WO2022230566A1 - 接合体、基板、接合体の製造方法、及び、基板の製造方法 - Google Patents

接合体、基板、接合体の製造方法、及び、基板の製造方法 Download PDF

Info

Publication number
WO2022230566A1
WO2022230566A1 PCT/JP2022/015680 JP2022015680W WO2022230566A1 WO 2022230566 A1 WO2022230566 A1 WO 2022230566A1 JP 2022015680 W JP2022015680 W JP 2022015680W WO 2022230566 A1 WO2022230566 A1 WO 2022230566A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
metal
joined body
substrate
thickness
Prior art date
Application number
PCT/JP2022/015680
Other languages
English (en)
French (fr)
Inventor
圭介 長藤
航大 青野
悠介 蛯原
政之 中尾
有希 上田
晋吾 奥野
洋和 小森
昭佳 山内
洋介 岸川
Original Assignee
国立大学法人 東京大学
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学, ダイキン工業株式会社 filed Critical 国立大学法人 東京大学
Priority to KR1020237036884A priority Critical patent/KR20230162669A/ko
Priority to CN202280030581.6A priority patent/CN117203051A/zh
Priority to EP22795482.3A priority patent/EP4331835A1/en
Publication of WO2022230566A1 publication Critical patent/WO2022230566A1/ja
Priority to US18/495,857 priority patent/US20240092061A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/12Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2398/00Unspecified macromolecular compounds
    • B32B2398/10Thermosetting resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards

Definitions

  • the present disclosure relates to a bonded body, a substrate, a method for manufacturing a bonded body, and a method for manufacturing a substrate.
  • Joined bodies of resin and metal are used in various fields such as electrical equipment, electronic equipment, and communication equipment.
  • Patent Literatures 1 to 4 describe joined bodies in which resin and metal are joined by laser irradiation.
  • An object of the present disclosure is to provide a novel joined body, a substrate, a method for manufacturing the joined body, and a method for manufacturing the substrate, which are excellent in shape stability.
  • a metal having a thickness of 5 to 50 ⁇ m is bonded to one surface of a resin (1) having a linear expansion coefficient of 17 ppm/° C. or more at 30 to 200° C. and a thickness of 5 to 100 ⁇ m. 40/m bonded body (hereinafter also referred to as "first bonded body of the present disclosure").
  • the resin (1) contains a fluororesin.
  • the resin (1) is substantially composed only of a fluororesin.
  • the melting point of the fluororesin is preferably 320° C. or lower.
  • the metal is copper.
  • the copper is preferably rolled copper or electrolytic copper.
  • the thickness of the metal/thickness of the resin (1) is preferably 0.1-1.
  • the first joined body of the present disclosure has an absorption rate in the metal of 5% or more and an absorption rate in the resin (1) of 30% or less, and the absorption rate in the metal > the absorption rate in the resin (1) It is preferable that the bonding is performed using light that is .
  • the bonding surface between the resin (1) and the metal preferably has a peel strength of 3 N/cm or more as measured by a 90-degree peel test, or the base material breaks during the 90-degree peel test.
  • the metal has a surface roughness Rz of 2 ⁇ m or less on the side to be joined with the resin (1).
  • the resin (1) is preferably subjected to an adhesive surface treatment on the side to be bonded to the metal.
  • the first bonded body of the present disclosure is a dielectric material for a substrate.
  • the present disclosure is a substrate obtained by further laminating a resin (2) on the first joined body of the present disclosure. (hereinafter also referred to as “first substrate of the present disclosure”).
  • the resin (2) is preferably a thermosetting resin.
  • thermosetting resin is preferably at least one selected from the group consisting of polyimide, modified polyimide, epoxy resin, and thermosetting modified polyphenylene ether.
  • the resin (2) is preferably at least one selected from the group consisting of liquid crystal polymer, polyphenylene ether, thermoplastically modified polyphenylene ether, cycloolefin polymer, cycloolefin copolymer, polystyrene, and syndiotactic polystyrene.
  • the first substrate of the present disclosure is preferably a printed board, laminated circuit board or high frequency board.
  • a resin (1) having a thickness of 5 to 100 ⁇ m and a linear expansion coefficient of 17 ppm/° C. or more at 30 to 200° C. is laminated with a metal having a thickness of 5 to 50 ⁇ m, and the resin (1) is laminated through the metal.
  • the present invention also relates to a method for producing a joined body, comprising a step of joining the resin (1) and the metal by heat treatment to obtain a joined body having a curvature of ⁇ 40 to 40/m.
  • the heat treatment is preferably irradiation of the metal with light.
  • the light has an absorptance of 5% or more in the metal and an absorptance of 30% or less in the resin (1), and absorptivity in the metal>absorption in the resin (1).
  • the bonded body is a dielectric material for a substrate.
  • the present disclosure also relates to a substrate manufacturing method including a step of bonding a bonded body obtained by the bonded body manufacturing method of the present disclosure and a resin (2).
  • the resin (2) is preferably a thermosetting resin.
  • thermosetting resin is preferably at least one selected from the group consisting of polyimide, modified polyimide, epoxy resin, and thermosetting modified polyphenylene ether.
  • the resin (2) is preferably at least one selected from the group consisting of liquid crystal polymer, polyphenylene ether, thermoplastically modified polyphenylene ether, cycloolefin polymer, cycloolefin copolymer, polystyrene, and syndiotactic polystyrene.
  • the board is preferably a printed board, a laminated circuit board or a high frequency board.
  • a resin (1) having a linear expansion coefficient of 17 ppm/° C. or more at 30 to 200° C. and a thickness of 5 to 100 ⁇ m is joined to one surface of the resin (1), and a metal having a thickness of 5 to 50 ⁇ m is bonded to the resin (1).
  • second bonded body of the present disclosure in which the heat-affected layer on the metal side is 80% or less of the thickness of the resin (1).
  • the second bonded body of the present disclosure preferably has a curvature of -40 to 40/m.
  • the resin (1) contains a fluororesin.
  • the resin (1) consists essentially of the fluororesin.
  • the metal is copper.
  • the bonding surface between the resin (1) and the metal preferably has a peel strength of 3 N/cm or more as measured by a 90-degree peel test, or breaks the base material during the 90-degree peel test.
  • the second bonded body of the present disclosure is a dielectric material for a substrate.
  • the present disclosure also relates to a substrate obtained by further laminating the resin (2) on the second joined body of the present disclosure (hereinafter also referred to as "second substrate of the present disclosure").
  • the resin (2) is preferably a thermosetting resin.
  • FIG. 2 is a cross-sectional view showing an example of a substrate laminate. 1. It is a schematic diagram which shows the modification of the manufacturing method of the laminated body for substrates of FIG.
  • FIG. 3 is a schematic diagram showing an example of a method for manufacturing the single-sided bonded body of FIG. 2; 10 is a photograph of a single-sided joined body in which warpage has occurred.
  • FIG. 3 is a schematic diagram showing an example of a mode of irradiating light from the resin (1) side. 6 is an enlarged view of a light irradiation portion (dotted line portion) in FIG. 5.
  • FIG. 5 is an enlarged view of a light irradiation portion (dotted line portion) in FIG. 5.
  • FIG. 1 is a schematic diagram showing an example of a substrate laminate.
  • the substrate laminate 10 has a structure in which a core layer 11 made of epoxy resin or the like is placed above and below a fluorine resin 12 and a metal 13 in this order.
  • the core layer 11 and the fluororesin 12 are insulating layers of the substrate.
  • the resin forming the core layer 11 and the fluororesin 12 may require different heating temperatures for bonding.
  • the heating temperature for epoxy resin is about 180.degree. C.
  • the heating temperature for fluorine resin is about 320.degree.
  • FIG. 2 is a schematic diagram showing a modification of the method for manufacturing the laminate for a substrate of FIG.
  • the core layer 11 is sandwiched between a pair of single-sided bonded bodies 14 in which the metal 13 is bonded to one side of the fluororesin 12, and heated and pressurized by a pressing machine or the like.
  • the substrate laminate 10 is obtained by bonding the fluororesin 12 and the core layer 11 together. Since the fluorine resin 12 and the metal 13 are already bonded, the heating in this case may be performed at the heating temperature of the resin of the core layer 11 . Therefore, if there is the single-sided bonded body 14, it is possible to obtain the substrate laminate 10 in one step by the manufacturing method of FIG.
  • FIG. 3 is a schematic diagram showing an example of a method for manufacturing the single-sided joined body of FIG.
  • a method of heating and pressurizing with a press or the like can be considered.
  • the fluororesin 12 deforms due to thermal expansion and thermal contraction due to heating.
  • the single-sided bonded body 14 is warped.
  • FIG. 4 is a photograph of a warped single-sided bonded body. In such a state, it is difficult to laminate the single-sided bonded body 14 on the core layer 11 . Therefore, it is not easy to actually perform the manufacturing method of FIG.
  • a metal having a thickness of 5 to 50 ⁇ m is joined to one surface of a resin (1) having a linear expansion coefficient of 17 ppm/° C. or more at 30 to 200° C. and a thickness of 5 to 100 ⁇ m. , and the curvature is ⁇ 40 to 40/m.
  • the first joined body of the present disclosure has a curvature of ⁇ 40 to 40/m even in the state where the resin (1) and the metal are joined, so it can be easily laminated to other layers. Therefore, by using the first bonded body of the present disclosure, it is possible to easily realize the manufacturing method of FIG. 2 in which the laminated body for substrate is obtained in one step.
  • the thickness of resin (1) may be 5 to 100 ⁇ m, preferably 10 ⁇ m or more, more preferably 12 ⁇ m or more, and preferably 90 ⁇ m or less, more preferably 80 ⁇ m or less. It should be noted that the resin (1) is preferably in the form of a sheet with a substantially constant thickness. Measure the thickness of the points divided into 10 points and average them.
  • the coefficient of linear expansion of the resin (1) at 30 to 200°C may be 17 ppm/°C or higher, preferably 50 ppm/°C or higher, more preferably 100 ppm/°C or higher, and more preferably 500 ppm/°C. 300 ppm/° C. or less, more preferably 300 ppm/° C. or less.
  • the coefficient of linear expansion of resin (1) is a value measured by thermomechanical analysis (TMA).
  • the dielectric constant and dielectric loss tangent of the resin (1) are not particularly limited, the dielectric constant at 25° C. and a frequency of 10 GHz is preferably 4.5 or less, more preferably 4.0 or less, and still more preferably. is 3.5 or less, particularly preferably 2.5 or less. Also, the dielectric loss tangent is preferably 0.01 or less, more preferably 0.008 or less, and still more preferably 0.005 or less.
  • the dielectric constant and dielectric loss tangent of resin (1) are values obtained by the split cylinder resonator method.
  • fluorine resin liquid crystal polymer, polyimide, modified polyimide, cycloolefin polymer, cycloolefin copolymer, polystyrene, syndiotactic polystyrene and the like can be used.
  • fluororesins are preferred, and melt-moldable fluororesins are more preferred.
  • a polymer of tetrafluoroethylene [TFE], a copolymer of TFE and a copolymerizable monomer, or the like can be used.
  • the copolymerizable monomer is not particularly limited as long as it can be copolymerized with TFE. 101 (wherein Rf 101 is a linear or branched fluoroalkyl group having 1 to 12 carbon atoms), fluoroalkyl allyl ethers, and the like.
  • General formula (120): CF 2 CF-OCH 2 -Rf 121 (wherein Rf 121 is a perfluoroalkyl group having 1 to 5 carbon atoms), a fluoromonomer represented by General formula ( 130 ):
  • CF2 CFOCF2ORf131 (In the formula, Rf 131 is a linear or branched perfluoroalkyl group having 1 to 6 carbon atoms, a cyclic perfluoroalkyl group having 5 to 6 carbon atoms, a 2 to 6 carbon atom containing 1 to 3 oxygen atoms, is a straight-chain or branched perfluorooxyalkyl group.)
  • a fluoromonomer represented by General formula (140): CF2 CFO( CF2CF ( Y141 )O)
  • the perfluoroalkyl group may contain an etheric oxygen and a —SO 2 F group.
  • n is , represents an integer of 0 to 3.
  • n Y 151 may be the same or different, Y 152 represents a fluorine atom, a chlorine atom or a —SO 2 F group, m is represents an integer of 1 to 5.
  • m Y 152 may be the same or different, and A 151 represents -SO 2 X 151 , -COZ 151 or -POZ 152 Z 153 ; X 151 represents F, Cl, Br, I, -OR 151 or -NR 152 R 153.
  • Z 151 , Z 152 and Z 153 are the same or different and represent -NR 154 R 155 or -OR 156
  • R 151 , R 152 , R 153 , R 154 , R 155 and R 156 are the same or different and represent H, ammonium, an alkali metal, an alkyl group which may contain a fluorine atom, an aryl group, or a sulfonyl-containing group.
  • perfluoroorganic group means an organic group in which all hydrogen atoms bonded to carbon atoms are substituted with fluorine atoms.
  • a perfluoro organic group may have an ether oxygen.
  • Fluoromonomers represented by general formula (110) include fluoromonomers in which Rf 111 is a perfluoroalkyl group having 1 to 10 carbon atoms.
  • the perfluoroalkyl group preferably has 1 to 5 carbon atoms.
  • Examples of the perfluoro organic group in formula (110) include perfluoromethyl group, perfluoroethyl group, perfluoropropyl group, perfluorobutyl group, perfluoropentyl group, perfluorohexyl group and the like.
  • Rf 111 is a perfluoro(alkoxyalkyl) group having 4 to 9 carbon atoms, and Rf 111 is the following formula:
  • Rf 111 is a group represented by the following formula:
  • n an integer of 1 to 4.
  • CF 2 CF-ORf 161
  • Rf 161 represents a perfluoroalkyl group having 1 to 10 carbon atoms.
  • Rf 161 is preferably a perfluoroalkyl group having 1 to 5 carbon atoms.
  • fluoroalkyl vinyl ether at least one selected from the group consisting of fluoromonomers represented by general formulas (160), (130) and (140) is preferred.
  • the fluoromonomer (PAVE) represented by the general formula (160) includes perfluoro(methyl vinyl ether) [PMVE], perfluoro(ethyl vinyl ether) [PEVE], and perfluoro(propyl vinyl ether) [PPVE]. At least one selected from the group is preferable, and at least one selected from the group consisting of perfluoro(methyl vinyl ether) and perfluoro(propyl vinyl ether) is more preferable.
  • fluoromonomer represented by the general formula (100) a fluoromonomer in which Rf 101 is a linear fluoroalkyl group is preferable, and a fluoromonomer in which Rf 101 is a linear perfluoroalkyl group is more preferable.
  • Rf 101 preferably has 1 to 6 carbon atoms.
  • CH2 CFCF3
  • CH2 CFCF2CF3
  • CH2 CFCF2CF2CF3
  • CH2 CFCF2CF2CF2H
  • CH 2 CFCF2CF2CF3
  • CHF CHCF3 (E-form)
  • fluoroalkylethylene General formula (170): CH 2 ⁇ CH—(CF 2 ) n —X 171 (Wherein, X 171 is H or F, and n is an integer of 3 to 10.) Preferred is a fluoroalkylethylene represented by CH 2 ⁇ CH—C 4 F 9 and CH 2 ⁇ CH At least one selected from the group consisting of -C 6 F 13 is more preferred.
  • Rf 111 in general formula (180) is the same as Rf 111 in general formula (110).
  • Rf 111 is preferably a perfluoroalkyl group having 1 to 10 carbon atoms or a perfluoroalkoxyalkyl group having 1 to 10 carbon atoms.
  • CF 2 CF-CF 2 --O--CF 3
  • CF 2 CF-CF 2 --O--C 2 F 5
  • CF 2 CF-CF
  • the copolymerizable monomer is preferably at least one selected from the group consisting of fluoroalkyl allyl ether, PAVE, and HFP, and PAVE is more preferable in that deformation of the fluororesin material during soldering can be suppressed. preferable.
  • the fluororesin is a TFE/PAVE copolymer [PFA] containing TFE units and PAVE units.
  • PFA TFE/PAVE copolymer
  • the fluororesin is PFA, it preferably contains 0.1 to 12% by mass of fluoroalkylallyl ether units or PAVE units based on the total polymerized units.
  • the amount of fluoroalkyl allyl ether units or PAVE units is more preferably 0.3% by mass or more, still more preferably 0.7% by mass or more, and 1.0% by mass or more based on the total polymerized units. is even more preferably, 1.1% by mass or more is particularly preferable, 8.0% by mass or less is more preferable, and 6.5% by mass or less is even more preferable. 0% by mass or less is particularly preferred.
  • the amounts of fluoroalkylallyl ether units and PAVE units are measured by the 19 F-NMR method. The same applies to TFE units and HFP units, which will be described later.
  • the fluororesin is a TFE/HFP copolymer [FEP] containing TFE units and HFP units.
  • FEP TFE/HFP copolymer
  • the mass ratio of TFE units to HFP units is preferably 70-99/1-30 (% by mass). More preferably, the mass ratio (TFE/HFP) is 85-95/5-15 (% by mass).
  • FEP contains HFP units in an amount of 1% by weight or more, preferably 1.1% by weight or more of the total monomer units.
  • FEP preferably contains fluoroalkylallyl ether or perfluoro(alkyl vinyl ether) [PAVE] units along with TFE and HFP units.
  • fluoroalkyl allyl ether unit and PAVE unit contained in FEP the same fluoroalkyl allyl ether unit and PAVE unit as those constituting PFA can be mentioned.
  • PPVE is preferable.
  • the PFA described above does not contain HFP units, and in that respect differs from FEP, which contains PAVE units.
  • the mass ratio (TFE/HFP/fluoroalkylallyl ether or PAVE) is 70-99.8/0.1-25 /0.1 to 25 (% by mass). Within the above range, a fluororesin material having excellent heat resistance and chemical resistance can be obtained. More preferably, the mass ratio (TFE/HFP/fluoroalkylallyl ether or PAVE) is 75-98/1.0-15/1.0-10 (% by mass). FEP contains HFP units and PAVE units in a total amount of 1% by mass or more, preferably 1.1% by mass or more, of all monomer units.
  • the HFP units preferably account for 25% by mass or less of the total monomer units.
  • the content of HFP units is more preferably 20% by mass or less, and even more preferably 18% by mass or less. Particularly preferably, it is 15% by mass or less.
  • the content of the HFP unit is preferably 0.1% by mass or more, more preferably 1% by mass or more. Particularly preferably, it is 2% by mass or more.
  • the content of HFP units can be measured by the 19 F-NMR method.
  • the content of fluoroalkylallyl ether units and/or PAVE units is more preferably 20% by mass or less, and even more preferably 10% by mass or less. Especially preferably, it is 3% by mass or less.
  • the content of fluoroalkylallyl ether units or PAVE units is preferably 0.1% by mass or more, more preferably 1% by mass or more.
  • the contents of fluoroalkyl allyl ether units and PAVE units can be measured by the 19 F-NMR method.
  • FEP may further contain other ethylenic monomeric ( ⁇ ) units.
  • the other ethylenic monomer ( ⁇ ) unit is not particularly limited as long as it is a monomer unit copolymerizable with TFE, HFP, fluoroalkylallyl ether and PAVE.
  • Examples include vinyl fluoride [VF]
  • Examples include fluorine-containing ethylenic monomers such as vinylidene fluoride [VdF], chlorotrifluoroethylene [CTFE] and ethylene [Et], and non-fluorinated ethylenic monomers such as ethylene, propylene and alkyl vinyl ethers. .
  • the mass ratio (TFE/HFP/fluoroalkylallyl ether or PAVE /other ethylenic monomer ( ⁇ )) is preferably 70 to 98/0.1 to 25/0.1 to 25/0.1 to 25 (% by mass).
  • FEP contains monomer units other than TFE units in a total amount of 1% by mass or more, preferably 1.1% by mass or more of the total monomer units.
  • the fluororesin is PFA and FEP.
  • PFA/FEP The mass ratio of PFA to FEP is preferably 9/1 to 3/7, more preferably 9/1 to 5/5.
  • PFA and FEP can be produced by conventionally known methods such as emulsion polymerization and suspension polymerization by appropriately mixing additives such as polymerization initiators and monomers as constituent units thereof.
  • the fluororesin preferably has a melting point of 320° C. or lower. Thereby, fusion bonding by light heating can be easily performed.
  • the melting point of the fluororesin is more preferably 318° C. or lower, still more preferably 315° C. or lower, and preferably 250° C. or higher, still more preferably 280° C. or higher.
  • the melting point of the fluororesin is the temperature corresponding to the maximum value in the heat of fusion curve when the temperature is raised at a rate of 10° C./min using a differential scanning calorimeter [DSC].
  • the fluororesin preferably has a melt flow rate (MFR) at 372° C. of 0.1 to 100 g/10 minutes. Thereby, fusion bonding by light heating can be easily performed.
  • MFR is more preferably 0.5 g/10 minutes or more, more preferably 80 g/10 minutes or less, and even more preferably 40 g/10 minutes or less.
  • MFR is measured by using a melt indexer (manufactured by Yasuda Seiki Seisakusho Co., Ltd.) in accordance with ASTM D1238 and measuring the mass (g /10 minutes).
  • the content of the fluororesin in the resin (1) is preferably 50% by mass or more, more preferably 60% by mass or more.
  • the upper limit is not particularly limited, and may be 100% by mass. From the viewpoint of electrical properties, it is preferable that the resin (1) is substantially composed only of a fluororesin (the content of the fluororesin in the resin (1) is 99% by mass or more).
  • the side of the resin (1) to be bonded to the metal is subjected to an adhesive surface treatment.
  • the adhesive surface treatment includes, for example, etching treatment, plasma treatment, corona treatment, photochemical treatment and the like, preferably plasma treatment and corona treatment. Conditions for the adhesive surface treatment can be appropriately set according to the composition of the resin (1) and the like.
  • An adhesive layer may be provided between the resin (1) and the metal in order to improve the bonding strength.
  • the adhesive layer is not particularly limited, and may be a layer formed using an adhesive.
  • the adhesives are not particularly limited, but include PTFE strong adhesives manufactured by Flon Kogyo Co., Ltd., PPX set manufactured by Cemedine Co., Ltd., low-temperature curing adhesives manufactured by ThreeBond Co., Ltd., and adhesives for fluorine materials are preferred.
  • a bonding sheet may also be used as the adhesive.
  • the bonding sheet is not particularly limited, but plasma-treated silicone resin (PDMS) and the like can be mentioned.
  • Commercially available bonding sheets include high heat-resistant adhesive films manufactured by Toagosei Co., Ltd., D5200 series manufactured by Dexerials, and manufactured by Arisawa Seisakusho. A23 type of.
  • the thickness of the metal may be 5 to 50 ⁇ m, preferably 7 ⁇ m or more, more preferably 9 ⁇ m or more, and preferably 45 ⁇ m or less, more preferably 40 ⁇ m or less. It should be noted that the metal is preferably a metal foil with a substantially constant thickness, but if the metal has a portion with a different thickness, the thickness is measured at points where the metal is divided into 10 equal intervals in the longitudinal direction. and average them.
  • the ratio of thickness of metal/thickness of resin (1) is preferably 0.1-1.
  • the lower limit is more preferably 0.15, more preferably 0.2, and the upper limit is more preferably 0.95, still more preferably 0.9.
  • the metal is preferably at least one selected from the group consisting of copper, stainless steel, aluminum, iron, silver, gold, ruthenium, and alloys thereof, and from the group consisting of copper, silver, gold, stainless steel and aluminum At least one selected is more preferred, and copper is even more preferred.
  • stainless steel examples include austenitic stainless steel, martensitic stainless steel, and ferritic stainless steel.
  • Examples of copper include rolled copper and electrolytic copper.
  • the metal preferably has a surface roughness Rz of 2 ⁇ m or less on the side to be joined with the resin (1). As a result, the transmission loss of the joined body of resin (1) and metal is improved.
  • the surface roughness Rz is more preferably 1.8 ⁇ m or less, still more preferably 1.5 ⁇ m or less, and more preferably 0.3 ⁇ m or more, still more preferably 0.5 ⁇ m or more.
  • the surface roughness Rz is a value (maximum height roughness) calculated by the method of JIS C 6515-1998.
  • the joint surface between the resin (1) and the metal has a peel strength of 3 N/cm or more as measured by a 90-degree peel test, or the base material breaks during the 90-degree peel test.
  • the peel strength is more preferably 4 N/cm or more, and still more preferably 5 N/cm or more.
  • the upper limit is not particularly limited.
  • the 90-degree peel test is carried out by the method described in JIS C 6481-1996.
  • a first conjugate of the present disclosure has a curvature of -40 to 40/m. Within this range, lamination to other layers is easy. From the viewpoint of shape stability, the curvature is preferably ⁇ 35/m or more, more preferably ⁇ 20/m or more, still more preferably ⁇ 10/m or more, and preferably 35/m or less, more preferably It is 20/m or less, more preferably 10/m or less.
  • a first joined body of the present disclosure is obtained by joining a resin (1) and a metal.
  • the resin (1) and the metal may be joined by a known method such as a press machine, but from the viewpoint of shape stability, the heat treatment described below in the method for manufacturing a joined body of the present disclosure is performed. is preferred. That is, the first bonded body of the present disclosure can be suitably manufactured by the manufacturing method of the bonded body of the present disclosure, which will be described later.
  • the first joined body of the present disclosure is preferably joined using light having an absorption rate of 5% or more in metal and an absorption rate of 30% or less in resin (1). The light is the same as that used in the manufacturing method of the conjugate of the present disclosure, which will be described later.
  • the heated portion of resin (1) changes orientation.
  • the heat-affected layer is the portion where the orientation is changed from the non-heated state by heating.
  • the thickness of the heat-affected layer on the metal side of the resin (1) is preferably 80% or less, more preferably 70% or less, and even more preferably 60% or less of the thickness of the resin (1).
  • the lower limit is not particularly limited, and may be 5% or less as long as adhesion to metal is confirmed.
  • the heat-affected zone can be confirmed by cutting the joined body in the width direction and observing the cross section of the obtained cut piece.
  • the cutting width (the thickness of the section when observing the cross section) may be about 20 to 50 ⁇ m. Observation methods are not particularly limited, but include polarizing microscope, Raman analysis, and the like.
  • the first bonded body of the present disclosure is suitably used as a dielectric material for substrates.
  • the resin (1) may have a metal bonded to at least one surface, but when used in the manufacturing method of FIG. It is preferable that a metal is bonded to (only one of the front surface and the back surface when the resin (1) is in the form of a sheet) and nothing is bonded to the other surfaces. Also, the metal may have at least one surface to which the resin (1) is bonded, but when used in the manufacturing method of FIG. It is preferable that the resin (1) is bonded to only one of the back surfaces and nothing is bonded to the other surfaces. That is, the first bonded body of the present disclosure is preferably a single-sided bonded body in which one resin (1) and one metal are bonded.
  • the first substrate of the present disclosure is obtained by further laminating the resin (2) on the first joined body of the present disclosure.
  • a fluororesin is used as the resin (1) and a resin (for example, epoxy resin) having a lower melting point than that of the fluororesin is used as the resin (2), the heating temperature required for bonding differs, but in the first substrate of the present disclosure, , the heating temperature of the resin (2) can be used, so that the substrate can be obtained in one step.
  • the resin (2) is preferably laminated on the resin (1) side surface of the first joined body of the present disclosure. That is, the first substrate of the present disclosure is preferably one in which metal, resin (1), and resin (2) are laminated in this order. Also, the first substrate of the present disclosure is preferably a laminate of the first joined body of the present disclosure above and below the resin (2) as shown in FIG. That is, the first substrate of the present disclosure is preferably one in which metal, resin (1), resin (2), resin (1), and metal are laminated in this order.
  • thermosetting resin can be preferably used as the resin (2).
  • the thermosetting resin is preferably at least one selected from the group consisting of polyimide, modified polyimide, epoxy resin, and thermosetting modified polyphenylene ether, and is epoxy resin, modified polyimide, and thermosetting modified polyphenylene ether. More preferred are epoxy resins and thermosetting modified polyphenylene ethers.
  • the resin (2) may be a resin other than a thermosetting resin.
  • the resin other than the thermosetting resin at least one selected from the group consisting of liquid crystal polymer, polyphenylene ether, thermoplastically modified polyphenylene ether, cycloolefin polymer, cycloolefin copolymer, polystyrene, and syndiotactic polystyrene is preferred.
  • the thickness of the resin (2) is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and preferably 2000 ⁇ m or less, more preferably 1500 ⁇ m or less. It should be noted that the resin (2) is preferably in the form of a sheet with a substantially constant thickness. Measure the thickness of the points divided into 10 points and average them.
  • the thickness of the first substrate of the present disclosure is preferably 20 ⁇ m or more, more preferably 30 ⁇ m or more, and is preferably 5000 ⁇ m or less, more preferably 3000 ⁇ m or less.
  • the shape of the first substrate of the present disclosure is preferably a sheet-like shape with a substantially constant thickness. The thickness of the first substrate in 1 is measured at 10 equally spaced points in the longitudinal direction, and the thicknesses are averaged.
  • the first substrate of the present disclosure is suitably used as a printed circuit board, laminated circuit board (multilayer board), and high frequency board.
  • a high-frequency circuit board is a circuit board that can operate even in a high-frequency band.
  • the high frequency band may be a band of 1 GHz or higher, preferably a band of 3 GHz or higher, and more preferably a band of 5 GHz or higher.
  • the upper limit is not particularly limited, it may be a band of 100 GHz or less.
  • a resin (1) having a linear expansion coefficient of 17 ppm/° C. or more at 30 to 200° C. and a thickness of 5 to 100 ⁇ m and a metal having a thickness of 5 to 50 ⁇ m are laminated, and the metal is interposed. It includes a step of bonding the resin (1) and the metal by heat treatment of heating the resin (1) to obtain a bonded body having a curvature of ⁇ 40 to 40/m.
  • the resin (1) and the metal are the same as those described in the first joined body of the present disclosure.
  • the deformation of resin (1) is increased by heating the entire resin (1), and as shown in FIGS. tends to occur.
  • the resin (1) is not heated as a whole, but is heat-treated to heat the resin (1) through the metal. Only the contact portion can be selectively heated. As a result, deformation of the resin (1) is suppressed, so that a joined body having a curvature of ⁇ 40 to 40/m can be easily obtained.
  • Examples of the heat treatment include irradiation with electromagnetic waves.
  • electromagnetic waves are classified by wavelength, they are, for example, gamma rays, X-rays, ultraviolet rays, visible rays, infrared rays, radio waves, microwaves, very short waves, short waves, medium waves, long waves, very long waves, and ultra long waves.
  • Electromagnetic waves are preferably radio waves, light (ultraviolet rays, visible rays, infrared rays, etc.), X-rays, and gamma rays, more preferably radio waves and light, and still more preferably light.
  • Electromagnetic waves such as light may be applied from the metal side or from the resin (1) side, but the irradiation from the resin (1) side is preferable. By irradiating from the resin (1) side, the heating amount of the metal can be controlled to be small, and the deformation of the resin (1) can be further suppressed.
  • a light having a metal absorptivity of 5% or more, a resin (1) absorptivity of 30% or less, and absorptance of the metal > absorptivity of the resin (1) is preferably used.
  • the absorption rate of the metal is preferably 10% or more, more preferably 15% or more, and the upper limit is not particularly limited.
  • the absorption rate in resin (1) is preferably 25% or less, more preferably 20% or less, and the lower limit is not particularly limited.
  • the difference between the absorption rate of the metal and the absorption rate of the resin (1) is preferably 5% or more, more preferably 10% or more, and the upper limit is It is not particularly limited.
  • the metal and resin (1) are the same as those described in the first joined body of the present disclosure.
  • the above absorptivity was measured using an ultraviolet-visible-near-infrared spectrophotometer (for example, "V-770" manufactured by JASCO Corporation) for a metal with a thickness of 12 ⁇ m and a resin (1) with a thickness of 25 ⁇ m. The values are those when the surface was measured in the reflection arrangement and the resin (1) was measured in the transmission arrangement.
  • light examples include laser; light emitted from halogen lamps, xenon lamps, far-infrared heaters, microwave generators, etc.; lasers are preferred.
  • lasers examples include fiber lasers, YAG lasers, disk lasers, semiconductor lasers, CO 2 lasers, He-Ne lasers, excimer lasers, argon lasers, etc. Fiber lasers and YAG lasers are preferred, and fiber lasers are more preferred.
  • the wavelength of the light is preferably 200 nm or longer, more preferably 400 nm or longer, still more preferably 500 nm or longer, and is preferably 10000 nm or shorter, more preferably 2500 nm or shorter, still more preferably 2000 nm or shorter.
  • the value of output/(spot diameter ⁇ scanning speed) when irradiating light is preferably 0.01 J/mm 2 or more, more preferably 0.03 J/mm 2 or more, and still more preferably 0.05 J/mm 2 and preferably 0.20 J/mm 2 or less, more preferably 0.15 J/mm 2 or less, and even more preferably 0.10 J/mm 2 or less.
  • FIG. 5 is a schematic diagram showing an example of a mode of irradiating light from the resin (1) side.
  • resin (1) 12 and metal 13 are laminated and pressed by a roll-to-roll press device 100 .
  • the press device 100 includes a resin side roll 101 disposed at the bottom in FIG. 4 and a metal side roll 102 disposed at the top in FIG. (1) 12 and metal 13 are pressurized.
  • FIG. 6 is an enlarged view of the light irradiation portion (dotted line portion) of FIG.
  • FIG. 6 when the metal 13 is heated by the light 200, a portion of the metal 13 becomes hot. A high temperature portion is indicated as a high temperature portion 13a. Then, only the outermost surface of resin (1) 12 in contact with high temperature portion 13a is heated and melted. Thereby, the resin (1) 12 and the metal 13 are joined (adhered).
  • the material of the resin side roll 101 is not particularly limited as long as it has a light absorptivity of 20% or less.
  • Examples thereof include glass, thermoplastic resins, thermosetting resins, etc. Glass and thermosetting resins are preferable. , glass is more preferred.
  • the said absorptivity is the value measured using the ultraviolet-visible near-infrared spectrophotometer.
  • the light used for the measurement is the same as that described in the manufacturing method of the bonded body of the present disclosure.
  • the manufacturing method of the substrate of the present disclosure includes a step of bonding the bonded body obtained by the manufacturing method of the bonded body of the present disclosure and the resin (2).
  • the resin (2) is the same as that described in the first substrate of the present disclosure.
  • a method of simultaneously bonding resin (1), metal, and resin (2) in order to bond resin (2) to a bonded body in which resin (1) and metal have already been bonded As compared with , it is easy to set the temperature conditions at the time of adhesion, and there is an effect that the number of processing steps can be reduced.
  • the joining of the joined body and the resin (2) can be carried out by a known method such as a press machine.
  • the thickness of the substrate obtained by the manufacturing method of the substrate of the present disclosure, suitable use, etc. are the same as those described for the first substrate of the present disclosure.
  • a metal having a thickness of 5 to 50 ⁇ m is joined to one surface of the resin (1) having a linear expansion coefficient of 17 ppm/° C. or more at 30 to 200° C. and a thickness of 5 to 100 ⁇ m.
  • the heat-affected layer on the metal side of the resin (1) is 80% or less of the thickness of the resin (1).
  • the deformation of the resin during heating is considered to be caused by the change in the crystalline state of the resin due to heating.
  • the heat-affected layer on the metal side of the resin (1) is less than or equal to the thickness of the resin (1), thereby suppressing deformation of the resin (1) and A joined body in which (1) and metal are joined is obtained.
  • the heat-affected layer on the metal side of the resin (1) may be 80% or less of the thickness of the resin (1), preferably 70% or less, more preferably 60% or less.
  • the lower limit is not particularly limited, and may be 5% or less as long as adhesion to metal is confirmed.
  • the method of changing the crystalline state of only part of the resin (1) that is, the method of forming the heat-affected layer only in part of the resin (1) is not particularly limited. , a method of selectively heating only the portion of the resin (1) that is in contact with the metal. According to the manufacturing method of the joined body of the present disclosure, the heat affected layer can be formed only on the metal side of the resin (1).
  • the curvature is preferably -40/m or more, more preferably -35/m or more, still more preferably -20/m or more, and particularly preferably -10/m or more, Further, it is preferably 40/m or less, more preferably 35/m or less, still more preferably 20/m or less, and particularly preferably 10/m or less.
  • the same materials as in the first bonded body of the present disclosure can be used.
  • the form described for the first joined body of the present disclosure is also applicable to the second joined body of the present disclosure.
  • the second substrate of the present disclosure is obtained by further laminating the resin (2) on the second joined body of the present disclosure.
  • the second substrate of the present disclosure like the first substrate of the present disclosure, can be manufactured at the heating temperature of the resin (2), so that it can be manufactured in one step.
  • the same resin as in the first substrate of the present disclosure can be used.
  • the form described for the first substrate of the present disclosure is also applicable to the second substrate of the present disclosure.
  • the coefficient of linear expansion (coefficient of linear expansion) of the PFA film was obtained by TMA measurement in the following modes using TMA-7100 (manufactured by Hitachi High-Tech Science Co., Ltd.).
  • TMA-7100 manufactured by Hitachi High-Tech Science Co., Ltd.
  • Relative permittivity and dielectric loss tangent were determined by the split cylinder resonator method.
  • a resonator corresponding to each frequency manufactured by EM Lab Co., Ltd. was used as the split cylinder, and Keysight N5290A was used as the network spectrum analyzer.
  • a film having a thickness of 25 ⁇ m ⁇ a width of 62 mm ⁇ a length of 75 mm was used as a sample to be measured.
  • the measurement frequency was 10 GHz and the measurement temperature was 25°C.
  • a 90-degree peel test was carried out in accordance with JIS C 6481-1996. About 1 cm of the resin at the end of the bonded body obtained above was peeled off and sandwiched between chucks of a testing machine, and the peel strength (unit: N/cm) was measured at a tensile speed (moving speed) of 50 mm/min.
  • curvature A piece of 45 ⁇ 5 mm was cut out from the joined body obtained above, and the curvature was calculated from the curve in the long side direction.
  • the bonded body obtained above was cut in the width direction, and the cut surface of the obtained slice (cutting width: 20 to 50 ⁇ m) was observed with a polarizing microscope, and the thickness of the heat-affected layer formed on the metal side of the PFA film was measured. The results are shown as a percentage (%) with respect to the total thickness of the PFA film.
  • Tables 1 and 2 show the results of the 90-degree peel test, the curvature, and the thickness of the heat-affected layer of the bonded body obtained above.
  • the output was as high as 100 W and the scanning speed was slow, so the value of output/(spot diameter ⁇ scanning speed) was large and the curvature was large.
  • the value of output/(spot diameter ⁇ scanning speed) was even larger than in Comparative Example 4, so the PFA film was scorched and the peel strength and curvature could not be measured.
  • Substrate laminate 11 Core layer 12: Fluorine resin, resin (1) 13: Metal 13a: High temperature part 14: Single-sided joined body 100: Press device 101: Resin side roll 102: Metal side roll 200: Light

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

形状安定性に優れた新規な接合体、基板、接合体の製造方法、及び基板の製造方法を提供する。 30~200℃における線膨張係数17ppm/℃以上、かつ厚み5~100μmの樹脂(1)の一つの面に、厚み5~50μmの金属が接合されており、曲率が-40~40/mである接合体である。

Description

接合体、基板、接合体の製造方法、及び、基板の製造方法
本開示は、接合体、基板、接合体の製造方法、及び、基板の製造方法に関する。
電気機器、電子機器、通信機器等の様々な分野で、樹脂と金属との接合体が使用されている。
特許文献1~4には、レーザの照射によって樹脂と金属とが接合された接合体が記載されている。
特開2008-207540号公報 国際公開第2020/067022号 特開2019-123153号公報 特開2011-235570号公報
本開示は、形状安定性に優れた新規な接合体、基板、接合体の製造方法、及び基板の製造方法を提供することを目的とする。
本開示は、30~200℃における線膨張係数17ppm/℃以上、かつ厚み5~100μmの樹脂(1)の一つの面に、厚み5~50μmの金属が接合されており、曲率が-40~40/mである接合体(以下、「本開示の第一の接合体」ともいう。)に関する。
上記樹脂(1)が、フッ素樹脂を含むことが好ましい。
上記樹脂(1)が、実質的にフッ素樹脂のみで構成されていることが好ましい。
上記フッ素樹脂の融点が、320℃以下であることが好ましい。
上記金属が、銅であることが好ましい。
上記銅が、圧延銅又は電解銅であることが好ましい。
上記金属の厚み/上記樹脂(1)の厚みが、0.1~1であることが好ましい。
本開示の第一の接合体は、上記金属における吸収率が5%以上、上記樹脂(1)における吸収率が30%以下であり、かつ上記金属における吸収率>上記樹脂(1)における吸収率である光を用いて接合されたものであることが好ましい。
上記樹脂(1)と上記金属との接合面は、90度剥離試験で測定される剥離強度が3N/cm以上、又は、90度剥離試験時に母材破壊となることが好ましい。
上記金属は、上記樹脂(1)と接合される側の表面粗度Rzが2μm以下であることが好ましい。
上記樹脂(1)は、上記金属と接合される側に接着性表面処理が施されていることが好ましい。
本開示の第一の接合体が、基板用誘電材料であることが好ましい。
本開示は、本開示の第一の接合体に、更に樹脂(2)が積層された基板。(以下、「本開示の第一の基板」ともいう。)にも関する。
上記樹脂(2)が、熱硬化性樹脂であることが好ましい。
熱硬化性樹脂が、ポリイミド、変性ポリイミド、エポキシ樹脂、熱硬化性変性ポリフェニレンエーテルからなる群より選択される少なくとも1種であることが好ましい。
上記樹脂(2)が、液晶ポリマー、ポリフェニレンエーテル、熱可塑性変性ポリフェニレンエーテル、シクロオレフィンポリマー、シクロオレフィンコポリマー、ポリスチレン、シンジオタクチックポリスチレンからなる群より選択される少なくとも1種であることが好ましい。
本開示の第一の基板が、プリント基板、積層回路基板又は高周波基板であることが好ましい。
本開示は、厚み5~100μm、30~200℃における線膨張係数17ppm/℃以上の樹脂(1)と、厚み5~50μmの金属とを積層し、上記金属を介して上記樹脂(1)を加熱する加熱処理により、上記樹脂(1)と上記金属とを接合させ、曲率が-40~40/mである接合体を得る工程を含む接合体の製造方法にも関する。
上記加熱処理が、上記金属への光の照射であることが好ましい。
上記光が、上記金属における吸収率が5%以上、上記樹脂(1)における吸収率が30%以下であり、かつ上記金属における吸収率>上記樹脂(1)における吸収率であることが好ましい。
上記接合体が、基板用誘電材料であることが好ましい。
本開示は、本開示の接合体の製造方法により得られた接合体と、樹脂(2)とを接合する工程を含む基板の製造方法にも関する。
上記樹脂(2)が、熱硬化性樹脂であることが好ましい。
上記熱硬化性樹脂が、ポリイミド、変性ポリイミド、エポキシ樹脂、熱硬化性変性ポリフェニレンエーテルからなる群より選択される少なくとも1種であることが好ましい。
上記樹脂(2)が、液晶ポリマー、ポリフェニレンエーテル、熱可塑性変性ポリフェニレンエーテル、シクロオレフィンポリマー、シクロオレフィンコポリマー、ポリスチレン、シンジオタクチックポリスチレンからなる群より選択される少なくとも1種であることが好ましい。
上記基板が、プリント基板、積層回路基板又は高周波基板であることが好ましい。
本開示は、30~200℃における線膨張係数17ppm/℃以上、かつ厚み5~100μmの樹脂(1)の一つの面に、厚み5~50μmの金属が接合されており、上記樹脂(1)の上記金属側の熱影響層が上記樹脂(1)の厚みに対して80%以下である接合体(以下、「本開示の第二の接合体」ともいう。)にも関する。
本開示の第二の接合体は、曲率が-40~40/mであることが好ましい。
上記樹脂(1)が、フッ素樹脂を含むことが好ましい。
上記樹脂(1)が、実質的に上記フッ素樹脂のみで構成されていることが好ましい。
上記金属が、銅であることが好ましい。
上記樹脂(1)と金属との接合面は、90度剥離試験で測定される剥離強度が3N/cm以上、又は、90度剥離試験時に母材破壊となることが好ましい。
本開示の第二の接合体が、基板用誘電材料であることが好ましい。
本開示は、本開示の第二の接合体に、更に樹脂(2)が積層された基板(以下、「本開示の第二の基板」ともいう。)にも関する。
上記樹脂(2)が、熱硬化性樹脂であることが好ましい。
本開示によれば、形状安定性に優れた新規な接合体、基板、接合体の製造方法、及び基板の製造方法を提供できる。
基板用積層体の一例を示す断面図である。 図1の基板用積層体の製造方法の変形例を示す模式図である。 図2の片面接合体の製造方法の一例を示す模式図である。 反りが発生した片面接合体の写真である。 樹脂(1)側から光を照射する態様の一例を示す模式図である。 図5中の光の照射部分(点線部分)の拡大図である。
図1は、基板用積層体の一例を示す模式図である。
図1に示すように、基板用積層体10は、エポキシ樹脂等で構成されたコア層11の上下に、フッ素樹脂12、金属13がこの順に配置された構造を有する。コア層11及びフッ素樹脂12は、基板の絶縁層である。
このような基板用積層体10を製造する場合、コア層11、フッ素樹脂12及び金属13を積層した後、プレス機等で加熱及び加圧して、これらを接合(接着)させる方法が考えられる。しかしながら、コア層11を構成する樹脂と、フッ素樹脂12とは、接合に必要な加熱温度が異なることがある。例えば、エポキシ樹脂の加熱温度は180℃程度であるのに対し、フッ素樹脂の加熱温度は320℃程度である。この場合、コア層11、フッ素樹脂12及び金属13を一工程で接合させ、基板用積層体10を得ることは困難である。
このような問題を解消する方法について、本発明者らが検討したところ、以下の製造方法に想到した。図2は、図1の基板用積層体の製造方法の変形例を示す模式図である。
図2の製造方法では、フッ素樹脂12の片面に金属13が接合された片面接合体14の一対でコア層11を挟持し、プレス機等で加熱及び加圧する。これにより、フッ素樹脂12とコア層11とを接合させることで、基板用積層体10を得る。フッ素樹脂12と金属13とは既に接合しているため、この場合の加熱は、コア層11の樹脂の加熱温度で実施すればよい。よって、片面接合体14があれば、図2の製造方法により、基板用積層体10を一工程で得ることが可能となる。
図2の製造方法では、片面接合体14を予め準備することが必要である。図3は、図2の片面接合体の製造方法の一例を示す模式図である。
片面接合体14を製造する場合、図3に示すように、フッ素樹脂12及び金属13を積層した後、プレス機等で加熱及び加圧する方法が考えられる。このとき、加熱による熱膨張や熱収縮でフッ素樹脂12が変形するが、基板用途において、金属13には、通常、薄い金属箔が使用されるため、フッ素樹脂12の変形に金属13が追随し、片面接合体14に反りが発生する。
図4は、反りが発生した片面接合体の写真である。このような状態では、片面接合体14をコア層11に積層することは困難である。そのため、図2の製造方法を実際に行うことは容易ではない。
本発明者らが上記問題について検討した結果、樹脂の厚み及び線膨張係数と、金属の厚みと、これらが接合した状態での曲率とが特定の範囲内である場合に、上記問題が解消することを見出し、本開示の接合体に到達した。
以下、本開示を具体的に説明する。
(第一の接合体)
本開示の第一の接合体は、30~200℃における線膨張係数17ppm/℃以上、かつ厚み5~100μmの樹脂(1)の一つの面に、厚み5~50μmの金属が接合されており、曲率が-40~40/mである。
本開示の第一の接合体は、樹脂(1)及び金属が接合された状態でも、曲率が-40~40/mであるため、他の層への積層が容易である。そのため、本開示の第一の接合体を用いることで、基板用積層体を一工程で得られる図2の製造方法を容易に実現できる。
樹脂(1)の厚みは、5~100μmであればよいが、好ましくは10μm以上、より好ましくは12μm以上であり、また、好ましくは90μm以下、より好ましくは80μm以下である。
なお、樹脂(1)は、厚みが略一定のシート状であることが好ましいが、樹脂(1)に厚みが異なる部分が存在する場合、上記厚みは、樹脂(1)を長手方向に等間隔に10分割した地点の厚みを測定し、それらを平均したものとする。
樹脂(1)の線膨張係数は、30~200℃において、17ppm/℃以上であればよいが、好ましくは50ppm/℃以上、より好ましくは100ppm/℃以上であり、また、好ましくは500ppm/℃以下、より好ましくは300ppm/℃以下である。
なお、樹脂(1)の線膨張係数は、熱機械分析(TMA:Thermomechanical Analysis)により測定した値である。
樹脂(1)の比誘電率と誘電正接は特に限定されないが、25℃、周波数10GHzにおいて、比誘電率が4.5以下であることが好ましく、より好ましくは4.0以下であり、更に好ましくは3.5以下であり、特に好ましくは2.5以下である。また誘電正接が0.01以下であることが好ましく、より好ましくは0.008以下であり、更に好ましくは0.005以下である。
なお、樹脂(1)の比誘電率及び誘電正接は、スプリットシリンダ共振器法により求めた値である。
樹脂(1)としては、フッ素樹脂、液晶ポリマー、ポリイミド、モディファイドポリイミド、シクロオレフィンポリマー、シクロオレフィンコポリマー、ポリスチレン、シンジオタクチックポリスチレン等を使用することができる。絶縁性等の電気特性の観点から、フッ素樹脂が好ましく、溶融成形可能なフッ素樹脂がより好ましい。
フッ素樹脂としては、テトラフルオロエチレン[TFE]の重合体や、TFEと共重合可能な共重合モノマーとの共重合体等を用いることができる。
共重合モノマーとしては、TFEとの共重合が可能なものであれば特に限定されず、例えば、ヘキサフルオロプロピレン[HFP]、フルオロアルキルビニルエーテル、フルオロアルキルエチレン、一般式(100):CH=CFRf101(式中、Rf101は炭素数1~12の直鎖又は分岐したフルオロアルキル基)で表されるフルオロモノマー、フルオロアルキルアリルエーテル等が挙げられる。
フルオロアルキルビニルエーテルとしては、例えば、
一般式(110):CF=CF-ORf111
(式中、Rf111は、パーフルオロ有機基を表す。)で表されるフルオロモノマー、
一般式(120):CF=CF-OCH-Rf121
(式中、Rf121は、炭素数1~5のパーフルオロアルキル基)で表されるフルオロモノマー、
一般式(130):CF=CFOCFORf131
(式中、Rf131は炭素数1~6の直鎖又は分岐状パーフルオロアルキル基、炭素数5~6の環式パーフルオロアルキル基、1~3個の酸素原子を含む炭素数2~6の直鎖又は分岐状パーフルオロオキシアルキル基である。)で表されるフルオロモノマー、
一般式(140):CF=CFO(CFCF(Y141)O)(CF
(式中、Y141はフッ素原子又はトリフルオロメチル基を表す。mは1~4の整数である。nは1~4の整数である。)で表されるフルオロモノマー、及び、
一般式(150):CF=CF-O-(CFCFY151-O)-(CFY152-A151
(式中、Y151は、フッ素原子、塩素原子、-SOF基又はパーフルオロアルキル基を表す。パーフルオロアルキル基は、エーテル性の酸素及び-SOF基を含んでもよい。nは、0~3の整数を表す。n個のY151は、同一であってもよいし異なっていてもよい。Y152は、フッ素原子、塩素原子又は-SOF基を表す。mは、1~5の整数を表す。m個のY152は、同一であってもよいし異なっていてもよい。A151は、-SO151、-COZ151又は-POZ152153を表す。X151は、F、Cl、Br、I、-OR151又は-NR152153を表す。Z151、Z152及びZ153は、同一又は異なって、-NR154155又は-OR156を表す。R151、R152、R153、R154、R155及びR156は、同一又は異なって、H、アンモニウム、アルカリ金属、フッ素原子を含んでも良いアルキル基、アリール基、若しくはスルホニル含有基を表す。)で表されるフルオロモノマー
からなる群より選択される少なくとも1種が好ましい。
本明細書において、「パーフルオロ有機基」とは、炭素原子に結合する水素原子が全てフッ素原子に置換されてなる有機基を意味する。パーフルオロ有機基は、エーテル酸素を有していてもよい。
一般式(110)で表されるフルオロモノマーとしては、Rf111が炭素数1~10のパーフルオロアルキル基であるフルオロモノマーが挙げられる。パーフルオロアルキル基の炭素数は、好ましくは1~5である。
一般式(110)におけるパーフルオロ有機基としては、例えば、パーフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基等が挙げられる。
一般式(110)で表されるフルオロモノマーとしては、更に、一般式(110)において、Rf111が炭素数4~9のパーフルオロ(アルコキシアルキル)基であるもの、Rf111が下記式:
Figure JPOXMLDOC01-appb-C000001
(式中、mは、0又は1~4の整数を表す。)で表される基であるもの、Rf111が下記式:
Figure JPOXMLDOC01-appb-C000002
(式中、nは、1~4の整数を表す。)で表される基であるもの等が挙げられる。
一般式(110)で表されるフルオロモノマーとしては、なかでも、パーフルオロ(アルキルビニルエーテル)[PAVE]が好ましく、
一般式(160):CF=CF-ORf161
(式中、Rf161は、炭素数1~10のパーフルオロアルキル基を表す。)で表されるフルオロモノマーがより好ましい。Rf161は、炭素数が1~5のパーフルオロアルキル基であることが好ましい。
フルオロアルキルビニルエーテルとしては、一般式(160)、(130)及び(140)で表されるフルオロモノマーからなる群より選択される少なくとも1種が好ましい。
一般式(160)で表されるフルオロモノマー(PAVE)としては、パーフルオロ(メチルビニルエーテル)[PMVE]、パーフルオロ(エチルビニルエーテル)[PEVE]、及び、パーフルオロ(プロピルビニルエーテル)[PPVE]からなる群より選択される少なくとも1種が好ましく、パーフルオロ(メチルビニルエーテル)、及び、パーフルオロ(プロピルビニルエーテル)からなる群より選択される少なくとも1種がより好ましい。
一般式(130)で表されるフルオロモノマーとしては、CF=CFOCFOCF、CF=CFOCFOCFCF、及び、CF=CFOCFOCFCFOCFからなる群より選択される少なくとも1種が好ましい。
一般式(140)で表されるフルオロモノマーとしては、CF=CFOCFCF(CF)O(CFF、CF=CFO(CFCF(CF)O)(CFF、及び、CF=CFO(CFCF(CF)O)(CFFからなる群より選択される少なくとも1種が好ましい。
一般式(150)で表されるフルオロモノマーとしては、CF=CFOCFCFSOF、CF=CFOCFCF(CF)OCFCFSOF、CF=CFOCFCF(CFCFSOF)OCFCFSOF及びCF=CFOCFCF(SOF)からなる群より選択される少なくとも1種が好ましい。
一般式(100)で表されるフルオロモノマーとしては、Rf101が直鎖のフルオロアルキル基であるフルオロモノマーが好ましく、Rf101が直鎖のパーフルオロアルキル基であるフルオロモノマーがより好ましい。Rf101の炭素数は1~6であることが好ましい。一般式(100)で表されるフルオロモノマーとしては、CH=CFCF、CH=CFCFCF、CH=CFCFCFCF、CH=CFCFCFCFH、CH=CFCFCFCFCF、CHF=CHCF(E体)、CHF=CHCF(Z体)等が挙げられ、なかでも、CH=CFCFで示される2,3,3,3-テトラフルオロプロピレンが好ましい。
フルオロアルキルエチレンとしては、
一般式(170):CH=CH-(CF-X171
(式中、X171はH又はFであり、nは3~10の整数である。)で表されるフルオロアルキルエチレンが好ましく、CH=CH-C、及び、CH=CH-C13からなる群より選択される少なくとも1種がより好ましい。
フルオロアルキルアリルエーテルとしては、例えば、
一般式(180):CF=CF-CF-ORf111
(式中、Rf111は、パーフルオロ有機基を表す。)で表されるフルオロモノマーが挙げられる。
一般式(180)のRf111は、一般式(110)のRf111と同じである。Rf111としては、炭素数1~10のパーフルオロアルキル基または炭素数1~10のパーフルオロアルコキシアルキル基が好ましい。一般式(180)で表されるフルオロアルキルアリルエーテルとしては、CF=CF-CF-O-CF、CF=CF-CF-O-C、CF=CF-CF-O-C、及び、CF=CF-CF-O-Cからなる群より選択される少なくとも1種が好ましく、CF=CF-CF-O-C、CF=CF-CF-O-C、及び、CF=CF-CF-O-Cからなる群より選択される少なくとも1種がより好ましく、CF=CF-CF-O-CFCFCFが更に好ましい。
共重合モノマーとしては、なかでも、フルオロアルキルアリルエーテル、PAVE、及び、HFPからなる群より選択される少なくとも1種が好ましく、フッ素樹脂材料の半田加工時の変形を抑制できる点で、PAVEがより好ましい。
フッ素樹脂の好ましい形態の一つとして、TFE単位及びPAVE単位を含むTFE/PAVE共重合体[PFA]が挙げられる。フッ素樹脂がPFAである場合、フルオロアルキルアリルエーテル単位又はPAVE単位を全重合単位に対して0.1~12質量%含むことが好ましい。フルオロアルキルアリルエーテル単位又はPAVE単位の量は、全重合単位に対して0.3質量%以上であることがより好ましく、0.7質量%以上であることが更に好ましく、1.0質量%以上であることが更により好ましく、1.1質量%以上であることが特に好ましく、また、8.0質量%以下であることがより好ましく、6.5質量%以下であることが更に好ましく、6.0質量%以下であることが特に好ましい。
なお、フルオロアルキルアリルエーテル単位、PAVE単位の量は、19F-NMR法により測定する。後述のTFE単位、HFP単位についても同様である。
フッ素樹脂の好ましい形態の一つとして、TFE単位及びHFP単位を含むTFE/HFP共重合体[FEP]が挙げられる。フッ素樹脂がFEPである場合、TFE単位とHFP単位との質量比(TFE/HFP)が70~99/1~30(質量%)であることが好ましい。上記質量比(TFE/HFP)は、85~95/5~15(質量%)であることがより好ましい。
FEPは、HFP単位を全単量体単位の1質量%以上、好ましくは1.1質量%以上含む。
FEPは、TFE単位及びHFP単位とともに、フルオロアルキルアリルエーテル単位又はパーフルオロ(アルキルビニルエーテル)[PAVE]単位を含むことが好ましい。
FEPに含まれるフルオロアルキルアリルエーテル単位、PAVE単位としては、上述したPFAを構成するフルオロアルキルアリルエーテル単位、PAVE単位と同様のものを挙げることができる。なかでも、PPVEが好ましい。
上述したPFAは、HFP単位を含まないので、その点で、PAVE単位を含むFEPとは異なる。
FEPが、TFE単位と、HFP単位と、フルオロアルキルアリルエーテル単位又はPAVE単位とを含む場合、質量比(TFE/HFP/フルオロアルキルアリルエーテル又はPAVE)が70~99.8/0.1~25/0.1~25(質量%)であることが好ましい。上記範囲内であると、耐熱性、耐薬品性に優れたフッ素樹脂材料を得ることができる。
上記質量比(TFE/HFP/フルオロアルキルアリルエーテル又はPAVE)は、75~98/1.0~15/1.0~10(質量%)であることがより好ましい。
FEPは、HFP単位及びPAVE単位を合計で全単量体単位の1質量%以上、好ましくは1.1質量%以上含む。
TFE単位と、HFP単位と、フルオロアルキルアリルエーテル単位又はPAVE単位とを含むFEPは、HFP単位が全単量体単位の25質量%以下であることが好ましい。
HFP単位の含有量が上述の範囲内であると、耐熱性に優れたフッ素樹脂材料を得ることができる。
HFP単位の含有量は、20質量%以下がより好ましく、18質量%以下が更に好ましい。特に好ましくは15質量%以下である。また、HFP単位の含有量は、0.1質量%以上が好ましく、1質量%以上がより好ましい。特に好ましくは、2質量%以上である。
なお、HFP単位の含有量は、19F-NMR法により測定することができる。
フルオロアルキルアリルエーテル単位及又はPAVE単位の含有量は、20質量%以下がより好ましく、10質量%以下が更に好ましい。特に好ましくは3質量%以下である。また、フルオロアルキルアリルエーテル単位又はPAVE単位の含有量は、0.1質量%以上が好ましく、1質量%以上がより好ましい。なお、フルオロアルキルアリルエーテル単位、PAVE単位の含有量は、19F-NMR法により測定することができる。
FEPは、更に、他のエチレン性単量体(α)単位を含んでいてもよい。
他のエチレン性単量体(α)単位としては、TFE、HFP、フルオロアルキルアリルエーテル及びPAVEと共重合可能な単量体単位であれば特に限定されず、例えば、フッ化ビニル[VF]、フッ化ビニリデン[VdF]、クロロトリフルオロエチレン[CTFE]、エチレン[Et]等の含フッ素エチレン性単量体や、エチレン、プロピレン、アルキルビニルエーテル等の非フッ素化エチレン性単量体等が挙げられる。
FEPが、TFE単位と、HFP単位と、フルオロアルキルアリルエーテル単位又はPAVE単位と、他のエチレン性単量体(α)単位とを含む場合、質量比(TFE/HFP/フルオロアルキルアリルエーテル又はPAVE/他のエチレン性単量体(α))は、70~98/0.1~25/0.1~25/0.1~25(質量%)であることが好ましい。
FEPは、TFE単位以外の単量体単位を合計で全単量体単位の1質量%以上、好ましくは1.1質量%以上含む。
フッ素樹脂は、PFA及びFEPであることも好ましい。言い換えると、PFAとFEPとを混合して使用することも可能である。PFAとFEPとの質量比(PFA/FEP)は、9/1~3/7であることが好ましく、9/1~5/5であることがより好ましい。
PFA、FEPは、例えば、その構成単位となるモノマーや、重合開始剤等の添加剤を適宜混合して、乳化重合、懸濁重合を行う等の従来公知の方法により製造することができる。
フッ素樹脂は、融点が320℃以下であることが好ましい。これにより、光加熱による溶融接合を容易に行うことができる。
フッ素樹脂の融点は、より好ましくは318℃以下、更に好ましくは315℃以下であり、また、好ましくは250℃以上、更に好ましくは280℃以上である。
なお、フッ素樹脂の融点は、示差走査熱量計〔DSC〕を用いて10℃/分の速度で昇温したときの融解熱曲線における極大値に対応する温度である。
フッ素樹脂は、372℃におけるメルトフローレート(MFR)が0.1~100g/10分であることが好ましい。これにより、光加熱による溶融接合を容易に行うことができる。
MFRは、0.5g/10分以上がより好ましく、80g/10分以下がより好ましく、40g/10分以下が更に好ましい。
MFRは、ASTM D1238に従って、メルトインデクサー((株)安田精機製作所製)を用いて、372℃、5kg荷重下で内径2mm、長さ8mmのノズルから10分間あたりに流出するポリマーの質量(g/10分)として得られる値である。
樹脂(1)中、フッ素樹脂の含有量は、好ましくは50質量%以上、より好ましくは60質量%以上である。上限は特に限定されず、100質量%であってもよい。電気特性の観点から、樹脂(1)は、実質的にフッ素樹脂のみで構成されている(樹脂(1)中のフッ素樹脂の含有量が99質量%以上である)ことが好ましい。
樹脂(1)と金属との接合強度の観点から、樹脂(1)は、金属と接合される側に接着性表面処理が施されていることが好ましい。
接着性表面処理としては、例えば、エッチング処理、プラズマ処理、コロナ処理、光化学的処理等が挙げられ、好ましくはプラズマ処理、コロナ処理である。
接着性表面処理の条件は、樹脂(1)の組成等に応じて適宜設定可能である。
接合強度を向上させるために、樹脂(1)と金属との間に接着層を設けても良い。接着層としては特に限定されず、接着剤を用いて形成された層であってもよい。
接着剤としては特に限定されないが、フロン工業社製のPTFE強力接着剤、セメダイン社製のPPXセット、スリーボンド社製の低温硬化型接着剤等が挙げられ、フッ素材料用の接着剤が好ましい。
また、接着剤としてボンディングシートを用いてもよい。ボンディングシートとしては特に限定されないが、プラズマ処理したシリコーン樹脂(PDMS)等が挙げられ、市販のボンディングシートとしては、東亜合成社製の高耐熱性粘着フィルム、デクセリアルズ社製のD5200シリーズ、有沢製作所製のA23タイプ等が挙げられる。 
金属の厚みは、5~50μmであればよいが、好ましくは7μm以上、より好ましくは9μm以上であり、また、好ましくは45μm以下、より好ましくは40μm以下である。
なお、金属は、厚みが略一定の金属箔であることが好ましいが、金属に厚みが異なる部分が存在する場合、上記厚みは、金属を長手方向に等間隔に10分割した地点の厚みを測定し、それらを平均したものとする。
金属の厚み/樹脂(1)の厚みは、0.1~1であることが好ましい。
下限は、より好ましくは0.15、更に好ましくは0.2であり、上限は、より好ましくは0.95、更に好ましくは0.9である。
金属は、銅、ステンレス、アルミニウム、鉄、銀、金、ルテニウム及び、それらの合金からなる群より選択される少なくとも1種であることが好ましく、銅、銀、金、ステンレス及びアルミニウムからなる群より選択される少なくとも1種であることがより好ましく、銅であることが更に好ましい。
ステンレスとしては、オーステナイト系ステンレス、マルテンサイト系ステンレス、フェライト系ステンレス等が挙げられる。
銅としては、例えば、圧延銅、電解銅等が挙げられる。
金属は、樹脂(1)と接合される側の表面粗度Rzが2μm以下であることが好ましい。これにより、樹脂(1)と金属との接合体の伝送損失がより良好となる。
表面粗度Rzは、より好ましくは1.8μm以下、更に好ましくは1.5μm以下であり、また、より好ましくは0.3μm以上、更に好ましくは0.5μm以上である。
なお、表面粗度Rzは、JIS C 6515-1998の方法で算出される値(最大高さ粗さ)である。
樹脂(1)と金属との接合面は、90度剥離試験で測定される剥離強度が3N/cm以上、又は、90度剥離試験時に母材破壊となることが好ましい。上記剥離強度は、より好ましくは4N/cm以上、更に好ましくは5N/cm以上である。上限は特に限定されない。
なお、90度剥離試験は、JIS C 6481-1996に記載の方法で実施されるものである。
本開示の第一の接合体は、曲率が-40~40/mである。この範囲であれば、他の層への積層が容易である。
曲率は、形状安定性の観点から、好ましくは-35/m以上、より好ましくは-20/m以上、更に好ましくは-10/m以上であり、また、好ましくは35/m以下、より好ましくは20/m以下、更に好ましくは10/m以下である。
本開示の第一の接合体は、樹脂(1)及び金属を接合することで得られる。
樹脂(1)及び金属の接合は、プレス機等、公知の方法で実施してもよいが、形状安定性の観点から、後述の本開示の接合体の製造方法で説明する加熱処理で実施することが好ましい。すなわち、本開示の第一の接合体は、後述の本開示の接合体の製造方法によって好適に製造できる。
また、本開示の第一の接合体は、金属における吸収率が5%以上、樹脂(1)における吸収率が30%以下である光を用いて接合されたものであることが好ましい。光は、後述の本開示の接合体の製造方法で使用するものと同様である。
樹脂(1)の加熱された部分は配向が変化する。例えば、樹脂(1)が金属側から加熱された場合、金属側の部分とその逆側の部分とで、配向が異なることになる。よって、樹脂の配向から、加熱処理の有無を確認することができる。
樹脂(1)において、加熱され、非加熱の状態から配向が変化した部分を熱影響層とする。樹脂(1)の金属側の熱影響層の厚みは、樹脂(1)の厚みの80%以下が好ましく、70%以下がより好ましく、60%以下が更に好ましい。下限は特に限定されず、金属との接着が確認されれば5%以下であってもよい。
熱影響層は、接合体を幅方向に切断し、得られた切片の断面を観察することで確認できる。切断幅(断面を観察する際の切片の厚み)は20~50μm程度であればよい。観察方法は特に限定されないが、偏光顕微鏡、ラマン分析等が挙げられる。
本開示の第一の接合体は、基板用誘電材料として好適に用いられる。
本開示の第一の接合体において、樹脂(1)は、少なくとも一つの面に金属が接合されていればよいが、図2の製造方法に使用する場合、樹脂(1)の一つの面のみ(樹脂(1)がシート状である場合、表面、裏面のいずれかのみ)に、金属が接合され、他の面には何も接合されていないことが好ましい。また、金属は、少なくとも一つの面に樹脂(1)が接合されていればよいが、図2の製造方法に使用する場合、金属の一つの面のみ(金属が金属箔である場合、表面、裏面のいずれかのみ)に樹脂(1)が接合され、他の面には何も接合されていないことが好ましい。すなわち、本開示の第一の接合体は、樹脂(1)一つと、金属一つとが接合された片面接合体であることが好ましい。
(第一の基板)
本開示の第一の基板は、本開示の第一の接合体に更に樹脂(2)が積層されたものである。
樹脂(1)としてフッ素樹脂を、樹脂(2)としてフッ素樹脂より融点の低い樹脂(例えばエポキシ樹脂)を用いる場合には、接合に必要な加熱温度が異なるが、本開示の第一の基板では、樹脂(2)の加熱温度で実施すればよいため、一工程で基板を得ることができるという効果がある。
なお、本開示の第一の基板において、樹脂(2)は、本開示の第一の接合体の樹脂(1)側の面に積層されることが好ましい。すなわち、本開示の第一の基板は、金属、樹脂(1)、樹脂(2)の順に積層されたものであることが好ましい。
また、本開示の第一の基板は、図2で示したような、樹脂(2)の上下に本開示の第一の接合体を積層したものであることが好ましい。すなわち、本開示の第一の基板は、金属、樹脂(1)、樹脂(2)、樹脂(1)、金属の順に積層されたものであることが好ましい。
樹脂(2)としては、熱硬化性樹脂を好適に用いることができる。
熱硬化性樹脂は、ポリイミド、変性ポリイミド、エポキシ樹脂、熱硬化性変性ポリフェニレンエーテルからなる群より選択される少なくとも1種であることが好ましく、エポキシ樹脂、変性ポリイミド、熱硬化性変性ポリフェニレンエーテルであることがより好ましく、エポキシ樹脂、熱硬化性変性ポリフェニレンエーテルであることが更に好ましい。
樹脂(2)は、熱硬化性樹脂以外の樹脂であってもよい。
熱硬化性樹脂以外の樹脂としては、液晶ポリマー、ポリフェニレンエーテル、熱可塑性変性ポリフェニレンエーテル、シクロオレフィンポリマー、シクロオレフィンコポリマー、ポリスチレン、シンジオタクチックポリスチレンからなる群より選択される少なくとも1種が好ましい。
樹脂(2)の厚みは、好ましくは5μm以上、より好ましくは10μm以上であり、また、好ましくは2000μm以下、より好ましくは1500μm以下である。
なお、樹脂(2)は、厚みが略一定のシート状であることが好ましいが、樹脂(2)に厚みが異なる部分が存在する場合、上記厚みは、樹脂(2)を長手方向に等間隔に10分割した地点の厚みを測定し、それらを平均したものとする。
本開示の第一の基板の厚みは、好ましくは20μm以上、より好ましくは30μm以上であり、また、好ましくは5000μm以下、より好ましくは3000μm以下である。
なお、本開示の第一の基板の形状は、厚みが略一定のシート状であることが好ましいが、本開示の第一の基板に厚みが異なる部分が存在する場合、上記厚みは、本開示の第一の基板を長手方向に等間隔に10分割した地点の厚みを測定し、それらを平均したものとする。
本開示の第一の基板は、プリント基板、積層回路基板(多層基板)、高周波基板として好適に用いられる。
高周波回路基板は、高周波帯域でも動作させることが可能な回路基板である。高周波帯域とは、1GHz以上の帯域であってよく、3GHz以上の帯域であることが好ましく、5GHz以上の帯域であることがより好ましい。上限は特に限定されないが、100GHz以下の帯域であってもよい。
(接合体の製造方法)
本開示の接合体の製造方法は、30~200℃における線膨張係数17ppm/℃以上、かつ厚み5~100μmの樹脂(1)と、厚み5~50μmの金属とを積層し、金属を介して樹脂(1)を加熱する加熱処理により、樹脂(1)と金属とを接合させ、曲率が-40~40/mである接合体を得る工程を含む。
なお、樹脂(1)、金属は、本開示の第一の接合体で説明したものと同様である。
樹脂(1)及び金属をプレス機で加熱した場合、樹脂(1)全体が加熱されることで、樹脂(1)の変形が大きくなり、図3、4で示したように、接合体に反りが発生しやすい傾向がある。
これに対し、本開示の接合体の製造方法では、樹脂(1)全体を加熱するのではなく、金属を介して樹脂(1)を加熱する加熱処理により、樹脂(1)の、金属との接触部分のみを選択的に加熱することができる。これにより、樹脂(1)の変形が抑制されることで、曲率が-40~40/mである接合体を容易に得ることができる。
加熱処理としては、電磁波の照射等が挙げられる。電磁波を波長で分類すると、例えば、ガンマ線、X線、紫外線、可視光線、赤外線、電波、マイクロ波、超短波、短波、中波、長波、超長波、極超長波となる。電磁波としては、電波、光(紫外線、可視光線、赤外線等)、X線、ガンマ線が好ましく、電波、光がより好ましく、光が更に好ましい。
また、光等の電磁波は、金属側から照射してもよいし、樹脂(1)側から照射してもよいが、樹脂(1)側から照射することが好ましい。樹脂(1)側から照射することで、金属の加熱量を小さく制御でき、樹脂(1)の変形をより抑制することができる。
樹脂(1)側から光を照射する場合、光が樹脂(1)を透過すること、及び、光が金属に吸収されることが必要である。
このような光としては、金属における吸収率が5%以上、樹脂(1)における吸収率が30%以下、かつ金属における吸収率>樹脂(1)における吸収率のものが好適に用いられる。金属における吸収率は、好ましくは10%以上、より好ましくは15%以上であり、上限は特に限定されない。樹脂(1)における吸収率は、好ましくは25%以下、より好ましくは20%以下であり、下限は特に限定されない。金属における吸収率と樹脂(1)における吸収率との差(金属における吸収率-樹脂(1)における吸収率の値)は、好ましくは5%以上、より好ましくは10%以上であり、上限は特に限定されない。
なお、金属、樹脂(1)は、本開示の第一の接合体で説明したものと同様である。
また、上記吸収率は、紫外可視近赤外分光光度計(例えば、日本分光株式会社製「V-770」)を用いて、厚み12μmの金属、厚み25μmの樹脂(1)に対し、金属は表面を反射配置で測定し、樹脂(1)は透過配置で測定した際の値である。
光の具体例としては、レーザ;ハロゲンランプ、キセノンランプ、遠赤外線ヒーター、マイクロ波発生器等から照射される光;等が挙げられるが、レーザが好ましい。
レーザとしては、ファイバレーザ、YAGレーザ、ディスクレーザ、半導体レーザ、COレーザ、He-Neレーザ、エキシマレーザ、アルゴンレーザ等が挙げられるが、ファイバレーザ、YAGレーザが好ましく、ファイバレーザがより好ましい。
光の波長は、好ましくは200nm以上、より好ましくは400nm以上、更に好ましくは500nm以上であり、また、好ましくは10000nm以下、より好ましくは2500nm以下、更に好ましくは2000nm以下である。
光を照射する際の、出力/(スポット径×走査速度)の値は、好ましくは0.01J/mm以上、より好ましくは0.03J/mm以上、更に好ましくは0.05J/mm以上であり、また、好ましくは0.20J/mm以下、より好ましくは0.15J/mm以下、更に好ましくは0.10J/mm以下である。
樹脂(1)側から光を照射する方法としては特に限定されないが、製造効率の観点から、下記図5で示す方法が好ましい。図5は、樹脂(1)側から光を照射する態様の一例を示す模式図である。
図5の例では、樹脂(1)12及び金属13を積層し、ロールtoロール方式のプレス装置100で加圧する。プレス装置100は、図4中の下方に配置される樹脂側ロール101と、図4中の上方に配置される金属側ロール102とを備えており、樹脂側ロール101及び金属側ロール102によって樹脂(1)12及び金属13が加圧される。
光200は、樹脂側ロール101側からフッ素樹脂12に向かって照射される。図6は、図5の光の照射部分(点線部分)の拡大図である。
図6に示すように、光200によって金属13が加熱されると、金属13の一部が高温となる。高温となった部分を、高温部13aとして示している。そして、樹脂(1)12は、高温部13aと接する最表面だけが加熱され、溶融する。これにより、樹脂(1)12と金属13とが接合(接着)される。
樹脂側ロール101の材質としては、光の吸収率が20%以下のものであれば特に限定されないが、ガラス、熱可塑性樹脂、熱硬化性樹脂等が挙げられ、ガラス、熱硬化性樹脂が好ましく、ガラスがより好ましい。
なお、上記吸収率は、紫外可視近赤外分光光度計を用いて測定した値である。また、測定に使用する光は、本開示の接合体の製造方法で説明したものである。
(基板の製造方法)
本開示の基板の製造方法は、本開示の接合体の製造方法により得られた接合体と、樹脂(2)とを接合する工程を含む。
なお、樹脂(2)は、本開示の第一の基板で説明したものと同様である。
本開示の基板の製造方法では、樹脂(1)及び金属が既に接合された接合体と、樹脂(2)とを接合するため、樹脂(1)、金属及び樹脂(2)を同時に接合する方法と比較して、接着時の温度条件の設定が容易であり、かつ、処理工程を少なくできるという効果がある。
接合体と樹脂(2)との接合は、プレス機等、公知の方法で実施可能である。
本開示の基板の製造方法で得られる基板の厚み、好適な用途等は、本開示の第一の基板で説明したものと同様である。
(本開示の第二の接合体)
本開示の第二の接合体は、30~200℃における線膨張係数17ppm/℃以上、かつ厚み5~100μmの樹脂(1)の一つの面に、厚み5~50μmの金属が接合されており、樹脂(1)の金属側の熱影響層が樹脂(1)の厚みに対して80%以下である。
加熱時の樹脂の変形は、加熱によって樹脂の結晶状態が変化することに起因するものであると考えられる。本開示の第二の接合体は、樹脂(1)の金属側の熱影響層が樹脂(1)の厚みに対して一定以下であることにより、樹脂(1)の変形を抑制しながら、樹脂(1)と金属とが接合された接合体が得られる。
樹脂(1)の金属側の熱影響層は、樹脂(1)の厚みの80%以下であればよいが、70%以下が好ましく、60%以下がより好ましい。下限は特に限定されず、金属との接着が確認されれば5%以下であってもよい。
樹脂(1)の一部のみ結晶状態を変化させる方法、すなわち、樹脂(1)の一部のみに熱影響層を形成する方法は特に限定されないが、例えば、本開示の接合体の製造方法のように、樹脂(1)の、金属との接触部分のみを選択的に加熱する方法が挙げられる。本開示の接合体の製造方法によれば、樹脂(1)の金属側のみに熱影響層を形成することができる。
本開示の第二の接合体において、曲率は、好ましくは-40/m以上、より好ましくは-35/m以上、更に好ましくは-20/m以上、特に好ましくは-10/m以上であり、また、好ましくは40/m以下、より好ましくは35/m以下、更に好ましくは20/m以下、特に好ましくは10/m以下である。
本開示の第二の接合体における樹脂(1)、金属としては、本開示の第一の接合体と同様のものを使用できる。
また、本開示の第一の接合体で説明した形態は、本開示の第二の接合体にも適用可能である。
(本開示の第二の基板)
本開示の第二の基板は、本開示の第二の接合体に、更に樹脂(2)が積層されたものである。
本開示の第二の基板は、本開示の第一の基板と同様、製造する際、樹脂(2)の加熱温度で実施すればよいため、一工程で製造可能であるという効果がある。
本開示の第二の基板における樹脂(2)としては、本開示の第一の基板と同様のものを使用できる。
また、本開示の第一の基板で説明した形態は、本開示の第二の基板にも適用可能である。
次に実施例を挙げて本開示を更に詳しく説明するが、本開示はこれらの実施例のみに限定されるものではない。
実施例で使用する材料は、以下のとおりである。
銅箔(電解銅、厚み:12μm、接合される側の表面粗度Rz:表1、2に記載)
PFAフィルム(厚み:25μm、TFE/PAVE(質量%):96/4、融点:310℃、MFR:14g/10分、表面処理の有無:表1、2に記載(表面処理ありの実施例10、11は、プラズマ処理を実施)、比誘電率:2.1、誘電正接:0.001)
(線膨張率)
PFAフィルムの線膨張率(線膨張係数)は、TMA―7100(株式会社日立ハイテクサイエンス製)を用いて以下のモードによるTMA測定を行い求めた。
[引張モード測定]
サンプル片として、長さ20mm、幅4mm、に切出した厚み25μmの押出フィルムを用いて、49mNの荷重で引っ張りながら昇温速度2℃/分で30~200℃でのサンプルの変位量から線膨張率を求めた。結果は213ppm/℃であった。
(比誘電率及び誘電正接)
比誘電率及び誘電正接はスプリットシリンダ共振器法で求めた。スプリットシリンダとしてEMラボ株式会社製の各周波数に対応する共振器を使用し、ネットワークスペクトルアナライザーとしてKeysight N5290Aを用いた。測定対象のサンプルとして厚み25μm×幅62mm×長さ75mmのフィルムを使用した。測定周波数は10GHz、測定温度は25℃とした。
(実施例1~11)
銅箔及びPFAフィルムを積層した後、フッ素樹脂側に石英ガラスを、銅箔側に銅板、ゴムシートの順に設置しフランジで圧力1(MPa)程度になるよう固定し、PFAフィルム側からレーザ(ファイバレーザ、銅における吸収率:表3に記載、フッ素樹脂における吸収率:5%)をピッチ0.11~0.23mmで2秒毎に照射し、銅箔を加熱した。レーザの出力、走査速度は、表1に記載の条件とした。レーザのスポット径は全て1mmとした。レーザの波長は全て1070nmとした。
そして、加熱された銅箔を介して、PFAフィルムを溶融させることで、銅箔及びPFAフィルムが接合された接合体を得た。
(比較例1~3)
銅箔及びPFAフィルムを積層した後、加熱温度:320℃、圧力:3MPaで5分間プレスすることにより銅箔及びPFAフィルムが接合された接合体を得た。
(比較例4、5)
レーザを表2の条件とした点を除き、実施例1~11と同様の方法で、銅箔及びPFAフィルムが接合された接合体を得た。
(90度剥離試験)
JIS C 6481-1996に準拠した方法で、90度剥離試験を実施した。
上記で得られた接合体の端部の樹脂を1cm程度剥がし、試験機のチャックに挟み、引張速度(移動速度)50mm/分の条件で、剥離強度(単位:N/cm)を測定した。
(曲率)
上記で得られた接合体を45×5mmに切り出し、長辺方向のカーブから曲率を算出した。
(熱影響層の厚み)
上記で得られた接合体を幅方向に切断し、得られた切片(切断幅:20~50μm)の切断面を偏光顕微鏡で観察し、PFAフィルムの金属側に形成された熱影響層の厚みを測定した。結果は、PFAフィルムの厚み全体に対する割合(%)で示した。
上記で得られた接合体の、90度剥離試験の結果、曲率、及び、熱影響層の厚みを表1、2に示す。比較例4は、出力が100Wと高く、走査速度が遅いため、出力/(スポット径×走査速度)の値が大きくなり、曲率が大きくなった。比較例5は、比較例4よりも更に出力/(スポット径×走査速度)の値が大きいため、PFAフィルムが焦げてしまい、剥離強度及び曲率を測定できなかった。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
10:基板用積層体
11:コア層
12:フッ素樹脂、樹脂(1)
13:金属
13a:高温部
14:片面接合体
100:プレス装置
101:樹脂側ロール
102:金属側ロール
200:光
 

Claims (35)

  1. 30~200℃における線膨張係数17ppm/℃以上、かつ厚み5~100μmの樹脂(1)の一つの面に、厚み5~50μmの金属が接合されており、
    曲率が-40~40/mである接合体。
  2. 前記樹脂(1)が、フッ素樹脂を含む請求項1記載の接合体。
  3. 前記樹脂(1)が、実質的に前記フッ素樹脂のみで構成されている請求項2記載の接合体。
  4. 前記フッ素樹脂の融点が、320℃以下である請求項2又は3記載の接合体。
  5. 前記金属が、銅である請求項1~4のいずれかに記載の接合体。
  6. 前記銅が、圧延銅又は電解銅である請求項5記載の接合体。
  7. 前記金属の厚み/前記樹脂(1)の厚みが、0.1~1である請求項1~6のいずれかに記載の接合体。
  8. 前記金属における吸収率が5%以上、前記樹脂(1)における吸収率が30%以下であり、かつ前記金属における吸収率>前記樹脂(1)における吸収率である光を用いて接合されたものであることを特徴とする請求項1~7のいずれかに記載の接合体。
  9. 前記樹脂(1)と前記金属との接合面は、90度剥離試験で測定される剥離強度が3N/cm以上、又は、90度剥離試験時に母材破壊となる請求項1~8のいずれかに記載の接合体。
  10. 前記金属は、前記樹脂(1)と接合される側の表面粗度Rzが2μm以下である請求項1~9のいずれかに記載の接合体。
  11. 前記樹脂(1)は、前記金属と接合される側に接着性表面処理が施されている請求項1~10のいずれかに記載の接合体。
  12. 基板用誘電材料である請求項1~11のいずれかに記載の接合体。
  13. 請求項1~12のいずれかに記載の接合体に、更に樹脂(2)が積層された基板。
  14. 前記樹脂(2)が、熱硬化性樹脂である請求項13記載の基板。
  15. 前記熱硬化性樹脂が、ポリイミド、変性ポリイミド、エポキシ樹脂、熱硬化性変性ポリフェニレンエーテルからなる群より選択される少なくとも1種である請求項14記載の基板。
  16. 前記樹脂(2)が、液晶ポリマー、ポリフェニレンエーテル、熱可塑性変性ポリフェニレンエーテル、シクロオレフィンポリマー、シクロオレフィンコポリマー、ポリスチレン、シンジオタクチックポリスチレンからなる群より選択される少なくとも1種である請求項13記載の基板。
  17. プリント基板、積層回路基板又は高周波基板である請求項13~16のいずれかに記載の基板。
  18. 厚み5~100μm、30~200℃における線膨張係数17ppm/℃以上の樹脂(1)と、厚み5~50μmの金属とを積層し、前記金属を介して前記樹脂(1)を加熱する加熱処理により、前記樹脂(1)と前記金属とを接合させ、曲率が-40~40/mである接合体を得る工程を含む接合体の製造方法。
  19. 前記加熱処理が、前記金属への光の照射である請求項18記載の接合体の製造方法。
  20. 前記光が、前記金属における吸収率が5%以上、前記樹脂(1)における吸収率が30%以下であり、かつ前記金属における吸収率>前記樹脂(1)における吸収率である請求項19記載の接合体の製造方法。
  21. 前記接合体が、基板用誘電材料である請求項18~20のいずれかに記載の接合体の製造方法。
  22. 請求項18~21のいずれかに記載の製造方法により得られた接合体と、樹脂(2)とを接合する工程を含む基板の製造方法。
  23. 前記樹脂(2)が、熱硬化性樹脂である請求項22記載の基板の製造方法。
  24. 前記熱硬化性樹脂が、ポリイミド、変性ポリイミド、エポキシ樹脂、熱硬化性変性ポリフェニレンエーテルからなる群より選択される少なくとも1種である請求項23記載の基板の製造方法。
  25. 前記樹脂(2)が、液晶ポリマー、ポリフェニレンエーテル、熱可塑性変性ポリフェニレンエーテル、シクロオレフィンポリマー、シクロオレフィンコポリマー、ポリスチレン、シンジオタクチックポリスチレンからなる群より選択される少なくとも1種である請求項22記載の基板の製造方法。
  26. 前記基板が、プリント基板、積層回路基板又は高周波基板である請求項22~25のいずれかに記載の基板の製造方法。
  27. 30~200℃における線膨張係数17ppm/℃以上、かつ厚み5~100μmの樹脂(1)の一つの面に、厚み5~50μmの金属が接合されており、
    前記樹脂(1)の前記金属側の熱影響層が前記樹脂(1)の厚みに対して80%以下である接合体。
  28. 曲率が-40~40/mである請求項27記載の接合体。
  29. 前記樹脂(1)が、フッ素樹脂を含む請求項27又は28記載の接合体。
  30. 前記樹脂(1)が、実質的に前記フッ素樹脂のみで構成されている請求項29記載の接合体。
  31. 前記金属が、銅である請求項27~30のいずれかに記載の接合体。
  32. 前記樹脂(1)と前記金属との接合面は、90度剥離試験で測定される剥離強度が3N/cm以上、又は、90度剥離試験時に母材破壊となる請求項27~31のいずれかに記載の接合体。
  33. 基板用誘電材料である請求項27~32のいずれかに記載の接合体。
  34. 請求項27~33のいずれかに記載の接合体に、更に樹脂(2)が積層された基板。
  35. 前記樹脂(2)が、熱硬化性樹脂である請求項34記載の基板。
PCT/JP2022/015680 2021-04-27 2022-03-29 接合体、基板、接合体の製造方法、及び、基板の製造方法 WO2022230566A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237036884A KR20230162669A (ko) 2021-04-27 2022-03-29 접합체, 기판, 접합체의 제조 방법, 및 기판의 제조 방법
CN202280030581.6A CN117203051A (zh) 2021-04-27 2022-03-29 接合体、基板、接合体的制造方法以及基板的制造方法
EP22795482.3A EP4331835A1 (en) 2021-04-27 2022-03-29 Bonded body, substrate, method for producing bonded body, and method for producing substrate
US18/495,857 US20240092061A1 (en) 2021-04-27 2023-10-27 Bonded body, substrate, method for producing bonded body, and method for producing substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021074939 2021-04-27
JP2021-074939 2021-04-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/495,857 Continuation US20240092061A1 (en) 2021-04-27 2023-10-27 Bonded body, substrate, method for producing bonded body, and method for producing substrate

Publications (1)

Publication Number Publication Date
WO2022230566A1 true WO2022230566A1 (ja) 2022-11-03

Family

ID=83847406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015680 WO2022230566A1 (ja) 2021-04-27 2022-03-29 接合体、基板、接合体の製造方法、及び、基板の製造方法

Country Status (7)

Country Link
US (1) US20240092061A1 (ja)
EP (1) EP4331835A1 (ja)
JP (1) JP7191350B2 (ja)
KR (1) KR20230162669A (ja)
CN (1) CN117203051A (ja)
TW (1) TW202248009A (ja)
WO (1) WO2022230566A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145135A1 (ja) * 2022-01-28 2023-08-03 信越ポリマー株式会社 積層体、及び該積層体を有する金属張積層板
WO2023157369A1 (ja) * 2022-02-16 2023-08-24 信越ポリマー株式会社 積層体、及び該積層体を有する金属張積層板

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6363773A (ja) * 1986-09-04 1988-03-22 Nippon Telegr & Teleph Corp <Ntt> 接着方法
JP2008207540A (ja) 2007-02-02 2008-09-11 Seiko Epson Corp ラインヘッド、該ラインヘッドを用いた露光方法、画像形成装置、画像形成方法、および該ラインヘッドの調整方法
JP2008207547A (ja) * 2007-01-30 2008-09-11 Toray Ind Inc 熱可塑性樹脂成形品と金属の複合体の製造方法
JP2010125653A (ja) * 2008-11-26 2010-06-10 Nitto Denko Corp シート接合体作製方法
JP2011235570A (ja) 2010-05-12 2011-11-24 Shingijutsu Kenkyusho:Kk 金属体と樹脂体を接合した部材およびその製造方法
JP2019123153A (ja) 2018-01-17 2019-07-25 株式会社ヒロテック フッ素樹脂の接合方法及び金属樹脂接合体
WO2019230568A1 (ja) * 2018-05-30 2019-12-05 Agc株式会社 樹脂付金属箔の製造方法及び樹脂付金属箔
WO2020067022A1 (ja) 2018-09-25 2020-04-02 株式会社ヒロテック 金属材の接合方法及び金属接合体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6363773A (ja) * 1986-09-04 1988-03-22 Nippon Telegr & Teleph Corp <Ntt> 接着方法
JP2008207547A (ja) * 2007-01-30 2008-09-11 Toray Ind Inc 熱可塑性樹脂成形品と金属の複合体の製造方法
JP2008207540A (ja) 2007-02-02 2008-09-11 Seiko Epson Corp ラインヘッド、該ラインヘッドを用いた露光方法、画像形成装置、画像形成方法、および該ラインヘッドの調整方法
JP2010125653A (ja) * 2008-11-26 2010-06-10 Nitto Denko Corp シート接合体作製方法
JP2011235570A (ja) 2010-05-12 2011-11-24 Shingijutsu Kenkyusho:Kk 金属体と樹脂体を接合した部材およびその製造方法
JP2019123153A (ja) 2018-01-17 2019-07-25 株式会社ヒロテック フッ素樹脂の接合方法及び金属樹脂接合体
WO2019230568A1 (ja) * 2018-05-30 2019-12-05 Agc株式会社 樹脂付金属箔の製造方法及び樹脂付金属箔
WO2020067022A1 (ja) 2018-09-25 2020-04-02 株式会社ヒロテック 金属材の接合方法及び金属接合体

Also Published As

Publication number Publication date
TW202248009A (zh) 2022-12-16
US20240092061A1 (en) 2024-03-21
EP4331835A1 (en) 2024-03-06
KR20230162669A (ko) 2023-11-28
JP2022169444A (ja) 2022-11-09
CN117203051A (zh) 2023-12-08
JP7191350B2 (ja) 2022-12-19

Similar Documents

Publication Publication Date Title
JP7191350B2 (ja) 接合体、基板、接合体の製造方法、及び、基板の製造方法
TWI636885B (zh) 金屬箔積層板的製造方法及其應用
TWI715760B (zh) 積層體、印刷基板及積層體之製造方法
JP7234944B2 (ja) 長尺積層体、その製造方法及びプリント配線板
WO2007040061A1 (ja) 銅張積層板、プリント配線板及び多層プリント配線板並びにこれらの製造方法
JP7338619B2 (ja) ロールフィルム、ロールフィルムの製造方法、銅張積層体の製造方法、及びプリント基板の製造方法
JP6816722B2 (ja) 配線基板の製造方法
US20150296614A1 (en) Crosslinked fluoropolymer circuit materials, circuit laminates, and methods of manufacture thereof
TWI720206B (zh) 適於高頻電路之雙面電路用基板
JP2019104171A (ja) 金属−樹脂積層体
JP2019104170A (ja) 金属−樹脂積層体
WO2014171554A1 (ja) 金属張積層体及びプリント配線基板
WO2016021666A1 (ja) 高周波回路用に適した両面回路用基板
JP2017002115A (ja) フッ素樹脂フィルム、積層体及び積層体の製造方法
CN113227216A (zh) 粉末分散液、层叠体的制造方法、聚合物膜的制造方法和被覆织布的制造方法
JP7230932B2 (ja) 積層体及びその製造方法、複合積層体の製造方法、並びにポリマーフィルムの製造方法
JP7174305B2 (ja) フッ素樹脂フィルム、銅張積層体及び回路用基板
JP7247536B2 (ja) 複合体の製造方法及び複合体
WO2020171024A1 (ja) 積層体及び積層体の製造方法
JP7269518B2 (ja) 改質フッ素樹脂材料、回路基板用材料、回路基板用積層体、回路基板、及び、改質フッ素樹脂材料の製造方法
WO2014171553A1 (ja) 金属張積層体
WO2024122588A1 (ja) λ/4型電波吸収体及びλ/4型電波吸収体用フィルム
TWI840480B (zh) 粉末分散液、積層體之製造方法、聚合物膜之製造方法、及被覆織布之製造方法
TWI841559B (zh) 捲狀膜、捲狀膜之製造方法、覆銅積層體之製造方法、及印刷基板之製造方法
JP4217562B2 (ja) 無端搬送ベルト基材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795482

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280030581.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237036884

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237036884

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022795482

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022795482

Country of ref document: EP

Effective date: 20231127