WO2022237422A1 - 故障救援方法、设备以及系统 - Google Patents

故障救援方法、设备以及系统 Download PDF

Info

Publication number
WO2022237422A1
WO2022237422A1 PCT/CN2022/086105 CN2022086105W WO2022237422A1 WO 2022237422 A1 WO2022237422 A1 WO 2022237422A1 CN 2022086105 W CN2022086105 W CN 2022086105W WO 2022237422 A1 WO2022237422 A1 WO 2022237422A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
rescue
target
faulty
fault
Prior art date
Application number
PCT/CN2022/086105
Other languages
English (en)
French (fr)
Inventor
何家伟
周红霞
李汇祥
Original Assignee
深圳市海柔创新科技有限公司
深圳市库宝软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市海柔创新科技有限公司, 深圳市库宝软件有限公司 filed Critical 深圳市海柔创新科技有限公司
Publication of WO2022237422A1 publication Critical patent/WO2022237422A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/137Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
    • B65G1/1373Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed for fulfilling orders in warehouses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/02Control or detection
    • B65G2203/0266Control or detection relating to the load carrier(s)
    • B65G2203/0275Damage on the load carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/04Detection means

Definitions

  • the present application relates to intelligent storage technology, in particular to a fault rescue method, equipment and system.
  • the task of handling the goods is usually completed by the handling robot. If the handling robot breaks down during the working process, usually only a failure alarm is issued to prompt the relevant personnel to move and overhaul the failed handling robot.
  • the present application provides a fault rescue method, device and system, aiming to provide a solution for quickly rescuing faults that occur during aerial operations.
  • the present application provides a fault rescue method, the method is applied to dispatching equipment, and the method includes:
  • the driving information of at least one handling robot on the aerial guide rail and the fault information of the faulty robot wherein, the fault information includes the identification of the faulty robot and the fault location on the aerial rail; the driving information includes the carrying status, path information and current position Any one or multiple combinations;
  • the target robot includes a handling robot passing the fault location, a handling robot whose distance between the passed location and the fault location is smaller than a first distance threshold, and a handling robot whose distance between the current location and the fault location is smaller than a second distance threshold One or more combinations in the robot.
  • the target robot and the faulty robot are located on the same vertical guide rail, and/or, the target robot is located on the horizontal guide rail in the air.
  • the carrying state of the target robot is an empty state.
  • a rescue instruction is generated according to the fault information and the identification of the target robot, specifically including:
  • a reset command is generated according to the fault information and the target robot's identification, so that the target robot generates a control command for triggering a reset button of the faulty robot according to the reset command.
  • the method further includes:
  • a moving instruction is generated according to the fault information and the identification of the target robot, so that the target robot moves the faulty robot according to the moving instruction.
  • the fault information also includes the carrying status of the faulty robot, and the moving instruction is generated according to the fault information and the target robot's identification, specifically including:
  • the method also includes:
  • the demand quantity when the fault position is the vertical track in the air is greater than the demand quantity when the fault position is the horizontal track in the air;
  • the demand quantity when the faulty robot is in the loaded state is greater than the demanded quantity when the faulty robot is in the unloaded state.
  • the present application provides a fault rescue method, the method is applied to a target robot, and the method includes:
  • the fault information includes the identification of the faulty robot and the fault location on the aerial guide rail;
  • the driving information includes any one or a combination of load status, path information, and current position.
  • rescue the faulty robot according to the rescue instructions including:
  • the reset command is generated according to the fault information and the identification of at least one target robot.
  • the method further includes:
  • the moving instruction is generated according to the failure information and the identification of the target robot when the rescue result message of the faulty robot indicates that the rescue fails.
  • move the faulty robot according to the moving instruction including:
  • the fault location is the vertical guide rail in the air, drive above or below the faulty robot, so that some target robots can rescue above the faulty robot, and another part of the target robots can be rescued below the faulty robot;
  • the present application provides a failure rescue device, including:
  • the obtaining module is used to obtain the driving information of at least one transport robot located on the aerial guide rail and the fault information of the faulty robot; wherein, the fault information includes the identification of the faulty robot and the fault location on the aerial guide rail; the driving information includes the carrying status, path Any one or multiple combinations of information and current location;
  • a processing module configured to determine a target robot for rescue from at least one handling robot according to driving information and fault information
  • a processing module configured to generate a rescue instruction according to the fault information and the identification of the target robot
  • the sending module is used to send a rescue instruction to the target robot, so that the target robot rescues the malfunctioning robot according to the rescue instruction.
  • the present application provides a failure rescue device, including:
  • the receiving module is used to receive the rescue instruction sent by the dispatching device, wherein the rescue instruction is generated according to the fault information and the identification of at least one target robot for rescue, and the target robot is based on the driving of at least one transport robot located on the aerial guide rail Information and fault information are determined from the handling robot;
  • the processing module is used to rescue the faulty robot according to the rescue instruction; wherein, the fault information includes the identification of the faulty robot and the fault position on the aerial guide rail; the driving information includes any one or a combination of load status, path information and current position.
  • the present application provides a scheduling device, which is characterized in that it includes:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the fault rescue method involved in the first aspect and the optional solutions.
  • the present application provides a handling robot, which is characterized in that it includes:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the fault rescue method involved in the second aspect and alternative solutions.
  • the present application provides a robot system, which is characterized by comprising the dispatching device involved in the fifth aspect and the handling robot involved in the sixth aspect.
  • the robot for rescue is selected from the transport robots that are also on the aerial guide rail.
  • Target robot the selected target robot can quickly drive to the fault location because it is relatively close to the faulty robot, rescue the faulty robot, troubleshoot in time, reduce the impact of the faulty robot on other handling robots, and select the target robot according to the path information and current location
  • the target robot can reduce the impact of the target robot's low efficiency in performing tasks due to rescue.
  • FIG. 1 is a schematic diagram of an application scenario of the fault rescue method provided by the present application
  • FIG. 2 is a schematic diagram of another perspective of the application scenario shown in FIG. 1;
  • FIG. 3 is a schematic flowchart of a fault rescue method provided in another embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a fault rescue method provided in another embodiment of the present application.
  • Fig. 5 is a schematic diagram of a failure rescue mode provided by another embodiment of the present application.
  • FIG. 6 is a schematic diagram of another fault rescue method provided by another embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of a failure rescue device provided by another embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a failure rescue device provided by another embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a scheduling device provided by another embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of a handling robot provided by another embodiment of the present application.
  • FIG. 1 is a schematic diagram of an application scenario of the fault rescue method provided by the present application.
  • the fault rescue method provided by the present application is applied to a robot system, wherein the robot system is used to carry goods in a smart storage scenario.
  • the robot system includes a scheduling device 400 and a plurality of transfer robots 300, and the transfer robots 300 are used to transfer goods.
  • the intelligent storage scene can comprise a plurality of racks 100 that are arranged side by side, set up vertical main road 210 (arranged along the transverse direction of shelf) and horizontal main road 220 (arranged along the longitudinal direction of shelf) at the edge of shelf 100 setting area.
  • Direction setting a ground roadway 230 is arranged between the two shelves 100.
  • the vertical main road 210 and the horizontal main road 220 are usually arranged on the outside of the shelf 100, and can be two-way passages, that is, at least two handling robots can pass side by side on the vertical main road 210 or the horizontal main road 220.
  • the ground roadway 230 is arranged between two shelves 100. In order to arrange more shelves 100 in the limited storage space, the width of the ground roadway 230 needs to be set relatively narrow, which is a one-way passage, that is, on the ground roadway 230, only Pass the handling robot one by one in a fixed direction.
  • FIG. 2 is a schematic view of another perspective of the application scene shown in FIG. 1 .
  • an aerial track is provided on the shelf, and the aerial track includes an aerial vertical track 260 and an aerial horizontal track 250 .
  • the aerial vertical guide rails 260 refer to the rails arranged on both sides of the rack 100, and the direction of the rails is along the height direction of the rack.
  • the handling robot crawls on the vertical track in the air to pick and place goods at different heights.
  • the aerial horizontal tracks 250 can also be arranged staggeredly, and the aerial horizontal tracks can be laid along the length direction of the shelf, or can be laid along the width direction of the shelf, thereby forming staggered tracks.
  • the handling robot can move above the rack 100 through the horizontal track 250 in the air, so as to enter different ground lanes 230 and pick and place goods at different positions in each lane.
  • the dispatching device 400 can obtain the fault information of the faulty robot, for example, it can include identification information and fault location, and the dispatching device 400 can also obtain the driving information of the handling robot, for example, it can include any one of the loading status, path information and current position. item or a combination of multiple items.
  • the dispatching device 400 selects the target robot from the transport robots according to the fault information and driving information, and generates a rescue instruction according to the fault information and the identification of the target robot, and the target robot rescues the faulty robot, so as to ensure timely rescue of the robot located on the aerial track. Faulty robots, to prevent faulty robots from affecting the work of other handling robots.
  • the present application provides a fault rescue method
  • the fault rescue method is applied to a robot system
  • the fault rescue method includes the following steps:
  • the dispatching device obtains the driving information of at least one transport robot on the aerial guide rail and the fault information of the faulty robot.
  • the handling robot performs the handling task on the aerial guide rail
  • the driving information of the handling robot includes any one or a combination of carrying status, path information and current position.
  • the loading state of the handling robot is used to indicate whether the handling robot is loaded with a box.
  • the carrying state of the handling robot includes a loaded state and an unloaded state.
  • the loaded state means that the handling robot is loaded with boxes, and the unloaded state means that no boxes are loaded on the handling robot.
  • the fault information of the faulty robot includes the identification of the faulty robot and the fault location on the aerial guide rail. That is to say, the faulty robot breaks down while performing the handling task on the aerial guide rail, and stays on the aerial guide rail. The faulty robot will affect other handling robots to perform the handling task. Compared with the failure on the ground, the timeliness of rescue is higher.
  • the dispatching device selects a target robot for rescue from at least one transport robot according to the driving information and the fault information.
  • the target robot is selected from the handling robot, and the target robot is used to rescue the faulty robot on the aerial guide rail.
  • the target robot When selecting the target robot, it is selected according to the load status of each handling robot, path information, and one or more combined driving information in the current position and the fault information of the faulty robot. If the faulty robot is on the vertical guide rail in the air, the selected target robot needs to be in an unloaded state so that the target robot has sufficient power to rescue the faulty robot. The target robot should also be located near the faulty robot, or the driving path of the target robot will pass the faulty location, etc.
  • the dispatching device generates a rescue instruction according to the fault information and the identification of the target robot.
  • a rescue instruction is generated according to the fault information and the identification of the target robot.
  • the failure information is used to determine the location of the failure and which robot has failed.
  • the identification information of the target robot determines the sender of the rescue command.
  • the dispatching device sends a rescue instruction to the target robot.
  • the dispatching device when it sends a rescue command to the target robot, it can only send the rescue command to the target robot, or can send the rescue command to all the handling robots, and only the target robot corresponding to the identification can parse the rescue command.
  • the target robot rescues the faulty robot according to the rescue instruction.
  • the target robot analyzes the rescue instruction to obtain an analysis result, and rescues the faulty robot according to the analysis result.
  • the target robot for rescue is selected from the transport robots also on the aerial guide rail according to the path information, current position and load state of each transport robot, and the selected Since the target robot is relatively close to the faulty robot, it can quickly drive to the fault location, rescue the faulty robot, troubleshoot in time, reduce the impact of the faulty robot on other handling robots, and select the target robot according to the path information and current position, reducing the number of target robots The impact of inefficiency in mission execution due to rescue operations.
  • the present application provides a fault rescue method, the fault rescue method is applied to a robot system, and the fault rescue method includes the following steps:
  • the dispatching device acquires the driving information of at least one transport robot on the aerial guide rail and the fault information of the faulty robot.
  • the driving information of the handling robot includes any one or a combination of load status, path information and current position.
  • the fault information of the faulty robot includes not only the identification of the faulty robot and the faulty position on the aerial guide rail, but also the carrying status of the faulty robot.
  • the dispatching device selects a target robot for rescue from at least one transport robot according to the driving information and the fault information.
  • the dispatching device when the dispatching device selects the target robot from the transfer robot, it can select the target robot from the following three aspects: first, if the transfer robot will pass the fault location, the transfer robot is used as the target robot. In the second aspect, the distance between the current location of the handling robot and the faulty robot is calculated, and the handling robot whose distance is smaller than the second distance threshold is selected as the target robot. In the third aspect, the distance between the position passed by the transport robot and the fault position is calculated, and when the distance between a certain position passed by the transport robot and the fault position is less than the first distance threshold, the transport robot is selected as the target robot.
  • the fault location is the vertical guide rail in the air
  • the loading state of the selected target robot is an empty state.
  • the vertical guide rail in the air is only along the height direction, and there is no track along the width or length direction of the shelf.
  • the handling robot on the vertical guide rail, and/or, choose the handling robot on the horizontal guide rail in the air, so that the target robot can quickly drive to the fault location and carry out rescue after receiving the rescue instruction.
  • the target robot is usually a handling robot that is relatively close to the faulty robot or whose path passes through the faulty location, the target robot can quickly drive to the faulty location, rescue the faulty robot, eliminate the fault in time, and reduce the impact of the faulty robot on other handling robots.
  • the dispatching device generates a rescue instruction according to the fault information and the identification of the target robot.
  • the dispatching device selects the target robot from the transport robots, it generates a rescue instruction according to the fault information and the identification of the target robot.
  • a rescue instruction is generated according to the fault information and the identification of the target robot, so that the target robot generates a control instruction for triggering a reset button of the faulty robot according to the reset instruction.
  • the dispatching device sends a rescue instruction to the target robot.
  • the target robot rescues the faulty robot according to the rescue instruction.
  • the target robot when the faulty robot is rescued for the first time, the target robot receives the reset instruction sent by the dispatching device, and analyzes the reset instruction to obtain the analysis result. After the analysis result is obtained, a control instruction is generated according to the analysis result.
  • control instruction is used to control the target robot to drive to the fault location, and the reset button of the fault robot is triggered by contacting the base of the target robot with the base of the fault robot, so as to realize the hardware reset of the fault robot.
  • control instruction is used to control the movement of the mechanical arm of the target robot, and the mechanical arm moves to the fault position and then touches the reset button of the faulty robot to realize the hardware reset of the faulty robot.
  • one of the target robots can be selected to reset the hardware of the faulty robot.
  • the target robot closest to the faulty robot is selected for rescue and hardware reset. If the target robot needs to drive to the fault location, and the fault location is a vertical track, select the handling robot that is closest to the faulty robot and is located on the same vertical track in the sky or on the horizontal track in the sky.
  • the dispatching device obtains the rescue result of the faulty robot.
  • the target robot After the target robot carries out hardware reset rescue for the faulty robot, it sends a rescue completion message to the dispatching device. After receiving the message, the dispatching device establishes communication with the faulty robot again, obtains the driving state of the faulty robot, and determines the rescue result of the faulty robot according to the driving state of the faulty robot.
  • the rescue result of the faulty robot is successful. If the driving state of the faulty robot is static, the rescue result of the faulty robot is rescue failure.
  • the dispatching device If the rescue result message indicates that the rescue fails, the dispatching device generates a moving instruction according to the fault information and the identification of the target robot.
  • the second round of rescue adopts the method of moving the car, and the selected target robot will carry out the car moving rescue.
  • the dispatching device If the rescue result message indicates that the rescue failed, the dispatching device generates a moving instruction based on the fault information and the target robot’s identification, so that the target robot will drive to the fault location according to the fault information after receiving the moving command, and determine Rescue the faulty robot to be rescued, that is, push the faulty robot to the temporary storage area.
  • the temporary storage area can be an area set on the horizontal guide rail in the air, or it can be an area where a faulty robot can be parked temporarily, and this area will not affect other handling robots to perform handling tasks.
  • the required number of robots for rescue is determined according to the carrying status and fault location of the faulty robot.
  • the required number when the fault location is a vertical track in the air is greater than that when the fault location is a horizontal track in the air.
  • the demand quantity when the faulty robot is in the loaded state is greater than the demanded quantity when the faulty robot is in the unloaded state.
  • the number of rescue robots required is the largest. If the faulty robot is in an unloaded state and the faulty robot is on the horizontal track in the air, the number of rescue robots required is the minimum.
  • the order of priority from high to low is: the handling robot whose distance between the current position and the fault position is less than the fourth distance threshold, the handling robot passing the fault position, and a certain position passed
  • the distance to the faulty robot is less than a third distance threshold, wherein the third distance threshold is less than or equal to the first distance threshold, and the fourth distance threshold is less than or equal to the second distance threshold.
  • the required number of robots for rescue After obtaining the required number of robots for rescue, if the total number of target robots is less than the required number, all target robots need to carry out rescue, and a rescue robot dedicated to rescue is also required to assist in carrying out the rescue. More specifically, all target robots are selected, and identifications of rescue robots are obtained. Among them, the number of rescue robots and the total number of target robots are equal to the required number. After obtaining the identification of the rescue robot, a moving instruction is generated according to the identification of the target robot, the identification of the rescue robot and the fault information.
  • the dispatching device sends a vehicle moving instruction.
  • the target robot moves the faulty robot according to the vehicle moving instruction.
  • the transport robot that is closest to the faulty robot or the location that passes by is the closest to the faulty robot, and select the transporting robot for rescue from the transporting robots. Influence the handling robot to perform its own tasks, and improve the handling efficiency of the handling robot from these two aspects.
  • the method of resetting the hardware first and then moving the car is used for rescue, which improves the efficiency of rescue.
  • the number of handling robots used for rescue is determined according to the fault location and the load state of the faulty robot, and the handling robot for moving the rescue is determined from the target robots according to the number, so as to ensure the reliability of the rescue process. To prevent reoccurrence of accidents during the rescue process.
  • a failure rescue device which includes:
  • the obtaining module 301 is used to obtain the driving information of at least one transport robot located on the aerial guide rail and the fault information of the faulty robot; wherein, the fault information includes the identification of the faulty robot and the fault location on the aerial rail; the driving information includes loading status, Any one or multiple combinations of path information and current location;
  • a processing module 302 configured to determine a target robot for rescue from at least one handling robot according to driving information and fault information;
  • a processing module 302 configured to generate a rescue instruction according to the fault information and the identification of the target robot
  • the sending module 303 is used to send a rescue instruction to the target robot, so that the target robot rescues the malfunctioning robot according to the rescue instruction.
  • the target robot includes a handling robot passing the fault location, a handling robot whose distance between a passed position and the fault location is smaller than a first distance threshold, and a distance between the current location and the fault location smaller than a second distance threshold
  • a handling robot passing the fault location a handling robot whose distance between a passed position and the fault location is smaller than a first distance threshold
  • a distance between the current location and the fault location smaller than a second distance threshold
  • the target robot and the faulty robot are located on the same vertical guide rail, and/or, the target robot is located on the horizontal guide rail in the air.
  • the carrying state of the target robot is an empty state.
  • processing module 302 is specifically configured to:
  • a reset command is generated according to the fault information and the target robot's identification, so that the target robot generates a control command for triggering a reset button of the faulty robot according to the reset command.
  • processing module 302 is also used for:
  • a moving instruction is generated according to the fault information and the identification of the target robot, so that the target robot moves the faulty robot according to the moving instruction.
  • the fault information also includes the loading state of the faulty robot, and the processing module 302 is specifically used for:
  • processing module 302 is also used for:
  • the demand quantity when the fault position is a vertical track in the air is greater than the demand quantity when the fault position is a horizontal track in the air;
  • the demand quantity when the faulty robot is in the loaded state is greater than the demanded quantity when the faulty robot is in the unloaded state.
  • a failure rescue device which includes:
  • the receiving module 401 is configured to receive the rescue instruction sent by the dispatching device, wherein the rescue instruction is generated according to the fault information and the identification of at least one target robot for rescue, and the target robot is based on the identification of at least one transport robot located on the aerial guide rail.
  • the driving information and fault information are determined from the handling robot;
  • the processing module 402 is used to rescue the faulty robot according to the rescue instruction; wherein, the fault information includes the identification of the faulty robot and the fault position on the aerial guide rail; the driving information includes any one or a combination of load status, path information and current position .
  • processing module 402 is specifically configured to:
  • the reset command is generated according to the fault information and the identification of at least one target robot.
  • the receiving module 401 is also used to receive the moving instruction sent by the dispatching equipment;
  • the processing module 402 is also used to move the faulty robot according to the moving instruction
  • the moving instruction is generated according to the failure information and the identification of the target robot when the rescue result message of the faulty robot indicates that the rescue fails.
  • processing module 402 is specifically configured to:
  • the fault location is the vertical guide rail in the air, drive above or below the faulty robot, so that some target robots can rescue above the faulty robot, and another part of the target robots can be rescued below the faulty robot;
  • a scheduling device including:
  • memory 502 communicatively coupled to at least one processor
  • the memory 502 stores instructions that can be executed by at least one processor 501, and the instructions are executed by at least one processor 501, so that the handling robot executes the failure rescue method as in any one of the above-mentioned embodiments.
  • the memory 502 can be independent or integrated with the processor 501 .
  • a handling robot including:
  • At least one processor 601 At least one processor 601; and
  • memory 602 communicatively coupled to at least one processor
  • the memory 602 stores instructions that can be executed by at least one processor 601, and the instructions are executed by at least one processor 601, so that the handling robot executes the fault rescue method as in any one of the above-mentioned embodiments.
  • the memory 602 can be independent or integrated with the processor 601 .
  • the present application also provides a robot system, including a scheduling device as shown in FIG. 9 and a handling robot as shown in FIG. 10 .
  • An embodiment of the present disclosure further provides a computer-readable storage medium, in which computer-executable instructions are stored, and when the processor executes the computer-executable instructions, various steps in the above method are implemented.
  • This embodiment also provides a program product, where the program product includes a computer program, and the computer program is stored in a readable storage medium. At least one processor of the electronic device can read the computer program from the readable storage medium, and the at least one processor executes the computer program so that the electronic device implements each step in the above method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种故障救援方法、设备以及系统,方法包括:获取位于空中导轨上的至少一个搬运机器人的行驶信息和故障机器人的故障信息;其中,故障信息包括故障机器人的标识和在空中导轨上的故障位置;行驶信息包括承载状态、路径信息和当前位置中任意一项或者多项组合;根据行驶信息和故障信息从至少一个搬运机器人中确定用于救援的目标机器人;根据故障信息和目标机器人的标识生成救援指令,并向目标机器人发送救援指令,使目标机器人根据救援指令救援故障机器人。该方法可实现快速对空中作业中出现的故障进行救援,以提高搬运机器人的工作效率。

Description

故障救援方法、设备以及系统
本申请要求于2021年05月10日提交中国专利局、申请号为202110507788.5、申请名称为“故障救援方法、设备以及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及智能仓储技术,尤其涉及一种故障救援方法、设备以及系统。
背景技术
随着社会贸易的不断发展和科学技术的不断进步,仓储技术也在不断提升,如何更加高效地对搬运机器人进行管理成为热点问题。
在目前的智能仓储系统中,在需要对货物进行搬运时,通常是通过搬运机器人完成货物搬运的任务。若搬运机器人在工作的过程中发生了故障,则通常只是进行故障警报,提示相关人员对发生故障的搬运机器人进行挪移和检修。
但是,对于发生故障的搬运机器人,如果采用上述提醒再进行人工挪移的救援方式,救援效率低下。
发明内容
本申请提供一种故障救援方法、设备以及系统,旨在提供一种可以快速对空中作业中出现的故障进行救援的方案。
第一方面,本申请提供一种故障救援方法,方法应用于调度设备,方法包括:
获取位于空中导轨上的至少一个搬运机器人的行驶信息和故障机器人的故障信息;其中,故障信息包括故障机器人的标识和在空中导轨上的故障位置;行驶信息包括承载状态、路径信息和当前位置中任意一项或者多项组合;
根据行驶信息和故障信息从至少一个搬运机器人中确定用于救援的目标机器人;
根据故障信息和目标机器人的标识生成救援指令,并向目标机器人发送救援指令,使目标机器人根据救援指令救援故障机器人。
可选地,目标机器人包括经过故障位置的搬运机器人、所经过的位置与故障位置之间的距离小于第一距离阈值的搬运机器人、当前位置与故障位置之间的距离小于第二距离阈值的搬运机器人中一种或者多种组合。
可选地,若故障位置为空中垂直导轨,目标机器人与故障机器人位于同一垂直导轨,和/或,目标机器人位于空中水平导轨。
可选地,若故障位置为空中垂直导轨,目标机器人的承载状态为空载状态。
可选地,根据故障信息和目标机器人的标识生成救援指令,具体包括:
根据故障信息和目标机器人的标识生成复位指令,使目标机器人根据复位指令生成用于触发故障机器人的复位按钮的控制指令。
可选地,在向目标机器人发送救援指令之后,方法还包括:
若故障机器人的救援结果消息指示救援失败,根据故障信息和目标机器人的标识生成移车指令,以使目标机器人根据移车指令移动故障机器人。
可选地,故障信息还包括故障机器人的承载状态,根据故障信息和目标机器人的标识生成移车指令,具体包括:
根据故障机器人的承载状态和故障位置确定用于救援的机器人的需求数量;
若目标机器人的总数大于或者等于需求数量,选择部分目标机器人,其中,被选中的目标机器人的数量为需求数量;
根据被选中的目标机器人的标识和故障信息生成移车指令。
可选地,方法还包括:
若目标机器人的总数小于需求数量,选择全部的目标机器人,并获取救援机器人的标识;其中,救援机器人的数量和目标机器人的总数等于需求数量;
根据目标机器人的标识、救援机器人的标识和故障信息生成移车指令。
可选地,故障位置为空中垂直轨道时的需求数量大于故障位置为空中 水平轨道时的需求数量;
故障机器人处于荷载状态时的需求数量大于故障机器人处于空载状态时的需求数量。
第二方面,本申请提供一种故障救援方法,方法应用于目标机器人,方法包括:
接收调度设备发送的救援指令,其中,救援指令是根据故障信息和至少一个用于救援的目标机器人的标识生成的,目标机器人是根据位于空中导轨上的至少一个搬运机器人的行驶信息和故障信息从搬运机器人中确定的;
根据救援指令救援故障机器人;其中,故障信息包括故障机器人的标识和在空中导轨上的故障位置;行驶信息包括承载状态、路径信息和当前位置中任意一项或者多项组合。
可选地,根据救援指令救援故障机器人,具体包括:
根据复位指令生成用于触发故障机器人的复位按钮的控制指令;
其中,复位指令是根据故障信息和至少一个目标机器人的标识生成的。
可选地,在根据救援指令救援故障机器人之后,方法还包括:
接收调度设备发送的移车指令,并根据移车指令移动故障机器人;
其中,移车指令是在故障机器人的救援结果消息指示救援失败时,根据故障信息和目标机器人的标识生成的。
可选地,根据移车指令移动故障机器人,具体包括:
当故障位置为空中垂直导轨时,行驶至故障机器人的上方或者下方,以使一部分目标机器人在故障机器人的上方救援,使另一部分目标机器人在故障机器人的下方救援;
当故障位置为空中水平导轨时,行驶至故障机器人的后方,以所有目标机器人在故障机器人的后方救援。
第三方面,本申请提供一种故障救援装置,包括:
获取模块,用于获取位于空中导轨上的至少一个搬运机器人的行驶信息和故障机器人的故障信息;其中,故障信息包括故障机器人的标识和在空中导轨上的故障位置;行驶信息包括承载状态、路径信息和当前位置中任意一项或者多项组合;
处理模块,用于根据行驶信息和故障信息从至少一个搬运机器人中确定用于救援的目标机器人;
处理模块,用于根据故障信息和目标机器人的标识生成救援指令;
发送模块,用于并向目标机器人发送救援指令,使目标机器人根据救援指令救援故障机器人。
第四方面,本申请提供一种故障救援装置,包括:
接收模块,用于接收调度设备发送的救援指令,其中,救援指令是根据故障信息和至少一个用于救援的目标机器人的标识生成的,目标机器人是根据位于空中导轨上的至少一个搬运机器人的行驶信息和故障信息从搬运机器人中确定的;
处理模块,用于根据救援指令救援故障机器人;其中,故障信息包括故障机器人的标识和在空中导轨上的故障位置;行驶信息包括承载状态、路径信息和当前位置中任意一项或者多项组合。
第五方面,本申请提供一种调度设备,其特征在于,包括:
存储器;用于存储处理器可执行指令的存储器;
处理器被配置执行第一方面以及可选方案所涉及的故障救援方法。
第六方面,本申请提供一种搬运机器人,其特征在于,包括:
存储器;用于存储处理器可执行指令的存储器;
处理器被配置执行第二方面以及可选方案所涉及的故障救援方法。
第七方面,本申请提供一种机器人系统,其特征在于,包括第五方面所涉及的调度设备和第六方面所涉及的搬运机器人。
本申请提供的故障救援方法、设备以及系统,当故障机器人在空中导轨上故障时,根据各个搬运机器人的路径信息、当前位置和荷载状态从也处于空中导轨上的搬运机器人中选择用于救援的目标机器人,所选择的目标机器人由于距离故障机器人比较近,可以快速行驶至故障位置,对故障机器人进行救援,及时排除故障,减少故障机器人对其他搬运机器人的影响,且根据路径信息和当前位置选择目标机器人,减少目标机器人由于开展救援而导致执行任务效率低的影响。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
图1为本申请提供的故障救援方法的应用场景示意图;
图2为图1所示的应用场景的另一视角示意图;
图3为本申请另一实施例提供的故障救援方法的流程示意图;
图4为本申请另一实施例提供的故障救援方法的流程示意图;
图5为本申请另一实施例提供的一种故障救援方式的示意图;
图6为本申请另一实施例提供的另一种故障救援方式的示意图;
图7为本申请另一实施例提供的故障救援装置的结构示意图;
图8为本申请另一实施例提供的故障救援装置的结构示意图;
图9为本申请另一实施例提供的调度设备的结构示意图;
图10为本申请另一实施例提供的搬运机器人的结构示意图。
通过上述附图,已示出本申请明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
图1为本申请提供的故障救援方法的应用场景示意图。如图1所示,本申请提供的故障救援方法应用于机器人系统,其中,该机器人系统用于在智能仓储场景中对货物进行搬运。该机器人系统包括调度设备400以及多个搬运机器人300,搬运机器人300用于对货物进行搬运。
而在该智能仓储场景中,可以包括多个并排设置的货架100,在货架100所设置区域的边缘设置竖向干道210(沿货架的横向方向设置)以及横向干道220(沿货架的纵向排布方向设置),而在两个货架100之间设置有地面巷道230。值得说明的,竖向干道210与横向干道220通常是设 置在货架100的外侧,可以为双向通道,即在竖向干道210或横向干道220上可以至少并排通过两个搬运机器人。而地面巷道230设置在两个货架100之间,为了在有限的仓储空间内设置更多的货架100,地面巷道230的宽度需要设置较为狭窄,为单向通道,即在地面巷道230上只能向固定一个方向逐个通过搬运机器人。
图2为图1所示的应用场景的另一视角示意图。如图2所示,为了能够进一步提高搬运机器人的活动灵活性,在货架上设置有空中轨道,空中轨道包括空中垂直轨道260和空中水平轨道250。空中垂直导轨260是指设置在货架100的两侧的轨道,轨道方向沿着货架高度方向。搬运机器人在空中垂直轨道上爬行,以对不同高度上的库位进行取放货。在货架100的顶部还可以交错设置空中水平轨道250,空中水平轨道可以是沿着货架的长度方向铺设,也可以沿着货架的宽度方向铺设,进而形成交错设置的轨道。搬运机器人可以通过空中水平轨道250在货架100的上方进行移动,从而进入不同地面巷道230以及在每个巷道内不同位置上库位取放货。
而在搬运机器人在智能仓储场景中搬运物体时,为了使搬运机器人在空中轨道上发生故障时,能够进行救援,还需要将各个搬运机器人与调度设备400建立通信连接。其中,调度设备400可以获取故障机器人的故障信息,例如,可以包括标识信息和故障位置,调度设备400还可以获取搬运机器人的行驶信息,例如:可以包括承载状态、路径信息和当前位置中任意一项或者多项组合。从而使得调度设备400根据故障信息和行驶信息从搬运机器人中选择目标机器人,并根据故障信息和目标机器人的标识生成救援指令,由目标机器人对故障机器人进行救援,以保证及时救援位于空中轨道上的故障机器人,避免故障机器人影响其他搬运机器人工作。
如图3所示,本申请提供一种故障救援方法,该故障救援方法应用于机器人系统,该故障救援方法包括如下步骤:
S101、调度设备获取位于空中导轨上的至少一个搬运机器人的行驶信息和故障机器人的故障信息。
其中,搬运机器人在空中导轨上执行搬运任务,搬运机器人的行驶信息包括承载状态、路径信息和当前位置中任意一项或者多项组合。搬运机 器人的承载状态用于指示搬运机器人是否装载有货箱。搬运机器人的承载状态包括荷载状态和空载状态。荷载状态是指搬运机器人上装载货箱,空载状态是指搬运机器人上没有装载货箱。
故障机器人的故障信息包括故障机器人的标识和在空中导轨上的故障位置。也就是故障机器人是在空中导轨上执行搬运任务时而出现故障,滞留在空中导轨上,故障机器人会影响到其他搬运机器人执行搬运任务,相较于在地面发生故障,对救援时效性要求更高。
S102、调度设备根据行驶信息和故障信息从至少一个搬运机器人中选择用于救援的目标机器人。
其中,当故障机器人在空中导轨上发生故障后,从搬运机器人中选择目标机器人,该目标机器人用于在空中导轨上救援故障机器人。
在选择目标机器人时,根据每个搬运机器人的荷载状态、路径信息以及当前位置中一项或多项组合的行驶信息和故障机器人的故障信息选择。若故障机器人位于空中垂直导轨上,所选择的目标机器人需要处于空载状态,以使目标机器人有充足功率救援故障机器人。目标机器人也应该是位于故障机器人附近,或者目标机器人的行驶路径会经过故障位置等。
S103、调度设备根据故障信息和目标机器人的标识生成救援指令。
其中,在从搬运机器人中选中目标机器人后,根据故障信息和目标机器人的标识生成救援指令。故障信息用于确定故障位置和发生故障的机器人。目标机器人的标识信息确定救援指令的发送对象。
S104、调度设备向目标机器人发送救援指令。
其中,调度设备在向目标机器人发送救援指令时,可以仅向目标机器人发送救援指令,也可以向所有搬运机器人发送救援指令,只有标识对应的目标机器人可以解析该救援指令。
S105、目标机器人根据救援指令救援故障机器人。
其中,目标机器人在获得救援指令后,对救援指令进行解析获得解析结果,并根据解析结果救援故障机器人。
在上述技术方案中,当故障机器人在空中导轨上故障时,根据各个搬运机器人的路径信息、当前位置和荷载状态从也处于空中导轨上的搬运机器人中选择用于救援的目标机器人,所选择的目标机器人由于距离故障机 器人比较近,可以快速行驶至故障位置,对故障机器人进行救援,及时排除故障,减少故障机器人对其他搬运机器人的影响,且根据路径信息和当前位置选择目标机器人,减少目标机器人由于开展救援而导致执行任务效率低的影响。
如图4所示,本申请提供一种故障救援方法,该故障救援方法应用于机器人系统,该故障救援方法包括如下步骤:
S201、调度设备获取位于空中导轨上的至少一个搬运机器人的行驶信息和故障机器人的故障信息。
其中,搬运机器人的行驶信息包括承载状态、路径信息和当前位置中任意一项或者多项组合。故障机器人的故障信息除了包括故障机器人的标识和在空中导轨上的故障位置之外,还包括故障机器人的承载状态。
S202、调度设备根据行驶信息和故障信息从至少一个搬运机器人中选择用于救援的目标机器人。
其中,调度设备在从搬运机器人中选择目标机器人时,可以从以下三个方面选择目标机器人:第一方面,若搬运机器人会经过该故障位置,则将该搬运机器人作为目标机器人。第二方面,计算搬运机器人当前所在位置和故障机器人之间的距离,并选择距离小于第二距离阈值的搬运机器人为目标机器人。第三方面,计算搬运机器人所经过的位置和故障位置之间的距离,当搬运机器人所经过的某个位置和故障位置之间的距离小于第一距离阈值时,选择该搬运机器人为目标机器人。
此处还需要说明的是,当故障位置为空中垂直导轨时,容易出现摔落风险,所选择的目标机器人的承载状态为空载状态。并且,空中垂直导轨只有沿高度方向,而没有设置沿货架宽度或者长度方向的轨道,在故障位置为空中垂直导轨时,目标机器人在按照上面三个方面选择的基础上,进一步选择故障机器人位于同一垂直导轨的搬运机器人,和/或,选择位于空中水平导轨上的搬运机器人,以使目标机器人在接收到救援指令后,可以快速行驶至故障位置,开展救援。
由于目标机器人通常是距离故障机器人比较近或者路径会经过故障位置的搬运机器人,目标机器人可以快速行驶至故障位置,对故障机器人 实施救援,以及时排除故障,减少故障机器人对其他搬运机器人的影响。
S203、调度设备根据故障信息和目标机器人的标识生成救援指令。
其中,在调度设备从搬运机器人中选择目标机器人后,根据故障信息和目标机器人的标识生成救援指令。在对故障机器人进行首次救援时,通过硬件复位方式救援。更具体地,根据故障信息和目标机器人的标识生成复位指令,使目标机器人根据复位指令生成用于触发故障机器人的复位按钮的控制指令。
S204、调度设备向目标机器人发送救援指令。
S205、目标机器人根据救援指令救援故障机器人。
其中,在对故障机器人进行首次救援时,目标机器人接收调度设备发送的复位指令,并对复位指令进行解析获得解析结果。在获得解析结果后,根据解析结果生成控制指令。
在一种实施例中,控制指令用于控制目标机器人行驶至故障位置,通过目标机器人的底座与故障机器人的底座相互接触而触发故障机器人的复位按钮,以实现对故障机器人进行硬件复位。
在一种实施例中,控制指令用于控制目标机器人的机械臂移动,由机械臂移动至故障位置后触碰故障机器人的复位按钮,实现对故障机器人进行硬件复位。
此处需要说明的是,可选择其中一个目标机器人对故障机器人进行硬件复位。在一实施例中,选择距离故障机器人最近的目标机器人展开救援,进行硬件复位。若目标机器人需要行驶至故障位置时,且故障位置为垂直轨道时,选择距离故障机器人最近且位于同一空中垂直轨道或者位于空中水平轨道上的搬运机器人。
S206、调度设备获取故障机器人的救援结果。
其中,在目标机器人对故障机器人开展硬件复位救援后,向调度设备发送救援完成的消息。在接收到该消息后,调度设备再次与故障机器人建立通信,并获取故障机器人的行驶状态,根据故障机器人的行驶状态确定故障机器人的救援结果。
若故障机器人的行驶状态为正在行驶,则故障机器人的救援结果为救援成功。若故障机器人的行驶状态为静止,则故障机器人的救援结果为救 援失败。
S207、若救援结果消息指示救援失败,调度设备根据故障信息和目标机器人的标识生成移车指令。
其中,在首次救援失败后,需要对故障机器人开展第二轮救援。第二轮救援采用移车方式,并由选中的目标机器人开展移车救援。
若救援结果消息指示救援失败,调度设备根据故障信息和目标机器人的标识生成移车指令,以使目标机器人在接收移车指令后,根据故障信息行驶至故障位置,并根据故障机器人的标识信息确定待救援的故障机器人,对该故障机器人开展救援,也就是将该故障机器人推至暂存区。
暂存区可以是在空中水平导轨上设置的一块区域,也可以是临时可以停靠故障机器人的区域,该区域不会影响其他搬运机器人执行搬运任务。
更具体地,在生成移车指令时,根据故障机器人的承载状态和故障位置确定用于救援的机器人的需求数量。其中,在确定用于救援的机器人的需求数量时,遵循如下规律:故障位置为空中垂直轨道时的需求数量大于故障位置为空中水平轨道时的需求数量。故障机器人处于荷载状态时的需求数量大于故障机器人处于空载状态时的需求数量。
也就是说,若故障机器人处于荷载状态且故障机器人位于空中垂直轨道上,所需要的用于救援的机器人的数量最大。若故障机器人处于空载状态且故障机器人位于空中水平轨道上,所需要的用于救援的机器人的数量最小。
在获得用于救援的机器人的需求数量后,若目标机器人的总数达到需求数量,则从目标机器人中选择一部分,所选择的目标机器人的数量为需求数量,并根据所选择的目标机器人的标识和故障信息生成移车指令。由被选择的那一部分目标机器人开展救援。
在选择一部分目标机器人用于救援时,优选级从高到低依次为:当前位置和故障位置之间的距离小于第四距离阈值的搬运机器人,经过故障位置的搬运机器人,以及经过的某个位置与故障机器人之间的距离小于第三距离阈值,其中,第三距离阈值小于或等于第一距离阈值,第四距离阈值小于或等于第二距离阈值。
在获得用于救援的机器人的需求数量后,若目标机器人的总数小于需 求数量,则所有目标机器人需要去开展救援,还需要专职于救援的救援机器人协助开展救援。更具体地,选择全部的目标机器人,并获取救援机器人的标识。其中,救援机器人的数量和目标机器人的总数等于需求数量。在获取救援机器人的标识后,根据目标机器人的标识、救援机器人的标识和故障信息生成移车指令。
S208、调度设备发送移车指令。
S209、目标机器人根据移车指令移动故障机器人。
其中,如图5所示,当故障位置为空中垂直导轨时,目标机器人行驶至故障机器人的上方或者下方,以使一部分目标机器人在故障机器人的上方救援,使另一部分目标机器人在故障机器人的下方救援。如图6所示,当故障位置为空中水平导轨时,行驶至故障机器人的后方,以所有目标机器人在故障机器人的后方救援。
在上述技术方案中,选择距离故障机器人最近或者所经过的位置距离故障机器人最近从搬运机器人中选择用于救援的搬运机器人,该搬运机器人可以迅速行驶至故障位置,开展故障救援,并且也不会影响搬运机器人执行自身任务,从这两个方面提升搬运机器人的搬运效率。另外,采用先硬件复位后移车的方式进行救援,提升救援效率。在进行移车方式救援时,根据故障位置和故障机器人的荷载状态确定用于救援的搬运机器人的数量,根据该数量从目标机器人中确定开展移车救援的搬运机器人,以保证救援过程中的可靠性,防止救援过程中再次出现事故。
如图7所示,本申请另一实施例提供一种故障救援装置,该故障救援装置包括:
获取模块301,用于获取位于空中导轨上的至少一个搬运机器人的行驶信息和故障机器人的故障信息;其中,故障信息包括故障机器人的标识和在空中导轨上的故障位置;行驶信息包括承载状态、路径信息和当前位置中任意一项或者多项组合;
处理模块302,用于根据行驶信息和故障信息从至少一个搬运机器人中确定用于救援的目标机器人;
处理模块302,用于根据故障信息和目标机器人的标识生成救援指令;
发送模块303,用于并向目标机器人发送救援指令,使目标机器人根据 救援指令救援故障机器人。
可选地,目标机器人包括经过故障位置的搬运机器人、所经过的某个位置与故障位置之间的距离小于第一距离阈值的搬运机器人、当前位置与故障位置之间的距离小于第二距离阈值的搬运机器人中一种或者多种组合。
可选地,若故障位置为空中垂直导轨,目标机器人与故障机器人位于同一垂直导轨,和/或,目标机器人位于空中水平导轨。
可选地,若故障位置为空中垂直导轨,目标机器人的承载状态为空载状态。
可选地,处理模块302具体用于:
根据故障信息和目标机器人的标识生成复位指令,使目标机器人根据复位指令生成用于触发故障机器人的复位按钮的控制指令。
可选地,处理模块302还用于:
若故障机器人的救援结果消息指示救援失败,根据故障信息和目标机器人的标识生成移车指令,以使目标机器人根据移车指令移动故障机器人。
可选地,故障信息还包括故障机器人的承载状态,处理模块302具体用于:
根据故障机器人的承载状态和故障位置确定用于救援的机器人的需求数量;
若目标机器人的总数大于或者等于需求数量,选择部分目标机器人,其中,被选中的目标机器人的数量为需求数量;
根据被选中的目标机器人的标识和故障信息生成移车指令。
可选地,处理模块302还用于:
若目标机器人的总数小于需求数量,选择全部的目标机器人,并获取救援机器人的标识;其中,救援机器人的数量和目标机器人的总数等于需求数量;
根据目标机器人的标识、救援机器人的标识和故障信息生成移车指令。
可选地,故障位置为空中垂直轨道时的需求数量大于故障位置为空中水平轨道时的需求数量;
故障机器人处于荷载状态时的需求数量大于故障机器人处于空载状态时的需求数量。
如图8所示,本申请另一实施例提供一种故障救援装置,该故障救援装置包括:
接收模块401,用于接收调度设备发送的救援指令,其中,救援指令是根据故障信息和至少一个用于救援的目标机器人的标识生成的,目标机器人是根据位于空中导轨上的至少一个搬运机器人的行驶信息和故障信息从搬运机器人中确定的;
处理模块402,用于根据救援指令救援故障机器人;其中,故障信息包括故障机器人的标识和在空中导轨上的故障位置;行驶信息包括承载状态、路径信息和当前位置中任意一项或者多项组合。
可选地,处理模块402具体用于:
根据复位指令生成用于触发故障机器人的复位按钮的控制指令;
其中,复位指令是根据故障信息和至少一个目标机器人的标识生成的。
可选地,接收模块401还用于接收调度设备发送的移车指令;
处理模块402还用于根据移车指令移动故障机器人;
其中,移车指令是在故障机器人的救援结果消息指示救援失败时,根据故障信息和目标机器人的标识生成的。
可选地,处理模块402具体用于:
当故障位置为空中垂直导轨时,行驶至故障机器人的上方或者下方,以使一部分目标机器人在故障机器人的上方救援,使另一部分目标机器人在故障机器人的下方救援;
当故障位置为空中水平导轨时,行驶至故障机器人的后方,以所有目标机器人在故障机器人的后方救援。
如图9所示,本申请另一实施例提供一种调度设备包括:
至少一个处理器501;以及
与至少一个处理器通信连接的存储器502;
其中,存储器502存储有可被至少一个处理器501执行的指令,指令被至少一个处理器501执行,以使搬运机器人执行如上述任一实施例的故障救援方法。
可选地,存储器502既可以是独立的,也可以跟处理器501集成在一起。
本实施例提供的调度设备的实现原理和技术效果可以参见前述各实 施例,此处不再赘述。
如图10所示,本申请另一实施例提供一种搬运机器人包括:
至少一个处理器601;以及
与至少一个处理器通信连接的存储器602;
其中,存储器602存储有可被至少一个处理器601执行的指令,指令被至少一个处理器601执行,以使搬运机器人执行如上述任一实施例的故障救援方法。
可选地,存储器602既可以是独立的,也可以跟处理器601集成在一起。
本实施例提供的调度设备的实现原理和技术效果可以参见前述各实施例,此处不再赘述。
此外,本申请还提供一种机器人系统,包括如图9中所示的调度设备以及如图10中所示的搬运机器人。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机执行指令,当处理器执行计算机执行指令时,实现如上述方法中的各个步骤。
本实施例还提供一种程序产品,该程序产品包括计算机程序,该计算机程序存储在可读存储介质中。电子设备的至少一个处理器可以从可读存储介质读取该计算机程序,至少一个处理器执行该计算机程序使得电子设备实施上述方法中的各个步骤。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求书指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求书来限制。

Claims (16)

  1. 一种故障救援方法,其特征在于,所述方法应用于调度设备,所述方法包括:
    获取位于空中导轨上的至少一个搬运机器人的行驶信息和故障机器人的故障信息;其中,所述故障信息包括故障机器人的标识和在所述空中导轨上的故障位置;所述行驶信息包括承载状态、路径信息和当前位置中任意一项或者多项组合;
    根据所述行驶信息和所述故障信息从所述至少一个搬运机器人中选择用于救援的目标机器人;
    根据所述故障信息和所述目标机器人的标识生成救援指令,并向所述目标机器人发送所述救援指令,使所述目标机器人根据所述救援指令救援所述故障机器人。
  2. 根据权利要求1所述的方法,其特征在于,所述目标机器人包括经过所述故障位置的搬运机器人、所经过的位置与所述故障位置之间的距离小于第一距离阈值的搬运机器人、当前位置与所述故障位置之间的距离小于第二距离阈值的搬运机器人中一种或者多种组合。
  3. 根据权利要求2所述的方法,其特征在于:
    若所述故障位置为空中垂直导轨,所述目标机器人与所述故障机器人位于同一垂直导轨,和/或,所述目标机器人位于空中水平导轨。
  4. 根据权利要求3所述的方法,其特征在于:
    若所述故障位置为空中垂直导轨,所述目标机器人的承载状态为空载状态。
  5. 根据权利要求1至4中任意一项所述的方法,其特征在于,根据所述故障信息和所述目标机器人的标识生成救援指令,具体包括:
    根据所述故障信息和所述目标机器人的标识生成复位指令,使所述目标机器人根据所述复位指令生成用于触发所述故障机器人的复位按钮的控制指令。
  6. 根据权利要求5所述的方法,其特征在于,在向所述目标机器人发送所述救援指令之后,所述方法还包括:
    若所述故障机器人的救援结果消息指示救援失败,根据所述故障信息 和所述目标机器人的标识生成移车指令,以使所述目标机器人根据所述移车指令移动所述故障机器人。
  7. 根据权利要求6所述的方法,其特征在于,所述故障信息还包括所述故障机器人的承载状态,根据所述故障信息和所述目标机器人的标识生成移车指令,具体包括:
    根据所述故障机器人的承载状态和所述故障位置确定用于救援的机器人的需求数量;
    若所述目标机器人的总数大于或者等于所述需求数量,选择部分目标机器人,其中,被选中的目标机器人的数量为所述需求数量;
    根据所述被选中的目标机器人的标识和所述故障信息生成所述移车指令。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    若所述目标机器人的总数小于所述需求数量,选择全部的目标机器人,并获取救援机器人的标识;其中,所述救援机器人的数量和所述目标机器人的总数等于所述需求数量;
    根据所述目标机器人的标识、所述救援机器人的标识和所述故障信息生成所述移车指令。
  9. 根据权利要求7所述的方法,其特征在于:
    所述故障位置为空中垂直轨道时的需求数量大于所述故障位置为空中水平轨道时的需求数量;
    所述故障机器人处于荷载状态时的需求数量大于所述故障机器人处于空载状态时的需求数量。
  10. 一种故障救援方法,其特征在于,所述方法应用于搬运机器人,所述方法包括:
    接收调度设备发送的救援指令,其中,所述救援指令是根据故障信息和至少一个用于救援的目标机器人的标识生成的,所述目标机器人是根据位于空中导轨上的至少一个搬运机器人的行驶信息和故障信息从所述搬运机器人中确定的;
    根据所述救援指令救援所述故障机器人;其中,所述故障信息包括故障机器人的标识和在空中导轨上的故障位置;所述行驶信息包括承载状态、 路径信息和当前位置中任意一项或者多项组合。
  11. 根据权利要求10所述的方法,其特征在于,根据所述救援指令救援所述故障机器人,具体包括:
    根据复位指令生成用于触发所述故障机器人的复位按钮的控制指令;
    其中,所述复位指令是根据所述故障信息和所述至少一个目标机器人的标识生成的。
  12. 根据权利要求11所述的方法,其特征在于,在根据所述救援指令救援所述故障机器人之后,所述方法还包括:
    接收所述调度设备发送的移车指令,并根据所述移车指令移动所述故障机器人;
    其中,所述移车指令是在所述故障机器人的救援结果消息指示救援失败时,根据所述故障信息和所述目标机器人的标识生成的。
  13. 根据权利要求12所述的方法,其特征在于,根据所述移车指令移动所述故障机器人,具体包括:
    当所述故障位置为空中垂直导轨时,行驶至所述故障机器人的上方或者下方,以使一部分目标机器人在所述故障机器人的上方救援,使另一部分目标机器人在所述故障机器人的下方救援;
    当所述故障位置为空中水平导轨时,行驶至所述故障机器人的后方,以所有目标机器人在所述故障机器人的后方救援。
  14. 一种调度设备,其特征在于,包括:
    存储器;用于存储处理器可执行指令的存储器;
    处理器被配置执行权利要求1至9中任意一项所述的故障救援方法。
  15. 一种搬运机器人,其特征在于,包括:
    存储器;用于存储处理器可执行指令的存储器;
    处理器被配置执行权利要求10至13中任意一项所述的故障救援方法。
  16. 一种机器人系统,其特征在于,包括如权利要求14所述的调度设备和如权利要求15所述的搬运机器人。
PCT/CN2022/086105 2021-05-10 2022-04-11 故障救援方法、设备以及系统 WO2022237422A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110507788.5 2021-05-10
CN202110507788.5A CN113213052A (zh) 2021-05-10 2021-05-10 故障救援方法、设备以及系统

Publications (1)

Publication Number Publication Date
WO2022237422A1 true WO2022237422A1 (zh) 2022-11-17

Family

ID=77094378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086105 WO2022237422A1 (zh) 2021-05-10 2022-04-11 故障救援方法、设备以及系统

Country Status (3)

Country Link
CN (1) CN113213052A (zh)
TW (1) TWI839713B (zh)
WO (1) WO2022237422A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113213052A (zh) * 2021-05-10 2021-08-06 深圳市海柔创新科技有限公司 故障救援方法、设备以及系统
CN113687642B (zh) * 2021-08-13 2023-08-22 合肥维天运通信息科技股份有限公司 一种物流车辆隐患智能预警方法及系统
CN114298621A (zh) * 2021-12-02 2022-04-08 张家港华达码头有限公司 自动化码头用转运小车的调度方法以及系统
CN115619203B (zh) * 2022-12-20 2023-03-10 中汽研汽车工业工程(天津)有限公司 一种汽车总装车间agv运行监管方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102695994A (zh) * 2009-11-13 2012-09-26 特勒捷特通讯公司 具有牵引车和拖车的储存系统
CN104891135A (zh) * 2015-05-22 2015-09-09 广运机电(苏州)有限公司 穿梭车安全系统
CN109748022A (zh) * 2017-11-03 2019-05-14 北京京东尚科信息技术有限公司 穿梭车货架系统及其控制方法
CN109877831A (zh) * 2019-02-27 2019-06-14 广州高新兴机器人有限公司 多机器人的自主故障救援方法、装置及计算机存储介质
CN110271827A (zh) * 2018-03-13 2019-09-24 深圳市三维通机器人系统有限公司 轨道智能分拣系统
WO2019238662A1 (en) * 2018-06-12 2019-12-19 Autostore Technology AS Method for handling malfunctioning vehicles on a rail system and a storage and retrieval system using such a method
CN112374066A (zh) * 2020-11-27 2021-02-19 苏州倍力杰自动化技术有限公司 一种自动挂接的穿梭车的救援机构及其救援方法
CN113213052A (zh) * 2021-05-10 2021-08-06 深圳市海柔创新科技有限公司 故障救援方法、设备以及系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5282457B2 (ja) * 2008-06-23 2013-09-04 富士通株式会社 救援ロボットシステム、救援方法及び救援ロボット
CN203497523U (zh) * 2013-08-23 2014-03-26 南京苏星冶金科技有限公司 一种穿梭车救援快速连接与断开机构
HU230618B1 (hu) * 2014-04-07 2017-04-28 Antal Zombori Raktári árukezelő rendszer és rakodó-berendezés raktári árukezelő rendszerhez
CN204150532U (zh) * 2014-08-21 2015-02-11 苏州倍力杰自动化技术有限公司 一种用于仓储货架遥控穿梭车的救援机构及救援车
JP6733138B2 (ja) * 2015-08-11 2020-07-29 中西金属工業株式会社 自走式搬送台車を用いた保管設備
CN108706265A (zh) * 2018-06-11 2018-10-26 江苏高科物流科技股份有限公司 一种穿梭车式自动化仓储及穿梭车
CN112262090B (zh) * 2018-06-12 2022-11-08 自动存储科技股份有限公司 具有容器车辆和充电系统的自动储存系统
US11866256B2 (en) * 2018-09-14 2024-01-09 Walmart Apollo, Llc Climbing robot with compliant pinion drive
CN111844024A (zh) * 2020-06-30 2020-10-30 深圳优地科技有限公司 机器人故障处理方法、装置、智能设备和存储介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102695994A (zh) * 2009-11-13 2012-09-26 特勒捷特通讯公司 具有牵引车和拖车的储存系统
CN104891135A (zh) * 2015-05-22 2015-09-09 广运机电(苏州)有限公司 穿梭车安全系统
CN109748022A (zh) * 2017-11-03 2019-05-14 北京京东尚科信息技术有限公司 穿梭车货架系统及其控制方法
CN110271827A (zh) * 2018-03-13 2019-09-24 深圳市三维通机器人系统有限公司 轨道智能分拣系统
WO2019238662A1 (en) * 2018-06-12 2019-12-19 Autostore Technology AS Method for handling malfunctioning vehicles on a rail system and a storage and retrieval system using such a method
CN109877831A (zh) * 2019-02-27 2019-06-14 广州高新兴机器人有限公司 多机器人的自主故障救援方法、装置及计算机存储介质
CN112374066A (zh) * 2020-11-27 2021-02-19 苏州倍力杰自动化技术有限公司 一种自动挂接的穿梭车的救援机构及其救援方法
CN113213052A (zh) * 2021-05-10 2021-08-06 深圳市海柔创新科技有限公司 故障救援方法、设备以及系统

Also Published As

Publication number Publication date
TW202308918A (zh) 2023-03-01
TWI839713B (zh) 2024-04-21
CN113213052A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
WO2022237422A1 (zh) 故障救援方法、设备以及系统
CN111361908B (zh) 仓储装置、系统、控制方法
CN105319988B (zh) 一种针对多层穿梭车存取系统的仿真系统及方法
JP6924804B2 (ja) ピッキングスケジューリング方法、装置、保管システム及び可読記憶媒体
CN109987369A (zh) 仓储物品的调度系统及方法
EP3512785B1 (en) Integrated obstacle detection and payload centering sensor system
JP6763809B2 (ja) 経路決定装置、経路決定方法及び経路決定プログラム
US8851818B2 (en) Automatic warehouse and control method thereof
KR20220010737A (ko) 자동화 보관 시스템에 보관된 상품의 주문을 준비하기 위한 방법 및 제어 시스템
JP2018199562A (ja) 運行管理システム及び運行管理方法
US20110081222A1 (en) Multi-track handling and storage apparatus and method thereof
JP2020190915A (ja) 走行決定方法、コントローラ、及び当該コントローラを備える走行システム
WO2022237434A1 (zh) 故障救援方法、设备、机器人以及系统
KR20220043130A (ko) 보관 시설에서 운송 차량의 이동을 동기화하기 위한 방법 및 시스템
CN209853079U (zh) 运输系统
JP6384613B2 (ja) 搬送制御装置及び搬送制御システム
JP2023525729A (ja) 在庫システム及び方法
JP2003285906A (ja) 搬送システム
CN115629587B (zh) 轨道搬运小车的调度方法及装置
JP2003292116A (ja) 搬送システム
US20190322453A1 (en) Storage and retrieval system
WO2021136407A1 (zh) 一种货物处理系统及货物处理的方法
JP2013151348A (ja) 搬送車システム
KR20230034394A (ko) 수송 디바이스용 제어기 및 방법
WO2019114620A1 (zh) 移动装置导航方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22806392

Country of ref document: EP

Kind code of ref document: A1