である。RCモデル150はRCモデル100の変形例であり、センサ部240は、上記実施の形態に示したノード111に相当する。なお、本実施の形態に記載の無い事項については、他の実施の形態の記載を援用して理解できる。
図6では、1行1列目に配置されたセンサ部240をセンサ部240[1,1]と示している。また、2行1列目に配置されたセンサ部240をセンサ部240[2,1]と示し、1行2列目に配置されたセンサ部240をセンサ部240[1,2]と示し、2行2列目に配置されたセンサ部240をセンサ部240[2,2]と示し、m行1列目に配置されたセンサ部240をセンサ部240[m,1]と示し、1行n列目に配置されたセンサ部240をセンサ部240[1,n]と示し、2行n列目に配置されたセンサ部240をセンサ部240[2,n]と示し、m行n列目に配置されたセンサ部240をセンサ部240[m,n]と示している。例えば、センサ部240[1,1]はノード111[1,1]に相当する。
また、1個目のノード121をノード121[1]と示し、2個目のノード121をノード121[2]と示し、N個目のノード121をノード121[N]と示している。
また、1個目のノード131をノード131[1]と示し、K個目のノード131をノード131[K]と示している。
本発明の一態様に係る積和演算部300は、RCモデル150の入力層110とリザバー層120の結合部に用いることができる。図7に、入力層110と積和演算部300を含む半導体装置290の接続構成例を示す。
図7は半導体装置290の斜視ブロック図である。積和演算部300は、n個の積演算アレイ280と、N個の比較部260を備える。1個目の積演算アレイ280(積演算アレイ280[1])は、入力層110の1列目に配置されたm個のセンサ部240と電気的に接続される。n個目の積演算アレイ280(積演算アレイ280[n])は、入力層110のn列目に配置されたm個のセンサ部240と電気的に接続される。
入力層110の列毎のセンサ部240と、積演算アレイ280の接続構成は、半導体装置270と同様である。例えば、実施の形態1に示したMが、mに相当する。よって、本実施の形態での詳細な説明は省略する。
半導体装置290において、n個の積演算アレイ280それぞれが有する配線203a[1]は、端子261a[1]と電気的に接続される。また、n個の積演算アレイ280それぞれが有する配線203b[1]は、端子261b[1]と電気的に接続される。
よって、比較部260[1]が端子262[1]に供給する電圧Vout[1]は、n個の積演算アレイ280それぞれが有する1列目の重みWinと、S個のセンサ部240から供給されるデータu(t)の積和演算結果に相当する。
同様に、n個の積演算アレイ280それぞれが有する配線203a[N]は、端子261a[N]と電気的に接続される。n個の積演算アレイ280それぞれが有する配線203b[N]は、端子261b[N]と電気的に接続される。
よって、比較部260[N]が端子262[N]に供給する電圧Vout[N]は、n個の積演算アレイ280それぞれが有するN列目の重みWinと、S個のセンサ部240から供給されるデータu(t)の積和演算結果に相当する。
このようにして、電圧Vout[1]乃至電圧Vout[N]が得られる。電圧Voutは、リザバー層120が備えるノード121に入力される。例えば、電圧Vout[1]はノード121[1]に入力され、電圧Vout[2]はノード121[2]に入力される。また、電圧Vout[N]はノード121[N]に入力される。
リザバー層120および出力層130は、ソフトウェアで構築してもよい。ハードウェアで実装した、入力層110および積和演算部300によって、データu(t)と重みWinの積和演算を行い、その結果を用いてリザバー層120の演算処理および出力層130の演算処理を行う。特に、RCモデルにおいて重みの変更が必要のない積和演算部300をハードウェアで実装することで、少ない消費電力で演算処理が可能になる。また、高速な演算処理が可能になる。
また、重みWresもリザバー層120内で不規則であれば変更する必要がないため、ハードウェアで実装してもよい。すなわち、重みを後から変更しない層は、ハードウェアで実装してもよい。
また、RCモデルにおいて、重みWoutは学習により変更される場合がある。よって、出力層130は重みの変更が容易なソフトウェアで構成すると好適である。重みWoutは、リザバー層120に含まれるノード121と出力層130に含まれるノード131の結合の強さに相当する。よって、リザバー層120および出力層130をソフトウェアで構成すると好適である。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態3)
本実施の形態では、積演算部250および積演算アレイ280の平面レイアウトの一例について説明する。
図8Aは積演算部250の平面レイアウト例を示す図である。図8Aにおいて、半導体層221aと導電層222aが重なる領域が、トランジスタM2aのチャネル形成領域として機能する。よって、導電層222aはトランジスタM2aのゲートとして機能する。導電層222aは導電層223aを介して配線204と電気的に接続される。
また、半導体層221aは導電層224aを介して配線203aと電気的に接続される。また、半導体層221aは導電層225aを介して配線202と電気的に接続される。
図8Aにおいて、半導体層221bと導電層222bが重なる領域が、トランジスタM2bのチャネル形成領域として機能する。よって、導電層222bはトランジスタM2bのゲートとして機能する。導電層222bは導電層223bを介して配線204と電気的に接続される。
また、半導体層221bは導電層224bを介して配線203bと電気的に接続される。また、半導体層221bは導電層225bを介して配線202と電気的に接続される。
導電層、半導体層、および配線の間の電気的な接続は、コンタクトホール部において実現される。例えば、導電層224aと配線203aは、コンタクトホール226aにおいて電気的に接続される。また、例えば、導電層224bと配線203bは、コンタクトホール226bにおいて電気的に接続される。
図8Bは積演算アレイ280の平面レイアウト例を示す図である。図8Bでは、4行2列に配置された積演算部250を備える積演算アレイ280の平面レイアウト例を示している。
図8Bでは、1行1列目の積演算部250を積演算部250[1,1]と示している。また、4行1列目の積演算部250を積演算部250[4,1]と示し、4行2列目の積演算部250を積演算部250[4,2]と示している。その他の位置に配置された積演算部250も、上記と同様に表記している。
また、1行目の積演算部250と電気的に接続する配線204を、配線204[1]と示し、2行目の積演算部250と電気的に接続する配線204を、配線204[2]と示している。また、3行目の積演算部250と電気的に接続する配線204を、配線204[3]と示し、4行目の積演算部250と電気的に接続する配線204を、配線204[4]と示している。
また、1行目の積演算部250と電気的に接続する配線202を、配線202[1]と示し、2行目の積演算部250と電気的に接続する配線202を、配線202[2]と示している。また、3行目の積演算部250と電気的に接続する配線202を、配線202[3]と示し、4行目の積演算部250と電気的に接続する配線202を、配線202[4]と示している。
また、1列目の積演算部250と電気的に接続する配線203aおよび配線203bを、それぞれ配線203a[1]および配線203b[1]と示している。また、2列目の積演算部250と電気的に接続する配線203aおよび配線203bを、それぞれ配線203a[2]および配線203b[2]と示している。
<変形例1>
積演算アレイ280を構成する複数の積演算部250において、1つの積演算部250が備えるトランジスタM2aおよびトランジスタM2bの一方または双方において、チャネル長およびチャネル幅の一方または双方を不規則に変化させることで、重みWinに相当するVthばらつきを大きくすることができる。すなわち、重みWinのばらつきを大きくする(不規則性を高める)ことができる。また、積演算アレイ280内に、当該積演算部250を不規則に配置してもよい。
なお、本実施の形態などにおいて、不規則とは、繰り返し周期などに規則性があるとは言えないこと、もしくは繰り返し周期などを線形式(一次関数式)で表せないことを言う。
図9AにトランジスタM2(トランジスタM2aおよびトランジスタM2bの一方または双方)の平面拡大図を示す。トランジスタM2において、半導体層221(半導体層221aまたは半導体層221b)と導電層222(導電層222aまたは導電層222b)が重なる領域で、ドレイン電流の流れる方向と平行な方向がチャネル長(L)であり、ドレイン電流の流れる方向と直交する方向がチャネル幅(W)である。
また、トランジスタM2のチャネル長は、半導体層221と導電層222が重なる領域における、ドレイン電流の流れる方向と平行な方向の導電層222の長さと言い換えることができる。トランジスタM2のチャネル幅は、半導体層221と導電層222が重なる領域における、ドレイン電流の流れる方向と直交する方向の半導体層221の長さと言い換えることができる。
よって、トランジスタM2のチャネル長は、導電層222の大きさを調整することによって変えることができる。また、トランジスタM2のチャネル幅は、半導体層221(半導体層221aおよび半導体層221b)の大きさを調整することによって変えることができる。
図9Bに積演算アレイ280の変形例である積演算アレイ280Aの平面レイアウトを示す。図9Bでは、積演算アレイ280Aでは、積演算部250[1,1]の導電層222a、積演算部250[1,2]の導電層222a、積演算部250[2,2]の導電層222b、積演算部250[3,1]の導電層222a、積演算部250[3,1]の導電層222b、および、積演算部250[4,1]の導電層222bの大きさを不規則に変化させた積演算アレイ280Aの平面レイアウトを示している。
<変形例2>
トランジスタM2aまたはトランジスタM2bの一方のみを備える積演算部250を、積演算アレイ280に不規則に設けることで、重みWinのばらつきを大きくすることができる。
例えば、積演算部250が備えるトランジスタM2aおよびトランジスタM2bのうち、トランジスタM2aのみを設ける場合は、半導体層221b、導電層222b、導電層223b、導電層224b、および、導電層225bの少なくとも一を設けなければよい。または、これらに係るコンタクトホールの少なくとも一を設けなければよい。同様に、トランジスタM2bのみを設ける場合は、半導体層221a、導電層222a、導電層223a、導電層224a、および導電層225aの少なくとも一を設けなければよい。または、これらに係るコンタクトホールの少なくとも一を設けなければよい。
図10に積演算アレイ280の変形例である積演算アレイ280Bの平面レイアウトを示す。図10では、積演算部250[1,1]のコンタクトホール226a、積演算部250[2,1]のコンタクトホール226a、積演算部250[4,1]のコンタクトホール226b、積演算部250[1,2]のコンタクトホール226b、および、積演算部250[3,2]のコンタクトホール226aを形成しない積演算アレイ280Bの平面レイアウトを示している。また、図11に積演算アレイ280Bの等価回路図を示す。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態4)
本実施の形態では、上記実施の形態に示した半導体装置270の変形例である半導体装置270Aについて説明する。本実施の形態に説明の無い事柄については、他の実施の形態を参酌すればよい。
図12に半導体装置270Aの構成例を示す。半導体装置270Aは、積和演算部300Aと、M個のセンサ部240と、を備える。積和演算部300Aは、積演算アレイ280Cと、N個の比較部260と、を備える。積演算アレイ280Cは、M行N列のマトリクス状に配置された複数の積演算部250Aを備える。なお、積演算アレイ280Cは、積演算アレイ280の変形例である。
上記実施の形態では、1つの積演算部250が備えるトランジスタM2aおよびトランジスタM2bそれぞれの、チャネル長およびチャネル幅の一方または双方の大きさを変えることで、両トランジスタ間のdVthを大きくする構成を示した。加えて、複数の積演算部250を備える積演算アレイ280において、各dVthを不規則に設定する構成を示した。
本実施の形態に示す半導体装置270Aでは、積演算部250Aが1つのトランジスタM2を備える。積演算部250Aは、積演算部250からトランジスタM2aまたはトランジスタM2bの一方を除いた構成と言える。図12では、1行1列目の積演算部250Aに含まれるトランジスタM2をトランジスタM2[1,1]と示し、トランジスタM2[1,1]のソースとドレイン間に流れる電流を電流I2[1,1]と示している。同様に、M行N列目の積演算部250Aに含まれるトランジスタM2をトランジスタM2[M,N]と示し、トランジスタM2[M,N]のソースとドレイン間に流れる電流を電流I2[M,N]と示している。
また、積演算アレイ280Cに含まれる複数の積演算部250Aにおいて、それぞれのトランジスタM2のVthの大きさが、不規則にばらつくように設定される。具体的には、積演算アレイ280Cに含まれる複数のトランジスタM2それぞれの、チャネル長およびチャネル幅の一方または双方を不規則に設定する。
なお、上記実施の形態で説明した通り、トランジスタM2のチャネル長は、半導体層221と導電層222が重なる領域における、ドレイン電流の流れる方向と平行な方向の導電層222の長さと言い換えることができる(図9A参照)。トランジスタM2のチャネル幅は、半導体層221と導電層222が重なる領域における、ドレイン電流の流れる方向と交差する方向の半導体層221の長さと言い換えることができる(図9A参照)。
一例として、図13および図14に、積演算アレイ280Cの平面レイアウト図を示す。図13は、積演算アレイ280Cが含む複数のトランジスタM2のチャネル長(導電層222の大きさ(図9A参照))を、それぞれ不規則に変化させた場合の平面レイアウトを示している。図14は、積演算アレイ280Cが含む複数のトランジスタM2それぞれのチャネル幅(半導体層221の大きさ(図9A参照))を、不規則に変化させた場合の平面レイアウトを示している。なお、チャネル長とチャネル幅の双方を不規則に変化させてもよい。
上記実施の形態に示した半導体装置270と同様に、1行目の積演算部250Aは、配線204[1]を介してセンサ部240[1]と電気的に接続される。また、M行目の積演算部250Aは、配線204[M]を介してセンサ部240[M]と電気的に接続される。図12では、センサ部240[M]から出力されるデータu(t)をデータu(t)と示している。
図13および図14では、1行目の積演算部250Aが備えるトランジスタM2のゲートが配線204[1]と電気的に接続されている様子を示している。また、1行目の積演算部250Aが備えるトランジスタM2のソースまたはドレインの一方が配線202[1]と電気的に接続されている様子を示している。
また、図13および図14では、M行目の積演算部250Aが備えるトランジスタM2のゲートが配線204[M]と電気的に接続されている様子を示している。また、M行目の積演算部250Aが備えるトランジスタM2のソースまたはドレインの一方が配線202[M]と電気的に接続されている様子を図示している。
また、図13および図14では、1列目の積演算部250Aが備えるトランジスタM2のソースまたはドレインの他方が配線203[1]と電気的に接続されている様子を示している。また、N列目の積演算部250Aが備えるトランジスタM2のソースまたはドレインの他方が配線203[N]と電気的に接続されている様子を示している。
また、1列目の積演算部250Aは、配線203[1]を介して比較部260[1]の端子261a[1]と電気的に接続される。また、N列目の積演算部250Aは、配線203[N]を介して比較部260[N]の端子261a[N]と電気的に接続される(図12参照)。
電流I2[1,1]乃至電流I2[M,1]が加算された電流が、電流I3a[1]として1列目の比較部260[1]から端子261a[1]を介して配線203[1]に供給される。また、端子261b(端子261b[1]乃至端子261b[N])には参照電流Irefが供給される。例えば、参照電流Irefは端子261bからGNDに向かって流れる。参照電流Irefは、上記実施の形態に示した電流I3bに相当する。
比較部260[1]は、電流I3a[1]と参照電流Irefの差に相当する電圧Vout[1]を端子262[1]に供給する。電圧Vout[1]は、データu(t)乃至データu(t)と、1列目の積演算部250A[1,1]乃至積演算部250A[M,1]の積和演算結果に相当する。例えば、参照電流Irefよりも電流I3a[1]が大きい場合に積和演算結果を正、小さい場合に積和演算結果を負とすることができる。
また、比較部260[1]を用いずに、電流I3a[1]を電圧またはデジタルデータに変換してもよい。電流I3a[1]を電圧またはデジタルデータに変換し、その後に基準の値と比較することで、積和演算結果の正負を判断してもよい。
電圧Vout[1]乃至電圧Vout[N]のそれぞれは、数式1の「Win×u(t)」に相当する。また、電流I3a[1]乃至電流I3a[N]のそれぞれを電圧に変換したデータは、数式1の「Win×u(t)」に相当する。また、電流I3a[1]乃至電流I3a[N]のそれぞれを変換したデジタルデータは、数式1の「Win×u(t)」に相当する。
なお、電流I3aが大きいと、半導体装置の消費電力が大きくなる。電流I3aが大きくなり過ぎないようにするため、電流I2は、電流I1の10倍以下が好ましく、5倍以下がより好ましい。
積演算部250Aが備えるトランジスタM2に流れる電流I2の大きさは、少なくとも同一列内の任意の3以上のトランジスタM2で異なることが好ましい。同一列内における電流I2の大きさは、同一列内における電流I2の平均値の0.95倍以下または1.05倍以上が好ましく、0.7倍以下または1.3倍以上がより好ましく、0.3倍以下または3倍以上がさらに好ましい。
積演算部250Aが備えるトランジスタM2のVthは、少なくとも同一列内の任意の3以上のトランジスタM2で異なることが好ましい。同一列内におけるVthは、同一列内におけるVthの平均値の0.9倍以下または1.1倍以上が好ましく、0.85倍以下または1.15倍以上がより好ましく、0.8倍以下または1.2倍以上がさらに好ましい。
積演算部250Aが備えるトランジスタM2のチャネル長は、少なくとも同一列内の任意の3以上のトランジスタM2で異なることが好ましい。同一列内におけるチャネル長は、同一列内におけるチャネル長の平均値の0.9倍以下または1.1倍以上が好ましく、0.85倍以下または1.15倍以上がより好ましく、0.8倍以下または1.2倍以上がさらに好ましい。なお、前述した通り、チャネル長は、ドレイン電流の流れる方向と平行な方向の導電層222の長さと言い換えることができる。
積演算部250Aが備えるトランジスタM2のチャネル幅は、少なくとも同一列内の任意の3以上のトランジスタM2で異なることが好ましい。同一列内におけるチャネル幅は、同一列内におけるチャネル幅の平均値の0.9倍以下または1.1倍以上が好ましく、0.85倍以下または1.15倍以上がより好ましく、0.8倍以下または1.2倍以上がさらに好ましい。なお、前述した通り、チャネル長は、ドレイン電流の流れる方向と交差する方向の半導体層221の長さと言い換えることができる。
また、積演算アレイ280Cが備える複数の積演算部250Aは、少なくとも同一列内の任意の3以上のトランジスタM2のVthが不規則に異なることが好ましい。なお、複数の積演算部250Aのうち、2以上の積演算部250Aそれぞれが備えるトランジスタM2のVthが等しくても、少なくとも同一列内もしくは積演算アレイ280C全体としてトランジスタM2のVthが不規則であればよい。
また、積演算アレイ280Cが備える複数の積演算部250Aは、少なくとも同一列内の任意の3以上のトランジスタM2のチャネル長が不規則に異なることが好ましい。なお、複数の積演算部250Aのうち、2以上の積演算部250Aそれぞれが備えるトランジスタM2のチャネル長が等しくても、少なくとも同一列内もしくは積演算アレイ280C全体としてトランジスタM2のチャネル長が不規則であればよい。
また、積演算アレイ280Cが備える複数の積演算部250Aは、少なくとも同一列内の任意の3以上のトランジスタM2のチャネル幅が不規則に異なることが好ましい。なお、複数の積演算部250Aのうち、2以上の積演算部250Aそれぞれが備えるトランジスタM2のチャネル幅が等しくても、少なくとも同一列内もしくは積演算アレイ280C全体としてトランジスタM2のチャネル幅が不規則であればよい。
本発明の一態様に係る半導体装置270Aは、積演算部に用いるトランジスタを低減できる。よって、積和演算に係る消費電力を低減できる。また、積演算部の占有面積が低減される。よって、積演算部の実装密度を高めることができる。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態5)
本実施の形態では、本発明の一態様に係る半導体装置を用いることができる表示装置10の構成例について説明する。図15Aは、表示装置10を説明するブロック図である。表示装置10は、表示領域335、第1駆動回路部331、および第2駆動回路部332を有する。表示領域335はマトリクス状に配置された複数の画素330を有する。
第1駆動回路部331に含まれる回路は、例えば走査線駆動回路として機能する。第2駆動回路部332に含まれる回路は、例えば信号線駆動回路として機能する。なお、表示領域335を挟んで第1駆動回路部331向き合う位置に、何らかの回路を設けてもよい。表示領域335を挟んで第2駆動回路部332向き合う位置に、何らかの回路を設けてもよい。なお、第1駆動回路部331および第2駆動回路部332に含まれる回路の総称を、「周辺駆動回路」という場合がある。
周辺駆動回路には、シフトレジスタ、レベルシフタ、インバータ、ラッチ、アナログスイッチ、論理回路等の様々な回路を用いることができる。周辺駆動回路には、トランジスタおよび容量素子等を用いることができる。周辺駆動回路が有するトランジスタを、画素330に含まれるトランジスタと同じ工程で形成してもよい。
例えば、画素330を構成するトランジスタに、チャネルが形成される半導体に酸化物半導体を用いたトランジスタ(「OSトランジスタ」ともいう。)を用い、周辺駆動回路を構成するトランジスタに、チャネルが形成される半導体にシリコンを用いたトランジスタ(「Siトランジスタ」ともいう。)を用いてもよい。OSトランジスタはオフ電流が低いため、消費電力を低減できる。また、SiトランジスタはOSトランジスタよりも動作速度が速いため、周辺駆動回路に用いると好適である。また、表示装置によっては、画素330を構成するトランジスタと、周辺駆動回路と周辺駆動回路を構成するトランジスタの双方にOSトランジスタを用いてもよい。また、表示装置によっては、画素330を構成するトランジスタと、周辺駆動回路と周辺駆動回路を構成するトランジスタの双方にSiトランジスタを用いてもよい。または、表示装置によっては、画素330を構成するトランジスタにSiトランジスタを用い、周辺駆動回路を構成するトランジスタにOSトランジスタを用いてもよい。
また、画素330を構成するトランジスタに、SiトランジスタとOSトランジスタの双方を用いてもよい。また、周辺駆動回路を構成するトランジスタに、SiトランジスタとOSトランジスタの双方を用いてもよい。
なお、Siトランジスタに用いる材料としては、単結晶シリコン、多結晶シリコン、非晶質シリコン等が挙げられる。特に、半導体層に低温ポリシリコン(LTPS(Low Temperature Poly Silicon))を有するトランジスタ(以下、LTPSトランジスタともいう)を用いることができる。LTPSトランジスタは、電界効果移動度が高く、周波数特性が良好である。
LTPSトランジスタ等のSiトランジスタを適用することで、高周波数で駆動する必要のある回路(例えばソースドライバ回路)を表示部と同一基板上に作り込むことができる。これにより、表示装置に実装される外部回路を簡略化でき、部品コストおよび実装コストを削減することができる。
OSトランジスタは、非晶質シリコンを用いたトランジスタと比較して電界効果移動度が極めて高い。また、OSトランジスタは、オフ電流が著しく小さく、当該トランジスタと直列に接続された容量に蓄積した電荷を長期間に亘って保持することが可能である。また、OSトランジスタを適用することで、表示装置の消費電力を低減できる。
また、室温下における、チャネル幅1μmあたりのOSトランジスタのオフ電流値は、1aA(1×10−18A)以下、1zA(1×10−21A)以下、または1yA(1×10−24A)以下とすることができる。なお、室温下における、チャネル幅1μmあたりのSiトランジスタのオフ電流値は、1fA(1×10−15A)以上1pA(1×10−12A)以下である。したがって、OSトランジスタのオフ電流は、Siトランジスタのオフ電流よりも10桁程度低いともいえる。
また、表示装置10は、各々が略平行に配設され、且つ、第1駆動回路部331に含まれる回路によって電位が制御されるp本(pは2以上の整数)の配線336と、各々が略平行に配設され、且つ、第2駆動回路部332に含まれる回路によって電位が制御されるq本(qは2以上の整数)の配線337と、を有する。
なお、図15Aでは、画素330に配線336と配線337が接続している例を示している。ただし、配線336と配線337は一例であり、画素330と接続する配線は、配線336と配線337に限らない。
表示領域335は[p行q列]のマトリクス状に配設された複数の画素330を備える。例えば、r行目(rは任意の数を示し、本実施の形態などでは1以上p以下の整数である。)に配置されている画素330は、r番目の配線336を介して第1駆動回路部331と電気的に接続される。また、s列目(sは任意の数を示し、本実施の形態などでは1以上q以下の整数である。)に配置されている画素330は、s番目の配線337を介して第2駆動回路部332と電気的に接続される。
図15Aでは、1行q列目に配置された画素330を画素330[1,q]と示し、p行1列目に配置された画素330を画素330[p,1]と示し、p行q列目に配置された画素330を画素330[p,q]と示している。また、r行s列目に配置された画素330を画素330[r,s]と示している。
赤色光を制御する画素330、緑色光を制御する画素330、および青色光を制御する画素330をストライプ状に配置し、これらをまとめて1つの画素340として機能させ、それぞれの画素330の発光量(発光輝度)を制御することで、フルカラー表示を実現することができる。よって、当該3つの画素330はそれぞれが副画素として機能する。すなわち、3つの副画素は、それぞれが赤色光、緑色光、または青色光の、発光量などを制御する(図15B1参照。)。なお、3つの副画素それぞれが制御する光の色は、赤(R)、緑(G)、青(B)の組み合わせに限らず、シアン(C)、マゼンタ(M)、黄(Y)であってもよい(図15B2参照。)。
また、1つの画素340を構成する3つの画素330の配置は、デルタ配置でもよい(図15B3参照。)。具体的には、1つの画素340を構成する3つの画素330それぞれの中心点を結ぶ線が、三角形になるように配置してもよい。
また、3つの副画素(画素330)それぞれの面積は同じでなくてもよい。発光色によって発光効率および信頼性などが異なる場合、発光色毎に副画素の面積を変えてもよい(図15B4参照。)。なお、図15B4に示す副画素の配置を、「Sストライプ配列」と呼称してもよい。
また、4つの副画素をまとめて1つの画素として機能させてもよい。例えば、赤色光、緑色光、青色光をそれぞれ制御する3つの副画素に、白色光を制御する副画素を加えてもよい(図15B5参照。)。白色光を制御する副画素を加えることで、表示領域の輝度を高めることができる。また、赤色光、緑色光、青色光をそれぞれ制御する3つの副画素に、黄色光を制御する副画素を加えてもよい(図15B6参照。)。また、シアン色光、マゼンタ色光、黄色光をそれぞれ制御する3つの副画素に、白色光を制御する副画素を加えてもよい(図15B7参照。)。
1つの画素として機能させる副画素の数を増やし、赤、緑、青、シアン、マゼンタ、および黄などの光を制御する副画素を適宜組み合わせて用いることにより、中間調の再現性を高めることができる。よって、表示品位を高めることができる。
また、図16Aおよび図16Bに示す様に、画素340にセンサ部240および積演算部250を設けてもよい。なお、図16Aは図15B1に示した画素340の変形例であり、図16Bは図15B4に示した画素340の変形例である。なお、図16では、センサ部240に「PS」の記号を付し、積演算部250に「MC」の記号を付している。
複数の画素340に設けたセンサ部240を並列に接続することで、センサ部240の検出感度を高めることができる。例えば、センサ部240がフォトダイオードを備える場合、センサ部240を並列に接続することにより、光検出感度を高めることができる。例えば、図16Cに示す様に、センサ部240a、センサ部240b、センサ部240c、およびセンサ部240dを並列に接続して、1つのセンサ部240として機能させてもよい。
また、図16Dに示す様に、センサ部240を備える画素340aと、積演算部250を備える画素340bを設けてもよい。図16Dでは、1例として、1つの画素340aと3つの画素340bを示している。
また、本発明の一態様に係る表示装置は、さまざまな規格の色域を再現することができる。例えば、テレビ放送で使われるPAL(Phase Alternating Line)規格およびNTSC(National Television System Committee)規格、パーソナルコンピュータ、デジタルカメラ、プリンタなどの電子機器に用いる表示装置で広く使われているsRGB(standard RGB)規格およびAdobe RGB規格、HDTV(High Definition Television、ハイビジョンともいう)で使われるITU−R BT.709(International Telecommunication Union Radiocommunication Sector Broadcasting Service(Television) 709)規格、デジタルシネマ映写で使われるDCI−P3(Digital Cinema Initiatives P3)規格、UHDTV(Ultra High Definition Television、スーパーハイビジョンともいう)で使われるITU−R BT.2020(REC.2020(Recommendation 2020))規格などの色域を再現することができる。
また、画素340を1920×1080のマトリクス状に配置すると、いわゆるフルハイビジョン(「2K解像度」、「2K1K」、または「2K」などとも言われる。)の解像度でフルカラー表示可能な表示装置10を実現することができる。また、例えば、画素340を3840×2160のマトリクス状に配置すると、いわゆるウルトラハイビジョン(「4K解像度」、「4K2K」、または「4K」などとも言われる。)の解像度でフルカラー表示可能な表示装置10を実現することができる。また、例えば、画素340を7680×4320のマトリクス状に配置すると、いわゆるスーパーハイビジョン(「8K解像度」、「8K4K」、または「8K」などとも言われる。)の解像度でフルカラー表示可能な表示装置10を実現することができる。画素340を増やすことで、16Kまたは32Kの解像度でフルカラー表示可能な表示装置10を実現することも可能である。
また、表示領域335の画素密度は、100ppi以上10000ppi以下が好ましく、1000ppi以上10000ppi以下がより好ましい。例えば、2000ppi以上6000ppi以下であってもよいし、3000ppi以上5000ppi以下であってもよい。
なお、表示領域335の縦横比(アスペクト比)については、特に限定はない。表示装置10の表示領域335は、例えば、1:1(正方形)、4:3、16:9、16:10など様々な縦横比に対応できる。
表示領域335の対角サイズは、0.1インチ以上100インチ以下であればよく、100インチ以上であってもよい。
なお、表示装置10を仮想現実(VR:Virtual Reality)または拡張現実(AR:Augmented Reality)用の表示装置として用いる場合、表示領域335の対角サイズは、0.1インチ以上5.0インチ以下、好ましくは0.5インチ以上2.0インチ以下、さらに好ましくは、1インチ以上1.7インチ以下とすることができる。例えば、表示領域335の対角サイズを1.5インチ、または1.5インチ近傍にしてもよい。表示領域335の対角サイズを2.0インチ以下、好ましくは1.5インチ近傍とすることで、露光装置(代表的にはスキャナー装置)の1回の露光処理で処理することが可能となるため、製造プロセスの生産性を向上させることができる。
また、本発明の一態様の半導体装置は、表示領域335のリフレッシュレートを可変にすることができる。例えば、表示領域335に表示されるコンテンツに応じてリフレッシュレートを調整(例えば、0.01Hz以上240Hz以下の範囲で調整)して消費電力を低減させることができる。また、リフレッシュレートを低下させた駆動により、表示領域335の消費電力を低減する駆動をアイドリングストップ(IDS)駆動と呼称してもよい。
また、表示領域335に、タッチセンサまたはニアタッチセンサを設けてもよい。また、上記のリフレッシュレートに応じて、タッチセンサ、またはニアタッチセンサの駆動周波数を変化させてもよい。例えば、表示装置のリフレッシュレートが120Hzの場合、タッチセンサ、またはニアタッチセンサの駆動周波数を120Hzよりも高い周波数(代表的には240Hz)とする構成とすることができる。当該構成とすることで、低消費電力が実現でき、且つタッチセンサ、またはニアタッチセンサの応答速度を高めることが可能となる。
ここで、タッチセンサまたは非接触センサとは、対象物(指、手、またはペンなど)の近接もしくは接触を検出する機能を備えるセンサである。タッチセンサは、対象物がセンサと直接接することで、対象物を検出できる。また、非接触センサは、対象物がセンサと直接接触しなくても、当該対象物を検出することができる。例えば、半導体装置(または表示領域335)と、対象物との間の距離が0.1mm以上300mm以下、好ましくは3mm以上50mm以下の範囲でセンサが当該対象物を検出できる構成であると好ましい。当該構成とすることで、半導体装置に対象物が直接触れずに操作することが可能となる、別言すると非接触(タッチレス)で半導体装置を操作することが可能となる。上記構成とすることで、半導体装置に汚れ、または傷がつくリスクを低減することができる、または対象物が半導体装置に付着した汚れ(例えば、ゴミ、またはウィルスなど)に直接触れずに、半導体装置を操作することが可能となる。
なお、非接触センサ機能は、ホバーセンサ機能、ホバータッチセンサ機能、ニアタッチセンサ機能、タッチレスセンサ機能などということもできる。また、タッチセンサ機能は、ダイレクトタッチセンサ機能などということもできる。
<画素330の回路構成例>
図17Aは、画素330の回路構成例を示す図である。画素330は、画素回路431および表示素子432を有する。
よって、各配線336は、表示領域335においてp行q列に配設された画素回路431のうち、いずれかの行に配設されたq個の画素回路431と電気的に接続される。また、各配線337は、p行q列に配設された画素回路431のうち、いずれかの列に配設されたp個の画素回路431に電気的に接続される。画素回路431は、トランジスタ436と、容量素子433と、トランジスタ438と、トランジスタ434と、を有する。また、画素回路431は、表示素子432と電気的に接続されている。
トランジスタ436のソース電極およびドレイン電極の一方は、データ信号(「ビデオ信号」ともいう。)が与えられる配線(以下、信号線DLという)に電気的に接続される。さらに、トランジスタ436のゲート電極は、ゲート信号が与えられる配線(以下、走査線GLという)に電気的に接続される。信号線DLと走査線GLはそれぞれ配線337と配線336に相当する。トランジスタ436は、データ信号のノード435への書き込みを制御する機能を有する。
容量素子433の一対の電極の一方は、ノード435に電気的に接続され、他方は、ノード437に電気的に接続される。また、トランジスタ436のソース電極およびドレイン電極の他方は、ノード435に電気的に接続される。
容量素子433は、ノード435に書き込まれたデータを保持する保持容量としての機能を有する。
トランジスタ438のソース電極およびドレイン電極の一方は、電位供給線VL_aに電気的に接続され、他方はノード437に電気的に接続される。さらに、トランジスタ438のゲート電極は、ノード435に電気的に接続される。
トランジスタ434のソース電極およびドレイン電極の一方は、電位供給線V0に電気的に接続され、他方はノード437に電気的に接続される。さらに、トランジスタ434のゲート電極は、走査線GLに電気的に接続される。
表示素子432のアノードまたはカソードの一方は、電位供給線VL_bに電気的に接続され、他方は、ノード437に電気的に接続される。
表示素子432としては、例えば有機エレクトロルミネセンス素子(「有機EL素子」ともいう)などの発光素子(「発光デバイス」ともいう。)を用いることができる。ただし、表示素子432は、これに限定されず、例えば無機材料からなる無機EL素子を用いても良い。なお、「有機EL素子」と「無機EL素子」をまとめて「EL素子」と呼ぶ場合がある。
EL素子の発光色は、EL素子を構成する材料によって、白、赤、緑、青、シアン、マゼンタ、または黄などとすることができる。
カラー表示を実現する方法としては、発光色が白色の表示素子432と着色層を組み合わせて行う方法と、画素毎に発光色の異なる表示素子432を設ける方法がある。前者の方法は後者の方法よりも生産性が高い。一方、後者の方法では画素毎に表示素子432を作り分ける必要があるため、前者の方法よりも生産性が劣る。ただし、後者の方法では、前者の方法よりも色純度の高い発光色を得ることができる。後者の方法に加えて、表示素子432にマイクロキャビティ構造を付与することにより色純度をさらに高めることができる。
表示素子432には低分子系化合物および高分子系化合物のいずれを用いることもでき、無機化合物を含んでいてもよい。表示素子432を構成する層は、それぞれ、蒸着法(真空蒸着法を含む)、転写法、印刷法、インクジェット法、塗布法等の方法で形成することができる。
表示素子432は、量子ドットなどの無機化合物を有していてもよい。例えば、量子ドットを発光層に用いることで、発光材料として機能させることもできる。
例えば、電位供給線VL_aまたは電位供給線VL_bの一方には、高電源電位Vddが与えられ、他方には、低電源電位Vssが与えられる。
画素回路431を有する表示装置では、周辺駆動回路に含まれる回路によって各行の画素回路431を順次選択し、トランジスタ436、およびトランジスタ434をオン状態にしてデータ信号をノード435に書き込む。
ノード435にデータが書き込まれた画素回路431は、トランジスタ436、およびトランジスタ434がオフ状態になることで保持状態になる。さらに、ノード435に書き込まれたデータの電位に応じてトランジスタ438のソース電極とドレイン電極の間に流れる電流量が制御され、表示素子432は、当該電流量に応じた輝度で発光する。これを行毎に順次行うことにより、画像を表示できる。トランジスタ438は「駆動トランジスタ」とも呼ばれる。
また、画素330に含まれる発光デバイスの発光輝度を高くする場合、発光デバイスに流す電流量を大きくする必要がある。そのためには、画素回路431に含まれている駆動トランジスタのソース−ドレイン間電圧を高くする必要がある。OSトランジスタは、Siトランジスタと比較して、ソース−ドレイン間において耐圧が高いため、OSトランジスタのソース−ドレイン間には高い電圧を印加することができる。これにより、画素回路431に含まれる駆動トランジスタをOSトランジスタとすることで、発光デバイスに流れる電流量を大きくし、発光デバイスの発光輝度を高くすることができる。
また、トランジスタが飽和領域で動作する場合において、OSトランジスタは、Siトランジスタよりも、ゲート−ソース間電圧の変化に対して、ソース−ドレイン間電流の変化が小さい。このため、画素回路431に含まれる駆動トランジスタとしてOSトランジスタを適用することによって、ゲート−ソース間電圧の変化によって、ソース−ドレイン間に流れる電流を細かく定めることができるため、発光デバイスに流れる電流量を細かく制御できる。このため、画素330における階調数を大きくすることができる。
また、トランジスタが飽和領域で動作するときに流れる電流の飽和特性において、OSトランジスタは、ソース−ドレイン間電圧が徐々に高くなった場合においても、Siトランジスタよりも安定した電流(飽和電流)を流すことができる。そのため、OSトランジスタを駆動トランジスタとして用いることで、例えば、EL材料が含まれる発光デバイスの電流−電圧特性にばらつきが生じた場合においても、発光デバイスに安定した電流を流すことができる。つまり、OSトランジスタは、飽和領域で動作する場合において、ソース−ドレイン間電圧を高くしても、ソース−ドレイン間電流がほぼ変化しないため、発光デバイスの発光輝度を安定させることができる。
上記のとおり、画素回路に含まれる駆動トランジスタにOSトランジスタを用いることで、「黒浮きの抑制」、「発光輝度の上昇」、「多階調化」、「発光デバイスのばらつきの抑制」などを図ることができる。
図17Bに、図17Aに示した画素330の回路構成の変形例を示す。図17Bに示す回路構成は、トランジスタ436のゲート電極が第1走査信号が与えられる線(以下、走査線GL1という)に電気的に接続されている。また、トランジスタ434のゲート電極が第2走査信号が与えられる線(以下、走査線GL2という)に電気的に接続されている。
また、図17Bに示す回路構成は、図17Aに示す回路構成に加えてトランジスタ439を有する。トランジスタ439のソース電極およびドレイン電極の一方は、電位供給線V0に電気的に接続され、他方はノード435に電気的に接続される。さらに、トランジスタ439のゲート電極が第3走査信号が与えられる線(以下、走査線GL3という)に電気的に接続されている。
走査線GL1は図15Aに示す配線336に相当する。図15Aでは走査線GL2および走査線GL3のそれぞれに対応する配線を図示していないが、走査線GL2および走査線GL3は第1駆動回路部331と電気的に接続される。
例えば、画素330を黒表示にしたい場合に、トランジスタ434とトランジスタ439の双方をオン状態にする。すると、トランジスタ438のソース電極とゲート電極の電位が等しくなる。よって、トランジスタ438のゲート電圧が0Vになり、表示素子432に流れる電流を遮断できる。
また、画素回路431を構成するトランジスタの一部または全部を、バックゲートを有するトランジスタで構成してもよい。図17Bに示す回路構成では、トランジスタとしてバックゲートを有するトランジスタを用いている。例えば、トランジスタ434、トランジスタ436、およびトランジスタ439のそれぞれは、ゲートとバックゲートが電気的に接続する例を示している。また、図17Bに示すトランジスタ438では、バックゲートがノード437と電気的に接続する例を示している。
図17Cに、図17Aに示した画素330の回路構成の変形例を示す。図17Cに示す回路構成は、図17Aに示した回路構成からトランジスタ434および電位供給線V0を除いた構成を有する。その他の構成については、図17Aに示す回路構成の説明を参酌すれば理解できる。よって、説明の繰り返しを低減するため、図17Cに示す回路構成の詳細な説明は省略する。
また、前述した通り、画素回路431を構成するトランジスタの一部または全部を、バックゲートを有するトランジスタで構成してもよい。例えば、図17Dに示すように、トランジスタ436にバックゲートを有するトランジスタを用いて、バックゲートとゲートを電気的に接続してもよい。また、図17Dに示すトランジスタ438のように、バックゲートとトランジスタのソースまたはドレインの一方を電気的に接続してもよい。
<発光素子の構成例>
本発明の一態様に係る半導体装置に用いることができる発光素子について説明する。発光素子61は、表示素子432に用いることができる。
<発光素子の構成例>
図18Aに示すように、発光素子61は、一対の電極(導電層171、導電層173)の間に、EL層172を備える。EL層172は、層4420、発光層4411、層4430などの複数の層で構成することができる。層4420は、例えば電子注入性の高い物質を含む層(電子注入層)および電子輸送性の高い物質を含む層(電子輸送層)などを備えることができる。発光層4411は、例えば発光性の化合物を備える。層4430は、例えば正孔注入性の高い物質を含む層(正孔注入層)および正孔輸送性の高い物質を含む層(正孔輸送層)を備えることができる。
一対の電極間に設けられた層4420、発光層4411および層4430を備える構成は単一の発光ユニットとして機能することができ、本明細書などでは図18Aの構成をシングル構造と呼ぶ。
また、図18Bは、図18Aに示す発光素子61が備えるEL層172の変形例である。具体的には、図18Bに示す発光素子61は、導電層171上の層4430−1と、層4430−1上の層4430−2と、層4430−2上の発光層4411と、発光層4411上の層4420−1と、層4420−1上の層4420−2と、層4420−2上の導電層173と、を備える。例えば、導電層171を陽極とし、導電層173を陰極とした場合、層4430−1が正孔注入層として機能し、層4430−2が正孔輸送層として機能し、層4420−1が電子輸送層として機能し、層4420−2が電子注入層として機能する。または、導電層171を陰極とし、導電層173を陽極とした場合、層4430−1が電子注入層として機能し、層4430−2が電子輸送層として機能し、層4420−1が正孔輸送層として機能し、層4420−2が正孔注入層として機能する。このような層構造とすることで、発光層4411に効率よくキャリアを注入し、発光層4411内におけるキャリアの再結合の効率を高めることが可能となる。
なお、図18Cに示すように層4420と層4430との間に複数の発光層(発光層4411、発光層4412、発光層4413)が設けられる構成も、シングル構造の一例である。
また、図18Dに示すように、複数の発光ユニット(EL層172a、EL層172b)が中間層(電荷発生層)4440を介して直列に接続された構成を、本明細書などではタンデム構造またはスタック構造と呼ぶ。なお、タンデム構造とすることで、高輝度発光が可能な発光素子が実現できる。
また、発光素子61を図18Dに示すタンデム構造にする場合、EL層172aとEL層172bそれぞれの発光色を同じにしてもよい。例えば、EL層172aおよびEL層172bの発光色を、どちらも緑色にしてもよい。なお、画素340がR、G、Bの3つの副画素を含み、それぞれの副画素が発光素子を備える場合、それぞれの副画素の発光素子をタンデム構造としてもよい。具体的には、Rの副画素のEL層172a、およびEL層172bは、それぞれ、赤色発光が可能な材料を有し、Gの副画素のEL層172a、およびEL層172bは、それぞれ、緑色発光が可能な材料を有し、Bの副画素のEL層172a、およびEL層172bは、それぞれ、青色発光が可能な材料を備える。言い換えると、発光層4411と発光層4412の材料が同じでもよい。EL層172aとEL層172bの発光色を同じにすることで、単位発光輝度あたりの電流密度を低減できる。よって、発光素子61の信頼性を高めることができる。
発光素子の発光色は、EL層172を構成する材料によって、赤、緑、青、シアン、マゼンタ、黄または白などとすることができる。また、発光素子にマイクロキャビティ構造を付与することにより色純度をさらに高めることができる。
発光層には、R(赤)、G(緑)、B(青)、Y(黄)、O(橙)などの発光を示す発光物質を2以上含んでもよい。白色の光を発する発光素子は、発光層に2種類以上の発光物質を含む構成とすることが好ましい。白色発光を得るには、2以上の発光物質の各々の発光が補色の関係となるような発光物質を選択すればよい。例えば、第1の発光層の発光色と第2の発光層の発光色を補色の関係になるようにすることで、発光素子全体として白色発光する発光素子を得ることができる。また、発光層を3つ以上備える発光素子の場合も同様である。
発光層には、R(赤)、G(緑)、B(青)、Y(黄)、O(橙)等の発光を示す発光物質を2以上含むことが好ましい。または、発光物質を2以上有し、それぞれの発光物質の発光は、R、G、Bのうち2以上の色のスペクトル成分を含むことが好ましい。
発光物質としては、蛍光を発する物質(蛍光材料)、燐光を発する物質(燐光材料)、無機化合物(量子ドット材料など)、熱活性化遅延蛍光を示す物質(熱活性化遅延蛍光(Thermally Activated Delayed Fluorescence:TADF)材料)などが挙げられる。なお、TADF材料としては、一重項励起状態と三重項励起状態間が熱平衡状態にある材料を用いてもよい。このようなTADF材料は発光寿命(励起寿命)が短くなるため、発光素子における高輝度領域での効率低下を抑制することができる。
<発光素子の形成方法>
以下では、表示素子432として用いることができる発光素子61の形成方法について説明する。
図19Aに、発光素子61の上面概略図を示す。発光素子61は、赤色を呈する発光素子61R、緑色を呈する発光素子61G、および青色を呈する発光素子61Bをそれぞれ複数有する。図19Aでは、各発光素子の区別を簡単にするため、各発光素子の発光領域内にR、G、Bの符号を付している。なお、図19Aに示す発光素子61の構成をSBS(Side By Side)構造と呼称してもよい。また、図19Aに示す構成については、赤色(R)、緑色(G)、および青色(B)の3つの色を有する構成について例示したがこれに限定されない。例えば、4つ以上の色を有する構成としてもよい。
発光素子61R、発光素子61G、および発光素子61Bは、それぞれマトリクス状に配列している。図19Aは、一方向に同一の色の発光素子が配列する、いわゆるストライプ配列を示している。なお、発光素子の配列方法はこれに限られず、デルタ配列、ジグザグ配列などの配列方法を適用してもよいし、ペンタイル配列を用いることもできる。
発光素子61R、発光素子61G、および発光素子61Bとしては、OLED(Organic Light Emitting Diode)、またはQOLED(Quantum−dot Organic Light Emitting Diode)などの有機ELデバイスを用いることが好ましい。EL素子が有する発光物質としては、蛍光を発する物質(蛍光材料)、燐光を発する物質(燐光材料)、無機化合物(量子ドット材料など)、熱活性化遅延蛍光を示す物質(熱活性化遅延蛍光(Thermally activated delayed fluorescence:TADF)材料)などが挙げられる。
図19Bは、図19A中の一点鎖線A1−A2に対応する断面概略図である。図19Bには、発光素子61R、発光素子61G、および発光素子61Bの断面を示している。発光素子61R、発光素子61G、および発光素子61Bは、それぞれ絶縁層363上に設けられ、画素電極として機能する導電層171、および共通電極として機能する導電層173を有する。絶縁層363としては、無機絶縁膜および有機絶縁膜の一方または双方を用いることができる。絶縁層363として、無機絶縁膜を用いることが好ましい。無機絶縁膜としては、例えば、酸化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜、窒化シリコン膜、酸化アルミニウム膜、酸化窒化アルミニウム膜、酸化ハフニウム膜などの酸化物絶縁膜および窒化物絶縁膜が挙げられる。
発光素子61Rは、画素電極として機能する導電層171と共通電極として機能する導電層173との間に、EL層172Rを有する。EL層172Rは、少なくとも赤色の波長域に強度を有する光を発する発光性の有機化合物を有する。発光素子61Gが有するEL層172Gは、少なくとも緑色の波長域に強度を有する光を発する発光性の有機化合物を有する。発光素子61Bが有するEL層172Bは、少なくとも青色の波長域に強度を有する光を発する発光性の有機化合物を有する。
EL層172R、EL層172G、およびEL層172Bは、それぞれ発光性の有機化合物を含む層(発光層)のほかに、電子注入層、電子輸送層、正孔注入層、および正孔輸送層のうち、一以上を有していてもよい。
画素電極として機能する導電層171は、発光素子毎に設けられている。また、共通電極として機能する導電層173は、各発光素子に共通な一続きの層として設けられている。画素電極として機能する導電層171と共通電極として機能する導電層173のいずれか一方に可視光に対して透光性を有する導電膜を用い、他方に反射性を有する導電膜を用いる。画素電極として機能する導電層171を透光性、共通電極として機能する導電層173を反射性とすることで、下面射出型(ボトムエミッション型)の表示装置とすることができ、反対に画素電極として機能する導電層171を反射性、共通電極として機能する導電層173を透光性とすることで、上面射出型(トップエミッション型)の表示装置とすることができる。なお、画素電極として機能する導電層171と共通電極として機能する導電層173の双方を透光性とすることで、両面射出型(デュアルエミッション型)の表示装置とすることもできる。
例えば、発光素子61Rがトップエミッション型である場合、発光素子61Rから射出される光175Rは、導電層173側に射出される。発光素子61Rがトップエミッション型である場合、発光素子61Gから射出される光175Gは、導電層173側に射出される。発光素子61Bがトップエミッション型である場合、発光素子61Bから射出される光175Bは、導電層173側に射出される。
画素電極として機能する導電層171の端部を覆って、絶縁層272が設けられている。絶縁層272の端部は、テーパー形状であることが好ましい。絶縁層272には、絶縁層363に用いることができる材料と同様の材料を用いることができる。
絶縁層272は、隣接する発光素子61が意図せず電気的に短絡し、誤発光することを防ぐために設ける。また、EL層172の形成にメタルマスクを用いる場合、メタルマスクが導電層171に接触しないようにする機能も有する。
EL層172R、EL層172G、およびEL層172Bは、それぞれ画素電極として機能する導電層171の上面に接する領域と、絶縁層272の表面に接する領域と、を有する。また、EL層172R、EL層172G、およびEL層172Bの端部は、絶縁層272上に位置する。
図19Bに示すように、異なる色の発光素子間において、2つのEL層の間に隙間が設けられている。このように、EL層172R、EL層172G、およびEL層172Bが、互いに接しないように設けられていることが好ましい。これにより、隣接する2つのEL層を介して電流が流れ、意図しない発光が生じること(クロストークともいう)を好適に防ぐことができる。そのため、コントラストを高めることができ、表示品位の高い表示装置を実現できる。
EL層172R、EL層172G、およびEL層172Bは、メタルマスクなどのシャドーマスクを用いた真空蒸着法などにより、作り分けることができる。または、フォトリソグラフィ法により、これらを作り分けてもよい。フォトリソグラフィ法を用いることで、メタルマスクを用いた場合では実現することが困難である高い精細度の表示装置を実現することができる。
なお、本明細書等において、MM(メタルマスク)を用いて作製されるデバイスをMM(メタルマスク)構造のデバイスと呼称する場合がある。また、本明細書等において、FMM(ファインメタルマスク、高精細なメタルマスク)を用いて作製されるデバイスをFMM構造のデバイスと呼称する場合がある。なお、MM構造のデバイスにFMM構造のデバイスが含まれる場合がある。また、本明細書等において、MM、またはFMMを用いることなく作製されるデバイスをMML(メタルマスクレス)構造のデバイスと呼称する場合がある。MML構造の表示装置は、MMを用いずに作製するため、FMM構造、またはMM構造の表示装置よりも画素配置および画素形状等の設計自由度が高い。
なお、MML構造の表示装置の作製方法では、島状のEL層は、メタルマスクのパターンによって形成されるのではなく、EL層を一面に成膜した後に加工することで形成される。したがって、これまで実現が困難であった高精細な表示装置または高開口率の表示装置を実現することができる。さらに、EL層を各色で作り分けることができるため、極めて鮮やかでコントラストが高く、表示品位の高い表示装置を実現できる。また、EL層上に犠牲層を設けることで、表示装置の作製工程中にEL層が受けるダメージを低減し、発光デバイスの信頼性を高めることができる。
なお、表示装置をファインメタルマスク(FMM)構造のデバイスとする場合、画素配置の構成などに制限がかかる場合がある。ここで、FMM構造について、以下、説明を行う。
FMM構造を作製するには、EL蒸着時において、所望の領域にEL材料が蒸着されるように開口部が設けられた金属のマスク(FMMともいう。)を基板に対向してセットする。その後、FMMを介して、EL蒸着を行うことで、所望の領域にEL材料を蒸着する。EL蒸着する際の基板サイズが大きくなると、FMMのサイズも大きくなり、その重量も大きくなる。また、EL蒸着時に熱などがFMMに与えられるため、FMMが変形する場合がある。または、EL蒸着時にFMMに一定のテンションを与えて蒸着する方法などもあるため、FMMの重量、および強度は、重要なパラメータである。
そのため、FMM構造の表示装置の画素配置の構成を設計する場合、上記のパラメータなどを考慮する必要があり、一定の制限のもとに検討する必要がある。一方で、本発明の一態様の表示装置においては、MML構造を用いて作製されるため、画素配置の構成などFMM構造と比較し自由度が高いといった、優れた効果を奏する。なお、本構成においては、例えばフレキシブルデバイスなどとも非常に親和性が高く、画素、および駆動回路のいずれか一または双方ともに、様々な回路配置とすることができる。
また、共通電極として機能する導電層173上には、発光素子61R、発光素子61G、および発光素子61Bを覆って、保護層271が設けられている。保護層271は、上方から各発光素子に水などの不純物が拡散することを防ぐ機能を有する。
保護層271としては、例えば、少なくとも無機絶縁膜を含む単層構造または積層構造とすることができる。無機絶縁膜としては、例えば、酸化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜、窒化シリコン膜、酸化アルミニウム膜、酸化窒化アルミニウム膜、酸化ハフニウム膜などの酸化物膜または窒化物膜が挙げられる。または、保護層271としてインジウムガリウム酸化物、インジウムガリウム亜鉛酸化物(IGZO)などの半導体材料を用いてもよい。なお、保護層271としては、原子層堆積(ALD:Atomic Layer Deposition)法、化学気相堆積(CVD:Chemical Vapor Deposition)法、およびスパッタリング法を用いて形成すればよい。なお、保護層271として、無機絶縁膜を含む構成について例示したがこれに限定されない。例えば、保護層271として、無機絶縁膜と、有機絶縁膜との積層構造としてもよい。
なお、本明細書中において、窒化酸化物とは、酸素よりも窒素の含有量が多い化合物をいう。また、酸化窒化物とは、窒素よりも酸素の含有量が多い化合物をいう。なお、各元素の含有量は、例えば、ラザフォード後方散乱法(RBS:Rutherford Backscattering Spectrometry)等を用いて測定することができる。
保護層271として、インジウムガリウム亜鉛酸化物を用いる場合、ウェットエッチング法、またはドライエッチング法を用いて加工することができる。例えば、保護層271として、IGZOを用いる場合、シュウ酸、リン酸、または混合薬液(例えば、リン酸、酢酸、硝酸、および水の混合薬液(混酸アルミニウムエッチング液ともいう))などの薬液を用いることができる。なお、当該混酸アルミニウムエッチング液は、体積比にて、リン酸:酢酸:硝酸:水=53.3:6.7:3.3:36.7近傍の配合とすることができる。
図19Cには、上記とは異なる例を示している。具体的には、図19Cでは、白色の光を呈する発光素子61Wを有する。発光素子61Wは、画素電極として機能する導電層171と共通電極として機能する導電層173との間に白色の光を呈するEL層172Wを有する。
EL層172Wとしては、例えば、それぞれの発光色が補色の関係になるように選択された、2以上の発光層を積層した構成とすることができる。また、発光層間に電荷発生層を挟持した、積層型のEL層を用いてもよい。
図19Cには、3つの発光素子61Wを並べて示している。左の発光素子61Wの上部には着色層264Rが設けられている。着色層264Rは、赤色の光を透過するバンドパスフィルタとして機能する。同様に、中央の発光素子61Wの上部には緑色の光を透過する着色層264Gが設けられ、右の発光素子61Wの上部には、青色の光を透過する着色層264Bが設けられている。これにより、表示装置はカラーの画像を表示することができる。
ここで、隣接する2つの発光素子61W間において、EL層172Wと、共通電極として機能する導電層173とがそれぞれ分離されている。これにより、隣接する2つの発光素子61Wにおいて、EL層172Wを介して電流が流れて意図しない発光が生じることを防ぐことができる。特に、EL層172Wとして、2つの発光層の間に電荷発生層が設けられる積層型のEL層を用いた場合では、精細度が高いほど、すなわち隣接画素間の距離が小さいほど、クロストークの影響が顕著となり、コントラストが低下してしまうといった問題がある。そのため、このような構成とすることで、高い精細度と、高いコントラストを兼ね備える表示装置を実現できる。
EL層172Wおよび共通電極として機能する導電層173の分離は、フォトリソグラフィ法により行うことが好ましい。これにより、発光素子間の間隔を狭めることができるため、例えばメタルマスク等のシャドーマスクを用いた場合と比較して、高い開口率の表示装置を実現することができる。
なお、ボトムエミッション型の発光素子の場合は、画素電極として機能する導電層171と絶縁層363との間に、着色層を設ければよい。
図19Dには、上記とは異なる例を示している。具体的には、図19Dは、発光素子61R、発光素子61G、および発光素子61Bの間に導電層171の端部を覆う絶縁層272が設けられていない構成である。別言すると、導電層171と、EL層172との間に絶縁物が設けられない構成である。当該構成とすることで、EL層からの発光を効率よく取り出すことができるため、視野角依存性を極めて小さくすることができる。例えば、本発明の一態様の表示装置においては、視野角(斜め方向から画面を見たときの、一定のコントラスト比が維持される最大の角度)を100°以上180°未満、好ましくは150°以上170°以下の範囲とすることができる。なお、上記の視野角については、上下、および左右のそれぞれに適用することができる。本発明の一態様の表示装置とすることで、視野角依存性が向上し、画像の視認性を高めることが可能となる。
また、絶縁層272を設けない構成とすることで、開口率の高い表示装置とすることができる。また、保護層271がEL層172R、EL層172G、およびEL層172Bの側面を覆う構成である。当該構成とすることで、EL層172R、EL層172G、およびEL層172Bの側面から入り込みうる不純物(代表的には水など)を抑制することができる。また、図19Dに示す構成においては、導電層171、EL層172R、および導電層173の上面形状が概略一致する。このような構造は、導電層171、EL層172R、および導電層173を形成したのち、レジストマスクなどを用いて一括して形成することができる。このようなプロセスは、導電層173をマスクとして、EL層172R、および導電層173を加工することから、セルフアラインパターニングと呼称することもできる。なお、ここではEL層172Rについて説明したが、EL層172G、およびEL層172Bについても同様の構成とすることができる。
また、図19Dにおいては、保護層271上に、さらに保護層273が設けられる構造である。例えば、保護層271を被覆性の高い膜を成膜可能な装置(代表的にはALD装置など)を用いて形成し、保護層273を保護層271よりも被覆性の低い膜が成膜される装置(代表的には、スパッタリング装置など)にて形成することにより、保護層271と、保護層273との間に領域275を設けることができる。なお、別言すると、領域275は、EL層172RとEL層172Gとの間、およびEL層172GとEL層172Bとの間に位置する。
なお、領域275は、例えば空気、窒素、酸素、二酸化炭素、および第18族元素(代表的には、ヘリウム、ネオン、アルゴン、キセノン、クリプトン等)の中から選ばれるいずれか一または複数を有する。また、領域275には、例えば保護層273の成膜時に用いる気体が含まれる場合がある。例えば、スパッタリング法により保護層273を成膜する場合、領域275には上記の第18族元素のいずれか一または複数が含まれる場合がある。なお、領域275に気体が含まれる場合、ガスクロマトグラフィー法等により気体の同定等を行うことができる。または、スパッタリング法により保護層273を成膜する場合、保護層273の膜中にもスパッタリング時に用いたガスが含まれる場合がある。この場合、保護層273をエネルギー分散型X線分析(EDX分析)等により解析した際に、アルゴン等の元素が検出される場合がある。
また、領域275の屈折率が、保護層271の屈折率より低い場合、EL層172R、EL層172G、またはEL層172Bから発せられる光が、保護層271と領域275との界面で反射する。これにより、EL層172R、EL層172G、またはEL層172Bから発せられる光が、隣接する画素に入射することを抑制できる場合がある。これにより、近隣画素からの異なる発光色の混入が抑制できるため、表示装置の表示品位を高めることができる。
なお、図19Dに示す構成の場合、発光素子61Rと発光素子61Gとの間の領域、または、発光素子61Gと発光素子61Bとの間の領域(以下では、単に発光素子間の距離とする)を狭くすることができる。具体的には、発光素子間の距離を、1μm以下、好ましくは500nm以下、さらに好ましくは、200nm以下、100nm以下、90nm以下、70nm以下、50nm以下、30nm以下、20nm以下、15nm以下、または10nm以下とすることができる。別言すると、EL層172Rの側面とEL層172Gの側面との間隔、またはEL層172Gの側面とEL層172Bの側面との間隔が1μm以下の領域を有し、好ましくは0.5μm(500nm)以下の領域を有し、さらに好ましくは100nm以下の領域を有する。
また、例えば、領域275が気体を有する場合、発光素子の間を素子分離しつつ、且つ各発光素子からの光の混色またはクロストークなどを抑制できる。
また、領域275を充填材で埋めてもよい。充填材としては、エポキシ樹脂、アクリル樹脂、シリコーン樹脂、フェノール樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、PVC(ポリビニルクロライド)樹脂、PVB(ポリビニルブチラル)樹脂、EVA(エチレンビニルアセテート)樹脂等が挙げられる。また、充填材として、感光性樹脂(例えばレジスト材料など)を用いてもよい。充填材として用いる感光性樹脂は、ポジ型であってもよいし、ネガ型であってもよい。
充填材として感光性樹脂を用いることにより、露光および現像の工程のみで領域275の充填が実現できる。また、充填材としてネガ型の感光性樹脂を用いて領域275を充填してもよい。また、充填材として、可視光を吸収する材料を用いると好適である。領域275を可視光を吸収する材料で充填すると、EL層からの発光を領域275により吸収することが可能となり、隣接するEL層に漏れうる光(迷光)を抑制できる。したがって、表示品位の高い半導体装置を提供できる。
また、上述の白色発光デバイス(シングル構造またはタンデム構造)と、SBS構造の発光デバイスと、を比較した場合、SBS構造の発光デバイスは、白色発光デバイスよりも消費電力を低くすることができる。消費電力を低く抑えたい場合は、SBS構造の発光デバイスを用いると好適である。一方で、白色発光デバイスは、製造プロセスがSBS構造の発光デバイスよりも簡単であるため、製造コストを低くすることができる、または製造歩留まりを高くすることができるため、好適である。
図20Aには、上記とは異なる例を示している。具体的には、図20Aに示す構成は、図19Dに示す構成と、絶縁層363の構成が異なる。絶縁層363は、発光素子61R、発光素子61G、および発光素子61Bの加工の際に、上面の一部が削れ、凹部を有する。また、当該凹部には、保護層271が形成される。別言すると、断面視において、導電層171の下面よりも保護層271の下面の方が下に位置する領域を有する。当該領域を有することで、下方から発光素子61R、発光素子61G、および発光素子61Bに入り込みうる不純物(代表的には、水など)を好適に抑制することができる。なお、上記の凹部としては、発光素子61R、発光素子61G、および発光素子61Bの加工の際に各発光素子の側面に付着しうる不純物(残渣物ともいう)をウェットエッチングなどにより除去する際に形成されうる。上記の残渣物を除去したのち、各発光素子の側面を保護層271で覆うことにより、信頼性の高い表示装置とすることができる。
また、図20Bには、上記とは異なる例を示している。具体的には、図20Bに示す構成は、図20Aに示す構成に加え、絶縁層276と、マイクロレンズアレイ277と、を有する。絶縁層276は、接着層としての機能を有する。なお、絶縁層276の屈折率がマイクロレンズアレイ277の屈折率よりも低い場合、マイクロレンズアレイ277は、発光素子61R、発光素子61G、および発光素子61Bから発せられる光を集光することができる。これにより、表示装置の光取り出し効率を高めることができる。特に、使用者が表示装置の表示面の正面から当該表示面を見る場合において、明るい画像を視認することができ、好適である。なお、絶縁層276としては、紫外線硬化型等の光硬化型接着剤、反応硬化型接着剤、熱硬化型接着剤、嫌気型接着剤等の各種硬化型接着剤を用いることができる。これら接着剤としてはエポキシ樹脂、アクリル樹脂、シリコーン樹脂、フェノール樹脂、ポリイミド樹脂、イミド樹脂、PVC(ポリビニルクロライド)樹脂、PVB(ポリビニルブチラル)樹脂、EVA(エチレンビニルアセテート)樹脂等が挙げられる。特に、エポキシ樹脂等の透湿性が低い材料が好ましい。また、二液混合型の樹脂を用いてもよい。また、接着シート等を用いてもよい。
また、図20Cには、上記とは異なる例を示している。具体的には、図20Cに示す構成は、図20Aに示す構成における発光素子61R、発光素子61G、および発光素子61Bに替えて、3つの発光素子61Wを有する。また、3つの発光素子61Wの上方に絶縁層276を有し、絶縁層276の上方に着色層264R、着色層264G、および着色層264Bを有する。具体的には、左の発光素子61Wと重なる位置に赤色の光を透過する着色層264Rが設けられ、中央の発光素子61W重なる位置に緑色の光を透過する着色層264Gが設けられ、右の発光素子61W重なる位置に青色の光を透過する着色層264Bが設けられている。これにより、半導体装置はカラーの画像を表示することができる。図20Cに示す構成は、図19Cに示す構成の変形例でもある。なお、着色層を「カラーフィルタ」と呼ぶ場合がある。
なお、図20Cに示す発光素子61Wを、先に示す白色発光が可能な構造(シングル構造、またはタンデム構造)とすることができる。なお、タンデム構造とすることで高輝度発光が得られるため好適である。
また、上述の白色発光が可能な構造(シングル構造、またはタンデム構造の一方または双方)と、カラーフィルタと、本発明の一態様のMML構造と、を組み合わることで、高いコントラスト比を有する表示装置とすることができる。
また、図20Dには、上記とは異なる例を示している。具体的には、図20Dに示す構成は、保護層271が導電層171およびEL層172の側面に隣接して設けられている。また、導電層173は、各発光素子に共通な一続きの層として設けられている。また、図20Dに示す構成では、領域275が充填材で埋められていることが好ましい。
発光素子61に微小光共振器(マイクロキャビティ)構造を付与することにより発光色の色純度を高めることができる。発光素子61にマイクロキャビティ構造を付与するには、導電層171と導電層173間の距離dとEL層172の屈折率nの積(光学距離)が、波長hの2分の1のm倍(mは1以上の整数)になるように構成すればよい。距離dは数式4で求めることができる。
d=m×h/(2×n) ・・・ 数式4。
数式4より、マイクロキャビティ構造の発光素子61は、発光する光の波長(発光色)に応じて距離dが決定される。距離dは、EL層172の厚さに相当する。よって、EL層172GはEL層172Bよりも厚く設けられ、EL層172RはEL層172Gよりも厚く設けられる場合がある。
なお、厳密には、距離dは、反射電極として機能する導電層171における反射領域から半透過・半反射として機能する導電層173における反射領域までの距離である。例えば、導電層171が銀と透明導電膜であるITO(Indium Tin Oxide)の積層であり、ITOがEL層172側にある場合、ITOの膜厚を調整することで発光色に応じた距離dを設定できる。すなわち、EL層172R、EL層172G、およびEL層172Bの厚さが同じであっても、該ITOの厚さを変えることで、発光色に適した距離dを得ることができる。
しかしながら、導電層171および導電層173における反射領域の位置を厳密に決定することが困難な場合がある。この場合、導電層171と導電層173の任意の位置を反射領域と仮定することで、充分にマイクロキャビティの効果を得ることができるものとする。
発光素子61は、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層などにより構成される。マイクロキャビティ構造において光の取り出し効率を高めるため、反射電極として機能する導電層171から発光層までの光学距離をh/4の奇数倍にすることが好ましい。当該光学距離を実現するため、発光素子61を構成する各層の厚さを適宜調整することが好ましい。
また、光を導電層173側から射出する場合は、導電層173の反射率が透過率よりも大きいことが好ましい。導電層173の光の透過率を好ましくは2%以上50%以下、より好ましくは2%以上30%以下、さらに好ましくは2%以上10%以下にするとよい。導電層173の透過率を小さく(反射率を大きく)することで、マイクロキャビティの効果を高めることができる。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態6)
本実施の形態では、表示装置10の積層構成例について説明する。
図21Aおよび図21Bに表示装置10の斜視図を示す。図21Aに示す表示装置10は、層50に重ねて層60を備える。層50は、マトリクス状に配置された複数の画素回路431と、第1駆動回路部331と、第2駆動回路部332と、入出力端子部29と、を備える。層60は、マトリクス状に配置された複数の表示素子432を備える。
図21Aおよび図21Bに示す表示装置10は、1つの画素回路431と1つの表示素子432が電気的に接続されて、1つの画素330として機能する。よって、層50が備える複数の画素回路431と、層60が備える複数の表示素子432が重なる領域が表示領域335として機能する。表示素子432として、例えば、上記実施の形態に示した発光素子61を用いることができる。
表示装置10の動作に必要な電力および信号などは、入出力端子部29を介して表示装置10に供給される。図21Aに示す表示装置10では、周辺駆動回路が有するトランジスタと、画素330に含まれるトランジスタを同じ工程で形成できる。
また、図21Bに示すように、表示装置10を、層40、層50、および層60を重ねて設ける構成としてもよい。図21Bでは、層50にマトリクス状に配置された複数の画素回路431を設け、第1駆動回路部331と第2駆動回路部332は層40に設けている。第1駆動回路部331と第2駆動回路部332を画素回路431と異なる層に設けることで、表示領域335周囲の額縁の幅を狭くすることができるため、表示領域335の占有面積を拡大できる。
表示領域335の占有面積が拡大することで、表示領域335の解像度を高めることができる。表示領域335の解像度が一定の場合、1画素あたりの占有面積を増やすことができる。よって、表示領域335の発光輝度を高めることができる。また、1画素の占有面積に対する発光面積の割合(「開口率」ともいう。)を高めることができる。例えば、画素の開口率を、40%以上100%未満、好ましくは50%以上95%以下、より好ましくは60%以上95%以下とすることができる。また、1画素あたりの占有面積の拡大によって、表示素子432に供給する電流密度を低減できる。よって、表示素子432に加わる負荷が軽減され、表示装置10の信頼性を高めることができる。
また、表示領域335と周辺駆動回路などを積層することにより、それぞれを電気的に接続する配線を短くすることができる。よって、配線抵抗および寄生容量が低減され、表示装置10の動作速度を高めることができる。また、表示装置10の消費電力が低減される。
また、層40は、周辺駆動回路だけでなく、CPU23(Central Processing Unit)、GPU24(Graphics Processing Unit)、記憶回路部25を備えてもよい。本実施の形態などでは、周辺駆動回路、CPU23、GPU24、および記憶回路部25の総称として「機能回路」という場合がある。
例えば、CPU23は、記憶回路部25に記憶されたプログラムに従い、GPU24および層40に設けられた回路の動作を制御する機能を備える。GPU24は、画像データを形成するための演算処理を行なう機能を備える。また、GPU24は、多くの行列演算(積和演算)を並列して行うことができるため、例えば、ニューラルネットワークを用いた演算処理を高速に行うことができる。GPU24は、例えば、記憶回路部25に記憶されている補整データを用いて、画像データを補整する機能を備える。例えば、GPU24は、明るさ、色合い、および/またはコントラストなどを補正した画像データを生成する機能を備える。
GPU24を用いて像データのアップコンバートまたはダウンコンバートを行なってもよい。また、層40に超解像回路を設けてもよい。超解像回路は、表示領域335が備える任意の画素の電位を、当該画素の周囲の画素の電位と重みの積和演算によって決定する機能を備える。超解像回路は、表示領域335よりも解像度が小さい画像データを、アップコンバートする機能を備える。また、超解像回路は、表示領域335よりも解像度が大きい画像データを、ダウンコンバートする機能を備える。
超解像回路を備えることにより、GPU24の負荷を低減できる。例えば、GPU24では2K解像度(または4K解像度)までの処理を行い、超解像回路で4K解像度(または8K解像度)にアップコンバートすることで、GPU24の負荷を低減できる。ダウンコンバートも同様に行えばよい。
なお、層40が備える機能回路は、これらの構成を全て備えなくてもよいし、こられら以外の構成を備えてもよい。例えば、複数の異なる電位を生成する電位生成回路、および/または、表示装置10が備える回路毎に電力の供給および停止を制御するパワーマネージメント回路などを備えてもよい。
電力の供給および停止は、CPU23を構成する回路毎に行ってもよい。例えば、CPU23を構成する回路のうち、しばらく使用しないと判断された回路への電力供給を停止し、必要な時に電力供給を再開することで消費電力を低減できる。電力供給の再開時に必要なデータは、当該回路の停止前にCPU23内の記憶回路、または記憶回路部25などに記憶しておけばよい。回路の復帰時に必要なデータを記憶しておくことで、停止している回路の高速復帰が実現できる。なお、クロック信号の供給を停止することで、回路動作を停止させてもよい。
また、機能回路として、DSP回路、センサ回路、通信回路および/またはFPGA(Field Programmable Gate Array)などを備えてもよい。
また、層40が備える機能回路を構成するトランジスタの一部を層50に設けてもよい。また、層50が備える画素回路431を構成するトランジスタの一部を層40に設けてもよい。よって、機能回路を、SiトランジスタとOSトランジスタを含んで構成してもよい。また、画素回路431をSiトランジスタとOSトランジスタを含んで構成してもよい。
表示装置10が備えるトランジスタは、nチャネル型トランジスタであってもよいし、pチャネル型トランジスタであってもよい。nチャネル型トランジスタとpチャネル型トランジスタの双方を用いてもよい。例えば、表示装置10が備える回路に、nチャネル型トランジスタとpチャネル型トランジスタを組み合わせたCMOS構造の構成を用いてもよい。
前述した通り、表示領域335に、センサ部240および積演算部250を設けてもよい。また、層40に比較部260を設けてもよい。また、層40に、積演算部250および比較部260を設けてもよい。記憶回路部25に、リザバー層120および出力層130の動作を実現するプログラムを記憶しておくことで、表示装置10においてRCモデルの演算処理が実現できる。
<表示モジュールの構成例>
続いて、本発明の一態様に係る表示装置を含む表示モジュールの構成例について説明する。
図22A乃至図22Cは、表示モジュール400の斜視概略図である。図22Aに示す表示モジュール400は、プリント配線板401上に表示装置10を備える構成を有する。プリント配線板401は、絶縁体でできた基板の内部または表面、もしくは、内部と表面に配線を備えた構造を有する。
図22Aに示す表示モジュール400では、表示装置10の入出力端子部29と、プリント配線板401の端子部402がワイヤ403を介して電気的に接続している。ワイヤ403はワイヤボンディング法で形成することができる。ワイヤ403の形成後、樹脂材料などでワイヤ403を覆ってもよい。なお、表示装置10とプリント配線板401の電気的な接続は、ワイヤボンディング法以外の方法で行なってもよい。
また、図22Aに示す表示モジュール400は、FPC404(FPC:Flexible printed circuits)と電気的に接続している。FPC404は絶縁体でできたフィルムに配線を備えた構造を有する。また、FPC404は、可撓性を有する。FPC404は、外部から表示装置10にビデオ信号、制御信号、および電源電位などを供給するための配線として機能する。また、FPC404上にICが実装されていてもよい。
プリント配線板401には、抵抗素子、容量素子、半導体素子などの様々な素子を設けることができる。また、プリント配線板401に形成された配線を用いて、入出力端子部29が備える複数の電極との間隔(ピッチ)を、端子部402が備える複数の電極の間隔に変えることができる。すなわち、入出力端子部29が備える電極のピッチと、FPC404が備える電極のピッチが異なる場合においても、両者の電極の電気的な接続を実現できる。
また、表示モジュール400は、図22Bに示すように、表示装置10の入出力端子部29にFPC404を直接接続してもよい。入出力端子部29が備える電極のピッチと、FPC404が備える電極のピッチが等しい場合は、プリント配線板401を用いずに、入出力端子部29とFPC404を電気的に接続してもよい。
また、図22Cに示す表示モジュール400のように、端子部402をプリント配線板401の下面(表示装置10が設けられていない側の面)に設けられた接続部405と電気的に接続してもよい。例えば、接続部405をソケット形式の接続部にすることで、表示モジュール400と他の機器との脱着を容易に行える。
図23に、図21Aに示した表示装置10の一部の断面構成例を示す。図23に示す表示装置10は、基板301、容量246、および、トランジスタ310を含む層50と、表示素子432を含む層60を備える。層60は、層50が備える絶縁層363上に設けられている。なお、図23乃至図26では、表示素子として発光素子61(発光素子61R、発光素子61G、および発光素子61B)を用いる場合の断面構成例を示している。
トランジスタ310は、基板301にチャネル形成領域を備えるトランジスタである。基板301としては、例えば単結晶シリコン基板などの半導体基板を用いることができる。トランジスタ310は、基板301の一部、導電層311、低抵抗領域312、絶縁層313、および、絶縁層314を備える。導電層311は、ゲート電極として機能する。絶縁層313は、基板301と導電層311の間に位置し、ゲート絶縁層として機能する。低抵抗領域312は、基板301に不純物がドープされた領域であり、ソースまたはドレインの一方として機能する。絶縁層314は、導電層311の側面を覆って設けられ、絶縁層として機能する。
また、基板301に埋め込まれるように、隣接する2つのトランジスタ310の間に素子分離層315が設けられている。
また、トランジスタ310を覆って絶縁層261が設けられ、絶縁層261上に容量246が設けられている。
容量246は、導電層241と、導電層245と、これらの間に位置する絶縁層243を備える。導電層241は容量246の一方の電極として機能し、導電層245は容量246の他方の電極として機能し、絶縁層243は容量246の誘電体として機能する。
導電層241は絶縁層261上に設けられ、絶縁層254に埋め込まれている。導電層241は、絶縁層261に埋め込まれたプラグ266によってトランジスタ310のソースまたはドレインの一方と電気的に接続されている。絶縁層243は導電層241を覆って設けられる。導電層245は、絶縁層243を介して導電層241と重なる領域に設けられている。
容量246を覆って、絶縁層255が設けられ、絶縁層255上に絶縁層363が設けられ、絶縁層363上に発光素子61R、発光素子61G、および発光素子61Bが設けられている。発光素子61R、発光素子61G、および発光素子61B上には保護層415が設けられており、保護層415の上面には、樹脂層419を介して基板420が設けられている。
発光素子の画素電極は、絶縁層255および絶縁層363に埋め込まれたプラグ256、絶縁層254に埋め込まれた導電層241、および絶縁層261に埋め込まれたプラグ266によってトランジスタ310のソースまたはドレインの一方と電気的に接続されている。
図24に、図23に示した断面構成例の変形例を示す。図24に示す表示装置10の断面構成例では、トランジスタ310にかえてトランジスタ320を備える点が、図23に示す断面構成例と主に相違する。なお、図23と同様の部分については説明を省略することがある。
トランジスタ320は、チャネルが形成される半導体層に、金属酸化物(酸化物半導体ともいう)が適用されたトランジスタである。
トランジスタ320は、半導体層321、絶縁層323、導電層324、一対の導電層325、絶縁層326、および、導電層327を備える。
基板351としては、絶縁性基板または半導体基板を用いることができる。
基板351上に、絶縁層352が設けられている。絶縁層352は、基板351から水または水素などの不純物がトランジスタ320に拡散すること、および半導体層321から絶縁層352側に酸素が脱離することを防ぐバリア層として機能する。絶縁層352としては、例えば酸化アルミニウム膜、酸化ハフニウム膜、窒化シリコン膜などの、酸化シリコン膜よりも水素または酸素が拡散しにくい膜を用いることができる。
絶縁層352上に導電層327が設けられ、導電層327を覆って絶縁層326が設けられている。導電層327は、トランジスタ320の第1のゲート電極として機能し、絶縁層326の一部は、第1のゲート絶縁層として機能する。絶縁層326の少なくとも半導体層321と接する部分には、酸化シリコン膜等の酸化物絶縁膜を用いることが好ましい。絶縁層326の上面は、平坦化されていることが好ましい。
半導体層321は、絶縁層326上に設けられる。半導体層321は、半導体特性を備える金属酸化物(酸化物半導体ともいう)膜を備えることが好ましい。半導体層321に好適に用いることのできる材料の詳細については後述する。
一対の導電層325は、半導体層321上に接して設けられ、ソース電極およびドレイン電極として機能する。
また、一対の導電層325の上面および側面、並びに半導体層321の側面等を覆って絶縁層328が設けられ、絶縁層328上に絶縁層264が設けられている。絶縁層328は、半導体層321に絶縁層264等から水または水素などの不純物が拡散すること、および半導体層321から酸素が脱離することを防ぐバリア層として機能する。絶縁層328としては、上記絶縁層352と同様の絶縁膜を用いることができる。
絶縁層328および絶縁層264に、半導体層321に達する開口が設けられている。当該開口の内部において、絶縁層264、絶縁層328、および導電層325の側面、並びに半導体層321の上面に接する絶縁層323と、導電層324とが埋め込まれている。導電層324は、第2のゲート電極として機能し、絶縁層323は第2のゲート絶縁層として機能する。
導電層324の上面、絶縁層323の上面、および絶縁層264の上面は、それぞれ高さが概略一致するように平坦化処理され、これらを覆って絶縁層329および絶縁層265が設けられている。
絶縁層264および絶縁層265は、層間絶縁層として機能する。絶縁層329は、トランジスタ320に絶縁層265等から水または水素などの不純物が拡散することを防ぐバリア層として機能する。絶縁層329としては、上記絶縁層328および絶縁層352と同様の絶縁膜を用いることができる。
一対の導電層325の一方と電気的に接続するプラグ274は、絶縁層265、絶縁層329、および絶縁層264に埋め込まれるように設けられている。ここで、プラグ274は、絶縁層265、絶縁層329、絶縁層264、および絶縁層328のそれぞれの開口の側面、および導電層325の上面の一部を覆う導電層274aと、導電層274aの上面に接する導電層274bとを備えることが好ましい。このとき、導電層274aとして、水素および酸素が拡散しにくい導電材料を用いることが好ましい。
図25に、図21Bに示した表示装置10の一部の断面構成例を示す。図25に示す表示装置10は、層40が備える基板301Aにチャネルが形成されるトランジスタ310Aと、層40が備える基板301Aにチャネルが形成されるトランジスタ310Bが積層された構成を備える。基板301Aに基板301と同様の材料を用いることができる。
図25に示す表示装置10は、表示素子432として発光素子61が設けられた層60と、基板301B、トランジスタ310B、および容量246が設けられた層50と、基板301A、トランジスタ310Aが設けられた層40と、が貼り合された構成を備える。
基板301Bには、基板301Bを貫通するプラグ343が設けられる。プラグ343は、Si貫通電極(TSV:Through Silicon Via)として機能する。また、プラグ343は、基板301の裏面(基板420側とは反対側の表面)に設けられる導電層342と電気的に接続されている。一方、基板301Aには、絶縁層261上に導電層341が設けられている。
導電層341と、導電層342が接合されることで、層40と層50が電気的に接続される。
導電層341および導電層342としては、同じ導電性材料を用いることが好ましい。例えば、Al、Cr、Cu、Ta、Sn、Zn、Au、Ag、Pt、Ti、Mo、およびWから選ばれた元素を含む金属膜、または上述した元素を成分とする金属窒化物膜(窒化チタン膜、窒化モリブデン膜、窒化タングステン膜)等を用いることができる。特に、導電層341および導電層342に、銅を用いることが好ましい。これにより、Cu−Cu(カッパー・カッパー)直接接合技術(Cu(銅)のパッド同士を接続することで電気的導通を図る技術)を適用することができる。なお、導電層341と導電層342とは、バンプを介して接合されてもよい。
図26に、図25に示した断面構成例の変形例を示す。図26に示す表示装置10の断面構成例は、基板301Aにチャネルが形成されるトランジスタ310Aと、チャネルが形成される半導体層に金属酸化物を含むトランジスタ320とが積層された構成を備える。なお、図23乃至図25と同様の部分については説明を省略することがある。
図26に示す層50は、図24に示した層50から基板351を除いた構成を備える。また、図26に示す層40では、トランジスタ310Aを覆って絶縁層261が設けられ、絶縁層261上に導電層251が設けられている。また導電層251を覆って絶縁層267が設けられ、絶縁層267上に導電層252が設けられている。導電層251および導電層252は、それぞれ配線として機能する。また、導電層252を覆って絶縁層263および絶縁層352が設けられ、絶縁層352上にトランジスタ320が設けられている。また、トランジスタ320を覆って絶縁層265が設けられ、絶縁層265上に容量246が設けられている。容量246とトランジスタ320とは、プラグ274により電気的に接続されている。層50は、層40が備える絶縁層263に重ねて設けられている。
トランジスタ320は、画素回路431を構成するトランジスタとして用いることができる。また、トランジスタ310は、画素回路431を構成するトランジスタ、または周辺駆動回路を構成するトランジスタとして用いることができる。また、トランジスタ310およびトランジスタ320は、演算回路または記憶回路などの機能回路を構成するトランジスタとして用いることができる。
このような構成とすることで、表示素子432を含む層60の直下に画素回路431だけでなく周辺駆動回路などを形成することができる。よって、表示領域の周辺に駆動回路を設ける場合に比べて、表示装置を小型化することが可能となる。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態7)
本実施の形態では、本発明の一態様に係る半導体装置に用いることができるトランジスタについて説明する。
<トランジスタの構成例>
図27A、図27B、および図27Cは、本発明の一態様に係る半導体装置に用いることができるトランジスタ500の上面図および断面図である。本発明の一態様に係る半導体装置に、トランジスタ500を適用できる。
図27Aは、トランジスタ500の上面図である。また、図27B、および図27Cは、トランジスタ500の断面図である。ここで、図27Bは、図27AにA1−A2の一点鎖線で示す部位の断面図であり、トランジスタ500のチャネル長方向の断面図でもある。また、図27Cは、図27AにA3−A4の一点鎖線で示す部位の断面図であり、トランジスタ500のチャネル幅方向の断面図でもある。なお、図27Aの上面図では、図の明瞭化のために一部の要素を省いて図示している。
図27に示すように、トランジスタ500は、基板(図示しない。)の上に配置された金属酸化物531aと、金属酸化物531aの上に配置された金属酸化物531bと、金属酸化物531bの上に、互いに離隔して配置された導電体542a、および導電体542bと、導電体542aおよび導電体542b上に配置され、導電体542aと導電体542bの間に開口が形成された絶縁体580と、開口の中に配置された導電体560と、金属酸化物531b、導電体542a、導電体542b、および絶縁体580と、導電体560と、の間に配置された絶縁体550と、金属酸化物531b、導電体542a、導電体542b、および絶縁体580と、絶縁体550と、の間に配置された金属酸化物531cと、を有する。ここで、図27Bおよび図27Cに示すように、導電体560の上面は、絶縁体550、絶縁体554、金属酸化物531c、および絶縁体580の上面と略一致することが好ましい。なお、以下において、金属酸化物531a、金属酸化物531b、および金属酸化物531cをまとめて金属酸化物531という場合がある。また、導電体542aおよび導電体542bをまとめて導電体542という場合がある。
図27に示すトランジスタ500では、導電体542aおよび導電体542bの導電体560側の側面が、概略垂直な形状を有している。なお、図27に示すトランジスタ500は、これに限られるものではなく、導電体542aおよび導電体542bの側面と底面がなす角が、10°以上80°以下、好ましくは、30°以上60°以下としてもよい。また、導電体542aおよび導電体542bの対向する側面が、複数の面を有していてもよい。
図27に示すように、絶縁体524、金属酸化物531a、金属酸化物531b、導電体542a、導電体542b、および金属酸化物531cと、絶縁体580と、の間に絶縁体554が配置されることが好ましい。ここで、絶縁体554は、図27Bおよび図27Cに示すように、金属酸化物531cの側面、導電体542aの上面と側面、導電体542bの上面と側面、金属酸化物531aおよび金属酸化物531bの側面、並びに絶縁体524の上面に接することが好ましい。
なお、トランジスタ500では、チャネルが形成される領域(以下、チャネル形成領域ともいう。)と、その近傍において、金属酸化物531a、金属酸化物531b、および金属酸化物531cの3層を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、金属酸化物531bと金属酸化物531cの2層構造、または4層以上の積層構造を設ける構成にしてもよい。また、トランジスタ500では、導電体560を2層の積層構造として示しているが、本発明はこれに限られるものではない。例えば、導電体560が、単層構造であってもよいし、3層以上の積層構造であってもよい。また、金属酸化物531a、金属酸化物531b、および金属酸化物531cのそれぞれが2層以上の積層構造を有していてもよい。
例えば、金属酸化物531cが第1の金属酸化物と、第1の金属酸化物上の第2の金属酸化物からなる積層構造を有する場合、第1の金属酸化物は、金属酸化物531bと同様の組成を有し、第2の金属酸化物は、金属酸化物531aと同様の組成を有することが好ましい。
ここで、導電体560は、トランジスタのゲート電極として機能し、導電体542aおよび導電体542bは、それぞれソース電極またはドレイン電極として機能する。上記のように、導電体560は、絶縁体580の開口、および導電体542aと導電体542bに挟まれた領域に埋め込まれるように形成される。ここで、導電体560、導電体542aおよび導電体542bの配置は、絶縁体580の開口に対して、自己整合的に選択される。つまり、トランジスタ500において、ゲート電極を、ソース電極とドレイン電極の間に、自己整合的に配置させることができる。よって、導電体560を位置合わせのマージンを設けることなく形成することができるため、トランジスタ500の占有面積の縮小を図ることができる。これにより、表示装置を高精細にすることができる。また、表示装置を狭額縁にすることができる。
図27に示すように、導電体560は、絶縁体550の内側に設けられた導電体560aと、導電体560aの内側に埋め込まれるように設けられた導電体560bと、を有することが好ましい。
トランジスタ500は、基板(図示しない。)の上に配置された絶縁体514と、絶縁体514の上に配置された絶縁体516と、絶縁体516に埋め込まれるように配置された導電体505と、絶縁体516と導電体505の上に配置された絶縁体522と、絶縁体522の上に配置された絶縁体524と、を有することが好ましい。絶縁体524の上に金属酸化物531aが配置されることが好ましい。
トランジスタ500の上に、層間膜として機能する絶縁体574、および絶縁体581が配置されることが好ましい。ここで、絶縁体574は、導電体560、絶縁体550、絶縁体554、金属酸化物531c、および絶縁体580の上面に接して配置されることが好ましい。
絶縁体522、絶縁体554、および絶縁体574は、水素(例えば、水素原子、水素分子等の少なくとも一)の拡散を抑制する機能を有することが好ましい。例えば、絶縁体522、絶縁体554、および絶縁体574は、絶縁体524、絶縁体550、および絶縁体580より水素透過性が低いことが好ましい。また、絶縁体522、および絶縁体554は、酸素(例えば、酸素原子、酸素分子等の少なくとも一の)拡散を抑制する機能を有することが好ましい。例えば、絶縁体522、および絶縁体554は、絶縁体524、絶縁体550、および絶縁体580より酸素透過性が低いことが好ましい。
ここで、絶縁体524、金属酸化物531、および絶縁体550は、絶縁体580および絶縁体581と、絶縁体554、および絶縁体574によって離隔されている。ゆえに、絶縁体524、金属酸化物531、および絶縁体550に、絶縁体580および絶縁体581に含まれる水素等の不純物および過剰な酸素が、絶縁体524、金属酸化物531a、金属酸化物531b、および絶縁体550に混入することを抑制できる。
トランジスタ500と電気的に接続し、プラグとして機能する導電体545(導電体545a、および導電体545b)が設けられることが好ましい。なお、プラグとして機能する導電体545の側面に接して絶縁体541(絶縁体541a、および絶縁体541b)が設けられる。つまり、絶縁体554、絶縁体580、絶縁体574、および絶縁体581の開口の内壁に接して絶縁体541が設けられる。また、絶縁体541の側面に接して導電体545の第1の導電体が設けられ、さらに内側に導電体545の第2の導電体が設けられる構成にしてもよい。ここで、導電体545の上面の高さと、絶縁体581の上面の高さは同程度にできる。なお、トランジスタ500では、導電体545の第1の導電体および導電体545の第2の導電体を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、導電体545を単層、または3層以上の積層構造として設ける構成にしてもよい。構造体が積層構造を有する場合、形成順に序数を付与し、区別する場合がある。
トランジスタ500は、チャネル形成領域を含む金属酸化物531(金属酸化物531a、金属酸化物531b、および金属酸化物531c)に、酸化物半導体として機能する金属酸化物(以下、酸化物半導体ともいう。)を用いることが好ましい。例えば、金属酸化物531のチャネル形成領域となる金属酸化物として、バンドギャップが2.0eV以上、好ましくは2.5eV以上のものを用いることが好ましい。
上記金属酸化物として、少なくともインジウム(In)または亜鉛(Zn)を含むことが好ましい。特に、インジウム(In)および亜鉛(Zn)を含むことが好ましい。また、これらに加えて、元素Mが含まれていることが好ましい。元素Mとして、アルミニウム(Al)、ガリウム(Ga)、イットリウム(Y)、スズ(Sn)、ホウ素(B)、チタン(Ti)、鉄(Fe)、ニッケル(Ni)、ゲルマニウム(Ge)、ジルコニウム(Zr)、モリブデン(Mo)、ランタン(La)、セリウム(Ce)、ネオジム(Nd)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)、マグネシウム(Mg)またはコバルト(Co)の一以上を用いることができる。特に、元素Mは、アルミニウム(Al)、ガリウム(Ga)、イットリウム(Y)、またはスズ(Sn)の一以上とすることが好ましい。また、元素Mは、GaおよびSnのいずれか一方または双方を有することがさらに好ましい。
また、図27Bに示すように、金属酸化物531bは、導電体542と重ならない領域の膜厚が、導電体542と重なる領域の膜厚より薄くなる場合がある。これは、導電体542aおよび導電体542bを形成する際に、金属酸化物531bの上面の一部を除去することにより形成される。金属酸化物531bの上面には、導電体542となる導電膜を成膜した際に、当該導電膜との界面近傍に抵抗の低い領域が形成される場合がある。このように、金属酸化物531bの上面の導電体542aと導電体542bの間に位置する、抵抗の低い領域を除去することにより、当該領域にチャネルが形成されることを防ぐことができる。
本発明の一態様により、サイズが小さいトランジスタを有し、精細度が高い表示装置を提供することができる。または、オン電流が大きいトランジスタを有し、輝度が高い表示装置を提供することができる。または、動作が速いトランジスタを有し、動作が速い表示装置を提供することができる。または、電気特性が安定したトランジスタを有し、信頼性が高い表示装置を提供することができる。または、オフ電流が小さいトランジスタを有し、消費電力が低い表示装置を提供することができる。
本発明の一態様である表示装置に用いることができるトランジスタ500の詳細な構成について説明する。
導電体505は、金属酸化物531、および導電体560と、重なる領域を有するように配置する。また、導電体505は、絶縁体516に埋め込まれて設けることが好ましい。
導電体505は、導電体505a、導電体505b、および導電体505cを有する。導電体505aは、絶縁体516に設けられた開口の底面および側壁に接して設けられる。導電体505bは、導電体505aに形成された凹部に埋め込まれるように設けられる。ここで、導電体505bの上面は、導電体505aの上面および絶縁体516の上面より低くなる。導電体505cは、導電体505bの上面、および導電体505aの側面に接して設けられる。ここで、導電体505cの上面の高さは、導電体505aの上面の高さおよび絶縁体516の上面の高さと略一致する。つまり、導電体505bは、導電体505aおよび導電体505cに包み込まれる構成になる。
導電体505aおよび導電体505cは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NO等)、銅原子等の不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子等の少なくとも一)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。
導電体505aおよび導電体505cに、水素の拡散を低減する機能を有する導電性材料を用いることにより、導電体505bに含まれる水素等の不純物が、絶縁体524等を介して、金属酸化物531に拡散することを抑制できる。また、導電体505aおよび導電体505cに、酸素の拡散を抑制する機能を有する導電性材料を用いることにより、導電体505bが酸化されて導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、チタン、窒化チタン、タンタル、窒化タンタル、ルテニウム、酸化ルテニウム等を用いることが好ましい。したがって、導電体505aとしては、上記導電性材料を単層または積層とすればよい。例えば、導電体505aは、窒化チタンを用いればよい。
また、導電体505bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。例えば、導電体505bは、タングステンを用いればよい。
ここで、導電体560は、第1のゲート(トップゲートともいう。)電極として機能する場合がある。また、導電体505は、第2のゲート(ボトムゲートともいう。)電極として機能する場合がある。その場合、導電体505に印加する電位を、導電体560に印加する電位と連動させず、独立して変化させることで、トランジスタ500のVthを制御することができる。特に、導電体505に負の電位を印加することにより、トランジスタ500のVthを0Vより大きくし、オフ電流を小さくすることが可能となる。したがって、導電体505に負の電位を印加したほうが、印加しない場合よりも、導電体560に印加する電位が0Vのときのドレイン電流を小さくすることができる。
導電体505は、金属酸化物531におけるチャネル形成領域よりも、大きく設けるとよい。特に、図27Cに示すように、導電体505は、金属酸化物531のチャネル幅方向と交わる端部よりも外側の領域においても、延伸していることが好ましい。つまり、金属酸化物531のチャネル幅方向における側面の外側において、導電体505と、導電体560とは、絶縁体を介して重畳していることが好ましい。
上記構成を有することで、第1のゲート電極としての機能を有する導電体560の電界と、第2のゲート電極としての機能を有する導電体505の電界によって、金属酸化物531のチャネル形成領域を電気的に取り囲むことができる。
図27Cに示すように、導電体505は延伸させて、配線としても機能させている。ただし、これに限られることなく、導電体505の下に、配線として機能する導電体を設ける構成にしてもよい。
絶縁体514は、水または水素等の不純物が、基板側からトランジスタ500に混入することを抑制するバリア絶縁膜として機能することが好ましい。したがって、絶縁体514は、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NO等)、銅原子等の不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい。)絶縁性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子等の少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい。)絶縁性材料を用いることが好ましい。
例えば、絶縁体514として、酸化アルミニウムまたは窒化シリコン等を用いることが好ましい。これにより、水または水素等の不純物が絶縁体514よりも基板側からトランジスタ500側に拡散することを抑制できる。または、絶縁体524等に含まれる酸素が、絶縁体514よりも基板側に、拡散することを抑制できる。
層間膜として機能する絶縁体516、絶縁体580、および絶縁体581は、絶縁体514よりも誘電率が低いことが好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体516、絶縁体580、および絶縁体581として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、または空孔を有する酸化シリコン等を適宜用いればよい。
絶縁体522および絶縁体524は、ゲート絶縁体としての機能を有する。
ここで、金属酸化物531と接する絶縁体524は、加熱により酸素を脱離することが好ましい。本明細書では、加熱により離脱する酸素を過剰酸素と呼ぶことがある。例えば、絶縁体524は、酸化シリコンまたは酸化窒化シリコン等を適宜用いればよい。酸素を含む絶縁体を金属酸化物531に接して設けることにより、金属酸化物531中の酸素欠損を低減し、トランジスタ500の信頼性を向上させることができる。
絶縁体524として、具体的には、加熱により一部の酸素が脱離する酸化物材料を用いることが好ましい。加熱により酸素を脱離する酸化物とは、TDS(Thermal Desorption Spectroscopy)分析にて、酸素原子に換算した酸素の脱離量が1.0×1018atoms/cm以上、好ましくは1.0×1019atoms/cm以上、さらに好ましくは2.0×1019atoms/cm以上、または3.0×1020atoms/cm以上である酸化物膜である。なお、上記TDS分析時における膜の表面温度は、100℃以上700℃以下、または100℃以上400℃以下の範囲が好ましい。
図27Cに示すように、絶縁体524は、絶縁体554と重ならず、且つ金属酸化物531bと重ならない領域の膜厚が、それ以外の領域の膜厚より薄くなる場合がある。絶縁体524において、絶縁体554と重ならず、且つ金属酸化物531bと重ならない領域の膜厚は、上記酸素を十分に拡散できる膜厚であることが好ましい。
絶縁体522は、絶縁体514等と同様に、水または水素等の不純物が、基板側からトランジスタ500に混入することを抑制するバリア絶縁膜として機能することが好ましい。例えば、絶縁体522は、絶縁体524より水素透過性が低いことが好ましい。絶縁体522、絶縁体554、および絶縁体574によって、絶縁体524、金属酸化物531、および絶縁体550等を囲むことにより、外方から水または水素等の不純物がトランジスタ500に侵入することを抑制することができる。
さらに、絶縁体522は、酸素(例えば、酸素原子、酸素分子等の少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい。)ことが好ましい。例えば、絶縁体522は、絶縁体524より酸素透過性が低いことが好ましい。絶縁体522が、酸素および不純物の拡散を抑制する機能を有することで、金属酸化物531が有する酸素が、基板側へ拡散することを低減でき、好ましい。また、導電体505が、絶縁体524および金属酸化物531が有する酸素と反応することを抑制することができる。
絶縁体522は、絶縁性材料であるアルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を用いるとよい。アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)等を用いることが好ましい。このような材料を用いて絶縁体522を形成した場合、絶縁体522は、金属酸化物531からの酸素の放出、ならびに、トランジスタ500の周辺部から金属酸化物531への水素等の不純物の混入を抑制する層として機能する。
または、これらの絶縁体に、例えば、酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。またはこれらの絶縁体を窒化処理してもよい。上記の絶縁体に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用いてもよい。
絶縁体522は、例えば、酸化アルミニウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)または(Ba,Sr)TiO(BST)等のいわゆるhigh−k材料を含む絶縁体を単層または積層で用いてもよい。トランジスタの微細化、および高集積化が進むと、ゲート絶縁体の薄膜化により、リーク電流等の問題が生じる場合がある。ゲート絶縁体として機能する絶縁体にhigh−k材料を用いることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。
なお、絶縁体522、および絶縁体524が、2層以上の積層構造を有していてもよい。その場合、同じ材料からなる積層構造に限定されず、異なる材料からなる積層構造でもよい。例えば、絶縁体522の下に絶縁体524と同様の絶縁体を設ける構成にしてもよい。
金属酸化物531は、金属酸化物531aと、金属酸化物531a上の金属酸化物531bと、金属酸化物531b上の金属酸化物531cと、を有する。金属酸化物531b下に金属酸化物531aを有することで、金属酸化物531aよりも下方に形成された構造物から、金属酸化物531bへの不純物の拡散を抑制することができる。また、金属酸化物531b上に金属酸化物531cを有することで、金属酸化物531cよりも上方に形成された構造物から、金属酸化物531bへの不純物の拡散を抑制することができる。
なお、金属酸化物531は、各金属原子の原子数比が異なる複数の酸化物層の積層構造を有することが好ましい。例えば、金属酸化物531が、少なくともインジウム(In)と、元素Mと、を含む場合、金属酸化物531aを構成する全元素の原子数に対する、金属酸化物531aに含まれる元素Mの原子数の割合が、金属酸化物531bを構成する全元素の原子数に対する、金属酸化物531bに含まれる元素Mの原子数の割合より高いことが好ましい。また、金属酸化物531aに含まれる元素Mの、Inに対する原子数比が、金属酸化物531bに含まれる元素Mの、Inに対する原子数比より大きいことが好ましい。ここで、金属酸化物531cは、金属酸化物531aまたは金属酸化物531bに用いることができる金属酸化物を用いることができる。
金属酸化物531aおよび金属酸化物531cの伝導帯下端のエネルギーが、金属酸化物531bの伝導帯下端のエネルギーより高くなることが好ましい。また、言い換えると、金属酸化物531aおよび金属酸化物531cの電子親和力が、金属酸化物531bの電子親和力より小さいことが好ましい。この場合、金属酸化物531cは、金属酸化物531aに用いることができる金属酸化物を用いることが好ましい。具体的には、金属酸化物531cを構成する全元素の原子数に対する、金属酸化物531cに含まれる元素Mの原子数の割合が、金属酸化物531bを構成する全元素の原子数に対する、金属酸化物531bに含まれる元素Mの原子数の割合より高いことが好ましい。また、金属酸化物531cに含まれる元素Mの、Inに対する原子数比が、金属酸化物531bに含まれる元素Mの、Inに対する原子数比より大きいことが好ましい。
ここで、金属酸化物531a、金属酸化物531b、および金属酸化物531cの接合部において、伝導帯下端のエネルギー準位はなだらかに変化する。換言すると、金属酸化物531a、金属酸化物531b、および金属酸化物531cの接合部における伝導帯下端のエネルギー準位は、連続的に変化または連続接合するともいうことができる。このようにするためには、金属酸化物531aと金属酸化物531bとの界面、および金属酸化物531bと金属酸化物531cとの界面において形成される混合層の欠陥準位密度を低くするとよい。
具体的には、金属酸化物531aと金属酸化物531b、金属酸化物531bと金属酸化物531cが、酸素以外に共通の元素を有する(主成分とする。)ことで、欠陥準位密度が低い混合層を形成することができる。例えば、金属酸化物531bがIn−Ga−Zn酸化物の場合、金属酸化物531aおよび金属酸化物531cとして、In−Ga−Zn酸化物、Ga−Zn酸化物、酸化ガリウム等を用いてもよい。また、金属酸化物531cを積層構造としてもよい。例えば、In−Ga−Zn酸化物と、当該In−Ga−Zn酸化物上のGa−Zn酸化物との積層構造、またはIn−Ga−Zn酸化物と、当該In−Ga−Zn酸化物上の酸化ガリウムとの積層構造を用いることができる。別言すると、In−Ga−Zn酸化物と、Inを含まない酸化物との積層構造を、金属酸化物531cとして用いてもよい。
具体的には、金属酸化物531aとして、In:Ga:Zn=1:3:4[原子数比]、または1:1:0.5[原子数比]の金属酸化物を用いればよい。また、金属酸化物531bとして、In:Ga:Zn=4:2:3[原子数比]、または3:1:2[原子数比]の金属酸化物を用いればよい。また、金属酸化物531cとして、In:Ga:Zn=1:3:4[原子数比]、In:Ga:Zn=4:2:3[原子数比]、Ga:Zn=2:1[原子数比]、またはGa:Zn=2:5[原子数比]の金属酸化物を用いればよい。また、金属酸化物531cを積層構造とする場合の具体例として、In:Ga:Zn=4:2:3[原子数比]と、Ga:Zn=2:1[原子数比]との積層構造、In:Ga:Zn=4:2:3[原子数比]と、Ga:Zn=2:5[原子数比]との積層構造、In:Ga:Zn=4:2:3[原子数比]と、酸化ガリウムとの積層構造等が挙げられる。
このとき、キャリアの主たる経路は金属酸化物531bとなる。金属酸化物531a、金属酸化物531cを上述の構成とすることで、金属酸化物531aと金属酸化物531bとの界面、および金属酸化物531bと金属酸化物531cとの界面における欠陥準位密度を低くすることができる。そのため、界面散乱によるキャリア伝導への影響が小さくなり、トランジスタ500は高いオン電流、および高い周波数特性を得ることができる。なお、金属酸化物531cを積層構造とした場合、上述の金属酸化物531bと、金属酸化物531cとの界面における欠陥準位密度を低くする効果に加え、金属酸化物531cが有する構成元素が、絶縁体550側に拡散することを抑制することが期待される。より具体的には、金属酸化物531cを積層構造とし、積層構造の上方にInを含まない酸化物を位置させるため、絶縁体550側に拡散しうるInを抑制することができる。絶縁体550は、ゲート絶縁体として機能するため、Inが拡散した場合、トランジスタの特性不良となる。したがって、金属酸化物531cを積層構造とすることで、信頼性の高い表示装置を提供することが可能となる。
金属酸化物531b上には、ソース電極、およびドレイン電極として機能する導電体542(導電体542a、および導電体542b)が設けられる。導電体542として、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。例えば、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物等を用いることが好ましい。また、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物は、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。
金属酸化物531と接するように上記導電体542を設けることで、金属酸化物531の導電体542近傍において、酸素濃度が低減する場合がある。また、金属酸化物531の導電体542近傍において、導電体542に含まれる金属と、金属酸化物531の成分とを含む金属化合物層が形成される場合がある。このような場合、金属酸化物531の導電体542近傍の領域において、キャリア濃度が増加し、当該領域は、低抵抗領域となる。
ここで、導電体542aと導電体542bの間の領域は、絶縁体580の開口に重畳して形成される。これにより、導電体542aと導電体542bの間に導電体560を自己整合的に配置することができる。
絶縁体550は、ゲート絶縁体として機能する。絶縁体550は、金属酸化物531cの上面に接して配置することが好ましい。絶縁体550は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンを用いることができる。特に、酸化シリコン、および酸化窒化シリコンは熱に対し安定であるため好ましい。
絶縁体550は、絶縁体524と同様に、絶縁体550中の水または水素等の不純物濃度が低減されていることが好ましい。絶縁体550の膜厚は、1nm以上20nm以下とするのが好ましい。
絶縁体550と導電体560との間に金属酸化物を設けてもよい。当該金属酸化物は、絶縁体550から導電体560への酸素拡散を抑制することが好ましい。これにより、絶縁体550の酸素による導電体560の酸化を抑制することができる。
当該金属酸化物は、ゲート絶縁体の一部としての機能を有する場合がある。したがって、絶縁体550に酸化シリコンまたは酸化窒化シリコン等を用いる場合、当該金属酸化物は、比誘電率が高いhigh−k材料である金属酸化物を用いることが好ましい。ゲート絶縁体を、絶縁体550と当該金属酸化物との積層構造とすることで、熱に対して安定、且つ比誘電率の高い積層構造とすることができる。したがって、ゲート絶縁体の物理膜厚を保持したまま、トランジスタ動作時に印加するゲート電位の低減化が可能となる。また、ゲート絶縁体として機能する絶縁体の等価酸化膜厚(EOT)の薄膜化が可能となる。
具体的には、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、または、マグネシウム等から選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。特に、アルミニウム、またはハフニウムの一方または双方の酸化物を含む絶縁体である、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)等を用いることが好ましい。
導電体560は、図27では2層構造として示しているが、単層構造でもよいし、3層以上の積層構造であってもよい。
導電体560aは、上述の、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NO等)、銅原子等の不純物の拡散を抑制する機能を有する導電体を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子等の少なくとも一)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。
導電体560aが酸素の拡散を抑制する機能を持つことにより、絶縁体550に含まれる酸素により、導電体560bが酸化して導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電性材料として、例えば、タンタル、窒化タンタル、ルテニウム、または酸化ルテニウム等を用いることが好ましい。
導電体560bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体560は、配線としても機能するため、導電性が高い導電体を用いることが好ましい。例えば、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることができる。また、導電体560bは積層構造としてもよく、例えば、チタンまたは窒化チタンと上記導電性材料との積層構造としてもよい。
図27Aおよび図27Cに示すように、金属酸化物531bの導電体542と重ならない領域、言い換えると、金属酸化物531のチャネル形成領域において、金属酸化物531の側面が導電体560で覆うように配置されている。これにより、第1のゲート電極としての機能する導電体560の電界を、金属酸化物531の側面に作用させやすくなる。よって、トランジスタ500のオン電流を増大させ、周波数特性を向上させることができる。
絶縁体554は、絶縁体514等と同様に、水または水素等の不純物が、絶縁体580側からトランジスタ500に混入することを抑制するバリア絶縁膜として機能することが好ましい。例えば、絶縁体554は、絶縁体524より水素透過性が低いことが好ましい。さらに、図27Bおよび図27Cに示すように、絶縁体554は、金属酸化物531cの側面、導電体542aの上面と側面、導電体542bの上面と側面、金属酸化物531aおよび金属酸化物531bの側面、並びに絶縁体524の上面に接することが好ましい。このような構成にすることで、絶縁体580に含まれる水素が、導電体542a、導電体542b、金属酸化物531a、金属酸化物531bおよび絶縁体524の上面または側面から金属酸化物531に侵入することを抑制できる。
さらに、絶縁体554は、酸素(例えば、酸素原子、酸素分子等の少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい。)ことが好ましい。例えば、絶縁体554は、絶縁体580または絶縁体524より酸素透過性が低いことが好ましい。
絶縁体554は、スパッタリング法を用いて成膜されることが好ましい。絶縁体554を、酸素を含む雰囲気でスパッタリング法を用いて成膜することで、絶縁体524の絶縁体554と接する領域近傍に酸素を添加することができる。これにより、当該領域から、絶縁体524を介して金属酸化物531中に酸素を供給することができる。ここで、絶縁体554が、上方への酸素の拡散を抑制する機能を有することで、酸素が金属酸化物531から絶縁体580へ拡散することを防ぐことができる。また、絶縁体522が、下方への酸素の拡散を抑制する機能を有することで、酸素が金属酸化物531から基板側へ拡散することを防ぐことができる。このようにして、金属酸化物531のチャネル形成領域に酸素が供給される。これにより、金属酸化物531の酸素欠損を低減し、トランジスタのノーマリーオン化を抑制することができる。
絶縁体554として、例えば、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を成膜するとよい。なお、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)等を用いることが好ましい。
水素に対してバリア性を有する絶縁体554によって、絶縁体524、絶縁体550、および金属酸化物531が覆うことで、絶縁体580は、絶縁体554によって、絶縁体524、金属酸化物531、および絶縁体550と離隔されている。これにより、トランジスタ500の外方から水素等の不純物が浸入することを抑制できるため、トランジスタ500に良好な電気特性および信頼性を与えることができる。
絶縁体580は、絶縁体554を介して、絶縁体524、金属酸化物531、および導電体542上に設けられる。例えば、絶縁体580として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、または空孔を有する酸化シリコン等を有することが好ましい。特に、酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため好ましい。特に、酸化シリコン、酸化窒化シリコン、空孔を有する酸化シリコン等の材料は、加熱により脱離する酸素を含む領域を容易に形成することができるため好ましい。
絶縁体580中の水または水素等の不純物濃度が低減されていることが好ましい。また、絶縁体580の上面は、平坦化されていてもよい。
絶縁体574は、絶縁体514等と同様に、水または水素等の不純物が、上方から絶縁体580に混入することを抑制するバリア絶縁膜として機能することが好ましい。絶縁体574として、例えば、絶縁体514、絶縁体554等に用いることができる絶縁体を用いればよい。
絶縁体574の上に、層間膜として機能する絶縁体581を設けることが好ましい。絶縁体581は、絶縁体524等と同様に、膜中の水または水素等の不純物濃度が低減されていることが好ましい。
絶縁体581、絶縁体574、絶縁体580、および絶縁体554に形成された開口に、導電体545aおよび導電体545bを配置する。導電体545aおよび導電体545bは、導電体560を挟んで対向して設ける。なお、導電体545aおよび導電体545bの上面の高さは、絶縁体581の上面と、同一平面上としてもよい。
なお、絶縁体581、絶縁体574、絶縁体580、および絶縁体554の開口の内壁に接して、絶縁体541aが設けられ、その側面に接して導電体545aの第1の導電体が形成されている。当該開口の底部の少なくとも一部には導電体542aが位置しており、導電体545aが導電体542aと接する。同様に、絶縁体581、絶縁体574、絶縁体580、および絶縁体554の開口の内壁に接して、絶縁体541bが設けられ、その側面に接して導電体545bの第1の導電体が形成されている。当該開口の底部の少なくとも一部には導電体542bが位置しており、導電体545bが導電体542bと接する。
導電体545aおよび導電体545bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体545aおよび導電体545bは積層構造としてもよい。
導電体545を積層構造とする場合、金属酸化物531a、金属酸化物531b、導電体542、絶縁体554、絶縁体580、絶縁体574、絶縁体581と接する導電体には、上述の、水または水素等の不純物の拡散を抑制する機能を有する導電体を用いることが好ましい。例えば、タンタル、窒化タンタル、チタン、窒化チタン、ルテニウム、または酸化ルテニウム等を用いることが好ましい。また、水または水素等の不純物の拡散を抑制する機能を有する導電性材料は、単層または積層で用いてもよい。当該導電性材料を用いることで、絶縁体580に添加された酸素が導電体545aおよび導電体545bに吸収されることを抑制できる。また、絶縁体581より上層から水または水素等の不純物が、導電体545aおよび導電体545bを通じて金属酸化物531に混入することを抑制できる。
絶縁体541aおよび絶縁体541bとして、例えば、絶縁体554等に用いることができる絶縁体を用いればよい。絶縁体541aおよび絶縁体541bは、絶縁体554に接して設けられるため、絶縁体580等から水または水素等の不純物が、導電体545aおよび導電体545bを通じて金属酸化物531に混入することを抑制できる。また、絶縁体580に含まれる酸素が導電体545aおよび導電体545bに吸収されることを抑制できる。
図示しないが、導電体545aの上面、および導電体545bの上面に接して配線として機能する導電体を配置してもよい。配線として機能する導電体は、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、当該導電体は、積層構造としてもよく、例えば、チタンまたは窒化チタンと上記導電性材料との積層としてもよい。当該導電体は、絶縁体に設けられた開口に埋め込むように形成してもよい。
<トランジスタの構成材料>
トランジスタに用いることができる構成材料について説明する。
[基板]
トランジスタ500を形成する基板として、例えば、絶縁体基板、半導体基板、または導電体基板を用いればよい。絶縁体基板として、例えば、ガラス基板、石英基板、サファイア基板、安定化ジルコニア基板(イットリア安定化ジルコニア基板等)、樹脂基板等がある。また、半導体基板として、例えば、シリコン、ゲルマニウム等の半導体基板、または炭化シリコン、シリコンゲルマニウム、ヒ化ガリウム、リン化インジウム、酸化亜鉛、酸化ガリウムからなる化合物半導体基板等がある。さらには、前述の半導体基板内部に絶縁体領域を有する半導体基板、例えば、SOI(Silicon On Insulator)基板等がある。導電体基板として、黒鉛基板、金属基板、合金基板、導電性樹脂基板等がある。または、金属の窒化物を有する基板、金属の酸化物を有する基板等がある。さらには、絶縁体基板に導電体または半導体が設けられた基板、半導体基板に導電体または絶縁体が設けられた基板、導電体基板に半導体または絶縁体が設けられた基板等がある。または、これらの基板に素子が設けられたものを用いてもよい。基板に設けられる素子として、容量素子、抵抗素子、スイッチ素子、発光素子、記憶素子等がある。
[絶縁体]
絶縁体として、絶縁性を有する酸化物、窒化物、酸化窒化物、窒化酸化物、金属酸化物、金属酸化窒化物、金属窒化酸化物等がある。
例えば、トランジスタの微細化、および高集積化が進むと、ゲート絶縁体の薄膜化により、リーク電流等の問題が生じる場合がある。ゲート絶縁体として機能する絶縁体に、high−k材料を用いることで物理膜厚を保ちながら、トランジスタ動作時の低電圧化が可能となる。一方、層間膜として機能する絶縁体には、比誘電率が低い材料を用いることで、配線間に生じる寄生容量を低減することができる。したがって、絶縁体の機能に応じて、材料を選択するとよい。
比誘電率の高い絶縁体として、酸化ガリウム、酸化ハフニウム、酸化ジルコニウム、アルミニウムおよびハフニウムを有する酸化物、アルミニウムおよびハフニウムを有する酸化窒化物、シリコンおよびハフニウムを有する酸化物、シリコンおよびハフニウムを有する酸化窒化物、またはシリコンおよびハフニウムを有する窒化物等がある。
比誘電率が低い絶縁体として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコン、または樹脂等がある。
酸化物半導体を用いたトランジスタは、水素等の不純物および酸素の透過を抑制する機能を有する絶縁体(絶縁体514、絶縁体522、絶縁体554、および絶縁体574等)で囲うことによって、トランジスタの電気特性を安定にすることができる。水素等の不純物および酸素の透過を抑制する機能を有する絶縁体として、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウム、またはタンタルを含む絶縁体を、単層で、または積層で用いればよい。具体的には、水素等の不純物および酸素の透過を抑制する機能を有する絶縁体として、酸化アルミニウム、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウム、または酸化タンタル等の金属酸化物、窒化アルミニウム、窒化アルミニウムチタン、窒化チタン、窒化酸化シリコンまたは窒化シリコン等の金属窒化物を用いることができる。
ゲート絶縁体として機能する絶縁体は、加熱により脱離する酸素を含む領域を有する絶縁体であることが好ましい。例えば、加熱により脱離する酸素を含む領域を有する酸化シリコンまたは酸化窒化シリコンを金属酸化物531と接する構造とすることで、金属酸化物531が有する酸素欠損を補償することができる。
[導電体]
導電体として、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタン等から選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。例えば、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物等を用いることが好ましい。また、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物は、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、ニッケルシリサイド等のシリサイドを用いてもよい。
上記の材料で形成される導電体を複数積層して用いてもよい。例えば、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、窒素を含む導電性材料と、を組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、酸素を含む導電性材料と、窒素を含む導電性材料と、を組み合わせた積層構造としてもよい。
なお、トランジスタのチャネル形成領域に金属酸化物を用いる場合において、ゲート電極として機能する導電体には、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造を用いることが好ましい。この場合は、酸素を含む導電性材料をチャネル形成領域側に設けるとよい。酸素を含む導電性材料をチャネル形成領域側に設けることで、当該導電性材料から離脱した酸素がチャネル形成領域に供給されやすくなる。
特に、ゲート電極として機能する導電体として、チャネルが形成される金属酸化物に含まれる金属元素および酸素を含む導電性材料を用いることが好ましい。また、前述した金属元素および窒素を含む導電性材料を用いてもよい。例えば、窒化チタン、窒化タンタル等の窒素を含む導電性材料を用いてもよい。また、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、シリコンを添加したインジウム錫酸化物を用いてもよい。また、窒素を含むインジウムガリウム亜鉛酸化物を用いてもよい。このような材料を用いることで、チャネルが形成される金属酸化物に含まれる水素を捕獲することができる場合がある。または、外方の絶縁体等から混入する水素を捕獲することができる場合がある。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態8)
本実施の形態では、上記の実施の形態で説明したOSトランジスタに用いることができる金属酸化物(以下、酸化物半導体ともいう。)について説明する。
<結晶構造の分類>
まず、酸化物半導体における、結晶構造の分類について、図28Aを用いて説明を行う。図28Aは、酸化物半導体、代表的にはIGZO(Inと、Gaと、Znと、を含む金属酸化物)の結晶構造の分類を説明する図である。
図28Aに示すように、酸化物半導体は、大きく分けて「Amorphous(無定形)」と、「Crystalline(結晶性)」と、「Crystal(結晶)」と、に分類される。また、「Amorphous」の中には、completely amorphousが含まれる。また、「Crystalline」の中には、CAAC(c−axis−aligned crystalline)、nc(nanocrystalline)、およびCAC(cloud−aligned composite)が含まれる。なお、「Crystalline」の分類には、single crystal、poly crystal、およびcompletely amorphousは除かれる。また、「Crystal」の中には、single crystal、およびpoly crystalが含まれる。
なお、図28Aに示す太枠内の構造は、「Amorphous(無定形)」と、「Crystal(結晶)」との間の中間状態であり、新しい境界領域(New crystalline phase)に属する構造である。すなわち、当該構造は、「Crystal(結晶)」もしくはエネルギー的に不安定な「Amorphous(無定形)」とは全く異なる構造と言い換えることができる。
なお、膜または基板の結晶構造は、X線回折(XRD:X−Ray Diffraction)スペクトルを用いて評価することができる。ここで、「Crystalline」に分類されるCAAC−IGZO膜のGIXD(Grazing−Incidence XRD)測定で得られるXRDスペクトルを図28Bに示す。なお、GIXD法は、薄膜法またはSeemann−Bohlin法ともいう。以降、図28Bに示すGIXD測定で得られるXRDスペクトルを、単にXRDスペクトルと記す。なお、図28Bに示すCAAC−IGZO膜の組成は、In:Ga:Zn=4:2:3[原子数比]近傍である。また、図28Bに示すCAAC−IGZO膜の厚さは、500nmである。
図28Bに示すように、CAAC−IGZO膜のXRDスペクトルでは、明確な結晶性を示すピークが検出される。具体的には、CAAC−IGZO膜のXRDスペクトルでは、2θ=31°近傍に、c軸配向を示すピークが検出される。なお、図28Bに示すように、2θ=31°近傍のピークは、ピーク強度が検出された角度を軸に左右非対称である。
膜または基板の結晶構造は、極微電子線回折法(NBED:Nano Beam Electron Diffraction)によって観察される回折パターン(極微電子線回折パターンともいう。)にて評価することができる。CAAC−IGZO膜の回折パターンを、図28Cに示す。図28Cは、電子線を基板に対して平行に入射するNBEDによって観察される回折パターンである。なお、図28Cに示すCAAC−IGZO膜の組成は、In:Ga:Zn=4:2:3[原子数比]近傍である。また、極微電子線回折法では、プローブ径を1nmとして電子線回折が行われる。
図28Cに示すように、CAAC−IGZO膜の回折パターンでは、c軸配向を示す複数のスポットが観察される。
〔酸化物半導体の構造〕
なお、酸化物半導体は、結晶構造に着目した場合、図28Aとは異なる分類となる場合がある。例えば、酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体として、例えば、上述のCAAC−OS、およびnc−OSがある。また、非単結晶酸化物半導体には、多結晶酸化物半導体、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)、非晶質酸化物半導体、等が含まれる。
ここで、上述のCAAC−OS、nc−OS、およびa−like OSの詳細について、説明を行う。
[CAAC−OS]
CAAC−OSは、複数の結晶領域を有し、当該複数の結晶領域はc軸が特定の方向に配向している酸化物半導体である。なお、特定の方向とは、CAAC−OS膜の厚さ方向、CAAC−OS膜の被形成面の法線方向、またはCAAC−OS膜の表面の法線方向である。また、結晶領域とは、原子配列に周期性を有する領域である。なお、原子配列を格子配列とみなすと、結晶領域とは、格子配列の揃った領域でもある。さらに、CAAC−OSは、a−b面方向において複数の結晶領域が連結する領域を有し、当該領域は歪みを有する場合がある。なお、歪みとは、複数の結晶領域が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。つまり、CAAC−OSは、c軸配向し、a−b面方向には明らかな配向をしていない酸化物半導体である。
なお、上記複数の結晶領域のそれぞれは、1つまたは複数の微小な結晶(最大径が10nm未満である結晶)で構成される。結晶領域が1つの微小な結晶で構成されている場合、当該結晶領域の最大径は10nm未満となる。また、結晶領域が多数の微小な結晶で構成されている場合、当該結晶領域の大きさは、数十nm程度となる場合がある。
In−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、スズ、チタン等から選ばれた一種、または複数種)において、CAAC−OSは、インジウム(In)、および酸素を有する層(以下、In層)と、元素M、亜鉛(Zn)、および酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能である。よって、(M,Zn)層にはインジウムが含まれる場合がある。また、In層には元素Mが含まれる場合がある。なお、In層にはZnが含まれる場合もある。当該層状構造は、例えば、高分解能TEM像において、格子像として観察される。
CAAC−OS膜に対し、例えば、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、c軸配向を示すピークが2θ=31°またはその近傍に検出される。なお、c軸配向を示すピークの位置(2θの値)は、CAAC−OSを構成する金属元素の種類、組成等により変動する場合がある。
例えば、CAAC−OS膜の電子線回折パターンにおいて、複数の輝点(スポット)が観測される。なお、あるスポットと別のスポットとは、試料を透過した入射電子線のスポット(ダイレクトスポットともいう。)を対称中心として、点対称の位置に観測される。
上記特定の方向から結晶領域を観察した場合、当該結晶領域内の格子配列は、六方格子を基本とするが、単位格子は正六角形とは限らず、非正六角形である場合がある。また、上記歪みにおいて、五角形、七角形等の格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリー)を確認することはできない。即ち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないこと、金属原子が置換することで原子間の結合距離が変化すること、などによって、歪みを許容することができるためと考えられる。
なお、明確な結晶粒界が確認される結晶構造は、いわゆる多結晶(polycrystal)と呼ばれる。結晶粒界は、再結合中心となり、キャリアが捕獲されトランジスタのオン電流の低下、電界効果移動度の低下等を引き起こす可能性が高い。よって、明確な結晶粒界が確認されないCAAC−OSは、トランジスタの半導体層に好適な結晶構造を有する結晶性の酸化物の一つである。なお、CAAC−OSを構成するには、Znを有する構成が好ましい。例えば、In−Zn酸化物、およびIn−Ga−Zn酸化物は、In酸化物よりも結晶粒界の発生を抑制できるため好適である。
CAAC−OSは、結晶性が高く、明確な結晶粒界が確認されない酸化物半導体である。よって、CAAC−OSは、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、酸化物半導体の結晶性は不純物の混入および/または欠陥の生成等によって低下する場合があるため、CAAC−OSは不純物および欠陥(酸素欠損等)の少ない酸化物半導体ともいえる。従って、CAAC−OSを有する酸化物半導体は、物理的性質が安定する。そのため、CAAC−OSを有する酸化物半導体は熱に強く、信頼性が高い。また、CAAC−OSは、製造工程における高い温度(所謂サーマルバジェット)に対しても安定である。したがって、OSトランジスタにCAAC−OSを用いると、製造工程の自由度を広げることが可能となる。
[nc−OS]
nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。別言すると、nc−OSは、微小な結晶を有する。なお、当該微小な結晶の大きさは、例えば、1nm以上10nm以下、特に1nm以上3nm以下であることから、当該微小な結晶をナノ結晶ともいう。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、a−like OSおよび非晶質酸化物半導体と区別が付かない場合がある。例えば、nc−OS膜に対し、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、結晶性を示すピークが検出されない。また、nc−OS膜に対し、ナノ結晶よりも大きいプローブ径(例えば50nm以上)の電子線を用いる電子線回折(制限視野電子線回折ともいう。)を行うと、ハローパターンのような回折パターンが観測される。一方、nc−OS膜に対し、ナノ結晶の大きさと近いかナノ結晶より小さいプローブ径(例えば1nm以上30nm以下)の電子線を用いる電子線回折(ナノビーム電子線回折ともいう。)を行うと、ダイレクトスポットを中心とするリング状の領域内に複数のスポットが観測される電子線回折パターンが取得される場合がある。
[a−like OS]
a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。a−like OSは、鬆または低密度領域を有する。即ち、a−like OSは、nc−OSおよびCAAC−OSと比べて、結晶性が低い。また、a−like OSは、nc−OSおよびCAAC−OSと比べて、膜中の水素濃度が高い。
[酸化物半導体の構成]
次に、上述のCAC−OSの詳細について、説明を行う。なお、CAC−OSは材料構成に関する。
[CAC−OS]
CAC−OSとは、例えば、金属酸化物を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、金属酸化物において、一つまたは複数の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状ともいう。
さらに、CAC−OSとは、第1の領域と、第2の領域と、に材料が分離することでモザイク状となり、当該第1の領域が、膜中に分布した構成(以下、クラウド状ともいう。)である。つまり、CAC−OSは、当該第1の領域と、当該第2の領域とが、混合している構成を有する複合金属酸化物である。
ここで、In−Ga−Zn酸化物におけるCAC−OSを構成する金属元素に対するIn、Ga、およびZnの原子数比のそれぞれを、[In]、[Ga]、および[Zn]と表記する。例えば、In−Ga−Zn酸化物におけるCAC−OSにおいて、第1の領域は、[In]が、CAC−OS膜の組成における[In]よりも大きい領域である。また、第2の領域は、[Ga]が、CAC−OS膜の組成における[Ga]よりも大きい領域である。または、例えば、第1の領域は、[In]が、第2の領域における[In]よりも大きく、且つ、[Ga]が、第2の領域における[Ga]よりも小さい領域である。また、第2の領域は、[Ga]が、第1の領域における[Ga]よりも大きく、且つ、[In]が、第1の領域における[In]よりも小さい領域である。
具体的には、上記第1の領域は、インジウム酸化物、インジウム亜鉛酸化物等が主成分である領域である。また、上記第2の領域は、ガリウム酸化物、ガリウム亜鉛酸化物等が主成分である領域である。つまり、上記第1の領域を、Inを主成分とする領域と言い換えることができる。また、上記第2の領域を、Gaを主成分とする領域と言い換えることができる。
なお、上記第1の領域と、上記第2の領域とは、明確な境界が観察できない場合がある。
例えば、In−Ga−Zn酸化物におけるCAC−OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)を用いて取得したEDXマッピングにより、Inを主成分とする領域(第1の領域)と、Gaを主成分とする領域(第2の領域)とが、偏在し、混合している構造を有することが確認できる。
CAC−OSをトランジスタに用いる場合、第1の領域に起因する導電性と、第2の領域に起因する絶縁性とが、相補的に作用することにより、スイッチングさせる機能(On/Offさせる機能)をCAC−OSに付与することができる。つまり、CAC−OSとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。導電性の機能と絶縁性の機能とを分離させることで、双方の機能を最大限に高めることができる。よって、CAC−OSをトランジスタに用いることで、高いオン電流(Ion)、高い電界効果移動度(μ)、および良好なスイッチング動作を実現することができる。
酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、CAC−OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
<酸化物半導体を有するトランジスタ>
続いて、上記酸化物半導体をトランジスタに用いる場合について説明する。
上記酸化物半導体をトランジスタに用いることで、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。
特に、チャネルが形成される半導体層として、インジウム(In)、ガリウム(Ga)、および亜鉛(Zn)を含む酸化物(「IGZO」とも記す)を用いることが好ましい。または、半導体層としては、インジウム(In)、アルミニウム(Al)、および亜鉛(Zn)を含む酸化物(「IAZO」とも記す)を用いてもよい。または、半導体層としては、インジウム(In)、アルミニウム(Al)、ガリウム(Ga)、および亜鉛(Zn)を含む酸化物(「IAGZO」とも記す)を用いてもよい。
トランジスタには、キャリア濃度の低い酸化物半導体を用いることが好ましい。例えば、酸化物半導体のキャリア濃度は1×1017cm−3以下、好ましくは1×1015cm−3以下、さらに好ましくは1×1013cm−3以下、より好ましくは1×1011cm−3以下、さらに好ましくは1×1010cm−3未満であり、1×10−9cm−3以上である。なお、酸化物半導体膜のキャリア濃度を低くする場合においては、酸化物半導体膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性または実質的に高純度真性と言う。なお、キャリア濃度の低い酸化物半導体を、高純度真性または実質的に高純度真性な酸化物半導体と呼ぶ場合がある。
高純度真性または実質的に高純度真性である酸化物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
酸化物半導体のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体にチャネル形成領域が形成されるトランジスタは、電気特性が不安定となる場合がある。
従って、トランジスタの電気特性を安定にするためには、酸化物半導体中の不純物濃度を低減することが有効である。また、酸化物半導体中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物は、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
<不純物>
ここで、酸化物半導体中における各不純物の影響について説明する。
酸化物半導体において、第14族元素の一つであるシリコンおよび/または炭素が含まれると、酸化物半導体において欠陥準位が形成される。このため、酸化物半導体におけるシリコンおよび炭素の濃度と、酸化物半導体との界面近傍のシリコンおよび炭素の濃度(SIMSにより得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
酸化物半導体にアルカリ金属またはアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。従って、アルカリ金属またはアルカリ土類金属が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、SIMSにより得られる酸化物半導体中のアルカリ金属またはアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
酸化物半導体において、窒素が含まれると、キャリアである電子が生じ、キャリア濃度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を半導体に用いたトランジスタはノーマリーオン特性となりやすい。または、酸化物半導体において、窒素が含まれると、トラップ準位が形成される場合がある。この結果、トランジスタの電気特性が不安定となる場合がある。このため、SIMSにより得られる酸化物半導体中の窒素濃度を、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下にする。
酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。従って、水素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中の水素はできる限り低減されていることが好ましい。具体的には、酸化物半導体において、SIMSにより得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満にする。
不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態9)
本実施の形態では、本発明の一態様に係る半導体装置を適用可能な電子機器について説明する。
本発明の一態様に係る半導体装置を、電子機器の表示部に適用することができる。したがって、表示品位の高い電子機器を実現できる。または、極めて高精細な電子機器を実現できる。または、信頼性の高い電子機器を実現できる。
本発明の一態様に係る半導体装置などを用いた電子機器として、テレビ、モニタ等の表示装置、照明装置、デスクトップ型或いはノート型のパーソナルコンピュータ、ワードプロセッサ、DVD(Digital Versatile Disc)などの記録媒体に記憶された静止画または動画を再生する画像再生装置、ポータブルCDプレーヤ、ラジオ、テープレコーダ、ヘッドホンステレオ、ステレオ、置き時計、壁掛け時計、コードレス電話子機、トランシーバ、自動車電話、携帯電話、携帯情報端末、タブレット型端末、携帯型ゲーム機、パチンコ機などの固定式ゲーム機、電卓、電子手帳、電子書籍端末、電子翻訳機、音声入力機器、ビデオカメラ、デジタルスチルカメラ、電気シェーバ、電子レンジ等の高周波加熱装置、電気炊飯器、電気洗濯機、電気掃除機、温水器、扇風機、毛髪乾燥機、エアコンディショナー、加湿器、除湿器などの空調設備、食器洗い器、食器乾燥器、衣類乾燥器、布団乾燥器、電気冷蔵庫、電気冷凍庫、電気冷凍冷蔵庫、DNA保存用冷凍庫、懐中電灯、チェーンソー等の工具、煙感知器、透析装置等の医療機器などが挙げられる。さらに、誘導灯、信号機、ベルトコンベア、エレベータ、エスカレータ、産業用ロボット、電力貯蔵システム、電力の平準化とスマートグリッドのための蓄電装置等の産業機器が挙げられる。また、燃料を用いたエンジン、または蓄電体からの電力を用いた電動機により推進する移動体なども、電子機器の範疇に含まれる場合がある。上記移動体として、例えば、電気自動車(EV)、内燃機関と電動機を併せ持ったハイブリッド車(HV)、プラグインハイブリッド車(PHV)、これらのタイヤ車輪を無限軌道に変えた装軌車両、電動アシスト自転車を含む原動機付自転車、自動二輪車、電動車椅子、ゴルフ用カート、小型または大型船舶、潜水艦、ヘリコプター、航空機、ロケット、人工衛星、宇宙探査機、惑星探査機、宇宙船などが挙げられる。
本発明の一態様に係る電子機器は、二次電池(バッテリ)を有していてもよく、非接触電力伝送を用いて、二次電池を充電することができると好ましい。
二次電池としては、例えば、リチウムイオン二次電池、ニッケル水素電池、ニカド電池、有機ラジカル電池、鉛蓄電池、空気二次電池、ニッケル亜鉛電池、銀亜鉛電池などが挙げられる。
本発明の一態様に係る電子機器は、アンテナを有していてもよい。アンテナで信号を受信することで、表示部で映像および情報等の表示を行うことができる。また、電子機器がアンテナおよび二次電池を有する場合、アンテナを、非接触電力伝送に用いてもよい。
本発明の一態様に係る電子機器は、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)を有していてもよい。
本発明の一態様に係る電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)を実行する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出す機能等を有することができる。
さらに、複数の表示部を有する電子機器においては、表示部の一部を主として画像情報を表示し、別の一部を主として文字情報を表示する機能、または複数の表示部に視差を考慮した画像を表示することで立体的な画像を表示する機能等を有することができる。さらに、受像部を有する電子機器においては、静止画または動画を撮影する機能、撮影した画像を自動または手動で補正する機能、撮影した画像を記録媒体(外部または電子機器に内蔵)に保存する機能、撮影した画像を表示部に表示する機能等を有することができる。なお、本発明の一態様の電子機器が有する機能はこれらに限定されず、様々な機能を有することができる。
本発明の一態様に係る半導体装置は、高精細な画像を表示することができる。そのため、特に携帯型の電子機器、装着型の電子機器(ウェアラブル機器)、および電子書籍端末などに好適に用いることができる。例えば、VR機器またはAR機器などのxR機器に好適に用いることができる。
図29Aは、ファインダー8100を取り付けた状態のカメラ8000の外観を示す図である。
カメラ8000は、筐体8001、表示部8002、操作ボタン8003、シャッターボタン8004等を有する。またカメラ8000には、着脱可能なレンズ8006が取り付けられている。なお、カメラ8000は、レンズ8006と筐体とが一体となっていてもよい。
カメラ8000は、シャッターボタン8004を押す、またはタッチパネルとして機能する表示部8002をタッチすることにより撮像することができる。
筐体8001は、電極を有するマウントを有し、ファインダー8100のほか、ストロボ装置等を接続することができる。
ファインダー8100は、筐体8101、表示部8102、ボタン8103等を有する。
筐体8101は、カメラ8000のマウントと係合するマウントにより、カメラ8000に取り付けられている。ファインダー8100はカメラ8000から受信した映像等を表示部8102に表示させることができる。
ボタン8103は、電源ボタン等としての機能を有する。
例えば、カメラ8000の表示部8002、およびファインダー8100の表示部8102に、本発明の一態様に係る半導体装置を適用できる。なお、ファインダー8100は、カメラ8000に内蔵されていてもよい。
図29Bは、ヘッドマウントディスプレイ8200の外観を示す図である。
ヘッドマウントディスプレイ8200は、装着部8201、レンズ8202、本体8203、表示部8204、ケーブル8205等を有している。また装着部8201には、バッテリ8206が内蔵されている。
ケーブル8205は、バッテリ8206から本体8203に電力を供給する。本体8203は無線受信機等を備え、受信した映像情報を表示部8204に表示させることができる。また、本体8203はカメラを備え、使用者の眼球またはまぶたの動きの情報を入力手段として用いることができる。
また、装着部8201には、使用者に触れる位置に、使用者の眼球の動きに伴って流れる電流を検知可能な複数の電極が設けられ、視線を認識する機能を有していてもよい。また、当該電極に流れる電流により、使用者の脈拍をモニタする機能を有していてもよい。また、装着部8201には、温度センサ、圧力センサ、加速度センサ等の各種センサを有していてもよく、使用者の生体情報を表示部8204に表示する機能、使用者の頭部の動きに合わせて表示部8204に表示する映像を変化させる機能などを有していてもよい。
例えば、表示部8204に、本発明の一態様に係る半導体装置を適用できる。
図29C乃至図29Eは、ヘッドマウントディスプレイ8300の外観を示す図である。ヘッドマウントディスプレイ8300は、筐体8301と、表示部8302と、バンド状の固定具8304と、一対のレンズ8305と、を有する。
使用者は、レンズ8305を通して、表示部8302の表示を視認することができる。なお、表示部8302を湾曲して配置させると、使用者が高い臨場感を感じることができるため好ましい。また、表示部8302の異なる領域に表示された別の画像を、レンズ8305を通して視認することで、視差を用いた3次元表示等を行うこともできる。なお、表示部8302を1つ設ける構成に限られず、表示部8302を2つ設け、使用者の片方の目につき1つの表示部を配置してもよい。
例えば、表示部8302に、本発明の一態様に係る半導体装置を適用できる。本発明の一態様に係る半導体装置は、極めて高い精細度を実現することも可能である。例えば、図29Eのようにレンズ8305を用いて表示を拡大して視認される場合でも、使用者に画素が視認されにくい。つまり、表示部8302を用いて、使用者に現実感の高い映像を視認させることができる。
図29Fは、ゴーグル型のヘッドマウントディスプレイ8400の外観を示す図である。ヘッドマウントディスプレイ8400は、一対の筐体8401と、装着部8402と、緩衝部材8403と、を有する。一対の筐体8401内には、それぞれ、表示部8404およびレンズ8405が設けられる。一対の表示部8404に互いに異なる画像を表示させることで、視差を用いた3次元表示を行うことができる。
使用者は、レンズ8405を通して表示部8404を視認することができる。レンズ8405はピント調整機構を有し、使用者の視力に応じて位置を調整することができる。表示部8404は、正方形または横長の長方形であることが好ましい。これにより、臨場感を高めることができる。
装着部8402は、使用者の顔のサイズに応じて調整でき、かつ、ずれ落ちることのないよう、可塑性および弾性を有することが好ましい。また、装着部8402の一部は、骨伝導イヤフォンとして機能する振動機構を有していることが好ましい。これにより、別途イヤフォン、スピーカなどの音響機器を必要とせず、装着しただけで映像と音声を楽しむことができる。なお、筐体8401内に、無線通信により音声データを出力する機能を有していてもよい。
装着部8402と緩衝部材8403は、使用者の顔(額、頬など)に接触する部分である。緩衝部材8403が使用者の顔と密着することにより、光漏れを防ぐことができ、より没入感を高めることができる。緩衝部材8403は、使用者がヘッドマウントディスプレイ8400を装着した際に使用者の顔に密着するよう、柔らかな素材を用いることが好ましい。例えばゴム、シリコーンゴム、ウレタン、スポンジなどの素材を用いることができる。また、スポンジ等の表面を布、革(天然皮革または合成皮革)、などで覆ったものを用いると、使用者の顔と緩衝部材8403との間に隙間が生じにくく光漏れを好適に防ぐことができる。また、このような素材を用いると、肌触りが良いことに加え、寒い季節などに装着した際に、使用者に冷たさを感じさせないため好ましい。緩衝部材8403または装着部8402などの、使用者の肌に触れる部材は、取り外し可能な構成とすると、クリーニングまたは交換が容易となるため好ましい。
図30Aにテレビジョン装置の一例を示す。テレビジョン装置7100は、筐体7101に表示部7000が組み込まれている。ここでは、スタンド7103により筐体7101を支持した構成を示している。
例えば、表示部7000に、本発明の一態様の半導体装置を適用することができる。
図30Aに示すテレビジョン装置7100の操作は、筐体7101が備える操作スイッチ、および、別体のリモコン操作機7111により行うことができる。または、表示部7000にタッチセンサを備えていてもよく、指等で表示部7000に触れることでテレビジョン装置7100を操作してもよい。リモコン操作機7111は、当該リモコン操作機7111から出力する情報を表示する表示部を有していてもよい。リモコン操作機7111が備える操作キーまたはタッチパネルにより、チャンネルおよび音量の操作を行うことができ、表示部7000に表示される映像を操作することができる。
なお、テレビジョン装置7100は、受信機およびモデムなどを備えた構成とする。受信機により一般のテレビ放送の受信を行うことができる。また、モデムを介して有線または無線による通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
図30Bに、ノート型パーソナルコンピュータの一例を示す。ノート型パーソナルコンピュータ7200は、筐体7211、キーボード7212、ポインティングデバイス7213、外部接続ポート7214等を有する。筐体7211に、表示部7000が組み込まれている。
例えば、表示部7000に、本発明の一態様の半導体装置を適用することができる。
図30Cおよび図30Dに、デジタルサイネージの一例を示す。
図30Cに示すデジタルサイネージ7300は、筐体7301、表示部7000、およびスピーカ7303等を有する。さらに、LEDランプ、操作キー(電源スイッチ、または操作スイッチを含む)、接続端子、各種センサ、マイク等を有することができる。
図30Dは円柱状の柱7401に取り付けられたデジタルサイネージ7400である。デジタルサイネージ7400は、柱7401の曲面に沿って設けられた表示部7000を有する。
図30Cおよび図30Dにおいて、表示部7000に、本発明の一態様の半導体装置を適用することができる。
表示部7000が広いほど、一度に提供できる情報量を増やすことができる。また、表示部7000が広いほど、人の目につきやすく、例えば、広告の宣伝効果を高めることができる。
表示部7000にタッチパネルを適用することで、表示部7000に画像または動画を表示するだけでなく、使用者が直感的に操作することができ、好ましい。また、路線情報もしくは交通情報などの情報を提供するための用途に用いる場合には、直感的な操作によりユーザビリティを高めることができる。
また、図30Cおよび図30Dに示すように、デジタルサイネージ7300またはデジタルサイネージ7400は、ユーザが所持するスマートフォン等の情報端末機7311または情報端末機7411と無線通信により連携可能であることが好ましい。例えば、表示部7000に表示される広告の情報を、情報端末機7311または情報端末機7411の画面に表示させることができる。また、情報端末機7311または情報端末機7411を操作することで、表示部7000の表示を切り替えることができる。
また、デジタルサイネージ7300またはデジタルサイネージ7400に、情報端末機7311または情報端末機7411の画面を操作手段(コントローラ)としたゲームを実行させることもできる。これにより、不特定多数のユーザが同時にゲームに参加し、楽しむことができる。
図30Eに示す情報端末7550は、筐体7551、表示部7552、マイク7557、スピーカ部7554、カメラ7553、および操作スイッチ7555などを有する。例えば、表示部7552に、本発明の一態様に係る半導体装置を適用できる。また、表示部7552は、タッチパネルとしての機能を有する。また、情報端末7550は、筐体7551の内側にアンテナ、バッテリなどを備える。情報端末7550は、例えば、スマートフォン、携帯電話、タブレット型情報端末、タブレット型パーソナルコンピュータ、電子書籍端末等として用いることができる。
図30Fに腕時計型の情報端末の一例を示す。情報端末7660は、筐体7661、表示部7662、バンド7663、バックル7664、操作スイッチ7665、入出力端子7666などを備える。また、情報端末7660は、筐体7661の内側にアンテナおよびバッテリなどを備える。情報端末7660は、移動電話、電子メール、文章閲覧および作成、音楽再生、インターネット通信、コンピュータゲームなどの種々のアプリケーションを実行することができる。
また、表示部7662はタッチセンサを備え、指またはスタイラスなどで画面に触れることで操作できる。例えば、表示部7662に表示されたアイコン7667に触れることで、アプリケーションを起動できる。操作スイッチ7665は、時刻設定のほか、電源のオン、オフ動作、無線通信のオン、オフ動作、マナーモードの実行および解除、省電力モードの実行および解除など、様々な機能を持たせることができる。例えば、情報端末7660に組み込まれたオペレーティングシステムにより、操作スイッチ7665の機能を設定することもできる。
また、情報端末7660は、通信規格された近距離無線通信を実行することが可能である。例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。また、情報端末7660は入出力端子7666を備え、入出力端子7666を介して他の情報端末とデータの送受信を行うことができる。また入出力端子7666を介して充電を行うこともできる。なお、充電動作は入出力端子7666を介さずに無線給電により行ってもよい。
図31Aに自動車9700の外観を示す。図31Bに自動車9700の運転席を示す。自動車9700は、車体9701、車輪9702、ダッシュボード9703、ライト9704等を備える。本発明の一態様にかかる表示装置は、自動車9700の表示部などに用いることができる。例えば、図31Bに示す表示部9710乃至表示部9715に本発明の一態様にかかる表示装置を設けることができる。
表示部9710と表示部9711は、自動車のフロントガラスに設けられた表示装置である。本発明の一態様に係る表示装置は、表示装置が備える電極を、透光性を備える導電性材料で作製することによって、反対側が透けて見える、いわゆるシースルー状態の表示装置とすることができる。シースルー状態の表示装置であれば、自動車9700の運転時にも視界の妨げになることがない。よって、本発明の一態様にかかる表示装置を自動車9700のフロントガラスに設置することができる。なお、表示装置に、表示装置を駆動するためのトランジスタなどを設ける場合には、有機半導体材料を用いた有機トランジスタ、または酸化物半導体を用いたトランジスタなど、透光性を備えるトランジスタを用いるとよい。
表示部9712はピラー部分に設けられた表示装置である。例えば、車体に設けられた撮像手段からの映像を表示部9712に映し出すことによって、ピラーで遮られた視界を補完することができる。表示部9713はダッシュボード部分に設けられた表示装置である。例えば、車体に設けられた撮像手段からの映像を表示部9713に映し出すことによって、ダッシュボードで遮られた視界を補完することができる。すなわち、自動車の外側に設けられた撮像手段からの映像を映し出すことによって、死角を補い、安全性を高めることができる。また、見えない部分を補完する映像を映すことによって、より自然に違和感なく安全確認を行うことができる。
また、図32は、運転席と助手席にベンチシートを採用した自動車の室内を示している。表示部9721は、ドア部に設けられた表示装置である。例えば、車体に設けられた撮像手段からの映像を表示部9721に映し出すことによって、ドアで遮られた視界を補完することができる。また、表示部9722は、ハンドルに設けられた表示装置である。表示部9723は、ベンチシートの座面の中央部に設けられた表示装置である。
表示部9714、表示部9715、または表示部9722はナビゲーション情報、走行速度、エンジンの回転数、走行距離、燃料の残量、ギアの状態、エアコンの設定などを表示することで、様々な情報を提供できる。また、表示部に表示される表示項目およびレイアウトは、使用者の好みに合わせて適宜変更できる。なお、上記情報は、表示部9710乃至表示部9713、表示部9721、表示部9723にも表示できる。また、表示部9710乃至表示部9715、表示部9721乃至表示部9723は照明装置として用いることも可能である。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
100:RCモデル、110:入力層、111:ノード、120:リザバー層、121:ノード、130:出力層、131:ノード、150:RCモデル、171:導電層、172:EL層、173:導電層、201:配線、202:配線、203:配線、204:配線、205:配線、210:フォトダイオード、220:カレントミラー回路、221:半導体層、222:導電層、230:半導体装置、240:センサ部

Claims (14)

  1.  第1回路と、第2回路と、第3回路と、
     第1配線と、第2配線と、第3配線と、を備え、
     前記第1回路は、第1トランジスタおよび第2トランジスタを備え、
     前記第1配線は、前記第2回路、前記第1トランジスタのゲート、および前記第2トランジスタのゲートと電気的に接続され、
     前記第2配線は、前記第3回路、および、前記第1トランジスタのソースまたはドレインの一方と電気的に接続され、
     前記第3配線は、前記第3回路、および、前記第2トランジスタのソースまたはドレインの一方と電気的に接続され、
     前記第3回路は、前記第2配線に流れる電流と前記第3配線に流れる電流の差に応じた電圧を出力する機能を有し、
     前記第1トランジスタのしきい値電圧と、前記第2トランジスタのしきい値電圧が異なる半導体装置。
  2.  請求項1において、
     前記第2トランジスタのしきい値電圧は、前記第1トランジスタのしきい値電圧の0.9倍以下または1.1倍以上である半導体装置。
  3.  請求項1または請求項2において、
     前記第2トランジスタのチャネル長は、前記第1トランジスタのチャネル長の0.9倍以下または1.1倍以上である半導体装置。
  4.  請求項1乃至請求項3のいずれか一項において、
     前記第1トランジスタは酸化物半導体を含む半導体装置。
  5.  請求項1乃至請求項4のいずれか一項において、
     前記第2トランジスタは酸化物半導体を含む半導体装置。
  6.  請求項4または請求項5において、
     前記酸化物半導体は、インジウムまたは亜鉛の少なくとも一方を含む半導体装置。
  7.  M行N列(MおよびNのそれぞれは、2以上の整数。)のマトリクス状に配置された複数の第1回路と、
     M個の第2回路と、
     N個の第3回路と、
     M本の第1配線と、N本の第2配線と、N本の第3配線と、
     を備え、
     前記複数の第1回路のそれぞれは、第1トランジスタおよび第2トランジスタを備え、
     i本目(iは1以上M以下の整数。)の前記第1配線は、
     i個目の前記第2回路、i行目の前記第1回路のそれぞれが備える前記第1トランジスタのゲート、およびi行目の前記第1回路のそれぞれが備える前記第2トランジスタのゲートと電気的に接続され、
     j本目(jは1以上N以下の整数。)の前記第2配線は、
     j個目の前記第3回路およびj列目の前記第1回路のそれぞれが備える前記第1トランジスタのソースまたはドレインの一方と電気的に接続され、
     j本目の前記第3配線は、
     j個目の前記第3回路およびj列目の前記第1回路のそれぞれが備える前記第2トランジスタのソースまたはドレインの一方と電気的に接続され、
     前記第3回路は、前記第2配線に流れる電流と前記第3配線に流れる電流の差に応じた電圧を出力する機能を有し、
     前記複数の第1回路のそれぞれにおいて、
     前記第1トランジスタのしきい値電圧と前記第2トランジスタのしきい値電圧の差が不規則に異なる半導体装置。
  8.  請求項7において、
     前記第2トランジスタのしきい値電圧は、前記第1トランジスタのしきい値電圧の0.9倍以下または1.1倍以上である半導体装置。
  9.  請求項7または請求項8において、
     前記第2トランジスタのチャネル長は、前記第1トランジスタのチャネル長の0.9倍以下または1.1倍以上である半導体装置。
  10.  請求項7乃至請求項9のいずれか一項において、
     前記第1トランジスタは酸化物半導体を含む半導体装置。
  11.  請求項7乃至請求項10のいずれか一項において、
     前記第2トランジスタは酸化物半導体を含む半導体装置。
  12.  請求項10または請求項11において、
     前記酸化物半導体は、インジウムまたは亜鉛の少なくとも一方を含む半導体装置。
  13.  M行N列(MおよびNのそれぞれは、2以上の整数。)のマトリクス状に配置された複数の第1回路と、
     M個の第2回路と、
     N個の第3回路と、
     M本の第1配線と、N本の第2配線と、
     を備え、
     前記複数の第1回路のそれぞれはトランジスタを備え、
     i本目(iは1以上M以下の整数。)の前記第1配線は、
     i個目の前記第2回路、および、i行目の前記第1回路のそれぞれが備える前記トランジスタのゲートと電気的に接続され、
     j本目(jは1以上N以下の整数。)の前記第2配線は、
     j個目の前記第3回路、および、j列目の前記第1回路のそれぞれが備える前記トランジスタのソースまたはドレインの一方と電気的に接続され、
     前記第3回路は、前記第2配線に流れる電流と参照電流の差に応じた電圧を出力する機能を備え、
     j本目の前記第2配線と電気的に接続する複数の前記トランジスタにおいて、
     チャネル長が不規則に異なる半導体装置。
  14.  M行N列(MおよびNのそれぞれは、2以上の整数。)のマトリクス状に配置された複数の第1回路と、
     M個の第2回路と、
     N個の第3回路と、
     M本の第1配線と、N本の第2配線と、
     を備え、
     前記複数の第1回路のそれぞれはトランジスタを備え、
     i本目(iは1以上M以下の整数。)の前記第1配線は、
     i個目の前記第2回路、および、i行目の前記第1回路のそれぞれが備える前記トランジスタのゲートと電気的に接続され、
     j本目(jは1以上N以下の整数。)の前記第2配線は、
     j個目の前記第3回路、および、j列目の前記第1回路のそれぞれが備える前記トランジスタのソースまたはドレインの一方と電気的に接続され、
     前記第3回路は、前記第2配線に流れる電流と参照電流の差に応じた電圧を出力する機能を備え、
     前記複数の第1回路が備えるトランジスタにおいて、
     チャネル長が不規則に異なる半導体装置。
PCT/IB2022/054455 2021-05-27 2022-05-13 半導体装置 WO2022248963A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023523688A JPWO2022248963A1 (ja) 2021-05-27 2022-05-13

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-089139 2021-05-27
JP2021089139 2021-05-27
JP2021094133 2021-06-04
JP2021-094133 2021-06-04

Publications (1)

Publication Number Publication Date
WO2022248963A1 true WO2022248963A1 (ja) 2022-12-01

Family

ID=84228472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2022/054455 WO2022248963A1 (ja) 2021-05-27 2022-05-13 半導体装置

Country Status (2)

Country Link
JP (1) JPWO2022248963A1 (ja)
WO (1) WO2022248963A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012257090A (ja) * 2011-06-09 2012-12-27 Handotai Rikougaku Kenkyu Center:Kk 差動入力回路および差動入力回路の電圧特性調整方法
WO2020174569A1 (ja) * 2019-02-26 2020-09-03 Tdk株式会社 磁気記録アレイ、積和演算器及びニューロモーフィックデバイス
JP2021047530A (ja) * 2019-09-17 2021-03-25 株式会社東芝 処理装置および推論システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012257090A (ja) * 2011-06-09 2012-12-27 Handotai Rikougaku Kenkyu Center:Kk 差動入力回路および差動入力回路の電圧特性調整方法
WO2020174569A1 (ja) * 2019-02-26 2020-09-03 Tdk株式会社 磁気記録アレイ、積和演算器及びニューロモーフィックデバイス
JP2021047530A (ja) * 2019-09-17 2021-03-25 株式会社東芝 処理装置および推論システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAMANE TOSHIYUKI: "Application of machine learning devices and edge computing by physical reservoir computing", 13 November 2020 (2020-11-13), pages 61 - 65, XP093007791, Retrieved from the Internet <URL:https://community.ibm.com/HigherLogic/System/DownloadDocumentFile.ashx?DocumentFileKey=6639c1c8-25b7-f9ed-223e-ffeb9b17cfc7&forceDialog=0> [retrieved on 20221213] *

Also Published As

Publication number Publication date
JPWO2022248963A1 (ja) 2022-12-01

Similar Documents

Publication Publication Date Title
JP7032472B2 (ja) 表示装置
US11800747B2 (en) Display device and electronic device
TWI831743B (zh) 半導體裝置、顯示裝置以及半導體裝置的製造方法
JPWO2019025917A1 (ja) 半導体装置、及び表示装置
KR20200047527A (ko) 반도체 장치 및 표시 장치
JP2018190753A (ja) 半導体装置、および表示装置
US20230335605A1 (en) Semiconductor device
WO2022248963A1 (ja) 半導体装置
WO2022118151A1 (ja) 表示システム、及び電子機器
WO2023002291A1 (ja) 半導体装置
WO2022249001A1 (ja) 半導体装置、表示装置、及び電子機器
WO2022153144A1 (ja) 発光素子、表示装置、および電子機器
WO2022219447A1 (ja) 表示装置
WO2023037203A1 (ja) 半導体装置
WO2023275676A1 (ja) 半導体装置、および半導体装置の駆動方法
WO2022200905A1 (ja) 半導体装置および電子機器
WO2022167893A1 (ja) 半導体装置
US20240057382A1 (en) Display device and electronic device
WO2022172124A1 (ja) 表示装置、電子機器
WO2023144644A1 (ja) 表示装置、および表示装置の駆動方法
WO2022130117A1 (ja) 表示装置、表示装置の作製方法、及び電子機器
WO2022123390A1 (ja) 表示システムの動作方法
WO2022189890A1 (ja) 表示装置の作製方法
US20230410738A1 (en) Display device and display correction system
WO2024033742A1 (ja) シフトレジスタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810725

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023523688

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18560959

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE