WO2022237758A1 - 一种纳米硫酸钡连续制备方法及系统 - Google Patents

一种纳米硫酸钡连续制备方法及系统 Download PDF

Info

Publication number
WO2022237758A1
WO2022237758A1 PCT/CN2022/091902 CN2022091902W WO2022237758A1 WO 2022237758 A1 WO2022237758 A1 WO 2022237758A1 CN 2022091902 W CN2022091902 W CN 2022091902W WO 2022237758 A1 WO2022237758 A1 WO 2022237758A1
Authority
WO
WIPO (PCT)
Prior art keywords
static
barium sulfate
barium
sulfate
mixing reactor
Prior art date
Application number
PCT/CN2022/091902
Other languages
English (en)
French (fr)
Inventor
韦进全
江正根
崔贤
韦杨春
韦郁芬
Original Assignee
清华大学
广西象州汇智纳米科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学, 广西象州汇智纳米科技有限公司 filed Critical 清华大学
Publication of WO2022237758A1 publication Critical patent/WO2022237758A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/46Sulfates
    • C01F11/462Sulfates of Sr or Ba
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/65Chroma (C*)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the application relates to a method and system for continuously preparing nano-barium sulfate, in particular to a process for continuously preparing barium sulfate nano-materials through a pipeline mixing reactor, which belongs to the technical field of nano-materials.
  • Barium sulfate is an important chemical material. Barium sulfate is non-toxic, resistant to acid and alkali, stable in chemical properties, high in brightness and good in dispersibility. It has been widely used in rubber, plastic, ink, coating and other fields. Nano-barium sulfate has important physical and chemical properties such as nano-size effect and surface effect. It is an important functional filling material for high-end electronic equipment, organic coatings for plastic molds, and high-end automotive paints. It is used in ceramics, medicine, magnetic materials, optical materials and composite materials. The field has broad application prospects.
  • the preparation methods of barium sulfate powder materials mainly include black ash-glauber's salt method, chemical precipitation method, microemulsion method, additive method, microreactor method, anion exchange method, etc.
  • the black ash-glauber's salt method and the chemical precipitation method are the main methods for the factory to produce barium sulfate. These two methods usually adopt tank reaction, which has the disadvantages of long mixing time, batch reaction, and uncontrollable reaction process.
  • the barium sulfate prepared has large particle size (usually greater than 500nm), wide particle size distribution range, and poor dispersibility. , It is difficult to meet the application requirements of high-end fields such as electronic ink and fine chemical industry.
  • the microchannel reactor method is currently the most researched method in the laboratory.
  • the reaction speed is controlled by controlling the concentration of the continuous phase and the dispersed phase, thereby obtaining nano barium sulfate with a smaller particle size.
  • concentration of the solution used in the reaction of the microchannel reactor is low, and the pores of the reactor are easily blocked, so the production efficiency is not high, the stability is poor, and it is difficult to industrialize production.
  • the additive rule controls the reaction process by adding additives such as surfactants, complexing agents, and chelating agents, and inhibits the agglomeration of barium sulfate to regulate the grain size of barium sulfate.
  • the method can prepare barium sulfate with a nanoscale size
  • the addition of additives increases the cost, reduces the purity of the barium sulfate, affects its performance, and pollutes the environment.
  • the additives usually adopt the tank reaction, and there are inherent defects of the tank reaction.
  • other methods can control the particle size of barium sulfate below 300nm, the output is low, the cost is high, industrial production has not been realized, and the purity of barium sulfate is reduced due to the introduction of other chemical substances, which affects its application.
  • Patent document CN101423239A discloses that BaCl 2 and Na 2 SO 4 are used as raw materials to perform nucleation reaction through a high-speed rotating rotary liquid film reactor to obtain nano barium sulfate with a particle size of 30-120nm and a narrow particle size distribution.
  • Patent CN108862355A discloses that by controlling the temperature of barium solution and sulfate solution, the precipitation reaction is carried out with T-type and Y-type microchannel reactors (a kind of microreactor) as mixers, and nano barium sulfate with controllable particle size distribution is produced.
  • Patent documents CN110294487A and CN109279640A disclose the use of membrane dispersion microreactor method to prepare highly dispersed and hydrophobically modified barium sulfate nanomaterials.
  • the particle size and distribution range of the barium sulfate material can be reduced through the microreactor, but the flow rate is small, the concentration is low, the production efficiency is low, the equipment is easy to block, and it is not easy to produce on a large scale.
  • the above-mentioned documents show that some methods for preparing nano-barium sulfate have been developed at present. However, these methods are basically still in the laboratory stage, and it is difficult to realize industrial production.
  • the purpose of this application is to provide a method and system for continuously preparing nano-barium sulfate materials.
  • the static pipeline mixing reactor is used for continuous, fast, and Turbulent flow, full mixing, so that the two liquids are mixed to form many tiny reaction units, and the chemical reaction occurs quickly to form nano-barium sulfate grains; and it can effectively prevent the agglomeration and growth of nano-barium sulfate, and obtain nano-sulfuric acid with good dispersion barium material.
  • a method for continuously preparing nano-barium sulfate comprising:
  • the static pipe mixing reactor includes any one or more combination of static perforated plate pipe mixing reactor, static special-shaped plate pipe mixing reactor, and static spiral plate pipe mixing reactor.
  • the barium sulfate suspension is subjected to solid-liquid separation, washed with water and filtered for 2 to 4 times to obtain a barium sulfate filter cake.
  • the barium sulfate filter cake is dispersed by adding water, and the pH is adjusted to 6.5-7.2 to obtain a nearly neutral barium sulfate suspension.
  • the barium sulfate suspension is subjected to solid-liquid separation, then dried and pulverized to obtain a nano barium sulfate product with an average particle diameter of 20-100nm.
  • the barium sulfate content in the nano barium sulfate product is higher than 99%, the whiteness is better than 98.8%, and the volatile matter content at 105°C is lower than 0.08%.
  • the water-soluble barium liquid is configured by any water-soluble barium compound including barium sulfide, barium chloride, barium nitrate, and barium hydroxide;
  • the sulfate salt includes sodium sulfate, ammonium sulfate, potassium sulfate, Any one or more mixtures of magnesium sulfate; and the flow velocity of the mixed liquid of the water-soluble barium solution and the sulfate solution in the static pipeline mixing reactor is 0.1-5m/s.
  • a nano barium sulfate continuous preparation system that can be used to implement the aforementioned method, comprising a static pipeline mixing reactor, a barium liquid storage tank, a barium liquid feeding device, a sulfate storage tank, a sulfate feeding device, and sequentially with the described
  • the first filtering device, the pH adjusting device, the second filtering device and the drying and pulverizing device connected to the static pipeline mixing reactor.
  • the barium liquid storage tank and the sulfate storage tank are respectively fed into the static pipeline mixing reactor through the barium liquid feeding device and the sulfate feeding device.
  • the static pipe mixing reactor includes any one or more combination of static perforated plate pipe mixing reactor, static special-shaped plate pipe mixing reactor, and static spiral plate pipe mixing reactor.
  • the internal diameter of the pipe of the static pipeline mixing reactor is 5mm-60mm, and several mixing units are arranged in it; the pressure resistance value of the static pipeline mixer is not low at 0.2MPa.
  • the static pipeline mixing reactor is a static porous plate pipeline mixing reactor, and the mixing unit in it is an SMV mixing unit and/or a BKM mixing unit, And the number of mixing units is not less than 5. And when the SMV-type mixing unit and the BKM-type mixing unit are selected at the same time, they are arranged in series at intervals.
  • the static pipeline mixing reactor is a static special-shaped plate pipeline mixing reactor, and the mixing unit in it is a Ross ISG mixer mixing unit, and the mixing unit The number is not less than 6.
  • the static pipe mixing reactor is a static spiral vane pipe mixing reactor
  • the mixing unit inside is a Kenics pipe mixer mixing unit and/or Shimadaki A pipeline mixer mixing unit, and the number of said mixing units is not less than 8.
  • the Kenics pipeline mixer mixing unit and the Shimadaki pipeline mixer mixing unit are selected at the same time, they are arranged in series at intervals.
  • the mixing units such as perforated plate, special-shaped plate and spiral piece in the pipe of the static tube mixer can divide, move and mix the two solutions without the need for a mechanically driven mixer.
  • the two fluids can be used
  • the vortex generated in the cross-sectional direction of the flow provides a strong shear force to act on the two fluids, so that the fine parts of the fluids are further divided and mixed.
  • the two solutions can be fully mixed microscopically within milliseconds, thereby promoting the nucleation of barium sulfate crystals and inhibiting the growth of crystal grains.
  • the generated barium sulfate nanoparticles are quickly discharged from the pipeline, and the residence time in the reactor is short, which avoids subsequent further agglomeration and growth.
  • the average particle size of the finally generated barium sulfate particles is small and Concentrated diameter distribution.
  • this application can produce nano barium sulfate materials with fine particles and concentrated particle size distribution without adding additives such as complexing agents and surfactants, and can react continuously.
  • the present application also has the characteristics of high controllability of particle size, miniaturization of the device, easy scale-up of production and the like.
  • the solution used in the preparation method of the present application has high concentration and high yield, and the operation of the equipment is stable, there is no hidden danger of pipeline blockage, and it has the characteristics of high efficiency, energy saving, and reduced equipment maintenance.
  • the production capacity of the preparation method of this application is flexible, and multiple static pipeline mixing reactors can be connected in parallel for production, and the number of reactors can be increased or decreased according to production needs, which can meet the needs of basic debugging of the reaction on a small scale, and can also meet the large-scale requirements. of industrial production.
  • Fig. 1 is the schematic diagram of the continuous preparation system of nano-barium sulfate involved in the present application.
  • Fig. 2 is the scanning electron micrograph of embodiment 1 nanometer barium sulfate product involved in the present application.
  • Fig. 3 is the scanning electron micrograph of embodiment 2 nano-barium sulfate product involved in the present application.
  • Fig. 4 is the scanning electron micrograph of embodiment 3 nano-barium sulfate product involved in the present application.
  • Fig. 5 is the scanning electron micrograph of embodiment 4 nanometer barium sulfate product involved in the present application.
  • 1-static pipe mixing reactor 2-barium solution storage tank; 3-barium solution feeding device; 4-feed inlet; 5-sulfate feeding device; 6-sulfate storage tank; 7-outlet Material port; 8-first filter device; 9-pH adjustment device; 10-second filter device; 11-drying and crushing device.
  • the system described in the application for the continuous preparation of nano-barium sulfate comprises a static pipeline mixing reactor 1, which is respectively connected to the barium liquid storage tank 3 and the sulfate at the 4 ends of the static pipeline mixing reactor 1 feed port.
  • a storage tank 6, and a first filter device 8, a pH adjustment device 9, a second filter device 10, and a drying and pulverizing device 11 sequentially connected to the discharge port 7 of the static pipeline mixing reactor 1.
  • the water-soluble barium solution of the barium liquid storage tank 3 and the sulfate solution of the sulfate storage tank 6 are respectively fed into the reactor through the barium liquid feeding device 3 and the sulfate feeding device 5 capable of controlling the flow rate.
  • the static pipeline mixing reactor is a kind of continuous division and confluence of the liquid by using twisted blades in the pipeline, staggered perforated plates or special-shaped plates without power stirring, so that the two liquids are separated in a wide Reynolds A range of mixing and reactions are carried out in a number of mixing reactors.
  • This application uses a static pipeline mixing reactor to prepare nano-barium sulfate, which can quickly and fully mix the sulfate solution and water-soluble barium compound solution to form tiny reaction units, thereby preparing nano-barium sulfate grains;
  • the pipe mixing reactor can also directly discharge the generated barium sulfate from the reactor to avoid agglomeration reaction with the later generated barium sulfate, and can separate the subsequent processing steps from the mixing reaction process, so that the entire production process is continuous and uninterrupted, thereby Improve the production efficiency of the whole system.
  • the characteristics of the precipitation reaction the shorter the mixing time of the two reactants that undergo the precipitation reaction, the more fully the mixing, and the more uniform the particle size of the obtained precipitate.
  • the fast-flowing two liquids are mixed through the static pipeline mixing reactor, and the microscopic mixing time is much shorter than that of the tank reaction. Since the reaction can be carried out continuously through the pipeline, the pipeline mixing reactor has the characteristics of miniaturization and continuous production. At the same time, due to the relatively large flow space of the liquid in the pipeline, precipitation reaction can occur in a high-concentration solution, which has the characteristics of high efficiency and avoids frequent maintenance and cleaning.
  • Aforesaid barium solution and vitriol salt solution are input in feed inlet 4 respectively by dosing device (barium liquid feeding device 3 and vitriol salt feeding device 5), enter in the static pipeline mixing reactor 1, make two kinds of solutions The continuous fast mixing reaction is carried out in the pipeline mixing reactor.
  • the static pipe mixing reactor 1 is selected from any one or a combination of static perforated plate pipe mixing reactors, static special-shaped plate pipe mixing reactors, and static spiral plate pipe mixing reactors. When a combination is selected, multiple or more of any one of the static perforated plate tube mixing reactor, the static special-shaped plate tube mixing reactor, and the static spiral piece tube mixing reactor are connected in series and/or in parallel to form a combination . In order to avoid the mixing of barium solution and sulfate at the inlet of the static pipe mixing reactor, the two liquids at the inlet should be separated to the mixing unit.
  • the internal diameter of the static pipeline mixing reactor is 5mm-60mm, so that the flow velocity of the mixed solution of the water-soluble barium solution and the sulfate solution in the static pipeline mixing reactor is 0.1-5m/s.
  • the pressure resistance value of the static pipeline mixer is not less than 0.2MPa.
  • the mixing unit is an SMV type mixing unit.
  • the mixing unit is an alternate overlapping slope format unit body and two adjacent units Arrangement staggered by 90°; or choose BKM type mixing unit, at this time, the mixing unit is several groups of flat plates arranged staggered by 90°; or choose SMV type mixing unit and BKM type mixing unit at the same time, and the two kinds of mixing units are arranged alternately, that is, interval arranged in series.
  • the static special-shaped plate pipe mixing reactor When the static special-shaped plate pipe mixing reactor is selected, there are no less than 6 mixing units in it, and the mixing unit is a Ross ISG mixer mixing unit.
  • the mixing unit is a Kenics pipeline mixer mixing unit.
  • the mixing units are arranged with blades twisted to 180° and staggered by 90°; Or choose the mixing unit of the Shimadaki pipeline mixer.
  • the mixing unit is three helical blades that are alternately combined through the orifice plate and divided into 120°, and the three helical blades are twisted 90° to the left or right; or at the same time
  • the Kenics pipeline mixer mixing unit and the Shimadaki pipeline mixer mixing unit are selected, and the two mixing units are arranged alternately, that is, the spaced series arrangement.
  • Industrial grade BaS was selected as the raw material of water-soluble barium compound, and a BaS solution with a concentration of 1 mol/L was prepared in a barium liquid storage tank at 60 °C.
  • the inner diameter of the static pipeline mixing reactor is 5mm, and there are 5 SMV type mixing units inside.
  • Two kinds of solutions are input in the pipeline mixing reactor through feed inlet, utilize barium liquid feeding device 3 and sulfate feeding device 5 to control the flow velocity of BaS solution respectively to be 0.2m/s, Na SO
  • the flow velocity of solution is 0.1m/s, at this flow rate, the mass ratio (molar ratio) of [Ba 2+ ]:[SO 4 2- ] is 1:1.
  • the barium sulfate suspension obtained by the reaction is input into the first filter device, the soluble matter in the slurry is removed through solid-liquid separation, and water is added to wash and filter twice according to the ratio of slurry to water 1:4 to obtain sulfuric acid Barium filter cake.
  • the inner diameter of the mixer is 15mm, and there are 5 SMV type mixing units and 5 BKM type mixing units arranged alternately inside. Other conditions are with embodiment 1.
  • the barium sulfate content, whiteness, volatile matter content at 105°C, average particle size and dispersibility of the obtained nano-barium sulfate product were measured, and the results are shown in Table 1.
  • the static pipeline mixing reactor is composed of two mixers connected in series. There are 8 SMV mixing units inside the front mixer with an inner diameter of 10mm. There are 10 Kenics pipeline mixer mixing units inside the back end mixer with an inner diameter of 10mm. The two mixers are connected by flanges.
  • Two kinds of solutions are input in the pipeline mixing reactor through feed inlet, utilize barium liquid feeding device 3 and sulfate feeding device 5 to control the flow velocity of two kinds of solutions and be 1.5m/s, under this flow velocity, [Ba 2+ ]:[SO 4 2- ] in a substance molar ratio of 1:1.3.
  • the barium sulfate suspension obtained by the reaction is input into the first filter device, the soluble matter in the slurry is removed through solid-liquid separation, and water is added to wash and filter 4 times according to the ratio of slurry to water 1:4 to obtain barium sulfate filter cake.
  • the inner diameter of the front and rear end mixers is 15mm, and there are 12 mixing units inside, and other conditions are the same as in embodiment 3, to obtain the nano-barium sulfate product, and carry out barium sulfate content, whiteness to it , 105°C volatile matter content, product average particle size and dispersibility determination, see Table 1.
  • the static pipeline mixing reactor is composed of two mixers connected in series. There are 8 BKM mixing units inside the front mixer with an inner diameter of 10mm. There are 6 Ross ISG in-line mixer mixing units inside the back end mixer with an inner diameter of 10mm.
  • the two solutions are input into the static pipeline mixing reactor through the feed port, and the flow velocity of the Ba(OH) 2 solution is controlled to be 1m/s by using the barium liquid feeding device 3 and the sulfate feeding device 5 respectively, (NH 4 )
  • the flow velocity of the 2 SO 4 solution is 2m/s, and at this flow velocity, the mass ratio of [Ba 2+ ]:[SO 4 2- ] is 1:2.
  • the barium sulfate suspension obtained by the reaction is input into the first filter device, the soluble matter in the slurry is removed through solid-liquid separation, and water is added to wash and filter 3 times according to the ratio of slurry to water 1:3 to obtain barium sulfate filter cake.
  • the inner diameter of the front and rear end mixers is 15mm, and there are 10 mixing units inside to obtain the nano-barium sulfate product, which is subjected to barium sulfate content whiteness, 105°C volatile matter content, and product average particle diameter. and dispersibility measurements are shown in Table 1.
  • the static pipeline mixing reactor is composed of two mixers connected in series.
  • the front mixer is arranged alternately with 5 SMV type mixing units and 5 BKM type mixing units, with an inner diameter of 10mm.
  • Two kinds of solutions are imported in static pipe mixing reactor from feed inlet, utilize barium liquid feeding device 3 and sulfate feeding device 5 to control the flow velocity of two kinds of solutions and be 2m/s, under this flow velocity, [Ba 2+ ]:[SO 4 2- ] in a substance molar ratio of 1:1.1.
  • the barium sulfate suspension obtained by the reaction is input into the first filter device, the soluble matter in the slurry is removed through solid-liquid separation, and water is added to wash and filter twice according to the ratio of slurry to water 1:3 to obtain barium sulfate filter cake.
  • the inner diameter of the front and rear end mixers is 15mm, and there are 12 mixing units inside to obtain the nano-barium sulfate product, and carry out barium sulfate content, whiteness, 105 °C volatile matter content, See Table 1 for the determination of the average particle size and dispersibility of the product.
  • the static pipeline mixer is combined by three mixers, and the front end is two static perforated plate pipeline mixing reactors, and the inside is composed of 5 SMV type mixing units and 5 BKM type
  • the mixing units are arranged alternately with an inner diameter of 10mm.
  • the rear end is a static helical plate type pipe mixing reactor, and there are 10 Shimadaki pipe mixer mixing units inside the back end mixer, with an inner diameter of 10mm.
  • the outlets of the two static perforated plate pipe mixing reactors at the front end are connected with the two partitioned inlets of the feed port of the back end static spiral piece pipe mixing reactor through flanges.
  • the barium liquid feeding device 3 and the sulfate feeding device 5 Utilize the barium liquid feeding device 3 and the sulfate feeding device 5 to control the flow velocity of the barium liquid and sulfate entering the two static perforated plate pipe mixing reactors, which are respectively BaCl 2 flow rate 1.5m/s, (NH 4 ) 2 SO 4 flow rate 0.5m/s and BaCl 2 flow rate 0.5m/s, (NH 4 ) 2 SO 4 flow rate 1.5m/s.
  • the solutions flowing through the two static porous plate pipe mixing reactors are combined in the back end static spiral piece pipe mixing reactor and continue to mix and react. At this time, the substance molar ratio of [Ba 2+ ]:[SO 4 2 ⁇ ] was 1:1.1.
  • the barium sulfate suspension obtained by the reaction is input into the first filter device, and the subsequent treatment is the same as in Example 7. After the treatment, the nano barium sulfate product was obtained, and the content of barium sulfate, whiteness, volatile matter content at 105°C, average particle size and dispersibility of the product were measured, as shown in Table 1.
  • Example 2 Example 3
  • Example 4 Example 5
  • Example 6 Example 7
  • Example 9 BaSO 4 content (dry basis %) 98.97 98.93 99.32 99.35 99.21 99.21 99.53 99.55 99.58 BaiDu(%) >98.9 >98.9 >98.9 >98.9 >98.9 >98.9 >98.9 >98.9 >98.9 >98.9 Volatile matter at 105°C (%) ⁇ 0.08 ⁇ 0.08 ⁇ 0.08 ⁇ 0.08 ⁇ 0.08 ⁇ 0.08 ⁇ 0.08 ⁇ 0.08 ⁇ 0.08 ⁇ 0.08 ⁇ 0.08 ⁇ 0.08 ⁇ 0.08 ⁇ 0.08 ⁇ 0.08 ⁇ 0.08 ⁇ 0.08 ⁇ 0.08 ⁇ 0.08 ⁇ 0.08 ⁇ 0.08
  • Product average particle size (nm) 63 68 25 29 46 55 78 80 48 dispersion excellent excellent excellent excellent excellent excellent excellent excellent excellent excellent excellent excellent excellent excellent excellent excellent excellent excellent excellent excellent excellent excellent excellent excellent excellent excellent excellent excellent excellent excellent excellent excellent
  • the barium sulfate content of the barium sulfate product prepared in all embodiments is all higher than 98.9%, and whiteness is better than 98.9%, and 105 °C of volatile matter content are lower than 0.08%, and average particle diameter is at 20 -100nm, with the characteristics of high purity, high whiteness, good dispersion and small particle size, which can meet the corresponding application requirements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本申请公开了一种纳米硫酸钡连续制备方法及系统,通过将水溶性钡溶液和硫酸盐溶液按比例输入静态管道混合反应器中,使得两种溶液在静态管道混合反应器内快速流动并形成湍流充分混合,快速反应生成纳米硫酸钡悬浊液。静态管道混合反应器选用静态多孔板式管道混合反应器、静态异形板式管道混合反应器、静态螺旋片式管道混合反应器中的任一种或多种组合体。硫酸钡悬浊液经过多次过滤和洗涤,再经调pH、烘干和粉碎,制备出纳米硫酸钡粉体材料。所得硫酸钡含量高于99%,平均粒径可控制在20-100nm以内,粒径分布窄,白度优于98.8%,105℃挥发物含量低于0.08%。本申请具有适用范围广,硫酸钡粒径可控,生产过程连续、可控,易于实现工业化等优点。

Description

一种纳米硫酸钡连续制备方法及系统 技术领域
本申请涉及一种纳米硫酸钡连续制备的方法及系统,尤其涉及一种通过管道混合反应器连续制取硫酸钡纳米材料的工艺,属于纳米材料技术领域。
背景技术
硫酸钡是一种重要的化工材料。硫酸钡无毒,耐酸碱,化学性质稳定,亮度高,分散性好,已经被广泛地用于橡胶、塑料、油墨,涂料等领域。纳米硫酸钡具有纳米尺寸效应、表面效应等重要物理化学特性,是高端电子设备、塑料模具有机涂层、高端汽车漆的重要功能性填充材料,在陶瓷、医药、磁性材料,光学材料以及复合材料领域具有着广泛的应用前景。目前,硫酸钡粉体材料的制备方法主要有黑灰-芒硝法、化学沉淀法、微乳液法、添加剂法、微反应器法、阴离子交换法等。黑灰-芒硝法和化学沉淀法是工厂生产硫酸钡的主要方法。这两种方法通常采用罐式反应,存在混合时间长,间歇式反应,反应过程不可控等缺点,制备得到的硫酸钡粒径大(通常大于500nm),粒径分布范围宽,分散性较差,难以满足电子油墨、精细化工等高端领域的应用要求。微通道反应器法是目前实验室研究较多的方法。该方法通过控制连续相和分散相的浓度来控制反应速度,从而获得粒径较小的纳米硫酸钡。但微通道反应器反应所使用的溶液浓度低,反应器的孔道容易堵塞,因此生产效率不高,稳定性较差,难以工业化生产。添加剂法则通过加入表面活性剂、络合剂、螯合剂等添加剂,来控制反应过程,抑制硫酸钡的团聚,以调控硫酸钡的晶粒尺寸。该方法虽然可以制备出尺寸为纳米量级的硫酸钡,但加入添加剂增大了成本,降低硫酸钡的纯度,影响其性能,还对环境带来污染。另外,添加剂发通常采用罐式反应,还存在罐式反应的固有缺陷。其他方法虽然可以将硫酸钡的粒径控制在300nm以下,但产量低,成本高,尚未实现工业化生产,并且由于引入其他化学物质而导致硫酸钡的纯度下降,影响其应用。
目前,已有一些关于制取纳米硫酸钡材料的文献。员汝胜等通过在BaS溶液中加入乙醇,在Na 2SO 4溶液中加入分散剂,以旋转填料床为强制混合器进行液相沉淀反应,制备得到50-130nm的硫酸钡(化学工程师,2001,05,1002-1124)。专利文献CN103626219A公开了通过在Ba(OH) 2中加入EDTA,先生成Ba-EDTA络合物;然后往Ba-EDTA络合物中加入SO 4 2-,可以控制Ba 2+和SO 4 2-结合速率,由此制得到纳米硫酸钡材料。研究表明,通过添加分散剂或者表面活性剂以及生成络合物可以获得粒径很小的硫酸钡纳米材料,但是分散剂和表面活性剂以及络合剂回收困难,生产成本高,同时也会引入官能团,导致硫酸钡的纯度和表面化学性质改变。专利文献CN101423239A公开了以BaCl 2和Na 2SO 4为原料,通过高速旋转的旋转液膜反应器进行成核反应,得到粒径为30-120nm且粒径分布较窄的纳米硫酸钡。专利CN108862355A公开了通过控制钡液和硫酸盐溶液的温度,以T型和Y型微通道反应器(一种微反应器)为混合器进行沉淀反应,生成了粒径分布可控的纳米硫酸钡。专利文献CN110294487A和CN109279640A公开了利用膜分散微反应器方法,制取出了高分散、疏水改性的硫酸钡纳米材料。通过微反应器可以缩小硫酸钡材料的粒径和分布范围,但流速小,浓度低、生产效率低,设备易堵塞,不易规模化生产。上述文献表明,目前已经发展出了一些制取纳米硫酸钡的方法。但这些方法基本还停留在实验室阶段,难以实现工业化生产。
发明内容
本申请旨在提供一种可连续制备纳米硫酸钡材料的方法及系统,在不添加分散剂、表面活性剂、络合剂等添加剂的条件下,利用静态管道混合反应器进行连续式、快速、湍流式、充分混合,使两液混合形成许多微小的反应单元,快速发生化学反应生成纳米硫酸钡晶粒;并且可有效防止纳米硫酸钡的团聚和长大,获得了具有良好分散性的纳米硫酸钡材料。
本申请是通过以下技术方案实现的。
一种可连续制备纳米硫酸钡的方法,包括:
分别在30-90℃下配制0.5mol/L至饱和浓度的水溶性钡溶液及硫酸盐溶液,并按照[SO 4 2-]:[Ba 2+]的摩尔比为(1~2):1,将所述水溶性钡溶液和硫酸盐 溶液分别输入静态管道混合反应器中,并在所述反应器中快速混合反应生成纳米硫酸钡悬浊液。
所述静态管道混合反应器包括静态多孔板式管道混合反应器、静态异形板式管道混合反应器、静态螺旋片式管道混合反应器中的任一种或多种组合体。
使所述硫酸钡悬浊液进行固液分离,并加水洗涤及过滤2~4次,得到硫酸钡滤饼。将所述硫酸钡滤饼加水分散,并调节pH至6.5~7.2,得到接近中性的硫酸钡悬浊液。
将所述硫酸钡悬浊液进行固液分离,然后干燥并粉碎,即得到平均粒径为20-100nm的纳米硫酸钡产品。所述纳米硫酸钡产品中硫酸钡含量高于99%,白度优于98.8%,105℃挥发物含量低于0.08%。
前述技术方案中,所述水溶性钡液通过包括硫化钡、氯化钡、硝酸钡、氢氧化钡的任一种水溶性钡化合物配置;所述硫酸盐包括硫酸钠、硫酸铵、硫酸钾、硫酸镁中的任一种或多种混合物;且所述水溶性钡溶液和硫酸盐溶液混合液在所述静态管道混合反应器中的流速为0.1-5m/s。
一种能够用于实施前述方法的纳米硫酸钡连续制备系统,包括静态管道混合反应器、钡液储罐、钡液给料装置、硫酸盐储罐、硫酸盐给料装置,以及依次与所述静态管道混合反应器相连的第一过滤装置、pH调节装置、第二过滤装置和干燥粉碎装置。所述钡液储罐和硫酸盐储罐分别通过所述钡液给料装置、硫酸盐给料装置给入所述静态管道混合反应器。所述静态管道混合反应器包括静态多孔板式管道混合反应器、静态异形板式管道混合反应器、静态螺旋片式管道混合反应器中的任一种或多种组合体。
可选的,依据本申请一个实施例,前述技术方案中,所述静态管道混合反应器管道内径为5mm-60mm,其内设置有若干混合单元;所述静态管道混合器的耐压值不低于0.2MPa。
可选的,依据本申请一个实施例,前述技术方案中,所述静态管道混合反应器选用静态多孔板式管道混合反应器,其内的混合单元选用SMV型混合单元和/或BKM型混合单元,且所述混合单元数不少于5个。且同时选用SMV型混合单元和BKM型混合单元时两者呈间隔式串联布置。
可选的,依据本申请一个实施例,前述技术方案中,所述静态管道混合 反应器选用静态异形板式管道混合反应器,其内的混合单元选用罗斯ISG混合器混合单元,且所述混合单元数不少于6个。
可选的,依据本申请一个实施例,前述技术方案中,所述静态管道混合反应器选用静态螺旋片式管道混合反应器,其内的混合单元选用Kenics管道混合器混合单元和/或岛琦管道混合器混合单元,且所述混合单元数不少于8个。且同时选用Kenics管道混合器混合单元和岛琦管道混合器混合单元时两者呈间隔式串联布置。
本申请的有益效果和优点包括:
静态管式混合器管道内的多孔板、异形板以及螺旋片等混合单元,无需机械转动驱动的搅拌机,即能对两种溶液进行分割、位置移动、混合操作,在湍流时,利用两种流体在流动的断面方向产生的涡流,提供很强的剪切力作用于两种流体,使流体的微细部分进一步被分割而混合。最终使得两种溶液可以在毫秒量级时间内得到充分的微观混合,从而促进硫酸钡晶体的形核,抑制晶粒的长大。此外,在流动状态下,生成的硫酸钡纳米晶粒很快被排出管道,在反应器中的停留时间短,避免后续的进一步团聚长大,最终生成的硫酸钡颗粒的平均粒径小,粒径分布集中。
相比于间歇式的罐式反应法,本申请可以在不添加络合剂和表面活性剂等添加剂的前提下,生产出颗粒细小且粒径分布集中的纳米硫酸钡材料,且可连续反应。此外,本申请还具有粒径可控性高、装置小型化、易于放大生产等特点。
相比于微通道反应法,本申请制备方法中所使用的溶液浓度高,产率高,且设备运营稳定,无堵塞管道的隐患,具有高效化、节能化、减少设备维护等特点。
本申请制备方法产能灵活,可以将多个静态管道混合反应器并联进行生产,并根据生产需求增减反应器数目,既可以满足于小试规模下对反应基本调试的需求,也可以满足大规模的工业化生产。
附图简要说明
图1为本申请所涉及的纳米硫酸钡连续制备系统示意图。
图2为本申请所涉及的实施例1纳米硫酸钡产品的扫描电子显微镜照片。
图3为本申请所涉及的实施例2纳米硫酸钡产品的扫描电子显微镜照片。
图4为本申请所涉及的实施例3纳米硫酸钡产品的扫描电子显微镜照片。
图5为本申请所涉及的实施例4纳米硫酸钡产品的扫描电子显微镜照片。
图中:1-静态管道混合反应器;2-钡液储罐;3-钡液给料装置;4-进料口;5-硫酸盐给料装置;6-硫酸盐储罐;7-出料口;8-第一过滤装置;9-pH调节装置;10-第二过滤装置;11-干燥粉碎装置。
具体实施方式
下面结合附图和实施例,对本申请的具体实施方式及工作过程作进一步的说明。
如图1所示,本申请所述的用于连续制备纳米硫酸钡的系统包括静态管道混合反应器1,分别连接在静态管道混合反应器1进料口4端的钡液储罐3和硫酸盐储罐6,以及依次与静态管道混合反应器1出料口7连接的第一过滤装置8、pH调节装置9、第二过滤装置10和干燥粉碎装置11。钡液储罐3的水溶性钡溶液和硫酸盐储罐6的硫酸盐溶液分别通过能够控制流速的钡液给料装置3和硫酸盐给料装置5给入反应器。
静态管道混合反应器是一种在没有动力搅拌的情况下,利用管道内的扭曲的叶片,交错的多孔板或者异形板,不断地对液体进行分割和汇合,使得两种液体在很宽的雷诺数范围内进行混合和反应的混合一种反应器。本申请利用静态管道混合反应器来制取纳米硫酸钡,可将硫酸盐溶液和水溶性钡化合物溶液进行快速、充分混合,形成微小的反应单元,由此可制备出纳米硫酸钡晶粒;静态管道混合反应器还可将生成的硫酸钡从反应器中直接排出,避免与后面生成的硫酸钡发生团聚反应,并且可以将后续处理步骤与混合反应过程分开,使整个生产过程连续不中断,从而提高整个体系的生产效率。根据沉淀反应的特点,发生沉淀反应的两种反应物混合时间越短,混合越充分,获得的沉淀物的颗粒粒径就越均匀。将快速流动的两液通过静态管道混合反应器进行混合,其微观混合时间远远小于罐式反应。由于可以连续地通过管道进行反应,因此管道混合反应器具有小型化、连续化生产的特点。同时由于管道内液体的流动空间相对较大,因此可以在高浓度溶液中发生沉淀反应,具有效率高,免除经常性维修和清理的特点。
称取适量的水溶性钡化合物,包括硫化钡、氯化钡、硝酸钡、氢氧化钡中的任一种,在钡液储罐2中于30-90℃下配制成0.5mol/L至饱和浓度的水溶性钡溶液。称取适量的硫酸盐在硫酸盐储罐6中于30-90℃下配制成0.5mol/L至饱和浓度的硫酸盐溶液。钡液储罐2和硫酸盐储罐6采用加热保温措施。
将前述钡溶液和硫酸盐溶液通过定量给料装置(钡液给料装置3和硫酸盐给料装置5)分别输入进料口4中,进入到静态管道混合反应器1中,使两种溶液在管道混合反应器中进行连续式快速混合反应。
静态管道混合反应器1选用静态多孔板式管道混合反应器、静态异形板式管道混合反应器、静态螺旋片式管道混合反应器中的任一种或多种组合体。当选用组合体时,静态多孔板式管道混合反应器、静态异形板式管道混合反应器、静态螺旋片式管道混合反应器中的任一种的多个或多种通过串联和/或并联形成组合体。为避免钡溶液和硫酸盐在静态管道混合反应器的进料口就混合,需将进料口处两液分隔至混合单元处。静态管道混合反应器管道内径为5mm-60mm,使得水溶性钡溶液和硫酸盐溶液的混合溶液在静态管道混合反应器中的流速为0.1-5m/s。为了使水溶性钡溶液和硫酸盐溶液在混合反应器内快速流动、形成湍流式充分混合,从而能够快速发生化学反应生成纳米硫酸钡悬浊液,混合反应器内设置有不少于5个混合单元。静态管道混合器的耐压值不低于0.2MPa。
当选用静态多孔板式管道混合反应器时,其内设置有不少于5个混合单元,混合单元选用SMV型混合单元,此时混合单元为交替重合的斜坡版式单元体且相邻两个单元体错开90°排列;或选用BKM型混合单元,此时混合单元为若干组平板互相错开90°排列;或同时选用SMV型混合单元和BKM型混合单元,且两种混合单元呈交替排列,即间隔式串联布置。
当选用静态异形板式管道混合反应器时,其内设置有不少于6个混合单元,混合单元选用罗斯ISG混合器混合单元。
当选用静态螺旋片式管道混合反应器时,其内设置有不少于8个混合单元,混合单元选用Kenics管道混合器混合单元,此时混合单元为扭曲成180°的叶片错开90°排列;或选用岛琦管道混合器混合单元,此时混合单元为三个通过孔板交替地组合起来互相分割成120°的螺旋叶片,且三个螺旋叶片为 向左或向右扭转90°;或同时选用Kenics管道混合器混合单元和岛琦管道混合器混合单元,且两种混合单元呈交替排列,即间隔式串联布置。
将得到的硫酸钡悬浊液经出料口7输入到第一过滤装置8中,进行固液分离后加水洗涤和过滤,重复2-4次,将洗涤后的滤饼送入到pH调节装置9中,加水分散并调节pH到6.5-7.2,得到接近中性的硫酸钡悬浊液。将调节pH后的硫酸钡悬浊液通入到第二过滤装置10中进行固液分离,再经干燥粉碎装置11干燥粉碎后得到纳米硫酸钡产品。
实施例1
选取工业级BaS作为水溶性钡化合物原料,在60℃下的钡液储罐中配制浓度为1mol/L的BaS溶液。选取工业级Na 2SO 4作为硫酸盐原料,在40℃下的硫酸盐储罐中配制浓度为2.0mol/L的Na 2SO 4溶液。静态管道混合反应器内径5mm,内部有5个SMV型混合单元。将两种溶液经进料口输入到管道混合反应器中,分别利用钡液给料装置3和硫酸盐给料装置5控制BaS溶液的流速为0.2m/s、Na 2SO 4溶液的流速为0.1m/s,在该流速下,[Ba 2+]:[SO 4 2-]的物质的量比(摩尔比)为1:1。
将反应得到的硫酸钡悬浊液输入到第一道过滤装置中,经固液分离除去浆料中的可溶性物质,并按浆料和水的比例1:4加入水洗涤过滤2次,得到硫酸钡滤饼。
将洗涤2次后得到的硫酸钡滤饼,送入到pH调节装置中,按浆料和水的比例1:5加入水搅拌分散,并调节pH到6.7。调节pH后的硫酸钡悬浊液经第二过滤装置固液分离、干燥粉碎装置干燥并粉碎后,获得纳米硫酸钡产品,颗粒的形貌如图2所示,对其进行硫酸钡含量、白度、105℃挥发物含量、产品平均粒径和分散性的测定,结果见表1。
实施例2
改变静态管道混合器规格,混合器内径15mm,内部由5个SMV型混合单元和5个BKM型混合单元交替排列。其它条件同实施例1。对所获得的纳米硫酸钡产品进行硫酸钡含量、白度、105℃挥发物含量、产品平均粒径和分散性的测定,结果见表1。
实施例3
选取工业级BaCl 2作为水溶性钡化合物原料,在70℃下的钡液储罐中 配制浓度为2.4mol/L的BaCl 2溶液(饱和浓度)。选取工业级Na 2SO 4作为硫酸盐原料,在60℃下的硫酸盐储罐中配制浓度为3.2mol/L的Na 2SO 4溶液(饱和浓度)。静态管道混合反应器由两种混合器串联而成,前端混合器内部有8个SMV型混合单元,内径10mm。后端混合器内部有10个Kenics管道混合器混合单元,内径10mm。两种混合器中间采用法兰连接。将两种溶液经进料口输入到管道混合反应器中,利用钡液给料装置3和硫酸盐给料装置5控制两种溶液的流速均为1.5m/s,在该流速下,[Ba 2+]:[SO 4 2-]的物质的量比为1:1.3。
将反应得到的硫酸钡悬浊液输入到第一过滤装置中,经固液分离除去浆料中的可溶性物质,并按浆料和水的比例1:4加入水洗涤过滤4次,得到硫酸钡滤饼。
将洗涤4次后得到的硫酸钡滤饼,送入到pH调节装置中,按浆料和水的比例1:5加入水搅拌分散,并调节pH到6.9。调节pH后的硫酸钡悬浊液经第二过滤装置固液分离、干燥粉碎装置干燥并粉碎后,获得纳米硫酸钡产品,颗粒的形貌如图3所示,对其进行硫酸钡含量、白度、105℃挥发物含量、产品平均粒径和分散性的测定,见表1。
实施例4
改变实施例3的静态管道混合器规格,前后端混合器内径均为15mm,内部均有12个混合单元,其它条件同实施例3,获得纳米硫酸钡产品,对其进行硫酸钡含量、白度、105℃挥发物含量、产品平均粒径和分散性的测定,见表1。
实施例5
选取工业级Ba(OH) 2为水溶性钡化合物原料,在60℃下的钡液储罐中配制浓度为0.5mol/L的Ba(OH) 2溶液。选取工业级(NH 4) 2SO 4作为硫酸盐原料,在40℃下的硫酸盐储罐中配制浓度为0.5mol/L的(NH 4) 2SO 4溶液。静态管道混合反应器由两种混合器串联而成,前端混合器内部有8个BKM型混合单元,内径10mm。后端混合器内部有6个罗斯ISG管道混合器混合单元,内径10mm。将两种溶液经进料口输入到静态管道混合反应器中,分别利用钡液给料装置3和硫酸盐给料装置5控制Ba(OH) 2溶液的流速为1m/s,(NH 4) 2SO 4溶液的流速为2m/s,在该流速下,[Ba 2+]:[SO 4 2-]的物质的量比为 1:2。
将反应得到的硫酸钡悬浊液输入到第一过滤装置中,经固液分离除去浆料中的可溶性物质,并按浆料和水的比例1:3加入水洗涤过滤3次,得到硫酸钡滤饼。
将洗涤3次后得到的硫酸钡滤饼,送入到pH调节装置中,按浆料和水的比例1:4加入水搅拌分散,并调节pH到7.2。调节pH后的硫酸钡悬浊液经第二过滤装置固液分离、干燥粉碎装置干燥并粉碎后,获得纳米硫酸钡产品,颗粒的形貌如图4所示,对其进行硫酸钡含量、白度、105℃挥发物含量、产品平均粒径和分散性的测定,见表1。
实施例6
改变实施例5的管道混合器规格,前后端混合器内径15mm,内部均有10个混合单元,获得纳米硫酸钡产品,对其进行硫酸钡含量白度、105℃挥发物含量、产品平均粒径和分散性的测定见表1。
实施例7
选取工业级BaCl 2作为钡源,在80℃下配制浓度为2mol/L的BaCl 2溶液加入到钡液储罐中,选取工业级(NH 4) 2SO 4作为硫酸盐源,在60℃下配制浓度为2.2mol/L的(NH 4) 2SO 4溶液加入到硫酸盐储罐中。静态管道混合反应器由两种混合器串联而成,前端混合器内部由5个SMV型混合单元和5个BKM型混合单元交替排列,内径10mm。后端混合器内部有10个岛琦管道混合器混合单元,内径10mm。将两种溶液从进料口输入到静态管道混合反应器中,利用钡液给料装置3和硫酸盐给料装置5控制两种溶液的流速均为2m/s,在该流速下,[Ba 2+]:[SO 4 2-]的物质的量比为1:1.1。
将反应得到的硫酸钡悬浊液输入到第一过滤装置中,经过固液分离除去浆料中的可溶性物质,并按浆料和水的比例1:3加入水洗涤过滤2次,得到硫酸钡滤饼。
将洗涤2次后得到的硫酸钡滤饼,送入到pH调节装置中,按浆料和水的比例1:4加入水搅拌分散,并调节pH到6.5。调节pH后的硫酸钡悬浊液经第二过滤装置固液分离、干燥粉碎装置干燥并粉碎后,获得纳米硫酸钡产品,颗粒的形貌如图5所示,对其进行硫酸钡含量、白度、105℃挥发物含量、产品平均粒径和分散性的测定,见表1。
实施例8
改变实施例7的静态管道混合器规格,前后端混合器内径均为15mm,内部均有12个混合单元,获得纳米硫酸钡产品,对其进行硫酸钡含量、白度、105℃挥发物含量、产品平均粒径和分散性的测定,见表1。
实施例9
改变实施例7的静态管道混合器的规格,静态管道混合器由三个混合器组合而成,前端为两个静态多孔板式管道混合反应器,内部由5个SMV型混合单元和5个BKM型混合单元交替排列,内径10mm。后端为一个静态螺旋片式管道混合反应器,后端混合器内部有10个岛琦管道混合器混合单元,内径10mm。通过法兰将前端两个静态多孔板式管道混合反应器的出料口与后端静态螺旋片式管道混合反应器的进料口的两个分隔式入口相连接。利用钡液给料装置3和硫酸盐给料装置5控制进入两个静态多孔板式管道混合反应器内钡液和硫酸盐的流速,分别为BaCl 2流速1.5m/s,(NH 4) 2SO 4流速0.5m/s以及BaCl 2流速0.5m/s,(NH 4) 2SO 4流速1.5m/s。流经两个静态多孔板式管道混合反应器的溶液在后端静态螺旋片式管道混合反应器内汇合并继续混合反应。此时,[Ba 2+]:[SO 4 2-]的物质的量比为1:1.1。
将反应得到的硫酸钡悬浊液输入到第一过滤装置中,后续处理与实施例7相同。处理后获得纳米硫酸钡产品,对其进行硫酸钡含量、白度、105℃挥发物含量、产品平均粒径和分散性的测定,见表1。
表1本申请实施例制备得到的硫酸钡产品性质测定结果
项目 例1 例2 例3 例4 例5 例6 例7 例8 例9
BaSO 4含量(干基%) 98.97 98.93 99.32 99.35 99.21 99.21 99.53 99.55 99.58
白度(%) >98.9 >98.9 >98.9 >98.9 >98.9 >98.9 >98.9 >98.9 >98.9
105℃挥发物(%) <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08
产品平均粒径(nm) 63 68 25 29 46 55 78 80 48
分散性
通过上表中的结果可以发现,所有实施例中制备的硫酸钡产品的硫酸钡含量均高于98.9%,白度优于98.9%,105℃挥发物含量低于0.08%,平均粒径在20-100nm,具有纯度高、白度高、分散性好、粒径小的特点,可以满足相对应的应用需求。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (8)

  1. 一种可连续制备纳米硫酸钡的方法,其特征在于,所述方法包括:
    分别在30-90℃下配制0.5mol/L至饱和浓度的水溶性钡溶液及硫酸盐溶液;
    按照[SO 4 2-]:[Ba 2+]的摩尔比为(1~2):1,将所述水溶性钡溶液和硫酸盐溶液分别输入静态管道混合反应器中,并在所述反应器中快速混合反应生成纳米硫酸钡悬浊液;所述静态管道混合反应器包括静态多孔板式管道混合反应器、静态异形板式管道混合反应器、静态螺旋片式管道混合反应器中的任一种或多种组合体;
    使所述硫酸钡悬浊液进行固液分离,并经加水洗涤及过滤且重复2~4次,得到硫酸钡滤饼;
    将所述硫酸钡滤饼加水分散,并调节pH至6.5~7.2,得到中性硫酸钡悬浊液;
    将所述中性硫酸钡悬浊液进行固液分离,然后干燥并粉碎,即得到平均粒径为20-100nm的纳米硫酸钡产品。
  2. 根据权利要求1所述的纳米硫酸钡连续制备方法,其特征在于,所述水溶性钡溶液通过包括硫化钡、氯化钡、硝酸钡、氢氧化钡的任一种水溶性钡化合物配置;所述硫酸盐包括硫酸钠、硫酸铵、硫酸钾、硫酸镁中的任一种或多种混合物;且所述水溶性钡溶液和硫酸盐溶液的混合溶液在所述静态管道混合反应器中的流速为0.1-5m/s。
  3. 根据权利要求1所述的纳米硫酸钡连续制备方法,其特征在于,所述纳米硫酸钡产品中纳米硫酸钡含量高于99%,白度优于98.8%,105℃挥发物含量低于0.08%。
  4. 一种纳米硫酸钡连续制备系统,能够用于实施如权利要求1至3任一项所述的方法,其特征在于,包括静态管道混合反应器(1)、钡液储罐(2)、硫酸盐储罐(6)、钡液给料装置(3)、硫酸盐给料装置(5),以及依次与所述静 态管道混合反应器(1)相连的第一过滤装置(8)、pH调节装置(9)、第二过滤装置(10)和干燥粉碎装置(11);所述静态管道混合反应器(1)包括静态多孔板式管道混合反应器、静态异形板式管道混合反应器、静态螺旋片式管道混合反应器中的任一种或多种组合体。
  5. 根据权利要求4所述的纳米硫酸钡连续制备系统,其特征在于,所述静态管道混合反应器管道内径为5mm-60mm,其内设置有若干混合单元;所述静态管道混合器的耐压值不低于0.2MPa。
  6. 根据权利要求5所述的纳米硫酸钡连续制备系统,其特征在于,所述静态管道混合反应器选用静态多孔板式管道混合反应器,其内的混合单元选用SMV型混合单元和/或BKM型混合单元,且所述混合单元的个数不少于5。
  7. 根据权利要求5所述的纳米硫酸钡连续制备系统,其特征在于,所述静态管道混合反应器选用静态异形板式管道混合反应器,其内的混合单元选用罗斯ISG混合器混合单元,且所述混合单元的个数不少于6。
  8. 根据权利要求5所述的纳米硫酸钡连续制备系统,其特征在于,所述静态管道混合反应器选用静态螺旋片式管道混合反应器,其内的混合单元选用Kenics管道混合器混合单元和/或岛琦管道混合器混合单元,且所述混合单元的个数不少于8。
PCT/CN2022/091902 2021-05-10 2022-05-10 一种纳米硫酸钡连续制备方法及系统 WO2022237758A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110506205.7 2021-05-10
CN202110506205.7A CN113213520A (zh) 2021-05-10 2021-05-10 一种纳米硫酸钡连续制备方法及系统

Publications (1)

Publication Number Publication Date
WO2022237758A1 true WO2022237758A1 (zh) 2022-11-17

Family

ID=77094195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091902 WO2022237758A1 (zh) 2021-05-10 2022-05-10 一种纳米硫酸钡连续制备方法及系统

Country Status (2)

Country Link
CN (1) CN113213520A (zh)
WO (1) WO2022237758A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113213520A (zh) * 2021-05-10 2021-08-06 清华大学 一种纳米硫酸钡连续制备方法及系统
CN116873964B (zh) * 2023-07-07 2024-03-29 武汉工程大学 一种片状硫酸钡及其制备方法和锂离子电池隔膜

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003011760A1 (de) * 2001-07-31 2003-02-13 Sachtleben Chemie Gmbh Verfahren zur fällung schwerlöslicher stoffe, wie z.b. bariumsulfat und fällkapsel
CN1446654A (zh) * 2003-04-29 2003-10-08 南京工业大学 沉淀法连续制备超细纳米粉体工艺及其专用设备
CN101072726A (zh) * 2004-12-09 2007-11-14 默克专利股份有限公司 氧化物类纳米颗粒的制备
CN105329930A (zh) * 2014-08-11 2016-02-17 北京化工大学 一种利用分子混合强化反应器制备纳米硫酸钡的方法
CN113213520A (zh) * 2021-05-10 2021-08-06 清华大学 一种纳米硫酸钡连续制备方法及系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3703377C2 (de) * 1987-02-05 1994-05-19 Metallgesellschaft Ag Verfahren zur Herstellung von ultrafeinem Bariumsulfat durch Fällung
CN101935116B (zh) * 2010-07-22 2011-11-09 北京交通大学 一种难降解有机废水的处理方法、光催化反应器及微孔静态管道混合器
CN102600743A (zh) * 2012-03-27 2012-07-25 甘肃金桥给水排水设计与工程(集团)有限公司 静态管道混合器
CN202606053U (zh) * 2012-05-20 2012-12-19 包头市锦园化工科技有限公司 一种用于稀土沉淀转型的全封闭静态管道连续沉淀系统
CN205527787U (zh) * 2016-04-19 2016-08-31 山阳奥科粉体有限公司 一种用于生产高分散纳米硫酸钡的装置
CN108726554A (zh) * 2018-07-10 2018-11-02 昆明理工大学 一种高效制备颗粒均匀的纳米硫酸钡方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003011760A1 (de) * 2001-07-31 2003-02-13 Sachtleben Chemie Gmbh Verfahren zur fällung schwerlöslicher stoffe, wie z.b. bariumsulfat und fällkapsel
CN1446654A (zh) * 2003-04-29 2003-10-08 南京工业大学 沉淀法连续制备超细纳米粉体工艺及其专用设备
CN101072726A (zh) * 2004-12-09 2007-11-14 默克专利股份有限公司 氧化物类纳米颗粒的制备
CN105329930A (zh) * 2014-08-11 2016-02-17 北京化工大学 一种利用分子混合强化反应器制备纳米硫酸钡的方法
CN113213520A (zh) * 2021-05-10 2021-08-06 清华大学 一种纳米硫酸钡连续制备方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KOCKMANN, N. KASTNER, J. WOIAS, P.: "Reactive particle precipitation in liquid microchannel flow", CHEMICAL ENGENEERING JOURNAL, vol. 135, 23 November 2007 (2007-11-23), AMSTERDAM, NL , pages S110 - S116, XP022360639, ISSN: 1385-8947, DOI: 10.1016/j.cej.2007.07.042 *

Also Published As

Publication number Publication date
CN113213520A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
WO2022237758A1 (zh) 一种纳米硫酸钡连续制备方法及系统
CN108117083B (zh) 一种连续可控制备纳米二氧化硅球形颗粒的方法
CN103275336B (zh) 一种经干燥后易再分散的纤维素晶体的制备方法
CN103468030B (zh) 一种高分散性二氧化硅的制备方法
CN103910367A (zh) 一种制备透明氢氧化镁液相分散体的方法
CN104671265A (zh) 一种制备拟薄水铝石的方法
CN102167386A (zh) 一种制备硫酸钡纳米颗粒的方法
CN107032326A (zh) 一种固相催化制备螺旋状碳纳米管的方法
CN107745133A (zh) 一种纳米铜的低成本绿色制备方法
CN105489330A (zh) 一种壳聚糖基磁性纳米材料的超重力制备方法
CN107128962B (zh) 一种纳米氢氧化镁的制备方法
CN220003968U (zh) 正极材料前驱体的制备系统
CN102120622B (zh) 一种四氧化三铁纳米粒子的制备方法
CN107126953A (zh) 一种铋/非化学计量比奥里维里斯化合物纳米复合材料及其制备方法和应用
CN1112236C (zh) 利用膜反应器合成纳米粒子的方法和设备
CN101235094B (zh) 一种絮凝剂的生产方法,用该方法生产的絮凝剂及应用
CN116603470A (zh) 一种微纳米粉体材料的连续流制备装置及其制备方法
CN109867299B (zh) 一种制备拟薄水铝石的方法
CN102671577B (zh) 无机纳米粒子合成用水热反应装置
CN104030363B (zh) 一种四氧化三铁纳米粒子的制备方法
CN105543975A (zh) 基于羧甲基纤维素钠与氯化钾合成碳酸钙纳米晶须的方法
CN107552808A (zh) 一种纳米镍粉的规模化连续制备装置和方法
CN107243344A (zh) 一种磁性石墨烯的一步合成方法
CN113416433A (zh) 一种非晶态氢氧化铬分散体的制备方法
CN207576414U (zh) 一种高效粘泥剥离剂制备装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22806721

Country of ref document: EP

Kind code of ref document: A1