WO2022202184A1 - メッキ成形品およびメッキ成形品の製造方法、ならびに筐体部品 - Google Patents

メッキ成形品およびメッキ成形品の製造方法、ならびに筐体部品 Download PDF

Info

Publication number
WO2022202184A1
WO2022202184A1 PCT/JP2022/009076 JP2022009076W WO2022202184A1 WO 2022202184 A1 WO2022202184 A1 WO 2022202184A1 JP 2022009076 W JP2022009076 W JP 2022009076W WO 2022202184 A1 WO2022202184 A1 WO 2022202184A1
Authority
WO
WIPO (PCT)
Prior art keywords
molded article
polyphenylene sulfide
weight
sulfide resin
plated
Prior art date
Application number
PCT/JP2022/009076
Other languages
English (en)
French (fr)
Inventor
徳住啓太
大久保和哉
和田誠
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN202280021492.5A priority Critical patent/CN116981796A/zh
Priority to JP2022515657A priority patent/JPWO2022202184A1/ja
Priority to EP22774980.1A priority patent/EP4317525A1/en
Priority to US18/550,307 priority patent/US20240174859A1/en
Publication of WO2022202184A1 publication Critical patent/WO2022202184A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0209Polyarylenethioethers derived from monomers containing one aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D181/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur, with or without nitrogen, oxygen, or carbon only; Coating compositions based on polysulfones; Coating compositions based on derivatives of such polymers
    • C09D181/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J181/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur, with or without nitrogen, oxygen, or carbon only; Adhesives based on polysulfones; Adhesives based on derivatives of such polymers
    • C09J181/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1608Process or apparatus coating on selected surface areas by direct patterning from pretreatment step, i.e. selective pre-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1612Process or apparatus coating on selected surface areas by direct patterning through irradiation means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2026Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by radiant energy
    • C23C18/204Radiation, e.g. UV, laser
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2073Multistep pretreatment
    • C23C18/208Multistep pretreatment with use of metal first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/22Roughening, e.g. by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper

Definitions

  • the present invention provides excellent surface smoothness, excellent adhesion, and high plating quality even in severe environmental deterioration tests such as thermal shock cycle tests, without sacrificing the various excellent properties inherent in polyphenylene sulfide resin. To provide plated molded products that can be secured.
  • Patent Document 1 a molded product with a low surface crystallinity is obtained by setting the heat value of cold crystallization to 5.0 g / J or more for the purpose of improving the plating property, and further contains active metal particles.
  • a specific primer paint By using a specific primer paint, a plated molded product with high adhesion is obtained.
  • Patent Document 2 discloses a resin composition containing potassium titanate for the purpose of improving plating properties.
  • Non-Patent Document 1 describes that plating adhesion is improved by subjecting PPS resin to UV irradiation and alkali etching treatment.
  • the present invention makes it possible to form a plated layer with excellent surface smoothness without sacrificing the various excellent properties inherent in PPS resin, and has excellent adhesion of the plated layer, and can be used in thermal shock cycle tests and the like.
  • a plated molded article and a method for manufacturing the same which can ensure high plating quality even in a severe environmental deterioration test.
  • the present invention provides the following.
  • the (A) polyphenylene sulfide resin has an MFR of (A-1) 50 to 600 g/10 minutes at 315° C. and a load of 2160 g, when the total amount of the (A) polyphenylene sulfide resin is 100% by weight.
  • the plated molded article according to (1) which contains 20% by weight or more of a polyphenylene sulfide resin.
  • the polyphenylene sulfide resin composition contains (A) 100 parts by weight of the polyphenylene sulfide resin, and (C) at least one selected from glycidyl groups, acid anhydride groups, carboxyl groups and salts thereof, and alkoxycarbonyl groups.
  • the plated molded article according to (1) or (2) characterized by containing 1 to 30 parts by weight of a functional group-containing olefinic copolymer containing one kind of functional group.
  • the (A) polyphenylene sulfide resin has an MFR of (A-1) 50 to 600 g/10 minutes at 315° C.
  • the functional group-containing olefinic copolymer containing at least one functional group selected from (C) a glycidyl group, an acid anhydride group, a carboxyl group and salts thereof, and an alkoxycarbonyl group;
  • the present invention makes it possible to form a plated layer with excellent surface smoothness without sacrificing the various excellent properties inherent in polyphenylene sulfide resin, and the adhesion of the plated layer is excellent.
  • weight means “mass”.
  • the (A) polyphenylene sulfide resin used in the present invention is a polymer having repeating units represented by the following structural formula.
  • the (A) polyphenylene sulfide resin used in the present invention is preferably a polymer containing 70 mol% or more, more preferably 90 mol% or more of the repeating unit represented by the above structural formula.
  • the polyphenylene sulfide resin (A) used in the present invention less than 30 mol % of the repeating units may be composed of repeating units having the following structure.
  • the PPS resin can be produced by known methods including a pre-process, a polymerization reaction process, a recovery process, and a post-treatment process. It is preferable to follow the method described in JP-A-2017-155221 regarding raw materials and pre-steps used in the production of the PPS resin.
  • the PPS resin of the present invention is (A-1) a polyphenylene sulfide resin having an MFR of 50 to 600 g/10 minutes at 315° C.
  • (A-1) high viscosity PPS resin a load of 2160 g (hereinafter abbreviated as "(A-1) high viscosity PPS resin” ) is preferably included, and a method for obtaining a PPS resin having such characteristics includes production through the important steps described later.
  • a high-viscosity polyphenylene sulfide resin having the above properties can be obtained by using a quenching method in the recovery step described later or by a method such as cross-linking by heat treatment in the presence of oxygen.
  • a sulfidation agent and a polyhalogenated aromatic compound are added to an organic polar solvent at a temperature range of room temperature to 220°C, preferably 100 to 220°C, preferably in an inert gas atmosphere.
  • a polymerization aid may be added at this stage. There are no particular restrictions on the order in which these raw materials are charged, and they may be added at the same time.
  • the temperature of the mixture is usually raised to the range of 200°C to 290°C.
  • the heating rate There is no particular limitation on the heating rate, but a rate of 0.01 to 5°C/min is usually selected, and a range of 0.1 to 3°C/min is more preferable.
  • the temperature is finally raised to 250-290° C., and the reaction is normally carried out at that temperature for 0.25-50 hours, preferably 0.5-20 hours.
  • a method of raising the temperature to 270-290°C after reacting at 200-260°C for a certain period of time before reaching the final temperature is effective in obtaining a higher degree of polymerization.
  • the reaction time at 200° C. to 260° C. is usually selected in the range of 0.25 hours to 20 hours, preferably in the range of 0.25 hours to 10 hours.
  • the conversion rate of the polyhalogenated aromatic compound in the system at 245° C. reaches 40 mol % or more, preferably 60 mol %. It is valid.
  • a preferred recovery method for the PPS resin is to carry out under rapid cooling conditions, and one preferred recovery method is the flash method.
  • the flash method a polymer reaction product is flashed from a high-temperature and high-pressure state (usually 250° C. or higher, 8 kg/cm 2 or higher) into an atmosphere of normal pressure or reduced pressure to collect the solvent and at the same time convert the polymer into granules.
  • This is a recovery method, and the term "flash” as used herein means jetting out the polymerization reaction product from a nozzle.
  • Specific examples of the medium used for flashing include nitrogen or water vapor under normal pressure, and the temperature for flashing is usually selected in the range of 150°C to 250°C.
  • the flash method is an economical recovery method because it is possible to recover the solids at the same time as the solvent, and the recovery time can be relatively short.
  • ionic compounds typified by sodium and organic low-polymerization polymers (oligomers) tend to be incorporated into the polymer during the solidification process.
  • the method for recovering the PPS resin used in the production method of the present invention is not limited to the flash method.
  • a method (quenching method) of recovering the particulate polymer by cooling may be used.
  • the acid used for the acid treatment in the present invention is not particularly limited as long as it does not decompose the PPS resin.
  • Acetic acid and hydrochloric acid are more preferably used, but those that decompose and deteriorate the PPS resin, such as nitric acid, are not preferred.
  • the water used when using the acid aqueous solution is preferably distilled water or deionized water.
  • the aqueous solution of the acid preferably has a pH of 1-7, more preferably a pH of 2-4. A pH of 7 or less is preferable because the amount of metal contained in the PPS resin does not increase. When the pH is 1 or more, the amount of volatile components contained in the PPS resin can also be suppressed, which is preferable.
  • the acid treatment time is preferably a time when the reaction between the PPS resin and the acid is sufficiently balanced, preferably 2 to 24 hours when treated at 80 ° C., and 0.01 to 5 hours when treated at 200 ° C. preferable.
  • the PPS resin is sufficiently immersed in the acid or the acid aqueous solution.
  • the aqueous solution is preferably 0.5 to 500 L, more preferably 1 to 100 L, even more preferably 2.5 to 20 L.
  • the amount of the acid or the aqueous acid solution is 0.5 L or more per 500 g of the PPS resin, the PPS resin is sufficiently immersed in the aqueous solution, so that washing failure does not occur and the amount of metal contained in the PPS resin increases.
  • the amount of the acid or the aqueous solution of the acid is 500 L or less for 500 g of the PPS resin, the amount of the acid or the aqueous solution of the acid used for the PPS resin is greatly excessive, and the production efficiency is significantly reduced. It is preferable without any reason.
  • These acid treatments are carried out by adding a given amount of PPS resin to a given amount of water and acid, heating and stirring in a pressure vessel, or performing acid treatment continuously.
  • Filtration using a sieve or filter is convenient for separating the aqueous solution and the PPS resin from the treated solution after the acid treatment, and examples thereof include natural filtration, pressure filtration, vacuum filtration, and centrifugal filtration.
  • washing method examples include a method of filtering while pouring water over the PPS resin on the filtration device, and a method of separating the aqueous solution and the PPS resin by adding the separated PPS resin to water prepared in advance and then filtering again.
  • the water used for washing is preferably distilled water or deionized water. It is thought that the terminal structure of the PPS resin that has been acid-treated in this way changes, but it is difficult to express the structure of the PPS resin obtained by acid treatment by a general formula, and it is also difficult to specify it by its properties. Therefore, it can be identified only by the process (acid treatment) for obtaining the PPS resin.
  • the water used for the hot water treatment in the present invention is preferably distilled water or deionized water.
  • the hot water treatment temperature is preferably 80 to 250°C, more preferably 120 to 200°C, even more preferably 150 to 200°C.
  • the hot water treatment effect can be sufficiently exhibited, and the amount of volatilized gas generated can be suppressed.
  • the pressure rise can be suppressed, which is preferable from the viewpoint of safety.
  • the time for the hot water treatment is preferably a time during which the PPS resin and hot water can be sufficiently extracted, preferably 2 to 24 hours when treated at 80°C, and 0.01 to 5 hours when treated at 200°C. is preferred.
  • the PPS resin is sufficiently immersed in the hot water. ⁇ 100 L is more preferred, and 2.5 to 20 L is even more preferred. It is preferable to use 0.5 L or more of hot water with respect to 500 g of PPS resin, because the PPS resin is sufficiently immersed in hot water, so that washing failure does not occur and the amount of volatilized gas generated does not increase. Also, by setting the amount of hot water to 500 L or less with respect to 500 g of PPS resin, it is preferable because the amount of water to the PPS resin becomes excessive and the production efficiency is not remarkably lowered.
  • the method of separating the aqueous solution and the PPS resin from the treated solution after the hot water treatment is not particularly limited, but filtration using a sieve or filter is convenient, and methods such as natural filtration, pressure filtration, vacuum filtration, centrifugal filtration, etc. can be exemplified.
  • the washing method is not particularly limited, but the aqueous solution and the PPS resin can be separated by a method such as filtering while pouring water over the PPS resin on the filtration device, or by adding the separated PPS resin to water prepared in advance and then filtering again. can be exemplified.
  • the water used for washing is preferably distilled water or deionized water.
  • the PPS terminal groups are decomposed during these acid treatments and hot water treatments, so it is desirable to carry out the acid treatments and hot water treatments in an inert atmosphere.
  • the inert atmosphere include nitrogen, helium, argon, etc. From the viewpoint of economy, a nitrogen atmosphere is preferred.
  • a step of washing the PPS resin with an organic solvent may be included before the acid treatment step or the hot water treatment step, and the method is as follows.
  • the organic solvent used for washing the PPS resin in the present invention is not particularly limited as long as it does not decompose the PPS resin.
  • -Nitrogen-containing polar solvents such as dimethylimidazolidinone, hexamethylphosphorasamide and piperazinones; sulfoxide/sulfone solvents such as dimethylsulfoxide, dimethylsulfone and sulfolane; ketone solvents such as acetone, methylethylketone, diethylketone and acetophenone; Ether solvents such as dimethyl ether, dipropyl ether, dioxane, and tetrahydrofuran; Halogen solvents such as chloroform, methylene chloride, trichlorethylene, ethylene dichloride, perchlorethylene, monochloroethane, dichloroethane, tetrachloroethane, perchlorethane, and chlorobenzene , methanol, ethanol, propanol, butanol, pentanol, ethylene glycol, propylene glycol, phenol, cre
  • washing with an organic solvent there is a method such as immersing the PPS resin in the organic solvent, and it is also possible to stir or heat as necessary.
  • the washing temperature when washing the PPS resin with an organic solvent there is no particular limitation on the washing temperature when washing the PPS resin with an organic solvent, and any temperature from room temperature to about 300° C. can be selected. There is a tendency that the higher the washing temperature, the higher the washing efficiency. It is also possible to wash under pressure in a pressure vessel at a temperature above the boiling point of the organic solvent.
  • the cleaning time is not particularly limited. Although it depends on the cleaning conditions, in the case of batch cleaning, a sufficient effect can be obtained by cleaning for 5 minutes or more. It is also possible to wash continuously.
  • the acid treatment, hot water treatment, or washing with an organic solvent can be combined as appropriate.
  • heat treatment can be performed to obtain a PPS resin having high mechanical strength. It is not preferable because it causes However, if the heat treatment is too mild, the effect of reducing volatile components is small, the strength of the resin tends to decrease, and antifreeze resistance tends to decrease. According to the heat treatment of the present invention, it is possible to obtain a PPS resin with improved mechanical strength while suppressing the generation of gelled substances without impairing the melt fluidity.
  • the heat treatment temperature and heat treatment time are set within a specific range, the heat treatment can be performed in a high oxygen concentration atmosphere or a low oxygen concentration atmosphere.
  • the oxygen concentration exceeds 2% by volume as the conditions for the high oxygen concentration atmosphere
  • the heat treatment temperature is 160 to 270° C.
  • the heat treatment time is 0.1 to 17 hours.
  • the heat treatment temperature is 160 to 270° C.
  • the heat treatment time is 0.1 to 17 hours.
  • the heat treatment temperature is 160 to 270° C.
  • the heat treatment time is 0.1 to 17 hours.
  • Specific conditions for low-temperature, long-time heat treatment are preferably 160° C. to 210° C. and 1 hour to 17 hours, and more preferably 170° C. to 200° C. and 1 hour to 10 hours.
  • the conditions for the low oxygen concentration atmosphere are preferably an oxygen concentration of 2% by volume or less, a heat treatment temperature of 210 to 270° C., and a heat treatment time of 0.2 to 50 hours. If the oxygen concentration is low, the effect of reducing volatile components tends to be small, so it is generally preferable to perform heat treatment at a high temperature for a long time. is more preferable. If the heat treatment time is less than 210° C., the amount of volatile components in the PPS resin is not reduced and the effect of improving the mechanical strength is small, and if the heat treatment time exceeds 50 hours, the productivity decreases.
  • a heating device for heat treatment applicable to the present invention may be a normal hot air dryer, or a heating device of a rotary type or with a stirring blade. It is more preferable to use a rotary or stirring blade heating device, such as a paddle dryer, fluidized bed dryer, KID dryer, steam tube dryer, inclined disk dryer, hopper dryer, vertical stirring dryer, etc. can be exemplified. Among them, a paddle type dryer, a fluidized bed dryer, and a KID dryer are preferable for uniform and efficient heating.
  • an oxidizing gas such as oxygen, air or ozone may be mixed with a non-oxidizing inert gas such as nitrogen, argon, helium or water vapor.
  • the introduction of the oxidizing gas or inert gas from any position of the top, bottom or side of the heating device there is no particular restriction on the introduction of the oxidizing gas or inert gas from any position of the top, bottom or side of the heating device, but a simpler method is to use the heating device.
  • the introduction of gas from above can be mentioned.
  • the oxidizing gas and the inert gas may be mixed before introduction into the heating device and then introduced into the device, or the oxidizing gas and the inert gas may be mixed separately from different locations in the heating device. .
  • the melt flow rate (hereinafter sometimes abbreviated as "MFR") of the PPS resin obtained through the polymerization reaction step, recovery step, post-treatment step, and optionally heat treatment step is 1000 g/10 minutes or less. Preferably.
  • the PPS resin used in the present invention preferably contains 20% by weight or more of (A-1) a PPS resin having an MFR of 50 to 600 g/10 min when the (A) polyphenylene sulfide resin is 100% by weight. Preferably, it is contained in an amount of 50% by weight or more from the viewpoint of improving plating properties.
  • MFR is 50 g/10 minutes or more, moldability is not deteriorated, which is preferable.
  • An MFR of 600 g/10 minutes or less is preferable because no plating layer is formed or the adhesion of the plating layer is not deteriorated.
  • MFR is more preferably 100 to 500 g/10 minutes.
  • MFR is a value measured according to ASTM-D1238-70 under conditions of 315° C.
  • the high-viscosity PPS resin (A-1) is contained in an amount of 50% by weight or more because the plating property is further improved.
  • the upper limit of the content of (A-1) high-viscosity PPS resin in (A) polyphenylene sulfide resin is 100% by weight, that is, it is most preferable to use only (A-1) high-viscosity PPS resin.
  • the polyphenylene sulfide resin composition used in the present invention contains (B) a fibrous filler.
  • the fibrous filler specifically includes, for example, glass fiber, glass milled fiber, glass flat fiber, modified cross-section glass fiber, glass cut fiber, stainless fiber, metal fiber such as aluminum fiber and brass fiber, aromatic Examples include organic fibers such as group polyamide fibers and Kevlar fibrils, gypsum fibers, ceramic fibers, asbestos fibers, zirconia fibers, alumina fibers, silica fibers, titanium oxide fibers, silicon carbide fibers, and the like.
  • the fibrous fillers it is preferable to use at least one selected from glass fiber, glass milled fiber, glass flat fiber, and modified cross-section glass fiber in terms of mechanical properties and dimensional properties.
  • the glass fibers and other fillers used in the present invention are used after being treated with a known coupling agent (for example, a silane coupling agent, a titanate coupling agent, etc.) or other surface treatments.
  • a known coupling agent for example, a silane coupling agent, a titanate coupling agent, etc.
  • the content of the (B) fibrous filler contained in the polyphenylene sulfide resin composition is such that (B) the fibrous filler is added to 100 parts by weight of the (A) polyphenylene sulfide resin from the balance of heat resistance and mechanical properties. It is essential to contain 30 to 200 parts by weight. More preferably 40 to 150 parts by weight, still more preferably 50 to 110 parts by weight. If the amount is less than 30 parts by weight, the coefficient of linear expansion of the PPS resin is large, and the difference in linear expansion with the metal forming the plating layer is large. Become. If it exceeds 200 parts by weight, the surface is excessively roughened, and the anchor effect during plating is not expected, so the adhesion tends to deteriorate.
  • the polyphenylene sulfide resin composition used in the present invention contains (C) a functional group containing at least one functional group selected from glycidyl groups, acid anhydride groups, carboxyl groups and salts thereof, and alkoxycarbonyl groups. It preferably contains an olefinic copolymer (hereinafter sometimes abbreviated as "(C) functional group-containing olefinic copolymer").
  • Functional group-containing olefinic copolymer is an olefinic polymer and/or a monomer component having a functional group such as a glycidyl group, an acid anhydride group, or an ionomer (functional group-containing component ), examples of functional group-containing components thereof include maleic anhydride, itaconic anhydride, citraconic anhydride, endobicyclo[2.2.1]5-heptene-2,3-dicarboxylic Acids, monomers containing acid anhydride groups such as endobicyclo-[2.2.1]5-heptene-2,3-dicarboxylic anhydride, glycidyl acrylate, glycidyl methacrylate, glycidyl ethacrylate, itacon Monomers containing glycidyl groups such as glycidyl acid and glycidyl citraconate, and ionomers such as carboxylic acid metal complexes are included.
  • Types of olefinic copolymers include ⁇ -olefins such as ethylene, propylene, butene-1, pentene-1, octene-1, 4-methylpentene-1, and isobutylene, or obtained by polymerizing two or more of them.
  • (Co)polymers, ⁇ -olefins and ⁇ , ⁇ -unsaturated acids and their Examples include copolymers with alkyl esters, and specific examples include ethylene/propylene copolymers (“A/B” means a copolymer of A and B; the same shall apply hereinafter), ethylene/butene -1 copolymer, ethylene/hexene-1 copolymer, ethylene/octene-1 copolymer, ethylene/methyl acrylate copolymer, ethylene/ethyl acrylate copolymer, ethylene/butyl acrylate copolymer , ethylene/methyl methacrylate copolymer, ethylene/ethyl methacrylate copolymer, ethylene/butyl methacrylate copolymer, and the like.
  • the functional groups it is preferable to contain a glycidyl group from the viewpoint of improving plating properties.
  • the method for introducing a functional group-containing component into these olefinic copolymers is not particularly limited, and when (co)polymerizing an olefinic (co)polymer similar to that used as the olefinic (co)polymer, or a method of introducing a radical initiator into an olefinic (co)polymer by a graft copolymerization method.
  • particularly useful olefin (co)polymers obtained by introducing a monomer component having a functional group such as a glycidyl group, an acid anhydride group, or an ionomer into an olefin polymer include ethylene/propylene-g- Glycidyl methacrylate copolymer ("g” stands for graft, hereinafter the same), ethylene/butene-1-g-glycidyl methacrylate copolymer, ethylene/glycidyl acrylate copolymer, ethylene/glycidyl methacrylate copolymer coalescence, ethylene/methyl acrylate/glycidyl methacrylate copolymer, ethylene/methyl methacrylate/glycidyl methacrylate copolymer, ethylene/propylene-g-maleic anhydride copolymer, ethylene/butene-1-g-anhydride Maleic acid copolymer, ethylene/methyl acrylate-(g
  • the functional group-containing component is most preferably a glycidyl group, and the glycidyl group concentration is suitably in the range of 1.0 to 4.0% by weight, preferably 1.1 to 3.9% by weight.
  • the glycidyl group concentration of the (C) functional group-containing olefinic copolymer is calculated from the following formula (1). When the amount is 1.0% by weight or more, the compatibility with the PPS resin is good, and the mechanical properties are improved. Adhesion of the plated layer is improved by adjusting the content to 4.0% by weight or less.
  • Glycidyl group concentration (% by weight) A ⁇ A M /Gly M A [% by weight]: Content of glycidyl group-containing component in functional group-containing olefin copolymer A M [g/mol]: Molecular weight of glycidyl group-containing component Gly M [g/mol]: Molecular weight of glycidyl group ( 43 g/mol).
  • the glycidyl group-containing component refers to a repeating unit containing a glycidyl group among the repeating units constituting the (C) functional group-containing olefin copolymer.
  • the (C) functional group-containing olefin copolymer is preferably contained in an amount of 1 to 30 parts by weight based on 100 parts by weight of the (A) polyphenylene sulfide resin.
  • a content of 1 part by weight or more improves the adhesion of the plating layer, and a content of 30 parts by weight or less suppresses deposits on the mold during injection molding, and degrades the appearance of the product due to gas generated by decomposition. This is preferable because it does not occur.
  • the polyphenylene sulfide resin composition used in the present invention may optionally contain (D) a non-fibrous inorganic filler.
  • D Non-fibrous inorganic fillers include E glass (plate-like, scale-like, granular, irregular shape, crushed product), H glass (plate-like, scale-like, granular, irregular shape, crushed product), and A glass.
  • metal powders, metal flakes, and metal ribbons include silver, nickel, copper, zinc, aluminum, stainless steel, iron, brass, chromium, and tin.
  • the content of the non-fibrous inorganic filler (D) is 0.5 to 60 parts by weight with respect to 100 parts by weight of the polyphenylene sulfide resin (A) from the viewpoint of the balance of plating adhesion, heat resistance, and mechanical properties. Yes, preferably 0.5 to 35 parts by weight, more preferably 0.5 to 25 parts by weight. By making it 0.5 parts by weight or more, it is possible to obtain the surface roughness necessary for plating. When the amount is 60 parts by weight or less, the surface is not roughened more than necessary in the chemical treatment in the plating process, and the adhesion of the plating layer can be maintained.
  • the ratio Y/X of the blending weight X of the (D) non-fibrous inorganic filler and the blending weight Y of the (B) fibrous filler to 100 parts by weight of the (A) polyphenylene sulfide resin is 2 or more, preferably is preferably 3 or more. When it is 2 or more, the surface is not roughened more than necessary in the chemical solution treatment in the plating process, and the adhesion of the plating layer can be maintained.
  • the PPS resin composition of the present invention contains (E) ethylene that does not contain a functional group selected from glycidyl groups, acid anhydride groups, carboxyl groups and salts thereof, and alkoxycarbonyl groups, as long as the effects of the present invention are not impaired.
  • a copolymer with an ⁇ -olefin having 3 to 12 carbon atoms (hereinafter sometimes abbreviated as "(E) functional group-free olefinic copolymer”) may also be contained.
  • ⁇ -olefins having 3 to 12 carbon atoms examples include propylene, butene-1, pentene-1, octene-1, 4-methylpentene-1, isobutylene and the like, and ⁇ -olefins may be used alone or by polymerizing two or more of them. It may be a (co)polymer obtained by
  • the content of the (E) functional group-free olefin copolymer is preferably 1 to 3 parts by weight, particularly preferably 0 to 1.5 parts by weight, relative to 100 parts by weight of the (A) polyphenylene sulfide resin. Addition of 1 part by weight or more is preferable because heat cycle resistance is dramatically improved. A content of 3 parts by weight or less is preferable because the dimensional stability can be maintained while the heat cycle resistance is improved.
  • the polyphenylene sulfide resin composition used in the present invention is at least one selected from (F) an epoxy group, an amino group, an isocyanate group, a hydroxyl group, a mercapto group, and a ureido group within a range that does not impair the effects of the present invention.
  • the content of (F) the silane compound is preferably 0.1 to 3 parts by weight of the (F) silane compound with respect to 100 parts by weight of the (A) polyphenylene sulfide resin. By setting it as this range, both the outstanding fluidity
  • the polyphenylene sulfide resin composition used in the present invention contains (A) a polyphenylene sulfide resin, (C) a functional group-containing olefinic copolymer, and (E) a functional group within a range that does not impair the effects of the present invention. You may blend and use other resins other than the olefinic copolymer which does not contain.
  • Such blendable resins are not particularly limited, but specific examples include nylon 6, nylon 66, nylon 610, nylon 11, nylon 12, polyamide resins such as aromatic nylon, polyethylene terephthalate, polybutylene terephthalate, Polyester resins such as polycyclohexyldimethylene terephthalate and polynaphthalene terephthalate, polyamideimide, polyacetal, polyimide, polyetherimide, polyethersulfone, modified polyphenylene ether resin, polysulfone resin, polyarylsulfone resin, polyketone resin, polyarylate resin, liquid crystal polymer, polyetherketone resin, polythioetherketone resin, polyetheretherketone resin, polytetrafluoroethylene resin, and the like.
  • the polyphenylene sulfide resin composition used in the present invention may contain other components, such as antioxidants and heat stabilizers (hindered phenol, hydroquinone, phosphorus, phosphite, etc.), as long as they do not impair the effects of the present invention.
  • antioxidants and heat stabilizers hindered phenol, hydroquinone, phosphorus, phosphite, etc.
  • the method for preparing the polyphenylene sulfide resin composition used in the present invention is not particularly limited. , a method of kneading at a temperature of 280 to 380° C., and the like. There are no particular restrictions on the order in which the raw materials are mixed. After blending all the raw materials, they are melt-kneaded by the above method. or a method of blending a part of the raw materials and then mixing the rest of the raw materials using a side feeder during melt-kneading with a single-screw or twin-screw extruder. As for the small amount of additive component, it is of course possible to knead and pelletize the other components by the above-described method, and then add the pellet before molding and subject it to molding.
  • the polyphenylene sulfide resin composition obtained in this way can be subjected to various molding such as injection molding, extrusion molding, blow molding and transfer molding, and is particularly suitable for injection molding.
  • a plated layer is formed on a molded article molded from the polyphenylene sulfide resin composition to obtain a plated molded article having a plated layer formed on a part of the surface of the molded article. Needless to say, it also includes the case where the plated layer is formed on the entire surface of the molded product.
  • a plating method performed in the present invention will be described.
  • a general electroless plating process for a resin molded product includes a surface treatment process, a catalyst application process, an activation treatment process, and a plating treatment process. As the plating process, electroless nickel plating and electroplating are generally performed.
  • the surface treatment process includes a surface activation process and/or a surface roughening process.
  • the method for roughening the surface of the resin molded product may be any of chemical, mechanical or physical methods. Because of its excellent chemical resistance, it is often not possible to perform sufficient roughening by chemical methods. In such a case, a mechanical or physical roughening method is preferred.
  • sandpaper may be used to roughen the surface of the resin molded product. Sand blasting, shot blasting, liquid honing, tumbling, laser irradiation, and the like are preferred because they are excellent in durability and quality stability.
  • the most preferable surface treatment process is a method carried out by the following procedure.
  • (a) UV light having a major wavelength of 100 to 400 nm is irradiated for 10 to 120 minutes from a position 5 to 200 mm away from the surface of the molded article.
  • (b) After that, the molded product treated in (a) is immersed in an alkaline aqueous solution having a concentration of 5 to 40% by weight for 1 to 30 minutes.
  • the position of the ultraviolet light irradiation is less than 5 mm from the surface of the molded product, excessive surface activation will cause surface deterioration. If the distance is larger than 200 mm, the irradiation intensity is weak and the activated state of the surface of the molded article is insufficient. Further, by setting the irradiation time to 10 minutes or more, the surface is activated, and sufficient adhesion of the plated layer can be obtained. A time of 120 minutes or less is preferable because the surface of the PPS resin is not deteriorated.
  • alkaline aqueous solution is not particularly limited, but alkali metal aqueous solutions such as sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, lithium hydroxide aqueous solution, rubinium hydroxide aqueous solution, cesium hydroxide aqueous solution, and tetraalkylammonium hydroxide aqueous solution
  • alkali metal aqueous solutions such as sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, lithium hydroxide aqueous solution, rubinium hydroxide aqueous solution, cesium hydroxide aqueous solution, and tetraalkylammonium hydroxide aqueous solution
  • a selected alkali metal aqueous solution is preferable, and an aqueous solution selected from a potassium hydroxide aqueous solution and a sodium hydroxide aqueous solution is more preferable.
  • the surface is not excessively roughened.
  • the temperature of the alkaline aqueous solution is preferably 40 to 80°C. By setting the temperature to 40° C. or higher, the surface can be sufficiently roughened, and by setting the temperature to 80° C. or lower, the surface is not excessively roughened. By immersing for 1 minute or more, the surface can be sufficiently roughened, and by setting the immersion time to 30 minutes or less, the surface is not excessively roughened.
  • the surface of the molded article obtained in the surface treatment step has pores with a diameter of 0.01 to 2 ⁇ m, preferably 0.01 to 1 ⁇ m, when observed with a scanning electron microscope. preferably. Having pores of 0.01 ⁇ m or more is preferable because physical adhesion (anchor effect) can be exhibited and sufficient adhesion of the plated layer can be exhibited. A thickness of 2 ⁇ m or less is preferable because surface roughening can also be suppressed.
  • the step of adsorbing the catalyst metal precursor to the molded article obtained in the surface treatment step (catalyst application step) and the step of reducing the catalyst metal precursor to metal (activation treatment step) are:
  • a general method may be used.
  • 0.1 to 0.5 g/dm 3 of palladium dichloride aqueous solution is used as the catalyst solution, applied to the surface of the roughened molded article, and 15 to 25 g/dm 3 of sodium phosphinate aqueous solution is used.
  • metal nuclei are formed that smoothly deposit electroless NiP plating.
  • the plating process is carried out using the molded article with the metal palladium deposited on the surface obtained in the above process.
  • chemical copper plating, chemical nickel plating, or the like is used.
  • electroplating can be applied to achieve bright nickel plating or copper sulfate plating. From the viewpoint of electromagnetic wave shielding properties, copper plating is particularly useful.
  • the plated layer in the plated molded product obtained in the above process is characterized by an arithmetic mean roughness Ra of 1.5 ⁇ m or less when measured by a method according to JIS-B-0601. It is preferably 1.0 ⁇ m or less, more preferably 0.5 ⁇ m or less. If the thickness exceeds 1.5 ⁇ m, it is difficult to remove the selective frequency of electromagnetic waves when shielding electromagnetic waves, which is not preferable.
  • the lower limit of the arithmetic mean roughness Ra is preferably as small as possible, but 0.01 ⁇ m or more is realistic.
  • the plated molded product of the present invention makes it possible to form a plated layer with excellent surface smoothness without sacrificing the various properties inherent in the PPS resin.
  • Such a molded product can be applied to electrical and electronic parts because it has excellent electromagnetic wave shielding properties and surface thermal conductivity due to the plated layer. In particular, it is possible to prevent mutual interference due to electromagnetic waves. From the above characteristics, it is preferable to apply the plated molded product of the present invention to housings for sensor parts and housings for ECU (Electronic Control Unit) parts.
  • molded articles made of the polyphenylene sulfide resin composition used in the present invention include, for example, sensors, LED lamps, consumer connectors, sockets, resistors, relay cases, switches, coil bobbins, capacitors, variable condenser cases, Oscillators, various terminal boards, transformers, plugs, printed circuit boards, tuners, speakers, microphones, headphones, small motors, magnetic head bases, semiconductors, liquid crystals, FDD (Floppy Disk Drive) carriages, FDD chassis, motor brush holders, parabolas Electric/electronic parts such as antennas, computer-related parts; VTR (Video Tape Recorder) parts, TV parts, irons, hair dryers, rice cooker parts, microwave oven parts, acoustic parts, audio laser discs (registered trademark) ⁇ It can also be applied to household and office electrical appliance parts such as voice equipment parts such as compact discs, lighting parts, refrigerator parts, air conditioner parts, typewriter parts, and word processor parts.
  • voice equipment parts such as compact discs, lighting parts,
  • Optical equipment and precision machine related parts represented by ; Server related parts used for communication equipment related, small cell related parts, radio wave noise elimination related parts: valve alternator terminal, alternator connector, IC regulator, potentiometer for light ear Meter base, various valves such as exhaust gas valve, various pipes related to fuel, exhaust system, intake system, air intake nozzle snorkel, intake manifold, fuel pump, exhaust gas sensor, cooling water sensor, oil temperature sensor, throttle position sensor, crank Shaft position sensors, brake pad wear sensors, thermostat bases for air conditioners, air conditioner panel switch boards, fuse connectors, horn terminals, electrical component insulation plates, lamp sockets, lamp reflectors, lamp housings, ignition device cases, vehicle speed sensors, cable liners, etc.
  • Various applications such as automobiles and vehicle-related parts can be exempl
  • the MFR was calculated by the following method.
  • the amount of water remaining in the system per 1 mol of the charged alkali metal sulfide was 1.06 mol, including the water consumed in the hydrolysis of NMP.
  • the amount of hydrogen sulfide scattered was 0.02 mol per 1 mol of the charged alkali metal sulfide.
  • the resulting cake and 90 liters of ion-exchanged water were placed in an autoclave equipped with a stirrer, and acetic acid was added to adjust the pH to 7. After purging the inside of the autoclave with nitrogen, the temperature was raised to 192° C. and held for 30 minutes. The autoclave was then cooled and the contents were discharged.
  • the amount of water remaining in the system per 1 mol of the charged alkali metal sulfide was 1.06 mol including the water consumed for hydrolysis of NMP.
  • the amount of hydrogen sulfide scattered was 0.02 mol per 1 mol of the charged alkali metal sulfide.
  • the content was diluted with about 35 liters of NMP to form a slurry, which was stirred at 85°C for 30 minutes and then filtered through an 80-mesh wire mesh (opening 0.175 mm) to obtain a solid.
  • the obtained solid matter was similarly washed with about 35 liters of NMP and separated by filtration.
  • the obtained solid matter was diluted with 70 liters of deionized water, stirred at 70° C. for 30 minutes, filtered through an 80-mesh wire mesh to recover the solid matter, and the operation was repeated three times in total.
  • the obtained solid matter and 32 g of acetic acid were diluted with 70 liters of ion-exchanged water, stirred at 70° C.
  • the amount of water remaining in the system per 1 mol of the charged alkali metal sulfide was 1.08 mol including the water consumed for hydrolysis of NMP.
  • the amount of hydrogen sulfide scattered was 0.023 mol per 1 mol of alkali metal sulfide charged.
  • the linear PPS was placed in a heating device with a stirrer and had a volume of 100 liters, and subjected to thermal oxidation treatment at 220° C. and an oxygen concentration of 2% for 2 hours to obtain crosslinked PPS-3.
  • the MFR of the resulting polymer was 5000 g/10 minutes.
  • the amount of water remaining in the system per 1 mol of the charged alkali metal sulfide was 1.08 mol including the water consumed for hydrolysis of NMP.
  • the amount of hydrogen sulfide scattered was 0.023 mol per 1 mol of alkali metal sulfide charged.
  • the amount of water remaining in the system per 1 mol of the charged alkali metal sulfide was 1.06 mol including the water consumed for hydrolysis of NMP.
  • the amount of hydrogen sulfide scattered was 0.02 mol per 1 mol of the charged alkali metal sulfide.
  • the resulting cake and 90 liters of ion-exchanged water were placed in an autoclave equipped with a stirrer, and acetic acid was added to adjust the pH to 7. After purging the inside of the autoclave with nitrogen, the temperature was raised to 192° C. and held for 30 minutes. The autoclave was then cooled and the contents were discharged.
  • Examples 1 to 13, Comparative Examples 1 to 6 Using a twin-screw extruder (TEM-26 manufactured by Toshiba Machine Co., Ltd.) having a 26 mm diameter intermediate addition port with a cylinder temperature of 320 ° C. and a screw rotation speed of 400 rpm, each implementation shown in Table 1 and Table 2.
  • (A) polyphenylene sulfide resin, (C) functional group-containing olefinic copolymer, and (D) non-fibrous inorganic The filler was added from the raw material supply port and melted, and the fibrous filler (B) was supplied from the intermediate addition port and melted and kneaded at a discharge rate of 30 kg/hour to obtain pellets. Using this pellet, each property was evaluated. The results are shown in Tables 1 and 2.
  • a plated layer was formed on the molded product by the following method, and its characteristics were measured.
  • CC-231 (Rhom and Hass) adjusted to 10% by volume of the surface-roughened molded article obtained in the surface treatment step is immersed at 45 ° C. for 2 minutes to perform surface conditioning.
  • a 0.3 g/dm 3 palladium dichloride aqueous solution was used as a catalyst solution and applied to the surface of the molded article roughened by immersion at 45° C. for 2 minutes. After that, it was immersed in a sodium phosphinate aqueous solution of 19 g/dm 3 at 45° C. for 2 minutes to reduce palladium dichloride on the surface of the PPS resin to metal (catalyst application step and activation treatment step).
  • PPS-1 PPS resin polymerized by the method described in Reference Example 1
  • PPS-2 PPS resin polymerized by the method described in Reference Example 2
  • PPS-3 by the method described in Reference Example 3
  • PPS-4 PPS resin polymerized by the method described in Reference Example 4
  • PPS-5 PPS resin polymerized by the method described in Reference Example 5
  • B Fibrous filler B-1: Chopped strands ( Nippon Electric Glass Co., Ltd. T-760H average fiber diameter 10.5 ⁇ m)
  • B-2 Chopped strand (manufactured by Nippon Electric Glass Co., Ltd.
  • C functional group-containing olefin-based copolymer
  • C-1 epoxy group-containing polyolefin (Mitsui Chemicals, Bond Fast E, glycidyl group concentration 3.63% by weight)
  • C-2 Epoxy group-containing polyolefin (manufactured by Mitsui Chemicals, Bond Fast 7M, glycidyl group concentration 1.81% by weight)
  • C-3 Epoxy group-containing polyolefin (LOTADER AX8750 manufactured by SK Chemical Polymer, glycidyl group concentration 1.51% by weight)
  • C-4 Hydrogenated styrene thermoplastic elastomer (manufactured by Asahi Kasei Co., Ltd.
  • C-5 Hydrogenated styrene thermoplastic elastomer (Asahi Kasei Tuftec M1913 reactive functional group: acid anhydride group)
  • D Non-fibrous inorganic filler
  • D-1 heavy calcium carbonate (KSS1000 manufactured by Calfine Co., Ltd.)
  • D-2 Heavy calcium carbonate (#800 from Sankyo Seifun Co., Ltd.)
  • D-3 Heavy calcium carbonate (Super S manufactured by Maruo Calcium Co., Ltd.)
  • D-4 Magnesium hydroxide (Kisuma 5P manufactured by Kyowa Chemical Industry Co., Ltd.)
  • E Olefin-based copolymer E-1 containing no functional group: Olefin copolymer (Engage 8842 manufactured by The Dow Chemical Company) Molded articles made of resin compositions and plated molded articles were evaluated by the following measurement methods.
  • a strip test piece having a width L2 of 15 mm, a length of 80 mm, and a thickness of 3 mm was cut out from the same.
  • a plated layer was formed on the molded product by the following method for the cut strip test piece.
  • a compact UV irradiation device (KOL1-300S manufactured by Koto Denki Co., Ltd.) equipped with one high-power low-pressure mercury lamp (300 W) having main wavelengths of 184.9 nm and 253.7 nm, 184.9 nm and 253.7 nm.
  • the test piece was immersed in an aqueous potassium hydroxide solution with a concentration of 20% by weight for 12 minutes to perform a surface treatment step.
  • a 0.3 g/dm 3 aqueous solution of palladium dichloride was used as a catalyst solution on the roughened molded article obtained in the above step, and the catalyst solution was applied to the surface of the roughened molded article.
  • the sodium phosphinate aqueous solution of No. 3 palladium dichloride on the surface of the PPS resin was reduced to metal, thereby forming metal nuclei for smooth deposition of electroless NiP plating (catalyst application step and activation treatment step).
  • the adhesion strength of the plating layer of the obtained plated molded product was measured according to the adhesion strength test method specified in Annex 1 (regulation) of JIS H8630:2006. * When no plating is formed, D when the peel strength is less than 1 N / cm, C when the peel strength is 1 N / cm or more and less than 3 N / cm, When the peel strength is 3 N / cm or more and less than 10 N / cm B, and A when the peel strength was 10 N/cm or more.
  • Example 1 From the comparison of Example 1 and Examples 3 to 7, it was found that the addition of the functional group-containing olefin copolymer improved the plating properties. In particular, it was found that Examples 4 and 5 further improved the adhesion of the plated layer.
  • the amount of the (B) fibrous filler added was 40 to 80 parts by weight with respect to 100 parts by weight of the (A) polyphenylene sulfide resin, especially when the plating layer It was found to be effective for improving the adhesion of
  • the present invention makes it possible to form a plated layer with excellent surface smoothness without sacrificing the various excellent properties that polyphenylene sulfide resin originally has, has excellent adhesion, and can be subjected to harsh conditions such as thermal shock cycle tests.
  • a polyphenylene sulfide resin composition for plating and a resin-plated molded article that can ensure high plating quality even in an environmental deterioration test.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、ポリフェニレンスルフィド樹脂が本来有する優れた各種特性を犠牲にすることなく、表面平滑性に優れたメッキ層を形成することを可能とし、メッキ層の密着性に優れ、冷熱衝撃サイクル試験等の過酷な環境劣化試験においても高いメッキ品質が確保できるメッキ成形品およびその製造方法を提供することを課題とし、この課題の解決のため、 (A)ポリフェニレンスルフィド樹脂100重量部に対して、(B)繊維状充填材を30~200重量部を含むポリフェニレンスルフィド樹脂組成物によって成形された成形品の表面の一部または全部にメッキ層が形成されたメッキ成形品であって、該メッキ成形品におけるメッキ層表面の算術平均粗さが1.5μm以下であるメッキ成形品であることを本旨とする。

Description

メッキ成形品およびメッキ成形品の製造方法、ならびに筐体部品
 本発明は、ポリフェニレンスルフィド樹脂が本来有する優れた各種特性を犠牲にすることなく、表面平滑性に優れ、密着性に優れ、かつ冷熱衝撃サイクル試験等の過酷な環境劣化試験においても高いメッキ品質が確保できるメッキ成形品を提供する。
 ポリフェニレンスルフィド樹脂(以下「PPS樹脂」と略すこともある)などの熱可塑性樹脂材料は、その優れた耐薬品性、耐熱性、難燃性、電気的特性、機械的特性から電気・電子分野や自動車分野を中心として、幅広い産業分野で使用されている。しかし、例えば、PPS樹脂はその優れた耐薬品性ゆえに成形品樹脂表面がエッチングされ難く、一般的にはメッキ加工に関しては不適である。
 近年、あらゆる分野においてセンサーや電子制御ユニットなどが数多く使用されており、相互干渉を防ぐことを目的としての電磁波シールド性や熱マネジメントを目的としての熱伝導性を有することが強く求められている。
 このような要望に対しては、樹脂成形品にメッキ加工をすることで、それらの特性を付与することができ、実用化されてきた。しかしながら、上記に示したPPS樹脂は良好な耐薬品性を有していることから、メッキ加工が困難であった。加えて、PPS樹脂をメッキさせるためには表面をブラスト処理や強酸での十分以上の表面粗化を行うため、得られたメッキ成形品の表面粗度は大きく、電波損失や電波の指向性などの損失などを生じてしまう懸念があり、使用が限定されるのが実情であった。そのため、PPS樹脂のメッキ加工性(メッキ性)向上、かつ得られたメッキ成形品の表面平滑性が求められてきた。
 特許文献1には、メッキ性を改善することを目的として冷結晶化の発熱量を5.0g/J以上にすることで、表面の結晶性の低い成形品とし、さらに活性金属粒子を含有する特定のプライマー塗料を使用することで、密着性の高いメッキ成形品を得ている。
 特許文献2には、メッキ性を高めることを目的として、チタン酸カリウムを配合した樹脂組成物が開示されている。
 非特許文献1には、PPS樹脂に対してUV照射とアルカリによるエッチング処理をすることでメッキ密着性が向上することが記載されている。
特開2003-96221号公報 特開昭62-270659号公報
表面技術,2017年,68巻,11号,p.624-629
 しかしながら、特許文献1では、結晶性の低い成形品は表面外観を悪化させ、特にメッキ後の装飾性を著しく悪化する。さらには高温環境下で使用した際には結晶化度に変化が生じることで寸法特性などの変化を与えることから、得られたメッキ成形品の特性は満足するものではなかった。特許文献2では、チタン酸カリウムなどの金属異物の混入は、成形品としての機械強度を著しく損なうことになる。非特許文献1では、非強化PPS樹脂での効果は示されているが、繊維状充填剤などの無機物を添加した強化PPS樹脂に関しては、表面粗れが抑制されることからメッキ密着性が上がらないという欠点があった。
 本発明は、PPS樹脂が本来有する優れた各種特性を犠牲にすることなく、表面平滑性に優れたメッキ層を形成することを可能とし、メッキ層の密着性に優れ、冷熱衝撃サイクル試験等の過酷な環境劣化試験においても高いメッキ品質が確保できるメッキ成形品およびその製造方法を提供する。
 本発明者らは、上記問題点を解決するために鋭意検討を重ねた結果、本発明に至った。すなわち本発明は、下記を提供するものである。
 (1)(A)ポリフェニレンスルフィド樹脂100重量部に対して、(B)繊維状充填材を30~200重量部を含むポリフェニレンスルフィド樹脂組成物によって成形された成形品の一部または全部にメッキ層を含むメッキ成形品であって、該メッキ成形品におけるメッキ層表面の算術平均粗さが1.5μm以下であるメッキ成形品。
(2)前記(A)ポリフェニレンスルフィド樹脂は、(A)ポリフェニレンスルフィド樹脂の総量を100重量%としたとき、(A-1)摂氏315℃、荷重2160gにおけるMFRが50~600g/10分であるポリフェニレンスルフィド樹脂を20重量%以上含むことを特徴とする、(1)に記載のメッキ成形品。
(3)前記ポリフェニレンスルフィド樹脂組成物が、(A)ポリフェニレンスルフィド樹脂100重量部に対して、さらに(C)グリシジル基、酸無水物基、カルボキシル基及びその塩、並びにアルコキシカルボニル基から選ばれる少なくとも1種の官能基を含有する官能基含有オレフィン系共重合体を1~30重量部含むことを特徴とする、(1)または(2)に記載のメッキ成形品。
(4)前記(A)ポリフェニレンスルフィド樹脂は、(A)ポリフェニレンスルフィド樹脂の総量を100重量%としたとき、(A-1)摂氏315℃、荷重2160gにおけるMFRが50~600g/10分であるポリフェニレンスルフィド樹脂を50重量%以上含むことを特徴とする、(1)~(3)のいずれかに記載のメッキ成形品。
(5)前記(C)グリシジル基、酸無水物基、カルボキシル基及びその塩、並びにアルコキシカルボニル基から選ばれる少なくとも1種の官能基を含有する官能基含有オレフィン系共重合体に含有される官能基がグリシジル基であり、該官能基含有オレフィン系共重合体のグリシジル基濃度が1.0~4.5重量%であることを特徴とする(3)または(4)に記載のメッキ成形品。
(6)(1)~(5)のいずれかに記載のメッキ成形品の製造方法であって、前記ポリフェニレンスルフィド樹脂組成物によって成形された成形品に対し、表面処理工程、触媒付与工程、活性化処理工程、およびメッキ処理工程をこの順に行うことを特徴とするメッキ成形品の製造方法。
(7)前記表面処理工程が以下の手順で行われることを特徴とする、(6)に記載のメッキ成形品の製造方法。
(a)成形品の表面から5~200mm離れた位置から、100~400nmに主要波長を有する紫外光を10~120分間照射すること。
(b)その後、濃度5~40質量%のアルカリ水溶液に、前記(a)で処理された成形品を1~30分間浸漬すること。
(8)前記表面処理工程後の成形品の表面の少なくとも一部に直径2μm以下の細孔を有する、(6)または(7)に記載のメッキ成形品の製造方法。
(9)(1)~(5)のいずれかに記載のメッキ成形品をその構成部品の一部とする筐体部品。
 本発明は、ポリフェニレンスルフィド樹脂が本来有する優れた各種特性を犠牲にすることなく、表面平滑性に優れたメッキ層を形成することを可能とし、メッキ層の密着性に優れ、冷熱衝撃サイクル試験等の過酷な環境劣化試験においても高いメッキ品質が確保できるメッキ成形品およびその製造方法を提供する。
ピール強度測定用の試験片であり、(a)は平面図、(b)は側面図を表す。
 以下、本発明の実施の形態を説明する。本発明において「重量」とは「質量」を意味する。
 本発明に用いる(A)ポリフェニレンスルフィド樹脂は、下記構造式で示される繰り返し単位を有する重合体である。
Figure JPOXMLDOC01-appb-C000001
 本発明に用いる(A)ポリフェニレンスルフィド樹脂は、耐熱性の観点からは上記構造式で示される繰り返し単位を70モル%以上、更には90モル%以上含む重合体が好ましい。また本発明に用いる(A)ポリフェニレンスルフィド樹脂はその繰り返し単位の30モル%未満が、下記の構造を有する繰り返し単位で構成されていてもよい。
Figure JPOXMLDOC01-appb-C000002
 次に、本発明に用いる(A)ポリフェニレンスルフィド樹脂を得るための方法について説明する。PPS樹脂の製造方法は、前工程、重合反応工程、回収工程、および後処理工程の公知の方法で製造することができる。PPS樹脂の製造に用いられる原料、前工程に関しては特開2017-155221号公報に記載されている方法に準拠することが好ましい。本発明のPPS樹脂は、(A-1)摂氏315℃、荷重2160gにおけるMFRが50~600g/10分であるポリフェニレンスルフィド樹脂(以下、「(A-1)高粘度PPS樹脂」と略記する場合もある。)を含むことが好ましいが、このような特性のPPS樹脂を得る方法としては、後述する重要な工程を経て製造することが挙げられる。例えば、後述する回収工程においてクエンチ法を用いることや酸素存在下での熱処理による架橋などの方法により、上記特性を有する高粘度ポリフェニレンスルフィド樹脂を得ることができる。
 以下、重合反応工程、回収工程および後処理工程について、説明する。
 [重合反応工程]
 有機極性溶媒中でスルフィド化剤とポリハロゲン化芳香族化合物とを200~290℃の温度範囲内で反応させることによりPPS樹脂を製造することが好ましい。
 重合反応工程を開始するに際しては、望ましくは不活性ガス雰囲気下、常温~220℃、好ましくは100~220℃の温度範囲で、有機極性溶媒にスルフィド化剤とポリハロゲン化芳香族化合物を加える。この段階で重合助剤を加えてもよい。これらの原料の仕込み順序は特に制限はなく、同時であってもさしつかえない。
 かかる混合物を通常200℃~290℃の範囲に昇温する。昇温速度に特に制限はないが、通常0.01~5℃/分の速度が選択され、0.1~3℃/分の範囲がより好ましい。
 一般に、最終的には250~290℃の温度まで昇温し、その温度で通常0.25~50時間、好ましくは0.5~20時間反応させる。
 最終温度に到達させる前の段階で、例えば、200℃~260℃で一定時間反応させた後、270~290℃に昇温する方法は、より高い重合度を得る上で有効である。この際、200℃~260℃での反応時間としては、通常0.25時間から20時間の範囲が選択され、好ましくは0.25~10時間の範囲が選択される。
 なお、より高重合度のポリマーを得るためには、複数段階で重合反応を行うことが有効である。複数段階で重合反応を行う際は、245℃における系内のポリハロゲン化芳香族化合物の転化率が、40モル%以上、好ましくは60モル%に達した時点で次の段階に移行することが有効である。
 [回収工程]
 重合反応工程の終了後に、重合体、溶媒などを含む重合反応物から固形物を回収する。
 PPS樹脂の好ましい回収方法は急冷条件下に行うことであり、好ましい一つの回収方法としてフラッシュ法が挙げられる。フラッシュ法とは、重合反応物を高温高圧(通常250℃以上、8kg/cm以上)の状態から常圧もしくは減圧の雰囲気中へフラッシュさせ、溶媒回収と同時に重合体を粉粒体状にして回収する方法であり、ここでいうフラッシュとは、重合反応物をノズルから噴出させることを意味する。フラッシュに用いる媒体は、具体的には、例えば、常圧中の窒素または水蒸気が挙げられ、また、フラッシュを行う時の温度は通常150℃~250℃の範囲が選択される。
 フラッシュ法は、溶媒と同時に固形物を回収することができ、また回収時間も比較的短くできることから、経済性に優れた回収方法である。この回収方法では、固化過程でナトリウムに代表されるイオン性化合物や有機系低重合度重合体(オリゴマー)がポリマー中に取り込まれやすい傾向がある。
 但し、本発明の製造方法に用いられるPPS樹脂の回収方法は、フラッシュ法に限定されるものではなく、本発明の要件を満たす方法であれば、重合体、溶媒などを含む重合反応物を徐冷して粒子状のポリマーを回収する方法(クエンチ法)を用いてもよい。しかし、経済性を鑑みた場合、フラッシュ法で回収されたPPS樹脂を用いることがより好ましい。
 [後処理工程(酸処理)]
 本発明では、上記重合反応工程、回収工程を経て得られたPPS樹脂を酸処理することが好ましい。
 本発明における酸処理に用いる酸は、PPS樹脂を分解する作用を有しないものであれば特に制限はなく、酢酸、塩酸、硫酸、リン酸、珪酸、炭酸およびプロピル酸などが挙げられ、なかでも酢酸および塩酸がより好ましく用いられるが、硝酸のようなPPS樹脂を分解、劣化させるものは好ましくない。
 酸の水溶液を用いるときの水は、蒸留水あるいは脱イオン水であることが好ましい。酸の水溶液は、pH1~7が好ましく、pH2~4がより好ましい。pHを7以下とすることでPPS樹脂中に含まれる金属の量が増大することがなく好ましい。pHが1以上であるとPPS樹脂中に含まれる揮発成分の量も抑制でき好ましい。
 酸処理の方法は、酸または酸の水溶液にPPS樹脂を浸漬せしめることが好ましく、必要により適宜撹拌および加熱することも可能である。加熱する際の温度は80~250℃が好ましく、120~200℃がより好ましく、150~200℃がさらに好ましい。80℃未満では酸処理効果が小さく、金属含有量が増大し、250℃を超えると圧力が高くなりすぎるため安全上好ましくない。また、酸の水溶液でPPS樹脂を浸漬せしめて処理した際のpHは、酸処理により8未満となることが好ましく、pH2~8がより好ましい。pHを8以下とすることで、得られるPPS樹脂中に含まれる金属の量が増大することがなく好ましい。
 酸処理の時間は、PPS樹脂と酸の反応が十分に平衡となる時間が好ましく、80℃で処理する場合は2~24時間が好ましく、200℃で処理する場合は0.01~5時間が好ましい。
 酸処理におけるPPS樹脂と酸または酸の水溶液との割合は、PPS樹脂が酸または酸の水溶液中に十分に浸漬された状態で処理することが好ましく、PPS樹脂500gに対して、酸または酸の水溶液は0.5~500Lが好ましく、1~100Lがより好ましく、2.5~20Lがさらに好ましい。PPS樹脂500gに対して酸または酸の水溶液が0.5L以上とすることでPPS樹脂が水溶液に十分浸漬するため洗浄不良が発生せず、PPS樹脂中に含まれる金属の量が増大することがなく好ましい。また、PPS樹脂500gに対して、酸または酸の水溶液が500L以下とすることで、PPS樹脂に対して用いる酸または酸の水溶液の量が大過剰となることで、生産効率が著しく低下することもなく好ましい。
 これらの酸処理は所定量の水および酸に所定量のPPS樹脂を投入し、圧力容器内で加熱・撹拌する方法、連続的に酸処理を施す方法などにより行われる。酸処理後の処理溶液から水溶液とPPS樹脂を分離する方法はふるいやフィルターを用いた濾過が簡便であり、自然濾過、加圧濾過、減圧濾過、遠心濾過などの方法が例示できる。処理液から分離されたPPS樹脂表面に残留している酸や不純物を除去するため、水または温水で数回洗浄することが好ましい。洗浄方法は濾過装置上のPPS樹脂に水をかけながら濾過する方法や、予め用意した水に、分離したPPS樹脂を投入した後に再度濾過するなどの方法で水溶液とPPS樹脂を分離する方法が例示できる。洗浄に用いる水は、蒸留水あるいは脱イオン水であることが好ましい。このように酸処理したPPS樹脂は、末端の構造などが変化すると考えられるが、酸処理によって得られるPPS樹脂の構造を一般式で表すことは困難であるし、特性によって特定することも困難であるので、PPS樹脂を得るためのプロセス(酸処理)によって初めて特定が可能なものである。
 [後処理工程(熱水処理)]
 本発明では酸処理する工程の前に熱水処理を行うことが好ましく、その方法は次のとおりである。本発明における熱水処理に用いる水は、蒸留水あるいは脱イオン水であることが好ましい。熱水処理温度は80~250℃が好ましく、120~200℃がより好ましく、150~200℃がさらに好ましい。80℃以上とすることで熱水処理効果を十分に発揮することができ、揮発するガス発生量を抑制できる。250℃以下とすることで圧力の上昇も抑制できるので、安全上好ましい。
 熱水処理の時間は、PPS樹脂と熱水による抽出処理が十分に行える時間が好ましく、80℃で処理する場合は2~24時間が好ましく、200℃で処理する場合は0.01~5時間が好ましい。
 熱水処理におけるPPS樹脂と熱水との割合は、PPS樹脂が熱水に十分に浸漬された状態で処理することが好ましく、PPS樹脂500gに対して、水0.5~500Lが好ましく、1~100Lがより好ましく、2.5~20Lがさらに好ましい。PPS樹脂500gに対して熱水が0.5L以上とすることでPPS樹脂が熱水に十分浸漬するため洗浄不良が発生せず、揮発するガスの発生量が増大することがないため好ましい。また、PPS樹脂500gに対して、熱水が500L以下とすることで、PPS樹脂に対する水が大過剰となり生産効率が著しく低下することもなく好ましい。
 これらの熱水処理の操作に特に制限は無く、所定量の水に所定量のPPS樹脂を投入し、圧力容器内で加熱・撹拌する方法、連続的に熱水処理を施す方法などにより行われる。熱水処理後の処理溶液から水溶液とPPS樹脂を分離する方法に特に制限は無いが、ふるいやフィルターを用いた濾過が簡便であり、自然濾過、加圧濾過、減圧濾過、遠心濾過などの方法が例示できる。処理液から分離されたPPS樹脂表面に残留している不純物を除去するため、水または温水で数回洗浄することが好ましい。洗浄方法に特に制限は無いが、濾過装置上のPPS樹脂に水をかけながら濾過する方法や、予め用意した水に、分離したPPS樹脂を投入した後に再度濾過するなどの方法で水溶液とPPS樹脂を分離する方法が例示できる。洗浄に用いる水は、蒸留水あるいは脱イオン水であることが好ましい。
 また、これら酸処理や熱水処理時にPPS末端基の分解が起こるのは好ましくないので、酸処理や熱水処理を不活性雰囲気下で実施することが望ましい。不活性雰囲気としては、窒素、ヘリウム、アルゴンなどがあげられるが、経済性の観点から窒素雰囲気下が好ましい。
 [後処理工程(有機溶媒による洗浄)]
 本発明ではPPS樹脂を酸処理する工程や熱水処理する工程の前に有機溶媒により洗浄する工程を含んでもよく、その方法は次のとおりである。本発明でPPS樹脂の洗浄に用いる有機溶媒は、PPS樹脂を分解する作用などを有しないものであれば特に制限はなく、例えばN-メチル-2-ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、1,3-ジメチルイミダゾリジノン、ヘキサメチルホスホラスアミド、ピペラジノン類などの含窒素極性溶媒、ジメチルスルホキシド、ジメチルスルホン、スルホランなどのスルホキシド・スルホン系溶媒、アセトン、メチルエチルケトン、ジエチルケトン、アセトフェノンなどのケトン系溶媒、ジメチルエーテル、ジプロピルエーテル、ジオキサン、テトラヒドロフランなどのエーテル系溶媒、クロロホルム、塩化メチレン、トリクロロエチレン、2塩化エチレン、パークロルエチレン、モノクロルエタン、ジクロルエタン、テトラクロルエタン、パークロルエタン、クロルベンゼンなどのハロゲン系溶媒、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、エチレングリコール、プロピレングリコール、フェノール、クレゾール、ポリエチレングリコール、ポリプロピレングリコールなどのアルコール・フェノール系溶媒およびベンゼン、トルエン、キシレンなどの芳香族炭化水素系溶媒などが挙げられる。これらの有機溶媒のうちでも、N-メチル-2-ピロリドン、アセトン、ジメチルホルムアミドおよびクロロホルムなどの使用が特に好ましい。また、これらの有機溶媒は、1種類で用いても良く、または2種類以上の混合で使用しても良い。
 有機溶媒による洗浄の方法としては、有機溶媒中にPPS樹脂を浸漬せしめるなどの方法があり、必要により適宜撹拌または加熱することも可能である。有機溶媒でPPS樹脂を洗浄する際の洗浄温度については特に制限はなく、常温~300℃程度の任意の温度が選択できる。洗浄温度が高くなる程洗浄効率が高くなる傾向があるが、通常は常温~150℃の洗浄温度で十分効果が得られる。圧力容器中で、有機溶媒の沸点以上の温度で加圧下に洗浄することも可能である。また、洗浄時間についても特に制限はない。洗浄条件にもよるが、バッチ式洗浄の場合、通常5分間以上洗浄することにより十分な効果が得られる。また連続式で洗浄することも可能である。
 これら酸処理、熱水処理または有機溶媒による洗浄は、これらを適宜組み合わせて行うことも可能である。
 [加熱処理工程]
 本発明では、上記後処理工程を経た後のPPS樹脂にさらに加熱処理を行うことで、分子鎖が互いに架橋し、機械的強度が高く、かつ寸法安定性に優れたPPS樹脂を得ることができる。係る加熱処理工程を用いることで、前記した(A-1)高粘度PPS樹脂を簡便に得ることができる。以下に加熱処理工程を具体的に説明する。
 本発明では、高い機械的強度を有するPPS樹脂を得るために加熱処理を行うことができるが、過度な熱処理は溶融流動性の低下および樹脂中のゲル化物の増加により、成形時の未充填等の原因となるため好ましくない。しかしながら、熱処理が軽度すぎると揮発性成分低減効果が小さく、樹脂の強度が低下し、また、耐不凍液性も低下する傾向にある。本発明の加熱処理によれば、溶融流動性を損なうことなく、ゲル化物の発生を抑制しつつ、機械的強度を向上したPPS樹脂を得ることが可能となる。
 加熱処理は加熱処理温度および加熱処理時間を特定の範囲にすれば、高い酸素濃度雰囲気下でも低い酸素濃度雰囲気下でも差し支えない。
 高い酸素濃度雰囲気の条件としては酸素濃度が2体積%を超える濃度であることが好ましく、加熱処理温度は160~270℃、加熱処理時間は0.1~17時間行うことが望ましい。ただ、酸素濃度が高い条件下では揮発性成分の低減速度が速いものの、同時に酸化架橋が急速に進行するためゲル化物が発生しやすくなる。そのため概して低温・長時間または高温・短時間で加熱処理を行うことが好ましい。低温・長時間加熱処理する具体的な条件としては160℃以上210℃以下で1時間以上17時間以下が好ましく、170℃以上200℃以下で1時間以上10時間以下がより好ましい。加熱処理温度が160℃を下回る温度で熱処理を行っても揮発性成分の低減効果が小さく機械的強度の改善効果は小さい。また、低温であっても酸素濃度2体積%を超える濃度の条件においては加熱処理時間が17時間を超えると酸化架橋が進行しゲル化物が発生しやすくなる。高温・短時間加熱処理する具体的な条件としては210℃を超え270℃以下で0.1時間以上1時間未満が好ましく、220℃以上260℃以下で0.2~0.8時間がより好ましい。加熱処理温度が270℃を超えると酸化架橋が急激に進行しゲル化物が発生しやすくなる。また、高温であっても加熱処理時間が0.1時間を下回ると揮発性成分の低減効果が小さく機械的強度の改善効果は小さい。
 低い酸素濃度雰囲気の条件としては酸素濃度が2体積%以下であることが好ましく、加熱処理温度は210~270℃、加熱処理時間は0.2~50時間行うことが望ましい。酸素濃度が低いと揮発性成分の低減効果が小さくなる傾向にあるため、概して高温・長時間で加熱処理を行うことが好ましく、220℃~260℃の加熱処理温度条件下で2~20時間行うことがより好ましい。加熱処理時間が210℃を下回る場合はPPS樹脂中の揮発性成分の量が低減せず機械的強度の改善効果は小さく、加熱処理時間が50時間を超えて行うと生産性が低下する。
 本発明に適用可能な加熱処理のための加熱装置は、通常の熱風乾燥機でもよいし、回転式あるいは撹拌翼付の加熱装置であってもよいが、効率良く、しかもより均一に処理する場合は、回転式あるいは撹拌翼付の加熱装置を用いるのがより好ましく、パドル式ドライヤー、流動層乾燥機、KIDドライヤー、スチームチューブドライヤー、さらにはインクラインドディスクドライヤー、ホッパードライヤー、縦型撹拌乾燥機などが例示できる。なかでもパドル式ドライヤーや流動層乾燥機、KIDドライヤーが均一かつ効率的に加熱する上で好ましい。熱処理の酸素濃度を調整するために、酸素、空気、オゾンなどの酸化性ガスに、窒素、アルゴン、ヘリウム、水蒸気などの非酸化性の不活性ガスを混入しても問題ない。加熱装置内で加熱処理を行うことができれば、加熱装置の上部、下部、側面のどの位置から酸化性ガスや不活性ガスを導入しても特に制限はないが、より簡便な方法としては加熱装置上部からのガスの導入が挙げられる。また、酸化性ガスや不活性ガスは、加熱装置導入前に混合させてから装置に導入してもよいし、加熱装置の異なる場所から別々に酸化性ガスと不活性ガスを混入してもよい。
 なお、加熱処理工程を経ることでPPS樹脂の構造は変化していると考えられるが、加熱処理を経て得られたPPS樹脂は、複雑、かつ多種多様な構造を有しており、当該PPS樹脂の構造を特定するのは実際的ではない事情が存在する。加熱処理工程を経ることで、PPS樹脂に含まれる揮発分や水分を除去することができ、機械強度に優れ、また、寸法安定性にも優れるPPS樹脂を得ることができる。
 上記重合反応工程、回収工程、後処理工程、および必要に応じ加熱処理工程を経て得られたPPS樹脂のメルトフローレート(以下、「MFR」と略することもある)は1000g/10分以下であることが好ましい。
 本発明において用いるPPS樹脂は、(A)ポリフェニレンスルフィド樹脂を100重量%としたとき、(A-1)MFRが50~600g/10分であるPPS樹脂を20重量%以上含むことが好ましく、より好ましくは50重量%以上を含むことがメッキ性向上の観点から好ましい。MFRが50g/10分以上の場合は成形性が悪化することがなく好ましい。MFRが600g/10分以下であれば、メッキ層が形成されない、もしくはメッキ層の密着性が悪化することがないので好ましい。MFRは、100~500g/10分であることがより好ましい。なおここで、MFRは、摂氏315℃、2160g荷重の条件で、ASTM-D1238-70に従って測定した値である。(A)ポリフェニレンスルフィド樹脂100重量部において、(A-1)高粘度PPS樹脂を50重量%以上含むことでメッキ性がより向上し好ましい。なお、(A)ポリフェニレンスルフィド樹脂における(A-1)高粘度PPS樹脂の含有量の上限は、100重量%、すなわち、(A-1)高粘度PPS樹脂のみを用いることが最も好ましい。
 本発明に用いるポリフェニレンスルフィド樹脂組成物は、(B)繊維状充填材を含有している。(B)繊維状充填材としては、具体的には例えば、ガラス繊維、ガラスミルドファイバー、ガラスフラットファイバー、異形断面ガラスファイバー、ガラスカットファイバー、ステンレス繊維、アルミニウム繊維や黄銅繊維などの金属繊維、芳香族ポリアミド繊維やケブラーフィブリルなどの有機繊維、石膏繊維、セラミック繊維、アスベスト繊維、ジルコニア繊維、アルミナ繊維、シリカ繊維、酸化チタン繊維、炭化ケイ素繊維、などが例示できる。
 (B)繊維状充填材の中でも、機械特性や寸法特性からガラス繊維、ガラスミルドファイバー、ガラスフラットファイバー、異形断面ガラスファイバーから選ばれる少なくとも1種類を用いることが好ましい。なお、本発明に使用する上記のガラス繊維やそれ以外のフィラーはその表面を公知のカップリング剤(例えば、シラン系カップリング剤、チタネート系カップリング剤など)、その他表面処理で処理して用いることもできる。
 ポリフェニレンスルフィド樹脂組成物に含まれる(B)繊維状充填材の含有量は、耐熱性、機械特性のバランスから、(A)ポリフェニレンスルフィド樹脂100重量部に対して、(B)繊維状充填材を30~200重量部含有することが必須である。より好ましくは40~150重量部であり、またさらに好ましくは50~110重量部である。30重量部未満の場合、PPS樹脂の線膨張係数が大きく、メッキ層を形成する金属との線膨張差が大きくなるため、ヒートサイクル時に発生する応力が大きくなることから、密着性が悪化しやすくなる。200重量部を超えると、過度に表面粗化が発生してしまい、メッキ時のアンカー効果が期待されないため、密着性が悪化しやすい。
 次に、本発明に用いるポリフェニレンスルフィド樹脂組成物は、(C)グリシジル基、酸無水物基、カルボキシル基及びその塩、並びにアルコキシカルボニル基から選ばれる少なくとも1種類の官能基を含有する官能基含有オレフィン系共重合体(以下、「(C)官能基含有オレフィン系共重合体」と略記することがある。)を含有することが好ましい。(C)官能基含有オレフィン系共重合体は、オレフィン系重合体及び/またはオレフィン系共重合体にグリシジル基、酸無水物基、アイオノマーなどの官能基を有する単量体成分(官能基含有成分)を導入することにより得られるが、その官能基含有成分の例としては、無水マレイン酸、無水イタコン酸、無水シトラコン酸、エンドビシクロ[2.2.1]5-ヘプテン-2,3-ジカルボン酸、エンドビシクロ-[2.2.1]5-ヘプテン-2,3-ジカルボン酸無水物などの酸無水物基を含有する単量体、アクリル酸グリシジル、メタクリル酸グリシジル、エタクリル酸グリシジル、イタコン酸グリシジル、シトラコン酸グリシジルなどのグリシジル基を含有する単量体、カルボン酸金属錯体などのアイオノマーを含有する単量体が挙げられる。
 オレフィン系共重合体の種類としては、エチレン、プロピレン、ブテン-1、ペンテン-1、オクテン-1、4-メチルペンテン-1、イソブチレンなどのα-オレフィン単独または2種以上を重合して得られる(共)重合体、α-オレフィンとアクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチルなどのα,β-不飽和酸およびそのアルキルエステルとの共重合体などがあり、具体例としては、エチレン/プロピレン共重合体(“A/B”はAとBとの共重合体であることを表す、以下同じ)、エチレン/ブテン-1共重合体、エチレン/ヘキセン-1共重合体、エチレン/オクテン-1共重合体、エチレン/アクリル酸メチル共重合体、エチレン/アクリル酸エチル共重合体、エチレン/アクリル酸ブチル共重合体、エチレン/メタクリル酸メチル共重合体、エチレン/メタクリル酸エチル共重合体、エチレン/メタクリル酸ブチル共重合体などが挙げられる。官能基の中でも、メッキ性向上の観点から、グリシジル基を含有することが好ましい。
 これらオレフィン系共重合体に官能基含有成分を導入する方法は特に制限はなく、前記オレフィン系(共)重合体として用いられるのと同様のオレフィン系(共)重合体を(共)重合する際に共重合させたり、オレフィン系(共)重合体にラジカル開始剤を用いてグラフト共重合法によって導入するなどの方法を用いることができる。特に有用なオレフィン重合体にグリシジル基、酸無水物基、アイオノマーなどの官能基を有する単量体成分を導入して得られるオレフィン(共)重合体の具体例としては、エチレン/プロピレン-g-メタクリル酸グリシジル共重合体(”g”はグラフトを表す、以下同じ)、エチレン/ブテン-1-g-メタクリル酸グリシジル共重合体、エチレン/アクリル酸グリシジル共重合体、エチレン/メタクリル酸グリシジル共重合体、エチレン/アクリル酸メチル/メタクリル酸グリシジル共重合体、エチレン/メタクリル酸メチル/メタクリル酸グリシジル共重合体、エチレン/プロピレン-g-無水マレイン酸共重合体、エチレン/ブテン-1-g-無水マレイン酸共重合体、エチレン/アクリル酸メチル-g-無水マレイン酸共重合体、エチレン/アクリル酸エチル-g-無水マレイン酸共重合体、エチレン/メタクリル酸メチル-g-無水マレイン酸共重合体、エチレン/メタクリル酸エチル-g-無水マレイン酸共重合体、エチレン/メタクリル酸共重合体の亜鉛錯体、エチレン/メタクリル酸共重合体のマグネシウム錯体、エチレン/メタクリル酸共重合体のナトリウム錯体あるいは、エチレン、プロピレンなどのα-オレフィンとα,β-不飽和酸のグリシジルエステルが好適に用いられる。官能基含有成分はグリシジル基が最も好ましく、グリシジル基濃度として1.0~4.0重量%、好ましくは1.1~3.9重量%の範囲内であるのが適当である。なお、(C)官能基含有オレフィン系共重合体のグリシジル基濃度は下式(1)より算出される。1.0重量%以上とすることでPPS樹脂との相溶性が良好で、機械物性が上昇する。4.0重量%以下とすることでメッキ層の密着性が向上する。
式(1)  グリシジル基濃度(重量%)=A×A/Gly
 A[重量%]:官能基含有オレフィン系共重合体中におけるグリシジル基含有成分の含有率
 A[g/mol]:グリシジル基含有成分の分子量
 Gly[g/mol]:グリシジル基の分子量(43g/mol)。
 なおここで、グリシジル基含有成分とは、(C)官能基含有オレフィン系共重合体を構成する繰り返し単位のうち、グリシジル基を含む繰り返し単位をいう。
 (C)官能基含有オレフィン系共重合体は、(A)ポリフェニレンスルフィド樹脂100重量部に対して1~30重量部含有することが好ましい。1重量部以上とすることで、メッキ層の密着性が向上し、30重量部以下とすることで射出成形時の金型への付着物を抑制し、分解により発生したガスによる製品の外観が発生しないため、好ましい。
 さらに、本発明に用いるポリフェニレンスルフィド樹脂組成物は、必要に応じて、(D)非繊維状無機充填材を含んでもよい。(D)非繊維状無機充填材としては、Eガラス(板状・鱗片状・粒状・不定形状・破砕品)、Hガラス(板状・鱗片状・粒状・不定形状・破砕品)、Aガラス(板状・鱗片状・粒状・不定形状・破砕品)、Cガラス(板状・鱗片状・粒状・不定形状・破砕品)、天然石英ガラス(板状・鱗片状・粒状・不定形状・破砕品)、合成石英ガラス(板状・鱗片状・粒状・不定形状・破砕品)、タルク、カオリン、シリカ(破砕状・球状)、石英、炭酸カルシウム、炭酸亜鉛、マイカ、ガラスビーズ、ガラスフレーク、破砕状・不定形状ガラス、ガラスマイクロバルーン、クレー、二硫化モリブデン、酸化アルミニウム(破砕状)、透光性アルミナ(板状・鱗片状・粒状・不定形状・破砕品)、酸化チタン(破砕状)、酸化亜鉛(板状・鱗片状・粒状・不定形状・破砕品)などの金属酸化物、水酸化アルミニウム(板状・鱗片状・粒状・不定形状・破砕品)などの金属水酸化物、窒化アルミニウム、透光性窒化アルミニウム(板状・鱗片状・粒状・不定形状・破砕品)、ポリリン酸カルシウム、金属粉、金属フレーク、金属リボン、金属酸化物などが挙げられる。金属粉、金属フレーク、金属リボンの金属種の具体例としては銀、ニッケル、銅、亜鉛、アルミニウム、ステンレス、鉄、黄銅、クロム、錫などが例示できる。特に機械物性や寸法特性の観点から、タルク、カオリン、シリカ、炭酸カルシウム、ガラスビーズ、ガラスフレークから選ばれる少なくとも1種類を含有することが好ましい。
 (D)非繊維状無機充填材の含有量は、メッキ密着性、耐熱性、機械的特性のバランスの観点から、(A)ポリフェニレンスルフィド樹脂100重量部に対して0.5~60重量部であり、好ましくは0.5~35重量部、より好ましくは0.5~25重量部である。0.5重量部以上とすることでは、メッキ時に必要な表面粗度を得ることができる。60重量部以下とすることで、メッキ工程における薬液処理において必要以上に表面が荒れず、メッキ層の密着性を維持できる。
 また、(A)ポリフェニレンスルフィド樹脂100重量部に対する、(D)非繊維状無機充填材の配合重量Xと(B)繊維状充填材の配合重量Yの比率Y/Xは2以上であり、好ましくは3以上であることが好ましい。2以上の場合、メッキ工程における薬液処理において、必要以上に表面が荒れず、メッキ層の密着性を維持できる。
 本発明のPPS樹脂組成物は、本発明の効果を損なわない範囲において、(E)グリシジル基、酸無水物基、カルボキシル基及びその塩、並びにアルコキシカルボニル基から選ばれる官能基を含有しないエチレンと炭素原子数3~12のα-オレフィンとの共重合体(以下、「(E)官能基を含有しないオレフィン系共重合体」と略記する場合がある。)を含有してもよい。炭素原子数3~12のα-オレフィンは、プロピレン、ブテン-1、ペンテン-1、オクテン-1、4-メチルペンテン-1、イソブチレンなどが挙げられ、α-オレフィン単独または2種以上を重合して得られる(共)重合体であってもよい。
 (E)官能基を含有しないオレフィン系共重合体の含有量は、(A)ポリフェニレンスルフィド樹脂100重量部に対して、1~3重量部が好ましく、特に0~1.5重量部が好ましい。1重量部以上を添加した場合、耐ヒートサイクル性が飛躍的に向上するので好ましい。3重量部以下とすることで、耐ヒートサイクル性を向上させつつ、寸法安定性も維持できるので好ましい。
 本発明に用いられるポリフェニレンスルフィド樹脂組成物は、本発明の効果を損なわない範囲において、(F)エポキシ基、アミノ基、イソシアネート基、水酸基、メルカプト基およびウレイド基の中から選ばれた少なくとも1種の官能基を有するアルコキシシラン化合物(以下、「(F)シラン化合物」と称することもある。)を含有してもよい。
 (F)シラン化合物の含有量は、(A)ポリフェニレンスルフィド樹脂100重量部に対し、(F)シラン化合物0.1~3重量部であることが好ましい。かかる範囲とすることで、優れた流動性とウエルド強度とを両立させることができる。
 更に、本発明に用いられるポリフェニレンスルフィド樹脂組成物は、本発明の効果を損なわない範囲において、(A)ポリフェニレンスルフィド樹脂、(C)官能基含有オレフィン系共重合体、および(E)官能基を含有しないオレフィン系共重合体以外の他の樹脂をブレンドして用いてもよい。かかるブレンド可能な樹脂には特に制限はないが、その具体例としては、ナイロン6、ナイロン66、ナイロン610、ナイロン11、ナイロン12、芳香族系ナイロンなどのポリアミド樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリシクロヘキシルジメチレンテレフタレート、ポリナフタレンテレフタレートなどのポリエステル樹脂、ポリアミドイミド、ポリアセタール、ポリイミド、ポリエーテルイミド、ポリエーテルスルホン、変性ポリフェニレンエーテル樹脂、ポリサルフォン樹脂、ポリアリルサルフォン樹脂、ポリケトン樹脂、ポリアリレート樹脂、液晶ポリマー、ポリエーテルケトン樹脂、ポリチオエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、四フッ化ポリエチレン樹脂、などが挙げられる。
 なお、本発明に用いられるポリフェニレンスルフィド樹脂組成物は、本発明の効果を損なわない範囲で他の成分、例えば、酸化防止剤や耐熱安定剤(ヒンダートフェノール系、ヒドロキノン系、リン系、ホスファイト系、アミン系、硫黄系およびこれらの置換体等)、耐候剤(レゾルシノール系、サリシレート系、ベンゾトリアゾール系、ベンゾフェノン系、ヒンダードアミン系等)、離型剤および滑剤(モンタン酸およびその金属塩、そのエステル、そのハーフエステル、ステアリルアルコール、ステアラミド、ステアラート、ビス尿素およびポリエチレンワックス等)、顔料(硫化カドミウム、フタロシアニン、着色用カーボンブラック等)、染料(ニグロシン等)、結晶核剤(タルク、シリカ、カオリン、クレー等の無機結晶核剤または有機結晶核剤)、可塑剤(p-オキシ安息香酸オクチル、N-ブチルベンゼンスルホンアミド等)、帯電防止剤(アルキルサルフェート型アニオン系帯電防止剤、4級アンモニウム塩型カチオン系帯電防止剤、ポリオキシエチレンソルビタンモノステアレートのような非イオン系帯電防止剤、ベタイン系両性帯電防止剤等)、難燃剤(例えば、赤燐、燐酸エステル、メラミンシアヌレート、水酸化マグネシウム、水酸化アルミニウム等の水酸化物、ポリリン酸アンモニウム、臭素化ポリスチレン、臭素化ポリフェニレンエーテル、臭素化ポリカーボネート、臭素化エポキシ樹脂あるいはこれらの臭素系難燃剤と三酸化アンチモンとの組み合わせ等)、熱安定剤、ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸リチウムなどの滑剤、ノボラックフェノール型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂などの強度向上材、紫外線防止剤、着色剤、難燃剤および発泡剤などの通常の添加剤を添加することができる。また、結晶核剤の種類に特に制限はないが、無機結晶核剤や有機結晶核剤などが挙げられる。
 本発明に用いられるポリフェニレンスルフィド樹脂組成物の調製方法に特に制限はないが、各原料を単軸あるいは2軸の押出機、バンバリーミキサー、ニーダーおよびミキシングロールなど通常公知の溶融混合機に供給して、280~380℃の温度で混練する方法などを代表例として挙げることができる。原料の混合順序にも特に制限はなく、全ての原材料を配合後上記の方法により溶融混練する方法、一部の原材料を配合後上記の方法により溶融混練し、更に残りの原材料を配合し溶融混練する方法、あるいは一部の原材料を配合後単軸あるいは2軸の押出機により溶融混練中にサイドフィーダーを用いて残りの原材料を混合する方法などのいずれの方法を用いてもよい。また、少量添加剤成分については、他の成分を上記の方法などで混練しペレット化した後、成形前に添加して成形に供することももちろん可能である。
 このようにして得られるポリフェニレンスルフィド樹脂組成物は、射出成形、押出成形、ブロー成形、トランスファー成形など各種成形に供することが可能であるが、特に射出成形用途に適している。
 本発明では、前記ポリフェニレンスルフィド樹脂組成物によって成形された成形品にメッキ層を形成し、成形品の表面の一部にメッキ層が形成されたメッキ成形品を得る。また、成形品の表面の全部にメッキ層が形成された場合を含むことはいうまでもない。本発明で行うメッキ手法について説明する。樹脂成形品に対する一般的な無電解メッキ工程は、表面処理工程、触媒付与工程、活性化処理工程、およびメッキ処理工程を行う。メッキ処理工程は、無電解ニッケルメッキ、および電気メッキを実施することが一般的である。
 表面処理工程は、表面活性化工程および/又は表面粗化工程が挙げられる。表面粗化工程について、樹脂成形品の表面を粗化するための手法は、それが化学的、機械的または物理的手法のいずれかの方法であっても構わないが、前述の如く、PPS樹脂は耐薬品性に優れるため化学的な手法では必ずしも十分な粗化が行えないことが多い。このような場合は、機械的または物理的な粗化方法が好ましく、例えばサンドペーパーなどを用いて、樹脂成形品の表面を荒らす方法であっても構わないが、粗化効率性、工業的量産性、および品質の安定性に優れるサンドブラスト、ショットブラスト、液体ホーニング、タンブリング、レーザー照射などが好ましい。しかしながら、これらの手法は複雑形状の場合、粗化が不十分な可能性があり、さらには表面を必要以上に荒らすことから平滑性を損なう恐れがある。最も好ましい表面処理工程は、以下の手順で行われる方法である。
(a)成形品の表面から5~200mm離れた位置から、波長100~400nmに主要波長を有する紫外光を10~120分間照射する。
(b)その後、濃度5~40重量%のアルカリ水溶液に、前記(a)で処理された成形品を1~30分間浸漬する。
 紫外光の照射位置が成形品の表面から5mmよりも小さい場合、過度の表面活性化により表面劣化を生じる。200mmよりも大きい場合は、照射強度が弱いために、成形品表面の活性化状態が不十分となる。また、照射時間は10分以上とすることで、表面が活性化され、十分なメッキ層の密着性を得ることができる。120分以下とすることで、PPS樹脂表面を劣化させることがなく、好ましい。アルカリ水溶液の種類に特に限定はないが、水酸化ナトリウム水溶液、水酸化カリウム水溶液、水酸化リチウム水溶液、水酸化ルビニウム水溶液、水酸化セシウム水溶液などのアルカリ金属水溶液、およびテトラアルキルアンモニウム水酸化物水溶液から選択されるアルカリ金属水溶液であることが好ましく、より好ましくは水酸化カリウム水溶液、水酸化ナトリウム水溶液から選ばれる水溶液である。アルカリ水溶液の濃度は5重量%以上とすることで十分に表面粗化させることができる。40重量%以下とすることで、表面を過剰に粗化させることがない。また、アルカリ水溶液の温度は、40~80℃であることが好ましい。温度を40℃以上とすることで十分に表面粗化させることができ、80℃以下とすることで表面を過剰に粗化させることがない。また、1分以上浸漬することで、十分に表面粗化させることができ、浸漬時間を30分以下とすることで、表面を過剰に粗化させることがない。
 前記表面処理工程で得られた成形品の表面は、走査型電子顕微鏡(Scanning Electron Microscope)で観察した場合に、直径0.01~2μm、好ましくは0.01~1μmの細孔を有していることが好ましい。0.01μm以上の細孔を有することで、物理的密着性(アンカー効果)を発現することができ十分なメッキ層の密着性が発現するため好ましい。2μm以下とすることで、表面粗化も抑制できるので好ましい。
 次に、前記表面処理工程で得られた成形品に対して触媒金属前駆体を吸着させる工程(触媒付与工程)、および触媒金属前駆体を金属へと還元する工程(活性化処理工程)は、一般的な手法で構わない。一例としては、0.1~0.5g/dmの2塩化パラジウム水溶液を触媒溶液とし、粗化した成形品表面へと塗布し、15~25g/dmのホスフィン酸ナトリウム水溶液を用いることで、PPS樹脂表面の2塩化パラジウムを金属に還元する。この手法によって、無電解NiPメッキを円滑に析出させる金属核を形成する。
 次に、前記工程で得られた金属パラジウムが表面に沈着した成形品を用いてメッキ処理工程が実施される。このメッキ処理工程では化学銅メッキ、化学ニッケルメッキなどが使用される。さらにこの後に、電気メッキを施すことによって光沢ニッケルメッキや硫酸銅メッキをすることが可能となる。電磁波シールド性の観点から、特に銅メッキが有用である。
 前記工程で得られたメッキ成形品におけるメッキ層は、JIS-B-0601に準ずる方法で測定した場合、算術平均粗さRaが1.5μm以下であることを特徴とする。好ましくは1.0μm以下、より好ましくは0.5μm以下である。1,5μmを超えると、電磁波シールド性などの際の電磁波の選択的周波数の除去が難しくなるため好ましくない。算術平均粗さRaの下限値は、小さいほど好ましいが、0.01μm以上が現実的である。
 本発明のメッキ成形品は、PPS樹脂が本来有する各種特性を犠牲にすることなく、表面平滑性に優れたメッキ層を形成することを可能とする。係る成形品は、メッキ層による電磁波シールド性および表面熱伝導性に優れることから電気・電子部品に適用できる。特に電磁波による相互干渉を防ぐことが可能である。上記特性から、本発明のメッキ成形品はセンサー部品の筐体やECU(Electronic Control Unit)部品の筐体に適用することが好ましい。
 その他本発明で用いられるポリフェニレンスルフィド樹脂組成物からなる成形品の適用可能な用途としては、例えばセンサー、LEDランプ、民生用コネクター、ソケット、抵抗器、リレーケース、スイッチ、コイルボビン、コンデンサー、バリコンケース、発振子、各種端子板、変成器、プラグ、プリント基板、チューナー、スピーカー、マイクロフォン、ヘッドフォン、小型モーター、磁気ヘッドベース、半導体、液晶、FDD(Floppy Disk Drive)キャリッジ、FDDシャーシ、モーターブラッシュホルダー、パラボラアンテナ、コンピューター関連部品などに代表される電気・電子部品;VTR(Video Tape Recorder)部品、テレビ部品、アイロン、ヘアードライヤー、炊飯器部品、電子レンジ部品、音響部品、オーディオ・レーザーディスク(登録商標)・コンパクトディスクなどの音声機器部品、照明部品、冷蔵庫部品、エアコン部品、タイプライター部品、ワードプロセッサー部品などに代表される家庭、事務電気製品部品への適用も可能である。その他、オフィスコンピューター関連部品、電話器関連部品、ファクシミリ関連部品、複写機関連部品、洗浄用治具、モーター部品、ライター、タイプライターなどに代表される機械関連部品;顕微鏡、双眼鏡、カメラ、時計などに代表される光学機器、精密機械関連部品;通信機器関連などに使用されるサーバー関連部品、スモールセル関連部品、電波ノイズ除去関連部品:バルブオルタネーターターミナル、オルタネーターコネクター、ICレギュレーター、ライトディヤー用ポテンシオメーターベース、排気ガスバルブなどの各種バルブ、燃料関係・排気系・吸気系各種パイプ、エアーインテークノズルスノーケル、インテークマニホールド、燃料ポンプ、排気ガスセンサー、冷却水センサー、油温センサー、スロットルポジションセンサー、クランクシャフトポジションセンサー、ブレーキパッド摩耗センサー、エアコン用サーモスタットベース、エアコンパネルスイッチ基板、ヒューズ用コネクター、ホーンターミナル、電装部品絶縁板、ランプソケット、ランプリフレクター、ランプハウジング、点火装置ケース、車速センサー、ケーブルライナーなどの自動車・車両関連部品など各種用途が例示できる。
 以下に実施例を示し、本発明を更に具体的に説明するが、本発明はこれら実施例の記載に限定して解釈されるものではない。
 [製造したPPS樹脂の評価方法]
 (1)メルトフローレート(MFR)
 測定温度315℃、2160g荷重とし、ASTM-D1238-70に準ずる方法で測定した。
 但し、粘度が低いポリフェニレンスルフィド樹脂に関しては、次の方法でMFRを算出した。ポリフェニレンスルフィド樹脂を測定温度315.5℃、345g荷重とし、ASTM-D1238-70に準ずる方法でERを測定し、下記式(2)によりMFRの値を算出した。
式(2)  MFR=15.8×4.4×ER。
 [参考例1]PPSの重合(PPS-1)
 撹拌機および底栓弁付きの70リットルのオートクレーブに、47.5%水硫化ナトリウム8.27kg(70.00モル)、96%水酸化ナトリウム2.91kg(69.80モル)、N-メチル-2-ピロリドン(NMP)11.45kg(115.50モル)、およびイオン交換水10.5kgを仕込み、常圧で窒素を通じながら245℃まで約3時間かけて徐々に加熱し、水14.78kgおよびNMP0.28kgを留出した後、反応容器を200℃に冷却した。
 仕込みアルカリ金属硫化物1モル当たりの系内残存水分量は、NMPの加水分解に消費された水分を含めて1.06モルであった。また、硫化水素の飛散量は、仕込みアルカリ金属硫化物1モル当たり0.02モルであった。その後200℃まで冷却し、p-ジクロロベンゼン10.48kg(71.27モル)、NMP9.37kg(94.50モル)を加え、反応容器を窒素ガス下に密封し、240rpmで撹拌しながら0.6℃/分の速度で200℃から270℃まで昇温した。270℃で100分反応した後、オートクレーブの底栓弁を開放し、窒素で加圧しながら内容物を撹拌機付き容器に15分かけてフラッシュし、250℃でしばらく撹拌して大半のNMPを除去した。
 得られた固形物およびイオン交換水76リットルを撹拌機付きオートクレーブに入れ、70℃で30分洗浄した後、ガラスフィルターで吸引濾過した。次いで70℃に加熱した76リットルのイオン交換水をガラスフィルターに注ぎ込み、吸引濾過してケークを得た。
 得られたケークおよびイオン交換水90リットルを撹拌機付きオートクレーブに仕込み、pHが7になるよう酢酸を添加した。オートクレーブ内部を窒素で置換した後、192℃まで昇温し、30分保持した。その後オートクレーブを冷却して内容物を取り出した。
 内容物をガラスフィルターで吸引濾過した後、これに70℃のイオン交換水76リットルを注ぎ込み吸引濾過してケークを得た。得られたケークを窒素気流下、120℃で乾燥することにより、乾燥PPSを得た。これをMFR値が150g/10分となるまで酸素気流下200℃で熱処理し、架橋状PPS-1を得た。得られたポリマーのMFRは130g/10分であった。
 [参考例2]PPSの重合(PPS-2)
 撹拌機および底栓弁付きの70リットルオートクレーブに、47.5%水硫化ナトリウム8.27kg(70.00モル)、96%水酸化ナトリウム2.94kg(70.63モル)、N-メチル-2-ピロリドン(NMP)11.45kg(115.50モル)、酢酸ナトリウム1.89kg(23.1モル)、及びイオン交換水5.50kgを仕込み、常圧で窒素を通じながら245℃まで約3時間かけて徐々に加熱し、水9.77kgおよびNMP0.28kgを留出した後、反応容器を200℃に冷却した。仕込みアルカリ金属硫化物1モル当たりの系内残存水分量は、NMPの加水分解に消費された水分を含めて1.06モルであった。また、硫化水素の飛散量は、仕込みアルカリ金属硫化物1モル当たり0.02モルであった。
 その後200℃まで冷却し、p-ジクロロベンゼン10.42kg(70.86モル)、NMP9.37kg(94.50モル)を加え、反応容器を窒素ガス下に密封し、240rpmで撹拌しながら0.6℃/分の速度で200℃から270℃まで昇温し、270℃で140分反応した。その後、270℃から250℃まで15分かけて冷却しながら水2.40kg(133モル)を圧入した。ついで250℃から220℃まで75分かけて徐々に冷却した後、室温近傍まで急冷し内容物を取り出した。
 内容物を約35リットルのNMPで希釈しスラリーとして85℃で30分撹拌後、80メッシュ金網(目開き0.175mm)で濾別して固形物を得た。得られた固形物を同様にNMP約35リットルで洗浄濾別した。得られた固形物を70リットルのイオン交換水で希釈し、70℃で30分撹拌後、80メッシュ金網で濾過して固形物を回収する操作を合計3回繰り返した。得られた固形物および酢酸32gを70リットルのイオン交換水で希釈し、70℃で30分撹拌後、80メッシュ金網で濾過し、更に得られた固形物を70リットルのイオン交換水で希釈し、70℃で30分撹拌後、80メッシュ金網で濾過して固形物を回収した。このようにして得られた固形物を窒素気流下、120℃で乾燥することにより、乾燥PPS-2を得た。得られたポリマーのMFRは300g/10分であった。
 [参考例3]PPSの重合(PPS-3)
 撹拌機および底に弁のついたオートクレーブに、47.5%水硫化ナトリウム8267.4g(70.0モル)、96%水酸化ナトリウム2925.0g(70.2モル)、N-メチル-2-ピロリドン(NMP)13860.0g(140.0モル)、酢酸ナトリウム1894.2g(23.1モル)、およびイオン交換水10500.0gを仕込み、常圧で窒素を通じながら240℃まで約3時間かけて徐々に加熱し、水14772.1gおよびNMP280.0gを留出したのち、反応容器を160℃に冷却した。仕込みアルカリ金属硫化物1モル当たりの系内残存水分量は、NMPの加水分解に消費された水分を含めて1.08モルであった。また、硫化水素の飛散量は仕込みアルカリ金属硫化物1モル当たり0.023モルであった。
 次に、p-ジクロロベンゼン(p-DCB)10646.7g(72.4モル)、NMP6444.9g(65.1モル)を加え、反応容器を窒素ガス下に密封し、240rpmで撹拌しながら、200℃から270℃まで0.6℃/分の速度で昇温し、270℃で70分保持した。オートクレーブ底部の抜き出しバルブを開放し、窒素で加圧しながら内容物を撹拌機付き容器に15分かけてフラッシュし、250℃でしばらく撹拌して大半のNMPを除去した。
 得られた固形物およびイオン交換水53リットルを撹拌機付きオートクレーブに入れ、70℃で30分洗浄した後、ポアサイズ10~16μmのガラスフィルターで吸引濾過した。次いで70℃に加熱した60リットルのイオン交換水をポアサイズ10~16μmのガラスフィルターに注ぎ込み、吸引濾過してPPS樹脂ケーク18000g(その内PPS樹脂7550gが含まれる)を得た。
 前記PPS樹脂ケーク18000g、イオン交換水40リットル、および酢酸43gを撹拌機付きオートクレーブに仕込み、オートクレーブ内部を窒素で置換した後、192℃まで昇温し、30分保持して酸処理を施した。酸処理時のpHは7であった。オートクレーブ冷却後、内容物をポアサイズ10~16μmのガラスフィルターで濾過した。次いで、70℃に加熱した60リットルのイオン交換水をガラスフィルターに注ぎ込み、吸引濾過してケークを得た。得られたケークを窒素気流下120℃で4時間乾燥し、酸処理を施した直鎖状PPSを得た。
直鎖状PPSを容積100リットルの撹拌機付き加熱装置に入れ、220℃、酸素濃度2%で2時間熱酸化処理を施し、架橋状PPS-3を得た。得られたポリマーのMFRは5000g/10分であった。
 [参考例4]PPSの重合(PPS-4)
 撹拌機および底に弁のついたオートクレーブに、47.5%水硫化ナトリウム8267.4g(70.0モル)、96%水酸化ナトリウム2925.0g(70.2モル)、N-メチル-2-ピロリドン(NMP)13860.0g(140.0モル)、酢酸ナトリウム1894.2g(23.1モル)、およびイオン交換水10500.0gを仕込み、常圧で窒素を通じながら240℃まで約3時間かけて徐々に加熱し、水14772.1gおよびNMP280.0gを留出したのち、反応容器を160℃に冷却した。仕込みアルカリ金属硫化物1モル当たりの系内残存水分量は、NMPの加水分解に消費された水分を含めて1.08モルであった。また、硫化水素の飛散量は仕込みアルカリ金属硫化物1モル当たり0.023モルであった。
 次に、p-ジクロロベンゼン(p-DCB)10646.7g(72.4モル)、NMP6444.9g(65.1モル)を加え、反応容器を窒素ガス下に密封し、240rpmで撹拌しながら、200℃から270℃まで0.6℃/分の速度で昇温し、270℃で70分保持した。オートクレーブ底部の抜き出しバルブを開放し、窒素で加圧しながら内容物を撹拌機付き容器に15分かけてフラッシュし、250℃でしばらく撹拌して大半のNMPを除去した。
 得られた固形物およびイオン交換水53リットルを撹拌機付きオートクレーブに入れ、70℃で30分洗浄した後、ポアサイズ10~16μmのガラスフィルターで吸引濾過した。次いで70℃に加熱した60リットルのイオン交換水をポアサイズ10~16μmのガラスフィルターに注ぎ込み、吸引濾過してPPS樹脂ケーク18000g(PPS樹脂7550gが含まれる)を得た。
 前記PPS樹脂ケーク18000g、イオン交換水40リットル、および酢酸43gを撹拌機付きオートクレーブに仕込み、オートクレーブ内部を窒素で置換した後、192℃まで昇温し、30分保持して酸処理を施した。酸処理時のpHは7であった。オートクレーブ冷却後、内容物をポアサイズ10~16μmのガラスフィルターで濾過した。次いで、70℃に加熱した60リットルのイオン交換水をガラスフィルターに注ぎ込み、吸引濾過してケークを得た。得られたケークを窒素気流下120℃で4時間乾燥し、酸処理を施した直鎖状PPS-4を得た。得られたポリマーのMFRは6300g/10分であった。
 [参考例5]PPSの重合(PPS-5)
 撹拌機および底栓弁付きの70リットルオートクレーブに、47.5%水硫化ナトリウム8.27kg(70.00モル)、96%水酸化ナトリウム2.91kg(69.80モル)、N-メチル-2-ピロリドン(NMP)11.45kg(115.50モル)、及びイオン交換水10.5kgを仕込み、常圧で窒素を通じながら245℃まで約3時間かけて徐々に加熱し、水14.78kgおよびNMP0.28kgを留出した後、反応容器を200℃に冷却した。仕込みアルカリ金属硫化物1モル当たりの系内残存水分量は、NMPの加水分解に消費された水分を含めて1.06モルであった。また、硫化水素の飛散量は、仕込みアルカリ金属硫化物1モル当たり0.02モルであった。
 その後200℃まで冷却し、p-ジクロロベンゼン10.48kg(71.27モル)、NMP9.37kg(94.50モル)を加え、反応容器を窒素ガス下に密封し、240rpmで撹拌しながら0.6℃/分の速度で200℃から270℃まで昇温した。270℃で100分反応した後、オートクレーブの底栓弁を開放し、窒素で加圧しながら内容物を撹拌機付き容器に15分かけてフラッシュし、250℃でしばらく撹拌して大半のNMPを除去した。
 得られた固形物およびイオン交換水76リットルを撹拌機付きオートクレーブに入れ、70℃で30分洗浄した後、ガラスフィルターで吸引濾過した。次いで70℃に加熱した76リットルのイオン交換水をガラスフィルターに注ぎ込み、吸引濾過してケークを得た。
 得られたケークおよびイオン交換水90リットルを撹拌機付きオートクレーブに仕込み、pHが7になるよう酢酸を添加した。オートクレーブ内部を窒素で置換した後、192℃まで昇温し、30分保持した。その後オートクレーブを冷却して内容物を取り出した。
 内容物をガラスフィルターで吸引濾過した後、これに70℃のイオン交換水76リットルを注ぎ込み吸引濾過してケークを得た。得られたケークを窒素気流下、120℃で乾燥することにより、乾燥PPS-4を得た。得られたPPS-5は、ERが90g/10分であり、MFRに換算すると、6257g/10分であった。
 [実施例1~13、比較例1~6]
 シリンダー温度を320℃、スクリュー回転数を400rpmに設定した、26mm直径の中間添加口を有する2軸押出機(東芝機械株式会社製 TEM-26)を用いて、表1および表2に示す各実施例および比較例に記載の重量比で、参考例1~6で得たPPS樹脂を用いた(A)ポリフェニレンスルフィド樹脂、(C)官能基含有オレフィン系共重合体および(D)非繊維状無機充填材を原料供給口から添加して溶融状態とし、(B)繊維状充填材を中間添加口から供給し、吐出量30kg/時間で溶融混練してペレットを得た。このペレットを用いて、各特性を評価した。その結果を表1および表2に示す。
 [メッキ層の形成方法]
 以下の方法で、成形品に対しメッキ層を形成し、その特性を測定した。
 (表面処理工程 方法1)
 成形品の表面から30mmの高さから、主要波長として184.9nmおよび253.7nmの波長をもった紫外光を60分間照射した後、濃度20質量%の水酸化カリウム水溶液に60℃で5分浸漬する。
 (表面処理工程 方法2)
 成形品を濃硝酸67.5質量%とフッ化水素アンモニウム145g/Lの混合溶液に40℃で8分浸漬し、その後、20g/Lの水酸化ナトリウム水溶液で中和する。
 (触媒付与工程~メッキ工程)
 前記表面処理工程で得られた、表面を粗化した成形品に対して10体積%に調整したCC-231(Rhom and Hass)を用いて45℃、2分間浸漬することで表面調整を行い、0.3g/dmの2塩化パラジウム水溶液を触媒溶液とし、45℃、2分間浸漬することで粗化した成形品表面へと塗布した。そののち、19g/dmのホスフィン酸ナトリウム水溶液を用いて45℃、2分間浸漬し、PPS樹脂表面の2塩化パラジウムを金属に還元した(触媒付与工程および活性化処理工程)。
 次に、前記工程で得られた金属パラジウムが表面に沈着した成形品に対して、化学銅メッキを行い、さらに電気メッキを施すことによって光沢ニッケルメッキを行った。
 本発明で使用した原料を以下に示す。
 (A)ポリフェニレンスルフィド樹脂
PPS-1:参考例1に記載の方法で重合したPPS樹脂
PPS-2:参考例2に記載の方法で重合したPPS樹脂
PPS-3:参考例3に記載の方法で重合したPPS樹脂
PPS-4:参考例4に記載の方法で重合したPPS樹脂
PPS-5:参考例5に記載の方法で重合したPPS樹脂
 (B)繊維状充填材
B-1:チョップドストランド(日本電気硝子株式会社製 T-760H 平均繊維径10.5μm)
B-2:チョップドストランド(日本電気硝子株式会社製 T-747N 平均繊維径17.0μm)
 (C)官能基含有オレフィン系共重合体
C-1:エポキシ基含有ポリオレフィン(三井化学社製 ボンドファーストE グリシジル基濃度 3.63重量%)
C-2:エポキシ基含有ポリオレフィン(三井化学社製 ボンドファースト7M グリシジル基濃度 1.81重量%)
C-3:エポキシ基含有ポリオレフィン(SK Chemical Polymer製 LOTADER AX8750 グリシジル基濃度 1.51重量%)
C-4:水添スチレン系熱可塑性エラストマー(旭化成社製 タフテックMP10 反応性官能基:アミド基)
C-5:水添スチレン系熱可塑性エラストマー(旭化成製 タフテックM1913 反応性官能基:酸無水物基)
 (D)非繊維状無機充填材
D-1:重質炭酸カルシウム(株式会社カルファイン社製 KSS1000)
D-2:重質炭酸カルシウム(三共精粉株式会社 #800)
D-3:重質炭酸カルシウム(丸尾カルシウム社製 スーパーS)
D-4:水酸化マグネシウム(協和化学工業株式会社製 キスマ5P)
 (E)官能基を含有しないオレフィン系共重合体
E-1:オレフィン共重合体(The Dow Chemical Company製 Engage8842)
 以下に示す測定方法で、樹脂組成物からなる成形品およびメッキ成形品を評価した。
 (1)細孔径のサイズ
 表面処理工程後の成形品の表面を日本電子科学株式会社製走査電子顕微鏡(JSM-IT100)で観察を行った。倍率5000倍にて2次電子像の観察を行い、得られた画像について、径2μm以下の細孔の有無を確認した。
 (2)表面粗度
 メッキ成形品の表面を、Mitutoyo社製表面粗さ測定機(SV-2100)を用いて、JIS-B-0601に準拠した方法で測定し、算術平均粗さRaを求めた。なお、成形品にメッキ層自体が形成できなかったもの、およびメッキ層は形成されたがメッキ層が浮いて表面粗度の測定が困難なものに関しては“-”と記載した。
 (3)引張強度
 樹脂組成物からなる成形品の引張強度について、ISO 527-1、2(2012)に準拠して測定を行った。具体的には次のように測定を行った。ポリフェニレンスルフィド樹脂組成物のペレットを、熱風乾燥機を用いて130℃で3時間乾燥した後、シリンダー温度:310℃、金型温度:145℃に設定した住友重機械工業株式会社製射出成形機(SE-50D)に供給し、ISO 20753(2008)に規定されるタイプA1試験片形状(4mm厚み)の金型を用いて、中央平行部の断面積を通過する溶融樹脂の平均速度が400±50mm/sとなる条件で射出成形を行い、試験片を得た。この試験片を、23℃、相対湿度50%の条件で16時間状態調節を行った後、23℃、相対湿度50%の雰囲気下、つかみ具間距離:115mm、試験速度:5mm/minの条件で、ISO 527-1、-2(2012)に準拠して引張強度の測定を行った。この値が高いほど機械的強度に優れ、好ましく、160MPa以上であることが汎用性の観点で望ましい。
 (4)ピール強度
 メッキ成形品のメッキ層のピール強度評価は、以下の手順で測定した。まず、実施例および比較例で得られたポリフェニレンスルフィド樹脂組成物ペレットを、熱風乾燥機を用いて130℃で3時間乾燥した後、シリンダー温度:310℃、金型温度:145℃に設定した住友重機械工業株式会社製射出成形機(SE-50D)に供給し、射出速度が100mm/sの条件で図1に示す一辺Lが80mmの正方形で、厚さtが3mmの試験片を成形し、そこからさらに幅L2が15mm、長さ80mm、厚さ3mmtの短冊試験片を切り出した。切り出した短冊試験片に対し、以下の方法で成形品にメッキ層を形成した。
 184.9nmと253.7nmの主要波長を有する高出力低圧水銀ランプ(300W)を1本備えた小型紫外線照射装置(江東電気製、KOL1-300S)を用いて、184.9nmと253.7nmの主要波長を持つ紫外光を、試験片表面から30mmの高さから60分間照射した後、濃度20重量%の水酸化カリウム水溶液に12分浸漬させ、表面処理工程を行った。
 次に、前記工程で得られた、粗化した成形品に0.3g/dmの2塩化パラジウム水溶液を触媒溶液とし、当該触媒溶液を粗化した成形品表面へと塗布し、20g/dmのホスフィン酸ナトリウム水溶液を用いることで、PPS樹脂表面の2塩化パラジウムを金属に還元することによって、無電解NiPメッキを円滑に析出させる金属核を形成した(触媒付与工程および活性化処理工程)。
 次に、前記工程で得られた金属パラジウムが表面に沈着した成形品を用いて化学銅メッキ工程を実施した。
 得られたメッキ成形品のメッキ層の密着力を、JIS H8630:2006の付属書1(規定)密着力試験方法に従って測定した。メッキが形成されない場合を*、ピール強度が1N/cm未満の場合をD、ピール強度が1N/cm以上3N/cm未満の場合をC、ピール強度が3N/cm以上10N/cm未満の場合をB、ピール強度が10N/cm以上の場合をAとした。
 実施例1,2と比較例1~3から、(A-1)摂氏315℃、荷重2160gにおけるMFRが50~600g/10分であるポリフェニレンスルフィド樹脂の含有量が少ない場合には、メッキ層のピール強度が小さく、メッキ層の密着性が低下する傾向にあることがわかった。
 実施例1および実施例3~7の比較から、さらに官能基含有オレフィン系共重合体を添加することで、メッキ性が向上していることがわかった。特に実施例4,5はメッキ層の密着性をさらに向上したことがわかった。
 また、実施例1、10、11の結果より、(B)繊維状充填剤の添加量については、(A)ポリフェニレンスルフィド樹脂100重量部に対して、40~80重量部の場合に特にメッキ層の密着性向上に対して効果的であることがわかった。
 また、実施例12および13の結果より、非繊維状無機充填材の添加量が多い場合には、表面処理工程後の細孔径が大きくなる傾向があり、メッキ層の密着性が低下する傾向にあることがわかった。
 また、比較例4~6の結果より、細孔径が大きくなるとメッキ層が形成されないことがわかった。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 本発明は、ポリフェニレンスルフィド樹脂が本来有する優れた各種特性を犠牲にすることなく、表面平滑性に優れたメッキ層を形成することを可能とし、密着性に優れ、冷熱衝撃サイクル試験等の過酷な環境劣化試験においても高いメッキ品質が確保できるメッキ用ポリフェニレンスルフィド樹脂組成物、および樹脂メッキ成形品を提供する。
 1 切り出し部分
 L1 試験片の幅:80mm
 L2 切り出した試験片の幅:15mm
 t 試験片の厚み:3mm

Claims (9)

  1. (A)ポリフェニレンスルフィド樹脂100重量部に対して、(B)繊維状充填材を30~200重量部を含むポリフェニレンスルフィド樹脂組成物によって成形された成形品の表面の一部または全部にメッキ層が形成されたメッキ成形品であって、該メッキ成形品におけるメッキ層表面の算術平均粗さが1.5μm以下であるメッキ成形品。
  2. 前記(A)ポリフェニレンスルフィド樹脂は、(A)ポリフェニレンスルフィド樹脂の総量を100重量%としたとき、(A-1)摂氏315℃、荷重2160gにおけるMFRが50~600g/10分であるポリフェニレンスルフィド樹脂を20重量%以上含むことを特徴とする、請求項1に記載のメッキ成形品。
  3. 前記ポリフェニレンスルフィド樹脂組成物が、(A)ポリフェニレンスルフィド樹脂100重量部に対して、さらに(C)グリシジル基、酸無水物基、カルボキシル基及びその塩、並びにアルコキシカルボニル基から選ばれる少なくとも1種の官能基を含有する官能基含有オレフィン系共重合体を1~30重量部含むことを特徴とする、請求項1または2に記載のメッキ成形品。
  4. 前記(A)ポリフェニレンスルフィド樹脂は、(A)ポリフェニレンスルフィド樹脂の総量を100重量%としたとき、(A-1)摂氏315℃、荷重2160gにおけるMFRが50~600g/10分であるポリフェニレンスルフィド樹脂を50重量%以上含むことを特徴とする、請求項1~3のいずれかに記載のメッキ成形品。
  5. 前記(C)グリシジル基、酸無水物基、カルボキシル基及びその塩、並びにアルコキシカルボニル基から選ばれる少なくとも1種の官能基を含有する官能基含有オレフィン系共重合体に含有される官能基がグリシジル基であり、該官能基含有オレフィン系共重合体のグリシジル基濃度が1.0~4.5重量%であることを特徴とする請求項3または4に記載のメッキ成形品。
  6. 請求項1~5のいずれかに記載のメッキ成形品の製造方法であって、前記ポリフェニレンスルフィド樹脂組成物によって成形された成形品に対し、表面処理工程、触媒付与工程、活性化処理工程、およびメッキ処理工程をこの順に行うことを特徴とするメッキ成形品の製造方法。
  7. 前記表面処理工程が以下の手順で行われることを特徴とする、請求項6に記載のメッキ成形品の製造方法。
    (a)成形品の表面から5~200mm離れた位置から、100~400nmに主要波長を有する紫外光を10~120分間照射すること。
    (b)その後、濃度5~40質量%のアルカリ水溶液に、前記(a)で処理された成形品を1~30分間浸漬すること。
  8. 前記表面処理工程後の成形品の表面の少なくとも一部に直径2μm以下の細孔を有する、請求項6または7に記載のメッキ成形品の製造方法。
  9. 請求項1~5のいずれかに記載のメッキ成形品をその構成部品の一部とする筐体部品。
PCT/JP2022/009076 2021-03-22 2022-03-03 メッキ成形品およびメッキ成形品の製造方法、ならびに筐体部品 WO2022202184A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280021492.5A CN116981796A (zh) 2021-03-22 2022-03-03 镀敷成型品和镀敷成型品的制造方法及壳体部件
JP2022515657A JPWO2022202184A1 (ja) 2021-03-22 2022-03-03
EP22774980.1A EP4317525A1 (en) 2021-03-22 2022-03-03 Plated molded article, method for producing plated molded article, and case component
US18/550,307 US20240174859A1 (en) 2021-03-22 2022-03-03 Plated molding, method of producing plated molding, and housing component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-047222 2021-03-22
JP2021047222 2021-03-22

Publications (1)

Publication Number Publication Date
WO2022202184A1 true WO2022202184A1 (ja) 2022-09-29

Family

ID=83397097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009076 WO2022202184A1 (ja) 2021-03-22 2022-03-03 メッキ成形品およびメッキ成形品の製造方法、ならびに筐体部品

Country Status (5)

Country Link
US (1) US20240174859A1 (ja)
EP (1) EP4317525A1 (ja)
JP (1) JPWO2022202184A1 (ja)
CN (1) CN116981796A (ja)
WO (1) WO2022202184A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270659A (ja) 1985-12-12 1987-11-25 Tosoh Corp メツキ用ポリフエニレンスルフイド樹脂組成物
JPH03197687A (ja) * 1989-12-26 1991-08-29 Mitsubishi Gas Chem Co Inc 樹脂成形品の金属メッキ前処理方法
JP2003096221A (ja) 2001-09-25 2003-04-03 Polyplastics Co プラスチック成形品及びその製造方法
JP2005171242A (ja) * 2003-11-21 2005-06-30 Toray Ind Inc ポリフェニレンスルフィド樹脂組成物
JP2005200693A (ja) * 2004-01-14 2005-07-28 Sumitomo Electric Ind Ltd パターン加工した多孔質成形体または不織布の製造方法、及び電気回路部品
JP2006219715A (ja) * 2005-02-09 2006-08-24 Ebara Udylite Kk 耐熱性絶縁樹脂の金属めっき方法
JP2016188289A (ja) * 2015-03-30 2016-11-04 東レ株式会社 ポリフェニレンスルフィド樹脂組成物からなる自動車冷却モジュール
JP2017149797A (ja) * 2016-02-22 2017-08-31 東レ株式会社 ポリフェニレンスルフィド樹脂組成物およびそれからなる成形品
JP2017155221A (ja) 2016-02-26 2017-09-07 東レ株式会社 ポリフェニレンスルフィド樹脂組成物および成形品

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270659A (ja) 1985-12-12 1987-11-25 Tosoh Corp メツキ用ポリフエニレンスルフイド樹脂組成物
JPH03197687A (ja) * 1989-12-26 1991-08-29 Mitsubishi Gas Chem Co Inc 樹脂成形品の金属メッキ前処理方法
JP2003096221A (ja) 2001-09-25 2003-04-03 Polyplastics Co プラスチック成形品及びその製造方法
JP2005171242A (ja) * 2003-11-21 2005-06-30 Toray Ind Inc ポリフェニレンスルフィド樹脂組成物
JP2005200693A (ja) * 2004-01-14 2005-07-28 Sumitomo Electric Ind Ltd パターン加工した多孔質成形体または不織布の製造方法、及び電気回路部品
JP2006219715A (ja) * 2005-02-09 2006-08-24 Ebara Udylite Kk 耐熱性絶縁樹脂の金属めっき方法
JP2016188289A (ja) * 2015-03-30 2016-11-04 東レ株式会社 ポリフェニレンスルフィド樹脂組成物からなる自動車冷却モジュール
JP2017149797A (ja) * 2016-02-22 2017-08-31 東レ株式会社 ポリフェニレンスルフィド樹脂組成物およびそれからなる成形品
JP2017155221A (ja) 2016-02-26 2017-09-07 東レ株式会社 ポリフェニレンスルフィド樹脂組成物および成形品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF THE SURFACE FINISHING SOCIETY OF JAPAN, vol. 68, no. 11, 2017, pages 624 - 629

Also Published As

Publication number Publication date
US20240174859A1 (en) 2024-05-30
JPWO2022202184A1 (ja) 2022-09-29
EP4317525A1 (en) 2024-02-07
CN116981796A (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
TWI542634B (zh) 聚苯硫樹脂組成物之製造方法
JP6241175B2 (ja) ポリフェニレンスルフィド樹脂組成物からなる成形品と金属箔を接合した複合成形品および複合成形品の製造方法
EP3409726B1 (en) Molded product formed from a polyphenylene sulfide resin composition and method for producing same
EP3427943A1 (en) Method for manufacturing laminate
JP4788032B2 (ja) ポリフェニレンスルフィド樹脂組成物および成形体
JP6725889B2 (ja) 金属/樹脂複合構造体およびその製造方法
JP6705209B2 (ja) ポリフェニレンスルフィド樹脂組成物からなる配管部品
JP3739954B2 (ja) ポリフェニレンスルフィド樹脂組成物
JP6668688B2 (ja) ポリフェニレンスルフィド樹脂組成物およびそれからなる成形品
JPWO2018066637A1 (ja) ポリアリーレンスルフィド樹脂組成物、成形品及び製造方法
JP7424181B2 (ja) ポリフェニレンスルフィド樹脂組成物および成形体
JP2019108537A (ja) ポリフェニレンスルフィド樹脂組成物およびそれを用いた中空成形品
WO2022202184A1 (ja) メッキ成形品およびメッキ成形品の製造方法、ならびに筐体部品
JP2020056007A (ja) ポリフェニレンスルフィド樹脂組成物およびそれを用いた中空成形品
JP2005248170A (ja) ポリフェニレンスルフィド樹脂組成物
JP7151086B2 (ja) ポリフェニレンスルフィド樹脂組成物
JP2000063669A (ja) ポリフェニレンスルフィド樹脂組成物
US20220380598A1 (en) Polyphenylene sulfide resin composition for automotive cooling parts, and automotive cooling parts
EP3708612A1 (en) Polyphenylene sulfide resin composition, method for producing same, and molded article
WO2021100758A1 (ja) 自動車冷却部品用ポリフェニレンスルフィド樹脂組成物および自動車冷却部品
WO2022209848A1 (ja) ポリフェニレンスルフィド樹脂組成物およびそれからなる成形品
JP7484509B2 (ja) ポリフェニレンサルファイド樹脂組成物からなる成形品の接合方法、および接合部を含む成形品の製造方法
JP2016102151A (ja) ポリフェニレンスルフィド樹脂組成物およびそれからなる成形品
JP2020105261A (ja) ポリフェニレンスルフィド樹脂組成物および成形品
EP4349590A1 (en) Electromagnetic wave-shielding member and method for manufacturing same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022515657

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774980

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18550307

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280021492.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022774980

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022774980

Country of ref document: EP

Effective date: 20231023