WO2022199350A1 - 一种无钴正极材料及其制备方法和应用 - Google Patents

一种无钴正极材料及其制备方法和应用 Download PDF

Info

Publication number
WO2022199350A1
WO2022199350A1 PCT/CN2022/079067 CN2022079067W WO2022199350A1 WO 2022199350 A1 WO2022199350 A1 WO 2022199350A1 CN 2022079067 W CN2022079067 W CN 2022079067W WO 2022199350 A1 WO2022199350 A1 WO 2022199350A1
Authority
WO
WIPO (PCT)
Prior art keywords
cobalt
positive electrode
electrode material
preparation
free
Prior art date
Application number
PCT/CN2022/079067
Other languages
English (en)
French (fr)
Inventor
许鑫培
江卫军
陈思贤
郑晓醒
Original Assignee
蜂巢能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蜂巢能源科技股份有限公司 filed Critical 蜂巢能源科技股份有限公司
Priority to EP22774012.3A priority Critical patent/EP4282828A1/en
Publication of WO2022199350A1 publication Critical patent/WO2022199350A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/70Nickelates containing rare earth, e.g. LaNiO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • C01P2006/82Compositional purity water content
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the field of lithium ion batteries, for example, to a cobalt-free positive electrode material and a preparation method and application thereof.
  • Lithium-ion batteries have the advantages of high energy density and good cycle performance, and have been widely used in various fields such as automobiles and electronic products.
  • the positive electrode material is the core material of the lithium ion battery, and the performance of the positive electrode material directly affects the performance of the lithium ion battery.
  • Common cathode materials include lithium cobalt oxide, lithium iron phosphate, lithium manganate, lithium nickelate, etc.
  • ternary cathode materials such as NCM (Ni x Co y Mn z ), NCA (Ni x Co y Al z ), etc.
  • ternary materials have the advantages of high density and better cycle life.
  • cobalt is not only expensive but also pollutes the environment. These unfavorable factors directly limit the development of ternary materials.
  • Cobalt-free layered cathode materials not only get rid of the constraints of cobalt elements, but also have the advantages of high reversible specific capacity and low price, and are increasingly favored by the energy industry.
  • the absence of Co element will directly lead to the decrease of the conductivity of the ternary material, and also lead to the instability of the structure, which leads to the problems of low capacity and shortened life of the battery.
  • the present disclosure provides a cobalt-free positive electrode material and a preparation method and application thereof.
  • the preparation method includes the following steps: (1) mixing lithium titanate and a metal source, adding a carbon source after a primary sintering treatment, and performing a secondary sintering treatment to obtain carbon-coated-metal-doped lithium titanate additive; (2) mixing a lithium source and a cobalt-free precursor, and obtaining a matrix material by high-temperature treatment; (3) carbon-coated-metal-doped obtained in step (1) The lithium titanate additive and the matrix material obtained in step (2) are mixed and then heat treated to obtain the cobalt-free positive electrode material.
  • the present disclosure uses modified lithium titanate to improve the electrical conductivity of the material, and the doped lithium titanate can improve the electrical conductivity of the material without affecting the structure of the pure lithium titanate itself, and can also improve the electrical conductivity of the material after coating.
  • the lithium titanate material is a zero-strain material, and the cycle performance of the material can be improved after coating the cobalt-free cathode material.
  • a method for preparing a cobalt-free positive electrode material includes the following steps:
  • step (1) may be performed first and then step (2), or step (2) may be performed first and then performed step 1).
  • the present disclosure uses modified lithium titanate to improve the electrical conductivity of the material, and the doped lithium titanate can improve the electrical conductivity of the material without affecting the structure of the pure lithium titanate itself, and can also improve the electrical conductivity of the material after coating.
  • the lithium titanate material is a zero-strain material, and the cycle performance of the material can be improved after coating the cobalt-free cathode material.
  • the metal source of step (1) includes any one of oxides, nitrates, carbonates or sulfates of Ti, Zr, Mg, Zn, Al, W, Nb, Sr or Y or a combination of at least two.
  • the carbon source includes glucose and/or sucrose.
  • the addition amount of the metal source is 0.05-0.3%, for example: 0.05%, 0.1%, 0.2% % or 0.3% etc.
  • the added amount of the carbon source is 0.5-3%, for example: 0.5%, 1%, 2%, or 3%.
  • the atmosphere of the primary sintering is an oxygen atmosphere.
  • the temperature of the primary sintering is 500-800°C, for example: 500°C, 550°C, 600°C, 700°C, or 800°C.
  • the primary sintering time is 5-8 hours, for example: 5 hours, 6 hours, 7 hours, or 8 hours.
  • the atmosphere of the secondary sintering is nitrogen atmosphere.
  • the temperature of the secondary sintering is 200-500°C, for example: 200°C, 300°C, 400°C, 450°C, or 500°C.
  • the chemical formula of the cobalt-free precursor in step (2) is Ni x M y (OH) 2 , 0.50 ⁇ x ⁇ 0.95, for example: 0.5, 0.6, 0.7, 0.8, 0.9 or 0.95, etc., 0.05 ⁇ y ⁇ 0.50, for example: 0.05, 0.1, 0.2, 0.3, 0.4 or 0.5, etc.
  • the mixing speed is 2000-3000 rpm, for example: 2000 rpm, 2200 rpm, 2400 rpm, 2600 rpm, 2800 rpm or 3000 rpm and the like.
  • the mixing time is 10-20 min, for example: 10 min, 12 min, 14 min, 16 min or 20 min, etc.
  • the atmosphere of the high temperature treatment is oxygen.
  • the concentration of the oxygen is 90-100%, for example: 90%, 92%, 94%, 96%, 98% or 100%.
  • the flow rate of the oxygen is 2-20L/min, for example: 2L/min, 5L/min, 10L/min, 15L/min or 20L/min, etc.
  • the temperature of the high temperature treatment is 800-1000°C, for example: 800°C, 850°C, 900°C, 950°C or 1000°C, etc.
  • the high temperature treatment time is 8-12 hours, for example: 8 hours, 9 hours, 10 hours, 11 hours, or 12 hours.
  • the mass ratio of the base material and the carbon-coated-metal-doped lithium titanate additive in step (3) is (97-99.9):(0.1-3), for example: 97:3, 98 :2, 97.5:2.5, 98.5:1.5 or 99.9:0.1 etc.
  • the mixing speed in step (3) is 2000-3000 rpm, for example: 2000 rpm, 2200 rpm, 2400 rpm, 2600 rpm, 2800 rpm or 3000 rpm, etc.
  • the mixing time is 10-20 min, for example: 10 min, 12 min, 14 min, 16 min or 20 min, etc.
  • the temperature of the heat treatment is 200-800°C, for example: 200°C, 300°C, 400°C, 600°C, or 800°C, and the like.
  • the time of the heat treatment is 4-8 hours, for example: 4 hours, 5 hours, 6 hours, 7 hours, or 8 hours.
  • the heat treatment is followed by sieving.
  • the mesh size of the sieved mesh is 300-400 mesh, for example: 300 mesh, 320 mesh, 350 mesh, 380 mesh or 400 mesh, etc.
  • a cobalt-free positive electrode material is provided, and the cobalt-free positive electrode material is prepared by the aforementioned method.
  • the cobalt-free cathode material is a layered structure with a single crystal morphology.
  • the median particle size D50 of the cobalt-free positive electrode material is 1-5 ⁇ m, for example: 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, or 5 ⁇ m.
  • the specific surface area of the cobalt-free positive electrode material is 0.2-0.9 m 2 /g, for example: 0.2 m 2 /g, 0.4 m 2 /g, 0.6 m 2 /g, 0.8 m 2 / g or 0.9m 2 /g, etc.
  • the residual lithium content of the cobalt-free positive electrode material is less than 0.3 wt %, for example: 0.3 wt %, 0.25 wt %, 0.2 wt %, or 0.15 wt %.
  • the free water content of the cobalt-free positive electrode material is lower than 200 ppm, for example: 2000 ppm, 1800 ppm, 1500 ppm, 1200 ppm or 1000 ppm, etc.
  • the pH of the cobalt-free positive electrode material is less than 12, for example, 11.9, 11.8, 11.5, 11.2, or 11.
  • a positive electrode plate is provided, and the positive electrode plate includes the above-mentioned cobalt-free positive electrode material.
  • a lithium ion battery is provided, and the ion battery includes the above-mentioned positive electrode.
  • FIG. 1 is a SEM image of the cobalt-free cathode material described in Example 1 of the present disclosure.
  • FIG. 2 is an enlarged SEM view of the cobalt-free cathode material described in Example 1 of the present disclosure.
  • FIG. 3 is a SEM image of the cobalt-free cathode material described in Comparative Example 1 of the present disclosure.
  • FIG. 4 is an enlarged SEM view of the cobalt-free cathode material described in Example 1 of the present disclosure.
  • This embodiment provides a cobalt-free positive electrode material, and the cobalt-free positive electrode material is prepared by the following method:
  • step (3) Mix 0.8000 g of the carbon-coated-metal-doped lithium titanate additive in step (1) and 80.00 g of the matrix material obtained in step (2), heat treatment at 300° C. for 6 hours in an oxygen environment, and pass through a 300-mesh sieve A cobalt-free positive electrode material with a coating amount of 2% was obtained.
  • This embodiment provides a cobalt-free positive electrode material, and the cobalt-free positive electrode material is prepared by the following method:
  • step (3) Mix 1.200 g of the carbon-coated-metal-doped lithium titanate additive in step (1) and 80.00 g of the matrix material obtained in step (2), heat treatment at 350° C. for 5.5 h in an oxygen environment, and pass through 350 mesh Sieve to obtain a cobalt-free positive electrode material with a coating amount of 1.5%.
  • Example 1 The only difference between this example and Example 1 is that the mass of the carbon-coated-metal-doped lithium titanate additive in step (3) is 0.0800 g, and a cobalt-free positive electrode material with a coating amount of 0.1% is obtained. Other conditions The parameters are exactly the same as in Example 1.
  • Example 1 The only difference between this example and Example 1 is that the mass of the carbon-coated-metal-doped lithium titanate additive in step (3) is 2.400 g, and a cobalt-free positive electrode material with a coating amount of 3% is obtained. Other conditions The parameters are exactly the same as in Example 1.
  • Example 1 The only difference between this comparative example and Example 1 is that the matrix material obtained in step (2) is directly used as the cobalt-free positive electrode material, and other conditions and parameters are exactly the same as those of Example 1. SEM images of the cobalt-free cathode material are shown in FIGS. 3-4 .
  • the cobalt-free positive electrode materials obtained in Examples 1-6 and Comparative Example 1 were subjected to a button half-cell charge-discharge test on the finally obtained positive electrode materials, specifically, the mass ratio of positive electrode material: PVDF: SP conductive agent was 92:4:4 Mixing, adding NMP to adjust the solid content of the slurry to 50%; then uniformly coating the slurry on the aluminum foil, drying at 100 ° C for 12 hours, to obtain a whole pole piece; then cutting the pole piece into a diameter of 12mm
  • the original sheet, the battery was assembled in a glove box, and the negative electrode was a lithium sheet.
  • Table 1 The test results are shown in Table 1:
  • the 0.1C specific charging capacity of the battery prepared by using the cobalt-free positive electrode material provided in one example of the present disclosure can reach more than 220.2mAh/g, and the 0.1C The discharge specific capacity can reach more than 182.7mAh/g, the first battery efficiency can reach more than 85.5%, the 1C discharge specific capacity can reach more than 164.3mAh/g, the 50-cycle capacity retention rate can reach more than 91.3%, and the DCR can reach less than 43.2m ⁇ .
  • the specific capacity of 0.1C charge can reach 222.4mAh/g, and the specific capacity of 0.1C discharge can reach 193.9mAh/g.
  • the first battery efficiency It can reach 87.2%
  • the 1C discharge specific capacity can reach 175.9mAh/g
  • the 50-cycle capacity retention rate can reach 98.6%
  • the DCR can reach 7.55m ⁇ .
  • Example 1 From the comparison between Example 1 and Example 3-4, it can be seen that the temperature of the heat treatment in step (3) will affect the performance of the prepared cobalt-free cathode material. After the temperature of the heat treatment is controlled at 200-800 ° C, the performance can be better. Cobalt-free cathode material.
  • Example 1 From the comparison between Example 1 and Examples 5-6, it can be seen that the coating amount of carbon-coated-metal-doped lithium titanate additive will affect the performance of the prepared cobalt-free positive electrode material.
  • the coating amount of the lithium oxide additive is controlled at 0.1-3%, and a cobalt-free positive electrode material with better effect can be obtained.
  • Example 1 From the comparison between Example 1 and Comparative Example 1, it can be seen that the present disclosure improves the electrical conductivity of the material by coating the modified lithium titanate coating agent.
  • lithium titanate is a zero-strain material, which strengthens the mechanical strength of the material during cycling, thereby improving the cycling performance of the material.
  • the introduction of a coating agent with good electrical conductivity significantly reduces the DCR of the material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

提供一种无钴正极材料的制备方法,包括以下步骤:(1)将钛酸锂和金属源混合,一次烧结处理后加入碳源,经二次烧结处理得到碳包覆-金属掺杂型钛酸锂添加剂;(2)将锂源和无钴前驱体混合,经高温处理得到基体材料;(3)将碳包覆-金属掺杂型钛酸锂添加剂和基体材料混合后进行热处理得到无钴正极材料。还提供该制备方法制得的无钴正极材料、包含该正极材料的正极极片以及包含该正极极片的锂离子电池。该制备方法采用掺杂型钛酸锂来提高材料导电性。此外钛酸锂材料为零应变材料,对无钴正极材料包覆后可以提升材料的循环性能。

Description

一种无钴正极材料及其制备方法和应用 技术领域
本公开涉及锂离子电池领域,例如涉及一种无钴正极材料及其制备方法和应用。
背景技术
锂离子电池具有高能量密度、较好的循环性能等优点,已经被广泛地应用到汽车、电子产品等各个领域。正极材料作为锂离子电池的核心材料,正极材料的性能直接就影响了锂离子电池的性能。常见的正极材料包括钴酸锂、磷酸铁锂、锰酸锂、镍酸锂等,现在发展前景比较好的为三元正极材料,例如NCM(Ni xCo yMn z),NCA(Ni xCo yAl z)等,三元材料具有高密度、较好的循环寿命等优点。但是钴元素作为战略性资源,不但价格高昂而且对环境造成污染,这些不利因素直接限制了三元材料的发展。
无钴层状正极材料不但摆脱了钴元素的制约,而且具有较高的可逆比容量、价格低廉等优势,越来越受到能源行业的青睐。但是Co元素的缺失会直接导致三元材料导电性下降,而且也会导致结构的不稳定,这就导致了电池的容量低,寿命减少等问题。
发明内容
本公开提供一种无钴正极材料及其制备方法和应用,所述制备方法包括以下步骤:(1)将钛酸锂和金属源混合,一次烧结处理后加入碳源,经二次烧结处理得到碳包覆-金属掺杂型钛酸锂添加剂;(2)将锂源和无钴前驱体混合,经高温处理得到基体材料;(3)将步骤(1)得到的碳包覆-金属掺杂型钛酸锂添加剂和步骤(2)得到的基体材料混合后进行热处理得到所述无钴正极材料。本公开采用改性钛酸锂来提高材料导电性,掺杂型钛酸锂可以在不影响纯钛酸锂本身结构前提下提高材料导电性,包覆后也可以提高材料导电性。此外钛酸锂材料为零应变材料,对无钴正极材料包覆后可以提升材料的循环性能。
本公开在一实施例中提供一种无钴正极材料的制备方法,所述制备方法包括以下步骤:
(1)将钛酸锂和金属源混合,一次烧结处理后加入碳源,经二次烧结处理得到碳包覆-金属掺杂型钛酸锂添加剂;
(2)将锂源和无钴前驱体混合,经高温处理得到基体材料;
(3)将步骤(1)得到的碳包覆-金属掺杂型钛酸锂添加剂和步骤(2)得到的基体材料混合后进行热处理得到所述无钴正极材料。
本公开对制备方法中的步骤(1)和步骤(2)的操作顺序不作具体限制,例如可以是先进行步骤(1)再进行步骤(2),也可以是先进行步骤(2)再进行步骤(1)。
本公开采用改性钛酸锂来提高材料导电性,掺杂型钛酸锂可以在不影响纯钛酸锂本身结构前提下提高材料导电性,包覆后也可以提高材料导电性。此外钛酸锂材料为零应变材料,对无钴正极材料包覆后可以提升材料的循环性能。
在一实施例中,步骤(1)所述金属源包括Ti、Zr、Mg、Zn、Al、W、Nb、Sr或Y的氧化物、硝酸盐、碳酸盐或硫酸盐中的任意一种或至少两种的组合。
在一实施例中,所述碳源包括葡萄糖和/或蔗糖。
在一实施例中,以所述碳包覆-金属掺杂型钛酸锂添加剂的质量为100%计,所述金属源的添加量为0.05~0.3%,例如:0.05%、0.1%、0.2%或0.3%等。
在一实施例中,所述碳源的添加量为0.5~3%,例如:0.5%、1%、2%或3%等。
在一实施例中,所述一次烧结的气氛为氧气气氛。
在一实施例中,所述一次烧结的温度为500~800℃,例如:500℃、550℃、600℃、700℃或800℃等。
在一实施例中,所述一次烧结时间为5~8h,例如:5h、6h、7h或8h等。
在一实施例中,所述二次烧结的气氛为氮气气氛。
在一实施例中,所述二次烧结的温度为200~500℃,例如:200℃、300℃、400℃、450℃或500℃等。
在一实施例中,步骤(2)所述无钴前驱体的化学式为Ni xMn y(OH) 2,0.50≤x≤0.95,例如:0.5、0.6、0.7、0.8、0.9或0.95等,0.05≤y≤0.50,例如:0.05、0.1、0.2、0.3、0.4或0.5等。
在一实施例中,所述混合的速度为2000~3000rpm,例如:2000rpm、2200rpm、2400rpm、2600rpm、2800rpm或3000rpm等。
在一实施例中,所述混合的时间为10~20min,例如:10min、12min、14min、16min或20min等。
在一实施例中,所述高温处理的气氛为氧气。
在一实施例中,所述氧气的浓度为90~100%,例如:90%、92%、94%、96%、98%或100%等。
在一实施例中,所述氧气的流速为2~20L/min,例如:2L/min、5L/min、10L/min、15L/min或20L/min等。
在一实施例中,所述高温处理的温度为800~1000℃,例如:800℃、850℃、900℃、950℃或1000℃等。
在一实施例中,所述高温处理的时间为8~12h,例如:8h、9h、10h、11h或12h等。
在一实施例中,步骤(3)所述基体材料和碳包覆-金属掺杂型钛酸锂添加剂的质量比为(97~99.9):(0.1~3),例如:97:3、98:2、97.5:2.5、98.5:1.5或99.9:0.1等。
在一实施例中,步骤(3)所述混合的速度为2000~3000rpm,例如:2000rpm、2200rpm、2400rpm、2600rpm、2800rpm或3000rpm等。
在一实施例中,所述混合的时间为10~20min,例如:10min、12min、14min、16min或20min等。
在一实施例中,所述热处理的温度为200~800℃,例如:200℃、300℃、400℃、600℃或800℃等。
在一实施例中,所述热处理的时间为4~8h,例如:4h、5h、6h、7h或8h等。
在一实施例中,所述热处理后进行过筛。
在一实施例中,所述过筛的筛网孔径为300~400目,例如:300目、320目、350目、380目或400目等。
本公开在一实施例中提供了一种无钴正极材料,所述无钴正极材料通过前面所述方法制得。
在一实施例中,所述无钴正极材料为单晶形貌的层状结构。
在一实施例中,所述无钴正极材料的中值粒径D50为1~5μm,例如:1μm、2μm、3μm、4μm或5μm等。
在一实施例中,所述无钴正极材料的比表面积为0.2~0.9m 2/g,例如:0.2m 2/g、0.4m 2/g、0.6m 2/g、0.8m 2/g或0.9m 2/g等。
在一实施例中,所述无钴正极材料的残锂量小于0.3wt%,例如:0.3wt%、0.25wt%、0.2wt%或0.15wt%等。
在一实施例中,所述无钴正极材料的游离水含量低于200ppm,例如:2000ppm、1800ppm、1500ppm、1200ppm或1000ppm等。
在一实施例中,所述无钴正极材料的pH小于12,例如:11.9、11.8、11.5、11.2或11等。
本公开在一实施例中提供一种正极极片,所述的正极极片包含上述无钴正极材料。
本公开在一实施例中提供一种锂离子电池,所述的离子电池包含上述正极极片。
附图说明
附图用来提供对本文技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本文的技术方案,并不构成对本文技术方案的限制。
图1是本公开实施例1所述无钴正极材料的SEM图。
图2是本公开实施例1所述无钴正极材料的SEM放大图。
图3是本公开对比例1所述无钴正极材料的SEM图。
图4是本公开实施例1所述无钴正极材料的SEM放大图。
具体实施方式
实施例1
本实施例提供了一种无钴正极材料,所述无钴正极材料通过如下方法制得:
(1)取10.00g钛酸锂和0.0167g二氧化钛混合,在氧气环境下600℃下焙烧6h,得到掺杂型钛酸锂,将所述钛酸锂和0.0250g葡萄糖混合,在氮气气氛中,300℃下焙烧5h,得到碳包覆-金属掺杂型钛酸锂添加剂;
(2)取48.00g LiOH和100.00g Ni 0.75Mn 0.25(OH) 2混合,在氧气浓度为95%、氧气流量为5L/min及900℃下热处理10h,得到基体材料;
(3)将0.8000g步骤(1)碳包覆-金属掺杂型钛酸锂添加剂和80.00g步骤(2)得到的基体材料混合,在氧气环境中,300℃下热处理6h后过300目筛得到包覆量为2%的无钴正极材料。
所述无钴正极材料的SEM图如图1-2所示。
实施例2
本实施例提供了一种无钴正极材料,所述无钴正极材料通过如下方法制得:
(1)取10.00g钛酸锂和0.0135g二氧化锆混合,在氧气环境下700℃下焙烧5h,得到掺杂型钛酸锂,将所述钛酸锂和0.0250g果糖混合,在氮气气氛中,350℃下焙烧5h,得到碳包覆-金属掺杂型钛酸锂添加剂;
(2)取48.00g LiOH和100.00g Ni 0.75Mn 0.25(OH) 2混合,在氧气浓度为96%、氧气流量为6L/min及950℃下热处理11h,得到基体材料;
(3)将1.200g步骤(1)碳包覆-金属掺杂型钛酸锂添加剂和80.00g步骤(2)得到的基体材料混合,在氧气环境中,350℃下热处理5.5h后过350目筛得到包覆量为1.5%的无钴正极材料。
实施例3
本实施例与实施例1区别仅在于,步骤(3)所述热处理的温度为200℃,其他条件与参数与实施例1完全相同。
实施例4
本实施例与实施例1区别仅在于,步骤(3)所述热处理的温度为800℃,其他条件与参数与实施例1完全相同。
实施例5
本实施例与实施例1区别仅在于,步骤(3)所述碳包覆-金属掺杂型钛酸锂添加剂的质量为0.0800g,得到包覆量为0.1%的无钴正极材料,其他条件与参数与实施例1完全相同。
实施例6
本实施例与实施例1区别仅在于,步骤(3)所述碳包覆-金属掺杂型钛酸锂添加剂的质量为2.400g,得到包覆量为3%的无钴正极材料,其他条件与参数与实施例1完全相同。
对比例1
本对比例与实施例1区别仅在于,直接使用步骤(2)得到的基体材料作为无钴正极材料,其他条件与参数与实施例1完全相同。所述无钴正极材料的SEM图如图3-4所示。
性能测试:
将实施例1-6和对比例1得到的无钴正极材料将最终得到的正极材料进行纽扣半电池充放电测试,具体为将正极材料:PVDF:SP导电剂按照92:4:4的质量比例进行混合,加入NMP调节浆料固含量为50%;然后将浆料均匀涂覆在铝箔上,100℃下烘干12h,制得一整张极片;然后将极片裁成直径为12mm的原片,在手套箱中进行电池组装,负极为锂片。测试结果如表1所示:
表1
Figure PCTCN2022079067-appb-000001
由表1可知,由实施例1-6对比可得,使用本公开在一实施例中提供的所述无钴正极材料制得电池的0.1C充电比容量可达220.2mAh/g以上,0.1C放电比容量可达182.7mAh/g以上,首次电池效率可达85.5%以上,1C放电比容量可达 164.3mAh/g以上,50周容量保持率可达91.3%以上,DCR可达43.2mΩ以下,通过调节碳包覆-金属掺杂型钛酸锂添加剂的包覆量和热处理的温度,0.1C充电比容量可达222.4mAh/g,0.1C放电比容量可达193.9mAh/g,首次电池效率可达87.2%,1C放电比容量可达175.9mAh/g,50周容量保持率可达98.6%,DCR可达7.55mΩ。
由实施例1和实施例3-4对比可得,步骤(3)所述热处理的温度会影响制得无钴正极材料的性能,经热处理温度控制在200~800℃,可以制得性能较好的无钴正极材料。
由实施例1和实施例5-6对比可得,碳包覆-金属掺杂型钛酸锂添加剂包覆量会影响制得无钴正极材料的性能,将碳包覆-金属掺杂型钛酸锂添加剂包覆量控制在0.1~3%,可以制得效果较好的无钴正极材料。
由实施例1和对比例1对比可得,本公开通过包覆改性后的钛酸锂包覆剂,提高了材料的导电性能。此外,钛酸锂为零应变材料,在循环过程中,加强了材料的机械强度,从而提高材料的循环性能,同时,导电性良好的包覆剂的引入,明显地降低了材料的DCR。

Claims (15)

  1. 一种无钴正极材料的制备方法,所述制备方法包括以下步骤:
    (1)将钛酸锂和金属源混合,一次烧结处理后加入碳源,经二次烧结处理得到碳包覆-金属掺杂型钛酸锂添加剂;
    (2)将锂源和无钴前驱体混合,经高温处理得到基体材料;
    (3)将步骤(1)得到的碳包覆-金属掺杂型钛酸锂添加剂和步骤(2)得到的基体材料混合后进行热处理得到所述无钴正极材料。
  2. 如权利要求1所述的制备方法,其中,步骤(1)所述金属源包括Ti、Zr、Mg、Zn、Al、W、Nb、Sr或Y的氧化物、硝酸盐、碳酸盐或硫酸盐中的任意一种或至少两种的组合,所述碳源包括葡萄糖和/或蔗糖。
  3. 如权利要求1或2所述的制备方法,其中,以所述碳包覆-金属掺杂型钛酸锂添加剂的质量为100%计,所述金属源的添加量为0.05~0.3%,所述碳源的添加量为0.5~3%。
  4. 如权利要求1-3任一项所述的制备方法,其中,步骤(1)所述一次烧结的气氛为氧气气氛,所述一次烧结的温度为500~800℃,所述一次烧结时间为5~8h。
  5. 如权利要求1-4任一项所述的制备方法,其中,步骤(1)所述二次烧结的气氛为氮气气氛,所述二次烧结的温度为200~500℃。
  6. 如权利要求1-5任一项所述的制备方法,其中,步骤(2)所述无钴前驱体的化学式为Ni xMn y(OH) 2,0.50≤x≤0.95,0.05≤y≤0.50。
  7. 如权利要求1-6任一项所述的制备方法,其中,步骤(2)所述混合的速度为2000~3000rpm,所述混合的时间为10~20min,所述高温处理的气氛为氧气,所述氧气的浓度为90~100%,所述氧气的流速为2~20L/min。
  8. 如权利要求1-7任一项所述的制备方法,其中,步骤(2)所述高温处理的温度为800~1000℃,所述高温处理的时间为8~12h。
  9. 如权利要求1-8任一项所述的制备方法,其中,步骤(3)所述基体材料和碳包覆-金属掺杂型钛酸锂添加剂的质量比为(97~99.9):(0.1~3)。
  10. 如权利要求1-9任一项所述的制备方法,其中,步骤(3)所述混合的速度为2000~3000rpm,所述混合的时间为10~20min。
  11. 如权利要求1-10任一项所述的制备方法,其中,步骤(3)所述热处理的温度为200~800℃,所述热处理的时间为4~8h,所述热处理后进行过筛,所述过筛的筛网孔径为300~400目。
  12. 一种无钴正极材料,所述无钴正极材料通过如权利要求1-10任一项所述制备方法制得。
  13. 如权利要求12所述的无钴正极材料,其中,所述无钴正极材料为单晶形貌的层状结构,所述无钴正极材料的中值粒径D50为1~5μm,所述无钴正极材料的比表面积为0.2~0.9m 2/g,所述无钴正极材料的残锂量小于0.3wt%,所述无钴正极材料的游离水含量低于200ppm,所述无钴正极材料的pH小于12。
  14. 一种正极极片,所述正极极片包含如权利要求12或13所述的无钴正极材料。
  15. 一种锂离子电池,所述锂离子电池包含如权利要求14所述的正极极片。
PCT/CN2022/079067 2021-03-26 2022-03-03 一种无钴正极材料及其制备方法和应用 WO2022199350A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22774012.3A EP4282828A1 (en) 2021-03-26 2022-03-03 Cobalt-free positive electrode material, preparation method therefor and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110328422.1A CN113060775B (zh) 2021-03-26 2021-03-26 一种无钴正极材料及其制备方法和应用
CN202110328422.1 2021-03-26

Publications (1)

Publication Number Publication Date
WO2022199350A1 true WO2022199350A1 (zh) 2022-09-29

Family

ID=76563914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079067 WO2022199350A1 (zh) 2021-03-26 2022-03-03 一种无钴正极材料及其制备方法和应用

Country Status (3)

Country Link
EP (1) EP4282828A1 (zh)
CN (1) CN113060775B (zh)
WO (1) WO2022199350A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115724420A (zh) * 2022-09-30 2023-03-03 重庆长安新能源汽车科技有限公司 一种双金属掺杂多孔碳材料、制备方法、应用及其包覆正极材料和制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113060775B (zh) * 2021-03-26 2022-10-28 蜂巢能源科技有限公司 一种无钴正极材料及其制备方法和应用
CN113998745B (zh) * 2021-12-27 2022-04-01 蜂巢能源科技股份有限公司 一种无钴正极材料及其制备方法和应用
CN114744196B (zh) * 2022-03-28 2024-03-12 蜂巢能源科技股份有限公司 一种c掺杂和包覆的无钴正极材料及制备方法和锂离子电池

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101000960A (zh) * 2006-12-29 2007-07-18 深圳市贝特瑞电子材料有限公司 复合钛酸锂电极材料及其制备方法
JP2012204177A (ja) * 2011-03-25 2012-10-22 Kawasaki Heavy Ind Ltd コバルトフリーのアルカリ二次電池
CN104218241A (zh) * 2014-09-30 2014-12-17 奇瑞汽车股份有限公司 一种锂离子电池正极富锂材料的改性方法
CN104425809A (zh) * 2013-08-28 2015-03-18 奇瑞汽车股份有限公司 锂离子电池正极材料及其制备方法、含有该材料的锂离子电池
CN105870437A (zh) * 2016-05-10 2016-08-17 北京泰和九思科技有限公司 一种形貌可控的纳米钛酸锂复合材料及其制备方法以及锂离子电池
CN106252644A (zh) * 2016-08-26 2016-12-21 浙江长兴金太阳电源有限公司 一种锂离子电池用铥掺杂钛酸锂正极材料的制备方法
CN106450264A (zh) * 2016-12-03 2017-02-22 合肥国轩高科动力能源有限公司 一种碳包覆和离子掺杂双重改性的纳米钛酸锂复合材料的制备方法
CN107528057A (zh) * 2017-08-31 2017-12-29 北方奥钛纳米技术有限公司 碳包覆钛酸锂的制备方法及碳包覆钛酸锂和应用
CN109671944A (zh) * 2018-12-28 2019-04-23 深圳市比克动力电池有限公司 一种碳包覆金属掺杂钛酸锂复合材料及其制备和应用
CN111435744A (zh) * 2020-01-17 2020-07-21 蜂巢能源科技有限公司 无钴层状正极材料及其制备方法、正极片和锂离子电池
CN113060775A (zh) * 2021-03-26 2021-07-02 蜂巢能源科技有限公司 一种无钴正极材料及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111180723A (zh) * 2019-12-31 2020-05-19 北方奥钛纳米技术有限公司 一种掺杂钛酸锂的镍锰酸锂三元正极材料及其制备方法
CN111554870B (zh) * 2020-04-24 2023-03-24 湖南大学 一种无钴动力电池正极材料及其制备方法和应用
CN111916697B (zh) * 2020-07-14 2021-09-21 蜂巢能源科技有限公司 无钴正极材料及其制备方法以及锂离子电池正极和锂电池

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101000960A (zh) * 2006-12-29 2007-07-18 深圳市贝特瑞电子材料有限公司 复合钛酸锂电极材料及其制备方法
JP2012204177A (ja) * 2011-03-25 2012-10-22 Kawasaki Heavy Ind Ltd コバルトフリーのアルカリ二次電池
CN104425809A (zh) * 2013-08-28 2015-03-18 奇瑞汽车股份有限公司 锂离子电池正极材料及其制备方法、含有该材料的锂离子电池
CN104218241A (zh) * 2014-09-30 2014-12-17 奇瑞汽车股份有限公司 一种锂离子电池正极富锂材料的改性方法
CN105870437A (zh) * 2016-05-10 2016-08-17 北京泰和九思科技有限公司 一种形貌可控的纳米钛酸锂复合材料及其制备方法以及锂离子电池
CN106252644A (zh) * 2016-08-26 2016-12-21 浙江长兴金太阳电源有限公司 一种锂离子电池用铥掺杂钛酸锂正极材料的制备方法
CN106450264A (zh) * 2016-12-03 2017-02-22 合肥国轩高科动力能源有限公司 一种碳包覆和离子掺杂双重改性的纳米钛酸锂复合材料的制备方法
CN107528057A (zh) * 2017-08-31 2017-12-29 北方奥钛纳米技术有限公司 碳包覆钛酸锂的制备方法及碳包覆钛酸锂和应用
CN109671944A (zh) * 2018-12-28 2019-04-23 深圳市比克动力电池有限公司 一种碳包覆金属掺杂钛酸锂复合材料及其制备和应用
CN111435744A (zh) * 2020-01-17 2020-07-21 蜂巢能源科技有限公司 无钴层状正极材料及其制备方法、正极片和锂离子电池
CN113060775A (zh) * 2021-03-26 2021-07-02 蜂巢能源科技有限公司 一种无钴正极材料及其制备方法和应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115724420A (zh) * 2022-09-30 2023-03-03 重庆长安新能源汽车科技有限公司 一种双金属掺杂多孔碳材料、制备方法、应用及其包覆正极材料和制备方法
CN115724420B (zh) * 2022-09-30 2024-04-16 深蓝汽车科技有限公司 一种双金属掺杂多孔碳材料、制备方法、应用及其包覆正极材料和制备方法

Also Published As

Publication number Publication date
CN113060775A (zh) 2021-07-02
CN113060775B (zh) 2022-10-28
EP4282828A1 (en) 2023-11-29

Similar Documents

Publication Publication Date Title
WO2022199350A1 (zh) 一种无钴正极材料及其制备方法和应用
CN106505195B (zh) 一种高镍正极材料及其制备方法和锂离子电池
WO2017025007A1 (zh) 锂离子二次电池的正极活性材料及其制备方法和应用
CN111653752B (zh) 一种正极材料、其制备方法和锂离子电池
CN111422925B (zh) 高镍三元正极材料及其制备方法、锂离子电池和电动汽车
CN111490243B (zh) 一种锂离子电池用复合正极材料、其制备方法及用途
CN106784790B (zh) 一种镍钴锰酸锂三元正极材料的制备方法
TWI452758B (zh) 鋰離子電池正極材料及其製備方法以及鋰離子電池
WO2022206278A1 (zh) 一种单晶高镍正极材料及其制备方法和应用
CN110034274B (zh) 改性三元正极材料、其制备方法及锂离子电池
WO2020258764A1 (zh) 一种正极活性材料及其制备方法和锂电池
CN104241626A (zh) 锂离子电池钒酸锂负极材料的溶胶-凝胶制备方法
WO2016188130A1 (zh) 一种多孔石墨掺杂与碳包覆钛酸锂负极材料的制备方法
WO2023024446A1 (zh) 一种四元正极材料及其制备方法和应用
CN111933930B (zh) 一种正极活性材料及其制备方法、二次电池正极、锂电池
WO2023184996A1 (zh) 一种改性高镍三元正极材料及其制备方法
CN113880147A (zh) 一种用于降低正极材料电压降的制备方法、正极材料及用途
CN107644980B (zh) 预嵌锂硬炭材料及其制备方法和应用
CN106340637B (zh) 锂离子电池用聚硅酸酯/ncm三元复合正极材料及其制备方法
CN111293286A (zh) 一种包覆改性的锂离子电池正极材料及其制备方法
CN114927667B (zh) 正极活性材料及其制备方法、正极片和锂离子二次电池
CN107834054B (zh) 一种锂离子电池用镍锰酸锂-石墨烯复合材料的制备方法
CN113130900A (zh) 一种五氧化二钒包覆高镍三元锂离子电池正极材料及其制备方法
CN108428861B (zh) 一种硫化亚铁包覆富锂正极材料及其制备方法
CN111883749A (zh) 一种制备锂电池用过渡金属氧化物复合电极的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774012

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022774012

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022774012

Country of ref document: EP

Effective date: 20230825

NENP Non-entry into the national phase

Ref country code: DE