WO2022215464A1 - 窒化物半導体ウェーハの製造方法 - Google Patents

窒化物半導体ウェーハの製造方法 Download PDF

Info

Publication number
WO2022215464A1
WO2022215464A1 PCT/JP2022/011764 JP2022011764W WO2022215464A1 WO 2022215464 A1 WO2022215464 A1 WO 2022215464A1 JP 2022011764 W JP2022011764 W JP 2022011764W WO 2022215464 A1 WO2022215464 A1 WO 2022215464A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride semiconductor
semiconductor wafer
electron beam
single crystal
silicon single
Prior art date
Application number
PCT/JP2022/011764
Other languages
English (en)
French (fr)
Inventor
和徳 萩本
順也 石崎
剛 大槻
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to CN202280024660.6A priority Critical patent/CN117099184A/zh
Priority to EP22784449.5A priority patent/EP4321658A1/en
Priority to US18/284,615 priority patent/US20240162041A1/en
Publication of WO2022215464A1 publication Critical patent/WO2022215464A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/68Crystals with laminate structure, e.g. "superlattices"
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments

Definitions

  • the present invention relates to a method for manufacturing a nitride semiconductor wafer, and more particularly to a method for manufacturing a nitride semiconductor wafer suitable for use in high frequency devices.
  • High-frequency devices are being developed to integrate devices such as antennas, amplifiers, switches, and filters in order to reduce the size and cost.
  • devices such as antennas, amplifiers, switches, and filters
  • the materials used for the devices are diversified, such as silicon CMOS, devices using III-V group semiconductors and nitride semiconductors, and filters using piezoelectric materials. It is considered that silicon single crystal substrates, for which inexpensive large-diameter wafers are available, are suitable for substrates that serve as bases for these devices.
  • harmonics are high-order frequency components that are integral multiples of the original frequency.
  • the second harmonic has twice the frequency (half the wavelength) of the fundamental wave
  • the second harmonic has three times the frequency (one-third the wavelength) of the fundamental wave. is defined as the third harmonic.
  • a high-frequency circuit requires a substrate with low harmonics to avoid interference due to harmonics.
  • Patent Document 1 a wide-gap bipolar semiconductor (SiC) for power applications is irradiated in advance with one of gamma rays, electron beams, and charged particle beams, and the carrier lifetime is adjusted to be within a predetermined range. , improving switching characteristics, but does not mention deterioration of second harmonic characteristics and the like.
  • the present invention has been made to solve the above-mentioned problems, and is a nitride semiconductor wafer in which a nitride semiconductor film is formed on a silicon single crystal substrate, in which the loss due to the substrate and the characteristics of the second harmonic are improved.
  • a nitride semiconductor wafer in which a nitride semiconductor film is formed on a silicon single crystal substrate, in which the loss due to the substrate and the characteristics of the second harmonic are improved.
  • the present invention provides a method for manufacturing a nitride semiconductor wafer by forming a nitride semiconductor film on a silicon single crystal substrate, comprising: forming the nitride semiconductor film on the silicon single crystal substrate; and irradiating the silicon single crystal substrate with an electron beam at a dose of 1 ⁇ 10 14 /cm 2 or more.
  • a method for manufacturing a nitride semiconductor wafer is provided.
  • a method for manufacturing a nitride semiconductor wafer by irradiating an electron beam with an irradiation amount (dose) of 1 ⁇ 10 14 /cm 2 or more, the loss due to the substrate can be improved and the second harmonic can be generated. It is possible to manufacture a nitride semiconductor wafer with improved characteristics and suppressed deterioration of second harmonic characteristics. By using the manufactured nitride semiconductor wafer especially for high frequency devices, it is possible to provide high quality high frequency devices with improved loss due to the substrate (for example, power loss) and second harmonic characteristics.
  • the irradiation dose of the electron beam can be 3 ⁇ 10 14 /cm 2 or more and 1 ⁇ 10 16 /cm 2 or less.
  • the electron beam irradiation dose to 3 ⁇ 10 14 /cm 2 or more in this way, it is possible to manufacture a nitride semiconductor wafer in which the loss is further improved and the second harmonic characteristic deterioration is suppressed. can. Further, by setting the density to 1 ⁇ 10 16 /cm 2 or less, the time required for irradiation does not become too long, which is efficient.
  • the step of irradiating the electron beam can be performed before the step of forming the nitride semiconductor film.
  • the step of irradiating the electron beam can be performed after the step of forming the nitride semiconductor film.
  • the electron beam irradiation itself can be performed before or after the step of forming the nitride semiconductor film.
  • the step of irradiating the electron beam can be performed after the step of forming the nitride semiconductor film and further after manufacturing a device on the nitride semiconductor film.
  • the electron beam irradiation can also be performed after manufacturing a device on the nitride semiconductor film.
  • a nitride semiconductor wafer of the present invention it is possible to produce a nitride semiconductor wafer with improved substrate loss and improved second harmonic characteristics, and is particularly suitable for high frequency devices. can provide wafers with
  • FIG. 1 is a schematic diagram showing an example of a nitride semiconductor wafer according to the present invention
  • FIG. FIG. 4 is a schematic plan view of a Co-Planar Waveguide (CPW) used for evaluating second harmonic characteristics
  • 4 is a graph showing second harmonic characteristics of substrates with different resistivities.
  • CPW Co-Planar Waveguide
  • a nitride semiconductor wafer having a nitride semiconductor film formed on a silicon single crystal substrate a nitride semiconductor wafer in which loss and second harmonic characteristics are improved and whose characteristic deterioration is suppressed is provided. There is a need for a manufacturing method that can obtain
  • a method for manufacturing a nitride semiconductor wafer in which a nitride semiconductor film is formed on a silicon single crystal substrate, comprising: A method for manufacturing a nitride semiconductor wafer, which includes the step of forming a nitride semiconductor film and the step of irradiating the silicon single crystal substrate with an electron beam with a dose of 1 ⁇ 10 14 /cm 2 or more, reduces loss and secondary
  • a method for manufacturing a nitride semiconductor wafer which includes the step of forming a nitride semiconductor film and the step of irradiating the silicon single crystal substrate with an electron beam with a dose of 1 ⁇ 10 14 /cm 2 or more, reduces loss and secondary
  • the inventors have found that it is possible to manufacture a nitride semiconductor wafer with improved and improved harmonic characteristics and suppressed deterioration of second harmonic characteristics, and have completed the present invention.
  • the present invention will be described in detail below, but the present invention is not limited to these.
  • a method for manufacturing a nitride semiconductor wafer according to the present invention will be described with reference to FIG.
  • the structure of the nitride semiconductor wafer described below is an example, and the present invention is not limited to this.
  • the silicon single crystal substrate is not particularly limited, and a high resistivity substrate having a resistivity of 100 ⁇ cm or more, for example, can be used.
  • the upper limit of the resistivity is not particularly limited, it can be, for example, 10000 ⁇ cm or less. Ordinary resistance such as 1 ⁇ cm or more and less than 100 ⁇ cm or low resistance such as less than 1 ⁇ cm can also be used.
  • the resistivity of the silicon single crystal substrate is high or low, it is possible to improve the loss and second harmonic characteristics as described above.
  • a step of forming a nitride semiconductor film on a silicon single crystal substrate, and a predetermined irradiation dose (1 ⁇ 10 14 /cm 2 or more) to the silicon single crystal substrate may be performed first, it is more preferable to perform the step of irradiating the electron beam after.
  • a silicon single crystal substrate is irradiated with an electron beam. By irradiating with an electron beam, the effect of inactivating carriers such as dopants and/or impurities derived from raw materials in the silicon single crystal substrate can be obtained remarkably.
  • Inactivation here means that point defects and dopants and/or dopants and/or point defects are formed in the silicon single crystal substrate by irradiating electron beams, and these trap carriers in the silicon single crystal substrate. Or it depends on the reaction of the carrier. In addition, it is considered that the point defect causes the mobility of dopants and/or carriers to decrease, thereby changing the resistance. It is believed that inactivation of dopants and/or carriers in the silicon single crystal substrate increases the resistivity of the silicon single crystal substrate. In the case of irradiating electron beams after the step of forming a nitride semiconductor film, which will be described later, in addition to the above effects, it is believed that point defects in the nitride semiconductor film are reduced and the characteristics are improved.
  • the irradiation amount of the electron beam is set to 1 ⁇ 10 14 /cm 2 or more as the irradiation condition of the electron beam.
  • the irradiation amount can be set to 3 ⁇ 10 14 /cm 2 or more, and the loss and second harmonic characteristics can be further improved.
  • the dose can be 1 ⁇ 10 15 /cm 2 or more.
  • the upper limit can be, for example, 1 ⁇ 10 16 /cm 2 or less. With such an irradiation amount, it is possible to prevent the irradiation time from being excessively long, which is efficient.
  • irradiation conditions are not particularly limited, and electrons having an energy of 250 keV or more can be used, for example. If it is about 250 keV or more, point defects can be more reliably formed in the silicon single crystal substrate, and carriers such as dopants and/or raw material-derived impurities in the silicon single crystal substrate can be inactivated.
  • the upper limit of the irradiation energy is not particularly limited.
  • electron beam irradiation is performed at 2 MeV and 1 ⁇ 10 15 /cm 2 .
  • the electron beam may be applied to the entire surface of the silicon single crystal substrate.
  • this electron beam irradiation can also be performed after the step of forming a nitride semiconductor film, which will be described later.
  • electron beam irradiation may be performed between the formation of the plurality of nitride semiconductor layers.
  • the electron beam irradiation is performed after forming the nitride semiconductor film, it can be performed before or after device fabrication.
  • an electron beam can be irradiated at the dose described above to a wafer-shaped object in which a device is fabricated on a nitride semiconductor film on a silicon single crystal substrate. Further, electron beam irradiation can be performed before or after formation of the nitride semiconductor film (or fabrication of the device), particularly from the back surface side (silicon single crystal substrate side).
  • the electron beam follows the high frequency. It is thought that there are no carriers to support, and harmonics are reduced.
  • a nitride semiconductor is formed by epitaxial growth.
  • the nitride semiconductor film to be formed is not particularly limited, and may be a single layer or multiple layers as long as it includes at least one nitride semiconductor layer.
  • an intermediate layer is first formed as shown in FIG.
  • an AlN layer having a thickness of 150 nm is formed on a silicon single crystal substrate, an AlGaN layer having a thickness of, for example, 160 nm is formed thereon, and 70 sets of GaN layers and AlN layers are alternately laminated thereon.
  • a superlattice layer can be formed.
  • the device layer can be formed by forming a GaN layer with a thickness of 800 nm, forming an AlGaN layer with a thickness of 25 nm thereon, and further forming a GaN layer with a thickness of 3 nm thereon.
  • the nitride semiconductor wafer manufactured by irradiating the electron beam with the predetermined dose according to the manufacturing method of the present invention has improved loss and second harmonic characteristics, and suppressed characteristic deterioration. can do.
  • a high-frequency device manufactured from such a nitride semiconductor wafer has improved loss and suppressed second harmonic characteristic deterioration.
  • a CPW (Co-Planar Waveguide) Al electrode as shown in FIG. 2 can be formed.
  • a nitride semiconductor wafer produced by epitaxially growing a nitride semiconductor film is taken out from a film forming apparatus, an insulating film is formed on the wafer, and an Al electrode of CPW is formed on this insulating film by photolithography.
  • a CPW has a structure in which metal electrodes are arranged in parallel with a gap therebetween, and a linear central metal electrode is formed in the center of the gap in parallel with these metal electrodes.
  • a linear gap is provided in the center of the metal electrode, and the linear electrode is formed in the center of this gap so as not to touch the outer metal electrode.
  • the CPW transmits electromagnetic waves by means of an electric field directed from the central metal electrode to the left and right metal electrodes and the inside of the semiconductor substrate and a magnetic field surrounding the central metal electrode inside the semiconductor substrate. If CPW is formed on a wafer, harmonic characteristics (Harmonic Distortion: HD) can be measured.
  • harmonic characteristics Harmonic Distortion: HD
  • EXAMPLES The present invention will be specifically described below with reference to Examples, but the present invention is not limited to these.
  • Three types of silicon single crystal substrates (8 m ⁇ cm, 8 ⁇ cm, and 5531 ⁇ cm) with different resistivities were prepared.
  • An AlN layer having a thickness of 150 nm was formed as an intermediate layer on the above three types of silicon single crystal substrates, an AlGaN layer having a thickness of 160 nm was formed thereon, and a GaN layer and an AlN layer were alternately formed thereon.
  • a superlattice layer was formed by stacking 70 sets.
  • a GaN layer with a thickness of 800 nm was formed, an AlGaN layer with a thickness of 25 nm was formed thereon, and a GaN layer with a thickness of 3 nm was further formed thereon (see FIG. 1).
  • a nitride semiconductor wafer on which a nitride semiconductor film is formed by epitaxial growth is taken out from the growth apparatus, an insulating film is formed on the wafer, and a CPW electrode (Al) (line length: 2199 ⁇ m).
  • the second harmonic characteristics (2HD) of each element of the nitride semiconductor wafer before electron beam irradiation were measured (without irradiation).
  • the nitride semiconductor wafer was irradiated with an electron beam.
  • the electron beam irradiation was performed at 2 MeV, 5 ⁇ 10 11 /cm 2 , 5 ⁇ 10 12 /cm 2 , 1 ⁇ 10 14 /cm 2 , 1 ⁇ 10 15 /cm 2 with varying doses. Corporation 3000 kV machine).
  • the second harmonic characteristics (2HD) of each element of the nitride semiconductor wafer after electron beam irradiation were measured.
  • FIG. 3 is a graph showing second harmonic characteristics of substrates with different resistivities. The larger the negative value on the vertical axis of the graph, the better. Although the leftmost position of the horizontal axis is the position of 1 ⁇ 10 11 /cm 2 , the displayed plot itself shows the measured value without irradiation (that is, the irradiation dose is 0/cm 2 ). there is
  • the second harmonic does not change much from no irradiation (irradiation dose is 0/cm 2 ) to approximately 5 ⁇ 10 12 /cm 2 irradiation dose, but 1 ⁇ 10 14 /cm 2 , it can be seen that the second harmonic is greatly improved.
  • the second harmonic is further improved as the irradiation dose increases to 3 ⁇ 10 14 /cm 2 or more, and further to 1 ⁇ 10 15 /cm 2 or more. It was confirmed that the second harmonic was greatly improved even at a dose of 1 ⁇ 10 16 /cm 2 or more. The degree of improvement was also considered to be sufficient.
  • this loss refers to power loss due to leakage current caused by 2DEG (two-dimensional electron gas) in the SLs portion of the intermediate layer (buffer layer) and P-channeling due to diffusion of Al from the AlN layer to the silicon single crystal substrate. .
  • the loss at each irradiation dose was compared for each of the above types (resistivity).
  • the 1 ⁇ 10 14 /cm 2 and 1 ⁇ 10 15 /cm 2 yielded better results.
  • the loss is about -60 dBm/mm between no irradiation and about 5 ⁇ 10 12 /cm 2 , but it is -80 dBm/mm for 1 ⁇ 10 14 /cm 2 , which is an improvement.
  • 1 ⁇ 10 14 /cm 2 as a boundary, a further large improvement was achieved in the case of more than 1 ⁇ 10 14 /cm 2 .
  • the present invention is not limited to the above embodiments.
  • the above embodiment is an example, and any device that has substantially the same configuration as the technical idea described in the claims of the present invention and produces similar effects is the present invention. It is included in the technical scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本発明は、シリコン単結晶基板の上に窒化物半導体膜を形成する窒化物半導体ウェーハの製造方法であって、前記シリコン単結晶基板の上に前記窒化物半導体膜を形成する工程と、前記シリコン単結晶基板に1×1014/cm以上の照射量の電子線を照射する工程とを含む窒化物半導体ウェーハの製造方法である。これにより、シリコン単結晶基板上に窒化物半導体膜を形成させた窒化物半導体ウェーハにおいて、基板による損失及び第2高調波の特性が改善された窒化物半導体ウェーハの製造方法が提供される。

Description

窒化物半導体ウェーハの製造方法
 本発明は、窒化物半導体ウェーハの製造方法に関し、特に高周波デバイスに用いることに適した窒化物半導体ウェーハの製造方法に関する。
 高周波デバイスは、小型化、低コスト化に向けて、アンテナやアンプ、スイッチ、フィルター等のデバイスをインテグレーションする開発が進められている。また、周波数の高周波化に従い、回路が複雑化し、使用されるデバイスの材料もシリコンCMOS、III-V族半導体や窒化物半導体を用いたデバイス、圧電体を用いたフィルターなど多岐にわたっている。
 これらのデバイスの下地となる基板は、安価で大口径のウェーハが流通しているシリコン単結晶基板が適していると考えられる。
国際公開第2005/020320号
 しかし、上記のような従来の高周波デバイスでは、基板起因による特性劣化、基板による損失及び第2・3高調波特性劣化がみられる。
 ここで、高調波とは、元となる周波数の整数倍の高次の周波数成分のことである。元の周波数を基本波とし、基本波の2倍の周波数(2分の1の波長)を持つものが第2高調波、基本波の3倍の周波数(3分の1の波長)を持つものが第3高調波と定義されている。高周波回路では、高調波による混信を避けるために高調波の小さい基板が必要とされる。
 特許文献1には、パワー用途のワイドギャップバイポーラ半導体(SiC)に、予めγ線、電子線、荷電粒子線の1つを照射して、キャリア寿命を所定の範囲になるように調整することで、スイッチング特性を向上させることが記載されているが、第2高調波特性等の劣化については言及されていない。
 本発明は上記課題を解決するためになされたもので、シリコン単結晶基板上に窒化物半導体膜を形成させた窒化物半導体ウェーハにおいて、基板による損失及び第2高調波の特性が改善された窒化物半導体ウェーハを製造する方法を提供することを目的とする。
 上記目的を達成するために、本発明は、シリコン単結晶基板の上に窒化物半導体膜を形成する窒化物半導体ウェーハの製造方法であって、
 前記シリコン単結晶基板の上に前記窒化物半導体膜を形成する工程と、前記シリコン単結晶基板に1×1014/cm以上の照射量の電子線を照射する工程とを含むことを特徴とする窒化物半導体ウェーハの製造方法を提供する。
 このような窒化物半導体ウェーハの製造方法であれば、1×1014/cm以上の照射量(ドーズ量)の電子線を照射することで、基板による損失が改善されたり、第2高調波特性を改善し、第2高調波特性劣化が抑制された窒化物半導体ウェーハを製造することができる。そして、製造した窒化物半導体ウェーハを特には高周波デバイスに用いることで、基板による損失(例えば電力損失)や第2高調波特性が改善された高品質の高周波デバイスを提供することができる。
 このとき、前記電子線を照射する工程において、前記照射する電子線の照射量を3×1014/cm以上1×1016/cm以下とすることができる。
 このように電子線の照射量を3×1014/cm以上にすれば、より一層、損失が改善され、また第2高調波特性劣化が抑制された窒化物半導体ウェーハを製造することができる。
 また、1×1016/cm以下とすることで、照射に要する時間が長くなりすぎることがないため、効率的である。
 また、前記電子線を照射する工程を、前記窒化物半導体膜を形成する工程の前に行うことができる。あるいは、前記電子線を照射する工程を、前記窒化物半導体膜を形成する工程の後に行うことができる。
 このように、シリコン単結晶基板に上記照射量の電子線を照射することができればよく、電子線の照射自体は、窒化物半導体膜を形成する工程の前に行うこともできるし、後に行うこともできる。
 このとき、前記電子線を照射する工程を、前記窒化物半導体膜を形成する工程の後の、さらに前記窒化物半導体膜にデバイスを作製した後に行うことができる。
 このように、上記電子線の照射を窒化物半導体膜にデバイスを作製した後に行うこともできる。
 本発明の窒化物半導体ウェーハの製造方法であれば、基板による損失の改善や、第2高調波特性の改善がなされた窒化物半導体ウェーハを製造することができ、特には高周波デバイス用に適したウェーハを提供することができる。
本発明に係る窒化物半導体ウェーハの一例を示す概略図である。 第2高調波特性を評価するために用いるCo-Planar Waveguide(CPW)の概略平面図である。 各抵抗率の基板の第2高調波特性を示すグラフである。
 上述のように、シリコン単結晶基板上に窒化物半導体膜が形成された窒化物半導体ウェーハに関して、損失や第2高調波特性を改善、向上し、特性劣化が抑制された窒化物半導体ウェーハを得ることができる製造方法が求められていた。
 本発明者らは、上記課題について鋭意検討を重ねた結果、シリコン単結晶基板の上に窒化物半導体膜を形成する窒化物半導体ウェーハの製造方法であって、前記シリコン単結晶基板の上に前記窒化物半導体膜を形成する工程と、前記シリコン単結晶基板に1×1014/cm以上の照射量の電子線を照射する工程とを含む窒化物半導体ウェーハの製造方法により、損失や第2高調波特性を改善、向上し、第2高調波特性の劣化が抑制された窒化物半導体ウェーハを製造することができることを見出し、本発明を完成した。
 以下、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
 本発明の窒化物半導体ウェーハの製造方法について図1を用いて説明する。
 なお、以下の窒化物半導体ウェーハの構造は一例であって、これに限定されるものではない。
 最初にシリコン単結晶基板を準備する。このシリコン単結晶基板は特に限定されず、抵抗率に関しては、例えば抵抗率が100Ωcm以上といった高抵抗のものを用いることができる。抵抗率の上限値は特に限定されないが、例えば10000Ωcm以下とすることができる。また、抵抗率が1Ωcm以上100Ωcm未満のような通常抵抗のものや、あるいは抵抗率が1Ωcm未満のような低抵抗のものを用いることもできる。本発明の製造方法においては、シリコン単結晶基板の抵抗率の高低に関わらず、前述したような損失や第2高調波特性の改善を得ることができる。
 ところで、本発明の製造方法ではこの後に行う工程として、シリコン単結晶基板の上に窒化物半導体膜を形成する工程と、シリコン単結晶基板に所定の照射量(1×1014/cm以上)の電子線を照射する工程とを含んでいるが、これらの工程はどちらを先に行ってもよいが、電子線を照射する工程を後に行うのがより好ましい。
 ここでは、まず、シリコン単結晶基板に電子線照射を行う。電子線を照射することで、シリコン単結晶基板中のドーパント及び/又は原料由来の不純物等のキャリアを不活性化させることによる効果が顕著に得られる。ここでの不活性化は、すなわち、電子線を照射することで、シリコン単結晶基板中に点欠陥が形成され、これらがシリコン単結晶基板中のキャリアをトラップするといった、点欠陥とドーパント及び/又はキャリアの反応による。また、点欠陥によってドーパント及び/又はキャリアの移動度が低下することで抵抗が変化すると考えられる。シリコン単結晶基板中のドーパント及び/又はキャリアを不活性化させた結果、シリコン単結晶基板が高抵抗率化すると考えられる。
 なお、後述する窒化物半導体膜を形成する工程の後に電子線を照射する場合、上記効果に加え、窒化物半導体膜中の点欠陥が減少し、特性が向上するものと考えられる。
 このとき、上記効果を得るため、電子線の照射条件として、電子線の照射量を1×1014/cm以上とする。このような照射量とすることで、後述の窒化物半導体膜の形成後、基板による損失の改善や第2高調波特性の改善がなされた窒化物半導体ウェーハを製造することができる。
 ここで、より好ましくは3×1014/cm以上の照射量とすることができ、損失や第2高調波特性の改善をより一層図ることができる。なお、1×1015/cm以上の照射量とするとさらに好ましい。
 その一方、上限値としては例えば1×1016/cm以下とすることができる。このような照射量であれば、照射時間が必要以上に長くなりすぎることを防ぐことができ、効率的である。
 それ以外の照射条件は特に限定されず、例えば、250keV以上のエネルギーをもつ電子を用いることができる。約250keV以上であれば、より確実にシリコン単結晶基板中に点欠陥を形成でき、シリコン単結晶基板中のドーパント及び/又は原料由来の不純物等のキャリアを不活性化させることができる。なお、照射エネルギーの上限は特に問わない。
 ここでは一例として、2MeV、1×1015/cmでの電子線照射とする。
 また、電子線は、シリコン単結晶基板表面の全面に照射してもよい。
 なお、シリコン単結晶基板に電子線を照射することができれば良く、この電子線照射は、後述の窒化物半導体膜を形成する工程の後に行うこともできる。窒化物半導体膜として複数層の窒化物半導体層を形成する場合には、複数層の窒化物半導体層の形成の間に電子線照射を行ってもよい。窒化物半導体膜を形成した後に電子線照射を行う場合、デバイス作製の前に行うこともできるし、後に行うこともできる。例えばダイシング前の、シリコン単結晶基板上の窒化物半導体膜にデバイスが作製されたウェーハ状のものに、上述した照射量での電子線照射を行うことができる。
 また、電子線照射は、窒化物半導体膜の形成(あるいはデバイスの作製)の前でも後でも、特には裏面側(シリコン単結晶基板側)から行うことができる。
 このように、上記所定の照射量の電子線を照射して、ドーパント及び/又はキャリアを減少させる(シリコン単結晶基板を高抵抗率化する)ことで、高周波を印加したときに、高周波に追従するキャリアがなくなり、高調波が減少すると考えられる。
 次に窒化物半導体をエピタキシャル成長により形成する。形成する窒化物半導体膜は特に限定されず、少なくとも1層の窒化物半導体層を含んでいれば、単層でも複数層でもよい。例えば、窒化物半導体膜として複数層の窒化物半導体層を形成する場合には、図1に示すように、最初に中間層を形成する。
 中間層はシリコン単結晶基板上に例えば厚さ150nmのAlN層を形成し、その上に例えば厚さ160nmのAlGaN層を形成し、更にその上に例えばGaN層とAlN層が交互に70組積層された超格子層を形成することができる。
 次にデバイス層を形成する。デバイス層は例えば厚さ800nmのGaN層を形成し、その上に例えば厚さ25nmのAlGaN層を形成し、更にその上に例えば厚さ3nmのGaN層を形成することができる。
 このように本発明の製造方法によって、上記所定の照射量の電子線を照射して製造した窒化物半導体ウェーハは、損失および第2高調波特性が改善され、特性劣化が抑制されたものとすることができる。そして、特に、そのような窒化物半導体ウェーハから製造される高周波デバイスは、損失が改善されており、また、第2高調波特性劣化が抑制されたものとすることができる。
 なお、高調波特性の測定、評価のために、図2に示すようなCPW(Co-Planar Waveguide)のAl電極を形成することができる。窒化物半導体膜をエピタキシャル成長により形成して作製した窒化物半導体ウェーハを成膜装置から取り出し、ウェーハ上に絶縁膜を形成し、フォトリソグラフィーにより、この絶縁膜上にCPWのAl電極を形成する。
 CPWは、金属電極を隙間を開けて並列に並べて、その隙間の中央にこれら金属電極と並列に、線状の中央金属電極を形成した構造を持つ。図2に示す一例では、金属電極の中央に線状の隙間を空けて、この隙間の中央に線状の電極を、外側の金属電極に触れないように形成した構造となっている。
 CPWは、このような構造で、中央金属電極から左右両側の金属電極及び半導体基板内部に向かう方向の電界と、半導体基板内部において中央金属電極を囲む方向の磁界によって電磁波を伝送する。CPWをウェーハ上に形成すれば、高調波特性(Harmonic Distortion:HD)を測定することができる。
 以下、実施例を挙げて本発明について具体的に説明するが、本発明はこれに限定されるものではない。
(実施例および比較例)
 抵抗率の異なるシリコン単結晶基板を3種類(8mΩcm、8Ωcm、5531Ωcm)準備した。上記の3種類のシリコン単結晶基板上に中間層として、厚さ150nmのAlN層を形成し、その上に厚さ160nmのAlGaN層を形成し、更にその上にGaN層とAlN層が交互に70組積層された超格子層を形成した。次にデバイス層として、厚さ800nmのGaN層を形成し、その上に厚さ25nmのAlGaN層を形成し、更にその上に厚さ3nmのGaN層を形成した(図1参照)。
 エピタキシャル成長により窒化物半導体膜を形成した窒化物半導体ウェーハを成長装置から取り出し、ウェーハ上に絶縁膜を形成して、フォトリソグラフィー工程により、図2に示すようなCPWの電極(Al)(路線長:2199μm)を形成した。
 次に、まず、電子線照射前の窒化物半導体ウェーハの各素子の第2高調波特性(2HD)を測定した(照射無)。
 この測定後、窒化物半導体ウェーハに電子線照射を行った。電子線照射は、2MeV、5×1011/cm、5×1012/cm、1×1014/cm、1×1015/cmとドーズ量を変えて、日新電機(NHVコーポレーション3000kV機)で行なった。
 次に、電子線照射後の窒化物半導体ウェーハの各素子の第2高調波特性(2HD)を測定した。
 なお、照射無、5×1011/cm、5×1012/cmの3つの場合が比較例であり、1×1014/cm、1×1015/cmの2つの場合が実施例である。
 測定結果を図3に示す。図3は、各抵抗率の基板の第2高調波特性を示すグラフである。グラフで縦軸のマイナスの値が大きい程、良好であることを意味する。なお、横軸の左端の位置は1×1011/cmの位置ではあるが、表示されているプロット自体は照射無(すなわち、照射量が0/cm)の場合の測定値を示している。
 上記の種類(抵抗率)ごとに、各照射量における第2高調波特性を比較したところ、図3に示すように、どの種類においても、照射無、5×1011/cm、5×1012/cmの3つの場合(比較例)よりも、1×1014/cm、1×1015/cmの2つの場合(実施例)の方が改善された結果となっていることが判る。
 例えば8Ωcmの場合では、1×1014/cmの電子線照射を行った窒化物半導体ウェーハでは、照射無の場合と比べると、第2高調波損失に約20dBmの改善が観られた。更に1×1015/cmの電子線照射を行った場合は、1×1014/cmの場合よりも第2高調波損失が約25dBm改善されることが判った。すなわち、照射無の場合と比べると、約45dBmもの改善が観られた。
 8mΩcmや5531Ωcmの場合でも、同等、あるいはそれ以上の改善が観られた。
 グラフに示されているように、照射無(照射量が0/cm)から照射量が5×1012/cm程度までは第2高調波はさほど変化していないが、1×1014/cmを境にして、第2高調波が大きく改善していく様子が判る。そしてグラフの曲線からも判るように3×1014/cm以上、さらには1×1015/cm以上と照射量が大きくなるにつれて、第2高調波はさらに改善されている。なお、1×1016/cmやそれ以上の照射量においても第2高調波が大きく改善されるのを確認できたが、効率面を考慮すると1×1016/cm程度の照射量で改善の度合いも十分であると考えられた。
 また、基板による損失についても調査を行った。なお、この損失は、中間層(バッファ層)のSLs部の2DEG(二次元電子ガス)やAlN層からシリコン単結晶基板へのAlの拡散によるPチャネル化に起因するリーク電流による電力損失を言う。
 上記の種類(抵抗率)ごとに各照射量における損失を比較した。第2高調波特性のときと同様に、どの種類においても、照射無、5×1011/cm、5×1012/cmの3つの場合(比較例)よりも、1×1014/cm、1×1015/cmの2つの場合(実施例)の方が改善された結果となった。
 例えば8Ωcmの種類では、損失は、照射無から5×1012/cm程度までの間では-60dBm/mm程度のところ、1×1014/cmの場合では-80dBm/mmであり改善していた。そして、1×1014/cmの場合を境にして、それ以上の場合にさらに大きく改善したのを確認できた。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (5)

  1.  シリコン単結晶基板の上に窒化物半導体膜を形成する窒化物半導体ウェーハの製造方法であって、
     前記シリコン単結晶基板の上に前記窒化物半導体膜を形成する工程と、前記シリコン単結晶基板に1×1014/cm以上の照射量の電子線を照射する工程とを含むことを特徴とする窒化物半導体ウェーハの製造方法。
  2.  前記電子線を照射する工程において、前記照射する電子線の照射量を3×1014/cm以上1×1016/cm以下とすることを特徴とする請求項1に記載の窒化物半導体ウェーハの製造方法。
  3.  前記電子線を照射する工程を、前記窒化物半導体膜を形成する工程の前に行うことを特徴とする請求項1または請求項2に記載の窒化物半導体ウェーハの製造方法。
  4.  前記電子線を照射する工程を、前記窒化物半導体膜を形成する工程の後に行うことを特徴とする請求項1または請求項2に記載の窒化物半導体ウェーハの製造方法。
  5.  前記電子線を照射する工程を、前記窒化物半導体膜を形成する工程の後の、さらに前記窒化物半導体膜にデバイスを作製した後に行うことを特徴とする請求項4に記載の窒化物半導体ウェーハの製造方法。
PCT/JP2022/011764 2021-04-08 2022-03-16 窒化物半導体ウェーハの製造方法 WO2022215464A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280024660.6A CN117099184A (zh) 2021-04-08 2022-03-16 氮化物半导体晶圆的制造方法
EP22784449.5A EP4321658A1 (en) 2021-04-08 2022-03-16 Method for producing nitride semiconductor wafer
US18/284,615 US20240162041A1 (en) 2021-04-08 2022-03-16 Method for producing nitride semiconductor wafer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021066022A JP7420108B2 (ja) 2021-04-08 2021-04-08 窒化物半導体ウェーハの製造方法
JP2021-066022 2021-04-08

Publications (1)

Publication Number Publication Date
WO2022215464A1 true WO2022215464A1 (ja) 2022-10-13

Family

ID=83546203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011764 WO2022215464A1 (ja) 2021-04-08 2022-03-16 窒化物半導体ウェーハの製造方法

Country Status (6)

Country Link
US (1) US20240162041A1 (ja)
EP (1) EP4321658A1 (ja)
JP (1) JP7420108B2 (ja)
CN (1) CN117099184A (ja)
TW (1) TW202307295A (ja)
WO (1) WO2022215464A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7400789B2 (ja) 2021-10-01 2023-12-19 信越半導体株式会社 窒化物半導体ウェーハの製造方法、及び窒化物半導体ウェーハ

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005020320A1 (ja) 2003-08-22 2005-03-03 The Kansai Electric Power Co., Inc. 半導体装置及びその製造方法、この半導体装置を用いた電力変換装置
JP2006351649A (ja) * 2005-06-14 2006-12-28 Showa Denko Kk 炭化珪素層製造方法、窒化ガリウム系半導体素子およびシリコン基板
JP2015523712A (ja) * 2012-05-04 2015-08-13 シリコン ジェネシス コーポレーション 光電子工学デバイスを形成するための技術
US20170069723A1 (en) * 2015-09-08 2017-03-09 M/A-Com Technology Solutions Holdings, Inc. Iii-nitride semiconductor structures comprising multiple spatially patterned implanted species
JP2018113358A (ja) * 2017-01-12 2018-07-19 三菱電機株式会社 高電子移動度トランジスタの製造方法、高電子移動度トランジスタ
JP2020098839A (ja) * 2018-12-17 2020-06-25 信越半導体株式会社 窒化物半導体ウェーハの製造方法および窒化物半導体ウェーハ
JP2022050886A (ja) * 2020-09-18 2022-03-31 信越半導体株式会社 窒化物半導体ウェーハの製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068621A (ja) * 1983-09-26 1985-04-19 Toshiba Corp 半導体装置の製造方法
JP2014086600A (ja) * 2012-10-24 2014-05-12 Fuji Electric Co Ltd 半導体装置、半導体装置の製造方法および半導体装置の制御方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005020320A1 (ja) 2003-08-22 2005-03-03 The Kansai Electric Power Co., Inc. 半導体装置及びその製造方法、この半導体装置を用いた電力変換装置
JP2006351649A (ja) * 2005-06-14 2006-12-28 Showa Denko Kk 炭化珪素層製造方法、窒化ガリウム系半導体素子およびシリコン基板
JP2015523712A (ja) * 2012-05-04 2015-08-13 シリコン ジェネシス コーポレーション 光電子工学デバイスを形成するための技術
US20170069723A1 (en) * 2015-09-08 2017-03-09 M/A-Com Technology Solutions Holdings, Inc. Iii-nitride semiconductor structures comprising multiple spatially patterned implanted species
JP2018113358A (ja) * 2017-01-12 2018-07-19 三菱電機株式会社 高電子移動度トランジスタの製造方法、高電子移動度トランジスタ
JP2020098839A (ja) * 2018-12-17 2020-06-25 信越半導体株式会社 窒化物半導体ウェーハの製造方法および窒化物半導体ウェーハ
JP2022050886A (ja) * 2020-09-18 2022-03-31 信越半導体株式会社 窒化物半導体ウェーハの製造方法

Also Published As

Publication number Publication date
TW202307295A (zh) 2023-02-16
EP4321658A1 (en) 2024-02-14
US20240162041A1 (en) 2024-05-16
JP7420108B2 (ja) 2024-01-23
CN117099184A (zh) 2023-11-21
JP2022161310A (ja) 2022-10-21

Similar Documents

Publication Publication Date Title
JP5608238B2 (ja) 半導体構造
WO2022059488A1 (ja) 窒化物半導体ウェーハの製造方法
JP2011139014A (ja) 高電子移動度トランジスタ及びその製造方法
JP5011493B2 (ja) 炭化珪素半導体素子の製造方法
JP2011243644A (ja) Iii族窒化物半導体電子デバイス、iii族窒化物半導体電子デバイスを作製する方法
WO2013069113A1 (ja) 半導体装置およびその製造方法
WO2022215464A1 (ja) 窒化物半導体ウェーハの製造方法
JP2011035065A (ja) 半導体装置
CN116759457A (zh) 一种氧化镓异相集成垂直晶体管器件及其制备方法、应用
WO2023008034A1 (ja) 半導体デバイス用基板及びその製造方法
CN117476773A (zh) 一种具有低漏电的ldmos及制备方法
CN216597592U (zh) 碳化硅二极管
JP5532248B2 (ja) ダイヤモンド電子素子及びその製造方法
CN114725022A (zh) 一种基于GaOx-GaN的CMOS反相器的制备方法
JP7400789B2 (ja) 窒化物半導体ウェーハの製造方法、及び窒化物半導体ウェーハ
KR20240010555A (ko) 매립된 p형 층을 갖는 3족 질화물 고전자 이동도 트랜지스터 및 이를 제조하기 위한 공정
JP6109098B2 (ja) 絶縁ゲート型半導体装置
WO2022024526A1 (ja) 量子コンピュータ用半導体装置の製造方法
KR20230032751A (ko) 반도체 소자 및 이의 제조방법
US20230282481A1 (en) Method for manufacturing gan-based power device and ganbased power device manufactured thereby
JP2024011500A (ja) 半導体装置の製造方法
CN118039701A (zh) 一种高导热氧化镓晶体管及其制备方法
JP2023138682A (ja) 炭化珪素半導体装置の製造方法
CN111341831A (zh) 一种金属半导体场效应晶体管
CN113437145A (zh) 一种iii族氮化物晶体管的制备方法及晶体管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784449

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280024660.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18284615

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022784449

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022784449

Country of ref document: EP

Effective date: 20231108