WO2022247736A1 - 脉冲激光沉积装置及方法 - Google Patents

脉冲激光沉积装置及方法 Download PDF

Info

Publication number
WO2022247736A1
WO2022247736A1 PCT/CN2022/094014 CN2022094014W WO2022247736A1 WO 2022247736 A1 WO2022247736 A1 WO 2022247736A1 CN 2022094014 W CN2022094014 W CN 2022094014W WO 2022247736 A1 WO2022247736 A1 WO 2022247736A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
target
reaction chamber
heating element
substrate table
Prior art date
Application number
PCT/CN2022/094014
Other languages
English (en)
French (fr)
Inventor
冯中沛
杨景婷
金魁
袁洁
许波
赵忠贤
Original Assignee
松山湖材料实验室
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松山湖材料实验室 filed Critical 松山湖材料实验室
Priority to KR1020237045262A priority Critical patent/KR20240015107A/ko
Priority to DE112022002839.4T priority patent/DE112022002839T5/de
Publication of WO2022247736A1 publication Critical patent/WO2022247736A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates

Definitions

  • the invention relates to the technical field of thin film deposition, in particular to a pulsed laser deposition device and a method thereof.
  • Microwave communication devices such as antennas, resonators, filters, and delay lines made of superconducting thin films have high sensitivity that cannot be compared with conventional materials (such as gold, silver, etc.), so they are valued by the military of various countries and become a key component in future electronic warfare. It is also the "future" of the new generation of communication technology. In large particle accelerators, superconducting thin films also show great market prospects.
  • Pulsed Laser Deposition (PLD) technology is an important technology for preparing superconducting thin films. Through the interaction between laser and target material, plasma is generated in the normal direction of the target material, and the plasma nucleates on the surface of the substrate. Grows to form a thin film.
  • the object of the present invention is to provide a pulsed laser deposition device and method, which can realize large-scale, large-area, high-quality thin film preparation.
  • a pulsed laser deposition device comprising: a reaction chamber, a plurality of second windows are arranged on the chamber wall of the reaction chamber, and a window for fixing the substrate is arranged inside the reaction chamber.
  • the support column of the stage, the first heating element positioned above the substrate stage and the second heating element positioned below the substrate stage; a plurality of target machines running through the side wall of the reaction chamber, and the second ends of the target machines are fixed There is a target, the target is located above and/or below the substrate table in the reaction chamber, and the surface of the target forms an angle with the surface of the substrate table; a plurality of laser devices, Located outside the reaction chamber, the plurality of laser devices respectively generate laser beams, which are incident on the surface of the target in the reaction chamber through the plurality of second windows, wherein the first heating element and the There are notches on the second heating elements respectively, and the laser beams of multiple laser devices reach the target surface in a straight line in a direction parallel to the surface of the substrate
  • the plurality of laser devices are placed horizontally, so that the laser beams are horizontally incident on the inclined surface of the target.
  • the laser device includes: a laser, used to generate a laser beam; a driving device, connected to the laser, and drives the laser to reciprocate and vertically move; a first bracket, the driving device is horizontally fixed on the on the first support.
  • the light spot of the laser beam of the reciprocating laser device on the surface of the target moves radially relative to the center of the substrate table.
  • the laser device when the light spot reaches the center or edge position of the target surface relative to the substrate stage, the laser device is translated in the vertical direction so that the light spot of the laser beam on the target surface is upward or Move Downward.
  • the driving device controls the moving speed of the laser so that the light spot of the laser beam on the surface of the target material moves gradually relative to the moving speed of the center of the substrate table radially moving from the center to the edge. slow down.
  • multiple targets are fixed on the second end of the target machine, and the multiple targets are distributed in a polygonal shape.
  • the materials of the multiple targets are the same or different.
  • the target machine is rotated to replace the target on which the laser beam is incident.
  • the first surface and the second surface of the substrate table respectively have at least one substrate.
  • a second bracket located below the outside of the reaction chamber, connected to the reaction chamber, for fixing the reaction chamber
  • a first motor located above the outside of the reaction chamber, connected to the reaction chamber
  • the substrate table is connected to control the rotation of the substrate table
  • the vacuum device is located on the outer side wall of the reaction chamber and is connected to the reaction chamber to maintain the vacuum environment in the reaction chamber
  • the substrate The replacement device is located on the outer side wall of the reaction chamber, connected with the reaction chamber, and used for replacing the substrate on the substrate table.
  • the laser is a solid-state laser or other pulsed lasers.
  • the first heating element and the second heating element are not in contact with the substrate stage, which is rotated while depositing the thin film.
  • the substrate stage is heated by radiation after the first heating element and the second heating element are energized.
  • a pulsed laser deposition method comprising: fixing a plurality of substrates on the first surface and the second surface of the substrate stage in the reaction chamber, heating the substrates to a predetermined temperature, and Controlling the rotation of the substrate table; directing multiple laser beams generated by multiple laser devices to reach the surface of the target in a straight line in a direction parallel to the surface of the substrate table, so that the source material of the target is sputtered and uniformly deposited on the surface of the substrate, wherein the target surface irradiated by the laser beam forms an included angle with the surface of the substrate table.
  • the laser device is translated in the horizontal direction, so that the spot of the laser beam on the surface of the target material reciprocates radially relative to the center of the substrate table.
  • the laser device when the light spot reaches the center or edge position of the target surface relative to the substrate stage, the laser device is translated in the vertical direction so that the light spot of the laser beam on the target surface is upward or Move Downward.
  • the moving speed of the laser device is controlled so that the moving speed of the laser beam spot on the surface of the target material relative to the center of the substrate table moves radially from the center to the edge gradually slows down.
  • the laser beam is incident on the surface of the target material in a straight line, and the position of the laser beam on the surface of the target material is changed by moving the laser along the horizontal and vertical directions, which not only reduces the energy loss of the laser beam, but also improves the The stability of the laser beam also improves the rate of film deposition and the uniformity and stability of the film.
  • the laser beam is parallel to the surface of the substrate table, and there is an angle between the surface of the target material and the surface of the substrate table, so that the limitation of the target base distance is "eliminated", thereby realizing super large deposition
  • the thin film deposition of the area can realize the batch preparation of multiple thin films and improve the deposition efficiency.
  • the laser is fixed horizontally, so that the laser beam irradiates the target material in a straight line, which reduces the energy loss after the laser beam is reflected by the mirror, and accelerates the deposition speed of the film; the laser beam is used to irradiate the inclined target material, form plasma, and cooperate with the substrate to rotate along the center at the same time, so that the plasma can deposit the film evenly on the substrate of the substrate, which improves the uniformity of the deposited film and the rate of film deposition
  • the pulse laser deposition device provided by the present invention adopts radiation heating and cooperates with the rotation of the substrate stage to ensure the extremely high deposition temperature consistency of the substrate stage in time and space, and to improve the consistency of the performance of the film when depositing films in large quantities sex.
  • the pulsed laser deposition device heats the substrate stage by means of double-sided irradiation heating. While the element is heating the substrate stage, simultaneous deposition of double-sided thin films can be realized, which further improves the efficiency of large-volume thin film deposition and ensures the consistency of performance during thin film deposition.
  • the driving device drives the laser so that the spot formed by the laser beam on the surface of the target reciprocates along the surface of the target
  • the moving speed of the spot from the center to the edge of the substrate table gradually slows down.
  • the substrate at the edge of the substrate table can also deposit thin films uniformly, thereby improving the uniformity and flatness of the thin films while realizing the preparation of large batches of thin films.
  • FIG. 1 shows a structural diagram of a pulsed laser deposition device according to an embodiment of the present invention
  • Fig. 2a to Fig. 2c show the thin film deposition structure diagram of the pulsed laser deposition device according to the embodiment of the present invention
  • Figure 3a shows a structural diagram of a substrate stage in a pulsed laser deposition device according to an embodiment of the present invention
  • Figure 3b shows a structural diagram of a heating element in a pulsed laser deposition device according to an embodiment of the present invention
  • Figure 4 shows a schematic diagram of laser scanning in a pulsed laser deposition device according to an embodiment of the invention
  • FIG. 5 shows a laser scanning pattern in a pulsed laser deposition device according to an embodiment of the present invention
  • Fig. 6 shows a top view of a vacuum cavity in a pulsed laser deposition device according to an embodiment of the present invention.
  • FIG. 1 shows a structural diagram of a pulsed laser deposition device according to an embodiment of the present invention.
  • a pulsed laser deposition device 100 includes: a deposition device and two laser devices.
  • each laser device comprises: a laser 110, a first bracket 111, and a driving device 112, the bottom of the driving device 112 is fixedly connected with the upper surface of the first bracket 111, the bottom of the laser 110 is connected with the driving device 112, and Driven by the driving device 112, the horizontal and vertical displacement movements are performed.
  • the laser 110 is horizontally fixed on the upper part of the driving device 112.
  • the laser beam enters the target surface in the deposition device in a straight line along the horizontal direction, and the laser beam of the laser 110
  • the outgoing surface is also integrated with a focusing mirror (not shown in the figure).
  • the laser 110 is driven by the driving device 112 to perform horizontal and vertical displacement movements, thereby changing the ablation point of the laser beam on the surface of the target.
  • the driving device 112 at least includes a motor and a track for controlling the moving direction of the laser 110 .
  • the scanning driving device in this application includes at least a driving device 112 and a laser 110 , that is, this application adopts an overall displacement scanning method.
  • the deposition device comprises: a reaction chamber 120, a first window 123 positioned on the side wall of the reaction chamber 120, two second windows 122, and two third windows 125, a second support 124 for supporting the reaction chamber 120, located respectively
  • the first window 123 is a substrate replacement window
  • the substrate replacement device is connected to the reaction chamber through the first window 123, and is used to replace the substrate for depositing a thin film
  • the second window 122 is a laser beam incident window
  • the second window 122 is for example Still an observation window
  • the third window 125 is, for example, a target machine window.
  • the first motor 121 is used to drive the substrate table inside the reaction chamber 120 to rotate
  • the vacuum structure 126 is used to evacuate the inside of the reaction chamber 120 to maintain the vacuum pressure inside the reaction chamber 120.
  • the target machine 127 runs through the reaction chamber 120
  • the present application can use a lower power laser 110 to achieve the same purpose.
  • the use of a laser 110 with lower power can reduce the cost of the equipment.
  • a high-performance industrial-grade excimer laser is generally used, and the price is more than 2.5 million, while the laser in this application , can use solid-state lasers or other pulsed lasers whose price is much lower than high-performance industrial-grade excimer lasers. , price, etc. are much smaller than pulsed lasers of industrial-grade excimer lasers. Compared with the industrial-grade excimer laser, not only the cost is reduced, but also the volume of the device is reduced, and the overall displacement scanning method of the mobile laser can be easily realized.
  • the high-performance industrial-grade excimer lasers used in the prior art are large in size and heavy in weight, they can only be placed horizontally and then scanned by mirrors, while the solid-state lasers or other lasers used in this application, Due to its small size and light weight, it can be installed obliquely at any angle, but in this application, it is installed horizontally, so that the laser beam of the laser 110 is directly incident on the target.
  • the ablation point of the laser beam on the target surface is changed by moving the mirror during the scanning process.
  • the reflection point will change, and different reflection points have different energy losses to the laser beam, resulting in uneven and inconsistent ablation points of the laser beam on the target surface.
  • the driving device 112 is used to drive the laser 110 to scan the overall displacement, which ensures that the length of the optical path of the laser beam from the light source to the target surface is roughly the same, the energy loss is consistent, and the ablation of the laser beam on the target surface is improved.
  • the degree of consistency thereby improving the uniformity and consistency of the film.
  • the laser beam is directly incident on the target surface, which avoids the difference in reflection power caused by different reflection positions of the mirror during the reflection of the laser beam, and further improves the uniformity and consistency of the film.
  • FIG. 2a to Fig. 2c show the thin film deposition structure diagram of the pulsed laser deposition device according to the embodiment of the present invention
  • Fig. 3a shows the structure diagram of the substrate table in the pulsed laser deposition device according to the embodiment of the present invention
  • Fig. 3b shows a structural diagram of a heating element in a pulsed laser deposition device according to an embodiment of the present invention.
  • FIG. 2 a to FIG. 2 c show the internal structure of the reaction chamber 120 .
  • the reaction chamber 120 is, for example, a cylindrical structure, with a support column 142 connecting the upper and lower parts of the reaction chamber 120 inside the reaction chamber 120, and a first heating element arranged horizontally in the middle region of the reaction chamber 120. 143 , the second heating element 145 and the substrate stage 144 . Wherein, the substrate stage 144 is located between the first heating element 143 and the second heating element 145 , and the substrate stage 144 is not in contact with the first heating element 143 and the second heating element 145 .
  • connection piece 147 at the edge portion of the first heating element 143 and the second heating element 145, and a fixing piece (not shown in the figure) matching the connecting piece 147 is provided at the corresponding position in the reaction chamber 120 , the connecting piece 147 and the fixing piece jointly fix the first heating element 143 and the second heating element 145 at corresponding positions in the reaction chamber 120 .
  • an electrical connection point 148 is formed for energizing the first heating element 143 and the second heating element 145 .
  • the substrate table 144 rotates under the drive of the first motor 121 outside the reaction chamber 120, so that the upper and lower surfaces of the substrate table 144 can be evenly heated by the first heating element 143 and the second heating element 145, so as to improve film deposition. uniformity.
  • the substrate stage 144 has a circular structure, and at the center of the substrate stage 144, there is a fixing area 1442, and the fixing area 1442 is used for fixing the substrate stage 144 in the reaction chamber. corresponding position, and connect the substrate stage 144 with the first motor 121 , so that the substrate stage 144 can be rotated under the drive of the first motor 121 .
  • At least one substrate 1441 is provided on the first surface and the second surface of the substrate stage 144 .
  • the substrate 1441 is an area for thin film deposition, and is evenly distributed in the area outside the fixed area 1442 of the substrate stage 144 .
  • the shape of the substrate 1441 includes at least one of circle, square, rhombus or any polygon, and the circle is taken as an example in this embodiment.
  • both the first surface and the second surface of the substrate table 144 have at least one substrate 1441 , so double-sided, large-area, and mass-volume film deposition can be realized.
  • the fixed area 1442 is a through hole that runs through the substrate table 144.
  • the diameter of the through hole is greater than the diameter of the support column 142, so the through hole of the substrate table 144 can pass through the support column 142.
  • the corresponding position is provided with a limit ring, and the height of the substrate stage 144 is located between the first heating element 143 and the second heating element 145 through the limit ring.
  • the support column 142 can be separated at the position between the first heating element 143 and the second heating element 145 to shrink to the upper and lower parts of the reaction chamber 120 respectively, and the substrate stage 144 can be placed between the first heating element 143 and the second heating element 145. After the components 145 are placed, the supporting columns 142 are stretched, and then the substrate table 144 is locked in a corresponding position.
  • the first heating element 143 has a circular structure as a whole. In the first heating element 143, there is a notch 1431 extending from the edge to the center of the circle. The width of the notch 1431 is greater than the diameter of the support column 142.
  • the first heating element 143 can be placed horizontally and the notch 1431 passes through the supporting column 142 , so that the supporting column 142 is located at the center of the circle of the first heating element 143 .
  • the target machine 127 extends along the direction of the notch in the heating element, specifically, it is located at the second
  • the target machine 127 on the upper part of a heating element 143 extends from the edge to the center of the circle along the notch 1431 on the first heating element 143, and the target machine 127 located below the second heating element 145 extends from the edge to the center of the circle along the notch on the second heating element 145. Extend in the direction of the center of the circle.
  • the extension direction of the notch on the first heating element 143 is parallel to the extension direction of the notch on the second heating element 145, but they are respectively located on both sides of the support column 142, so that the first heating element 143 and the second heating element 145 can improve the heating uniformity of the substrate stage 144 when the substrate stage 144 is heated.
  • the notch 1431 on the first heating element 143 is not parallel to the extending direction of the notch on the second heating element 145 .
  • four targets 141 are taken as an example, as shown in FIG. 2b.
  • the target 141 is, for example, rectangular, and extends from the position corresponding to the edge of the target machine 127 to the first heating element 143 or the second heating element 145 to the support column 142, so that the plasma 116 formed on the surface of the laser beam 115 incident on the target 141 can The first and/or second surface of the substrate table 144 is accessed via the notch.
  • the included angle between the surface of the target 141 and the surface of the first heating element 143 or the second heating element 145 is 45 degrees to achieve a better deposition effect.
  • the angle between the surface of the target 141 and the surface of the first heating element 143 or the second heating element 145 is greater than 0 degrees and less than 180 degrees. It should be understood that in a specific operation process, as long as the target The surface of 141 is not completely parallel to the surface of the first heating element 143 or the second heating element 145 .
  • the multiple targets 141 at the second end of the target machine 127 can use the same source material or different source materials, and the source material in the film deposition process can be changed by rotating the target machine 127 during the deposition process, thereby obtaining complex Thin film of material. Therefore, in the pulse laser deposition device 100 of the present application, the deposition of superlattice thin films such as YBCO (yttrium barium copper oxide) and ITO (indium tin oxide) can be realized by in-situ target replacement, that is, the multilayer film heterojunction process can be realized. , as well as step junction, twin crystal junction and other processes, not only films with good properties can be obtained, but also films with complex materials can be obtained.
  • YBCO yttrium barium copper oxide
  • ITO indium tin oxide
  • the laser beam 115 incident from the laser 110 into the reaction chamber 120 is parallel to the surfaces of the first heating element 143 and the second heating element 145, but the incident direction of the laser beam 115 is perpendicular to the extending direction of the target machine 127, as shown in Fig. 2b and Fig. 2c, therefore, the distance of the laser beam 115 from the light source to the surface of the target 141 is shortened.
  • a process of single-side deposition or double-side deposition may be used.
  • substrates 1441 with different sizes can be selected to be used on the first surface and the second surface of the substrate stage 144, so that thin films with different areas can be deposited simultaneously.
  • the size of the substrate 1441 on the substrate stage 144 can also be changed to change the area of the thin film obtained during film deposition.
  • a thin-film process with a large batch size and a small area can be formed on one side of the substrate stage 144 .
  • FIG. 4 shows a schematic diagram of laser scanning in a pulsed laser deposition device according to an embodiment of the present invention
  • FIG. 5 shows a laser scanning direction diagram in a pulsed laser deposition device according to an embodiment of the present invention.
  • the deposition of the thin film in the present application will be briefly described by taking the deposition of the second surface (lower surface) of the substrate stage 144 in FIG. 2 b as an example. From the projected image in the Y plane, it can be known that the laser beam 115 is parallel to the surface of the substrate stage 144y along the y-axis and shoots towards the surface of the target 141y, and there is an angle between the surface of the target 141y and the lower surface of the substrate stage 144y, so that The laser beam 115 can be incident on the upper surface of the target material 141y.
  • the plasma 116y formed on the surface of the target material 141y is perpendicular to the surface of the target material 141y and reaches the lower surface of the substrate table 144y. deposited thin film.
  • the length of the target 141x is not less than the radius of the substrate table 144x, and the trajectory of the laser beam 115 on the surface of the target 141x is shown in FIG.
  • the X direction reciprocates between the center and the edge of the substrate table 144, and at the same time, it also slightly raises or lowers in the Z axis direction, which not only realizes the film deposition on the surface of the substrate table 144, but also improves the target material 141. utilization rate.
  • the substrate table 144 rotates along the center of the circle (as shown by the arrow in the figure), and the direction of the rotation is clockwise or counterclockwise, and cooperates with the reciprocating motion of the laser beam 115 in the X-axis direction, so that The contact area 117 between the plasma 116 and the second surface of the substrate stage 144 is also changed on the surface of the substrate stage 144, so that the surface area of the substrate stage 144 can be deposited on the film.
  • the moving speed of the laser beam 115 near the edge of the substrate table 144 will slow down. This is because the area of the edge region of the substrate stage 144 is relatively large, and when the substrate stage 144 rotates, the rotation of the edge portion will be relatively fast near the center of the circle, and the corresponding laser beam 115 is set to move from the center of the circle to the edge. The speed gradually slows down during the process, which can improve the uniformity of film deposition.
  • Fig. 6 shows a top view of a vacuum cavity in a pulsed laser deposition device according to an embodiment of the present invention.
  • the main body of the reaction chamber 120 is cylindrical.
  • a first window 123, a second window 122, a third window 125, and a second window are respectively distributed around the side wall of the reaction chamber 120 clockwise.
  • a second window 122 above the first window 123 is a group with a third window 125, and its height on the side wall of the reaction chamber 120 is slightly higher or lower than that of the first window 123.
  • the direction of the second window 122 and the third window 125 in each group is approximately perpendicular, so that the laser beam is incident on the target.
  • the laser beam is incident on the surface of the target material in a straight line, and the position of the laser beam on the surface of the target material is changed by moving the laser along the horizontal and vertical directions, which not only reduces the energy loss of the laser beam, but also improves the The stability of the laser beam also improves the rate of film deposition and the uniformity and stability of the film.
  • the laser beam is parallel to the surface of the substrate table, and there is an angle between the surface of the target material and the surface of the substrate table, so that the limitation of the target base distance is "eliminated", thereby realizing super large deposition
  • the thin film deposition of the area can realize the batch preparation of multiple thin films and improve the deposition efficiency.
  • the laser is fixed horizontally, so that the laser beam irradiates the target material in a straight line, which reduces the energy loss after the laser beam is reflected by the mirror, and accelerates the deposition speed of the film; the laser beam is used to irradiate the inclined target material, form plasma, and cooperate with the substrate to rotate along the center at the same time, so that the plasma can deposit the film evenly on the substrate of the substrate, which improves the uniformity of the deposited film and the rate of film deposition
  • the pulse laser deposition device provided by the present invention adopts radiation heating and cooperates with the rotation of the substrate stage to ensure the extremely high deposition temperature consistency of the substrate stage in time and space, and to improve the consistency of the performance of the film when depositing films in large quantities sex.
  • the pulsed laser deposition device heats the substrate stage by means of double-sided irradiation heating. While the element is heating the substrate stage, simultaneous deposition of double-sided thin films can be realized, which further improves the efficiency of large-volume thin film deposition and ensures the consistency of performance during thin film deposition.
  • the driving device drives the laser so that the spot formed by the laser beam on the surface of the target reciprocates along the surface of the target
  • the moving speed of the spot from the center to the edge of the substrate table gradually slows down.
  • the substrate at the edge of the substrate table can also deposit thin films uniformly, thereby improving the uniformity and flatness of the thin films while realizing the preparation of large batches of thin films.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

公开了一种脉冲激光沉积装置,包括:反应腔,内部可用于固定基片台,位于基片台上方的第一加热元件和位于基片台下方的第二加热元件;多个靶机,靶机的第二端固定有靶材,靶材位于反应腔内的基片台的上方和/或下方,靶材的表面与基片台的表面形成夹角;多个激光装置,多个激光装置分别产生激光束,其中,第一加热元件和第二加热元件上分别具有缺口,激光束沿平行于基片台表面的方向直线到达靶材表面,激光束照射靶材表面形成的等离子体经由第一加热元件和第二加热元件上的缺口到达基片台表面。本申请的脉冲激光沉积装置,采用的双面斜对称沉积工艺,可以在基片台的双面都进行薄膜沉积,实现了大面积、大批量、高质量的薄膜制备。

Description

脉冲激光沉积装置及方法
本申请要求了申请日为2021年05月28日、申请号为202110591239.0、名称为“脉冲激光沉积装置及方法”的中国发明申请的优先权,并且通过参照上述中国发明申请的全部说明书、权利要求、附图和摘要的方式,将其引用于本申请。
技术领域
本发明涉及薄膜沉积技术领域,特别涉及一种脉冲激光沉积装置及其方法。
背景技术
超导薄膜制成的天线、谐振器、滤波器、延迟线等微波通讯器件具有常规材料(如金、银等)无法比拟的高灵敏度,从而受到各国军方的重视,成为未来电子对抗战中的关键技术,也是新一代通信技术的“未来”。在大型粒子加速器中,超导薄膜也表现出了巨大的市场前景。
脉冲激光沉积(Pulsed Laser Deposition,PLD)技术作为制备超导薄膜的重要技术,通过激光与靶材料的相互作用,在靶材料的法线方向产生等离子体,等离子体在基片的表面成核,长大形成薄膜。
可以看到,实用化超导薄膜具有不可替代的战略和经济需求,但是当前我国与国际先进水平仍有差距,如制备高质量大面积YBCO双面薄膜等需要攻克一系列应用基础和关键技术难题。若采用从国外购置的相应器材以及超导薄膜,一方面价格较高,无法大量购置,另一方面不能购置到国际先进水平的设备,且现有的设备无法实现大批量、大面积、高质量的薄膜制备。
发明内容
鉴于上述问题,本发明的目的在于提供一种脉冲激光沉积装置及方法,能够实现大批量、大面积、高质量的薄膜制备。
根据本发明的一方面,提供一种脉冲激光沉积装置,包括:反应腔, 在所述反应腔的腔壁上设置有多个第二窗口,在所述反应腔的内部设置有用于固定基片台的支撑柱,位于基片台上方的第一加热元件和位于基片台下方的第二加热元件;多个靶机,贯穿所述反应腔的侧壁,所述靶机的第二端固定有靶材,所述靶材位于所述反应腔内的所述基片台的上方和/或下方,所述靶材的表面与所述基片台的表面形成夹角;多个激光装置,位于所述反应腔的外部,所述多个激光装置分别产生激光束,经由所述多个第二窗口入射到所述反应腔内的靶材表面上,其中,所述第一加热元件和所述第二加热元件上分别具有缺口,多个激光装置的激光束沿平行于所述基片台表面的方向直线到达所述靶材表面,所述激光束照射所述靶材表面形成的等离子体经由所述第一加热元件和所述第二加热元件上的缺口到达所述基片台表面。
可选地,所述多个激光装置水平放置,以使所述激光束水平入射至所述靶材的倾斜表面上。
可选地,所述激光装置包括:激光器,用于产生激光束;驱动装置,与所述激光器连接,并且驱动所述激光器往复运动和垂直运动;第一支架,所述驱动装置水平固定在所述第一支架上。
可选地,往复运动的所述激光装置的激光束在所述靶材表面上的光斑相对于所述基片台的中心沿径向运动。
可选地,所述光斑到达所述靶材表面相对于基片台的中心或边缘位置时,沿垂直方向平移所述激光装置,使所述激光束在所述靶材表面上的光斑向上或向下移动。
可选地,所述驱动装置控制所述激光器的运动速度,使得所述激光束在所述靶材表面上的光斑相对于所述基片台的中心沿中心向边缘径向运动的运动速度逐渐变慢。
可选地,所述靶机的第二端固定有多个靶材,多个靶材呈多边形分布。
可选地,所述多个靶材的材料相同或不同。
可选地,旋转所述靶机,更换所述激光束入射的靶材。
可选地,所述基片台的第一表面和第二表面分别具有至少一个基片。
可选地,还包括:第二支架,位于所述反应腔的外部下方,与所述反应腔连接,用于固定所述反应腔;第一电机,位于所述反应腔的外部 上方,与所述基片台连接,用于控制所述基片台旋转;真空装置,位于所述反应腔的外部侧壁,与所述反应腔连接,用于维持所述反应腔内的真空环境;基片更换装置,位于所述反应腔的外部侧壁,与所述反应腔连接,用于更换所述基片台上的基片。
可选地,所述激光器为固态激光器或其他脉冲激光器。
可选地,所述第一加热元件和所述第二加热元件不与所述基片台接触,所述基片台在沉积薄膜时旋转。
可选地,所述第一加热元件和所述第二加热元件通电后对所述基片台进行辐照加热。
根据本发明的另一方面,提供一种脉冲激光沉积方法,包括:在反应腔内基片台的第一表面和第二表面固定好多个基片,将所述基片加热到预定温度,并控制所述基片台旋转;将多个激光装置产生的多个激光束沿平行于所述基片台表面的方向直线到达靶材的表面,使所述靶材的源材料溅射并均匀的沉积在所述基片的表面上,其中,所述激光束照射的靶材表面与所述基片台的表面呈夹角。
可选地,沿水平方向平移所述激光装置,使所述激光束在所述靶材表面上的光斑相对于所述基片台的中心沿径向作往复运动。
可选地,所述光斑到达所述靶材表面相对于基片台的中心或边缘位置时,沿垂直方向平移所述激光装置,使所述激光束在所述靶材表面上的光斑向上或向下移动。
可选地,控制所述激光装置的运动速度,使得所述激光束在所述靶材表面上的光斑相对于所述基片台的中心沿中心向边缘径向运动的运动速度逐渐变慢。
本发明提供的脉冲激光沉积方法,采用激光束直线入射到靶材表面,通过沿水平方向和垂直方向移动激光器来改变激光束在靶材表面的位置,不仅降低了激光束的能量损耗,提高了激光束的稳定性,也提高了薄膜沉积的速率和薄膜的均匀性、稳定性。
本发明提供的脉冲激光沉积方法和装置中,激光束与基片台表面平行,靶材表面与基片台表面存在夹角,这样使得靶基距的限制被“消除”,从而实现了超大沉积面积的薄膜沉积,进而可实现多片薄膜批量化制备以及提高沉积效率。
本发明提供的脉冲激光沉积装置,激光器采用水平固定方式,使得激光束直线照射靶材,减少了激光束经由反射镜反射后的能量损耗,使得薄膜的沉积速度加快;采用激光束照射倾斜的靶材,形成等离子体,同时配合基片沿中心旋转,使等离子体能够在基片的基片均匀沉积薄膜,提高了沉积薄膜的均匀性和薄膜沉积的速率
本发明提供的脉冲激光沉积装置,采用辐照加热,配合基片台的旋转,保证了基片台在时间和空间上极高的沉积温度一致性,提高了大批量沉积薄膜时薄膜的性能一致性。
本发明提供的脉冲激光沉积装置,采用双面辐照加热的方式对基片台进行加热,基片台不与加热元件接触,超大沉积面积配合双面辐照加热和基片台旋转,使得加热元件在对基片台进行加热的同时,可以实现双面薄膜同时沉积,进一步提高了大批量薄膜沉积的效率,并且保证了薄膜沉积时的性能一致性。
本发明提供的脉冲激光沉积方法及其装置,在驱动装置驱动激光器使得激光束在靶材表面形成的光斑沿靶材表面做往复运动时,光斑在基片台中心到边缘的运动速度逐渐变慢,使得基片台边缘部分的基片也能够均匀沉积薄膜,从而在实现大批量薄膜制备的同时提高了薄膜的均匀性和平整度。
附图说明
通过以下参照附图对本发明实施例的描述,本发明的上述以及其他目的、特征和优点将更为清楚,在附图中:
图1示出了根据本发明实施例的脉冲激光沉积装置的结构图;
图2a至图2c示出了根据本发实施例的脉冲激光沉积装置的薄膜沉积结构图;
图3a示出了根据本发明实施例的脉冲激光沉积装置中基片台的结构图;
图3b示出了根据本发明实施例的脉冲激光沉积装置中加热元件的结构图;
图4示出了根据本发明实施例的脉冲激光沉积装置中激光扫描的原 理图;
图5示出了根据本发明实施例的脉冲激光沉积装置中的激光扫描方向图;
图6示出了根据本发明实施例的脉冲激光沉积装置中真空腔的俯视图。
具体实施方式
以下将参照附图更详细地描述本发明。在各个附图中,相同的元件采用类似的附图标记来表示。为了清楚起见,附图中的各个部分没有按比例绘制。此外,可能未示出某些公知的部分。为了简明起见,可以在一幅图中描述经过数个步骤后获得的半导体结构。
应当理解,在描述器件的结构时,当将一层、一个区域称为位于另一层、另一个区域“上面”或“上方”时,可以指直接位于另一层、另一个区域上面,或者在其与另一层、另一个区域之间还包含其它的层或区域。并且,如果将器件翻转,该一层、一个区域将位于另一层、另一区域“下面”或“下方”。
如果为了描述直接位于另一层、另一区域上面的情形,本文将采用“直接在……上面”或“在……上面并与之邻接”的表述方式。
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。
图1示出了根据本发明实施例的脉冲激光沉积装置的结构图。
参考图1,本发明实施例的脉冲激光沉积装置100包括:沉积装置和两个激光装置。
其中,每个激光装置分别包括:激光器110,第一支架111,以及驱动装置112,驱动装置112的底部与第一支架111的上表面固定连接,激光器110的底部与驱动装置112连接,且在驱动装置112的带动下作水平方向和垂直方向的位移运动,激光器110水平固定于驱动装置112的上部,激光束沿水平方向直线入射进沉积装置中的靶材表面,且在激光器110的激光束出射面,还集成有聚焦镜(图中未示出)。激光器110在驱动装置112的带动下作水平方向和垂直方向的位移运动,从而改变激光束在靶材表面的烧蚀点。
参考图1,驱动装置112至少包括电机以及控制激光器110移动方向的轨道。为改变激光束在靶材表面的烧蚀点,本申请中的扫描驱动装置至少包括驱动装置112和激光器110,即本申请采用整体位移扫描方式。
沉积装置包括:反应腔120,位于反应腔120侧壁上的第一窗口123,两个第二窗口122,以及两个第三窗口125,用于支撑反应腔120的第二支架124,分别位于反应腔120外部上方的第一电机121和位于反应腔120侧壁的真空结构126,贯穿第三窗口125的靶机127以及基片更换装置130。其中,第一窗口123为基片更换窗口,基片更换装置通过第一窗口123与反应腔连接,用于更换沉积薄膜的基片,第二窗口122为激光束入射窗口,第二窗口122例如还是观察窗口,第三窗口125例如为靶机窗口。第一电机121用于带动反应腔120内部的基片台旋转,真空结构126用于对反应腔120内部进行抽真空,以维持反应腔120内部的真空气压,此外,靶机127贯穿反应腔120侧壁上的第三窗口125,且靶机127的第一端位于反应腔120的外部,第二端位于反应腔120的内部,在靶机127的第二端,固定有至少一个靶材,通过旋转靶机127的第一端,可以更换反应腔120内部的激光束照射的靶材,多个靶材呈多边形分布在靶机的第二端。
在该实施例中,由于激光器110产生的激光束经过聚焦镜后直接入射到反应腔120,而没有使用反射镜,因此,避免了激光束在经由反射镜反射过程中的能量损耗,与已有的脉冲激光沉积装置相比,在保持入射到靶材表面的激光束能量相同的情况下,本申请可以采用功率更低的激光器110实现相同的目的。而采用功率更低的激光器110,可以降低设备的成本,如现有技术的脉冲激光沉积装置中,一般采用高性能的工业级别准分子激光器,售价在250万以上,而本申请中的激光器,可以采用售价远远低于高性能的工业级别准分子激光器的固态激光器或其他脉冲激光器,例如根据形成薄膜时的功率需要,可以采用小型固态激光器,中型固态激光器或大型固态激光器以及其他体积、售价等远小于工业级别准分子激光器的脉冲激光器。相比于工业级别准分子激光器,不仅降低了成本,而且降低了设备的体积,可以很容易实现移动激光器的整体位移扫描方法。此外,由于现有技术中采用的高性能工业级别准分 子激光器的体积较大,重量较重,只能采用水平放置,然后反射镜扫描的方法,而本申请中采用的固态激光器或其他激光器,由于体积小,重量轻,因此可以随意角度的倾斜安装,但在本申请中采用水平安装的方式,从而使得激光器110的激光束直接入射靶材。
此外,由于现有技术中采用的高性能工业级别准分子激光器体积大和重量重,因此在扫描过程中通过移动反射镜改变激光束在靶材表面的烧蚀点,这种方法导致在反射镜对激光束进行反射时,反射点会发生改变,而不同的反射点对激光束的能量损耗不同,从而导致激光束对靶材表面的烧蚀点不均匀和不一致。而本申请中采用驱动装置112驱动激光器110整体位移扫描的方法,保证了激光束从光源到靶材表面的光路路径的长短大致相同,能量损耗一致,提高了激光束对靶材表面的烧蚀程度的一致性,进而提高了薄膜的均匀性和一致性。此外,激光束直接入射到靶材表面,避免了反射镜在对激光束进行反射过程中因不同反射位置导致的反射功率不同,进一步提高了薄膜的均匀性和一致性。
进一步地,图2a至图2c示出了根据本发实施例的脉冲激光沉积装置的薄膜沉积结构图;图3a示出了根据本发明实施例的脉冲激光沉积装置中基片台的结构图;图3b示出了根据本发明实施例的脉冲激光沉积装置中加热元件的结构图。具体的,图2a至图2c所示为反应腔120内部的结构。
参考如2a至图2c,反应腔120例如为圆柱结构,在反应腔120内部具有连接反应腔120上部与下部的支撑柱142,在反应腔120内部的中间区域,具有水平设置的第一加热元件143,第二加热元件145以及基片台144。其中,基片台144位于第一加热元件143与第二加热元件145之间,且基片台144与第一加热元件143和第二加热元件145之间均不接触。
进一步地,在第一加热元件143和第二加热元件145的边缘部分,具有连接件147,同时在反应腔120内的相应位置具有与连接件147相匹配的固定件(图中未示出),连接件147与固定件共同将第一加热元件143和第二加热元件145固定在反应腔120内的相应位置。
在第一加热元件143和第二加热元件145远离基片台144的表面,形成有电连接点148,用于给第一加热元件143和第二加热元件145通 电。基片台144在反应腔120外部上方第一电机121的带动下旋转,使得基片台144的上下两个表面均可以被第一加热元件143和第二加热元件145均匀加热,以提高薄膜沉积的均匀性。
进一步地,参考图2b和图3a,基片台144为圆形结构,在基片台144的圆心处,具有固定区1442,固定区1442用于与将基片台144固定在反应腔内的相应位置,并将基片台144与第一电机121连接,使得基片台144能够在第一电机121的带动下发生旋转。在基片台144的第一表面和第二表面上,均设置有至少一个的基片1441,基片1441为薄膜沉积的区域,均匀分布在基片台144的固定区1442以外的区域。根据薄膜的形状需求,基片1441的形状包括圆形、方形、菱形或任意多边形的至少一种,本实施例中以圆形为例。本申请中基片台144的第一表面和第二表面均具有至少一个基片1441,因此可以实现双面、大面积、大批量的薄膜沉积。
在固定基片台144时,可以采用多种方法。例如基片台144中固定区1442为贯穿基片台144的通孔,该通孔的直径大于支撑柱142的直径,因此基片台144的通孔可以穿过支撑柱142,在支撑柱142的相应位置设置有限位环,通过限位环使基片台144的高度位于第一加热元件143与第二加热元件145之间。或者支撑柱142可以在第一加热元件143与第二加热元件145之间的位置分开分别向反应腔120的上、下部收缩,在将基片台144放置在第一加热元件143与第二加热元件145之间后,支撑柱142伸展,进而将基片台144卡合在相应位置。
进一步地,参考图2b和图3b,由于第一加热元件143和第二加热元件145的结构相同,此处以第一加热元件143为例进行说明,不再对第二加热元件145的结构进行另外的说明。第一加热元件143整体为圆形结构,在第一加热元件143中,具有沿边缘到圆心延伸的缺口1431,缺口1431的宽度大于支撑柱142的直径,同时,该缺口1431延伸至第一加热元件143的圆心处,因此,该第一加热元件143可以水平放置并将缺口1431穿过支撑柱142,使支撑柱142位于第一加热元件143的圆心处。
进一步地,参考图2a至图2c,在反应腔内固定好第一加热元件143和第二加热元件145之后,可以看到靶机127为沿加热元件中的缺口方 向延伸,具体的,位于第一加热元件143上部的靶机127沿第一加热元件143上的缺口1431从边缘向圆心的方向延伸,位于第二加热元件145下方的靶机127沿第二加热元件145上的缺口从边缘向圆心的方向延伸。
在该实施例中,第一加热元件143上的缺口延伸方向与第二加热元件145上的缺口延伸方向平行,但分别位于支撑柱142的两侧,从而第一加热元件143和第二加热元件145在对基片台144进行加热时,能够提高基片台144加热的均匀性。
在其他实施例中,第一加热元件143上的缺口1431与第二加热元件145上的缺口延伸方向不平行。
在靶机127的第二端,固定有至少一个靶材141,本申请中以四个靶材141为例,如图2b所示。靶材141例如为长方形,从靶机127与第一加热元件143或第二加热元件145的边缘相对应的位置向支撑柱142延伸,使得激光束115入射靶材141表面形成的等离子体116能够经由缺口到达基片台144的第一表面和/或第二表面。靶材141的表面与第一加热元件143或第二加热元件145的表面存在一定的夹角,使得与第一加热元件143或第二加热元件145的表面平行的激光束115可以入射在靶材141上,同时沿靶材141延伸方向往复移动激光束115,以及转动基片台144,使得等离子体116能够在基片台144表面的多个基片1441中沉积薄膜。在一些优选的实施例中,靶材141的表面与第一加热元件143或第二加热元件145的表面之间的夹角角度为45度,以达到较佳的沉积效果。可选的,靶材141的表面与第一加热元件143或第二加热元件145的表面之间的夹角角度大于0度且小于180度,应理解,在具体的操作过程中,只要靶材141的表面与第一加热元件143或第二加热元件145的表面不完全平行即可。
在该实施例中,靶机127第二端的多个靶材141可以采用相同的源材料或不同的源材料,在沉积过程中通过转动靶机127改变薄膜沉积过程中的源材料,从而获得复杂材料的薄膜。因此在本申请的脉冲激光沉积装置100中,可以通过原位换靶实现YBCO(钇钡铜氧)以及ITO(氧化铟锡)等超晶格薄膜的沉积,即实现多层膜异质结工艺,以及台阶结、双晶结等工艺,不仅可以获得性能良好的薄膜,同时也可以获得材料复杂的薄膜。
进一步地,激光器110入射进反应腔120内部的激光束115与第一加热元件143和第二加热元件145的表面平行,但激光束115入射方向与靶机127延伸方向垂直,如图2b和图2c所示,因此,缩短了激光束115从光源到靶材141表面的距离。
在其他实施例中,在采用本申请的脉冲激光沉积装置100进行薄膜沉积时,可以采用单面沉积或双面沉积的工艺。其中,在进行双面沉积时,可以选择在基片台144的第一表面和第二表面使用尺寸不同的基片1441,从而可以同时沉积获得不同面积的薄膜。此外,还可以通过更换基片台144上基片1441的尺寸,从而改变薄膜沉积时获得的薄膜的面积,例如,可以实现在基片台144的一侧表面形成一个超大薄膜的工艺,也可以实现在基片台144的一侧表面形成大批量小面积的薄膜工艺。
图4示出了根据本发明实施例的脉冲激光沉积装置中激光扫描的原理图;图5示出了根据本发明实施例的脉冲激光沉积装置中的激光扫描方向图。其中,以激光束115所在直线为y轴,以靶机127所在直线为x轴,将靶材141、等离子体116以及基片台144分别投影到X平面和Y平面对其进行说明。
参考图4,以图2b中的基片台144第二表面(下表面)的沉积为例对本申请中的薄膜沉积进行简单说明。由Y平面内的投影图像可知,激光束115沿y轴方向与基片台144y表面平行射向靶材141y的表面,靶材141y的表面与基片台144y的下表面存在一个夹角,使得激光束115可以入射到靶材141y的上表面,同时,在靶材141y表面形成的等离子体116y与靶材141y的表面垂直,到达基片台144y的下表面,在基片台144y的下表面上沉积薄膜。由X平面内的投影图像可知,靶材141x的长度大小不小于基片台144x的半径大小,激光束115在靶材141x的表面上的运动轨迹如图5所示,即激光束115不仅沿x方向在基片台144的圆心与边缘之间作往复运动,同时在Z轴方向上也作小幅度的抬升或降低,不仅实现在基片台144表面的薄膜沉积,同时提高了靶材141的利用率。
进一步地,参考图4,基片台144沿圆心发生自转(如图中箭头所示),该自转方向为顺时针方向或逆时针方向,配合激光束115在X轴方向上的往复运动,使得等离子体116与基片台144第二表面的接触区 117也在基片台144表面发生变化,从而使得基片台144的表面区域都能进行薄膜沉积。
在该实施例中,激光束115沿x方向从基片台144圆心到边缘之间在靶材表面上做往复运动时,激光束115在靠近基片台144边缘区域的运动速度会变慢,这是由于基片台144边缘区域的面积较大,在基片台144自转的情况下,边缘部分的转动相对圆心附近来说会比较快,相应的设置激光束115在从圆心到边缘的移动过程中速度逐渐减慢,可以提高薄膜沉积的均匀性。
图6示出了根据本发明实施例的脉冲激光沉积装置中真空腔的俯视图。
如图所示,反应腔120主体为圆柱形,在反应腔120的侧壁上,顺时针环绕反应腔120侧壁分别分布有第一窗口123,第二窗口122,第三窗口125,第二窗口122以及第三窗口125,其中,第一窗口123为基片台转移窗口,用于更换基片台144;第二窗口122为激光扫描溅射窗口,用于激光束向反应腔120内部的入射;第三窗口125为靶机移动窗口,通过转动靶机,改变激光束入射的靶材。
在这五个窗口中,位于第一窗口123上方的一个第二窗口122与一个第三窗口125为一组,其在反应腔120侧壁上的高度略高于或低于第一窗口123的高度;位于第一窗口123下方的一个第二窗口122与一个第三窗口125为一组,其在反应腔120侧壁上的高度略低于或高于第一窗口123的高度。同时,在每一组的第二窗口122与第三窗口125,其方向大致垂直,便于激光束入射向靶材。
本发明提供的脉冲激光沉积方法,采用激光束直线入射到靶材表面,通过沿水平方向和垂直方向移动激光器来改变激光束在靶材表面的位置,不仅降低了激光束的能量损耗,提高了激光束的稳定性,也提高了薄膜沉积的速率和薄膜的均匀性、稳定性。
本发明提供的脉冲激光沉积方法和装置中,激光束与基片台表面平行,靶材表面与基片台表面存在夹角,这样使得靶基距的限制被“消除”,从而实现了超大沉积面积的薄膜沉积,进而可实现多片薄膜批量化制备以及提高沉积效率。
本发明提供的脉冲激光沉积装置,激光器采用水平固定方式,使得 激光束直线照射靶材,减少了激光束经由反射镜反射后的能量损耗,使得薄膜的沉积速度加快;采用激光束照射倾斜的靶材,形成等离子体,同时配合基片沿中心旋转,使等离子体能够在基片的基片均匀沉积薄膜,提高了沉积薄膜的均匀性和薄膜沉积的速率
本发明提供的脉冲激光沉积装置,采用辐照加热,配合基片台的旋转,保证了基片台在时间和空间上极高的沉积温度一致性,提高了大批量沉积薄膜时薄膜的性能一致性。
本发明提供的脉冲激光沉积装置,采用双面辐照加热的方式对基片台进行加热,基片台不与加热元件接触,超大沉积面积配合双面辐照加热和基片台旋转,使得加热元件在对基片台进行加热的同时,可以实现双面薄膜同时沉积,进一步提高了大批量薄膜沉积的效率,并且保证了薄膜沉积时的性能一致性。
本发明提供的脉冲激光沉积方法及其装置,在驱动装置驱动激光器使得激光束在靶材表面形成的光斑沿靶材表面做往复运动时,光斑在基片台中心到边缘的运动速度逐渐变慢,使得基片台边缘部分的基片也能够均匀沉积薄膜,从而在实现大批量薄膜制备的同时提高了薄膜的均匀性和平整度。
依照本发明的实施例如上文所述,这些实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施例。显然,根据以上描述,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地利用本发明以及在本发明基础上的修改使用。本发明仅受权利要求书及其全部范围和等效物的限制。

Claims (18)

  1. 一种脉冲激光沉积装置,其特征在于,包括:
    反应腔,在所述反应腔的腔壁上设置有多个第二窗口,所述反应腔的内部可用于固定基片台,位于基片台上方的第一加热元件和位于基片台下方的第二加热元件;
    多个靶机,贯穿所述反应腔的侧壁,所述靶机的第二端固定有靶材,所述靶材位于所述反应腔内的所述基片台的上方和/或下方,所述靶材的表面与所述基片台的表面形成夹角;
    多个激光装置,位于所述反应腔的外部,所述多个激光装置分别产生激光束,经由所述多个第二窗口入射到所述反应腔内的靶材表面上,其中,所述第一加热元件和所述第二加热元件上分别具有缺口,多个激光装置的激光束沿平行于所述基片台表面的方向直线到达所述靶材表面,所述激光束照射所述靶材表面形成的等离子体经由所述第一加热元件和所述第二加热元件上的缺口到达所述基片台表面。
  2. 根据权利要求1所述的脉冲激光沉积装置,其特征在于,所述多个激光装置水平放置,以使所述激光束水平入射至所述靶材的倾斜表面上。
  3. 根据权利要求2所述的脉冲激光沉积装置,其特征在于,所述激光装置包括:
    激光器,用于产生激光束;
    驱动装置,与所述激光器连接,并且驱动所述激光器往复运动和垂直运动;
    第一支架,所述驱动装置水平固定在所述第一支架上。
  4. 根据权利要求3所述的脉冲激光沉积装置,其特征在于,往复运动的所述激光装置的激光束在所述靶材表面上的光斑相对于所述基片台的中心沿径向运动。
  5. 根据权利要求4所述的脉冲激光沉积装置,其特征在于,所述光斑到达所述靶材表面相对于基片台的中心或边缘位置时,沿垂直方向平移所述激光装置,使所述激光束在所述靶材表面上的光斑向上或向下移动。
  6. 根据权利要求3所述的脉冲激光沉积装置,其特征在于,所述驱动装置控制所述激光器的运动速度,使得所述激光束在所述靶材表面上的光斑相对于所述基片台的中心沿中心向边缘径向运动的运动速度逐渐变慢。
  7. 根据权利要求1所述的脉冲激光沉积装置,其特征在于,所述靶机的第二端固定有多个靶材,多个靶材呈多边形分布。
  8. 根据权利要求7所述的脉冲激光沉积装置,其特征在于,所述多个靶材的材料相同或不同。
  9. 根据权利要求7所述的脉冲激光沉积装置,其特征在于,旋转所述靶机,更换所述激光束入射的靶材。
  10. 根据权利要求1所述的脉冲激光沉积装置,其特征在于,所述基片台的第一表面和第二表面分别具有至少一个基片。
  11. 根据权利要求1所述的脉冲激光沉积装置,其特征在于,还包括:
    第二支架,位于所述反应腔的外部下方,与所述反应腔连接,用于固定所述反应腔;
    第一电机,位于所述反应腔的外部上方,与所述基片台连接,用于控制所述基片台旋转;
    真空装置,位于所述反应腔的外部侧壁,与所述反应腔连接,用于维持所述反应腔内的真空环境;
    基片更换装置,位于所述反应腔的外部侧壁,与所述反应腔连接,用于更换所述基片台上的基片。
  12. 根据权利要求1所述的脉冲激光沉积装置,其特征在于,所述激光器为固态激光器或其他脉冲激光器。
  13. 根据权利要求1所述的脉冲激光沉积装置,其特征在于,所述第一加热元件和所述第二加热元件不与所述基片台接触,所述基片台在沉积薄膜时旋转。
  14. 根据权利要求13所述的脉冲激光沉积装置,其特征在于,所述第一加热元件和所述第二加热元件通电后对所述基片台进行辐照加热。
  15. 一种脉冲激光沉积方法,其特征在于,包括:
    在反应腔内基片台的第一表面和第二表面固定好多个基片,将所述 基片加热到预定温度,并控制所述基片台旋转;
    将多个激光装置产生的多个激光束沿平行于所述基片台表面的方向直线到达靶材的表面,使所述靶材的源材料溅射并均匀的沉积在所述基片的表面上,
    其中,所述激光束照射的靶材表面与所述基片台的表面呈夹角。
  16. 根据权利要求15所述的脉冲激光沉积方法,其特征在于,沿水平方向平移所述激光装置,使所述激光束在所述靶材表面上的光斑相对于所述基片台的中心沿径向作往复运动。
  17. 根据权利要求16所述的脉冲激光沉积方法,其特征在于,所述光斑到达所述靶材表面相对于基片台的中心或边缘位置时,沿垂直方向平移所述激光装置,使所述激光束在所述靶材表面上的光斑向上或向下移动。
  18. 根据权利要求16所述的脉冲激光沉积方法,其特征在于,控制所述激光装置的运动速度,使得所述激光束在所述靶材表面上的光斑相对于所述基片台的中心沿中心向边缘径向运动的运动速度逐渐变慢。
PCT/CN2022/094014 2021-05-28 2022-05-20 脉冲激光沉积装置及方法 WO2022247736A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237045262A KR20240015107A (ko) 2021-05-28 2022-05-20 펄스 레이저 증착 장치 및 방법
DE112022002839.4T DE112022002839T5 (de) 2021-05-28 2022-05-20 Vorrichtung und verfahren zur gepulsten laserabscheidung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110591239.0 2021-05-28
CN202110591239.0A CN113445007A (zh) 2021-05-28 2021-05-28 脉冲激光沉积装置及方法

Publications (1)

Publication Number Publication Date
WO2022247736A1 true WO2022247736A1 (zh) 2022-12-01

Family

ID=77810426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094014 WO2022247736A1 (zh) 2021-05-28 2022-05-20 脉冲激光沉积装置及方法

Country Status (4)

Country Link
KR (1) KR20240015107A (zh)
CN (1) CN113445007A (zh)
DE (1) DE112022002839T5 (zh)
WO (1) WO2022247736A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113445007A (zh) * 2021-05-28 2021-09-28 松山湖材料实验室 脉冲激光沉积装置及方法
CN115233165B (zh) * 2022-02-21 2023-11-28 松山湖材料实验室 组合薄膜制备方法及装置
CN115341180A (zh) * 2022-07-29 2022-11-15 松山湖材料实验室 激光扫描溅射部件
CN114851352B (zh) * 2022-05-23 2023-11-28 松山湖材料实验室 电阻加热元件及其制造方法
CN115369364A (zh) * 2022-07-29 2022-11-22 松山湖材料实验室 曲面薄膜沉积方法及其装置
CN116145100B (zh) * 2023-04-14 2023-08-18 江西联创光电超导应用有限公司 一种高温超导材料的激光镀膜方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5206216A (en) * 1989-05-19 1993-04-27 Sumitomo Electric Industries, Ltd. Method for fabricating oxide superconducting wires by laser ablation
US5554224A (en) * 1994-03-31 1996-09-10 Foltyn; Steve R. Substrate heater for thin film deposition
US5624722A (en) * 1995-03-07 1997-04-29 Sumitomo Electric Industries, Ltd. Apparatus and method for depositing films on substrate via on-axis laser ablation
US5820948A (en) * 1995-03-07 1998-10-13 Sumitomo Electric Industries, Ltd. Apparatus and method for depositing films on substrate via off-axis laser ablation
JP2001059162A (ja) * 1999-08-24 2001-03-06 Sharp Corp レーザ蒸着法によるSi薄膜の形成方法及びその薄膜を構成要素として含む光電変換素子
CN101035924A (zh) * 2004-06-09 2007-09-12 美国Imra公司 使用超快脉冲激光沉积制造电化学装置的方法
CN101645464A (zh) * 2009-08-31 2010-02-10 北京航空航天大学 具有双向整流特性的铽锰氧p-n异质结及其制备方法
CN113445007A (zh) * 2021-05-28 2021-09-28 松山湖材料实验室 脉冲激光沉积装置及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08246137A (ja) * 1995-03-07 1996-09-24 Sumitomo Electric Ind Ltd レーザー蒸着法による薄膜製造方法及び薄膜製造装置
CN102409291B (zh) * 2011-11-18 2014-04-09 江苏大学 掺杂超细纳米结构金属粒子的金刚石薄膜制备方法
CN210711715U (zh) * 2019-09-12 2020-06-09 东莞市鑫钛极真空科技有限公司 一种脉冲激光沉积镀膜装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5206216A (en) * 1989-05-19 1993-04-27 Sumitomo Electric Industries, Ltd. Method for fabricating oxide superconducting wires by laser ablation
US5554224A (en) * 1994-03-31 1996-09-10 Foltyn; Steve R. Substrate heater for thin film deposition
US5624722A (en) * 1995-03-07 1997-04-29 Sumitomo Electric Industries, Ltd. Apparatus and method for depositing films on substrate via on-axis laser ablation
US5820948A (en) * 1995-03-07 1998-10-13 Sumitomo Electric Industries, Ltd. Apparatus and method for depositing films on substrate via off-axis laser ablation
JP2001059162A (ja) * 1999-08-24 2001-03-06 Sharp Corp レーザ蒸着法によるSi薄膜の形成方法及びその薄膜を構成要素として含む光電変換素子
CN101035924A (zh) * 2004-06-09 2007-09-12 美国Imra公司 使用超快脉冲激光沉积制造电化学装置的方法
CN101645464A (zh) * 2009-08-31 2010-02-10 北京航空航天大学 具有双向整流特性的铽锰氧p-n异质结及其制备方法
CN113445007A (zh) * 2021-05-28 2021-09-28 松山湖材料实验室 脉冲激光沉积装置及方法

Also Published As

Publication number Publication date
KR20240015107A (ko) 2024-02-02
DE112022002839T5 (de) 2024-03-14
CN113445007A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
WO2022247736A1 (zh) 脉冲激光沉积装置及方法
CN113186497A (zh) 脉冲激光沉积方法及其装置
JP2021528561A (ja) シールドマウントを有する堆積システム
US6090207A (en) Translational target assembly for thin film deposition system
JP2010539674A (ja) エネルギー粒子ビームを使用した基板の表面処理方法及び装置
JPH05804A (ja) 大面積複合酸化物超電導薄膜の成膜装置
CN113913773A (zh) 一种半球谐振子金属膜层镀制装置和方法
US11114618B2 (en) Organic layer and method of manufacturing the same, directional heat source assembly, and display panel
JP2013204152A (ja) 有機物蒸着システム
JP4251857B2 (ja) 真空成膜装置及び真空成膜方法
JP2019518131A (ja) 蒸発源を用いた高解像度amoled素子の量産装備
US6152075A (en) Method and system for heating semiconductor wafers
CN1726300A (zh) 衬底上薄膜的制作方法
KR20230149721A (ko) 에칭 장치
JP2020506283A (ja) 垂直型面蒸発源を用いた高解像度amoled素子のクラスタ型量産装備
JP2003096557A (ja) 有機el素子の製造装置および有機el素子の製造方法
US20120241311A1 (en) Sputtering device and sputtering method
JP2001140059A (ja) レーザー蒸着成膜方法
JP2011058063A (ja) 有機el用マスククリーニング装置、有機elディスプレイの製造装置、有機elディスプレイおよび有機el用マスククリーニング方法
CN115369364A (zh) 曲面薄膜沉积方法及其装置
JPH09118589A (ja) 酸化物薄膜生成法
JPH03174306A (ja) 酸化物超電導体の製造方法
JP2007111717A (ja) 薄膜を形成した基板のレーザ加工用装置
KR100222581B1 (ko) 대면적 다이아몬드 박막의 제조 장치 및 방법
CN118547248A (zh) 一种均匀烧蚀靶材的大面积脉冲激光沉积方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810463

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237045262

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112022002839

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22810463

Country of ref document: EP

Kind code of ref document: A1