WO2022210878A1 - 鋼部材の窒化処理方法 - Google Patents
鋼部材の窒化処理方法 Download PDFInfo
- Publication number
- WO2022210878A1 WO2022210878A1 PCT/JP2022/015994 JP2022015994W WO2022210878A1 WO 2022210878 A1 WO2022210878 A1 WO 2022210878A1 JP 2022015994 W JP2022015994 W JP 2022015994W WO 2022210878 A1 WO2022210878 A1 WO 2022210878A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nitriding
- gas
- potential
- gases
- controlled
- Prior art date
Links
- 238000005121 nitriding Methods 0.000 title claims abstract description 537
- 238000000034 method Methods 0.000 title claims abstract description 117
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 53
- 239000010959 steel Substances 0.000 title claims abstract description 53
- 239000007789 gas Substances 0.000 claims description 306
- 238000010438 heat treatment Methods 0.000 claims description 93
- -1 nitride compound Chemical class 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 4
- 230000000052 comparative effect Effects 0.000 description 48
- 238000012545 processing Methods 0.000 description 20
- 238000001816 cooling Methods 0.000 description 17
- 150000001875 compounds Chemical class 0.000 description 15
- 238000005452 bending Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 9
- 230000003247 decreasing effect Effects 0.000 description 7
- 239000002436 steel type Substances 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 238000004140 cleaning Methods 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 238000005255 carburizing Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000005256 carbonitriding Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005238 degreasing Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910001337 iron nitride Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000010407 vacuum cleaning Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/24—Nitriding
- C23C8/26—Nitriding of ferrous surfaces
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/06—Surface hardening
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
- C21D1/76—Adjusting the composition of the atmosphere
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/32—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/34—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in more than one step
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/80—After-treatment
Definitions
- the present invention relates to a method of nitriding a steel member comprising at least three stages of nitriding.
- Carburizing treatment and nitriding treatment are known as techniques for strengthening steel members such as gears in order to meet such demands.
- Patent Document 1 in order to improve the pitting resistance and bending fatigue strength of steel members, iron containing ⁇ ' phase as a main component is applied to the surface of steel members by nitriding treatment. It is disclosed that the formation of a nitride layer is effective.
- Patent Document 2 discloses a nitriding treatment method for forming a nitride compound layer with a high ⁇ ' ratio (0.7 or more). Specifically, it describes a three-stage gas nitriding treatment performed at a temperature of 570° C. to 600° C. using two kinds of gases, NH 3 gas and AX gas. More specifically, at a temperature of 570° C. to 600° C., 0.1 to 0.25 is adopted for the nitriding potential in the first nitriding process, and 1.0 for the nitriding potential in the second nitriding process. ⁇ 2.0 is adopted, and 0.25 is adopted for the nitriding potential in the third nitriding treatment step.
- Patent Document 2 Japanese Patent No. 6755106
- the action (reaction) in which the ⁇ ' phase precipitates in the nitride compound layer is affected by both the nitriding potential and the furnace temperature. If the nitriding potential in the nitriding treatment step is set to 0.25 or less, the ⁇ -phase, which is lower in hardness than the ⁇ '-phase, may also precipitate, resulting in insufficient pitting resistance and bending fatigue strength.
- An object of the present invention is to enable the ⁇ ' phase to be favorably precipitated in the nitride compound layer in the nitriding treatment performed in the temperature range of 500° C. to 590° C., thereby realizing high pitting resistance and bending fatigue strength. It is to provide a nitriding method capable of
- the present invention A nitriding method for a steel member comprising at least three stages of nitriding treatment, a first nitriding step of nitriding the steel member in a nitriding gas atmosphere of a first nitriding potential; a second nitriding step of further nitriding the steel member in a nitriding gas atmosphere having a second nitriding potential higher than the first nitriding potential after the first nitriding step; a third nitriding step of further nitriding the steel member in a nitriding gas atmosphere having a third nitriding potential lower than the second nitriding potential after the second nitriding step; with The first nitriding treatment step is performed at a temperature of 500° C.
- the second nitriding treatment step is also performed at a temperature of 500° C. to 590° C.
- the third nitriding treatment step is also performed at a temperature of 500° C. to 590° C.
- the first nitriding potential is a value within the range of 0.10 to 1.00
- the second nitriding potential is a value within the range of 0.30 to 10.00
- the third nitriding potential is a value within the range of 0.26 to 0.60
- a nitride compound layer of ⁇ ' phase, ⁇ phase, or a mixture of ⁇ ' phase and ⁇ phase is generated,
- a ⁇ ' phase is precipitated in the nitride compound layer in the third nitriding step.
- the third nitriding potential is set to a value within the range of 0.26 to 0.60. It is possible to suppress the precipitation of the ⁇ phase, which is lower in hardness than the other phases, to favorably precipitate the ⁇ ' phase in the nitride compound layer, and to realize high pitting resistance and bending fatigue strength.
- the first nitriding step, the second nitriding step, and the third nitriding step are sequentially performed in the same batch-type heat treatment furnace,
- the first nitriding step two kinds of gases, NH 3 gas and AX gas, are used, and by changing the introduction amount of each while keeping the total flow rate thereof constant, is controlled so that the nitriding potential of is the first nitriding potential
- the second nitriding step three types of gases, NH 3 gas, AX gas, and N 2 gas, are used, and the introduction amount of each of NH 3 gas and AX gas is changed while keeping the total flow rate thereof constant.
- the nitriding potential during the second nitriding treatment step is controlled to be the second nitriding potential
- two kinds of gases, NH 3 gas and AX gas, are used, and by changing the introduction amount of each while keeping the total flow rate thereof constant, is controlled to be the third nitriding potential.
- the first nitriding step is performed at a temperature of 500° C. to 590° C.
- the second nitriding step is also performed at a temperature of 500° C. to 590° C.
- the third nitriding step is also performed at a temperature of 500° C. to 500° C. ° C. to 590 ° C.
- the first nitriding potential is a value within the range of 0.10 to 1.00
- the second nitriding potential is higher than the first nitriding potential and is 0.30 to 10.00
- the third nitriding potential is lower than the second nitriding potential and within the range of 0.26 to 0.60.
- the first nitriding step, the second nitriding step, and the third nitriding step are sequentially performed in the same single-chamber heat treatment furnace,
- the first nitriding step two kinds of gases, NH 3 gas and AX gas, are used, and by changing the introduction amount of each while keeping the total flow rate thereof constant, is controlled so that the nitriding potential of is the first nitriding potential
- the second nitriding step three types of gases, NH 3 gas, AX gas, and N 2 gas, are used, and the introduction amount of each of NH 3 gas and AX gas is changed while keeping the total flow rate thereof constant.
- the nitriding potential during the second nitriding treatment step is controlled to be the second nitriding potential
- two kinds of gases, NH 3 gas and AX gas, are used, and by changing the introduction amount of each while keeping the total flow rate thereof constant, is controlled to be the third nitriding potential.
- the first nitriding step is performed at a temperature of 500° C. to 590° C.
- the second nitriding step is also performed at a temperature of 500° C. to 590° C.
- the third nitriding step is also performed. It is carried out at a temperature of 500° C. to 590° C.
- the first nitriding potential is a value within the range of 0.10 to 1.00
- the second nitriding potential is higher than the first nitriding potential and is 0.30 to 10.00.
- the third nitriding potential is lower than the second nitriding potential and has a value within the range of 0.26 to 0.60. .
- the first nitriding step, the second nitriding step, and the third nitriding step are sequentially performed in the same batch-type heat treatment furnace,
- the first nitriding step two kinds of gases, NH 3 gas and AX gas, are used, and by changing the introduction amount of each while keeping the total flow rate thereof constant, is controlled so that the nitriding potential of is the first nitriding potential
- two types of gases, NH 3 gas and AX gas are used, and by changing the introduction amount of each while keeping the total flow rate thereof constant, is controlled so that the nitriding potential of is the second nitriding potential
- the third nitriding process two types of gases, NH 3 gas and AX gas, are used, and by changing the introduction amount of each while keeping the total flow rate thereof constant, is controlled to be the third nitriding potential.
- the first nitriding step is performed at a temperature of 500° C. to 590° C.
- the second nitriding step is also performed at a temperature of 500° C. to 590° C.
- the third nitriding step is also performed. It is carried out at a temperature of 500° C. to 590° C.
- the first nitriding potential is a value within the range of 0.10 to 1.00
- the second nitriding potential is higher than the first nitriding potential and is 0.30 to 10.00.
- the third nitriding potential is lower than the second nitriding potential and has a value within the range of 0.26 to 0.60. .
- the first nitriding step, the second nitriding step, and the third nitriding step are sequentially performed in the same single-chamber heat treatment furnace,
- the first nitriding step two kinds of gases, NH 3 gas and AX gas, are used, and by changing the introduction amount of each while keeping the total flow rate thereof constant, is controlled so that the nitriding potential of is the first nitriding potential
- two types of gases, NH 3 gas and AX gas are used, and by changing the introduction amount of each while keeping the total flow rate thereof constant, is controlled so that the nitriding potential of is the second nitriding potential
- the third nitriding process two types of gases, NH 3 gas and AX gas, are used, and by changing the introduction amount of each while keeping the total flow rate thereof constant, is controlled to be the third nitriding potential.
- the first nitriding step is performed at a temperature of 500° C. to 590° C.
- the second nitriding step is also performed at a temperature of 500° C. to 590° C.
- the third nitriding step is also performed. It is carried out at a temperature of 500° C. to 590° C.
- the first nitriding potential is a value within the range of 0.10 to 1.00
- the second nitriding potential is higher than the first nitriding potential and is 0.30 to 10.00.
- the third nitriding potential is lower than the second nitriding potential and has a value within the range of 0.26 to 0.60. .
- the first nitriding step, the second nitriding step, and the third nitriding step are sequentially performed in the same single-chamber heat treatment furnace,
- the first nitriding step two kinds of gases, NH 3 gas and AX gas, are used. is controlled so that the nitriding potential of is the first nitriding potential
- two kinds of gases, NH 3 gas and AX gas are used. is controlled so that the nitriding potential of is the second nitriding potential
- two kinds of gases, NH 3 gas and AX gas are used. is controlled to be the third nitriding potential.
- the first nitriding step is performed at a temperature of 500° C. to 590° C.
- the second nitriding step is also performed at a temperature of 500° C. to 590° C.
- the third nitriding step is also performed. It is carried out at a temperature of 500° C. to 590° C.
- the first nitriding potential is a value within the range of 0.10 to 1.00
- the second nitriding potential is higher than the first nitriding potential and is 0.30 to 10.00.
- the third nitriding potential is lower than the second nitriding potential and has a value within the range of 0.26 to 0.60. .
- the first nitriding step, the second nitriding step, and the third nitriding step are sequentially performed in the same single-chamber heat treatment furnace,
- the first nitriding step two kinds of gases, NH 3 gas and AX gas, are used.
- the nitriding potential during one nitriding treatment step is controlled to be the first nitriding potential
- the second nitriding step three types of gases, NH 3 gas, AX gas, and N 2 gas, are used, and the introduction amount of one of the NH 3 gas and AX gas is kept constant while the introduction amount of the other is changed.
- the nitriding potential during the second nitriding treatment step is controlled to be the second nitriding potential
- two types of gases, NH 3 gas and AX gas, are used.
- the nitriding potential during the third nitriding treatment step is controlled to be the third nitriding potential.
- the first nitriding step is performed at a temperature of 500° C. to 590° C.
- the second nitriding step is also performed at a temperature of 500° C. to 590° C.
- the third nitriding step is also performed. It is carried out at a temperature of 500° C. to 590° C.
- the first nitriding potential is a value within the range of 0.10 to 1.00
- the second nitriding potential is higher than the first nitriding potential and is 0.30 to 10.00.
- the third nitriding potential is lower than the second nitriding potential and has a value within the range of 0.26 to 0.60. .
- the one-chamber heat treatment furnace is a heat treatment furnace that does not have a separate cooling chamber from the heating chamber like the batch heat treatment furnace (see FIG. 1), and performs heating and cooling in only one chamber.
- Pit furnaces see Fig. 3
- horizontal furnaces see Fig. 5 are generally used.
- the time for the third nitriding treatment step is preferably 60 minutes or longer. According to the findings of the inventors of the present invention, by setting the time of the third nitriding treatment process to 60 minutes or more, the furnace atmosphere can be sufficiently converted due to the change in the nitriding potential, and the effect of increasing the ⁇ ' ratio is achieved. is not damaged.
- the third nitriding potential is set to a value within the range of 0.26 to 0.60. It is possible to suppress the precipitation of the ⁇ phase, which is lower in hardness than the other phases, to favorably precipitate the ⁇ ' phase in the nitride compound layer, and to realize high pitting resistance and bending fatigue strength.
- FIG. 1 is a schematic diagram of the configuration of a batch-type heat treatment furnace used in the nitriding method of the present invention.
- FIG. 1. It is process drawing of one Embodiment of the nitriding treatment method of this invention using the heat treatment furnace of FIG. 1 is a schematic diagram showing the configuration of a pit-type (single-chamber type) heat treatment furnace used in the nitriding method of the present invention.
- FIG. FIG. 4 is a process diagram of one embodiment of the nitriding treatment method of the present invention using the heat treatment furnace of FIG. 3 ;
- 1 is a schematic diagram showing the configuration of a horizontal (single-chamber) heat treatment furnace used in the nitriding method of the present invention.
- 1 is a table showing nitriding conditions and treatment results of examples and comparative examples of the present invention.
- 1 is a table showing nitriding conditions and treatment results of examples and comparative examples of the present invention.
- 1 is a table showing nitriding conditions and treatment results of examples and comparative examples of the present invention.
- 1 is a table showing nitriding conditions and treatment results of examples and comparative examples of the present invention.
- 1 is a table showing nitriding conditions and treatment results of examples and comparative examples of the present invention.
- 1 is a table showing nitriding conditions and treatment results of examples and comparative examples of the present invention.
- the object to be processed (work) is a steel member. Specifically, it is a steel member made of a carbon steel material for machine structural use or an alloy steel material for machine structural use, such as a gear used in an automatic transmission.
- a cylindrical ring gear or a bottomed cylindrical ring gear is mounted on a multistage jig and placed flat in a case (to be described later) for nitriding.
- pre-clean steel members it is preferable to pre-clean steel members to remove dirt and oil before nitriding.
- the pre-cleaning is preferably, for example, vacuum cleaning for degreasing and drying by dissolving and replacing oil or the like with a hydrocarbon-based cleaning liquid and evaporating it, or alkali cleaning for degreasing with an alkaline-based cleaning liquid.
- FIG. 1 is a schematic diagram of the configuration of a batch-type heat treatment furnace 1 used in the nitriding method of the present invention.
- the batch-type heat treatment furnace 1 includes a loading section 10, a heating chamber 11, a transfer chamber 12, and an unloading conveyor 13.
- a case 20 is placed in the carry-in section 10, and a steel member as an object to be processed (work) is accommodated in the case 20.
- the maximum processed weight is 700 kg gross.
- An entrance hood 22 having a door 21 that can be freely opened and closed is attached to the entrance side of the heating chamber 11 (left side in FIG. 1).
- the heating chamber 11 has a retort structure, and the temperature inside the furnace is controlled to a predetermined temperature by heating the outer periphery of the retort with a heater (not shown).
- a plurality of types of gases for nitriding are introduced into the heating chamber 11 while being controlled as described later.
- a fan 26 is attached to the ceiling of the heating chamber 11 to stir the gas introduced into the heating chamber 11 to uniformize the heating temperature of the steel member.
- An openable and closable intermediate door 27 is attached to the exit side of the heating chamber 11 (on the right side in FIG. 1).
- the transfer chamber 12 is provided with an elevator 30 that raises and lowers the case 20 containing the steel members.
- a cooling chamber (oil tank) 32 in which cooling oil 31 is stored is provided in the lower portion of the transfer chamber 12 .
- An outlet hood 36 having an openable/closable door 35 is attached to the outlet side (right side in FIG. 1) of the transfer chamber 12 .
- the heating chamber 11 and the transfer chamber 12 may be the same processing chamber, and a configuration may be adopted in which the steel member after the heat treatment is air-cooled by gas. Further, the heating chamber 11 may be divided into two or three, and the three-stage nitriding process described later may be performed in two or three heating chambers.
- the case 20 containing the steel member is carried into the heating chamber 11 from the carry-in section 10 by a pusher or the like. Then, after the steel member (the case 20 containing the steel member) is carried into the heating chamber 11, the processing gas is introduced into the heating chamber 11, the processing gas is heated to a predetermined temperature by the heater, and the fan 26 The nitriding treatment of the steel member carried into the heating chamber 11 is performed while being stirred at (for example, rotating at 1500 rpm).
- FIG. 2 is a process diagram of one embodiment of the nitriding method of the present invention using the heat treatment furnace 1 of FIG.
- the inside of the heating chamber 11 is preheated to 550° C. before the steel member (work) is loaded.
- N 2 gas is introduced at a constant flow rate of 70 (L/min) and NH 3 gas is introduced at a constant flow rate of 90 (L/min).
- a steel member (work) is then loaded into the heating chamber 11 .
- the temperature in the heating chamber 11 is temporarily lowered as shown in FIG.
- the door 21 is closed and the temperature inside the heating chamber 11 is heated up to 550° C. again.
- NH 3 gas is introduced at a constant flow rate of 160 (L/min) while the steel members are being charged.
- the total flow rate is also 160 (L/min).
- a three-step nitriding process is performed (Example 1-7 described later). Specifically, first, a value of, for example, 0.30 (0.10 to 1.00) is adopted as the first nitriding potential, and the first nitriding treatment step is performed at a temperature of 550.degree.
- K N P( NH3 ) / P(H2) 3/2
- the partial pressure P (NH 3 ) of NH 3 gas or the partial pressure P (H 2 ) of H 2 gas in the heating chamber 11 is measured, and the nitriding potential value calculated from the measured value. is within the vicinity of the target first nitriding potential, the amount of the processing gas introduced is feedback-controlled.
- the partial pressure P (H 2 ) of H 2 gas in the heating chamber 11 is measured by a thermal conductivity type H 2 sensor (not shown), and the measured value is analyzed online (the measurement While calculating the nitriding potential from the value), the introduction amount of the processing gas is feedback-controlled. Specifically, NH 3 gas and AX gas are each increased or decreased under the condition of a total flow rate of 160 (L/min).
- the second nitriding potential a value of, for example, 2.00 (0.30 to 10.00) is adopted as the second nitriding potential, and the second nitriding process is performed at a temperature of 550°C.
- the partial pressure P (NH 3 ) of NH 3 gas or the partial pressure P (H 2 ) of H 2 gas in the heating chamber 11 is measured, and the nitriding potential calculated from the measured value is The amount of the processing gas introduced is feedback-controlled so that the value is within the vicinity of the target second nitriding potential.
- such a second nitriding process is performed for 200 minutes.
- a nitride compound layer of ⁇ ' phase, ⁇ phase, or a mixture of ⁇ ' phase and ⁇ phase is formed on the steel member.
- the third nitriding potential a value of, for example, 0.30 (0.26 to 0.60) is adopted as the third nitriding potential, and the third nitriding process is performed at a temperature of 550°C.
- the partial pressure P (NH 3 ) of NH 3 gas or the partial pressure P (H 2 ) of H 2 gas in the heating chamber 11 is measured, and the nitriding potential calculated from the measured value is The amount of the processing gas introduced is feedback-controlled so that the value is within the vicinity of the target third nitriding potential.
- the partial pressure P (H 2 ) of H 2 gas in the heating chamber 11 is measured by a thermal conductivity type H 2 sensor (not shown), and the measured value is analyzed online (the measurement While calculating the nitriding potential from the value), the introduction amount of the processing gas is feedback-controlled. Specifically, NH 3 gas and AX gas are each increased or decreased under the condition of a total flow rate of 160 (L/min).
- the cooling process is performed.
- the cooling step is performed for 15 minutes (oil bath with stirrer, held in oil (100° C.) for 15 minutes).
- the case 20 containing the steel member is carried out to the carry-out conveyor 13 .
- FIG. 3 is a schematic diagram of the configuration of a pit-type heat treatment furnace 201 used in the nitriding method of the present invention.
- the pit-type heat treatment furnace 201 includes a bottomed cylindrical furnace wall 211 and a furnace lid 212 .
- a fan 213 is provided on the lower side (inside) of the furnace lid 212, and the rotation shaft of the fan 213 passes through the furnace lid 212, and a fan motor 214 is provided on the upper side (outside) of the furnace lid 212. It is connected to the.
- a retort 221 is provided inside the furnace wall 211 , and a gas guide cylinder 222 is provided further inside the retort 221 .
- the temperature inside the furnace (inside the retort 221) is controlled to a predetermined temperature by heating the outer peripheral portion of the retort 221 with a heater (not shown).
- a case 20 is placed in the gas guide tube 222, and a steel member as an object to be processed (work) is accommodated in the case 20. As shown in FIG.
- the maximum processed weight is 700 kg gross.
- a plurality of types of gases for nitriding are introduced into the retort 221 while being controlled as described later.
- the outer periphery of the retort 221 also has a cooling function by a blower (not shown), and during cooling, the work in the furnace is cooled by lowering the temperature of the retort 221 itself (furnace cooling).
- the furnace cover 212 is opened, and the case 20 containing the steel members is carried into the gas guide tube 222 .
- the processing gas is introduced into the retort 221, the processing gas is heated to a predetermined temperature by the heater, and the fan 213
- the nitriding treatment of the steel member carried into the gas guide tube 222 is performed while being stirred at (for example, rotating at 1500 rpm).
- FIG. 4 is a process diagram of one embodiment of the nitriding method of the present invention using the heat treatment furnace 201 of FIG.
- a three-step nitriding process is performed (Examples 5-7 described later). Specifically, first, a value of, for example, 0.30 (0.10 to 1.00) is adopted as the first nitriding potential, and the first nitriding treatment step is performed at a temperature of 550.degree.
- K N P( NH3 ) / P(H2) 3/2
- the partial pressure P (NH 3 ) of NH 3 gas or the partial pressure P (H 2 ) of H 2 gas in the gas guide tube 222 is measured (the partial pressure P of NH 3 gas in the exhaust gas). (NH 3 ) or H 2 gas partial pressure P (H 2 ) may be measured), so that the nitriding potential value calculated from the measured value is within the vicinity of the target first nitriding potential. Also, the amount of processing gas introduced is feedback-controlled.
- the partial pressure P (H 2 ) of H 2 gas in the gas guide tube 222 is measured by a thermal conductivity type H 2 sensor (not shown), and the measured value is analyzed online (the While calculating the nitriding potential from the measured value), the introduction amount of the processing gas is feedback-controlled. Specifically, the NH 3 gas is increased or decreased while the AX gas is introduced at a constant flow rate of 50 (L/min). The total flow will also fluctuate.
- a value of, for example, 0.50 (0.30 to 10.00) is adopted as the second nitriding potential, and the second nitriding process is performed at a temperature of 550°C.
- the partial pressure P (NH 3 ) of NH 3 gas or the partial pressure P (H 2 ) of H 2 gas in the gas guide tube 222 is measured, and the nitriding potential calculated from the measured value.
- the amount of the processing gas introduced is feedback-controlled so that the value of is within the vicinity of the target second nitriding potential.
- the partial pressure P (H 2 ) of H 2 gas in the gas guide tube 222 is measured by a thermal conductivity type H 2 sensor (not shown), and the measured value is analyzed online (the While calculating the nitriding potential from the measured value), the introduction amount of the processing gas is feedback-controlled. Specifically, the NH 3 gas is increased or decreased while the AX gas is introduced at a constant flow rate of 50 (L/min). The total flow will also fluctuate.
- such a second nitriding process is performed for 200 minutes.
- a nitride compound layer of ⁇ ' phase, ⁇ phase, or a mixture of ⁇ ' phase and ⁇ phase is formed on the steel member.
- the third nitriding potential a value of, for example, 0.30 (0.26 to 0.60) is adopted as the third nitriding potential, and the third nitriding process is performed at a temperature of 550°C.
- the partial pressure P (NH 3 ) of NH 3 gas or the partial pressure P (H 2 ) of H 2 gas in the heating chamber 11 is measured, and the nitriding potential calculated from the measured value is The amount of the processing gas introduced is feedback-controlled so that the value is within the vicinity of the target third nitriding potential.
- the partial pressure P (H 2 ) of H 2 gas in the gas guide tube 222 is measured by a thermal conductivity type H 2 sensor (not shown), and the measured value is analyzed online (the While calculating the nitriding potential from the measured value), the introduction amount of the processing gas is feedback-controlled. Specifically, the NH 3 gas is increased or decreased while the AX gas is introduced at a constant flow rate of 50 (L/min). The total flow will also fluctuate.
- a cooling process is performed.
- the processing gas introduction amount is controlled in the same manner as in the third nitriding process. That is, while the AX gas is introduced at a constant flow rate of 50 (L/min), the NH 3 gas is increased or decreased. In the latter half of the cooling process (about 400° C. to 100° C.), N 2 gas is introduced at a constant flow rate of 20 (L/min).
- the furnace lid 212 is opened and the case 20 containing the steel member is carried out from the gas guide cylinder 222 .
- FIG. 5 is a schematic diagram of the configuration of a horizontal heat treatment furnace used in the nitriding method of the present invention.
- a horizontal heat treatment furnace is basically a furnace in which a pit-type heat treatment furnace is oriented horizontally, but as shown in FIG. A configuration provided on the wall surface of the furnace wall 211 facing the .
- the furnace cover 212 is opened and the case 20 containing the steel member is carried into the gas guide tube 222 .
- the processing gas is introduced into the retort 211, the processing gas is heated to a predetermined temperature by the heater, and the fan 213
- the nitriding treatment of the steel member carried into the gas guide tube 222 is performed while being stirred at (for example, rotating at 1500 rpm).
- the process chart in FIG. 4 is effective even when a horizontal heat treatment furnace is used. Specifically, the heating process (the manner of gas introduction is different between the first half and the latter half), the first nitriding process, the second nitriding process, the third nitriding process, the cooling process (the gas introduction is different between the first half and the latter half). different aspects) can be performed. After the cooling process is completed, the furnace lid 212 is opened and the case 20 containing the steel member is carried out from the gas guide cylinder 222 .
- the surface has an iron nitride compound layer mainly composed of the ⁇ ' phase.
- a nitrided steel member can be obtained.
- the steel member obtained by each embodiment has a nitrogen diffusion layer and nitrides formed inside and is reinforced, and a ⁇ ' phase-rich iron nitride compound layer is formed on the surface, so that sufficient pitting resistance and bending fatigue strength can be realized.
- the nitriding of the present invention is performed at a temperature below the austenite transformation temperature, so the amount of strain is small.
- the quenching step which is an essential step in carburizing and carbonitriding, can be omitted, the amount of strain variation is small. As a result, a high-strength, low-strain nitrided steel member can be obtained.
- the temperature of each nitriding process is set to 500.degree. C. to 590.degree. It is said that the higher the temperature of the nitriding treatment, the better the productivity. However, according to the inventor's verification, if the temperature is higher than 590°C, the amount of hardening decreases and an austenite layer is formed on the surface, so 590°C is the upper limit. On the other hand, according to the inventor's verification, if the nitriding temperature is lower than 500.degree.
- the temperature difference between the two nitriding processes is preferably controlled within 50°C, more preferably within 30°C.
- Examples 1-1 to 1-14, Comparative Examples 1-1 to 1-8 A batch-type heat treatment furnace 1 was used for a plurality of cylindrical ring gears (steel types can be different), and three stages of nitriding treatment were performed according to the conditions in Table 1 shown in FIG.
- Example 1-1 to 1-14 and Comparative Examples 1-1 to 1-8 the first nitriding process to the third nitriding process were sequentially performed in the same batch-type heat treatment furnace 1 .
- nitriding potential during the second nitriding step was controlled to the target second nitriding potential (K N ) by changing the introduction amount of each of them while keeping them constant.
- the phase identification method is based on the X-ray diffraction pattern obtained by performing X-ray diffraction measurement by the 2 ⁇ - ⁇ scanning method (Rigaku MiniFlex 600, Cu tube, 40 kV-15 mA) from the steel surface. It was conducted.
- the thickness of the compound layer was obtained by cutting the nitriding-treated steel material in the depth direction and measuring the thickness of the surface compound layer from the results of observing the structure of the cross section.
- the thickness of the ⁇ ' phase-rich compound layer is preferably 2 to 20 ⁇ m. If it is less than 2 ⁇ m, it is too thin and the fatigue strength is not sufficiently improved. The porous layer of the compound layer becomes thicker and the fatigue strength decreases.
- the first nitriding treatment step was performed at a temperature of 500 ° C. to 590 ° C.
- the second nitriding step is also performed at a temperature of 500° C. to 590° C.
- the third nitriding step is also performed at a temperature of 500° C. to 590° C.
- the first nitriding potential is 0.10 to 1 0.00
- the second nitriding potential is higher than the first nitriding potential and the value is in the range of 0.30 to 10.00
- the third nitriding potential is lower than the second nitriding potential to 0.
- the effectiveness of the present invention which is characterized by a value within the range of 0.26 to 0.60, has been demonstrated.
- Examples 2-1 to 2-14, Comparative Examples 2-1 to 2-8 A pit-type heat treatment furnace 201 was used for a plurality of cylindrical ring gears (the steel type can be different), and three stages of nitriding treatment were performed according to the conditions in Table 2 shown in FIG.
- Example 2-1 to 2-14 and Comparative Examples 2-1 to 2-8 the first to third nitriding processes were sequentially performed in the same pit-shaped heat treatment furnace 201 .
- nitriding potential during the second nitriding step was controlled to the target second nitriding potential (K N ) by changing the introduction amount of each of them while keeping them constant.
- Examples 2-1 to 2-14 and Comparative Examples 2-1 to 2-8 the steps described with reference to FIG. 4 were performed before and after the first to third nitriding steps. .
- phase identification method and compound layer thickness in Table 2 were determined in the same manner as those in Table 1.
- the first nitriding treatment step was performed at a temperature of 500 ° C. to 590 ° C.
- the second nitriding step is also performed at a temperature of 500° C. to 590° C.
- the third nitriding step is also performed at a temperature of 500° C. to 590° C.
- the first nitriding potential is 0.10 to 1 0.00
- the second nitriding potential is higher than the first nitriding potential and the value is in the range of 0.30 to 10.00
- the third nitriding potential is lower than the second nitriding potential to 0.
- the effectiveness of the present invention which is characterized by a value within the range of 0.26 to 0.60, has been demonstrated.
- Examples 3-1 to 3-14, Comparative Examples 3-1 to 3-8 A batch type heat treatment furnace 1 was used for a plurality of cylindrical ring gears (steel types may differ), and three stages of nitriding treatment were performed according to the conditions in Table 3 shown in FIG.
- Example 3-1 to 3-14 and Comparative Examples 3-1 to 3-8 the first nitriding process and the second nitriding process were sequentially performed in the same batch-type heat treatment furnace 1.
- nitriding potential during the first nitriding step was controlled to the target first nitriding potential (K N ) by changing the introduced amount of each of them while keeping them constant.
- nitriding potential during the first nitriding step was controlled to the target first nitriding potential (K N ) by changing the introduced amount of each of them while keeping them constant.
- nitriding potential during the second nitriding step was controlled to the target second nitriding potential (K N ) by changing the introduction amount of each of them while keeping them constant.
- phase identification method and compound layer thickness in Table 3 were determined in the same manner as those in Tables 1 and 2.
- the first nitriding treatment step was performed at a temperature of 500 ° C. to 590 ° C.
- the second nitriding step is also performed at a temperature of 500° C. to 590° C.
- the third nitriding step is also performed at a temperature of 500° C. to 590° C.
- the first nitriding potential is 0.10 to 1 0.00
- the second nitriding potential is higher than the first nitriding potential and the value is in the range of 0.30 to 10.00
- the third nitriding potential is lower than the second nitriding potential to 0.
- the effectiveness of the present invention which is characterized by a value within the range of 0.26 to 0.60, has been demonstrated.
- Examples 4-1 to 4-14, Comparative Examples 4-1 to 4-8 A plurality of cylindrical ring gears (of different steel types) were subjected to three stages of nitriding using a pit-type heat treatment furnace 201 according to the conditions in Table 4 shown in FIG.
- Example 4-1 to 4-14 and Comparative Examples 4-1 to 4-8 the first to third nitriding processes were sequentially performed in the same pit-shaped heat treatment furnace 201 .
- nitriding potential during the first nitriding step was controlled to the target first nitriding potential (K N ) by changing the introduced amount of each of them while keeping them constant.
- nitriding potential during the first nitriding step was controlled to the target first nitriding potential (K N ) by changing the introduced amount of each of them while keeping them constant.
- phase identification method and compound layer thickness in Table 4 were determined in the same manner as those in Tables 1 to 3.
- the first nitriding process was performed at a temperature of 500 ° C. to 590 ° C.
- the second nitriding step is also performed at a temperature of 500° C. to 590° C.
- the third nitriding step is also performed at a temperature of 500° C. to 590° C.
- the first nitriding potential is 0.10 to 1 0.00
- the second nitriding potential is higher than the first nitriding potential and the value is in the range of 0.30 to 10.00
- the third nitriding potential is lower than the second nitriding potential to 0.
- the effectiveness of the present invention which is characterized by a value within the range of 0.26 to 0.60, has been demonstrated.
- Examples 5-1 to 5-14, Comparative Examples 5-1 to 5-8 A plurality of cylindrical ring gears (of different steel types) were subjected to three stages of nitriding treatment using a pit-type heat treatment furnace 201 according to the conditions in Table 5 shown in FIG.
- Example 5-1 to 5-14 and Comparative Examples 5-1 to 5-8 the first to third nitriding processes were sequentially performed in the same pit-shaped heat treatment furnace 201 .
- each step described with reference to FIG. 4 was performed before and after the first nitriding step and the second nitriding step. .
- phase identification method and compound layer thickness in Table 5 were determined in the same manner as those in Tables 1 to 4.
- the first nitriding treatment step was performed at a temperature of 500 ° C. to 590 ° C.
- the second nitriding step is also performed at a temperature of 500° C. to 590° C.
- the third nitriding step is also performed at a temperature of 500° C. to 590° C.
- the first nitriding potential is 0.10 to 1 0.00
- the second nitriding potential is higher than the first nitriding potential and the value is in the range of 0.30 to 10.00
- the third nitriding potential is lower than the second nitriding potential to 0.
- the effectiveness of the present invention which is characterized by a value within the range of 0.26 to 0.60, has been demonstrated.
- Examples 6-1 to 6-14, Comparative Examples 6-1 to 6-8 A plurality of cylindrical ring gears (of different steel types) were subjected to two-stage nitriding treatment using a pit-type heat treatment furnace 201 according to the conditions in Table 6 shown in FIG.
- Example 6-1 to 6-14 and Comparative Examples 6-1 to 6-8 the first to third nitriding processes were sequentially performed in the same pit-shaped heat treatment furnace 201 .
- phase identification method and compound layer thickness in Table 6 were determined in the same manner as those in Tables 1 to 5.
- the first nitriding treatment step was performed at a temperature of 500 ° C. to 590 ° C.
- the second nitriding step is also performed at a temperature of 500° C. to 590° C.
- the third nitriding step is also performed at a temperature of 500° C. to 590° C.
- the first nitriding potential is 0.10 to 1 0.00
- the second nitriding potential is higher than the first nitriding potential and the value is in the range of 0.30 to 10.00
- the third nitriding potential is lower than the second nitriding potential to 0.
- the effectiveness of the present invention which is characterized by a value within the range of 0.26 to 0.60, has been demonstrated.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Abstract
Description
少なくとも3段階の窒化処理工程を備えた鋼部材の窒化処理方法であって、
第1窒化ポテンシャルの窒化ガス雰囲気中で鋼部材を窒化処理する第1窒化処理工程と、
前記第1窒化処理工程後に、前記第1窒化ポテンシャルよりも高い第2窒化ポテンシャルの窒化ガス雰囲気中で前記鋼部材を更に窒化処理する第2窒化処理工程と、
前記第2窒化処理工程後に、前記第2窒化ポテンシャルよりも低い第3窒化ポテンシャルの窒化ガス雰囲気中で前記鋼部材を更に窒化処理する第3窒化処理工程と、
を備え、
前記第1窒化処理工程は、500℃~590℃の温度下で実施され、
前記第2窒化処理工程も、500℃~590℃の温度下で実施され、
前記第3窒化処理工程も、500℃~590℃の温度下で実施され、
前記第1窒化ポテンシャルは、0.10~1.00の範囲内の値であり、
前記第2窒化ポテンシャルは、0.30~10.00の範囲内の値であり、
前記第3窒化ポテンシャルは、0.26~0.60の範囲内の値であり、
前記第2窒化処理工程において、γ’相、ε相、または、γ’相とε相とが混在、の窒化化合物層が生成され、
前記第3窒化処理工程において、前記窒化化合物層にγ’相が析出される
ことを特徴とする窒化処理方法
である。
前記第1窒化処理工程では、NH3ガスとAXガスとの2種類のガスが使用され、それらの総流量を一定としながらそれらの各々の導入量を変えることによって、当該第1窒化処理工程中の窒化ポテンシャルが前記第1窒化ポテンシャルとなるように制御され、
前記第2窒化処理工程では、NH3ガスとAXガスとN2ガスとの3種類のガスが使用され、それらの総流量を一定としながらNH3ガス及びAXガスの各々の導入量を変えることによって、当該第2窒化処理工程中の窒化ポテンシャルが前記第2窒化ポテンシャルとなるように制御され、
前記第3窒化処理工程では、NH3ガスとAXガスとの2種類のガスが使用され、それらの総流量を一定としながらそれらの各々の導入量を変えることによって、当該第3窒化処理工程中の窒化ポテンシャルが前記第3窒化ポテンシャルとなるように制御される。
前記第1窒化処理工程では、NH3ガスとAXガスとの2種類のガスが使用され、それらの総流量を一定としながらそれらの各々の導入量を変えることによって、当該第1窒化処理工程中の窒化ポテンシャルが前記第1窒化ポテンシャルとなるように制御され、
前記第2窒化処理工程では、NH3ガスとAXガスとN2ガスとの3種類のガスが使用され、それらの総流量を一定としながらNH3ガス及びAXガスの各々の導入量を変えることによって、当該第2窒化処理工程中の窒化ポテンシャルが前記第2窒化ポテンシャルとなるように制御され、
前記第3窒化処理工程では、NH3ガスとAXガスとの2種類のガスが使用され、それらの総流量を一定としながらそれらの各々の導入量を変えることによって、当該第3窒化処理工程中の窒化ポテンシャルが前記第3窒化ポテンシャルとなるように制御される。
前記第1窒化処理工程では、NH3ガスとAXガスとの2種類のガスが使用され、それらの総流量を一定としながらそれらの各々の導入量を変えることによって、当該第1窒化処理工程中の窒化ポテンシャルが前記第1窒化ポテンシャルとなるように制御され、
前記第2窒化処理工程でも、NH3ガスとAXガスとの2種類のガスが使用され、それらの総流量を一定としながらそれらの各々の導入量を変えることによって、当該第2窒化処理工程中の窒化ポテンシャルが前記第2窒化ポテンシャルとなるように制御され、
前記第3窒化処理工程でも、NH3ガスとAXガスとの2種類のガスが使用され、それらの総流量を一定としながらそれらの各々の導入量を変えることによって、当該第3窒化処理工程中の窒化ポテンシャルが前記第3窒化ポテンシャルとなるように制御される。
前記第1窒化処理工程では、NH3ガスとAXガスとの2種類のガスが使用され、それらの総流量を一定としながらそれらの各々の導入量を変えることによって、当該第1窒化処理工程中の窒化ポテンシャルが前記第1窒化ポテンシャルとなるように制御され、
前記第2窒化処理工程でも、NH3ガスとAXガスとの2種類のガスが使用され、それらの総流量を一定としながらそれらの各々の導入量を変えることによって、当該第2窒化処理工程中の窒化ポテンシャルが前記第2窒化ポテンシャルとなるように制御され、
前記第3窒化処理工程でも、NH3ガスとAXガスとの2種類のガスが使用され、それらの総流量を一定としながらそれらの各々の導入量を変えることによって、当該第3窒化処理工程中の窒化ポテンシャルが前記第3窒化ポテンシャルとなるように制御される。
前記第1窒化処理工程では、NH3ガスとAXガスとの2種類のガスが使用され、それらの一方の導入量を一定としながら他方の導入量を変えることによって、当該第1窒化処理工程中の窒化ポテンシャルが前記第1窒化ポテンシャルとなるように制御され、
前記第2窒化処理工程でも、NH3ガスとAXガスとの2種類のガスが使用され、それらの一方の導入量を一定としながら他方の導入量を変えることによって、当該第2窒化処理工程中の窒化ポテンシャルが前記第2窒化ポテンシャルとなるように制御され、
前記第3窒化処理工程でも、NH3ガスとAXガスとの2種類のガスが使用され、それらの一方の導入量を一定としながら他方の導入量を変えることによって、当該第3窒化処理工程中の窒化ポテンシャルが前記第3窒化ポテンシャルとなるように制御される。
前記第1窒化処理工程では、NH3ガスとAXガスとの2種類のガスが使用され、NH3ガス及びAXガスの一方の導入量を一定としながら他方の導入量を変えることによって、当該第1窒化処理工程中の窒化ポテンシャルが前記第1窒化ポテンシャルとなるように制御され、
前記第2窒化処理工程では、NH3ガスとAXガスとN2ガスとの3種類のガスが使用され、NH3ガス及びAXガスの一方の導入量を一定としながら他方の導入量を変えることによって、当該第2窒化処理工程中の窒化ポテンシャルが前記第2窒化ポテンシャルとなるように制御され、
前記第3窒化処理工程では、NH3ガスとAXガスとの2種類のガスが使用され、NH3ガス及びAXガスの一方の導入量を一定としながら他方の導入量を変えることによって、当該第3窒化処理工程中の窒化ポテンシャルが前記第3窒化ポテンシャルとなるように制御される。
被処理体(ワーク)は、鋼部材である。具体的には、自動変速機に用いられる歯車などの機械構造用炭素鋼鋼材または機械構造用合金鋼鋼材からなる鋼部材である。例えば、円筒状のリングギアや、有底円筒状のリングギアが、複数段のジグに搭載されて、ケース(後述する)内に平置きされた状態で窒化処理される。
図1は、本発明の窒化処理方法に用いられるバッチ型の熱処理炉1の構成概略図である。
以上のような構成の熱処理炉1において、鋼部材が収納されたケース20が、プッシャー等により、搬入部10から加熱室11内に搬入される。そして、鋼部材(が収納されたケース20)が加熱室11内に搬入された後、加熱室11内に処理ガスが導入され、当該処理ガスがヒータで所定の温度に加熱され、更にファン26(例えば1500rpmで回転する)で攪拌されながら、加熱室11内に搬入された鋼部材の窒化処理が行われる。
KN = P(NH3)/P(H2)3/2
図3は、本発明の窒化処理方法に用いられるピット型の熱処理炉201の構成概略図である。
以上のような構成の熱処理炉201において、炉蓋212が開放され、鋼部材が収納されたケース20がガス案内筒222内に搬入される。そして、鋼部材(が収納されたケース20)がガス案内筒222内に搬入された後、レトルト221内に処理ガスが導入され、当該処理ガスがヒータで所定の温度に加熱され、更にファン213(例えば1500rpmで回転する)で攪拌されながら、ガス案内筒222内に搬入された鋼部材の窒化処理が行われる。
KN = P(NH3)/P(H2)3/2
図5は、本発明の窒化処理方法に用いられる横型の熱処理炉の構成概略図である。
横型の熱処理炉においても、炉蓋212が開放され、鋼部材が収納されたケース20がガス案内筒222内に搬入される。そして、鋼部材(が収納されたケース20)がガス案内筒222内に搬入された後、レトルト211内に処理ガスが導入され、当該処理ガスがヒータで所定の温度に加熱され、更にファン213(例えば1500rpmで回転する)で攪拌されながら、ガス案内筒222内に搬入された鋼部材の窒化処理が行われる。
以上のような本発明の実施形態によれば、バッチ型の熱処理炉を用いても、1室型の熱処理炉を用いても、表面にγ’相を主成分とする鉄窒化化合物層を有する窒化鋼部材を得ることができる。
本発明においては、各窒化処理工程の温度が500℃~590℃とされている。窒化処理は、温度が高い方が生産性が良い、と言われている。しかし、本件発明者による検証によれば、590℃ よりも高いと硬化量が減少し、且つ、オーステナイト層が表面に形成されるので、590℃ を上限とするのが良い。一方、本件発明者による検証によれば、窒化処理温度が500℃よりも低いと、窒化化合物層の形成速度が遅くなってコスト的に好ましくないため、500℃を下限とするのが良い。
複数の円筒状のリングギアに対して(鋼種は異なり得る)、バッチ型の熱処理炉1を用いて、図6として示す表1の条件に従って、3段階の窒化処理が実施された。
複数の円筒状のリングギアに対して(鋼種は異なり得る)、ピット型の熱処理炉201を用いて、図7として示す表2の条件に従って、3段階の窒化処理が実施された。
複数の円筒状のリングギアに対して(鋼種は異なり得る)、バッチ型の熱処理炉1を用いて、図8として示す表3の条件に従って、3段階の窒化処理が実施された。
複数の円筒状のリングギアに対して(鋼種は異なり得る)、ピット型の熱処理炉201を用いて、図9として示す表4の条件に従って、3段階の窒化処理が実施された。
複数の円筒状のリングギアに対して(鋼種は異なり得る)、ピット型の熱処理炉201を用いて、図10として示す表5の条件に従って、3段階の窒化処理が実施された。
複数の円筒状のリングギアに対して(鋼種は異なり得る)、ピット型の熱処理炉201を用いて、図11として示す表6の条件に従って、2段階の窒化処理が実施された。
10 搬入部
11 加熱室
12 搬送室
13 搬出コンベア
20 ケース
21 扉
22 入口フード
26 ファン
27 中間扉
30 エレベータ
31 冷却室(油槽)
35 扉
36 出口フード
201 熱処理炉
211 炉壁
212 炉蓋
213 ファン
214 ファンモータ
221 レトルト
222 ガス案内筒
Claims (8)
- 少なくとも3段階の窒化処理工程を備えた鋼部材の窒化処理方法であって、
第1窒化ポテンシャルの窒化ガス雰囲気中で鋼部材を窒化処理する第1窒化処理工程と、
前記第1窒化処理工程後に、前記第1窒化ポテンシャルよりも高い第2窒化ポテンシャルの窒化ガス雰囲気中で前記鋼部材を更に窒化処理する第2窒化処理工程と、
前記第2窒化処理工程後に、前記第2窒化ポテンシャルよりも低い第3窒化ポテンシャルの窒化ガス雰囲気中で前記鋼部材を更に窒化処理する第3窒化処理工程と、
を備え、
前記第1窒化処理工程は、500℃~590℃の温度下で実施され、
前記第2窒化処理工程も、500℃~590℃の温度下で実施され、
前記第3窒化処理工程も、500℃~590℃の温度下で実施され、
前記第1窒化ポテンシャルは、0.10~1.00の範囲内の値であり、
前記第2窒化ポテンシャルは、0.30~10.00の範囲内の値であり、
前記第3窒化ポテンシャルは、0.26~0.60の範囲内の値であり、
前記第2窒化処理工程において、γ’相、ε相、または、γ’相とε相とが混在、の窒化化合物層が生成され、
前記第3窒化処理工程において、前記窒化化合物層にγ’相が析出される
ことを特徴とする窒化処理方法。 - 前記第1窒化処理工程、第2窒化処理工程及び前記第3窒化処理工程は、同一のバッチ型の熱処理炉内で順次に実施され、
前記第1窒化処理工程では、NH3ガスとAXガスとの2種類のガスが使用され、それらの総流量を一定としながらそれらの各々の導入量を変えることによって、当該第1窒化処理工程中の窒化ポテンシャルが前記第1窒化ポテンシャルとなるように制御され、
前記第2窒化処理工程では、NH3ガスとAXガスとN2ガスとの3種類のガスが使用され、それらの総流量を一定としながらNH3ガス及びAXガスの各々の導入量を変えることによって、当該第2窒化処理工程中の窒化ポテンシャルが前記第2窒化ポテンシャルとなるように制御され、
前記第3窒化処理工程では、NH3ガスとAXガスとの2種類のガスが使用され、それらの総流量を一定としながらそれらの各々の導入量を変えることによって、当該第3窒化処理工程中の窒化ポテンシャルが前記第3窒化ポテンシャルとなるように制御される
ことを特徴とする請求項1に記載の窒化処理方法。 - 前記第1窒化処理工程、第2窒化処理工程及び前記第3窒化処理工程は、同一の1室型の熱処理炉内で順次に実施され、
前記第1窒化処理工程では、NH3ガスとAXガスとの2種類のガスが使用され、それらの総流量を一定としながらそれらの各々の導入量を変えることによって、当該第1窒化処理工程中の窒化ポテンシャルが前記第1窒化ポテンシャルとなるように制御され、
前記第2窒化処理工程では、NH3ガスとAXガスとN2ガスとの3種類のガスが使用され、それらの総流量を一定としながらNH3ガス及びAXガスの各々の導入量を変えることによって、当該第2窒化処理工程中の窒化ポテンシャルが前記第2窒化ポテンシャルとなるように制御され、
前記第3窒化処理工程では、NH3ガスとAXガスとの2種類のガスが使用され、それらの総流量を一定としながらそれらの各々の導入量を変えることによって、当該第3窒化処理工程中の窒化ポテンシャルが前記第3窒化ポテンシャルとなるように制御される
ことを特徴とする請求項1に記載の窒化処理方法。 - 前記第1窒化処理工程、第2窒化処理工程及び前記第3窒化処理工程は、同一のバッチ型の熱処理炉内で順次に実施され、
前記第1窒化処理工程では、NH3ガスとAXガスとの2種類のガスが使用され、それらの総流量を一定としながらそれらの各々の導入量を変えることによって、当該第1窒化処理工程中の窒化ポテンシャルが前記第1窒化ポテンシャルとなるように制御され、
前記第2窒化処理工程でも、NH3ガスとAXガスとの2種類のガスが使用され、それらの総流量を一定としながらそれらの各々の導入量を変えることによって、当該第2窒化処理工程中の窒化ポテンシャルが前記第2窒化ポテンシャルとなるように制御され、
前記第3窒化処理工程でも、NH3ガスとAXガスとの2種類のガスが使用され、それらの総流量を一定としながらそれらの各々の導入量を変えることによって、当該第3窒化処理工程中の窒化ポテンシャルが前記第3窒化ポテンシャルとなるように制御される
ことを特徴とする請求項1に記載の窒化処理方法。 - 前記第1窒化処理工程、第2窒化処理工程及び前記第3窒化処理工程は、同一の1室型の熱処理炉内で順次に実施され、
前記第1窒化処理工程では、NH3ガスとAXガスとの2種類のガスが使用され、それらの総流量を一定としながらそれらの各々の導入量を変えることによって、当該第1窒化処理工程中の窒化ポテンシャルが前記第1窒化ポテンシャルとなるように制御され、
前記第2窒化処理工程でも、NH3ガスとAXガスとの2種類のガスが使用され、それらの総流量を一定としながらそれらの各々の導入量を変えることによって、当該第2窒化処理工程中の窒化ポテンシャルが前記第2窒化ポテンシャルとなるように制御され、
前記第3窒化処理工程でも、NH3ガスとAXガスとの2種類のガスが使用され、それらの総流量を一定としながらそれらの各々の導入量を変えることによって、当該第3窒化処理工程中の窒化ポテンシャルが前記第3窒化ポテンシャルとなるように制御される
ことを特徴とする請求項1に記載の窒化処理方法。 - 前記第1窒化処理工程、第2窒化処理工程及び前記第3窒化処理工程は、同一の1室型の熱処理炉内で順次に実施され、
前記第1窒化処理工程では、NH3ガスとAXガスとの2種類のガスが使用され、それらの一方の導入量を一定としながら他方の導入量を変えることによって、当該第1窒化処理工程中の窒化ポテンシャルが前記第1窒化ポテンシャルとなるように制御され、
前記第2窒化処理工程でも、NH3ガスとAXガスとの2種類のガスが使用され、それらの一方の導入量を一定としながら他方の導入量を変えることによって、当該第2窒化処理工程中の窒化ポテンシャルが前記第2窒化ポテンシャルとなるように制御され、
前記第3窒化処理工程でも、NH3ガスとAXガスとの2種類のガスが使用され、それらの一方の導入量を一定としながら他方の導入量を変えることによって、当該第3窒化処理工程中の窒化ポテンシャルが前記第3窒化ポテンシャルとなるように制御される
ことを特徴とする請求項1に記載の窒化処理方法。 - 前記第1窒化処理工程、第2窒化処理工程及び前記第3窒化処理工程は、同一の1室型の熱処理炉内で順次に実施され、
前記第1窒化処理工程では、NH3ガスとAXガスとの2種類のガスが使用され、NH3ガス及びAXガスの一方の導入量を一定としながら他方の導入量を変えることによって、当該第1窒化処理工程中の窒化ポテンシャルが前記第1窒化ポテンシャルとなるように制御され、
前記第2窒化処理工程では、NH3ガスとAXガスとN2ガスとの3種類のガスが使用され、NH3ガス及びAXガスの一方の導入量を一定としながら他方の導入量を変えることによって、当該第2窒化処理工程中の窒化ポテンシャルが前記第2窒化ポテンシャルとなるように制御され、
前記第3窒化処理工程では、NH3ガスとAXガスとの2種類のガスが使用され、NH3ガス及びAXガスの一方の導入量を一定としながら他方の導入量を変えることによって、当該第3窒化処理工程中の窒化ポテンシャルが前記第3窒化ポテンシャルとなるように制御される
ことを特徴とする請求項1に記載の窒化処理方法。 - 前記第3窒化処理工程の時間は、60分以上である
ことを特徴とする請求項1乃至7のいずれかに記載の窒化処理方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280018976.4A CN117043384A (zh) | 2021-03-31 | 2022-03-30 | 钢构件的氮化处理方法 |
US18/552,031 US20240301541A1 (en) | 2021-03-31 | 2022-03-30 | Nitriding treatment method for steel component |
JP2023511482A JPWO2022210878A1 (ja) | 2021-03-31 | 2022-03-30 | |
KR1020237036237A KR20230160357A (ko) | 2021-03-31 | 2022-03-30 | 강부재의 질화처리 방법 |
EP22781088.4A EP4317480A4 (en) | 2021-03-31 | 2022-03-30 | NITRIDING TREATMENT PROCESS FOR STEEL ELEMENT |
MX2023010011A MX2023010011A (es) | 2021-03-31 | 2022-03-30 | Metodo de tratamiento de nitruracion para componente de acero. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-059837 | 2021-03-31 | ||
JP2021059837 | 2021-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022210878A1 true WO2022210878A1 (ja) | 2022-10-06 |
Family
ID=83459511
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/015994 WO2022210878A1 (ja) | 2021-03-31 | 2022-03-30 | 鋼部材の窒化処理方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US20240301541A1 (ja) |
EP (1) | EP4317480A4 (ja) |
JP (1) | JPWO2022210878A1 (ja) |
KR (1) | KR20230160357A (ja) |
CN (1) | CN117043384A (ja) |
MX (1) | MX2023010011A (ja) |
TW (1) | TWI833179B (ja) |
WO (1) | WO2022210878A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012095035A (ja) | 2010-10-26 | 2012-05-17 | Canon Inc | 画像処理装置及びその制御方法 |
JP2013221203A (ja) | 2012-04-18 | 2013-10-28 | Dowa Thermotech Kk | 窒化鋼部材およびその製造方法 |
JP2017160517A (ja) * | 2016-03-11 | 2017-09-14 | パーカー熱処理工業株式会社 | 窒化鋼部材及び窒化鋼部材の製造方法 |
WO2019208534A1 (ja) * | 2018-04-26 | 2019-10-31 | パーカー熱処理工業株式会社 | 窒化鋼部材並びに窒化鋼部材の製造方法及び製造装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101777870B1 (ko) | 2011-02-18 | 2017-09-13 | 엘지디스플레이 주식회사 | 입체영상 표시장치 |
JP6636829B2 (ja) * | 2015-05-12 | 2020-01-29 | パーカー熱処理工業株式会社 | 窒化鋼部材及び窒化鋼部材の製造方法 |
JP6345320B1 (ja) * | 2017-07-07 | 2018-06-20 | パーカー熱処理工業株式会社 | 表面硬化処理装置及び表面硬化処理方法 |
-
2022
- 2022-03-15 TW TW111109394A patent/TWI833179B/zh active
- 2022-03-30 MX MX2023010011A patent/MX2023010011A/es unknown
- 2022-03-30 WO PCT/JP2022/015994 patent/WO2022210878A1/ja active Application Filing
- 2022-03-30 US US18/552,031 patent/US20240301541A1/en active Pending
- 2022-03-30 JP JP2023511482A patent/JPWO2022210878A1/ja active Pending
- 2022-03-30 CN CN202280018976.4A patent/CN117043384A/zh active Pending
- 2022-03-30 EP EP22781088.4A patent/EP4317480A4/en active Pending
- 2022-03-30 KR KR1020237036237A patent/KR20230160357A/ko unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012095035A (ja) | 2010-10-26 | 2012-05-17 | Canon Inc | 画像処理装置及びその制御方法 |
JP2013221203A (ja) | 2012-04-18 | 2013-10-28 | Dowa Thermotech Kk | 窒化鋼部材およびその製造方法 |
JP2017160517A (ja) * | 2016-03-11 | 2017-09-14 | パーカー熱処理工業株式会社 | 窒化鋼部材及び窒化鋼部材の製造方法 |
WO2019208534A1 (ja) * | 2018-04-26 | 2019-10-31 | パーカー熱処理工業株式会社 | 窒化鋼部材並びに窒化鋼部材の製造方法及び製造装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4317480A4 |
Also Published As
Publication number | Publication date |
---|---|
TWI833179B (zh) | 2024-02-21 |
US20240301541A1 (en) | 2024-09-12 |
JPWO2022210878A1 (ja) | 2022-10-06 |
EP4317480A1 (en) | 2024-02-07 |
KR20230160357A (ko) | 2023-11-23 |
CN117043384A (zh) | 2023-11-10 |
MX2023010011A (es) | 2023-09-07 |
TW202246545A (zh) | 2022-12-01 |
EP4317480A4 (en) | 2024-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6378189B2 (ja) | 鋼部材の窒化処理方法 | |
JP7163642B2 (ja) | 浸炭焼入れ装置および浸炭焼入れ方法 | |
CN107245691B (zh) | 金属材料复合热处理表面强化方法 | |
JP7094540B2 (ja) | 窒化鋼部材並びに窒化鋼部材の製造方法及び製造装置 | |
JP2005009702A (ja) | 多室型真空熱処理装置 | |
JPH0598343A (ja) | 鋼の表面硬化処理法及び表面硬化処理装置 | |
JP4737601B2 (ja) | 高温窒化処理用鋼 | |
WO2022210878A1 (ja) | 鋼部材の窒化処理方法 | |
JP6228403B2 (ja) | 炭素鋼の表面硬化方法及び表面硬化構造 | |
WO2022176878A1 (ja) | 鋼部材の窒化処理方法 | |
JP2021042398A (ja) | 窒化鋼部材並びに窒化鋼部材の製造方法及び製造装置 | |
JP6587886B2 (ja) | 窒化鋼部材の製造方法 | |
JP3460075B2 (ja) | 金属の浸炭方法 | |
JP7434018B2 (ja) | 鋼部材の窒化処理方法 | |
WO2016159235A1 (ja) | 鋼部材の窒化処理方法 | |
WO2020090999A1 (ja) | 窒化鋼部材並びに窒化鋼部材の製造方法及び製造装置 | |
JP2023073674A (ja) | 表面硬化処理装置及び表面硬化処理方法 | |
GB2049740A (en) | Improvements in or relating to case hardening | |
JPS63255355A (ja) | ガス複合浸透改質方法 | |
Korecki et al. | Devices for modern vacuum heat treatment | |
JPH0525538A (ja) | 低歪高強度部材の製造方法 | |
KR200242846Y1 (ko) | 광휘열처리로 | |
JPH04276026A (ja) | 塗装焼付硬化性と2次加工性に優れた深絞り用冷延鋼板の製造方法 | |
Hart | LPC Pit Furnace vs. Traditional Pit Carburizing | |
JPH04268015A (ja) | 鉄鋼部品の表面処理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22781088 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2023/010011 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280018976.4 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18552031 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2301006170 Country of ref document: TH |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023511482 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20237036237 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020237036237 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022781088 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022781088 Country of ref document: EP Effective date: 20231031 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |