WO2022217755A1 - 一种软磁合金磁片及其制备方法和应用 - Google Patents

一种软磁合金磁片及其制备方法和应用 Download PDF

Info

Publication number
WO2022217755A1
WO2022217755A1 PCT/CN2021/103457 CN2021103457W WO2022217755A1 WO 2022217755 A1 WO2022217755 A1 WO 2022217755A1 CN 2021103457 W CN2021103457 W CN 2021103457W WO 2022217755 A1 WO2022217755 A1 WO 2022217755A1
Authority
WO
WIPO (PCT)
Prior art keywords
soft magnetic
optionally
magnetic alloy
magnetic sheet
casting
Prior art date
Application number
PCT/CN2021/103457
Other languages
English (en)
French (fr)
Inventor
朱权
於扬栋
王雷杰
易康
王菲
Original Assignee
横店集团东磁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横店集团东磁股份有限公司 filed Critical 横店集团东磁股份有限公司
Priority to US18/264,577 priority Critical patent/US20240055166A1/en
Priority to EP21936627.5A priority patent/EP4266335A1/en
Publication of WO2022217755A1 publication Critical patent/WO2022217755A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • H01F1/14733Fe-Ni based alloys in the form of particles
    • H01F1/14741Fe-Ni based alloys in the form of particles pressed, sintered or bonded together
    • H01F1/1475Fe-Ni based alloys in the form of particles pressed, sintered or bonded together the particles being insulated
    • H01F1/14758Fe-Ni based alloys in the form of particles pressed, sintered or bonded together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/08Cores, Yokes, or armatures made from powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/10Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/14Polyepoxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00422Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/20Mortars, concrete or artificial stone characterised by specific physical values for the density

Definitions

  • the application belongs to the technical field of magnetic materials, and relates to a soft magnetic alloy magnetic sheet and a preparation method and application thereof.
  • the current preparation process for soft magnetic alloy secondary magnetic sheets is similar to the slurry casting process for preparing LTCC green tapes.
  • thermoplastic resin is generally used as a binder for slurrying, and the dielectric ceramic powder used in it has a low density, so the slurry made is not so easy to settle compared to soft magnetic alloys. , is relatively easy in terms of technological difficulty.
  • CN108623288A discloses a beryllium oxide ceramic tape casting slurry and a production method thereof.
  • the composition is: by weight percentage, powder 50%-70%, organic solvent 30%-50%, the powder is a mixture of beryllium oxide powder, silicon dioxide powder and magnesium oxide powder, the organic solvent The solvent is a mixture of phthalate, toluene, methyl ethyl ketone, isopropanol, phosphate anionic emulsifier and polyvinyl butyral.
  • the above two documents respectively introduce a formula and preparation method of a green ceramic tape, but the prepared magnetic sheets all need to be sintered at high temperature, the formula belongs to a thermoplastic system, and the solid content is low, and the formula and casting process are relatively simple.
  • the purpose of this application is to provide a soft magnetic alloy magnetic sheet and its preparation method and application.
  • a soft magnetic alloy magnetic sheet with high saturation magnetic induction intensity, low loss, certain hardness and temperature resistance higher than 160°C is obtained.
  • Its advantage lies in the use of the high-temperature curing (generally 150-220°C) characteristics of thermosetting resins to make the magnetic sheet hardened, avoiding the problem of increased loss caused by the failure of the insulating cladding layer after high-temperature sintering in the traditional lamination process.
  • the present application provides a method for preparing a soft magnetic alloy magnetic sheet, the preparation method comprising the following steps:
  • thermosetting resin thermoplastic resin, solvent, curing agent and soft magnetic alloy powder through insulation coating to obtain casting slurry
  • step (1) Degassing and casting and drying the casting slurry described in step (1) in sequence to obtain the soft magnetic alloy magnetic sheet.
  • the insulating coating of the soft magnetic alloy powder includes coating the soft magnetic powder with silicon dioxide and phosphoric acid solution, wherein the median particle size of the silicon dioxide is less than 1 ⁇ m, such as 0.5 ⁇ m, 0.6 ⁇ m, 0.7 ⁇ m, 0.8 ⁇ m or 0.9 ⁇ m, etc.
  • the soft magnetic alloy powder after insulation coating has the advantage of greatly improving the resistivity of the prepared magnetic sheet, effectively reducing the eddy current loss of the product, and at the same time making the prepared thin film power inductor terminal difficult to electroplating Creeping plating occurs.
  • the preparation method provided by the present application uses the thermosetting resin, the thermoplastic resin and the insulating-coated soft magnetic alloy powder to cooperate with each other.
  • the thermoplastic resin plays the role of bridging the cross-linked soft magnetic alloy powder and the thermosetting resin.
  • the delayed magnetic sheet is easier to form a film, and the texture is soft. After curing, the magnetic sheet can maintain the strength after curing at 160 °C; at the same time, the casting process is used to make the film thickness of the magnetic sheet uniform, which not only maintains a certain degree of flexibility and extension.
  • the formula used in this application can make the solid content of the slurry higher, which avoids improper casting process, resulting in poor film strength or even no film formation, or after film formation.
  • the film is too brittle, making it difficult for the magnetic sheet to be wound or unable to perform subsequent processing.
  • the soft magnetic alloy magnetic sheet prepared by the preparation method provided in the present application has high saturation magnetic induction intensity and low loss, and at the same time, it has a certain hardness after being fully cured and can withstand temperatures above 160°C.
  • soft magnetic alloy powder is selected instead of other materials such as ferrite, because soft magnetic alloy powder has a larger saturation magnetic flux density, which is more conducive to the passage of large current, and is suitable for the preparation of high current.
  • Power inductors have the advantages that ferrites cannot reach, and the permeability of ferrites will drop sharply when the frequency is above 1MHz, and the loss will increase greatly, while the soft magnetic alloy materials can still maintain a high permeability above 100MHz. And lower loss, more in line with the trend of more and more high-frequency applications.
  • thermosetting resin if a thermosetting resin is not added in the preparation of the casting slurry, the prepared magnetic sheet cannot be heated and cured to achieve the effect of maintaining the hardened state at a high temperature of 160°C, and the use requirements of the power inductor in a specific high temperature environment cannot be met.
  • thermoplastic resin if the thermoplastic resin is not added, it is difficult to form a film when the slurry is cast, and the obtained film has poor flexibility and is not easy to be wound and cut.
  • the casting slurry in step (1) further includes any one or a combination of at least two of a plasticizer, a dispersant or a curing agent accelerator.
  • the weight proportion of the insulating-coated soft magnetic alloy powder is 82-91 wt %, such as 82 wt %, 83 wt %, 85 wt %, 86 wt %, 87 wt % , 88wt%, 89wt%, 90wt% or 91wt%, etc., optionally 85-91wt%.
  • the weight of the insulating-coated soft magnetic alloy powder is the solid content of the casting slurry.
  • the weight ratio is 85-91 wt%, it is more beneficial to ensure that the magnetic sheet has a higher magnetic permeability .
  • the weight proportion of the thermosetting resin is 1.5-4 wt %, for example, 1.5 wt %, 2 wt %, 3 wt % or 4 wt %.
  • the weight proportion of the thermoplastic resin is 1-2wt%, such as 1wt%, 1.2wt%, 1.4wt%, 1.5wt%, 1.6wt%, 1.8wt% % or 2wt%, etc.
  • the weight proportion of the dispersant is 0-0.6 wt %, such as 0 wt %, 0.3 wt %, 0.4 wt %, 0.5 wt % or 0.6 wt %, etc.
  • the weight proportion of the solvent is 6-10 wt %, such as 6 wt %, 7 wt %, 8 wt %, 9 wt % or 10 wt %, etc.
  • the weight proportion of the curing agent is 0.5-0.7 wt %, for example, 0.5 wt %, 0.6 wt % or 0.7 wt %.
  • the weight ratio of the plasticizer is 0 to 0.6 wt %, for example, 0 wt %, 0.3 wt %, 0.4 wt %, 0.5 wt % or 0.6 wt %, etc. .
  • the weight proportion of the curing agent accelerator is 0-0.25wt%, such as 0wt%, 0.1wt%, 0.15wt%, 0.25wt% or 0.25wt% Wait.
  • thermosetting resin in step (1) includes bisphenol A type epoxy resin and/or bisphenol F type epoxy resin.
  • thermoplastic resin in step (1) includes polyvinyl butyral ester and/or polymethyl methacrylate.
  • the dispersing agent in step (1) includes any one or a combination of at least two of castor oil, industrial fish oil or triolein.
  • the solvent in step (1) includes any one or a combination of at least two of absolute ethanol, isopropanol, ethyl acetate or butanone.
  • the curing agent in step (1) includes any one or a combination of at least two of m-xylylenediamine, isophoronediamine, diethyltoluenediamine or dicyandiamide.
  • the plasticizer includes any one or a combination of at least two of dioctyl phthalate, dibutyl phthalate, or polyether compounds with multiple hydroxyl functional groups.
  • the polyether compound with multiple hydroxyl functional groups refers to a hydroxyl polyether compound with a hydroxyl value mgKOH/g of 200-300.
  • the curing agent accelerator includes any one or a combination of at least two of 2-methylimidazole, 2-ethyl-4-methylimidazole or salicylic acid.
  • the median particle size of the soft magnetic alloy powder in the insulating coated soft magnetic alloy powder in step (1) is 4-15 ⁇ m, such as 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, 11 ⁇ m, 12 ⁇ m, 13 ⁇ m, 14 ⁇ m or 15 ⁇ m etc.
  • the soft magnetic alloy powder provided by the present application has a high particle density and is easy to settle.
  • the soft magnetic alloy powder in the insulating coated soft magnetic alloy powder in step (1) includes any one or a combination of at least two of iron-nickel powder, iron-silicon-aluminum powder or iron-silicon-chromium powder .
  • the vacuum degree of the defoaming in step (2) is -0.07 ⁇ -0.096Mpa, such as -0.07Mpa, -0.08Mpa, -0.09Mpa or -0.096Mpa, etc.
  • the defoaming time in step (2) is 5 to 20 minutes, such as 5 minutes, 10 minutes, 15 minutes, or 20 minutes.
  • the viscosity of the degassed slurry in step (2) is 2000-3000cps, such as 2000cps, 2500cps or 3000cps, etc.
  • the stirring speed of the feeding system is 3-5 rpm/min, for example, 3 rpm/min, 4 rpm/min or 5 rpm/min and the like.
  • the uniformity of the slurry during the casting process is ensured by stirring.
  • the thickness of the soft magnetic alloy magnetic sheet is 75-200 ⁇ m, for example, 75 ⁇ m, 80 ⁇ m, 90 ⁇ m, 100 ⁇ m, 110 ⁇ m, 120 ⁇ m, 130 ⁇ m, 140 ⁇ m, 150 ⁇ m, 160 ⁇ m, 170 ⁇ m, 180 ⁇ m, 190 ⁇ m or 200 ⁇ m.
  • the feeding speed of the casting treatment in step (2) is 0.15-0.45m/min, such as 0.15m/min, 0.2m/min, 0.25m/min, 0.3m/min, 0.35m/min , 0.4m/min or 0.45m/min, etc.
  • the knife-edge gap of the casting treatment in step (2) is 180-280 ⁇ m, for example, 180 ⁇ m, 200 ⁇ m, 210 ⁇ m, 220 ⁇ m, 230 ⁇ m, 240 ⁇ m, 250 ⁇ m, 260 ⁇ m, 270 ⁇ m, or 280 ⁇ m.
  • the thickness of the soft magnetic alloy magnetic sheet is 75-85 ⁇ m, such as 75 ⁇ m, 76 ⁇ m, 77 ⁇ m, 78 ⁇ m, 79 ⁇ m, 80 ⁇ m, 81 ⁇ m, 82 ⁇ m, 83 ⁇ m, 84 ⁇ m or 85 ⁇ m, etc.
  • the knife-edge gap is 180-220 ⁇ m, such as 180 ⁇ m, 190 ⁇ m, 200 ⁇ m, 210 ⁇ m or 220 ⁇ m, etc.
  • the feeding speed is 0.3-0.45m/min, such as 0.3m/min, 0.35m/min, 0.4m/min or 0.45m/min min et al.
  • the thickness of the soft magnetic alloy magnetic sheet is 95-105 ⁇ m, for example, 95 ⁇ m, 96 ⁇ m, 97 ⁇ m, 98 ⁇ m, 99 ⁇ m, 100 ⁇ m, 101 ⁇ m, 102 ⁇ m, 103 ⁇ m, 104 ⁇ m or 105 ⁇ m, etc.
  • the knife-edge gap is 200-240 ⁇ m, such as 200 ⁇ m, 210 ⁇ m, 220 ⁇ m, 230 ⁇ m or 240 ⁇ m, etc., and the feeding speed is 0.2-0.35m/min, such as 0.2m/min, 0.25m/min, 0.3m/min or 0.35m/min Wait.
  • the thickness of the soft magnetic alloy magnetic sheet is 115-125 ⁇ m, such as 115 ⁇ m, 116 ⁇ m, 117 ⁇ m, 118 ⁇ m, 119 ⁇ m, 120 ⁇ m, 121 ⁇ m, 122 ⁇ m, 123 ⁇ m, 124 ⁇ m or 125 ⁇ m, etc.
  • the knife-edge gap is 230-280 ⁇ m, such as 230 ⁇ m, 240 ⁇ m, 250 ⁇ m, 260 ⁇ m, 270 ⁇ m or 280 ⁇ m, etc.
  • the feeding speed is 0.15-0.25m/min, such as 0.15m/min, 0.2m/min or 0.25m/min, etc.
  • the knife-edge gap and feeding rate should be adjusted, so as to ensure the uniform film thickness of the magnetic sheets obtained by casting, and to prevent the magnetic sheets from cracking during the subsequent drying process. Does not shrink, the film is soft and not brittle.
  • the inlet and outlet air volume in the drying process is 0.2-0.25m 3 /min, such as 0.2m 3 /min, 0.21m 3 /min, 0.22m 3 /min, 0.23m 3 /min, 0.24m 3 /min or 0.25m 3 /min, etc.
  • the drying process includes sequentially performing drying in the first temperature zone, drying in the second temperature zone, and drying in the third temperature zone.
  • the drying temperature in the first temperature zone is 25-35°C, for example, 25°C, 30°C, or 35°C.
  • the drying temperature in the second temperature zone is 50 to 65°C, for example, 50°C, 55°C, 60°C, or 65°C.
  • the drying temperature in the third temperature zone is 70°C to 95°C, for example, 70°C, 75°C, 80°C, 85°C, 90°C, or 95°C.
  • the drying degree if the drying degree is too low, the sheet will be too soft and weak in strength, and if the drying degree is too high, the thermosetting resin will be excessively solidified, and the magnetic sheet will be too brittle, which is not conducive to subsequent processing.
  • the preparation method of the soft magnetic alloy magnetic sheet includes:
  • thermosetting resin thermoplastic resin, dispersant, solvent, curing agent, plasticizer, curing agent accelerator and soft magnetic alloy powder
  • step (2) degassing the casting slurry described in step (1) under the vacuum degree of -0.07 ⁇ -0.096Mpa for 5 ⁇ 20min to obtain the defoamed slurry with a viscosity of 2000 ⁇ 3000cps.
  • the stirring speed is 3-5 rpm/min for casting treatment, and the defoamed slurry is cast with a knife-edge gap of 180-280 ⁇ m at a feeding speed of 0.15-0.45 m/min, and then the first temperature zone is carried out in turn. drying, drying in the second temperature zone and drying in the third temperature zone to obtain the soft magnetic alloy magnetic sheet;
  • the weight proportion of the insulating coated soft magnetic alloy powder is 85-91wt%; the weight proportion of the thermosetting resin is 1.5-4wt%; the weight proportion of the thermoplastic resin is 85-91wt%;
  • the weight ratio of the dispersant is 1 to 2 wt%; the weight of the dispersant is 0 to 0.6 wt%; the weight of the solvent is 6 to 10 wt%; the weight of the curing agent is 0.5 to 0.7 wt%; the weight of the plasticizer
  • the ratio is 0-0.6wt%; the weight proportion of the curing agent accelerator is 0-0.6wt%.
  • the present application provides a soft magnetic alloy magnetic sheet, the soft magnetic alloy magnetic sheet is prepared by the preparation method of the soft magnetic alloy magnetic sheet described in the first aspect.
  • the soft magnetic alloy magnetic sheet provided by the present application has a uniform film thickness, high saturation magnetic induction intensity and low loss, and at the same time, it has a certain hardness after being fully cured by low temperature baking and can withstand temperatures higher than 160°C.
  • the thickness of the soft magnetic alloy magnetic sheet is 75-200 ⁇ m, for example, 75 ⁇ m, 80 ⁇ m, 90 ⁇ m, 100 ⁇ m, 110 ⁇ m, 120 ⁇ m, 130 ⁇ m, 140 ⁇ m, 150 ⁇ m, 160 ⁇ m, 170 ⁇ m, 180 ⁇ m, 190 ⁇ m or 200 ⁇ m.
  • the density of the soft magnetic alloy magnetic sheet is greater than or equal to 4.0 g/mm 3 , such as 4 g/mm 3 , 4.5 g/mm 3 , 5 g/mm 3 , 5.5 g/mm 3 or 6 g/mm 3 .
  • the present application also provides a use of a soft magnetic alloy magnetic sheet, which includes using the soft magnetic alloy magnetic sheet as described in the second aspect in a thin-film power inductor.
  • the prepared soft magnetic alloy magnetic sheet has a magnetic storage capacity of 10.66 and above, a loss capacity of 0.666 and below, high strength, and is not easy to fracture.
  • Example 1 is a SEM image of the side in contact with the air in the soft magnetic alloy magnetic sheet provided in Example 1.
  • FIG. 2 is a SEM image of the side in contact with the air in the soft magnetic alloy magnetic sheet provided in Example 1.
  • FIG. 2 is a SEM image of the side in contact with the air in the soft magnetic alloy magnetic sheet provided in Example 1.
  • FIG. 3 is a SEM image of the broken surface of the soft magnetic alloy magnetic sheet provided in Example 1.
  • FIG. 4 is a SEM image of the broken surface of the soft magnetic alloy magnetic sheet provided in Example 1.
  • FIG. 4 is a SEM image of the broken surface of the soft magnetic alloy magnetic sheet provided in Example 1.
  • Example 5 is a SEM image of the surface of the soft magnetic alloy magnetic sheet provided in Example 1 after curing.
  • FIG. 6 is a SEM image of the surface of the soft magnetic alloy magnetic sheet provided in Example 1 after curing.
  • Example 7 is a SEM image of the cross-section of the soft magnetic alloy magnetic sheet provided in Example 1 after curing.
  • Example 8 is a SEM image of the cross-section of the soft magnetic alloy magnetic sheet provided in Example 1 after curing.
  • This embodiment provides a soft magnetic alloy magnetic sheet, the thickness of the magnetic sheet is 120 ⁇ m, and the density is 4.18 g/mm 3 .
  • the preparation method of the magnetic sheet is as follows:
  • Configuration slurry 86wt% of insulating-coated iron-silicon-aluminum powder, 1.5wt% of polyvinyl butyral ester, 3wt% of bisphenol A epoxy resin, 8wt% of anhydrous ethanol- Ethyl acetate mixed solvent, 0.5wt% triolein, 0.4wt% dioctyl phthalate, 0.5wt% m-xylylenediamine and 0.1wt% 2-methylimidazole, as above The proportion is well configured, and the casting slurry is obtained.
  • the iron-silicon-aluminum powder with a median particle size of 10 ⁇ m is coated with silica and phosphoric acid, wherein the median particle size of silica is 0.8 ⁇ m, the weight proportion is 5wt%, and the weight proportion of phosphoric acid is 0.3 wt%;
  • Deaeration deaeration of the casting slurry with a vacuum deaerator, the deaeration vacuum degree is -0.08MPa, the deaeration time is 10min, the viscosity is measured, and the deaerated slurry with a viscosity of 2500cps is obtained;
  • Fig. 1 is an SEM image at 500 times
  • Fig. 2 is an SEM image at 2000 times. It can be seen that the magnetic sheet provided by the present application has good surface compactness and good stacking consistency.
  • FIG. 3 is the SEM image at 500 times
  • FIG. 4 is the SEM image at 2000 times. It can be seen that the magnetic segment provided by the present application still maintains good compactness and good stacking consistency.
  • Fig. 5 is the SEM image at 500 times
  • Fig. 6 is the SEM image at 2000 times. It can be seen that the surface of the magnetic sheet provided by the application still maintains good density even after high temperature curing, and the stacking consistency is good .
  • Fig. 7 is the SEM image at 500 times
  • Fig. 8 is the SEM image at 2000 times. It can be seen that the surface of the magnetic sheet provided by the application still maintains good compactness and good stacking consistency even after high temperature curing .
  • This embodiment provides a soft magnetic alloy magnetic sheet, wherein the thickness of the magnetic sheet is 80 ⁇ m and the density is 4.3 g/mm 3 .
  • the preparation method of the magnetic sheet is as follows:
  • the iron-nickel powder with a median particle size of 15 ⁇ m is coated with silica and phosphoric acid, wherein the median particle size of silica is 0.5 ⁇ m, the weight proportion is 9wt%, and the weight proportion of phosphoric acid is 0.4wt% %;
  • Deaeration deaeration of the casting slurry with a vacuum deaerator, the deaeration vacuum degree is -0.07MPa, the deaeration time is 20min, the viscosity is measured, and the deaerated slurry with a viscosity of 3000cps is obtained;
  • This embodiment provides a soft magnetic alloy magnetic sheet, wherein the thickness of the magnetic sheet is 200 ⁇ m and the density is 4.5 g/mm 3 .
  • the preparation method of the magnetic sheet is as follows:
  • Slurry configuration 82wt% of insulating coated iron-silicon-chromium powder, 2wt% of polymethyl methacrylate, 4wt% of bisphenol A epoxy resin, 10wt% of absolute ethanol-ethyl acetate Esters mixed solvent, 0.45wt% triolein, 0.6wt% dioctyl phthalate, 0.7wt% diethyltoluene diamine and 0.25wt% salicylic acid, prepared according to the above proportions , to obtain a casting slurry,
  • silicon dioxide and phosphoric acid are used to coat the iron-silicon-chromium powder with a median particle size of 6 ⁇ m, wherein the median particle size of silica is 0.5 ⁇ m, the weight proportion is 9wt%, and the weight proportion of phosphoric acid is 0.4 wt%;
  • Example 1 The difference between this example and Example 1 is that in this example, 82wt% of insulating-coated iron-silicon-aluminum powder, 2wt% of polyvinyl butyral ester, and 4wt% of bisphenol A epoxy Resin, 10wt% absolute ethanol-ethyl acetate mixed solvent, 0.5wt% triolein, 0.6wt% dioctyl phthalate, 0.7wt% m-xylylenediamine and 0.2wt%
  • the 2-methylimidazole is prepared according to the above ratio to obtain a casting slurry.
  • Embodiment 1 The difference between this embodiment and Embodiment 1 is that in this embodiment, 88wt% of insulating-coated iron-silicon-aluminum powder, 1.5wt% of polyvinyl butyral ester, and 3wt% of bisphenol A ring Oxygen resin, 6wt% anhydrous ethanol-ethyl acetate mixed solvent, 0.5wt% triolein, 0.4wt% dioctyl phthalate, 0.5wt% m-xylylenediamine and 0.1wt% % 2-methylimidazole is prepared according to the above ratio to obtain a casting slurry.
  • Embodiment 1 The difference between this embodiment and Embodiment 1 is that in this embodiment, 91 wt % of insulating-coated iron-silicon-aluminum powder, 1 wt % of polyvinyl butyral ester, and 1.5 wt % of bisphenol A ring Oxygen resin, 6 wt % of anhydrous ethanol-ethyl acetate mixed solvent, and 0.5 wt % of m-xylylenediamine are prepared in the proportions described above to obtain a casting slurry.
  • thermosetting resin bisphenol A epoxy resin is not added in this comparative example, and the weight proportion of the thermoplastic resin polyvinyl butyral ester is adjusted to 4.5wt%.
  • thermoplastic resin polyvinyl butyral ester is not added in this comparative example, and the weight proportion of the thermosetting resin bisphenol A epoxy resin is adjusted to 4.5wt%.
  • Example 1 The difference between this comparative example and Example 1 is that the magnetic powder in this comparative example is a ferrite material.
  • the soft magnetic alloy magnetic sheets prepared in Examples 1-5 and Comparative Examples 1-3 were cut into a specified six-inch square, then hot-pressed and laminated, and cured at 210°C for 4 hours to test the properties of the cured magnetic sheets.
  • Test standard Magnetic permeability test: test frequency is 100MHz, environment is 25°C, and the test equipment is Agilent E4991A+16454A fixture. The results are shown in Table 1: ( ⁇ ' and ⁇ " represent the real and imaginary parts of permeability, respectively. The real part represents the magnetic storage capacity, and the imaginary part represents the loss capacity)
  • Example 4 when the solid content of the ferromagnetic alloy powder, ie, the weight ratio, is small, the magnetic permeability decreases as a result.
  • Example 1 From the data results of Example 1 and Comparative Example 1, it can be seen that in the process of preparing the soft magnetic alloy magnetic sheet, without adding a thermosetting resin, the magnetic sheet cannot be cured.
  • Example 1 From the data results of Example 1 and Comparative Example 2, it can be seen that in the process of preparing the soft magnetic alloy magnetic sheet, no thermoplastic resin is added, which will cause the magnetic sheet to be difficult to form a film after casting.
  • Example 1 and Comparative Example 3 it can be seen from the data results of Example 1 and Comparative Example 3 that, compared with the soft magnetic alloy powder, the magnetic sheets prepared from other types of magnetic materials have very large losses at high frequencies, which cannot meet the requirements for use at high frequencies, and iron When the frequency of oxygen is above about 1MHz, its permeability will drop sharply, and the loss will increase greatly, while the soft magnetic alloy material can still maintain high permeability and low loss above 100MHz, which is more in line with the increasing frequency. application trends.
  • thermosetting resin when the soft magnetic alloy magnetic sheet is prepared in the present application, the thermosetting resin, the thermoplastic resin and the soft magnetic alloy powder after insulation coating are used together, and the three act synergistically, even if the magnetic sheet is more stable after casting. It is easy to form a film and has a soft texture.
  • the magnetic sheet After curing, the magnetic sheet can maintain the strength after curing at 160 °C; at the same time, the casting process is used to make the film thickness of the magnetic sheet uniform, which not only maintains a certain degree of flexibility and ductility, but also does not It is too brittle, and at the same time, the formula used in this application can make the solid content of the slurry higher, so as to avoid improper casting process, resulting in poor film strength or even no film formation, or the film quality after film formation is too brittle, This makes it difficult for the magnetic sheet to be wound or unable to perform subsequent processing.
  • the soft magnetic alloy magnetic sheet prepared by the preparation method provided in this application has high saturation magnetic induction intensity and low loss, and at the same time, it has a certain hardness after being fully cured and can withstand temperatures above 160°C.
  • the prepared soft magnetic alloy The magnetic sheet has a magnetic storage capacity of 10.66 and above, a loss capacity of 0.666 and below, high strength, and is not easy to break.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本申请提供了一种软磁合金磁片及其制备方法和应用。所述制备方法包括以下步骤:(1)将热固性树脂、热塑性树脂、溶剂、固化剂和经过绝缘包覆的软磁合金粉末混合,得到流延浆料;(2)将步骤(1)所述流延浆料依次进行脱泡和流延烘干处理,得到所述软磁合金磁片。

Description

一种软磁合金磁片及其制备方法和应用 技术领域
本申请属于磁性材料的技术领域,涉及一种软磁合金磁片及其制备方法和应用。
背景技术
随着电子电力的迅猛发展,对大功率大电流电感的需求越来越大,而在大功率、大电流应用中,低损耗,低成本、高转换效率的合金磁性材料越来越受到人们的亲睐。
而电子小型化集成化的趋势越来越明晰,传统绕线和一体成型工艺已越来越不能满足发展要求,因此发展薄膜功率电感成为必然趋势,而软磁合金粉料在经过绝缘包覆后很难进行高温烧结而不破坏绝缘包覆层。鉴于此,本申请开发了一种应用于制作薄膜功率电感的软磁合金磁片,其主要特点是不需要进过600-800℃的高温烧结,只需要低温烘烤就能进行固化,并且固化后能达到160℃以上的耐高温要求。
目前关于软磁合金次磁片的制备工艺类似于制备LTCC生带的制浆流延工艺。但是LTCC因为是通过低温烧结使磁体致密化,制浆一般采用的都是热塑性树脂作为粘合剂,并且其采用的介电陶瓷粉密度低,制成的浆料相对软磁合金没那么容易沉降,就工艺难度而言相对容易。
CN110790568A公开了一种低介LTCC生瓷带及其制备方法和用途,其由粉体、溶剂、分散剂、粘结剂和增塑剂组成,所述粉体的质量分数为40~60%,其是由10~40wt%玻璃材料、1~10wt%低熔点氧化物烧结助剂和余量的陶瓷材料制备而成的,所述陶瓷材料的化学组成为Zn 2-xSiO 4-x,其中x=0.05~0.3。
CN108623288A公开了一种氧化铍陶瓷流延成型浆料及其生产方法。针对现有技术还未见有氧化铍陶瓷流延成型浆料及其制备方法,无法制备性能更好的氧化铍陶瓷的问题,本文献提供一种氧化铍陶瓷流延成型浆料,浆料的组成为:按重量百分比计,粉体50%~70%,有机溶剂30%~50%,所述粉体为氧化铍粉体、二氧化硅粉体和氧化镁粉体的混合物,所述有机溶剂为邻苯二甲酸酯、甲苯、丁酮、异丙醇、磷酸酯类阴离子乳化剂和聚乙烯醇缩丁醛的混合物。
上述两篇文献分别介绍了一种生瓷带的配方及制备方法,但是所制备的磁片均需要进行高温烧结,配方属于热塑性体系,且固含量低,配方及流延工艺相对简单。
因此如何得到一种高饱和磁感应强度、低损耗同时具有一定硬度且可耐较高温度的软磁合金磁片,是亟待解决的技术问题。
发明内容
本申请的目的在于提供一种软磁合金磁片及其制备方法和应用。本申请通过采用热固性树脂及其他添加剂与软磁合金粉末混合,流延烘干得到了一种高饱和磁感应强度、低损耗的具有一定硬度且可耐温度高于160℃的软磁合金磁片,其优势在于利用热固性树脂的高温固化(一般可以是150~220℃)特性,使磁片达到坚硬化,避免了传统叠层工艺高温烧结后绝缘包覆层失效而导致的损耗升高的问题。
为达到此发明目的,本申请采用以下技术方案:
第一方面,本申请提供一种软磁合金磁片的制备方法,所述制备方法包括以下步骤:
(1)将热固性树脂、热塑性树脂、溶剂、固化剂和经过绝缘包覆的软磁合 金粉末混合,得到流延浆料;
(2)将步骤(1)所述流延浆料依次进行脱泡和流延烘干处理,得到所述软磁合金磁片。
本申请中,软磁合金粉末的绝缘包覆包括用二氧化硅和磷酸溶液对软磁性粉末进行包覆,其中二氧化硅的中值粒径小于1μm,例如0.5μm、0.6μm、0.7μm、0.8μm或0.9μm等,经过绝缘包覆的软磁合金粉末,其优势为可大大提高所制备的磁片电阻率,有效降低产品涡流损耗,同时使所制备的薄膜功率电感端头电镀时不易产生爬镀。
本申请所提供的制备方法,通过将热固性树脂与热塑性树脂和绝缘包覆后的软磁合金粉末相互配合使用,一方面利用热固性树脂的高温固化特性,使磁片达到坚硬化,避免了传统叠层工艺高温烧结后绝缘包覆层失效而导致的损耗升高的问题,另一方面,热塑性树脂起到了架桥交联软磁合金粉与热固性树脂的作用,三者相互协同作用,既使流延后磁片更容易成膜,且质地柔软,固化后磁片在160℃也能保持固化后的强度;同时利用流延工艺,使磁片膜厚均匀,既保持了一定的柔软性、延展性,又不至于过脆,同时本申请所采用的配方,可以使得浆料的固含量较高,这样避免了流延工艺不当,导致的膜质强度差甚至不成膜,或者成膜后的膜质太脆,使得磁片难以进行收卷或者无法进行后续加工等问题。通过本申请所提供的制备方法制备得到的软磁合金磁片,具有高饱和磁感应强度、低损耗,同时其经过充分固化后具有一定硬度且可耐160℃以上的温度。
本申请中,选用软磁合金粉末,而不是其他的如铁氧体材料,是因为软磁合金粉末具有更大的饱和磁通密度,更有利于通大电流,对于制备在大电流下 工作的功率电感具有铁氧体无法企及的优势,并且铁氧体在频率约1MHz以上时其磁导率会急剧下降,损耗大幅上升,而软磁合金材料在100MHz以上仍能保持较高的磁导率和较低的损耗,更符合越来越高频化的应用趋势。
本申请中,如果制备流延浆料时,不加入热固性树脂,就无法实现所制备磁片加热固化以达到160℃高温下依然保持硬化状态的效果,无法达到功率电感特定高温环境的使用要求,而如果不加入热塑性树脂,又使得浆料流延时不易成膜,并且所制得薄膜膜质柔韧性差,不易收卷和裁切。
可选地,步骤(1)所述流延浆料中还包括增塑剂、分散剂或固化剂促进剂中的任意一种或至少两种的组合。
可选地,步骤(1)所述流延浆料中,经过绝缘包覆的软磁合金粉末的重量占比为82~91wt%,例如82wt%、83wt%、85wt%、86wt%、87wt%、88wt%、89wt%、90wt%或91wt%等,可选为85~91wt%。
本申请中,经过绝缘包覆的软磁合金粉末的重量即为流延浆料的固含量,当其重量占比在85~91wt%时,更有利于保证磁片具有较高的磁导率。
可选地,步骤(1)所述流延浆料中,热固性树脂的重量占比为1.5~4wt%,例如1.5wt%、2wt%、3wt%或4wt%等。
可选地,步骤(1)所述流延浆料中,热塑性树脂的重量占比为1~2wt%,例如1wt%、1.2wt%、1.4wt%、1.5wt%、1.6wt%、1.8wt%或2wt%等。
可选地,步骤(1)所述流延浆料中,分散剂的重量占比为0~0.6wt%,例如0wt%、0.3wt%、0.4wt%、0.5wt%或0.6wt%等。
可选地,步骤(1)所述流延浆料中,溶剂的重量占比为6~10wt%,例如6wt%、7wt%、8wt%、9wt%或10wt%等。
可选地,步骤(1)所述流延浆料中,固化剂的重量占比为0.5~0.7wt%,例如0.5wt%、0.6wt%或0.7wt%等。
可选地,步骤(1)所述流延浆料中,增塑剂的重量占比为0~0.6wt%,例如0wt%、0.3wt%、0.4wt%、0.5wt%或0.6wt%等。
可选地,步骤(1)所述流延浆料中,固化剂促进剂的重量占比为0~0.25wt%,例如0wt%、0.1wt%、0.15wt%、0.25wt%或0.25wt%等。
可选地,步骤(1)所述热固性树脂包括双酚A型环氧树脂和/或双酚F型环氧树脂。
可选地,步骤(1)所述热塑性树脂包括聚乙烯醇缩丁醛酯和/或聚甲基丙烯酸甲酯。
可选地,步骤(1)所述分散剂包括蓖麻油、工业鱼油或三油酸甘油酯中的任意一种或至少两种的组合。
可选地,步骤(1)所述溶剂包括无水乙醇、异丙醇、乙酸乙酯或丁酮中的任意一种或至少两种的组合。
可选地,步骤(1)所述固化剂包括间苯二甲胺、异氟尔酮二胺、二乙基甲苯二胺或双氰胺中的任意一种或至少两种的组合。
可选地,所述增塑剂包括邻苯二甲酸二辛脂、邻苯二甲酸二丁酯或多个羟基官能团的聚醚化合物中的任意一种或至少两种的组合。
本申请中,所述多个羟基官能团的聚醚化合物中的是指羟值mgKOH/g为200~300的羟基聚醚化合物。
可选地,所述固化剂促进剂包括2-甲基咪唑、2-乙基-4-甲基咪唑或水杨酸中的任意一种或至少两种的组合。
可选地,步骤(1)所述经过绝缘包覆的软磁合金粉末中的软磁合金粉末的中值粒径为4~15μm,例如4μm、5μm、6μm、7μm、8μm、9μm、10μm、11μm、12μm、13μm、14μm或15μm等。
本申请所提供的软磁合金粉末颗粒密度大,易沉降。
可选地,步骤(1)所述经过绝缘包覆的软磁合金粉末中的软磁合金粉末包括铁镍粉末、铁硅铝粉末或铁硅铬粉末中的任意一种或至少两种的组合。
可选地,步骤(2)所述脱泡的真空度为-0.07~-0.096Mpa,例如-0.07Mpa、-0.08Mpa、-0.09Mpa或-0.096Mpa等。
可选地,步骤(2)所述脱泡的时间为5~20min,例如5min、10min、15min或20min等。
可选地,经过步骤(2)所述脱泡后的浆料的粘度为2000~3000cps,例如2000cps、2500cps或3000cps等。
可选地,步骤(2)所述流延处理的过程中供料系统的搅拌速度为3~5rpm/min,例如3rpm/min、4rpm/min或5rpm/min等。
本申请中,通过搅拌保证流延过程中浆料的均匀。
可选地,所述软磁合金磁片的厚度为75~200μm,例如75μm、80μm、90μm、100μm、110μm、120μm、130μm、140μm、150μm、160μm、170μm、180μm、190μm或200μm等。
可选地,步骤(2)所述流延处理的走料速度为0.15~0.45m/min,例如0.15m/min、0.2m/min、0.25m/min、0.3m/min、0.35m/min、0.4m/min或0.45m/min等。
可选地,步骤(2)所述流延处理的刀口间隙为180~280μm,例如180μm、 200μm、210μm、220μm、230μm、240μm、250μm、260μm、270μm或280μm等。
可选地,当所述软磁合金磁片的厚度为75~85μm时,例如75μm、76μm、77μm、78μm、79μm、80μm、81μm、82μm、83μm、84μm或85μm等,所述流延处理的刀口间隙为180~220μm,,例如180μm、190μm、200μm、210μm或220μm等,走料速度为0.3~0.45m/min,例如0.3m/min、0.35m/min、0.4m/min或0.45m/min等。
可选地,当所述软磁合金磁片的厚度为95~105μm时,例如95μm、96μm、97μm、98μm、99μm、100μm、101μm、102μm、103μm、104μm或105μm等,所述流延处理的刀口间隙为200~240μm,例如200μm、210μm、220μm、230μm或240μm等,走料速度为0.2~0.35m/min,例如0.2m/min、0.25m/min、0.3m/min或0.35m/min等。
可选地,当所述软磁合金磁片的厚度为115~125μm时,例如115μm、116μm、117μm、118μm、119μm、120μm、121μm、122μm、123μm、124μm或125μm等,所述流延处理的刀口间隙为230~280μm,例如230μm、240μm、250μm、260μm、270μm或280μm等,走料速度为0.15~0.25m/min,例如0.15m/min、0.2m/min或0.25m/min等。
本申请中,想要得到不同厚度的磁片,其刀口间隙、走料速率要进行调整,这样可以保证流延得到的磁片膜厚均匀,可以使得后续烘干过程中,磁片不开裂,不收缩,膜质柔软不发脆。
可选地,所述烘干过程中的进出风量为0.2~0.25m 3/min,例如0.2m 3/min、0.21m 3/min、0.22m 3/min、0.23m 3/min、0.24m 3/min或0.25m 3/min等。
可选地,所述烘干处理包括依次进行第一温区烘干、第二温区烘干和第三温区烘干。
可选地,所述第一温区烘干的温度为25~35℃,例如25℃、30℃或35℃等。
可选地,所述第二温区烘干的温度为50~65℃,例如50℃、55℃、60℃或65℃等。
可选地,所述第三温区烘干的温度为70~95℃,例如70℃、75℃、80℃、85℃、90℃或95℃等。
本申请中,烘干程度过低则料片过软强度差,烘干程度过高则会导致热固性树脂过分固化,磁片过脆,不利于后续加工。
作为可选的技术方案,所述软磁合金磁片的制备方法包括:
(1)将热固性树脂、热塑性树脂、分散剂、溶剂、固化剂、增塑剂、固化剂促进剂和经过绝缘包覆的软磁合金粉末混合,得到流延浆料;
(2)将步骤(1)所述流延浆料在-0.07~-0.096Mpa的真空度下脱泡5~20min,得到粘度为2000~3000cps的脱泡后的浆料,以供料系统的搅拌速度为3~5rpm/min进行流延处理,在0.15~0.45m/min的走料速度下以180~280μm的刀口间隙对脱泡后的浆料进行流延,然后依次进行第一温区烘干、第二温区烘干和第三温区烘干,得到所述软磁合金磁片;
其中,步骤(1)所述流延浆料中,经过绝缘包覆的软磁合金粉末的重量占比为85~91wt%;热固性树脂的重量占比为1.5~4wt%;热塑性树脂的重量占比为1~2wt%;分散剂的重量占比为0~0.6wt%;溶剂的重量占比为6~10wt%;固化剂的重量占比为0.5~0.7wt%;增塑剂的重量占比为0~0.6wt%;固化剂促进剂的重量占比为0~0.6wt%。
第二方面,本申请提供一种软磁合金磁片,所述软磁合金磁片由第一方面所述的软磁合金磁片的制备方法制备得到。
本申请所提供的软磁合金磁片,膜厚均匀,具有高饱和磁感应强度、低损耗,同时其经过低温烘烤充分固化后具有一定硬度且可耐温度高于160℃。
可选地,所述软磁合金磁片的厚度为75~200μm,例如75μm、80μm、90μm、100μm、110μm、120μm、130μm、140μm、150μm、160μm、170μm、180μm、190μm或200μm等。
可选地,所述软磁合金磁片的密度≥4.0g/mm 3,例如4g/mm 3、4.5g/mm 3、5g/mm 3、5.5g/mm 3或6g/mm 3
第三方面,本申请还提供一种软磁合金磁片的用途,所述用途包括将如第二方面所述的软磁合金磁片用于薄膜功率电感。
相对于现有技术,本申请具有以下有益效果:
本申请通过采用热固性树脂及其他添加剂与软磁合金粉末混合,流延烘干得到了一种高饱和磁感应强度、低损耗,同时其经过低温烘烤充分固化后得到具有一定硬度且可耐温度高于160℃的软磁合金磁片,使得磁片具有膜质强度适中、膜质柔软、一致性好的效果,其优势在于利用热固性树脂的高温固化特性,使磁片达到坚硬化,避免了传统叠层工艺高温烧结后绝缘包覆层失效而导致的损耗升高的问题,制备得到的软磁合金磁片,其磁储存能力在10.66及以上,损耗能力在0.666及以下,强度大,且不易断裂。
附图说明
图1为实施例1所提供的软磁合金磁片中与空气接触一面的SEM图。
图2为实施例1所提供的软磁合金磁片中与空气接触一面的SEM图。
图3为实施例1所提供的软磁合金磁片中断面的SEM图。
图4为实施例1所提供的软磁合金磁片中断面的SEM图。
图5为实施例1所提供的软磁合金磁片固化后的表面的SEM图。
图6为实施例1所提供的软磁合金磁片固化后的表面的SEM图。
图7为实施例1所提供的软磁合金磁片固化后的断面的SEM图。
图8为实施例1所提供的软磁合金磁片固化后的断面的SEM图。
具体实施方式
下面通过具体实施方式来进一步说明本申请的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制。
实施例1
本实施例提供一种软磁合金磁片,所述磁片的厚度为120μm,密度为4.18g/mm 3
所述磁片的制备方法如下:
1)配置浆料:将86wt%的经过绝缘包覆的铁硅铝粉末、1.5wt%的聚乙烯醇缩丁醛酯、3wt%的双酚A型环氧树脂、8wt%的无水乙醇-乙酸乙酯混合溶剂、0.5wt%的三油酸甘油酯、0.4wt%的邻苯二甲酸二辛脂、0.5wt%的间苯二甲胺和0.1wt%的2-甲基咪唑,按上述比例配置好,得到流延浆料,
其中,用二氧化硅和磷酸包覆中值粒径为10μm的铁硅铝粉末,其中,二氧化硅的中值粒径为0.8μm,重量占比为5wt%,磷酸的重量占比为0.3wt%;
2)脱泡:将流延浆料用真空脱泡机脱泡,脱泡真空度-0.08MPa,脱泡时间10min,测量粘度,得到粘度为2500cps的脱泡后的浆料;
3)流延:利用流延机将脱泡后的浆料均匀涂布于PET膜上,流延时供料系 统搅拌速率为4rpm/min;刀口间隙应在250μm,对应走料速度0.2m/min;依次进行第一温区烘干、第二温区烘干和第三温区烘干,温度设定为第一温区25℃,第二温区60℃,第三温区85℃,进出风量为0.24m 3/min,得到所述软磁合金磁片。
图1为500倍下的SEM图,图2为2000倍下的SEM图,可以看出,本申请所提供的磁片表面致密性良好,堆积一致性良好。
图3为500倍下的SEM图,图4为2000倍下的SEM图,可以看出,本申请所提供的磁片断面依然保持了良好的致密性,且堆积一致性良好。
图5为500倍下的SEM图,图6为2000倍下的SEM图,可以看出,本申请所提供的磁片即使在高温固化后表面依然保持了良好的致密性,且堆积一致性良好。
图7为500倍下的SEM图,图8为2000倍下的SEM图,可以看出,本申请所提供的磁片即使在高温固化后表面依然保持了良好的致密性,且堆积一致性良好。
通过图1-图8的对比可以得出,本申请所提供的软磁合金磁片,无论是否经过高温固化,都保持了良好的致密性和堆积一致性,磁片结构稳定,延展性良好,经过高温固化后,也未出现磁片的破裂。
实施例2
本实施例提供一种软磁合金磁片,所述磁片的厚度为80μm,密度为4.3g/mm 3
所述磁片的制备方法如下:
1)配置浆料:将91wt%的经过绝缘包覆的铁镍粉末、1wt%的聚甲基丙烯酸 甲酯、1.5wt%的双酚F型环氧树脂、6wt%的无水乙醇、0.5wt%的异氟尔酮二胺,按述比例配置好,得到流延浆料,
其中,用二氧化硅和磷酸包覆中值粒径为15μm的铁镍粉末,其中,二氧化硅的中值粒径为0.5μm,重量占比为9wt%,磷酸的重量占比为0.4wt%;
2)脱泡:将流延浆料用真空脱泡机脱泡,脱泡真空度-0.07MPa,脱泡时间20min,测量粘度,得到粘度为3000cps的脱泡后的浆料;
3)流延:利用流延机将脱泡后的浆料均匀涂布于PET膜上,流延时供料系统搅拌速率为5rpm/min;刀口间隙应在200μm,对应走料速度0.35m/min;依次进行第一温区烘干、第二温区烘干和第三温区烘干,温度设定为第一温区35℃,第二温区65℃,第三温区90℃,进出风量为0.24m 3/min,得到所述软磁合金磁片。
实施例3
本实施例提供一种软磁合金磁片,所述磁片的厚度为200μm,密度为4.5g/mm 3
所述磁片的制备方法如下:
1)配置浆料:将82wt%的经过绝缘包覆的铁硅铬粉末、2wt%的聚甲基丙烯酸甲酯、4wt%的双酚A型环氧树脂、10wt%的无水乙醇-乙酸乙酯混合溶剂、0.45wt%的三油酸甘油酯、0.6wt%的邻苯二甲酸二辛脂、0.7wt%的二乙基甲苯二胺和0.25wt%的水杨酸,按上述比例配置好,得到流延浆料,
其中,用二氧化硅和磷酸包覆中值粒径为6μm的铁硅铬粉末,其中,二氧化硅的中值粒径为0.5μm,重量占比为9wt%,磷酸的重量占比为0.4wt%;
2)脱泡:将流延浆料用真空脱泡机脱泡,脱泡真空度-0.095MPa,脱泡时 间5min,测量粘度,得到粘度为2000cps的脱泡后的浆料;
3)流延:利用流延机将脱泡后的浆料均匀涂布于PET膜上,流延时供料系统搅拌速率为3rpm/min;刀口间隙应在280μm,对应走料速度0.15m/min;依次进行第一温区烘干、第二温区烘干和第三温区烘干,温度设定为第一温区25℃,第二温区60℃,第三温区85℃,进出风量为0.2m 3/min,得到所述软磁合金磁片。
实施例4
本实施例与实施例1的区别为,本实施例中,将82wt%的经过绝缘包覆的铁硅铝粉末、2wt%的聚乙烯醇缩丁醛酯、4wt%的双酚A型环氧树脂、10wt%的无水乙醇-乙酸乙酯混合溶剂、0.5wt%的三油酸甘油酯、0.6wt%的邻苯二甲酸二辛脂、0.7wt%的间苯二甲胺和0.2wt%的2-甲基咪唑,按上述比例配置好,得到流延浆料。
其余制备方法与参数与实施例1保持一致。
实施例5
本实施例与实施例1的区别为,本实施例中,将88wt%的经过绝缘包覆的铁硅铝粉末、1.5wt%的聚乙烯醇缩丁醛酯、3wt%的双酚A型环氧树脂、6wt%的无水乙醇-乙酸乙酯混合溶剂、0.5wt%的三油酸甘油酯、0.4wt%的邻苯二甲酸二辛脂、0.5wt%的间苯二甲胺和0.1wt%的2-甲基咪唑,按上述比例配置好,得到流延浆料。
其余制备方法与参数与实施例1保持一致。
实施例6
本实施例与实施例1的区别为,本实施例中,将91wt%的经过绝缘包覆的 铁硅铝粉末、1wt%的聚乙烯醇缩丁醛酯、1.5wt%的双酚A型环氧树脂、6wt%的无水乙醇-乙酸乙酯混合溶剂、0.5wt%的间苯二甲胺,按述比例配置好,得到流延浆料。
其余制备方法与参数与实施例1保持一致。
对比例1
本对比例与实施例1的区别为,本对比例中不加入热固性树脂双酚A型环氧树脂,热塑性树脂聚乙烯醇缩丁醛酯的重量占比调整为4.5wt%。
其余制备方法与参数与实施例1保持一致。
对比例2
本对比例与实施例1的区别为,本对比例中不加入热塑性树脂聚乙烯醇缩丁醛酯,热固性树脂双酚A型环氧树脂的重量占比调整为4.5wt%。
其余制备方法与参数与实施例1保持一致。
对比例3
本对比例与实施例1的区别为,本对比例中磁性粉末为铁氧体材料。
其余制备方法与参数与实施例1保持一致。
将实施例1-5与对比例1-3制备得到得软磁合金磁片裁切成规定六英寸正方形,然后进行热压叠层,并在210℃高温固化4h,测试固化后磁片性能。
测试标准:磁导率测试:测试频率100MHz,环境25℃,测试设备为安捷伦E4991A+16454A夹具。其结果如表1所示:(μ'和μ〞分别表示磁导率的实部和虚部。实部代表磁储存能力,虚部代表损耗能力)
表1
Figure PCTCN2021103457-appb-000001
从实施例1和4-6的数据结果可知,在实施例4中,当铁磁合金粉末的固含量即重量占比较小时,其结果导致磁导率降低。
从实施例1和对比例1的数据结果可知,当制备软磁合金磁片的过程中,不加入热固性树脂,会导致磁片无法固化。
从实施例1和对比例2的数据结果可知,当制备软磁合金磁片的过程中,不加入热塑性树脂,会导致流延后磁片难以成膜。
从实施例1与对比例3的数据结果可知,相比较于软磁合金粉末,其他类 型的磁性材料制备得到的磁片,高频下损耗非常大,无法满足高频下的使用要求,并且铁氧体在频率约1MHz以上时其磁导率会急剧下降,损耗大幅上升,而软磁合金材料在100MHz以上仍能保持较高的磁导率和较低的损耗,更符合越来越高频化的应用趋势。
综上所述,本申请制备软磁合金磁片时,通过将热固性树脂与热塑性树脂和绝缘包覆后的软磁合金粉末相互配合使用,三者相互协同作用,既使流延后磁片更容易成膜,且质地柔软,固化后磁片在160℃也能保持固化后的强度;同时利用流延工艺,使磁片膜厚均匀,既保持了一定的柔软性、延展性,又不至于过脆,同时本申请所采用的配方,可以使得浆料的固含量较高,这样避免了流延工艺不当,导致的膜质强度差甚至不成膜,或者成膜后的膜质太脆,使得磁片难以进行收卷或者无法进行后续加工等问题。通过本申请所提供的制备方法制备得到的软磁合金磁片,具有高饱和磁感应强度、低损耗,同时其经过充分固化后具有一定硬度且可耐160℃以上的温度,制备得到的软磁合金磁片,其磁储存能力在10.66及以上,损耗能力在0.666及以下,强度大,且不易断裂。
申请人声明,以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此。

Claims (12)

  1. 一种软磁合金磁片的制备方法,其包括以下步骤:
    (1)将热固性树脂、热塑性树脂、溶剂、固化剂和经过绝缘包覆的软磁合金粉末混合,得到流延浆料;
    (2)将步骤(1)所述流延浆料依次进行脱泡和流延烘干处理,得到所述软磁合金磁片。
  2. 根据权利要求1所述的软磁合金磁片的制备方法,其中,步骤(1)所述流延浆料中还包括增塑剂、分散剂或固化剂促进剂中的任意一种或至少两种的组合。
  3. 根据权利要求1或2所述的软磁合金磁片的制备方法,其中,步骤(1)所述流延浆料中,经过绝缘包覆的软磁合金粉末的重量占比为82~91wt%。
  4. 根据权利要求3所述的软磁合金磁片的制备方法,其中,步骤(1)所述流延浆料中,经过绝缘包覆的软磁合金粉末的重量占比为85~91wt;
    可选地,步骤(1)所述流延浆料中,热固性树脂的重量占比为1.5~4wt%;
    可选地,步骤(1)所述流延浆料中,热塑性树脂的重量占比为1~2wt%;
    可选地,步骤(1)所述流延浆料中,分散剂的重量占比为0~0.6wt%;
    可选地,步骤(1)所述流延浆料中,溶剂的重量占比为6~10wt%;
    可选地,步骤(1)所述流延浆料中,固化剂的重量占比为0.5~0.7wt%;
    可选地,步骤(1)所述流延浆料中,增塑剂的重量占比为0~0.6wt%;
    可选地,步骤(1)所述流延浆料中,固化剂促进剂的重量占比为0~0.25wt%。
  5. 根据权利要求2所述的软磁合金磁片的制备方法,其中,步骤(1)所述热固性树脂包括双酚A型环氧树脂和/或双酚F型环氧树脂;
    可选地,步骤(1)所述热塑性树脂包括聚乙烯醇缩丁醛酯和/或聚甲基丙 烯酸甲酯;
    可选地,步骤(1)所述分散剂包括蓖麻油、工业鱼油或三油酸甘油酯中的任意一种或至少两种的组合;
    可选地,步骤(1)所述溶剂包括无水乙醇、异丙醇、乙酸乙酯或丁酮中的任意一种或至少两种的组合;
    可选地,步骤(1)所述固化剂包括间苯二甲胺、异氟尔酮二胺、二乙基甲苯二胺或双氰胺中的任意一种或至少两种的组合;
    可选地,所述增塑剂包括邻苯二甲酸二辛脂、邻苯二甲酸二丁酯或多个羟基官能团的聚醚化合物中的任意一种或至少两种的组合;
    可选地,所述固化剂促进剂包括2-甲基咪唑、2-乙基-4-甲基咪唑或水杨酸中的任意一种或至少两种的组合;
    可选地,步骤(1)所述经过绝缘包覆的软磁合金粉末中的软磁合金粉末的中值粒径为4~15μm;
    可选地,步骤(1)所述经过绝缘包覆的软磁合金粉末中的软磁合金粉末包括铁镍粉末、铁硅铝粉末或铁硅铬粉末中的任意一种或至少两种的组合。
  6. 根据权利要求1-5任一项所述的软磁合金磁片的制备方法,其中,步骤(2)所述脱泡的真空度为-0.07~-0.096Mpa;
    可选地,步骤(2)所述脱泡的时间为5~20min;
    可选地,经过步骤(2)所述脱泡后的浆料的粘度为2000~3000cps;
    可选地,步骤(2)所述流延处理的过程中供料系统的搅拌速度为3~5rpm/min。
  7. 根据权利要求1-6任一项所述的软磁合金磁片的制备方法,其中,所述 软磁合金磁片的厚度为75~200μm;
    可选地,步骤(2)所述流延处理的走料速度为0.15~0.45m/min;
    可选地,步骤(2)所述流延处理的刀口间隙为180~280μm;
    可选地,当所述软磁合金磁片的厚度为75~85μm时,所述流延处理的刀口间隙为180~220μm,走料速度为0.3~0.45m/min;
    可选地,当所述软磁合金磁片的厚度为95~105μm时,所述流延处理的刀口间隙为200~240μm,走料速度为0.2~0.35m/min;
    可选地,当所述软磁合金磁片的厚度为115~125μm时,所述流延处理的刀口间隙为230~280μm,走料速度为0.15~0.25m/min。
  8. 根据权利要求1-7任一项所述的软磁合金磁片的制备方法,其中,所述烘干过程中的进出风量为0.2~0.25m 3/min;
    可选地,所述烘干处理包括依次进行第一温区烘干、第二温区烘干和第三温区烘干;
    可选地,所述第一温区烘干的温度为25~35℃;
    可选地,所述第二温区烘干的温度为50~65℃;
    可选地,所述第三温区烘干的温度为70~95℃。
  9. 根据权利要求1-8任一项所述的软磁合金磁片的制备方法,其包括:
    (1)将热固性树脂、热塑性树脂、分散剂、溶剂、固化剂、增塑剂、固化剂促进剂和经过绝缘包覆的软磁合金粉末混合,得到流延浆料;
    (2)将步骤(1)所述流延浆料在-0.07~-0.096Mpa的真空度下脱泡5~20min,得到粘度为2000~3000cps的脱泡后的浆料,以供料系统的搅拌速度为3~5rpm/min进行流延处理,在0.15~0.45m/min的走料速度下以180~280μm的 刀口间隙对脱泡后的浆料进行流延,然后依次进行第一温区烘干、第二温区烘干和第三温区烘干,得到所述软磁合金磁片;
    其中,步骤(1)所述流延浆料中,经过绝缘包覆的软磁合金粉末的重量占比为85~91wt%;热固性树脂的重量占比为1.5~4wt%;热塑性树脂的重量占比为1~2wt%;分散剂的重量占比为0~0.6wt%;溶剂的重量占比为6~10wt%;固化剂的重量占比为0.5~0.7wt%;增塑剂的重量占比为0~0.6wt%;固化剂促进剂的重量占比为0~0.6wt%。
  10. 一种软磁合金磁片,其由权利要求1-9任一项所述的软磁合金磁片的制备方法制备得到。
  11. 根据权利要求10所述的软磁合金磁片,其中,所述软磁合金磁片的厚度为75~200μm;
    可选地,所述软磁合金磁片的密度≥4.0g/mm 3
  12. 一种软磁合金磁片的用途,其包括将如权利要求10或11所述的软磁合金磁片用于薄膜功率电感。
PCT/CN2021/103457 2021-04-13 2021-06-30 一种软磁合金磁片及其制备方法和应用 WO2022217755A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/264,577 US20240055166A1 (en) 2021-04-13 2021-06-30 Soft magnetic alloy sheet, preparation method therefor and use thereof
EP21936627.5A EP4266335A1 (en) 2021-04-13 2021-06-30 Soft magnetic alloy magnetic sheet, preparation method therefor and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110394068.2 2021-04-13
CN202110394068.2A CN113113223A (zh) 2021-04-13 2021-04-13 一种软磁合金磁片及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2022217755A1 true WO2022217755A1 (zh) 2022-10-20

Family

ID=76716342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103457 WO2022217755A1 (zh) 2021-04-13 2021-06-30 一种软磁合金磁片及其制备方法和应用

Country Status (4)

Country Link
US (1) US20240055166A1 (zh)
EP (1) EP4266335A1 (zh)
CN (1) CN113113223A (zh)
WO (1) WO2022217755A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115650717A (zh) * 2022-11-11 2023-01-31 广东风华邦科电子有限公司 一种大电流片式电感器用镍锌铁氧体及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116072369A (zh) * 2021-11-03 2023-05-05 横店集团东磁股份有限公司 磁性复合材料组合物、电感磁芯及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332117A (ja) * 2002-05-17 2003-11-21 Mitsubishi Materials Corp 機械的強度に優れかつ水分吸収による機械的強度低下の少ないボンド軟磁性体およびその製造方法
CN107004482A (zh) * 2014-12-04 2017-08-01 日东电工株式会社 软磁性树脂组合物及软磁性薄膜
CN108623288A (zh) 2018-06-21 2018-10-09 宜宾红星电子有限公司 氧化铍陶瓷流延成型浆料及其生产方法
CN110494493A (zh) * 2017-04-19 2019-11-22 味之素株式会社 树脂组合物
CN110790568A (zh) 2019-11-29 2020-02-14 中国电子科技集团公司第四十三研究所 一种低介ltcc生瓷带及其制备方法和用途
CN112652434A (zh) * 2020-12-28 2021-04-13 横店集团东磁股份有限公司 一种薄膜功率电感磁片及其制备方法与应用
CN112967856A (zh) * 2021-03-11 2021-06-15 横店集团东磁股份有限公司 一种软磁树脂浆料及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101300023B1 (ko) * 2011-08-09 2013-08-23 아로 주식회사 열경화성 수지를 이용한 소프트 페라이트 시트의 제조방법
CN110408255B (zh) * 2019-08-09 2021-07-23 苏州世华新材料科技股份有限公司 一种高拉伸强度吸波材料及其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332117A (ja) * 2002-05-17 2003-11-21 Mitsubishi Materials Corp 機械的強度に優れかつ水分吸収による機械的強度低下の少ないボンド軟磁性体およびその製造方法
CN107004482A (zh) * 2014-12-04 2017-08-01 日东电工株式会社 软磁性树脂组合物及软磁性薄膜
CN110494493A (zh) * 2017-04-19 2019-11-22 味之素株式会社 树脂组合物
CN108623288A (zh) 2018-06-21 2018-10-09 宜宾红星电子有限公司 氧化铍陶瓷流延成型浆料及其生产方法
CN110790568A (zh) 2019-11-29 2020-02-14 中国电子科技集团公司第四十三研究所 一种低介ltcc生瓷带及其制备方法和用途
CN112652434A (zh) * 2020-12-28 2021-04-13 横店集团东磁股份有限公司 一种薄膜功率电感磁片及其制备方法与应用
CN112967856A (zh) * 2021-03-11 2021-06-15 横店集团东磁股份有限公司 一种软磁树脂浆料及其制备方法和应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115650717A (zh) * 2022-11-11 2023-01-31 广东风华邦科电子有限公司 一种大电流片式电感器用镍锌铁氧体及其制备方法

Also Published As

Publication number Publication date
EP4266335A1 (en) 2023-10-25
CN113113223A (zh) 2021-07-13
US20240055166A1 (en) 2024-02-15

Similar Documents

Publication Publication Date Title
WO2022217755A1 (zh) 一种软磁合金磁片及其制备方法和应用
JP5881992B2 (ja) 積層インダクタ及びその製造方法
JP6081051B2 (ja) コイル部品
JP5082002B1 (ja) 磁性材料およびコイル部品
JP6388426B2 (ja) コイル部品の製造方法
US11232895B2 (en) Coil component and method for manufacturing coil component
JP2008041961A (ja) 絶縁性磁性金属粒子および絶縁性磁性材料の製造方法
JP2013110171A (ja) 積層インダクタ
CN103606448A (zh) 一种电子元件及其制造方法
CN109036852B (zh) 一种三维多孔铝电极箔及其制备方法
JP2013229633A (ja) 積層型パワーインダクタのギャップ層組成物
CN110408360A (zh) 一种绝缘胶液及其制备方法和应用以及由其得到的隔磁片
CN110828108A (zh) 含金属磁性粒子的磁性基体和含该磁性基体的电子部件
JP2021100027A (ja) 金属磁性粒子を含む磁性基体及び当該磁性基体を含む電子部品
CN105895301B (zh) 一种铁粉芯电感及其制备方法
CN107645852A (zh) 一种高频印制电路板用双面铜箔表面处理工艺
CN103288434B (zh) 一种富铌铁磁芯的制作方法
CN106601356A (zh) 一种耐高温电线及相应的复合前驱体陶瓷带的制备方法
JP4373968B2 (ja) セラミックグリーンシート用塗料及びその製造方法、セラミックグリーンシート、並びに、これを備える電子部品
CN110047638B (zh) 一种包覆氧化锌绝缘层的铁基软磁复合材料及其制备方法
JP5129893B1 (ja) 磁性材料およびコイル部品
JP2010092989A (ja) 圧粉磁心およびその製造方法
CN104028748B (zh) 一种软磁复合材料的表面硼化绝缘包覆方法
JP2014183182A (ja) 非磁性材料および非磁性磁器組成物の製造方法
WO2022210089A1 (ja) 回路基板及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936627

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021936627

Country of ref document: EP

Effective date: 20230717

WWE Wipo information: entry into national phase

Ref document number: 18264577

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE