WO2022202491A1 - ピロリジン誘導体、その製造方法、mse型ゼオライト及びその製造方法 - Google Patents

ピロリジン誘導体、その製造方法、mse型ゼオライト及びその製造方法 Download PDF

Info

Publication number
WO2022202491A1
WO2022202491A1 PCT/JP2022/011624 JP2022011624W WO2022202491A1 WO 2022202491 A1 WO2022202491 A1 WO 2022202491A1 JP 2022011624 W JP2022011624 W JP 2022011624W WO 2022202491 A1 WO2022202491 A1 WO 2022202491A1
Authority
WO
WIPO (PCT)
Prior art keywords
peak intensity
mse
pyrrolidine derivative
type zeolite
less
Prior art date
Application number
PCT/JP2022/011624
Other languages
English (en)
French (fr)
Inventor
克彦 林
顕治 田村
暁 茂木
進 高橋
秀和 後藤
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to EP22775281.3A priority Critical patent/EP4317161A1/en
Priority to CN202280022719.8A priority patent/CN116997553A/zh
Priority to JP2023509048A priority patent/JPWO2022202491A1/ja
Publication of WO2022202491A1 publication Critical patent/WO2022202491A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/08Bridged systems

Definitions

  • the present invention relates to a pyrrolidine derivative, a method for producing the same, an MSE-type zeolite, and a method for producing the same.
  • Exhaust gas from internal combustion engines such as automobiles that use gasoline as fuel contains harmful components such as hydrocarbons (HC), and exhaust gas purification catalysts are used to treat such harmful components.
  • harmful components such as hydrocarbons (HC)
  • HC hydrocarbons
  • Exhaust gas purifying catalysts are known to be inefficient in treating exhaust gas in low-temperature environments, such as the cold start state of an internal combustion engine.
  • Cold-start catalysts containing zeolite catalysts containing base metals, noble metals, and zeolite are available in order to improve the efficiency of exhaust gas purification in cold-start conditions.
  • zeolites contained in cold start catalysts for example, BEA type zeolite, MFI type zeolite, CHA type zeolite, etc. are known, and Patent Document 1 discloses MSE type zeolite and a method for producing the same.
  • Exhaust gas purifying catalysts including cold start catalysts, store hydrocarbons in the exhaust gas in a low temperature environment when the internal combustion engine is started, and the stored hydrocarbons are released after the high temperature exhaust gas flows in and the catalyst is sufficiently activated.
  • heat resistance is required for the aforementioned zeolite that serves as a hydrocarbon adsorbent.
  • OSDA organic structure directing agent
  • the present invention provides a pyrrolidine derivative containing a quaternary ammonium cation having a bicyclo skeleton that can be used as an organic structure directing agent for MSE-type zeolite, a method for producing the same, and MSE.
  • An object of the present invention is to provide a type zeolite and a method for producing the same.
  • the highest peak intensity I within the diffraction angle (2 ⁇ ) range from 14.0° to 16.0° and the diffraction angle (2 ⁇ ) range from 17.0° to 19.0° and the highest peak intensity II within the range of 0 °, and the peak intensity ratio (I/II) of the peak intensity I to the peak intensity II is within the range of 0.4 or more and 1.5 or less, and bicyclo A pyrrolidine derivative containing a quaternary ammonium cation having a backbone is provided.
  • the diffraction angle (2 ⁇ ) representing the (420) plane is the highest peak intensity A in the range of 21.0 ° to 22.0 °, and ( 115) having the highest peak intensity B within the range of 22.6° to 23.6° representing the plane, and a peak intensity ratio (A/B) of peak intensity A to peak intensity B of 1.25;
  • an MSE-type zeolite that is within the range of 2.50 or less.
  • the pyrrolidine derivative containing a quaternary ammonium cation having a bicyclo skeleton provided by the present invention contains few poorly water-soluble impurities, contains a large amount of MSE-type crystal phase, and suppresses the formation of crystal phases other than the MSE-type crystal phase. It can be used as an organic structure-directing agent for MSE-type zeolite.
  • the MSE-type zeolite provided by the present invention has a low content of crystal phases other than the MSE-type crystal phase that causes defects, and has excellent heat resistance.
  • FIG. 1 shows the X-ray diffraction spectrum of pyrrolidine derivative 2 of Example 3.
  • FIG. 2 shows the X-ray diffraction spectrum of pyrrolidine derivative 2 of Comparative Example 1.
  • FIG. 3 shows an SEM photograph of pyrrolidine derivative 2 of Example 2.
  • FIG. 4 shows an SEM photograph of pyrrolidine derivative 2 of Comparative Example 1.
  • FIG. 5 shows the X-ray diffraction spectrum of the MSE-type zeolite (containing OSDA) of Example 3.
  • FIG. 6 shows the X-ray diffraction spectrum of the MSE-type zeolite (containing OSDA) of Comparative Example 1.
  • FIG. 7 shows the X-ray diffraction spectrum of the MSE-type zeolite (OSDA-free) of Example 3.
  • FIG. 8 shows the X-ray diffraction spectrum of the MSE-type zeolite (OSDA-free) of Comparative Example 1.
  • Pyrrolidine derivative An example of the embodiment of the present invention is an X-ray diffraction spectrum in which the diffraction angle (2 ⁇ ) is the highest peak intensity I within the range of 14.0 ° to 16.0 ° and the diffraction angle (2 ⁇ ) is and the highest peak intensity II in the range of 17.0° to 19.0°, and the peak intensity ratio (I/II) of the peak intensity I to the peak intensity II is 0.4 or more and 1.5 or less and a pyrrolidine derivative containing a quaternary ammonium cation having a bicyclo skeleton.
  • a quaternary ammonium cation having a bicyclo skeleton is represented by the following formula (1): N,N,N',N'-tetraalkylbicyclo[2.2.2]octo -7-ene-2,3; 5,6-dipyrrolidinium dication and/or N,N,N',N'-tetraalkylbicyclo represented by the following formula (2) [2.2.2] It preferably contains octane-2,3;5,6-dipyrrolidinium dication.
  • R 1 , R 2 , R 3 and R 4 each independently represent a linear or branched alkyl group having 1 to 4 carbon atoms.
  • R 1 , R 2 , R 3 and R 4 are each independently a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec -butyl group, isobutyl group and tert-butyl group.
  • each of R 1 , R 2 , R 3 and R 4 is preferably an ethyl group.
  • the pyrrolidine derivative may be a pyrrolidinium salt represented by the following formula (3) or a pyrrolidinium salt represented by the following formula (4).
  • R 1 , R 2 , R 3 and R 4 each independently have the same meaning as in formula (1) or (2).
  • X represent at least one halogen atom selected from the group consisting of bromine and iodine.
  • pyrrolidinium salts include N,N,N',N'-tetraalkylbicyclo[2.2.2]oct-7-ene-2,3;5,6-dipyrrolidinium iodide, N, N,N′,N′-tetraalkylbicyclo[2.2.2]octane-2,3; 5,6-dipyrrolidinium, N,N,N′,N′-tetraalkylbicyclo[2.2.
  • a pyrrolidine derivative containing a quaternary ammonium cation having a bicyclo-type skeleton (hereinafter also referred to as a "pyrrolidine derivative" in the present specification) has a diffraction angle (2 ⁇ ) of 14.0° to 16° in its X-ray diffraction spectrum. It is preferable to have the highest peak intensity I within the range of 0.0° and the highest peak intensity II with the diffraction angle (2 ⁇ ) within the range of 17.0° to 19.0°. Further, the peak intensity ratio (I/II) of peak intensity I to peak intensity II is preferably 0.4 or more and 1.5 or less, more preferably 0.45 or more and 1.0 or less, and 0.45 or more and 1.0 or less.
  • the peak intensity ratio (I/II) has a relationship of 0.4 or more and 1.5 or less, it can be said that the poorly water-soluble impurities are highly dispersed in the pyrrolidine derivative, and the peak intensity ratio (I /II) is within such a range to produce an MSE-type zeolite, precipitation of crystal phases other than the MSE-type starting from poorly water-soluble impurities present in the pyrrolidine derivative is suppressed, and high An MSE-type zeolite having a pure MSE-type crystal phase can be obtained. An MSE zeolite having such a high-purity MSE-type crystal phase has excellent heat resistance.
  • the pyrrolidine derivative is not formed in the first place, or the poorly water-soluble impurities are highly dispersed in the pyrrolidine derivative.
  • the MSE-type zeolite By producing an MSE-type zeolite using a pyrrolidine derivative having a relationship in which the peak intensity ratio (I/II) is less than 0.4 or more than 1.5, the MSE-type crystal phase is obtained, and the MSE-type zeolite is provided with a crystal phase other than the MSE-type crystals originating from poorly water-soluble impurities present in the pyrrolidine derivative.
  • the X-ray diffraction spectrum of the pyrrolidine derivative can be measured using an X-ray diffractometer (for example, model number: RINT-TTRIII, manufactured by Rigaku Corporation).
  • the pyrrolidine derivative preferably has a peak intensity ratio (I/ ⁇ ) of the peak intensity I to the peak intensity ⁇ of the (116) plane in the X-ray diffraction spectrum of ⁇ -aluminum oxide (I/ ⁇ ) of 0.1 or more, and 0.15. It is more preferable to be above. On the other hand, the peak intensity ratio (I/ ⁇ ) is preferably 0.9 or less, more preferably 0.5 or less, and particularly preferably 0.35 or less.
  • ⁇ -aluminum oxide ( ⁇ -alumina) refers to X-ray diffraction standard sample 674a distributed by the National Institute of Standards and Technology (NIST). If the peak intensity ratio (I/ ⁇ ) of the pyrrolidine derivative is within such a range, the amount of poorly water-soluble impurities is small, and a high-purity MSE-type crystal phase can be easily formed.
  • the pyrrolidine derivative preferably has a peak intensity ratio (II/ ⁇ ) of peak intensity II to peak intensity ⁇ of 0.3 or more, more preferably 0.31 or more.
  • the peak intensity ratio (II/ ⁇ ) is preferably 0.5 or less, more preferably 0.45 or less.
  • a pyrrolidine derivative containing a quaternary ammonium cation having a bicyclo skeleton has few poorly water-soluble impurities and easily forms a highly pure MSE-type crystal phase as long as the peak intensity ratio (II/ ⁇ ) is within such a range. become a thing.
  • the pyrrolidine derivative preferably has a crystallite size of 45 nm or more and 120 nm or less calculated from the peak having the peak intensity I.
  • the pyrrolidine derivative of the present invention is produced in a short period of time while incorporating poorly water-soluble impurities by being produced by the production method described later, so that the crystallite size is small and the poorly water-soluble impurities are highly dispersed. Prone.
  • the poorly water-soluble impurities become sufficiently soluble in the raw material for zeolite synthesis, and crystal phases other than the MSE-type crystal phase originating from the poorly water-soluble impurities are formed. It is possible to use less MSE-type zeolite.
  • the crystallite size calculated from the peak having the peak intensity I of the pyrrolidine derivative may preferably be in the range of 48 nm or more and 105 nm or less. The crystallite size is measured, for example, by the method described below.
  • the pyrrolidine derivative preferably has a BET specific surface area of 2.0 m 2 /g or more, may be 3.0 m 2 /g or more, may be 4.0 m 2 /g or more, or may be 10.0 m 2 /g. or more.
  • the pyrrolidine derivative of the present invention is produced by the production method described later, and is produced in a short period of time while incorporating poorly water - soluble impurities. Impurities tend to be highly dispersed.
  • the poorly water-soluble impurities become sufficiently soluble in the raw material for zeolite synthesis, and crystal phases other than the MSE-type crystal phase originating from the poorly water-soluble impurities are formed. It is possible to use less MSE-type zeolite.
  • the BET specific surface area is measured, for example, by the method described later.
  • the primary particle size measurable from a scanning electron microscope (SEM) image of the pyrrolidine derivative is preferably 3.0 ⁇ m or less, and may be in the range of 0.3 ⁇ m or more and 1.5 ⁇ m or less.
  • the pyrrolidine derivative of the present invention is produced in a short period of time while incorporating poorly water-soluble impurities by being produced by the production method described later, so that the primary particle diameter of the particles measured from the SEM image is 3.0 ⁇ m or less. , the poorly water-soluble impurities tend to be highly dispersed.
  • the primary particle size of the pyrrolidine derivative was determined by observing the pyrrolidine derivative particles at a magnification of 30,000 times using a field emission scanning electron microscope (FE-SEM), and arbitrarily selecting 50 pyrrolidine derivatives from within the field of view. It can be calculated as an average value of Feret diameters of particles.
  • Method for producing pyrrolidine derivative includes N,N'-dialkylbicyclo[2.2.2]oct-7-ene-2,3;5,6-tetracarboxydiimide or N,N'-dialkyl It involves a first step of providing bicyclo[2.2.2]octane-2,3;5,6-tetracarboxydiimide.
  • N,N'-dialkylbicyclo[2.2.2]oct-7-ene-2,3;5,6-tetracarboxydiimide or N,N'-dialkylbicyclo[2.2.2]octane- 2,3;5,6-tetracarboxydiimide is reacted with a reducing agent to give N,N′-dialkylbicyclo[2.2.2]oct-7-ene-2,3;5,6-dipyrrolidine and/or or a second step to obtain the N,N'-dialkylbicyclo[2.2.2]octane-2,3;5,6-dipyrrolidine.
  • N,N'-dialkylbicyclo[2.2.2]oct-7-ene-2,3;5,6-dipyrrolidine and/or N,N'-dialkylbicyclo[2.2.2]octane- 2,3;5,6-Dipyrrolidine is reacted with an alkyl halide to give N,N,N′,N′-tetraalkylbicyclo[2.2.2]oct-7-ene-2,3;5, Third step of precipitating 6-dipyrrolidinium salt and/or N,N,N',N'-tetraalkylbicyclo[2.2.2]octane-2,3;5,6-dipyrrolidinium salt to obtain pyrrolidine derivative including.
  • the method for producing a pyrrolidine derivative preferably satisfies at least one of the following conditions (1) and (2).
  • the pyrrolidine derivative obtained after the second step and before the third step is also referred to as "pyrrolidine derivative 1".
  • the pyrrolidinium salt obtained after the third step is also referred to as "pyrrolidine derivative 2".
  • the reducing agent is sodium bis(2-methoxyethoxy)aluminum hydride, lithium triethylborohydride, diisobutylaluminum hydride, diborane, lithium borohydride, and sodium borohydride.
  • Scheme (S1) for obtaining a pyrrolidine derivative is shown below as a first example of a method for producing a pyrrolidine derivative.
  • Scheme (S1) includes the following first to third steps.
  • N,N'-bicyclo[2.2.2]oct-7-ene-2,3;5,6-tetracarboxylic dianhydride (a) and an alkylamine are treated in the presence of water. to give N,N'-dialkylbicyclo[2.2.2]oct-7-ene-2,3;5,6-tetracarboxydiimide (b).
  • a second step the resulting N,N′-dialkylbicyclo[2.2.2]oct-7-ene-2,3;5,6-tetracarboxydiimide (b) and the reduction of condition (1) or a reducing agent other than condition (1) to obtain N,N'-dialkylbicyclo[2.2.2]oct-7-ene-2,3;5,6-dipyrrolidine (c).
  • the resulting N,N′-dialkylbicyclo[2.2.2]oct-7-ene-2,3;5,6-dipyrrolidine (c) is treated under condition (2) or under condition (2). ) to give N,N′-tetraalkylbicyclo[2.2.2]oct-7-ene-2,3;5,6-dipyrrolidinium salt (d).
  • R—NH 2 is an alkylamine.
  • RX is an alkyl halide.
  • R represents a linear or branched alkyl group having 1 to 4 carbon atoms.
  • R”, “R 1 ”, “R 2 ”, “R 3 ” and “R 4 ” are each independently R 1 , R 2 , R 3 and R 3 in formulas (1) to (4) above. It has the same meaning as R4 .
  • X has the same meaning as X in the formula (3) or (4).
  • THF represents tetrahydrofuran.
  • Reflux stands for reflux.
  • Scheme (S2) includes the following first to third steps.
  • N,N'-bicyclo[2.2.2]octane-2,3;5,6-tetracarboxylic dianhydride (e) and an alkylamine are refluxed in the presence of water.
  • the resulting N,N'-dialkylbicyclo[2.2.2]octane-2,3;5,6-tetracarboxydiimide (f) and the reducing agent of condition (1) or the condition ( N,N'-dialkylbicyclo[2.2.2]octane-2,3;5,6-dipyrrolidine (g) is obtained by reacting with a reducing agent other than 1).
  • the obtained N,N'-dialkylbicyclo[2.2.2]octane-2,3;5,6-dipyrrolidine (g) was treated under conditions (2) or under conditions other than condition (2). to give the N,N'-tetraalkylbicyclo[2.2.2]octane-2,3;5,6-dipyrrolidinium salt (h).
  • Scheme (S3) includes the following first to third steps.
  • N,N'-bicyclo[2.2.2]oct-7-ene-2,3;5,6-tetracarboxylic dianhydride (a) and an alkylamine are treated in the presence of water. to give N,N'-dialkylbicyclo[2.2.2]oct-7-ene-2,3;5,6-tetracarboxydiimide (b).
  • N,N′-dialkylbicyclo[2.2.2]oct-7-ene-2,3;5,6-tetracarboxydiimide (b) is heated, for example at 100-300° C.
  • hydrogen reduction is performed in the presence of a base metal catalyst such as copper-chromium or Raney nickel or a noble metal catalyst in which a noble metal is supported on silica, alumina or carbon support
  • a base metal catalyst such as copper-chromium or Raney nickel or a noble metal catalyst in which a noble metal is supported on silica, alumina or carbon support
  • Noble metals include at least one selected from the group consisting of Pt, Pd, Rh, Ir, and Ru.
  • the hydrogen reduction in the second step may be carried out under pressure conditions of 150° C. and 5 MPa, for example, when a noble metal-based catalyst is used.
  • the obtained N,N'-dialkylbicyclo[2.2.2]octane-2,3;5,6-dipyrrolidine (g) was treated under conditions (2) or under conditions other than condition (2). with an alkyl halide to give N,N'-tetraalkylbicyclo[2.2.2]octane-2,3;5,6-dipyrrolidinium salt (h).
  • either one of the condition (1) in the second step and the condition (2) in the third step may be satisfied, and the condition (1) in the second step and the condition ( 2) may be satisfied.
  • Step 1 is N,N'-dialkylbicyclo[2.2.2]oct-7-ene-2,3;5,6-tetracarboxylic dianhydride or N,N'-dialkylbicyclo [2.2.2] Octane-2,3; is dissolved in water into a reaction vessel, and the raw materials are added to the reaction vessel while stirring the alkylamine aqueous solution, followed by stirring for 1 to 2 hours. After stirring, water is added to the reaction vessel to form a mixed solution. The mixture is preferably refluxed at a temperature of 60° C. or higher and 80° C. or lower for 10 hours or more and 50 hours or less with stirring. Further, if necessary, reflux may be continued with stirring at 100° C. or higher and 120° C.
  • the mixture is cooled to room temperature, the residual alkylamine is quenched with concentrated hydrochloric acid in a dropwise manner, and the resulting reactant is suction-filtered for solid-liquid separation.
  • the resulting solid reactant is washed with water, dried and treated with N,N′-dialkylbicyclo[2.2.2]oct-7-ene-2,3;5,6-tetracarboxydiimide or N , N′-dialkylbicyclo[2.2.2]octane-2,3;5,6-tetracarboxydiimide (hereinafter also referred to as “imide compound”) can be obtained.
  • alkylamines examples include methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, sec-butylamine, isobutylamine and tert-butylamine.
  • Second step ⁇ Embodiment that satisfies condition (1)>
  • the imide compound obtained in the first step and an organic solvent are charged into a reaction vessel equipped with a reflux tube, and stirred at room temperature (20° C. or higher and 30° C. or lower) for 10 minutes or more and 60 minutes or less to obtain a solution containing the imide compound.
  • a solution can be obtained.
  • the organic solvent is not particularly limited, but examples thereof include THF (tetrahydrofuran), cyclopentyl methyl ether, methyl tert-butyl ether, dioxane and the like.
  • the stirring atmosphere includes an inert gas atmosphere such as a nitrogen atmosphere, an argon atmosphere, and a helium atmosphere.
  • a reducing agent and an organic solvent which will be described later, may be added to the imide compound obtained in the first step without obtaining a solution containing the imide compound and the organic solvent.
  • a solution obtained by mixing a reducing agent and an organic solvent, which will be described later, is added to the solution containing the imide compound or to the imide compound, and stirred at a temperature of, for example, 50° C. or higher and 80° C. or lower for 5 hours or more and 25 hours or less.
  • the atmosphere can be refluxed to obtain a reaction solution.
  • the obtained reaction solution is cooled to room temperature, and water and an alkaline solution are added to terminate the reaction.
  • the organic solvent is not particularly limited, and the same ones as those mentioned above may be used.
  • alkaline solutions include sodium hydroxide solutions. After that, the solids in the reaction solution are suction-filtered to obtain a liquid phase containing the reactants.
  • a filter aid for example, celite, etc.
  • the liquid phase containing the obtained reaction product is concentrated while evaporating low-boiling components such as an organic solvent and water, whereby liquid pyrrolidine derivative 1 can be obtained.
  • Reducing agents that satisfy condition (1) include sodium bis(2-methoxyethoxy)aluminum hydride, lithium triethylborohydride, diisobutylaluminum hydride, diborane, lithium borohydride, and sodium borohydride. Among these, sodium bis(2-methoxyethoxy)aluminum hydride is particularly preferred.
  • reduction of, for example, sodium bis(2-methoxyethoxy)aluminum hydride which is highly soluble in organic solvents and exhibits stable reactivity without being affected by environmental atmospheres such as humidity and air.
  • pyrrolidine derivative 1 in which poorly water-soluble impurities are highly dispersed can be easily obtained.
  • a reducing agent and an organic solvent which will be described later, are charged into a reaction vessel equipped with a reflux tube, and stirred at room temperature (20° C. or higher and 30° C. or lower) for 10 minutes or more and 60 minutes or less, and condition (1)
  • Reducing agents that do not satisfy condition (1) include lithium aluminum hydride, potassium borohydride, nickel borohydride, zinc borohydride, and potassium aluminum hydride.
  • the stirring atmosphere includes an inert gas atmosphere such as a nitrogen atmosphere, an argon atmosphere, and a helium atmosphere.
  • the solution obtained by mixing the imide compound and the organic solvent obtained in the first step is added to the reaction vessel, and stirred at a temperature of, for example, 50° C. or higher and 80° C. or lower for 5 hours or more and 25 hours or less, and nitrogen The atmosphere can be refluxed to obtain a reaction solution. Thereafter, pyrrolidine derivative 1 can be obtained in the same manner as in the second step when condition (1) is satisfied.
  • This reaction is a Menstkin reaction in which a tertiary amine is reacted with a halogen compound to be quaternized to form a quaternary ammonium salt.
  • the Menstkin reaction is a nucleophilic substitution reaction, and all pyrrolidine derivatives 2 are tertiary amines substituted with alkyl groups, so while the electron density on the nitrogen atom is high and the basicity is high, the nucleophilicity is remarkable due to steric hindrance. descend.
  • a nitrogen atom acts as a base, and as a side reaction, the solvent ethanol and ethyl iodide are likely to react to form diethyl ether.
  • the reaction time although it depends on the amount of reaction, it cannot be generalized, but since the amount of the organic solvent is small, the pyrrolidine derivative 1 and the alkyl halide react rapidly, so it is within 30 minutes, more preferably within 20 minutes. More preferably, the reaction is completed within 15 minutes to obtain the pyrrolidine derivative 2.
  • the alkyl halide directly added to the pyrrolidine derivative 1 is preferably added at a rate of 20 mL/min or less, more preferably 3 mL/min or more and 10 mL/min, in order to suppress temperature rise due to rapid reaction. It is more preferable to add at the following rate.
  • the pyrrolidine derivative 2 may be obtained, for example, by washing the obtained solid content with an organic solvent such as acetone, filtering it using filter paper, and air-drying it.
  • an organic solvent such as acetone
  • the yield of the target pyrrolidine derivative tends to increase as the content of poorly water-soluble impurities decreases.
  • Pyrrolidine derivative 1 obtained in the second step that satisfies condition (1) and, for example, an organic solvent having a molar ratio of more than 13 times that of pyrrolidine derivative 1 are charged into a reaction vessel equipped with a reflux tube, and heated to room temperature (20 °C or higher and 30 °C or lower) and stirred for 10 minutes or more and 60 minutes or less to obtain a reaction solution.
  • the alkyl halide solution is added to the reaction solution, and the mixture is refluxed at a temperature of 50° C. or more and 80° C. or less for 5 hours or more and 100 hours or less while stirring.
  • the precipitated solid is filtered, and the obtained solid is washed with an organic solvent such as acetone.
  • the precipitated solid is further refluxed in an organic solvent such as acetone, the solid is suction-filtered, the obtained solid is further washed with an organic solvent such as acetone, and dried to obtain the pyrrolidine derivative 2.
  • the pyrrolidine derivative 1 obtained by the second step that satisfies the condition (1) and in which the generation of poorly water-soluble impurities is suppressed is used, the poorly water-soluble impurities are highly dispersed, and the MSE-type zeolite It is possible to obtain pyrrolidine derivative 2 with less generation of poorly water-soluble impurities when producing.
  • the method of precipitating the pyrrolidine derivative 2 in the reaction solution described above may be referred to as a "crystallization method".
  • Alkyl halides include methyl iodide, ethyl iodide, propyl iodide, butyl iodide, methyl bromide, ethyl bromide, propyl bromide, and butyl bromide.
  • the resulting pyrrolidine derivative was identified by 1 H-NMR and 13 C-NMR analysis as N,N'-dialkylbicyclo[2.2.2]oct-7-ene-2,3;5,6-dipyrrolidine. And/or it can be confirmed that N,N'-dialkylbicyclo[2.2.2]octane-2,3;5,6-dipyrrolidine is produced.
  • the MSE-type zeolite in the present invention has the highest peak in the X-ray diffraction spectrum of the MSE-type zeolite, where the diffraction angle (2 ⁇ ) representing the (420) plane is in the range of 21.0° to 22.0°. It has an intensity A and a highest peak intensity B with a diffraction angle (2 ⁇ ) representing the (115) plane within the range of 22.6° to 23.6°, and the peak intensity of the peak intensity A with respect to the peak intensity B It is preferable that the ratio (A/B) is within the range of 1.25 or more and 2.50 or less.
  • MSE-type zeolite having a peak intensity ratio (A/B) within the range of 1.25 or more and 2.50 or less is also referred to as MSE-type zeolite containing an organic structure-directing agent (“MSE-type zeolite (OSDA-containing)”). ), or an MSE-type zeolite containing no organic structure-directing agent (also referred to as “MSE-type zeolite (OSDA-free)”).
  • the MSE-type zeolite is preferably synthesized using a pyrrolidine derivative containing a quaternary ammonium cation having the aforementioned bicyclo skeleton as an organic structure-directing agent.
  • the MSE-type zeolite containing the pyrrolidine derivative as the organic structure-directing agent preferably has a peak intensity ratio (A/B) in the range of 1.30 or more and 2.50 or less.
  • A/B peak intensity ratio
  • the MSE-type zeolite synthesized using the pyrrolidine derivative described above as an organic structure-directing agent can be calcined at a temperature of 600° C. or more and 800° C. or less in an air atmosphere after synthesis to remove the organic structure-directing agent.
  • the MSE-type zeolite (OSDA-free) from which the organic structure-directing agent has been removed preferably has a peak intensity ratio (A/B) in the range of 1.25 to 2.50, preferably 1.26 to 2.5. 00 or less, and more preferably in the range of 1.28 to 1.80.
  • the peak intensity ratio (A/B) of the MSE-type zeolite (not containing OSDA) is within the range of 1.25 or more and 2.50 or less, the formation of crystal phases other than the MSE-type crystal phase is suppressed.
  • the MSE-type zeolite (OSDA-containing or OSDA-free) preferably has a crystallite size calculated from the peak having peak intensity A of 20 nm or more and 80 nm or less.
  • the crystallite size calculated from the peak having the peak intensity A of the MSE-type zeolite is within the range of 20 nm or more and 80 nm or less, the crystallite size of the MSE-type crystal phase is in a suitable range, and other than the MSE-type crystal phase The content of the crystalline phase is small, and the MSE-type zeolite has high heat resistance.
  • the MSE zeolite may have a crystallite size calculated from a peak having peak intensity A of 25 nm or more, 30 nm or more, 40 nm or more, or 75 nm or less.
  • the crystallite size calculated from the peak having the peak intensity A is preferably 35 nm or more and 80 nm or less, and may be 40 nm or more, 50 nm or more, or 75 nm or less.
  • the crystallite size calculated from the peak having the peak intensity A is preferably 20 nm or more and 80 nm or less, may be 30 nm or more, may be 40 nm or more, may be 75 nm or less, or may be 70 nm. 65 nm or less, or 60 nm or less.
  • the MSE-type zeolite (containing OSDA) preferably has a peak intensity ratio (A/ ⁇ ) of peak intensity A to peak intensity ⁇ within the range of 0.55 or more and 0.95 or less.
  • the MSE-type zeolite (containing OSDA) contains a large amount of the MSE-type crystal phase if the peak intensity ratio (A/ ⁇ ) is in the range of 0.55 or more and 0.95 or less, and the MSE-type crystal that causes defects It has a low content of crystalline phases other than phases and has high heat resistance.
  • the MSE-type zeolite (containing OSDA) may have a peak intensity ratio (A/ ⁇ ) of 0.60 or more, 0.65 or more, or 0.90 or less.
  • the MSE-type zeolite (not containing OSDA) preferably has a peak intensity ratio (A/ ⁇ ) within the range of 0.28 or more and 0.60 or less.
  • MSE-type zeolite (not containing OSDA) has a peak intensity ratio (A/ ⁇ ) within the range of 0.28 or more and 0.60 or less, and the content of crystal phases other than the MSE-type crystal phase that causes defects and has high heat resistance.
  • the MSE-type zeolite (without OSDA) may have a peak intensity ratio (A/ ⁇ ) of 0.30 or more, 0.35 or more, 0.58 or less, or 0.55 or less.
  • MSE-type zeolite (not containing OSDA) has a diffraction angle (2 ⁇ ) representing the (200) plane in the X-ray diffraction spectrum of MSE-type zeolite with respect to peak intensity ⁇ within the range of 9.2° to 10.2°
  • the peak intensity ratio (C/ ⁇ ) of the highest peak intensity C is preferably in the range of 0.15 or more and 0.50 or less. If the peak intensity ratio (C/ ⁇ ) is in the range of 0.15 or more and 0.50 or less, the MSE-type zeolite contains a large amount of the MSE-type crystal phase, and crystals other than the MSE-type crystal phase that cause defects Low phase content and high heat resistance.
  • the diffraction angle (2 ⁇ ) representing the (200) plane is in the range of 9.2° to 10.2°. It appears as a peak with high peak intensity in the X-ray diffraction spectrum of zeolite (without OSDA).
  • the MSE-type zeolite (not containing OSDA) may have a peak intensity ratio (C/ ⁇ ) of 0.20 or more, 0.25 or more, 0.45 or less, or 0.40 or less.
  • the MSE-type zeolite (OSDA-containing or OSDA-free) preferably has a SiO 2 /Al 2 O 3 molar ratio of 10 or more and 600 or less.
  • the SiO 2 /Al 2 O 3 molar ratio of the MSE-type zeolite may be 15 or more, 18 or more, 20 or more, 500 or less, or 300 or less. It may be 100 or less.
  • the SiO 2 /Al 2 O 3 molar ratio of the MSE-type zeolite is 10 or more, the crystal structure is stable and the zeolite has excellent heat resistance.
  • the SiO 2 /Al 2 O 3 molar ratio of the MSE-type zeolite is 600 or less
  • metal ions form Bronsted acids adjacent to Al atoms of the multipore zeolite A group containing a point oxygen atom facilitates ion exchange.
  • the SiO 2 /Al 2 O 3 molar ratio contained in the MSE-type zeolite is obtained by measuring the amount of Si and Al by elemental analysis using, for example, a scanning fluorescent X-ray spectrometer (ZSX Primus II, manufactured by Rigaku). From the obtained Si amount and Al amount, the SiO 2 /Al 2 O 3 molar ratio can be measured.
  • the MSE-type zeolite of the present invention has a low content of crystal phases other than the MSE-type crystal phase that cause defects as described above. Therefore, the accessible volume, which indicates the adsorption capacity of the zeolite, is high, and the MSE zeolite has excellent adsorption capacity.
  • Method for producing MSE-type zeolite MSE-type zeolite is produced by preparing a raw material mixture containing a silica source, an aluminum source, an alkali metal source, an organic structure directing agent (OSDA) and water, and heating and crystallizing this raw material mixture. and obtaining an MSE-type zeolite.
  • a silica source containing a silica source, an aluminum source, an alkali metal source, an organic structure directing agent (OSDA) and water
  • OSDA organic structure directing agent
  • a compound containing silicon for example, can be used as the silica source.
  • Specific examples include wet-process silica, dry-process silica, colloidal silica, sodium silicate, potassium silicate, and aluminosilicate gel.
  • These silica sources can be used alone or in combination of two or more.
  • silica sources it is preferable to use silica (silicon dioxide), aluminosilicate gel, or colloidal silica, since by-products are less likely to be generated and the desired MSE zeolite can be produced.
  • a water-soluble aluminum-containing compound for example, a water-soluble aluminum-containing compound can be used.
  • specific examples include sodium aluminate, aluminum nitrate, aluminum sulfate, aluminum hydroxide, and aluminosilicate gel.
  • These aluminum sources can be used individually or in combination of 2 or more types.
  • cesium hydroxide, potassium hydroxide, and sodium hydroxide can be used as the alkali metal source.
  • sodium silicate is used as the silica source or sodium aluminate is used as the aluminum source
  • sodium, which is an alkali metal component is also an alkali metal component.
  • the alkali metal source is calculated as the sum of all alkali metal components in the reaction mixture.
  • a pyrrolidine derivative containing the aforementioned quaternary ammonium cation is used as the organic structure-directing agent. Specifically, N,N,N′,N′-tetraalkylbicyclo[2.2.2]oct-7-ene-2,3:5,6-dipyrrolidinium cations and/or N,N , N′,N′-tetraalkylbicyclo[2.2.2]octane-2,3:5,6-dipyrrolidinium cations are used.
  • a method that facilitates obtaining a uniformly mixed raw material mixture can be adopted.
  • a uniformly mixed raw material mixture can be obtained by adding an aluminum source to an alkali metal source acting as a mineralizer and dissolving it, then adding a silica source and stirring and mixing.
  • the raw material mixture can be crystallized by heating at a temperature of 70° C. or higher and 240° C. or lower. After heating, the crystallized powder is separated from the mother liquor by filtration, washed with water or deionized water and dried to obtain MSE zeolite.
  • the MSE-type zeolite can be specifically produced by referring to the method described in PCT/JP2020/029445, except that the pyrrolidine derivative containing the quaternary ammonium cation described above is used as the organic structure-directing agent. can.
  • the obtained MSE-type zeolite can be confirmed to be MSE-type zeolite by measurement using a powder X-ray diffractometer.
  • a powder X-ray diffractometer 6.56 ⁇ 0.15 °, 6.8 ⁇ 0.15 °, 8.04 ⁇ 0.15 °, 19.38 ⁇ 0.15 °, 19.42 ⁇ 0.15°, 21.68 ⁇ 0.15°, 22.28 ⁇ 0.15°, 22.32 ⁇ 0.15°, 22.84 ⁇ 0.15°, 27.5° ⁇
  • diffraction peak at the diffraction angle (2 ⁇ ) position of 0.15° it can be confirmed to be MSE zeolite.
  • Example 1 Pyrrolidine Derivatives N,N,N',N'-Tetraethylbicyclo[2.2.2]oct-7-ene-2,3;5,6-dipyrrolidinium iodide according to the following scheme (ES1) (d) was produced.
  • Aqueous solution 1 in the reaction vessel was refluxed with stirring at 70° C. for 24 hours and then refluxed with stirring at 100° C. for 18 hours to obtain reactant 1 .
  • the obtained reactant 1 was cooled to room temperature (approximately 25° C.), and residual ethylamine was adjusted to pH 2 using concentrated hydrochloric acid in a dropwise manner.
  • the resulting solid of Reaction 1 was suction filtered, washed with water (230 mL), dried over a desiccant in a vacuum desiccator to give 11.20 g (92% yield) of N,N'-diethylbicyclo. [2.2.2]Oct-7-ene-2,3;5,6-tetracarboxydiimide (b) was obtained.
  • reaction solution 2 in the reaction vessel was refluxed at 67° C.
  • reaction solution 2 was cooled to room temperature (25°C).
  • water (4.08 g) was added, then sodium hydroxide (NaOH, 15 mass % concentration, 4.71 g) was added, and water (12.24 g) was added to complete the reaction.
  • celite (2.0 g) was added as a filter aid to the reaction solution 2, and the mixture was stirred at 25°C for 0.5 hour. After stirring, suction filtration was performed while washing with THF to obtain a liquid phase containing reaction product 2.
  • Example 1 N,N'-diethylbicyclo[2.2 .2]oct-7-ene-2,3;5,6-dipyrrolidine (c) was obtained.
  • the second step was to produce pyrrolidine derivative 1 using a reducing agent that satisfies condition (1).
  • Example 1--Pyrrolidine Derivatives--Third Step A 1000 mL 3-necked round-bottom flask equipped with a magnetic stirrer was equipped with a reaction vessel equipped with a reflux condenser and a thermometer. Next, N,N'-diethylbicyclo[2.2.2]oct-7-ene-2,3;5,6-pyrrolidine (8.44 g) obtained in the second step and ethanol were added to the reaction vessel. (75 mL) and stirred at 25° C. for 0.5 hours to give mixture 3. Ethyl iodide (11.0 mL, 137 mmol) and ethanol (5-10 mL) were mixed, added to mixture 3, and first refluxed at 60° C.
  • reaction solution 3 The organic solvent (ethanol) in the reaction solution 3 is about 38 times the molar amount of N,N'-diethylbicyclo[2.2.2]oct-7-ene-2,3;5,6-pyrrolidine was a ratio. Thereafter, the reaction solution 3 was cooled, and the solid precipitated in the reaction solution 3 was suction-filtered and washed with acetone (60 mL). Acetone (50 mL) was added to the resulting solid and refluxed a second time at 0° C. for 0.5 h, the solid was suction filtered, washed with acetone (50 mL) and dried under vacuum at 40° C. for 3 h.
  • acetone 50 mL
  • Example 2 Pyrrolidine Derivatives N,N,N',N'-Tetraethylbicyclo[2.2.2]oct-7-ene-2,3;5,6-dipyrrolidinium iodide according to the following scheme (ES2) (d) was produced.
  • Example 2 Pyrrolidine Derivatives - First Step Analogously to the first step of Example 1, N,N'-diethylbicyclo[2.2.2]oct-7-ene-2,3;5,6- Tetracarboxydiimide (b) was obtained.
  • Example 2-Pyrrolidine Derivative-Second Step Lithium aluminum hydride (LiAlH 4 , 4.03 g) as a reducing agent that does not satisfy condition (1) and dry THF (260 mL) were mixed and placed in a reaction vessel. , and 25° C. for 0.5 hours. Then the N,N′-dialkylbicyclo[2.2.2]oct-7-ene-2,3;5,6-tetracarboxydiimide (10.70 g) obtained in step 1 and dry THF (92 mL) was mixed, and the mixed solution was dropped into the reaction vessel through a funnel to obtain a reaction solution 2. Reaction solution 2 in the reaction vessel was refluxed at 67° C.
  • reaction solution 2 was cooled to room temperature (25°C).
  • water (4.08 g) was added, then sodium hydroxide (NaOH, 15 mass % concentration, 4.71 g) was added, and water (12.24 g) was added to complete the reaction. rice field. After that, it was filtered while washing with THF, and a liquid phase containing the reaction product 2 was obtained. Next, using an evaporator, low boiling point components such as THF and water are distilled under reduced pressure from the liquid phase containing the obtained reaction product 2 at 60 ° C.
  • Example 2 the second step was to obtain pyrrolidine derivative 1 using a reducing agent that does not satisfy condition (1).
  • Example 2 Pyrrolidine Derivatives - Third Step Into an open vessel was added N,N'-diethylbicyclo[2.2.2]oct-7-ene-2,3;5,6 obtained in the second step. - Dipyrrolidine (10.0 g) (c) was added, and ethyl iodide (13.03 mL, 25.4 g) was directly added to the container and mixed to obtain reaction solution 3. After adding ethyl iodide, the reaction solution 3 became cloudy in 3 to 5 minutes, and the whole solidified while generating heat to 110° C. within 10 minutes.
  • Example 2 The solid obtained is washed with acetone, filtered and dried to give N,N,N',N'-tetraethylbicyclo[2.2.2]oct-7-ene-2,3;5 iodide. ,6-dipyrrolidinium (d) (84.1% yield) was obtained.
  • the third step of Example 2 no organic solvent was added to N,N'-diethylbicyclo[2.2.2]oct-7-ene-2,3;5,6-pyrrolidine. , the same yield and synthesis time were obtained even when ethanol, an organic solvent, was added up to about 12 times.
  • the third step was to produce pyrrolidine derivative 2 by a direct addition method that satisfies condition (2).
  • Example 3 Pyrrolidine Derivatives N,N,N',N'-Tetraethylbicyclo[2.2.2]oct-7-ene-2,3;5,6-dipyrrolidinium iodide according to the following scheme (ES3) (d) was produced.
  • Example 3 Pyrrolidine Derivatives - First Step Analogously to the first step of Example 1, N,N'-diethylbicyclo[2.2.2]oct-7-ene-2,3;5,6- Tetracarboxydiimide (b) was obtained.
  • Example 3-Pyrrolidine Derivatives-Second Step Analogously to the second step of Example 1, N,N'-diethylbicyclo[2.2.2]oct-7-ene-2,3;5,6- Dipyrrolidine (c) was obtained.
  • the second step was to produce pyrrolidine derivative 1 using a reducing agent that satisfies condition (1).
  • Comparative Example 1--Pyrrolidine Derivative--Third Step N,N,N',N'-tetraethylbicyclo iodide [2. 2.2]Oct-7-ene-2,3;5,6-dipyrrolidinium (d) (pyrrolidine derivative 2) was obtained.
  • the molar ratio of the organic solvent to N,N'-diethylbicyclo[2.2.2]oct-7-ene-2,3;5,6-pyrrolidine was about 40 times. rice field.
  • X-ray diffraction spectrum For each pyrrolidine derivative 2 of Examples and Comparative Examples, an X-ray diffraction spectrum was measured using an X-ray diffractometer (XRD, model number: RINT-TTRIII, manufactured by Rigaku) under the following measurement conditions. . Diffraction showing the highest peak intensity I and peak intensity I at a diffraction angle (2 ⁇ ) in the range of 14.0° to 16.0° from the X-ray diffraction spectrum measured for each pyrrolidine derivative 2 of Examples and Comparative Examples The angle (2 ⁇ ) was measured.
  • XRD X-ray diffractometer
  • each pyrrolidine derivative 2 the highest peak intensity II having a diffraction angle (2 ⁇ ) in the range of 17.0° to 19.0° and the diffraction angle (2 ⁇ ) showing the peak intensity II were was measured and the peak intensity ratio (I/II) was determined.
  • BET Specific Surface Area For each pyrrolidine derivative 2 of Example 2 and Comparative Example 1, the BET specific surface area was calculated by the BET one-point method using a BET specific surface area measuring device (model number: BELSORP MR6, manufactured by Microtrac Bell).
  • Table 1 shows the production conditions of each pyrrolidine derivative 2 of Examples and Comparative Examples, the peak intensity at each diffraction angle (2 ⁇ ) obtained from the X-ray diffraction spectrum, each peak intensity ratio, and crystallite size.
  • FIG. 1 and 2 show the X-ray diffraction spectra of the pyrrolidine derivative 2 of Example 3 and Comparative Example 1.
  • the peak intensity II of the pyrrolidine derivative 2 of Example 3 shown in FIG. 1 is higher than the peak intensity I, while the peak intensity II of the pyrrolidine derivative 2 of Comparative Example 1 shown in FIG. 2 is lower than the peak intensity I. was the result.
  • FIG. 3 shows an SEM photograph of pyrrolidine derivative 2 of Example 2.
  • FIG. The primary particle size of the pyrrolidine derivative 2 of Example 2 that can be measured from the SEM photograph was 0.3 to 1.2 ⁇ m and not more than 3.0 ⁇ m.
  • the BET specific surface area of pyrrolidine derivative 2 of Example 2 was 4.0 m 2 /g.
  • no particulate matter was visually observed. In other words, all of the pyrrolidine derivative 2 of Example 2 was dissolved in water, and no substances that would be poorly water-soluble impurities were confirmed.
  • FIG. 4 shows an SEM photograph of pyrrolidine derivative 2 of Comparative Example 1.
  • the BET specific surface area of pyrrolidine derivative 2 of Comparative Example 1 was 0.5 m 2 /g. Further, when the pyrrolidine derivative 2 of Comparative Example 1 was dissolved in water, the pyrrolidine derivative 2 was made 100% by mass, and the ratio of about 10% by mass to this 100% by mass was poorly water-soluble to the extent that it could be visually confirmed. black grains were confirmed. When this was confirmed by NMR, peaks other than pyrrolidine derivative 2 were confirmed. From the particle size and visually observable color of the pyrrolidine derivative 2 of Comparative Example 1, it was presumed that the content of poorly water-soluble impurities was high.
  • Table 2 shows the 1 H chemical shifts (ppm) and literature values of pyrrolidine derivative 2 of Example 2
  • Table 3 shows the 13 C chemical shifts (ppm) of pyrrolidine derivative 2 of Example 2 and literature values.
  • Table 4 shows the 1 H chemical shift (ppm) of pyrrolidine derivative 2 of Comparative Example 1 and literature values
  • Table 5 shows the 13 C chemical shift (ppm) of pyrrolidine derivative 2 of Comparative Example 1 and literature values.
  • the pyrrolidine derivative 2 of Example 2 and the pyrrolidine derivative 2 of Comparative Example 1 have a 1 H-NMR chemical shift and a 13 C-NMR 13 C chemical shift corresponding to those in the above-mentioned literature, respectively.
  • N,N,N',N'-tetraethylbicyclo[2.2.2]oct-7-ene-2,3;5,6-dipyrrolidinium iodide I was able to confirm that it was manufactured.
  • LUDOX registered trademark
  • the obtained raw material composition was filled in a sealed container, and while standing still, was heated at 160°C for 11 days to crystallize.
  • the raw material composition after crystallization was subjected to solid-liquid separation, washed with deionized water, and crystals were recovered.
  • the obtained crystals were dried at 100° C. for 8 hours to obtain MSE-type zeolite (containing OSDA).
  • the resulting MSE-type zeolite (containing OSDA) was heat-treated at 650° C. for 3 hours in an air atmosphere to obtain an MSE-type zeolite (not containing OSDA) from which the organic structure-directing agent was removed.
  • the SiO 2 /Al 2 O 3 molar ratio of the obtained MSE-type zeolite was 10.
  • MSE-type zeolite (containing OSDA) and MSE-type zeolite (not containing OSDA) from which the organic structure-directing agent was removed were obtained in the same manner as in Example 1, except that 6-dipyrrolidinium was used.
  • MSE-type zeolite (containing OSDA) and MSE-type zeolite (not containing OSDA) from which the organic structure-directing agent was removed were obtained in the same manner as in Example 1, except that 6-dipyrrolidinium was used.
  • Comparative Example 1- MSE-type zeolite N,N,N',N'-tetraalkylbicyclo[2.2.2]oct-7-ene-2,3:5 iodide of Comparative Example 1 was used as an organic structure-directing agent.
  • MSE-type zeolite (containing OSDA) and MSE-type zeolite (not containing OSDA) from which the organic structure-directing agent was removed were obtained in the same manner as in Example 1, except that 6-dipyrrolidinium was used.
  • X-ray diffraction spectrum For each MSE zeolite (containing OSDA) of Examples and Comparative Examples and MSE zeolite (not containing OSDA) from which the organic structure directing agent was removed, an X-ray diffractometer (XRD, model number: RINT-TTRIII, Rigaku Co.) was used to measure the X-ray diffraction spectrum under the same measurement conditions as the pyrrolidine derivative. From the X-ray diffraction spectra of each MSE-type zeolite of Examples and Comparative Examples, the diffraction angle (2 ⁇ ) representing the (420) plane is in the range of 21.0° to 22.0°. The diffraction angle (2 ⁇ ) indicating A was measured.
  • XRD X-ray diffractometer
  • the diffraction angle (2 ⁇ ) representing the (115) plane is in the range of 22.6 ° to 23.6 °, the highest peak intensity B and the diffraction showing the peak intensity B
  • the angle (2 ⁇ ) was measured to obtain the peak intensity ratio (A/B).
  • the peak intensity ⁇ representing (116) of ⁇ -aluminum oxide which is the standard material 674a distributed by the National Institute of Standards and Technology, was measured under the same conditions as those for measuring the MSE-type zeolites of Examples and Comparative Examples. Then, the peak intensity ratio (A/ ⁇ ) and the peak intensity ratio (B/ ⁇ ) were determined.
  • the diffraction angle (2 ⁇ ) representing the (200) plane is in the range of 9.2 ° to 10.2 °.
  • the diffraction angle (2 ⁇ ) indicating the intensity B was measured to obtain the peak intensity ratio (C/ ⁇ ).
  • Crystallite size In the X-ray diffraction spectra measured for each MSE-type zeolite of Examples and Comparative Examples, the crystallite size was calculated from the peak having peak intensity A by the Scherrer formula described above. In the X-ray diffraction spectrum obtained, the integrated powder X-ray analysis software (software name: PDXL2, manufactured by Rigaku) was used to obtain the half-value width (full width at half maximum) of the peak having the peak intensity A in the X-ray diffraction spectrum. It was calculated by Scherrer's formula.
  • Table 6 shows the peak intensity at each diffraction angle (2 ⁇ ), each peak intensity ratio, and crystallite size obtained from the X-ray diffraction spectra of each MSE-type zeolite (containing OSDA) of Examples and Comparative Examples.
  • Table 7 shows the peak intensity at each diffraction angle (2 ⁇ ), each peak intensity ratio, and crystallite size obtained from the X-ray diffraction spectra of each MSE-type zeolite (not containing OSDA) of Examples and Comparative Examples.
  • the MSE-type zeolite (containing OSDA) and the MSE-type zeolite (not containing OSDA) of Examples 1 to 3 had a peak intensity ratio (A/B) in the range of 1.25 to 2.50 in the X-ray diffraction spectrum. , and the content of crystal phases other than the MSE-type crystal phase that causes defects was small.
  • the MSE-type zeolites (containing OSDA) of Examples 1 to 3 have a peak intensity ratio (A/ ⁇ ) within the range of 0.55 or more and 0.95 or less, and contain a large amount of the MSE-type crystal phase, which causes defects. The content of crystal phases other than the MSE type crystal phase was small.
  • the MSE-type zeolites (not containing OSDA) of Examples 1 to 3 have a peak intensity ratio (A/ ⁇ ) in the range of 0.28 or more and 0.60 or less, and contain many MSE-type crystal phases, The content of crystal phases other than the MSE-type crystal phase that causes defects was small.
  • the MSE-type zeolites (not containing OSDA) of Examples 1 to 3 have a peak intensity ratio (C/ ⁇ ) within the range of 0.15 or more and 0.50 or less, contain a large amount of MSE-type crystal phase, and have defects.
  • the MSE-type zeolite (not containing OSDA) of Comparative Example 1 had a peak intensity ratio (A/B) of less than 1.0 and contained a large amount of crystal phases other than the MSE-type crystal phase.
  • the MSE-type zeolite (containing OSDA) of Comparative Example 1 had a peak intensity ratio (A/ ⁇ ) of less than 0.55.
  • the MSE-type zeolite (not containing OSDA) of Comparative Example 1 had a peak intensity ratio (A/ ⁇ ) of less than 0.28.
  • FIG. 5 and 6 show the X-ray diffraction spectra of the MSE-type zeolites (containing OSDA) of Example 3 and Comparative Example 1.
  • FIG. 5 While the peak intensity A of the MSE-type zeolite (containing OSDA) of Example 3 shown in FIG. 5 is higher than the peak intensity B, the peak intensity A of the MSE-type zeolite (containing OSDA) of Comparative Example 1 shown in FIG. It was a low result compared with intensity ratio B. Further, from the X-ray diffraction spectrum of the MSE-type zeolite (containing OSDA) of Example 3 shown in FIG.
  • FIG. 7 and 8 show the X-ray diffraction spectra of the MSE-type zeolites (OSDA-free) of Example 3 and Comparative Example 1.
  • FIG. 7 While the peak intensity A of each MSE-type zeolite (not containing OSDA) of Example 3 shown in FIG. 7 is higher than the peak intensity B, the peak of each MSE-type zeolite (not containing OSDA) of Comparative Example 1 shown in FIG. Intensity A was comparable to peak intensity B. Further, from the X-ray diffraction spectrum of the MSE-type zeolite (not containing OSDA) of Example 3 shown in FIG. 7, no noticeable large peaks of crystal phases other than the MSE-type crystal phase could be confirmed, while the comparative example shown in FIG.
  • the pyrrolidine derivative according to the present disclosure can be used as an organic structure-directing agent for producing a zeolite that contains few poorly water-soluble impurities, easily forms an MSE-type crystal phase, and suppresses the formation of crystal phases other than the MSE-type crystal phase.
  • the MSE-type zeolite produced by using the pyrrolidine derivative according to the present disclosure as an organic structure-directing agent contains a large amount of the MSE-type crystal phase, has a low content of crystal phases other than the MSE-type crystal phase that cause defects, and has high heat resistance. and can be suitably used as a hydrocarbon adsorbent for an exhaust gas purification catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Pyrrole Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

有機構造規定剤として用いることができるビシクロ骨格を有する第4級アンモニウムカチオンを含むピロリジン誘導体、その製造方法、MSE型ゼオライト及びその製造方法を提供する。 X線回折スペクトルにおいて、回折角度(2θ)が14.0°から16.0°の範囲内にある最も高いピーク強度Iと、回折角度(2θ)が17.0°から19.0°の範囲内にある最も高いピーク強度IIと、を有し、ピーク強度IIに対するピーク強度Iのピーク強度比(I/II)が0.4以上1.5以下の範囲内であり、ビシクロ骨格を有する第4級アンモニウムカチオンを含むピロリジン誘導体である

Description

ピロリジン誘導体、その製造方法、MSE型ゼオライト及びその製造方法
 本発明は、ピロリジン誘導体、その製造方法、MSE型ゼオライト及びその製造方法に関する。
 ガソリンを燃料とする自動車等の内燃機関の排ガス中には炭化水素(HC)等の有害成分が含まれており、このような有害成分を処理するために排ガス浄化触媒が用いられている。
 排ガス浄化触媒は、例えば内燃機関のコールドスタート状態のような低温の環境においては、排ガスの処理が非効率であることが知られている。コールドスタート状態での排ガス浄化を効率化するため、卑金属と貴金属とゼオライトとを含むゼオライト触媒を含むコールドスタート触媒がある。コールドスタート触媒に含まれるゼオライトとして、例えばBEA型ゼオライト、MFI型ゼオライト、CHA型ゼオライト等が知られており、特許文献1にはMSE型ゼオライト及びその製造方法が開示されている。
特表2002-535227号公報
 コールドスタート触媒を含む排ガス浄化触媒は、内燃機関始動時の低温環境下で排ガス中の炭化水素を貯蔵し、高温の排ガスが流入して触媒が十分に活性化してから貯蔵した炭化水素が離脱するように、炭化水素吸着材となる前述のゼオライトの耐熱性が求められている。
 ここで、例えば特許文献1に記載されている製造方法では晶析法が適用されているため、ゼオライトの有機構造規定剤(OSDA)となる物質が得られる一方で、難水溶性の不純物も多く形成される。難水溶性の不純物が混入した有機構造規定剤は、水を入れてろ過すれば容易に精製することができるが、水を入れると運搬の際に総容積が増えてしまい輸送コストが掛かる点、広い保管スペースが必要な点、長期保存が難しい点など課題がある。しかし、粉末の状態で難水溶性の不純物と有機構造規定剤を分離して用いることは困難である。多くの難水溶性の不純物を含む有機構造規定剤を用いてゼオライトを製造すると、製造されたゼオライトは、MSE型結晶相とともに、MSE型結晶相以外の結晶相(例えばMTW相)が多く含まれ、MSE型結晶相以外の結晶相が欠陥となって、耐熱性が低くなる。
 そこで本発明は、耐熱性に優れる炭化水素吸着材を得るために、MSE型ゼオライトの有機構造規定剤として用いることができるビシクロ骨格を有する第4級アンモニウムカチオンを含むピロリジン誘導体、その製造方法、MSE型ゼオライト及びその製造方法を提供することを目的とする。
 本発明は、X線回折スペクトルにおいて、回折角度(2θ)が14.0°から16.0°の範囲内にある最も高いピーク強度Iと、回折角度(2θ)が17.0°から19.0°の範囲内にある最も高いピーク強度IIと、を有し、ピーク強度IIに対するピーク強度Iのピーク強度比(I/II)が0.4以上1.5以下の範囲内であり、ビシクロ骨格を有する第4級アンモニウムカチオンを含むピロリジン誘導体を提供する。
 また、本発明は、MSE型ゼオライトのX線回折スペクトルにおいて、(420)面を表す回折角度(2θ)が21.0°から22.0°の範囲内にある最も高いピーク強度Aと、(115)面を表す22.6°から23.6°の範囲内にある最も高いピーク強度Bと、を有し、ピーク強度Bに対するピーク強度Aのピーク強度比(A/B)が1.25以上2.50以下の範囲内である、MSE型ゼオライトを提供する。
 本発明が提供するビシクロ骨格を有する第4級アンモニウムカチオンを含むピロリジン誘導体は、難水溶性の不純物が少なく、MSE型結晶相を多く含み、MSE型結晶相以外の他の結晶相の生成を抑制し得る、MSE型ゼオライトの有機構造規定剤として用いることができる。本発明が提供するMSE型ゼオライトは、欠陥の起因となるMSE型結晶相以外の他の結晶相の含有量が少なく、優れた耐熱性を有する。
図1は、実施例3のピロリジン誘導体2のX線回折スペクトルを示す。 図2は、比較例1のピロリジン誘導体2のX線回折スペクトルを示す。 図3は、実施例2のピロリジン誘導体2のSEM写真を示す。 図4は、比較例1のピロリジン誘導体2のSEM写真を示す。 図5は、実施例3のMSE型ゼオライト(OSDA含有)のX線回折スペクトルを示す。 図6は、比較例1のMSE型ゼオライト(OSDA含有)のX線回折スペクトルを示す。 図7は、実施例3のMSE型ゼオライト(OSDA非含有)のX線回折スペクトルを示す。 図8は、比較例1のMSE型ゼオライト(OSDA非含有)のX線回折スペクトルを示す。
 次に、実施の形態例に基づいて本発明を説明する。但し、本発明が次に説明する実施形態に限定されるものではない。
 ピロリジン誘導体
 本発明の実施態様の一例は、X線回折スペクトルにおいて、回折角度(2θ)が14.0°から16.0°の範囲内にある最も高いピーク強度Iと、回折角度(2θ)が17.0°から19.0°の範囲内にある最も高いピーク強度IIと、を有し、ピーク強度IIに対するピーク強度Iのピーク強度比(I/II)が0.4以上1.5以下の範囲内であり、ビシクロ骨格を有する第4級アンモニウムカチオンを含むピロリジン誘導体を提供する。
 ビシクロ骨格を有する第4級アンモニウムカチオン
 ビシクロ骨格を有する第4級アンモニウムカチオンは、下記式(1)で表されるN,N,N’,N’-テトラアルキルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-ジピロリジニウムジカチオン及び/又は下記式(2)で表されるN,N,N’,N’-テトラアルキルビシクロ[2.2.2]オクタン-2,3;5,6-ジピロリジニウムジカチオンを含むことが好ましい。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 前記式(1)又は前記式(2)中、R、R、R及びRは、それぞれ独立に、炭素原子数1から4の直鎖状又は分岐状のアルキル基を表す。前記式(1)又は前記式(2)中、R、R、R及びRは、それぞれ独立に、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基が挙げられる。前記式(1)又は前記式(2)中、R、R、R及びRは、それぞれエチル基であることが好ましい。
 ピロリジン誘導体は、下記式(3)で表されるピロリジニウム塩であってもよく、下記式(4)で表されるピロリジニウム塩であってもよい。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 前記式(3)又は前記式(4)中、R、R、R及びRは、それぞれ独立に、前記式(1)又は前記式(2)で用いられるものと同じ意味であり、Xは、臭素及びヨウ素からなる群から選択される少なくとも1種のハロゲン原子を表す。
 ピロリジン誘導体として、ピロリジニウム塩は、ヨウ化N,N,N’,N’-テトラアルキルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-ジピロリジニウム、ヨウ化N,N,N’,N’-テトラアルキルビシクロ[2.2.2]オクタン-2,3;5,6-ジピロリジニウム、臭化N,N,N’,N’-テトラアルキルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-ジピロリジニウム、又は臭化N,N,N’,N’-テトラアルキルビシクロ[2.2.2]オクタン-2,3;5,6-ジピロリジニウムが挙げられる。
 ビシクロ型骨格を有する第4級アンモニウムカチオンを含むピロリジン誘導体(以下、本明細書において「ピロリジン誘導体」ともいう。)は、そのX線回折スペクトルにおいて、回折角度(2θ)が14.0°から16.0°の範囲内にある最も高いピーク強度Iと、回折角度(2θ)が17.0°から19.0°の範囲内にある最も高いピーク強度IIと、を有することが好ましい。また、ピーク強度IIに対するピーク強度Iのピーク強度比(I/II)が0.4以上1.5以下であることが好ましく、0.45以上1.0以下であることがより好ましく、0.45以上0.75以下であることが特に好ましい。
 ピーク強度比(I/II)が0.4以上1.5以下の関係にあると、ピロリジン誘導体中に難水溶性の不純物が高分散された状態であるということができ、ピーク強度比(I/II)がかかる範囲内にあるピロリジン誘導体を用いてMSE型ゼオライトを製造することで、ピロリジン誘導体中に存在する難水溶性の不純物を起点としてMSE型以外の結晶相の析出が抑制され、高純度なMSE型結晶相を備えたMSE型ゼオライトとすることができる。かかる高純度なMSE型結晶相を備えたMSEゼオライトは耐熱性に優れたものとなる。
 一方で、ピーク強度比(I/II)が0.4未満や1.5を超える関係にあると、そもそもピロリジン誘導体が形成されていない、或いはピロリジン誘導体中に難水溶性の不純物が高分散されていない状態にあるということができ、ピーク強度比(I/II)が0.4未満や1.5を超える関係にあるピロリジン誘導体を用いてMSE型ゼオライトを製造することで、MSE型結晶相のゼオライトが得られると共にピロリジン誘導体中に存在する難水溶性の不純物を起点としたMSE型結晶以外の結晶相を備えたMSE型ゼオライトとなる。
 なお、ピロリジン誘導体のX線回折スペクトルは、X線回折装置(例えば、型番:RINT-TTRIII、リガク社製)を用いて測定することができる。
 ピロリジン誘導体は、α-酸化アルミニウムのX線回折スペクトルにおける(116)面のピーク強度αに対する、ピーク強度Iのピーク強度比(I/α)が0.1以上であることが好ましく、0.15以上であることがより好ましい。一方、ピーク強度比(I/α)が0.9以下であることが好ましく、0.5以下であることがより好ましく、0.35以下であることが特に好ましい。本明細書において、α-酸化アルミニウム(α-アルミナ)は、アメリカ国立標準技術研究所(NIST:National Institute of Standards and Technology)から頒布されたX線回折標準試料674aをいう。ピロリジン誘導体は、ピーク強度比(I/α)がかかる範囲内にあれば、難水溶性の不純物が少なく、高純度なMSE型結晶相を形成しやすいものとなる。
 ピロリジン誘導体は、ピーク強度αに対する、ピーク強度IIのピーク強度比(II/α)が0.3以上であることが好ましく、0.31以上であることがより好ましい。
 一方、ピーク強度比(II/α)が0.5以下であることが好ましく、0.45以下であることがより好ましい。ビシクロ骨格を有する第4級アンモニウムカチオンを含むピロリジン誘導体は、ピーク強度比(II/α)がかかる範囲内にあれば、難水溶性の不純物が少なく、高純度なMSE型結晶相を形成しやすいものとなる。
 ピロリジン誘導体は、ピーク強度Iを有するピークから算出される結晶子サイズが45nm以上120nm以下であることが好ましい。本発明のピロリジン誘導体は、後述する製造方法によって製造することにより、難水溶性の不純物を取り込みながら短期間で製造されるため、結晶子サイズが小さく、難水溶性の不純物が高分散したものになりやすい。かかるピロリジン誘導体を用いてMSE型ゼオライトを製造することで、難水溶性の不純物はゼオライト合成原料中に十分溶解しやすくなり、難水溶性の不純物を起点としたMSE型結晶相以外の結晶相の少ないMSE型ゼオライトとすることができる。ピロリジン誘導体のピーク強度Iを有するピークから算出される結晶子サイズは、好ましくは48nm以上105nm以下の範囲内でもよい。結晶子サイズは、例えば後述する方法によって測定される。
 ピロリジン誘導体は、BET比表面積が2.0m/g以上であることが好ましく、3.0m/g以上でもよく、4.0m/g以上であってもよく、10.0m/g以上であってもよい。本発明のピロリジン誘導体は、後述する製造方法によって製造することにより、難水溶性の不純物を取り込みながら短期間で製造されるため、BET比表面積が2.0m/g以上となり、難水溶性の不純物が高分散したものになりやすい。かかるピロリジン誘導体を用いてMSE型ゼオライトを製造することで、難水溶性の不純物はゼオライト合成原料中に十分溶解しやすくなり、難水溶性の不純物を起点としたMSE型結晶相以外の結晶相の少ないMSE型ゼオライトとすることができる。BET比表面積は、例えば後述する方法によって測定される。
 ピロリジン誘導体の走査型電子顕微鏡(Scanning Electron Microscope、SEM)の画像から測定できる一次粒子径は、3.0μm以下であることが好ましく、0.3μm以上1.5μm以下の範囲内でもよい。本発明のピロリジン誘導体は、後述する製造方法によって製造することにより、難水溶性の不純物を取り込みながら短期間で製造されるため、SEM画像から測定される粒子の一次粒子径が3.0μm以下となり、難水溶性の不純物が高分散したものになりやすい。かかるピロリジン誘導体を用いてMSE型ゼオライトを製造することで、難水溶性の不純物はゼオライト合成原料中に十分溶解しやすくなり、難水溶性の不純物を起点としたMSE型結晶相以外の結晶相の少ないMSE型ゼオライトとすることができる。ピロリジン誘導体の一次粒子径は、電界放出型走査電子顕微鏡(FE-SEM)を用いて、ピロリジン誘導体粒子を3万倍に拡大して観察し、視野内から任意に選択された50個のピロリジン誘導体粒子のフェレ径の平均値として算出することができる。
 ピロリジン誘導体の製造方法
 ピロリジン誘導体の製造方法は、N,N’-ジアルキルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-テトラカルボキシジイミド又はN,N’-ジアルキルビシクロ[2.2.2]オクタン-2,3;5,6-テトラカルボキシジイミドを準備する第1工程を含む。また、N,N’-ジアルキルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-テトラカルボキシジイミド又はN,N’-ジアルキルビシクロ[2.2.2]オクタン-2,3;5,6-テトラカルボキシジイミドを還元剤と反応させて、N,N’-ジアルキルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-ジピロリジン及び/又はN,N’-ジアルキルビシクロ[2.2.2]オクタン-2,3;5,6-ジピロリジンを得る第2工程を含む。さらに、N,N’-ジアルキルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-ジピロリジン及び/又はN,N’-ジアルキルビシクロ[2.2.2]オクタン-2,3;5,6-ジピロリジンとハロゲン化アルキルを反応させて、N,N,N’,N’-テトラアルキルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-ジピロリジニウム塩及び/又はN,N,N’,N’-テトラアルキルビシクロ[2.2.2]オクタン-2,3;5,6-ジピロリジニウム塩を析出させてピロリジン誘導体を得る第3工程とを含む。
 さらに、ピロリジン誘導体の製造方法は、以下の条件(1)又は条件(2)の少なくとも一方の条件を満たすことが好ましい。第2工程後であって、第3工程前に得られるピロリジン誘導体を「ピロリジン誘導体1」ともいう。第3工程後に得られるピロリジニウム塩を「ピロリジン誘導体2」ともいう。
 条件(1):第2工程において、還元剤が、水素化ビス(2-メトキシエトキシ)アルミニウムナトリウム、水素化トリエチルホウ素リチウム、水素化ジイソブチルアルミニウム、ジボラン、水素化ホウ素リチウム、及び水素化ホウ素ナトリウムからなる群から選択される少なくとも1種を含む。
 条件(2):第3工程において、N,N’-ジアルキルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-ジピロリジン及び/又はN,N’-ジアルキルビシクロ[2.2.2]オクタン-2,3;5,6-ジピロリジンに対して、13倍以下のモル比の有機溶媒の存在下で、ハロゲン化アルキルを反応させる。
 以下に、ピロリジン誘導体の製造方法の第一例として、ピロリジン誘導体を得る際のスキーム(S1)を示す。スキーム(S1)は、以下の第1工程から第3工程を含む。
 第1工程において、N,N’-ビシクロ[2.2.2]オクト-7-エン-2,3;5,6-テトラカルボン酸二無水物(a)と、アルキルアミンを水の存在下で還流させて、N,N’-ジアルキルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-テトラカルボキシジイミド(b)を得る。
 第2工程において、得られたN,N’-ジアルキルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-テトラカルボキシジイミド(b)と、条件(1)の還元剤又は条件(1)以外の還元剤と反応させて、N,N’-ジアルキルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-ジピロリジン(c)を得る。
 第3工程において、得られたN,N’-ジアルキルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-ジピロリジン(c)を、条件(2)又は条件(2)以外の条件でハロゲン化アルキルと反応させて、N,N’-テトラアルキルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-ジピロリジニウム塩(d)を得る。
Figure JPOXMLDOC01-appb-C000005
 スキーム(S1)、後述するスキーム(S2)及びスキーム(S3)において各表記は以下の意味を表す。「R-NH」は、アルキルアミンである。「R-X」は、ハロゲン化アルキルである。「R」は、炭素原子数1から4の直鎖状又は分岐状のアルキル基を表す。「R」、「R」、「R」、「R」及び「R」は、それぞれ独立に、前記式(1)から前記式(4)におけるR、R、R及びRと同じ意味である。「X」は、前記式(3)又は(4)におけるXと同じ意味である。「THF」は、テトラヒドロフランを表す。「reflux」は還流を表す。
 次に、ピロリジン誘導体の製造方法の第二例として、ピロリジン誘導体を得る際のスキーム(S2)を示す。スキーム(S2)は、以下の第1工程から第3工程を含む。
 第1工程において、N,N’-ビシクロ[2.2.2]オクタン-2,3;5,6-テトラカルボン酸二無水物(e)と、アルキルアミンを水の存在下で還流させて、N,N’-ジアルキルビシクロ[2.2.2]オクタン-2,3;5,6-テトラカルボキシジイミド(f)を得る。
 第2工程において、得られたN,N’-ジアルキルビシクロ[2.2.2]オクタン-2,3;5,6-テトラカルボキシジイミド(f)と、条件(1)の還元剤又は条件(1)以外の還元剤と反応させて、N,N’-ジアルキルビシクロ[2.2.2]オクタン-2,3;5,6-ジピロリジン(g)を得る。
 第3工程において、得られたN,N’-ジアルキルビシクロ[2.2.2]オクタン-2,3;5,6-ジピロリジン(g)を、条件(2)又は条件(2)以外の条件でハロゲン化アルキルと反応させて、N,N’-テトラアルキルビシクロ[2.2.2]オクタン-2,3;5,6-ジピロリジニウム塩(h)を得る。
Figure JPOXMLDOC01-appb-C000006
 次に、ピロリジン誘導体の製造方法の第三例として、ピロリジン誘導体を得る際のスキーム(S3)を示す。スキーム(S3)は、以下の第1工程から第3工程を含む。
 第1工程において、N,N’-ビシクロ[2.2.2]オクト-7-エン-2,3;5,6-テトラカルボン酸二無水物(a)と、アルキルアミンを水の存在下で還流させて、N,N’-ジアルキルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-テトラカルボキシジイミド(b)を得る。
 第2工程において、得られたN,N’-ジアルキルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-テトラカルボキシジイミド(b)を、例えば100~300℃、3~30MPaの加圧条件で、銅-クロムやラネーニッケルの様な卑金属系の触媒あるいはシリカやアルミナやカーボン担体に貴金属を担持した貴金属系の触媒の存在下で水素還元し、N,N’-ジアルキルビシクロ[2.2.2]オクタン-2,3;5,6-ジピロリジン(g)を得ることができる。貴金属は、Pt、Pd、Rh、Ir、及びRuからなる群から選択される少なくとも1種が挙げられる。第2工程における水素還元は、例えば貴金属系の触媒を使用した場合、150℃、5MPaの加圧条件で行ってもよい。
 第3工程において、得られたN,N’-ジアルキルビシクロ[2.2.2]オクタン-2,3;5,6-ジピロリジン(g)を、条件(2)又は条件(2)以外の条件でハロゲン化アルキルと反応させて、N,N’-テトラアルキルビシクロ[2.2.2]オクタン-2,3;5,6-ジピロリジニウム塩(h)を得ることができる。
Figure JPOXMLDOC01-appb-C000007
 ピロリジン誘導体の製造方法において、第2工程における条件(1)と、第3工程における条件(2)は、いずれか一方を満たせばよく、第2工程における条件(1)及び第3工程における条件(2)の両方を満たしてもよい。
 第1工程
 第1工程は、N,N’-ジアルキルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-テトラカルボン酸二無水物又はN,N’-ジアルキルビシクロ[2.2.2]オクタン-2,3;5,6-テトラカルボン酸二無水物(以下、「原料物質」ともいう。)に対して、10倍以上30倍以下のモル比のアルキルアミンを水に溶解させたアルキルアミン水溶液を反応容器に充填し、アルキルアミン水溶液を撹拌しながら、反応容器に原料物質を添加し、1時間から2時間撹拌する。撹拌後、反応容器に水を加えて混合液とする。
 混合液を好ましくは60℃以上80℃以下の温度、10時間以上50時間以内で撹拌しながら還流する。さらに必要に応じて100℃以上120℃以下で、5時間以上20時間以内で撹拌しながら還流を続けても良い。その後、混合液を室温まで冷却し、残留するアルキルアミンを滴下方式で濃塩酸を用いて抑制し、得られた反応物を吸引濾過して、固液分離する。得られた固体の反応物を水で洗浄して、乾燥し、N,N’-ジアルキルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-テトラカルボキシジイミド又はN,N’-ジアルキルビシクロ[2.2.2]オクタン-2,3;5,6-テトラカルボキシジイミド(以下、「イミド化合物」ともいう。)を得ることができる。
 アルキルアミンとしては、メチルアミン、エチルアミン、n-プロピルアミン、イソプロピルアミン、n-ブチルアミン、sec-ブチルアミン、イソブチルアミン、tert-ブチルアミン等が挙げられる。
 第2工程
 <条件(1)を満たす実施形態>
 第1工程で得られたイミド化合物と有機溶媒を、還流管を備えた反応容器に充填し、例えば室温(20℃以上30℃以下)、10分以上60分以内で撹拌し、イミド化合物を含む溶液を得ることができる。ここで、有機溶媒としては特に限定されるものではないが、例えばTHF(テトラヒドロフラン)、シクロペンチルメチルエーテル、メチルターシャリーブチルエーテル、ジオキサンなどが挙げられる。撹拌の雰囲気としては、窒素雰囲気、アルゴン雰囲気、ヘリウム雰囲気など不活性ガス雰囲気が挙げられる。
 なお、イミド化合物と有機溶媒を含む溶液を得ることなく、後述の還元剤と有機溶媒を第1工程で得られたイミド化合物に添加してもよい。
 次いで、後述の還元剤と有機溶媒を混合した溶液を、イミド化合物を含む溶液中またはイミド化合物に添加し、撹拌しながら、例えば50℃以上80℃以下の温度で5時間以上25時間以内、窒素雰囲気で還流し、反応溶液を得ることができる。その後、得られた反応溶液を室温まで冷却し、水、アルカリ溶液を加えて反応を終了させる。ここで、有機溶媒としては特に限定されるものではなく、上述したものと同様のものを用いてもよい。また、アルカリ溶液としては例えば水酸化ナトリウム溶液が挙げられる。
 その後、反応溶液中の固体を吸引濾過して、反応物を含む液相を得る。反応溶液には、吸引濾過する前に濾過助剤(例えばセライト等)を添加してもよい。次に、例えばエバポレータを用いて、得られた反応物を含む液相から有機溶媒や水等の低沸点成分を蒸発させながら濃縮していき、液状のピロリジン誘導体1を得ることができる。
 条件(1)を満たす還元剤は、水素化ビス(2-メトキシエトキシ)アルミニウムナトリウム、水素化トリエチルホウ素リチウム、水素化ジイソブチルアルミニウム、ジボラン、水素化ホウ素リチウム、及び水素化ホウ素ナトリウムが挙げられる。特にこれらの中でも、水素化ビス(2-メトキシエトキシ)アルミニウムナトリウムを含むことが好ましい。第2工程において、有機溶媒への溶解性が高く、湿気や空気等の環境雰囲気に影響されることなく、安定した反応性を示す、例えば水素化ビス(2-メトキシエトキシ)アルミニウムナトリウム等の還元剤を用いることにより、難水溶性の不純物が高分散されたピロリジン誘導体1が得られやすい。
 <条件(1)を満たさない実施形態>
 第2工程において、後述する還元剤と有機溶媒を、還流管を備えた反応容器に充填し、例えば室温(20℃以上30℃以下)、10分以上60分以内で撹拌し、条件(1)を満たさない還元剤を含む溶液を得ることができる。条件(1)を満たさない還元剤としては、水素化アルミニウムリチウム、水素化ホウ素カリウム、水素化ホウ素ニッケル、水素化ホウ素亜鉛、及び水素化アルミニウムカリウムが挙げられる。有機溶媒としては上述したものと同様のものが用いられる。撹拌の雰囲気としては、窒素雰囲気、アルゴン雰囲気、ヘリウム雰囲気など不活性ガス雰囲気が挙げられる。
 次いで、第1工程で得られたイミド化合物と有機溶媒を混合して得た溶液を反応容器に添加し、撹拌しながら、例えば50℃以上80℃以下の温度で5時間以上25時間以内、窒素雰囲気で還流し、反応溶液を得ることができる。その後は、条件(1)を満たす場合の第2工程と同様にして、ピロリジン誘導体1を得ることができる。
 また、スキーム(S3)に示すように、水素還元する場合には、例えば第1工程において得られたN,N’-ジアルキルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-テトラカルボキシジイミドと、パラジウム-活性炭素 (Pd 10%)触媒(富士フイルム和光純薬社製)を圧力計付き密閉反応容器(50mL)に充填し、水素(H)ガスで3MPa以上10MPa以下に加圧し、反応容器の温度を100℃以上200℃以下の範囲内に設定して水素還元を行い、ピロリジン誘導体1を得ることができる。
 第3工程
 <条件(2)を満たす実施形態>
 第2工程において得られたピロリジン誘導体1に対して13倍以下のモル比の有機溶媒の存在下で、ハロゲン化アルキルと反応させて、N,N,N’,N’-テトラアルキルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-ジピロリジニウム塩又はN,N,N’,N’-テトラアルキルビシクロ[2.2.2]オクタン-2,3;5,6-ジピロリジニウム塩(以下、「ピロリジン誘導体2」ともいう。)を得ることができる。
 この反応は第3級アミンをハロゲン化合物と反応させて4級化し、第4級アンモニウム塩を生成するメンシュトキン反応である。メンシュトキン反応は求核置換反応であり、ピロリジン誘導体2は全てアルキル基に置換された3級アミンなので、窒素原子上の電子密度が高く塩基性が高い一方で、立体障害のため求核性は著しく低下する。窒素原子は塩基として作用し、副反応として溶媒であるエタノールとヨウ化エチルが反応してジエチルエーテルが生成しやすい。ここで、副反応を抑制し、ピロリジン誘導体2を選択的に得ることで歩留が向上し、且つ反応時間の短縮化による生産性向上の両立を図る為、溶媒であるエタノールの添加量に着目した。
 つまり、エタノールの添加量を様々な水準で微調整しながら精査した結果、反応中に存在する有機溶媒のモル比をピロリジン誘導体1に対して13倍以下と少なくすると、メンシュトキン反応の反応時間が80%以上短縮化され、ハロゲン化アルキルと有機溶媒の副反応も抑制され歩留が従来の方法に対して30%以上向上させて、ピロリジン誘導体2を得ることができる。
 なお、有機溶媒としてアルコールを用いる場合には、有機溶媒であるアルコールとハロゲン化アルキルの副反応による生成されるジアルキルエーテルの生成を抑制することができる点から好ましい。また、ピロリジン誘導体1に、有機溶媒を用いることなくハロゲン化アルキルを直接添加して、ピロリジン誘導体2を得ることも好ましい(かかる方法を、「直接添加法」という場合がある)。
 反応時間については、反応量にもよるため一概にはいえないが、有機溶媒の量が少ないことからピロリジン誘導体1とハロゲン化アルキルが急速に反応するので、30分以内、より好ましくは20分以内、さらに好ましくは15分以内で反応が終了し、ピロリジン誘導体2が得られる。
 また、ピロリジン誘導体1に直接添加するハロゲン化アルキルは、急激な反応による温度の上昇を抑制するため、20mL/分以下の速度で添加することが好ましく、より好ましくは、3mL/分以上10mL/分以下の速度で添加することがより好ましい。
 反応終了後は、例えば得られた固形分をアセトン等の有機溶剤で洗浄し、濾紙を用いて濾過し、自然乾燥して、ピロリジン誘導体2を得てもよい。また、難水溶性の不純物の含有量が少なくなるとともに、目的とするピロリジン誘導体の収率が高くなる傾向がある。
 <条件(2)を満たさない実施形態>
 条件(1)を満たす第2工程によって得られたピロリジン誘導体1と、例えばピロリジン誘導体1に対して13倍を超えるモル比の有機溶媒を、還流管を備えた反応容器に充填し、室温(20℃以上30℃以下)、10分以上60分以内で撹拌して、反応溶液を得ることができる。反応溶液に、ハロゲン化アルキル溶液を添加し、撹拌しながら、50℃以上80℃以下の温度で5時間以上100時間以内、還流し、その後、反応溶液を12時間以上冷却し、反応溶液中に析出した固体を濾過して、得られた固体をアセトン等の有機溶媒で洗浄する。
 析出された固体は、さらにアセトン等の有機溶媒中で還流し、固体を吸引濾過して、得られた固体をさらにアセトン等の有機溶媒で洗浄し、乾燥して、ピロリジン誘導体2を得る。本実施形態においては、条件(1)を満たす第2工程によって得られた難水溶性の不純物の生成が抑制されたピロリジン誘導体1を用いるため、難水溶性の不純物が高分散され、MSE型ゼオライトを製造する際に難水溶性の不純物の生成が少ないピロリジン誘導体2を得ることができる。なお、上述した反応溶液中にピロリジン誘導体2を析出させる方法を、「晶析法」という場合がある。
 ハロゲン化アルキルは、ヨウ化メチル、ヨウ化エチル、ヨウ化プロピル、ヨウ化ブチル、臭化メチル、臭化エチル、臭化プロピル、及び臭化ブチルが挙げられる。
 ピロリジン誘導体の製造方法において、第2工程における条件(1)と、第3工程における条件(2)は、いずれか一方を満たすことにより、ピーク強度比(I/II)が0.4以上1.5以下の範囲内であるビシクロ骨格を有する第4級アンモニウムカチオンを含むピロリジン誘導体である、N,N’-ジアルキルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-ジピロリジン及び/又はN,N’-ジアルキルビシクロ[2.2.2]オクタン-2,3;5,6-ジピロリジンを得ることができる観点から好ましい。
 得られたピロリジン誘導体は、H-NMR、13C-NMRでの分析により、N,N’-ジアルキルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-ジピロリジン及び/又はN,N’-ジアルキルビシクロ[2.2.2]オクタン-2,3;5,6-ジピロリジンが生成されていることを確認することができる。
 MSE型ゼオライト
 本発明におけるMSE型ゼオライトは、MSE型ゼオライトのX線回折スペクトルにおいて、(420)面を表す回折角度(2θ)が21.0°から22.0°の範囲内にある最も高いピーク強度Aと、(115)面を表す回折角度(2θ)が22.6°から23.6°の範囲内にある最も高いピーク強度Bとを有し、ピーク強度Bに対するピーク強度Aのピーク強度比(A/B)が1.25以上2.50以下の範囲内であることが好ましい。ピーク強度比(A/B)が1.25以上2.50以下の範囲内であれば、MSE型結晶相が多く含まれ、欠陥の起因となるMSE型結晶相以外の結晶相の含有量が少ないゼオライトとなり、高い耐熱性を有することとなる。ピーク強度比(A/B)が1.25以上2.50以下の範囲内であるMSE型ゼオライトは、有機構造規定剤を含有したMSE型ゼオライト(「MSE型ゼオライト(OSDA含有)」ともいう。)でもよく、有機構造規定剤を含有しないMSE型ゼオライト(「MSE型ゼオライト(OSDA非含有)」ともいう。)でもよい。
 MSE型ゼオライトは、有機構造規定剤として前述のビシクロ骨格を有する第4級アンモニウムカチオンを含むピロリジン誘導体を用いて合成されたものであることが好ましい。有機構造規定剤として、前述のピロリジン誘導体を含有するMSE型ゼオライトは、前述のピーク強度比(A/B)が1.30以上2.50以下の範囲内であることがより好ましい。MSE型ゼオライト(OSDA含有)は、ピーク強度比(A/B)が1.30以上2.50以下の範囲内であると、MSE型結晶相以外の結晶相の生成が抑制されている。
 有機構造規定剤として前述のピロリジン誘導体を用いて合成されたMSE型ゼオライトは、合成後、例えば大気雰囲気で600℃以上800℃以下の温度で焼成することによって、有機構造規定剤を除去することができる。有機構造規定剤が除去されたMSE型ゼオライト(OSDA非含有)は、ピーク強度比(A/B)が1.25以上2.50以下の範囲内であることが好ましく、1.26以上2.00以下であることがより好ましく、1.28以上1.80以下の範囲内であることがさらに好ましい。MSE型ゼオライト(OSDA非含有)は、ピーク強度比(A/B)が1.25以上2.50以下の範囲内であると、MSE型結晶相以外の結晶相の生成が抑制されている。
 MSE型ゼオライト(OSDA含有又はOSDA非含有)は、ピーク強度Aを有するピークから算出される結晶子サイズが20nm以上80nm以下であることが好ましい。MSE型ゼオライトのピーク強度Aを有するピークから算出される結晶子サイズが20nm以上80nm以下の範囲内であると、MSE型結晶相の結晶子サイズが好適な範囲であり、MSE型結晶相以外の結晶相の含有量が少なく、MSE型ゼオライトは高い耐熱性を有する。MSE型ゼオライトは、ピーク強度Aを有するピークから算出される結晶子サイズが、25nm以上でもよく、30nm以上でもよく、40nm以上でもよく、75nm以下でもよい。
 MSE型ゼオライト(OSDA含有)は、ピーク強度Aを有するピークから算出される結晶子サイズが35nm以上80nm以下であることが好ましく、40nm以上でもよく、50nm以上でもよく、75nm以下でもよい。
 MSE型ゼオライト(OSDA非含有)は、ピーク強度Aを有するピークから算出される結晶子サイズが20nm以上80nm以下であることが好ましく、30nm以上でもよく、40nm以上でもよく、75nm以下でもよく、70nm以下でもよく、65nm以下でもよく、60nm以下でもよい。
 MSE型ゼオライト(OSDA含有)はピーク強度αに対する、ピーク強度Aのピーク強度比(A/α)が0.55以上0.95以下の範囲内であることが好ましい。MSE型ゼオライト(OSDA含有)は、ピーク強度比(A/α)が0.55以上0.95以下の範囲内であれば、MSE型結晶相が多く含まれ、欠陥の起因となるMSE型結晶相以外の結晶相の含有量が少なく、高い耐熱性を有する。MSE型ゼオライト(OSDA含有)は、ピーク強度比(A/α)が0.60以上でもよく、0.65以上でもよく、0.90以下でもよい。
 MSE型ゼオライト(OSDA非含有)は、ピーク強度比(A/α)が0.28以上0.60以下の範囲内であることが好ましい。MSE型ゼオライト(OSDA非含有)は、ピーク強度比(A/α)が0.28以上0.60以下の範囲内であると、欠陥の起因となるMSE型結晶相以外の結晶相の含有量が少なく、高い耐熱性を有する。MSE型ゼオライト(OSDA非含有)は、ピーク強度比(A/α)が0.30以上でもよく、0.35以上でもよく、0.58以下でもよく、0.55以下でもよい。
 MSE型ゼオライト(OSDA非含有)は、ピーク強度αに対する、MSE型ゼオライトのX線回折スペクトルにおいて、(200)面を表す回折角度(2θ)が9.2°から10.2°の範囲内にある最も高いピーク強度Cのピーク強度比(C/α)が0.15以上0.50以下の範囲内であることが好ましい。MSE型ゼオライトは、ピーク強度比(C/α)が0.15以上0.50以下の範囲内であれば、MSE型結晶相が多く含まれ、欠陥の起因となるMSE型結晶相以外の結晶相の含有量が少なく、高い耐熱性を有する。MSE型ゼオライトのX線回折スペクトルにおいて、(200)面を表す回折角度(2θ)が9.2°から10.2°の範囲内にあるピークは、有機構造規定剤が除去された、MSE型ゼオライト(OSDA非含有)のX線回折スペクトルにおいて大きなピーク強度を有するピークとして現れる。MSE型ゼオライト(OSDA非含有)は、ピーク強度比(C/α)が0.20以上でもよく、0.25以上でもよく、0.45以下でもよく、0.40以下でもよい。
 MSE型ゼオライト(OSDA含有又はOSDA非含有)のSiO/Alモル比は、10以上600以下であることが好ましい。MSE型ゼオライトのSiO/Alモル比は、15以上であってもよく、18以上であってもよく、20以上であってもよく、500以下であってもよく、300以下であってもよく、100以下であってもよい。MSE型ゼオライトのSiO/Alモル比が10以上であると、結晶構造が安定であり、優れた耐熱性を有する。また、MSE型ゼオライトのSiO/Alモル比が600以下であると、MSE型ゼオライトを炭化水素吸着材として用いる場合、金属イオンが、マルチポアゼオライトのAl原子に隣接するブレンステッド酸点となる酸素原子を含む基でイオン交換されやすくなる。MSE型ゼオライトに含まれるSiO/Alモル比は、例えば走査型蛍光X線分析装置(ZSX Primus II、リガク社製)を用いた元素分析によりSi量及びAl量を測定し、得られたSi量及びAl量から、SiO/Alモル比を測定することができる。
 なお、本発明のMSE型ゼオライトは、上述したように欠陥の起因となるMSE型結晶相以外の結晶相の含有量が少ないものである。従って、ゼオライトの吸着容量を示すaccessible volumeが高いものとなり、吸着容量に優れたMSE型ゼオライトとなる。
 MSE型ゼオライトの製造方法
 MSE型ゼオライトは、シリカ源、アルミニウム源、アルカリ金属源、有機構造規定剤(OSDA)及び水を含む原料混合物を準備する工程と、この原料混合物を加熱し結晶化させてMSE型ゼオライトを得る工程とを含む。
 シリカ源は、例えばケイ素を含む化合物を用いることができる。具体的には、湿式法シリカ、乾式法シリカ、コロイダルシリカ、ケイ酸ナトリウム、ケイ酸カリウム、アルミノシリケートゲルなどが挙げられる。これらのシリカ源は、単独で又は2種以上を組み合わせて用いることができる。これらのシリカ源のなかでも、副生物が生成されにくく、目的とするMSE型ゼオライトを製造することができるため、シリカ(二酸化ケイ素)やアルミノシリケートゲル、コロイダルシリカを用いることが好ましい。
 アルミニウム源は、例えば水溶性アルミニウム含有化合物を用いることができる。具体的には、アルミン酸ナトリウム、硝酸アルミニウム、硫酸アルミニウム、水酸化アルミニウム、アルミノシリケートゲルなどが挙げられる。これらのアルミニウム源は、単独で又は2種以上を組み合わせて用いることができる。これらのアルミニウム源のなかでも、副生物が生成されにくく、目的するMSE型ゼオライトを製造することができるため、アルミン酸ナトリウム又はアルミノシリケートゲルを用いることが好ましい。
 アルカリ金属源としては、例えば水酸化セシウム、水酸化カリウム、水酸化ナトリウムを用いることができる。なお、シリカ源としてケイ酸ナトリウムを用いた場合やアルミニウム源としてアルミン酸ナトリウムを用いた場合、そこに含まれるアルカリ金属成分であるナトリウムは、アルカリ金属成分でもある。アルカリ金属源は、反応混合物中の全てのアルカリ金属成分の和として算出される。
 有機構造規定剤は、前述の第4級アンモニウムカチオンを含むピロリジン誘導体を用いる。具体的には、N,N,N’,N’-テトラアルキルビシクロ[2.2.2]オクト-7-エン-2,3:5,6-ジピロリジニウムカチオン及び/又はN,N,N’,N’-テトラアルキルビシクロ[2.2.2]オクタン-2,3:5,6-ジピロリジニウムカチオンを含むピロリジン誘導体を用いる。
 原料混合物を準備する際の各原料の添加順序は、均一に混合された原料混合物が得られやすい方法を採用することができる。例えば、室温下、鉱化剤として作用するアルカリ金属源にアルミニウム源を添加して溶解させ、次いでシリカ源を添加して撹拌混合することにより、均一に混合した原料混合物を得ることができる。原料混合物は、70℃以上240℃以下の温度で加熱し結晶化させることができる。加熱後、結晶化した粉末は、ろ過によって母液と分離し、水又は脱イオン水で洗浄し乾燥して、MSE型ゼオライトを得ることができる。MSE型ゼオライトは、有機構造規定剤として前述の第4級アンモニウムカチオンを含むピロリジン誘導体を用いること以外は、具体的には、PCT/JP2020/029445号に記載の方法を参考にして製造することができる。
 得られたMSE型ゼオライトは、粉末X線回折装置を用いて測定することによってMSE型ゼオライトであることを確認することができる。粉末X線回折装置を用いたX線回折スペクトルにおいて、6.56±0.15°、6.8±0.15°、8.04±0.15°、19.38±0.15°、19.42±0.15°、21.68±0.15°、22.28±0.15°、22.32±0.15°、22.84±0.15°、27.5°±0.15°の回折角度(2θ)位置に回折ピークがあれば、MSE型ゼオライトであることが確認できる。
 以下、本発明を実施例及び比較例に基づいてさらに詳述する。本発明は、これらの実施例に限定されるものではない。
 また、後述する実施例で示すスキーム(ES1)、スキーム(ES2)及びスキーム(ES3)において、「Et」は、エチル基を表し、還元剤「Red-Al」は、水素化ビス(2-メトキシエトキシ)アルミニウムナトリウムを表し、還元剤「LiAlH」は、水素化アルミニウムリチウムを表し、その他の表記は、スキーム(S1)、スキーム(S2)及びスキーム(S3)における各表記と同じ意味である。
 実施例1-ピロリジン誘導体
 以下のスキーム(ES1)に従って、ヨウ化N,N,N’,N’-テトラエチルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-ジピロリジニウム(d)を製造した。
Figure JPOXMLDOC01-appb-C000008
 実施例1-ピロリジン誘導体-第1工程
 磁気式撹拌子を備えた1000mLの三口丸底フラスコに、還流冷却器と温度計を取り付けた反応容器を準備した。次に反応容器に、70質量%のエチルアミン水溶液(30.2mL(24.16g))を充填し、続いて、エクソ、エクソ-ビシクロ[2.2.2]オクト-7-エン-2,3;5,6-テトラカルボン酸二無水物(10.0g)(a)を激しく撹拌しながら分割して添加した。室温(25℃程度)で2時間撹拌し、水(65.2mL)を加えて水溶液1を得た。反応容器中の水溶液1を、70℃で24時間撹拌しながら還流し、次に100℃で18時間撹拌しながら還流し、反応物1を得た。得られた反応物1を室温(25℃程度)まで冷却し、残留エチルアミンを滴下方式で濃塩酸を用いてpH2まで調整した。得られた反応物1の固体を吸引濾過し、水(230mL)で洗浄し、真空デシケータ中の乾燥剤上で乾燥して、11.20g(収率92%)のN,N’-ジエチルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-テトラカルボキシジイミド(b)を得た。
 実施例1-ピロリジン誘導体-第2工程
 磁気式撹拌子、温度計を備え、隔壁キャップでシールした均圧滴下漏斗を装備した1000mLの三口丸底フラスコを、全体的に窒素で雰囲気を置換した。この三口丸底フラスコに還流冷却器を取り付けた反応容器を準備した。第1工程で得られたN,N’-ジアルキルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-テトラカルボキシジイミド(10.70g)(b)と、乾燥したTHF(テトラヒドロフラン)(192.6mL)を充填し、25℃で0.5時間、窒素雰囲気(Nガス100%を反応容器内に30mL/分で流入)で撹拌した。次いで、条件(1)を満たす還元剤として水素化ビス(2-メトキシエトキシ)アルミニウムナトリウム(Red-Al)を70質量%含むトルエン溶液(60.78g)を準備し、Red-Alを含むトルエン溶液と、乾燥したTHF(96.3mL)を混合し、混合した溶液を均圧滴下漏斗から反応容器中に滴下し、反応溶液2を得た。反応容器中の反応溶液2を、67℃で23時間、窒素雰囲気(Nガス100%を反応容器内に30mL/分で流入)で還流した。その後、室温(25℃)まで反応溶液2を冷却した。反応溶液2に、水(4.08g)を添加し、次いで水酸化ナトリウム(NaOH、15質量%濃度、4.71g)を添加し、さらに水(12.24g)を添加し、反応を終了させた。その後、反応溶液2に、濾過助剤としてセライト(2.0g)を添加し、25℃で0.5時間撹拌した。撹拌後、THFで洗浄しながら吸引濾過し、反応物2を含む液相を得た。次にエバポレータを用いて、得られた反応物2を含む液相からTHF及び水等の低沸点成分を、60℃で、2時間減圧蒸留させて、N,N’-ジエチルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-ジピロリジン(c)を得た。実施例1において、第2工程は、条件(1)を満たす還元剤を用いて、ピロリジン誘導体1を製造した。
 実施例1-ピロリジン誘導体-第3工程
 磁気式撹拌子を備えた1000mLの三口丸底フラスコに、還流冷却器と温度計を取り付けた反応容器を準備した。次に反応容器に、第2工程で得られたN,N’-ジエチルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-ピロリジン(8.44g)と、エタノール(75mL)を充填し、25℃、0.5時間撹拌して、混合物3を得た。ヨウ化エチル(11.0mL、137ミリモル)と、エタノール(5~10mL)を混合し、混合物3に添加し、暗室状態で、60℃で67時間、第1還流し、反応溶液3を得た。反応溶液3中の有機溶媒(エタノール)は、N,N’-ジエチルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-ピロリジンに対して、約38倍のモル比であった。その後、反応溶液3を冷却し、反応溶液3中に析出した固体を吸引濾過し、アセトン(60mL)で洗浄した。得られた固体に、アセトン(50mL)を添加し、0℃で0.5時間、第2還流し、固体を吸引濾過して、アセトン(50mL)で洗浄し、40℃で3時間、真空乾燥して、ヨウ化N,N,N’,N’-テトラエチルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-ジピロリジニウム(d)(収率65.3%)を得た。実施例1の第3工程において、N,N’-ジエチルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-ピロリジンに対する有機溶媒のモル比は約40倍であった。第3工程は、条件(2)を満たさない晶析法でピロリジン誘導体2を製造した。
 実施例2-ピロリジン誘導体
 以下のスキーム(ES2)に従って、ヨウ化N,N,N’,N’-テトラエチルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-ジピロリジニウム(d)を製造した。
Figure JPOXMLDOC01-appb-C000009
 実施例2-ピロリジン誘導体-第1工程
 実施例1の第1工程と同様にして、N,N’-ジエチルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-テトラカルボキシジイミド(b)を得た。
 実施例2-ピロリジン誘導体-第2工程
 条件(1)を満たさない還元剤として水素化アルミニウムリチウム(LiAlH、4.03g)と、乾燥したTHF(260mL)とを混合し、反応容器中に入れ、25℃0.5時間撹拌した。次いで、第1工程で得られたN,N’-ジアルキルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-テトラカルボキシジイミド(10.70g)と、乾燥したTHF(92mL)を混合し、混合した溶液を漏斗から反応容器中に滴下し、反応溶液2を得た。反応容器中の反応溶液2を、67℃で23時間、不活性ガス雰囲気(Nガス100%を反応容器内に30mL/分で流入)で還流した。その後、室温(25℃)まで反応溶液2を冷却した。反応溶液2に、水(4.08g)を添加し、次いで水酸化ナトリウム(NaOH、15質量%濃度、4.71g)を添加し、さらに水(12.24g)を添加し、反応を終了させた。その後、THFで洗浄しながら濾過し、反応物2を含む液相を得た。次にエバポレータを用いて、得られた反応物2を含む液相からTHF及び水等の低沸点成分を、60℃で、2時間減圧蒸留させて、N,N’-ジエチルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-ジピロリジン(c)を得た。実施例2において、第2工程は、条件(1)を満たさない還元剤を用いて、ピロリジン誘導体1を得た。
 実施例2-ピロリジン誘導体-第3工程
 開口している容器に第2工程で得られたN,N’-ジエチルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-ジピロリジン(10.0g)(c)を入れ、容器にヨウ化エチル(13.03mL、25.4g)を直接添加して混合し反応溶液3を得た。ヨウ化エチルを添加後、3~5分で反応溶液3が白濁し、10分以内で110℃まで発熱しながら全体が固化した。得られた固体をアセトンで洗浄して、濾過し、乾燥させて、ヨウ化N,N,N’,N’-テトラエチルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-ジピロリジニウム(d)(収率84.1%)を得た。実施例2の第3工程において、N,N’-ジエチルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-ピロリジンに対して有機溶媒は不添加であったが、有機溶媒であるエタノールを約12倍まで添加しても、同様の収率と合成時間であった。実施例2において、第3工程は、条件(2)を満たす直接添加法でピロリジン誘導体2を製造した。
 実施例3-ピロリジン誘導体
 以下のスキーム(ES3)に従って、ヨウ化N,N,N’,N’-テトラエチルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-ジピロリジニウム(d)を製造した。
Figure JPOXMLDOC01-appb-C000010
 実施例3-ピロリジン誘導体-第1工程
 実施例1の第1工程と同様にして、N,N’-ジエチルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-テトラカルボキシジイミド(b)を得た。
 実施例3-ピロリジン誘導体-第2工程
 実施例1の第2工程と同様にして、N,N’-ジエチルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-ジピロリジン(c)を得た。実施例3において、第2工程は、条件(1)を満たす還元剤を用いて、ピロリジン誘導体1を製造した。
 実施例3-ピロリジン誘導体-第3工程
 実施例2の第3工程と同様にして、ヨウ化N,N,N’,N’-テトラエチルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-ジピロリジニウム(d)を得た。実施例3の第3工程において、N,N’-ジエチルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-ピロリジンに対して有機溶媒は不添加であったが、有機溶媒のモル比が約12倍まで同様の収率、反応時間であった。実施例3において、第3工程は、条件(2)を満たす直接添加法でピロリジン誘導体2を製造した。
 比較例1-ピロリジン誘導体
 以下のスキーム(ES4)に従って、ヨウ化N,N,N’,N’-テトラエチルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-ジピロリジニウム(d)を製造した。
Figure JPOXMLDOC01-appb-C000011
 比較例1-ピロリジン誘導体-第1工程
 実施例1の第1工程と同様にして、N,N’-ジエチルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-テトラカルボキシジイミド(b)を得た。
 比較例1-ピロリジン誘導体-第2工程
 実施例2の第2工程と同様にして、条件(1)を満たさない還元剤を用いてN,N’-ジエチルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-ジピロリジン(c)(ピロリジン誘導体1)を得た。
 比較例1-ピロリジン誘導体-第3工程
 実施例1の第3工程と同様にして、条件(2)を満たさない晶析法でヨウ化N,N,N’,N’-テトラエチルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-ジピロリジニウム(d)(ピロリジン誘導体2)を得た。比較例1の第3工程において、N,N’-ジエチルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-ピロリジンに対する有機溶媒のモル比は約40倍であった。
 X線回折スペクトル
 実施例及び比較例の各ピロリジン誘導体2について、X線回折装置(XRD、型番:RINT-TTRIII、リガク社製)を用いて、以下の測定条件で、X線回折スペクトルを測定した。実施例及び比較例の各ピロリジン誘導体2を測定したX線回折スペクトルから回折角度(2θ)が14.0°から16.0°の範囲内にある最も高いピーク強度Iとピーク強度Iを示す回折角度(2θ)を測定した。また、各ピロリジン誘導体2のX線回折スペクトルから回折角度(2θ)が17.0°から19.0°の範囲内にある最も高いピーク強度IIと、ピーク強度IIを示す回折角度(2θ)を測定し、ピーク強度比(I/II)を求めた。また、実施例及び比較例の各ピロリジン誘導体2を測定した条件と同一条件で、アメリカ国立標準技術研究所が頒布する標準物質674aであるα-酸化アルミニウムの(116)面を表すピーク強度αを測定し、ピーク強度比(I/α)及びピーク強度比(II/α)を求めた。
 測定条件
 線源:CuKα(線焦点)、波長:1.5418Å
 操作軸:2θ/θ、測定方法:連続、計数単位:cps
 開始角度:5°、終了角度:80°、積算回数:1回
 サンプリング幅:0.02 °、スキャンスピード:20°/分
 電圧:50kV、電流:300mA
 発散スリット:2/3°、発散縦制限スリット:10mm
 散乱スリット:開放、受光スリット:開放
 アタッチメント:ASC-48
 スリット:D/teX Ultra用スリット
 検出器:D/teX Ultra
 結晶子サイズ
 実施例及び比較例の各ピロリジン誘導体2について測定したX線回折スペクトルにおいて、ピーク強度Iを有するピークからシェラー(Scherrer)の式によって算出した、具体的には測定したX線回折スペクトルにおいて、統合粉末X線解析ソフトウェア(ソフト名:PDXL2、リガク社製)を用いて、X線回折スペクトルにおけるピーク強度Iを有するピークの半値幅(半値全幅)を求め、下記のシェラーの式により算出した。
 シェラーの式:D=Kλ/βcosθ
 D:結晶子サイズ、K:シェラー定数(1.333)、λ:X線の波長、β:半値幅(rad)、θ:回折角度
 BET比表面積
 実施例2及び比較例1の各ピロリジン誘導体2について、BET比表面積測定装置(型番:BELSORP MR6、マイクロトラック・ベル社製)を用いて、BET1点法によりBET比表面積を算出した。
 SEM写真
 実施例2及び比較例1の各ピロリジン誘導体2について、超高分解能ショットキー走査電子顕微鏡(型番:SU7000、日立ハイテク社製)を用いて、SEM写真を得た。各SEM写真の画像からピロリジン誘導体2の一次粒子径を測定した。
 表1は、実施例及び比較例の各ピロリジン誘導体2の製造条件、X線回折スペクトルから求められる各回折角度(2θ)におけるピーク強度、各ピーク強度比、及び結晶子サイズを示した。
Figure JPOXMLDOC01-appb-T000012
 図1及び図2は、実施例3及び比較例1のピロリジン誘導体2のX線回折スペクトルを示す。図1に示す実施例3のピロリジン誘導体2のピーク強度IIはピーク強度Iと比較して高い一方、図2に示す比較例1のピロリジン誘導体2のピーク強度IIはピーク強度Iと比較して低い結果であった。
 図3は、実施例2のピロリジン誘導体2のSEM写真を示す。SEM写真から測定できる実施例2のピロリジン誘導体2の一次粒子径は、0.3から1.2μmであり、3.0μm以下であった。また、実施例2のピロリジン誘導体2のBET比表面積は4.0m/gであった。また、実施例2のピロリジン誘導体2を水に溶解させたところ、目視にて粒状物を確認することができなかった。つまり、実施例2のピロリジン誘導体2はすべて水に溶解され、難水溶性の不純物となる物質は確認されなかった。
 図4は、比較例1のピロリジン誘導体2のSEM写真を示す。SEM写真から測定できる比較例1のピロリジン誘導体2の一次粒子径は、20~40μmであり、10μmを超えていた。また、比較例1のピロリジン誘導体2のBET比表面積は0.5m/gであった。また、比較例1のピロリジン誘導体2を水に溶解させたところ、ピロリジン誘導体2を100質量%とし、この100質量%に対して10質量%程度の割合で、目視で確認できる程度の難水溶性の黒い粒が確認された。これをNMRで確認したとろ、ピロリジン誘導体2以外のピークが確認された。比較例1のピロリジン誘導体2の粒子サイズ、及び目視で観察できる色から、難水溶性の不純物の含有量が多いと推測された。
 実施例2のピロリジン誘導体2と、比較例1のピロリジン誘導体2のH-NMR、13C-NMRを測定し、S.Inagaki,et al.,“Rapid Synthesis of an Aluminum-Rich MSE-Type Zeolite by the Hydrothemal Conversion of an FAU-Type Zeolite”,Chemistry A European Jounal,volume19,pages7780-7786,June 10,2013に開示されているヨウ化N,N,N’,N’-テトラエチルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-ジピロリジニウムの値(以下、「文献値」ともいう。)と比較した。
 H-NMR測定条件
 装置:Bruker社製AVANCE NEO 600
 溶媒:400MHz,CDCl,TMS,D
 13C-NMR測定条件
 装置:Bruker社製AVANCE NEO 600
 溶媒:100MHz,CDCl,TMS,D
 表2は、実施例2のピロリジン誘導体2のH化学シフト(ppm)及び文献値であり、表3は、実施例2のピロリジン誘導体2の13C化学シフト(ppm)及び文献値である。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 表4は、比較例1のピロリジン誘導体2のH化学シフト(ppm)及び文献値であり、表5は、比較例1のピロリジン誘導体2の13C化学シフト(ppm)及び文献値である。
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
 表2から5に示すように、実施例2のピロリジン誘導体2及び比較例1のピロリジン誘導体2は、H-NMRのH化学シフト及び13C-NMRの13C化学シフトがそれぞれ上述の文献に記載されていた文献値と近似していたため、ヨウ化N,N,N’,N’-テトラエチルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-ジピロリジニウムが製造されていることが確認できた。
 実施例1-MSE型ゼオライト
 脱イオン水(純水)、水酸化カリウム、水酸化アルミニウム、有機構造規定剤として実施例1のヨウ化N,N,N’,N’-テトラアルキルビシクロ[2.2.2]オクト-7-エン-2,3:5,6-ジピロリジニウム、及び、コロイド状シリカ(LUDOX(登録商標)HS-40、シグマアルドリッチ・ジャパン社製)を準備し、これらを混合して、各原料のモル比が以下の組成となる原料組成物を得た。
 SiO/Al=10.0
 KOH/Si=0.375
 N,N,N’,N’-テトラアルキルビシクロ[2.2.2]オクト-7-エン-2,3:5,6-ジピロリジニウムカチオン/Si=0.10
 HO/Si=30
 得られた原料組成物を密閉容器に充填し、静置した状態で、160℃で11日間加熱し結晶化させた。結晶化後の原料組成物を固液分離し、脱イオン水で洗浄し、結晶を回収した。得られた結晶を100℃で8時間乾燥し、MSE型ゼオライト(OSDA含有)を得た。
 得られたMSE型ゼオライト(OSDA含有)を大気雰囲気中、650℃で3時間熱処理して、有機構造規定剤を除去したMSE型ゼオライト(OSDA非含有)を得た。
 得られたMSE型ゼオライトのSiO/Alモル比は、10であった。
 実施例2-MSE型ゼオライト
 有機構造規定剤として実施例2のヨウ化N,N,N’,N’-テトラアルキルビシクロ[2.2.2]オクト-7-エン-2,3:5,6-ジピロリジニウムを用いたこと以外は、実施例1と同様にして、MSE型ゼオライト(OSDA含有)と、有機構造規定剤を除去したMSE型ゼオライト(OSDA非含有)を得た。
 実施例3-MSE型ゼオライト
 有機構造規定剤として実施例3のヨウ化N,N,N’,N’-テトラアルキルビシクロ[2.2.2]オクト-7-エン-2,3:5,6-ジピロリジニウムを用いたこと以外は、実施例1と同様にして、MSE型ゼオライト(OSDA含有)と、有機構造規定剤を除去したMSE型ゼオライト(OSDA非含有)を得た。
 比較例1-MSE型ゼオライト
 有機構造規定剤として比較例1のヨウ化N,N,N’,N’-テトラアルキルビシクロ[2.2.2]オクト-7-エン-2,3:5,6-ジピロリジニウムを用いたこと以外は、実施例1と同様にして、MSE型ゼオライト(OSDA含有)と、有機構造規定剤を除去したMSE型ゼオライト(OSDA非含有)を得た。
 X線回折スペクトル
 実施例及び比較例の各MSE型ゼオライト(OSDA含有)と、有機構造規定剤を除去したMSEゼオライト(OSDA非含有)について、X線回折装置(XRD、型番:RINT-TTRIII、リガク社製)を用いて、ピロリジン誘導体を測定した条件と同じ測定条件で、X線回折スペクトルを測定した。実施例及び比較例の各MSE型ゼオライトのX線回折スペクトルから(420)面を表す回折角度(2θ)が21.0°から22.0°の範囲内にある最も高いピーク強度Aとピーク強度Aを示す回折角度(2θ)を測定した。また、各MSEゼオライトのX線回折スペクトルから(115)面を表す回折角度(2θ)が22.6°から23.6°の範囲内にある最も高いピーク強度Bと、ピーク強度Bを示す回折角度(2θ)を測定し、ピーク強度比(A/B)を求めた。また、実施例及び比較例の各MSE型ゼオライトを測定した条件と同一条件で、アメリカ国立標準技術研究所が頒布する標準物質674aであるα-酸化アルミニウムの(116)を表すピーク強度αを測定し、ピーク強度比(A/α)及びピーク強度比(B/α)を求めた。また、MSE型ゼオライト(OSDA非含有)のX線回折スペクトルから(200)面を表す回折角度(2θ)が9.2°から10.2°の範囲内にある最も高いピーク強度Cと、ピーク強度Bを示す回折角度(2θ)を測定し、ピーク強度比(C/α)を求めた。
 結晶子サイズ
 実施例及び比較例の各MSE型ゼオライトについて測定したX線回折スペクトルにおいて、ピーク強度Aを有するピークから前述のシェラー(Scherrer)の式によって結晶子サイズを算出した、具体的には測定したX線回折スペクトルにおいて、統合粉末X線解析ソフトウェア(ソフト名:PDXL2、リガク社製)を用いて、X線回折スペクトルにおけるピーク強度Aを有するピークの半値幅(半値全幅)を求め、前述のシェラーの式により算出した。
 表6は、実施例及び比較例の各MSE型ゼオライト(OSDA含有)のX線回折スペクトルから求められる各回折角度(2θ)におけるピーク強度、各ピーク強度比、及び結晶子サイズを示した。
Figure JPOXMLDOC01-appb-T000017
 表7は、実施例及び比較例の各MSE型ゼオライト(OSDA非含有)のX線回折スペクトルから求められる各回折角度(2θ)におけるピーク強度、各ピーク強度比、及び結晶子サイズを示した。
Figure JPOXMLDOC01-appb-T000018
 実施例1から3のMSE型ゼオライト(OSDA含有)及びMSE型ゼオライト(OSDA非含有)は、X線回折スペクトルにおいて、ピーク強度比(A/B)が1.25以上2.50以下の範囲内であり、欠陥の起因となるMSE型結晶相以外の結晶相の含有量が少なかった。
 実施例1から3のMSE型ゼオライト(OSDA含有)は、ピーク強度比(A/α)が0.55以上0.95以下の範囲内であり、MSE型結晶相が多く含まれ、欠陥の起因となるMSE型結晶相以外の結晶相の含有量が少なかった。また、実施例1から3のMSE型ゼオライト(OSDA非含有)は、ピーク強度比(A/α)が0.28以上0.60以下の範囲内であり、MSE型結晶相が多く含まれ、欠陥の起因となるMSE型結晶相以外の結晶相の含有量が少なかった。
 実施例1から3のMSE型ゼオライト(OSDA非含有)は、ピーク強度比(C/α)が0.15以上0.50以下の範囲内であり、MSE型結晶相が多く含まれ、欠陥の起因となるMSE型結晶相以外の結晶相の含有量が少なかった。
 比較例1のMSE型ゼオライト(OSDA非含有)は、ピーク強度比(A/B)が1.0未満であり、MSE型結晶相以外の結晶相の含有量が多かった。比較例1のMSE型ゼオライト(OSDA含有)は、ピーク強度比(A/α)が0.55未満であった。また、比較例1のMSE型ゼオライト(OSDA非含有)は、ピーク強度比(A/α)が0.28未満であった。
 図5及び図6は、実施例3及び比較例1のMSE型ゼオライト(OSDA含有)のX線回折スペクトルを示す。図5に示す実施例3のMSE型ゼオライト(OSDA含有)のピーク強度Aはピーク強度Bに比べて高い一方、図6に示す比較例1のMSE型ゼオライト(OSDA含有)のピーク強度Aはピーク強度比Bに比べて低い結果であった。
 また、図5に示す実施例3のMSE型ゼオライト(OSDA含有)のX線回折スペクトルからMSE型結晶相以外の結晶相の目立つ大きなピークは確認できなかった一方、図6に示す比較例1のMSE型ゼオライト(OSDA含有)のX線回折スペクトルからはMSE型結晶相以外の結晶相であるMTW型ゼオライトの(310)面を示すピークが、回折角度(2θ)20°から21°の範囲内に確認できた。
 図7及び図8は、実施例3及び比較例1のMSE型ゼオライト(OSDA非含有)のX線回折スペクトルを示す。図7に示す実施例3の各MSE型ゼオライト(OSDA非含有)のピーク強度Aはピーク強度Bに比べて高い一方、図8に示す比較例1の各MSE型ゼオライト(OSDA非含有)のピーク強度Aはピーク強度Bと同程度の強度であった。
 また、図7に示す実施例3のMSE型ゼオライト(OSDA非含有)のX線回折スペクトルからはMSE型結晶相以外の結晶相の目立つ大きなピークは確認できなかった一方、図8に示す比較例1のMSE型ゼオライト(OSDA非含有)のX線回折スペクトルからはMSE型結晶相以外の結晶相であるMTW型ゼオライトの(310)面を示すピークが、回折角度(2θ)20°から21°の範囲内に確認できた。
 本開示に係るピロリジン誘導体は、難水溶性の不純物が少なく、MSE型結晶相を形成しやすく、MSE型結晶相以外の結晶相の生成が抑制されたゼオライトを製造する有機構造規定剤として使用できる。本開示に係るピロリジン誘導体を有機構造規定剤として製造したMSE型ゼオライトは、MSE型結晶相が多く含まれ、欠陥の起因となるMSE型結晶相以外の結晶相の含有量が少なく、高い耐熱性を有し、排ガス浄化触媒の炭化水素吸着剤として好適に使用できる。
 

Claims (12)

  1.  X線回折スペクトルにおいて、回折角度(2θ)が14.0°から16.0°の範囲内にある最も高いピーク強度Iと、回折角度(2θ)が17.0°から19.0°の範囲内にある最も高いピーク強度IIと、を有し、ピーク強度IIに対するピーク強度Iのピーク強度比(I/II)が0.4以上1.5以下の範囲内であり、ビシクロ骨格を有する第4級アンモニウムカチオンを含むピロリジン誘導体。
  2.  α-酸化アルミニウムのX線回折スペクトルにおける(116)面のピーク強度αに対する、前記ピーク強度Iのピーク強度比(I/α)が0.1以上0.9以下の範囲内である、請求項1に記載のピロリジン誘導体。
  3.  α-酸化アルミニウムのX線回折スペクトルにおける(116)面のピーク強度αに対する、前記ピーク強度IIのピーク強度比(II/α)が0.3以上0.5以下の範囲内である、請求項1又は2に記載のピロリジン誘導体。
  4.  前記ピーク強度Iを有するピークから算出される結晶子サイズが45nm以上120nm以下である、請求項1から3のいずれか1項に記載のピロリジン誘導体。
  5.  第4級アンモニウムカチオンが、N,N,N’,N’-テトラアルキルビシクロ[2.2.2]オクト-7-エン-2,3:5,6-ジピロリジニウムジカチオン及び/又はN,N,N’,N’-テトラアルキルビシクロ[2.2.2]オクタン-2,3:5,6-ジピロリジニウムジカチオンを含む、請求項1から4のいずれか1項に記載のピロリジン誘導体。
  6.  MSE型ゼオライトのX線回折スペクトルにおいて、(420)面を表す回折角度(2θ)が21.0°から22.0°の範囲内にある最も高いピーク強度Aと、(115)面を表す22.6°から23.6°の範囲内にある最も高いピーク強度Bと、を有し、ピーク強度Bに対するピーク強度Aのピーク強度比(A/B)が1.25以上2.50以下の範囲内である、MSE型ゼオライト。
  7.  前記ピーク強度Aを有するピークから求められる結晶子サイズが20nm以上80nm以下の範囲内である、請求項8に記載のMSE型ゼオライト。
  8.  α-酸化アルミニウムのX線回折スペクトルにおける(116)面のピーク強度αに対する、前記ピーク強度Aのピーク強度比(A/α)が0.55以上0.95以下の範囲内である、有機構造規定剤を含む請求項6又は7に記載のMSE型ゼオライト。
  9.  α-酸化アルミニウムのX線回折スペクトルにおける(116)面のピーク強度αに対する、前記ピーク強度Aのピーク強度比(A/α)が0.28以上0.60以下の範囲内である、有機構造規定剤を含まない請求項6又は7に記載のMSE型ゼオライト。
  10.  前記ピーク強度αに対する、前記MSE型ゼオライトのX線回折スペクトルにおいて(200)面を表す回折角度(2θ)が9.2°から10.2°の範囲内にある最も高いピーク強度Cのピーク強度比(C/α)が0.15以上0.50以下の範囲内である、請求項9に記載のMSE型ゼオライト。
  11.  N,N’-ジアルキルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-テトラカルボキシジイミド又はN,N’-ジアルキルビシクロ[2.2.2]オクタン-2,3;5,6-テトラカルボキシジイミドを準備する第1工程と、
     前記N,N’-ジアルキルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-テトラカルボキシジイミド又は前記N,N’-ジアルキルビシクロ[2.2.2]オクタン-2,3;5,6-テトラカルボキシジイミドを還元剤と反応させて、N,N’-ジアルキルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-ジピロリジン及び/又はN,N’-ジアルキルビシクロ[2.2.2]オクタン-2,3;5,6-ジピロリジンを得る第2工程と、
     前記N,N’-ジアルキルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-ジピロリジン及び/又は前記N,N’-ジアルキルビシクロ[2.2.2]オクタン-2,3;5,6-ジピロリジンとハロゲン化アルキルを反応させて、N,N,N’,N’-テトラアルキルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-ジピロリジニウム塩及び/又はN,N,N’,N’-テトラアルキルビシクロ[2.2.2]オクタン-2,3;5,6-ジピロリジニウム塩を得る第3工程と、を含み、
     条件(1)前記第2工程において、前記還元剤が、水素化ビス(2-メトキシエトキシ)アルミニウムナトリウム、水素化トリエチルホウ素リチウム、水素化ジイソブチルアルミニウム、ジボラン、水素化ホウ素リチウム、及び水素化ホウ素ナトリウムからなる群から選択される少なくとも1種を含むか、
     条件(2)前記第3工程において、前記N,N’-ジアルキルビシクロ[2.2.2]オクト-7-エン-2,3;5,6-ジピロリジン及び/又は前記N,N’-ジアルキルビシクロ[2.2.2]オクタン-2,3;5,6-ジピロリジンに対して、13倍以下のモル比の有機溶媒の存在下で、ハロゲン化アルキルを反応させる、
     前記条件(1)又は前記条件(2)の少なくとも一方の条件を満たす、ピロリジン誘導体の製造方法。
  12.  シリカ源、アルミニウム源、アルカリ金属源、請求項1から5のいずれか1項に記載のピロリジン誘導体及び水を含む原料混合物を準備する工程と、
     前記原料混合物を加熱し結晶化する工程を含む、MSE型ゼオライトの製造方法。
     
PCT/JP2022/011624 2021-03-25 2022-03-15 ピロリジン誘導体、その製造方法、mse型ゼオライト及びその製造方法 WO2022202491A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22775281.3A EP4317161A1 (en) 2021-03-25 2022-03-15 Pyrrolidine derivative, production method therefor, mse-type zeolite, and production method therefor
CN202280022719.8A CN116997553A (zh) 2021-03-25 2022-03-15 吡咯烷衍生物及其制造方法、mse型沸石及其制造方法
JP2023509048A JPWO2022202491A1 (ja) 2021-03-25 2022-03-15

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021051555 2021-03-25
JP2021-051555 2021-03-25

Publications (1)

Publication Number Publication Date
WO2022202491A1 true WO2022202491A1 (ja) 2022-09-29

Family

ID=83397240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011624 WO2022202491A1 (ja) 2021-03-25 2022-03-15 ピロリジン誘導体、その製造方法、mse型ゼオライト及びその製造方法

Country Status (4)

Country Link
EP (1) EP4317161A1 (ja)
JP (1) JPWO2022202491A1 (ja)
CN (1) CN116997553A (ja)
WO (1) WO2022202491A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6049018A (en) * 1999-01-21 2000-04-11 Mobil Corporation Synthetic porous crystalline MCM-68, its synthesis and use
JP2013129590A (ja) * 2011-11-25 2013-07-04 Nippon Chem Ind Co Ltd ゼオライト及びその製造方法並びにパラフィンの接触分解触媒
JP2014043371A (ja) * 2012-08-27 2014-03-13 Yokohama National Univ Mse型ゼオライト及びその製法
WO2020038222A1 (en) * 2018-08-24 2020-02-27 Rhodia Operations A microporous aluminotitanosilicate crystalline zeolite, method of preparation and applications thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6049018A (en) * 1999-01-21 2000-04-11 Mobil Corporation Synthetic porous crystalline MCM-68, its synthesis and use
JP2002535227A (ja) 1999-01-21 2002-10-22 モービル・オイル・コーポレイション 合成多孔質結晶mcm−68、その合成及び使用
JP2013129590A (ja) * 2011-11-25 2013-07-04 Nippon Chem Ind Co Ltd ゼオライト及びその製造方法並びにパラフィンの接触分解触媒
JP2014043371A (ja) * 2012-08-27 2014-03-13 Yokohama National Univ Mse型ゼオライト及びその製法
WO2020038222A1 (en) * 2018-08-24 2020-02-27 Rhodia Operations A microporous aluminotitanosilicate crystalline zeolite, method of preparation and applications thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S.INAGAKI ET AL.: "Rapid Synthesis of an Aluminum-Rich MSE-Type Zeolite by the Hydrothermal Conversion of an FAU-Type Zeolite", CHEMISTRY A EUROPEAN JOURNAL, vol. 19, 10 June 2013 (2013-06-10), pages 7780 - 7786

Also Published As

Publication number Publication date
CN116997553A (zh) 2023-11-03
JPWO2022202491A1 (ja) 2022-09-29
EP4317161A1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
US7837978B2 (en) Process for preparing aluminum-containing molecular sieve SSZ-26
US6709644B2 (en) Small crystallite zeolite CHA
JP6399557B2 (ja) ゼオライトの製造方法
US6444191B1 (en) Zeolite ZSM-11 and a process for preparing zeolite ZSM-11 using a 3,5-dimethylpiperidinium templating agent
TWI657047B (zh) 一種全矽分子篩及其合成方法
JP5417969B2 (ja) N,n,n−トリメチル−ベンジルアンモニウムイオンを用いたチャバザイトの製造方法
JP5974170B2 (ja) アルミノシリケートゼオライトssz−33の作成方法
JP6178847B2 (ja) アルミノシリケートゼオライトssz−56の製造方法
MX2014001126A (es) Reduccion de oxidos de nitrogeno en una corriente de gas usando un tamiz molecular ssz-23.
CN107074570A (zh) Sapo‑18的合成及其催化用途
WO2022202491A1 (ja) ピロリジン誘導体、その製造方法、mse型ゼオライト及びその製造方法
JP5428501B2 (ja) ゼオライト製造用の構造指向剤
TW202012311A (zh) Rho沸石及其製造方法
WO2020241202A1 (ja) 化合物及びその製造方法、afx型ゼオライト及びその製造方法、並びにハニカム積層触媒
US8440156B2 (en) Reduction of oxides of nitrogen in a gas stream using molecular sieve SSZ-28
JP2007504077A (ja) 分子篩ssz−61組成物及びその合成
JP5795438B2 (ja) モレキュラーシーブssz−25を使用するガス流中の窒素酸化物の還元
CN114538461B (zh) 一种ssz-13硅铝分子筛及其制备方法与应用
JP2021525701A (ja) モレキュラーシーブssz−109の合成
CN110407230B (zh) 合成cha结构分子筛的方法及cha结构分子筛
WO2023249027A1 (ja) 第4級アンモニウム塩、有機構造規定剤、第4級アンモニウム塩の製造方法、con型ゼオライト、con型ゼオライトの製造方法、触媒および低級オレフィンの製造方法
WO2023190472A1 (ja) シクロへキシレンジアミニウム塩、その用途及びそれにより得られるmse型ゼオライト
JP2018065723A (ja) ゼオライトzts−5及びその製造方法
CN101541679A (zh) 制备含铝分子筛ssz-26的方法
CN115304078A (zh) 一种分子筛的制备方法及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775281

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023509048

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280022719.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18283340

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022775281

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022775281

Country of ref document: EP

Effective date: 20231025