WO2022196834A1 - カバー部材 - Google Patents

カバー部材 Download PDF

Info

Publication number
WO2022196834A1
WO2022196834A1 PCT/JP2022/013314 JP2022013314W WO2022196834A1 WO 2022196834 A1 WO2022196834 A1 WO 2022196834A1 JP 2022013314 W JP2022013314 W JP 2022013314W WO 2022196834 A1 WO2022196834 A1 WO 2022196834A1
Authority
WO
WIPO (PCT)
Prior art keywords
functional film
cover member
glass plate
inorganic oxide
glass
Prior art date
Application number
PCT/JP2022/013314
Other languages
English (en)
French (fr)
Inventor
信樹 岩井
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Priority to US18/282,700 priority Critical patent/US20240150231A1/en
Priority to CN202280021864.4A priority patent/CN116997535A/zh
Priority to JP2023507216A priority patent/JPWO2022196834A1/ja
Priority to EP22771573.7A priority patent/EP4309890A1/en
Priority to KR1020237035240A priority patent/KR20230159698A/ko
Publication of WO2022196834A1 publication Critical patent/WO2022196834A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/008Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character comprising a mixture of materials covered by two or more of the groups C03C17/02, C03C17/06, C03C17/22 and C03C17/28
    • C03C17/009Mixtures of organic and inorganic materials, e.g. ormosils and ormocers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/002General methods for coating; Devices therefor for flat glass, e.g. float glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/30Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • B32B2307/7145Rot proof, resistant to bacteria, mildew, mould, fungi
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2571/00Protective equipment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/213SiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/44Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
    • C03C2217/445Organic continuous phases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/478Silica
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/479Metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions

Definitions

  • the present invention relates to a cover member that covers an article so that the article can be viewed from the outside, and a method for manufacturing the same.
  • a display device such as a display is provided with a cover member that protects the display device.
  • a cover member is required to have an antireflection function in order to make the display device easier to see.
  • a glass plate having such an antireflection function for example, there is one disclosed in Patent Document 1.
  • the present invention has been made to solve this problem, and an object of the present invention is to provide a cover member that achieves both antireflection function and antibacterial performance, and a method of manufacturing the same.
  • Section 1 A cover member that covers an article and makes the article visible from the outside, a glass plate having a first side and a second side; a single functional film formed on the first surface; with The functional membrane is an inorganic oxide that forms a three-dimensional network bond; inorganic oxide fine particles containing the same element as the inorganic oxide; an antibacterial metal ion; contains A cover member, wherein irregularities are formed on the surface of the functional film by the inorganic oxide fine particles.
  • Item 2 The cover member according to Item 1, wherein the functional film has a refractive index of 1.3 to 1.48.
  • Item 3. The cover member according to Item 1 or 2, wherein the functional film has a reflectance of 3% or less at 550 nm.
  • Section 4. The cover member according to any one of Items 1 to 3, wherein the functional film has a specular gloss of 90 to 140%.
  • the reflection color tone from the functional film side has a* value of ⁇ 2 to +2 in the L*a*b* color system, Item 5.
  • Item 6. The cover member according to any one of items 1 to 5, wherein the metal ions are copper ions.
  • Item 7. The cover member according to any one of Items 1 to 6, wherein the film thickness of the functional layer is 50 to 500 nm.
  • Item 8 forming a coating liquid by adding inorganic fine particles and antibacterial metal ions to silicon alkoxide; applying the coating liquid to a glass plate; heating the glass plate coated with the coating liquid;
  • a method of manufacturing a cover member comprising:
  • FIG. 1 is a cross-sectional view showing an embodiment of a cover member according to the present invention
  • FIG. 2 is an enlarged sectional view of FIG. 1
  • FIG. 2 shows the surface properties of the functional film of Example 1.
  • the cover member according to the present embodiment is used for covering an article, and is configured so that the article can be visually recognized from the outside through the cover member.
  • articles include mobile PCs, tablet PCs, in-vehicle devices such as car navigation systems, devices that have a display function at least partially using electronic components, and devices that do not have an electronic display function but are visible to the outside.
  • Various devices such as a display device for displaying some kind of display are targeted.
  • the cover member of the invention can be used, for example, as part of a show mousse.
  • FIG. 1 is a cross-sectional view of the cover member.
  • the cover member 10 according to this embodiment includes a glass plate 1 having a first surface and a second surface, and a functional film 2 laminated on the first surface of the glass plate 1. ing.
  • the cover member 10 is arranged so as to cover the display device 100 described above.
  • the second surface of the glass plate 1 is arranged to face the display device 100, and the functional film 2 is arranged to face the outside.
  • the cover member 10 includes a glass plate 1 having a first surface and a second surface, and a functional film 2 laminated on the first surface of the glass plate 1. ing.
  • the cover member 10 is arranged so as to cover the display device 100 described above.
  • the second surface of the glass plate 1 is arranged to face the display device 100
  • the functional film 2 is arranged to face the outside.
  • the glass plate 1 can be made of general-purpose soda-lime glass, borosilicate glass, aluminosilicate glass, alkali-free glass, or other glass, for example. Further, the glass plate 1 can be formed by a float method. According to this manufacturing method, a glass plate 1 having a smooth surface can be obtained. However, the glass plate 10 may have unevenness on its main surface, and may be a figured glass, for example. A figured glass can be molded by a manufacturing method called a roll-out method. A figured glass produced by this method usually has periodic irregularities in one direction along the main surface of the glass plate.
  • molten glass is continuously supplied onto molten tin or other molten metal, and the supplied molten glass is made to flow on the molten metal to form a strip.
  • the glass thus formed is called a glass ribbon.
  • the glass ribbon is cooled as it goes downstream, is cooled and solidified, and is pulled up from the molten metal by rollers. Then, it is conveyed to a slow cooling furnace by rollers, and cut after slow cooling. A float glass sheet is thus obtained.
  • the thickness of the glass plate 1 is not particularly limited, it should be thinner for weight reduction.
  • it is preferably 0.3 to 5 mm, more preferably 0.6 to 2.5 mm. This is because if the glass plate 10 is too thin, the strength will decrease, and if it is too thick, the protected member 100 viewed through the cover member 10 may be distorted.
  • the glass plate 1 may generally be a flat plate, but may also be a curved plate.
  • the glass plate 1 preferably has a non-planar main surface that conforms thereto.
  • the glass plate 1 may be bent so as to have a constant curvature as a whole, or may be bent locally.
  • the main surface of the glass plate 1 may be configured by, for example, connecting a plurality of flat surfaces with curved surfaces.
  • the radius of curvature of the glass plate 1 can be, for example, 5000 mm or less.
  • the lower limit of the radius of curvature can be, for example, 10 mm or more, but it may be even smaller, for example, 1 mm or more, especially in a locally bent portion.
  • a glass plate having the following composition can also be used.
  • percentages indicating the components of the glass plate 1 all mean mol%.
  • the phrase “substantially composed of” means that the total content of the listed components is 99.5% by mass or more, preferably 99.9% by mass or more, more preferably 99.95% by mass. It means that it occupies more than % by mass. “Substantially free” means that the content of the component is 0.1% by mass or less, preferably 0.05% by mass or less.
  • SL in a narrow sense a glass composition suitable for the production of glass plates by the float method
  • the composition range considered by those skilled in the art to be soda lime silicate glass suitable for the float process hereinafter sometimes referred to as “broadly defined SL”
  • mass% range in which the properties such as T 2 and T 4 are approximated to SL in the narrow sense as much as possible while improving the chemical strengthening properties of SL in the narrow sense.
  • SiO2 is a main component that constitutes the glass plate 1. If the content is too low, the chemical durability such as water resistance and heat resistance of the glass are lowered. On the other hand, if the SiO 2 content is too high, the viscosity of the glass plate 1 at high temperatures becomes high, making melting and molding difficult. Therefore, the content of SiO 2 is suitably in the range of 66-72 mol %, preferably 67-70 mol %.
  • Al2O3 Al 2 O 3 improves the chemical durability such as water resistance of the glass plate 1, and facilitates the movement of alkali metal ions in the glass to increase the surface compressive stress after chemical strengthening. It is a component for deepening the depth.
  • the content of Al 2 O 3 is too high, the viscosity of the glass melt will increase, T 2 and T 4 will increase, and the clarity of the glass melt will deteriorate, making it difficult to produce a high-quality glass plate. becomes difficult.
  • the content of Al 2 O 3 is appropriately in the range of 1 to 12 mol %.
  • the content of Al 2 O 3 is preferably 10 mol % or less, preferably 2 mol % or more.
  • the glass plate 1 preferably contains MgO.
  • MgO MgO
  • the content of MgO is less than 8 mol %, the surface compressive stress after chemical strengthening tends to decrease and the depth of the stress layer tends to become shallow.
  • the strengthening performance obtained by chemical strengthening is lowered, and in particular the depth of the surface compressive stress layer is sharply reduced.
  • MgO has the least adverse effect, but in this glass plate 1, the content of MgO is 15 mol % or less.
  • T 2 and T 4 are increased and the clarity of the glass melt is deteriorated, making it difficult to produce a high-quality glass plate.
  • the content of MgO is in the range of 1 to 15 mol%, preferably 8 mol% or more and 12 mol% or less.
  • CaO CaO has the effect of lowering the viscosity at high temperatures, but if the content is too high beyond an appropriate range, the glass plate 1 tends to devitrify and the movement of sodium ions in the glass plate 1 is inhibited. end up When CaO is not contained, the surface compressive stress after chemical strengthening tends to decrease. On the other hand, if the CaO content exceeds 8 mol %, the surface compressive stress after chemical strengthening is significantly reduced, the depth of the compressive stress layer is significantly reduced, and the glass plate 1 is likely to devitrify.
  • the appropriate CaO content is in the range of 1 to 8 mol%.
  • the CaO content is preferably 7 mol % or less, and preferably 3 mol % or more.
  • SrO, BaO greatly lower the viscosity of the glass plate 1, and when contained in small amounts, the effect of lowering the liquidus temperature TL is more pronounced than CaO.
  • SrO and BaO significantly hinder the movement of sodium ions in the glass plate 1, greatly reduce the surface compressive stress, and make the depth of the compressive stress layer considerably shallow.
  • the glass plate 1 does not substantially contain SrO and BaO.
  • ( Na2O ) Na 2 O is a component for increasing the surface compressive stress and increasing the depth of the surface compressive stress layer by replacing sodium ions with potassium ions.
  • the stress relaxation during the chemical strengthening treatment will exceed the generation of surface compressive stress due to ion exchange during the chemical strengthening treatment, and as a result, the surface compressive stress will tend to decrease. be.
  • Na 2 O is a component for improving the solubility and lowering T 4 and T 2 , but if the content of Na 2 O is too high, the water resistance of the glass is remarkably lowered.
  • the content of Na 2 O is 10 mol % or more, the effect of reducing T 4 and T 2 is sufficiently obtained, and if it exceeds 16 mol %, the surface compressive stress is significantly reduced due to stress relaxation. Become.
  • the content of Na 2 O in the glass plate 1 of this embodiment is appropriately in the range of 10 to 16 mol %.
  • the Na 2 O content is preferably 12 mol % or more, and more preferably 15 mol % or less.
  • K2O K 2 O like Na 2 O, is a component that improves the solubility of glass.
  • the ion exchange rate in chemical strengthening increases, the depth of the surface compressive stress layer increases, and the liquidus temperature TL of the glass plate 1 decreases. Therefore, it is preferable to contain K 2 O at a low content.
  • K 2 O is less effective than Na 2 O in reducing T 4 and T 2 , but a large amount of K 2 O inhibits clarification of the glass melt. Also, the higher the K 2 O content, the lower the surface compressive stress after chemical strengthening. Therefore, the appropriate K 2 O content is in the range of 0 to 1 mol %.
  • the glass plate 1 of the present embodiment may contain Li 2 O in an amount of 1 mol % or less, but preferably does not substantially contain Li 2 O.
  • B2O3 is a component that lowers the viscosity of the glass plate 1 and improves its solubility.
  • the content of B 2 O 3 is too high, the glass plate 1 tends to undergo phase separation and the water resistance of the glass plate 1 decreases.
  • the compound formed by B 2 O 3 and the alkali metal oxide may volatilize and damage the refractories in the glass melting chamber.
  • the inclusion of B 2 O 3 reduces the depth of the compressive stress layer in chemical strengthening. Therefore, the appropriate content of B 2 O 3 is 0.5 mol % or less. In the present invention, it is more preferable that the glass plate 1 does not substantially contain B 2 O 3 .
  • Fe2O3 Fe usually exists in the glass in the form of Fe 2+ or Fe 3+ and acts as a colorant.
  • Fe 3+ is a component that enhances the ultraviolet absorption performance of the glass
  • Fe 2+ is a component that enhances the heat ray absorption performance.
  • the iron oxide content in terms of Fe 2 O 3 is preferably 0.15% by mass or less, more preferably 0.1% by mass or less, when the entire glass plate 1 is taken as 100% by mass. It is preferably 0.02% by mass or less, more preferably 0.02% by mass or less.
  • TiO2 TiO 2 is a component that lowers the viscosity of the glass plate 1 and increases the surface compressive stress due to chemical strengthening. Therefore, the appropriate content of TiO 2 is 0 to 0.2% by mass. In addition, it is inevitably mixed with commonly used industrial raw materials, and may be contained in the glass plate 1 in an amount of about 0.05% by mass. This level of content does not color the glass, so it may be included in the glass plate 1 of the present embodiment.
  • ZrO2 ZrO 2 may be mixed into the glass plate 1 from the refractory bricks constituting the glass melting kiln, especially when the glass plate is manufactured by the float method, and its content is about 0.01% by mass.
  • ZrO 2 is a component that improves the water resistance of glass and increases surface compressive stress due to chemical strengthening.
  • a high ZrO 2 content may cause an increase in the working temperature T 4 and a rapid increase in the liquidus temperature TL . It tends to remain as a foreign substance in the manufactured glass. Therefore, the appropriate ZrO 2 content is 0 to 0.1% by mass.
  • SO3 In the float method, sulfates such as Glauber's salt (Na 2 SO 4 ) are commonly used as clarifiers. Sulfate decomposes in the molten glass to produce gas components, which promotes defoaming of the glass melt, but some of the gas components dissolve and remain in the glass plate 1 as SO 3 .
  • SO 3 is preferably 0 to 0.3% by mass.
  • CeO2 CeO 2 is used as a fining agent. CeO 2 contributes to degassing since it produces O 2 gas in the molten glass. On the other hand, too much CeO 2 causes the glass to turn yellow. Therefore, the CeO 2 content is preferably 0 to 0.5% by mass, more preferably 0 to 0.3% by mass, and even more preferably 0 to 0.1% by mass.
  • SnO2 It is known that in a glass sheet molded by the float method, tin diffuses from the tin bath to the surface that comes into contact with the tin bath during molding, and the tin exists as SnO 2 . Also, SnO 2 mixed with the glass raw material contributes to defoaming. In the glass plate 1 of the present invention, SnO 2 is preferably 0 to 0.3% by mass.
  • the glass plate 1 according to the present embodiment is substantially composed of the components listed above.
  • the glass plate 1 according to the present embodiment may contain components other than the components listed above, preferably within a range where the content of each component is less than 0.1% by mass.
  • components that are allowed to be included include As2O5 , Sb2O5 , Cl , and F, which are added for the purpose of defoaming the molten glass , in addition to SO3 and SnO2 described above.
  • As 2 O 5 , Sb 2 O 5 , Cl, and F are preferably not added because they have a large adverse effect on the environment.
  • other examples that are allowed to be included are ZnO , P2O5 , GeO2 , Ga2O3 , Y2O3 and La2O3 .
  • Components other than the above derived from industrially used raw materials are acceptable as long as they do not exceed 0.1% by mass. Since these components are added as appropriate or mixed inevitably as necessary, the glass plate 1 of the present embodiment may be substantially free of these components. do not have.
  • the density of the glass plate 1 is reduced to 2.53 g ⁇ cm ⁇ 3 or less, further 2.51 g ⁇ cm ⁇ 3 or less, and in some cases 2.50 g ⁇ cm ⁇ 3 or less. be able to.
  • the density of soda-lime glass currently mass-produced by the float method is about 2.50 g ⁇ cm ⁇ 3 . Therefore, considering mass production by the float method, the density of the glass plate 1 should be close to the above values, specifically 2.45 to 2.55 g ⁇ cm ⁇ 3 , particularly 2.47 to 2.53 g ⁇ cm ⁇ 3 . cm ⁇ 3 is preferred, and 2.47 to 2.50 g ⁇ cm ⁇ 3 is more preferred.
  • the glass substrate may warp.
  • the elastic modulus of the glass plate 1 is high.
  • the elastic modulus (Young's modulus: E) of the glass plate 1 can be increased to 70 GPa or higher, or even 72 GPa or higher.
  • Chemical strengthening of the glass plate 1 will be described below. (Chemical strengthening conditions and compressive stress layer)
  • a glass plate 1 containing sodium is brought into contact with a molten salt containing monovalent cations having an ionic radius larger than that of sodium ions, preferably potassium ions, so that the sodium ions in the glass plate 1 are replaced with the above monovalent cations.
  • the chemical strengthening of the glass plate 1 according to the present invention can be carried out by performing an ion-exchange treatment that replaces with . Thereby, a compressive stress layer having a compressive stress applied to the surface is formed.
  • Potassium nitrate can typically be mentioned as the molten salt.
  • a mixed molten salt of potassium nitrate and sodium nitrate can also be used, but since it is difficult to control the concentration of the mixed molten salt, a molten salt of potassium nitrate alone is preferable.
  • the surface compressive stress and compressive stress layer depth in a tempered glass article can be controlled not only by the glass composition of the article, but also by the molten salt temperature and treatment time in the ion exchange treatment.
  • a tempered glass article having a very high surface compressive stress and a very deep compressive stress layer By contacting the above glass plate 1 with potassium nitrate molten salt, a tempered glass article having a very high surface compressive stress and a very deep compressive stress layer can be obtained. Specifically, a tempered glass article having a surface compressive stress of 700 MPa or more and a compressive stress layer having a depth of 20 ⁇ m or more can be obtained. Certain tempered glass articles can also be obtained.
  • wind tempering can be used as a general strengthening method instead of chemical strengthening.
  • FIG. 2 is an enlarged cross-sectional view schematically showing the vicinity of the surface of the functional film.
  • the functional film 2 comprises an inorganic oxide forming a three-dimensional network bond, inorganic oxide fine particles held by the inorganic oxide, and antibacterial metal ions held by the inorganic oxide. These will be described below.
  • the inorganic oxide serves as a binder that holds the inorganic oxide fine particles and metal ions.
  • the inorganic oxide includes, for example, silicon oxide, which is an oxide of Si, and preferably contains silicon oxide as a main component. Using silicon oxide as a main component is suitable for lowering the refractive index of the film and suppressing the reflectance of the film.
  • the functional film may contain a component other than silicon oxide, or may contain a component partially containing silicon oxide.
  • the component partially containing silicon oxide forms, for example, a three-dimensional network structure of siloxane bonds (Si--O--Si) in which silicon atoms and oxygen atoms are alternately connected and spread three-dimensionally. Also, it is a component in which atoms other than both atoms, functional groups, and the like are bonded to silicon atoms or oxygen atoms in this portion. Examples of atoms other than silicon atoms and oxygen atoms include nitrogen atoms, carbon atoms, hydrogen atoms, and metal elements described in the next paragraph. Examples of functional groups include organic groups described as R in the next paragraph. Such components are not strictly silicon oxides in that they are not composed solely of silicon and oxygen atoms.
  • the silicon oxide portion composed of silicon atoms and oxygen atoms is also consistent with the common practice in the field.
  • the silicon oxide portion is also treated as silicon oxide.
  • the atomic ratio of silicon atoms and oxygen atoms in silicon oxide need not be stoichiometric (1:2).
  • the functional film 2 may contain metal oxides other than silicon oxide, specifically metal oxide components or metal oxide portions containing other than silicon.
  • the metal oxide that the functional film 2 may contain is not particularly limited, but for example, an oxide of at least one metal element selected from the group consisting of Al, Ti, Zr, Ta, Nb, Nd, La, Ce and Sn. is.
  • the functional film 2 may contain inorganic compound components other than oxides, such as nitrides, carbides, and halides, or may contain organic compound components.
  • Metal oxides such as silicon oxide, can be formed from hydrolyzable organometallic compounds.
  • hydrolyzable silicon compounds include compounds represented by formula (1).
  • RnSiY4 -n ( 1)
  • R is an organic group containing at least one selected from an alkyl group, a vinyl group, an epoxy group, a styryl group, a methacryloyl group and an acryloyl group.
  • Y is at least one hydrolyzable organic group selected from an alkoxy group, an acetoxy group, an alkenyloxy group and an amino group, or a halogen atom.
  • a halogen atom is preferably Cl.
  • n is an integer from 0 to 3, preferably 0 or 1;
  • R is preferably an alkyl group, such as an alkyl group having 1 to 3 carbon atoms, particularly a methyl group.
  • Y is preferably an alkoxy group such as an alkoxy group having 1 to 4 carbon atoms, particularly a methoxy group and an ethoxy group.
  • Two or more of the compounds represented by the above formulas may be used in combination. Such a combination includes, for example, a combination of a tetraalkoxysilane in which n is 0 and a monoalkyltrialkoxysilane in which n is 1.
  • the compound represented by formula (1) forms a network structure in which silicon atoms are bonded to each other via oxygen atoms.
  • the organic group represented by R is included directly attached to the silicon atom.
  • the functional film 2 further contains inorganic oxide fine particles as at least part of the inorganic oxide.
  • Inorganic oxides constituting the inorganic oxide fine particles are composed of the same elements as the inorganic oxides described in ⁇ 2-1>, for example, Si, Al, Ti, Zr, Ta, Nb, Nd, La , Ce and Sn, preferably silica fine particles.
  • Silica fine particles can be introduced into the functional film 2 by adding colloidal silica, for example.
  • the inorganic oxide fine particles are excellent in transferring the stress applied to the functional film 2 to the glass plate 1 supporting the functional film 2 and have high hardness.
  • inorganic oxide fine particles is advantageous from the viewpoint of improving the abrasion resistance of the functional film 2 .
  • the inorganic oxide fine particles can be supplied to the functional film 2 by adding preformed inorganic oxide fine particles to the coating liquid for forming the functional film 2 .
  • the average particle size of the primary particles of the inorganic oxide fine particles is preferably 1 to 100 nm, more preferably 5 to 50 nm.
  • the average particle size of the inorganic oxide fine particles is described in the state of primary particles. The average particle diameter of the inorganic oxide fine particles is determined by measuring the particle diameters of 50 arbitrarily selected fine particles by observation using a scanning electron microscope and adopting the average value. If the content of the inorganic oxide fine particles increases, the functional film 2 may become cloudy.
  • the inorganic oxide fine particles are preferably 10 to 200 parts by weight, more preferably 20 to 180 parts by weight, still more preferably 5 to 25 parts by weight, and particularly preferably 50 to 160 parts by weight with respect to 100 parts by weight of the inorganic oxide. It is good to add so that it becomes part.
  • Metal ions have antibacterial properties and can be formed from monovalent or divalent copper ions, silver ions, and the like.
  • the content of the metal ions in the functional film 2 is preferably 2 to 50%, preferably 5 to 25%, in terms of molar ratio with respect to the main component having the largest weight ratio among the inorganic oxides forming the network bonds. is more preferred.
  • the thickness of the functional film 2 is, for example, preferably 50 nm or more and 500 nm or less, more preferably 100 nm or more and 450 nm or less, and particularly preferably 200 nm or more and 400 nm or less. If the thickness is too thick, the haze ratio may increase or excessive coloring may occur. On the other hand, if the thickness is too thin, the inorganic oxide fine particles and metal ions cannot be retained and may be separated from the functional film 2 . Moreover, there is also a possibility that durability may become low.
  • the refractive index of the functional film 2 is preferably 1.3 to 1.48, more preferably 1.35 to 1.45. As shown in FIG. 2, in the functional film 2 according to the present invention, irregularities are formed on the surface by agglomeration of inorganic oxide fine particles, which scatters light, so that the refractive index can be lowered. . In particular, the refractive index of the inorganic oxide fine particles themselves is often, for example, 1.4 to 1.55. is formed, the apparent refractive index of the functional film 2 itself can be reduced. The refractive index can be measured, for example, according to JIS B-7071-1:2015.
  • the reflectance of the functional film 2 is preferably 3% or less at 550 nm, more preferably 2% or less. Reflectance can be measured, for example, based on JIS R-3106:2019.
  • the surface roughness Ra of the unevenness of the functional film 2 can be, for example, 0.03 to 0.3 ⁇ m, preferably 0.05 to 0.2 ⁇ m.
  • the refractive index as described above can be realized. is also much smaller. That is, the irregularities on the surface of the functional film 2 are not formed by the spherical aggregation of the inorganic oxide fine particles, but as shown in FIG. is formed. Such irregularities can be formed, for example, by adjusting the dispersion and aggregation of the inorganic oxide fine particles by preparing a coating liquid for the functional film.
  • FIG. 2 is a schematic diagram of the inorganic oxide fine particles, and does not represent an accurate diagram. Inorganic oxide fine particles are similarly laminated below line A shown in FIG.
  • the method for forming the functional film 2 is not particularly limited, it can be formed, for example, as follows. First, a material forming the three-dimensional network structure described above, for example, a silicon alkoxide such as tetraethoxysilane is made into a solution under acidic conditions to generate a precursor liquid. In addition, a liquid containing the antibacterial metal ions described above, such as an aqueous solution of copper chloride and a dispersion liquid containing inorganic oxide fine particles such as colloidal silica, is mixed with the precursor to form a coating liquid for the functional film. .
  • a material forming the three-dimensional network structure described above for example, a silicon alkoxide such as tetraethoxysilane is made into a solution under acidic conditions to generate a precursor liquid.
  • a liquid containing the antibacterial metal ions described above such as an aqueous solution of copper chloride and a dispersion liquid containing inorganic oxide fine particles such as colloidal silica,
  • a coating liquid is applied to the first surface of the cleaned glass plate 1 .
  • the coating method is not particularly limited, for example, a flow coating method, a spray coating method, a spin coating method, or the like can be employed.
  • the applied coating liquid is dried in an oven or the like at a predetermined temperature (eg, 80 to 200 ° C.) to volatilize the alcohol content in the solution, for example, for hydrolysis and decomposition of the organic chain.
  • a predetermined temperature for example, 200 to 500° C.
  • the visible light transmittance is preferably 85% or more, more preferably 90% or more.
  • the haze ratio of the cover member 10 is, for example, 20% or less, further 15% or less, particularly 10% or less, and in some cases 0.1 to 8.0%, further 0.1 to 6.0%.
  • the gloss can be evaluated by the degree of specular gloss.
  • the 60° specular glossiness of the cover member 10 is, for example, 90 to 140%, further 95 to 140%, particularly 100 to 140%. These specular glossiness values are values measured for the surface on which the functional film 2 is formed.
  • materials exhibiting a gloss of 120 to 140% are generally used.
  • the gloss can be measured according to JIS Z8741-1997 "Method for measuring specular gloss”, “Method 3 (60 degree specular gloss)", and the haze can be measured according to JIS K7136:2000.
  • both a* and b* of the color tone reflected from the transflective film 2 side are preferably within ⁇ 2, and within ⁇ 1.5. It is more preferable that there is, and it is particularly preferable that it is ⁇ 1 or less.
  • These a* and b* can be adjusted by changing the material and thickness of the functional film 2 and the material and thickness of the glass plate 1 . If a* and b* are ⁇ 2 or less, the color tone of the transmitted image can be viewed correctly.
  • a* and b* in the range of -2.5 to +2.5 are "a range that can be treated as the same color at the impression level”. Furthermore, it is generally said that if a* and b* are ⁇ 2 or less, the color tone level is hardly noticeable in color separation comparison.
  • the cover member 10 since the functional film 2 is formed with unevenness due to the inorganic oxide fine particles, an antireflection function can be obtained. In addition, since antibacterial metal ions are contained, an antibacterial function can also be obtained. Further, since the antireflection function and the antibacterial function can be realized by the single functional film 2, manufacturing can be easily performed.
  • the refractive index of the functional film 2 as described above is equivalent to that of fat or oil, it is possible to obtain the effect that even if fat or oil adheres to the functional film 2, it is difficult to visually recognize it. Furthermore, since the surface of the functional film 2 is uneven, even if dirt such as fat or oil adheres, it can be easily wiped off.
  • Examples of the present invention will be described below. However, the present invention is not limited to the following examples.
  • (1) Preparation of Examples A float glass plate having a size of 50 mm x 50 mm and a thickness of 1.1 mm was prepared, and its surface was subjected to alkaline ultrasonic cleaning. Next, a coating liquid for a functional film having the composition shown below was prepared.
  • FIG. 3 is an image of the surface of the functional film of Example 1 taken by SEM. As shown in this photograph, it can be seen that irregularities are formed on the surface of the functional film by inorganic oxide fine particles, and voids are formed inside the irregularities. It has been confirmed that similar irregularities are formed in Examples 2 to 7 as well.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

本発明に係るカバー部材は、表示装置を覆うカバー部材であって、第1面及び第2面を有するガラス板と、前記第1面に形成された単一の機能膜と、を備え、前記機能膜は、三次元ネットワーク結合を構成する無機酸化物と、前記無機酸化物と同じ元素を含有する無機酸化物微粒子と、抗菌性の金属イオンと、を含有し、前記無機酸化物微粒子により、前記機能膜の表面に凹凸が形成されている。

Description

カバー部材
 本発明は、物品を覆い、外部から当該物品を視認可能とするカバー部材、及びその製造方法に関する。
 ディスプレイ等の表示装置にはカバー部材が配置され、カバー部材により表示装置を保護している。このようなカバー部材には、表示装置を視認しやすくするため、反射防止機能が求められている。そのような反射防止機能を有するガラス板としては、例えば、特許文献1に示すものがある。
国際公開第2008/81837号公報
 ところで、近年はカバー部材に抗菌性能が求められることが多いが、反射防止機能と抗菌性能を両立したカバー部材は未だ提案されていない。本発明は、この問題を解決するためになされたものであり、反射防止機能と抗菌性能を両立したカバー部材及びその製造方法を提供することを目的とする。
項1.物品を覆い、外部から当該物品を視認可能とするカバー部材であって、
 第1面及び第2面を有するガラス板と、
 前記第1面に形成された単一の機能膜と、
を備え、
 前記機能膜は、
 三次元ネットワーク結合を構成する無機酸化物と、
 前記無機酸化物と同じ元素を含有する無機酸化物微粒子と、
 抗菌性の金属イオンと、
を含有し、
 前記無機酸化物微粒子により、前記機能膜の表面に凹凸が形成されている、カバー部材。
項2.前記機能膜の屈折率は、1.3~1.48である、項1に記載のカバー部材。
項3.前記機能膜の550nmにおける反射率は、3%以下である、項1または2に記載のカバー部材。
項4.前記機能膜の鏡面光沢度は、90~140%である、項1から3のいずれかに記載のカバー部材。
項5.前記機能膜側からの反射色調が、L*a*b*表色系において、a*の値は、-2~+2であり、
 前記機能膜側からの反射色調が、L*a*b*表色系において、b*の値は、-2~+2である、項1から4のいずれかに記載のカバー部材。
項6.前記金属イオンは、銅イオンである、項1から5のいずれかに記載のカバー部材。
項7.前記機能層の膜厚は、50~500nmである、項1から6のいずれかに記載のカバー部材。
項8.シリコンアルコキシドに、無機微粒子及び抗菌性の金属イオンを添加したコーティング液を形成するステップと、
 前記コーティング液をガラス板に塗布するステップと、
 前記コーティング液が塗布されたガラス板を加熱するステップと、
を備えている、カバー部材の製造方法。
 本発明によれば、反射防止機能と抗菌性能を両立したカバー部材を提供することができる。
本発明に係るカバー部材の一実施形態を示す断面図である。 図1の拡大断面図である。 実施例1の機能膜の表面性状である。
 以下、本発明に係るカバー部材の一実施形態について、図面を参照しつつ説明する。本実施形態に係るカバー部材は、物品を覆う用途で用いられるものであり、且つ、このカバー部材を介して物品を外部から視認可能に構成されている。なお、物品とは、一般的なディスプレイのほか、モバイルPC、タブレットPC、カーナビゲーションなどの車載機器、少なくとも一部に電子部品による表示機能を有する装置、電子表示機能を有さないが外部に対して何らかの表示を行うための表示装置等の種々の機器が対象となる。また、機器ではなくても、例えば、商品のように外部に見せるためのものも対象となる。この場合、本発明のカバー部材は、例えば、ショームースの一部として用いることができる。
 図1はカバー部材の断面図である。図1に示すように、本実施形態に係るカバー部材10は、第1面及び第2面を有するガラス板1と、このガラス板1の第1面に積層される機能膜2と、を備えている。そして、このカバー部材10は、上述した表示装置100を覆うように配置される。このとき、ガラス板1の第2面が表示装置100と向き合うように配置され、機能膜2が外部を向くように配置される。以下、詳細に説明する。
 <1.ガラス板>
 ガラス板1は、例えば、汎用のソーダライムガラス、ホウケイ酸ガラス、アルミノシリケートガラス、無アルカリガラス等その他のガラスにより形成することができる。また、ガラス板1は、フロート法により成形することができる。この製法によると平滑な表面を有するガラス板1を得ることができる。但し、ガラス板10は、主面に凹凸を有していてもよく、例えば型板ガラスであってもよい。型板ガラスは、ロールアウト法と呼ばれる製法により成形することができる。この製法による型板ガラスは、通常、ガラス板の主面に沿った一方向について周期的な凹凸を有する。
 フロート法は、溶融スズなどの溶融金属の上に溶融ガラスを連続的に供給し、供給した溶融ガラスを溶融金属の上で流動させることにより帯板状に成形する。このように成形されたガラスをガラスリボンと称する。
 ガラスリボンは、下流側に向かうにつれて冷却され、冷却固化された上で溶融金属からローラにより引き上げられる。そして、ローラによって徐冷炉へと搬送され、徐冷された後、切断される。こうして、フロートガラス板が得られる。
 ガラス板1の厚さは、特に制限されないが、軽量化のためには薄いほうがよい。例えば、0.3~5mmであることが好ましく、0.6~2.5mmである事がさらに好ましい。これは、ガラス板10が薄すぎると、強度が低下するからであり、厚すぎると、カバー部材10を介して視認される被保護部材100に歪みが生じるおそれがある。
 ガラス板1は、通常、平板であってよいが、曲板であってもよい。特に、保護すべき被保護部材の表面形状が曲面等の非平面である場合、ガラス板1はそれに適合する非平面形状の主面を有することが好ましい。この場合、ガラス板1は、その全体が一定の曲率を有するように曲げられていてもよく、局部的に曲げられていてもよい。ガラス板1の主面は、例えば複数の平面が曲面で互いに接続されて構成されていてもよい。ガラス板1の曲率半径は、例えば5000mm以下とすることができる。この曲率半径の下限値は、例えば、10mm以上とすることができるが、特に局部的に曲げられている部位ではさらに小さくてもよく、例えば1mm以上とすることができる。
 次のような組成のガラス板を用いることもできる。以下では、ガラス板1の成分を示す%表示は特に断らない限り、すべてmol%を意味する。また、本明細書において、「実質的に構成される」とは、列挙された成分の含有率の合計が99.5質量%以上、好ましくは99.9質量%以上、より好ましくは99.95質量%以上を占めることを意味する。「実質的に含有しない」とは、当該成分の含有質が0.1質量%以下、好ましくは0.05質量%以下であることを意味する。
 本発明者は、フロート法によるガラス板の製造に適したガラス組成として広く用いられているフロート板ガラスの組成(以下、「狭義のSL」、または単に「SL」と呼ぶことがある)を元に、当業者がフロート法に適したソーダライムシリケートガラス(以下、「広義のSL」と呼ぶことがある)と見做している組成範囲、具体的には、以下のような質量%の範囲内で、T2、T4等の特性をできるだけ狭義のSLに近似させながら、狭義のSLの化学強化特性を向上させることのできる組成物を検討した。
 SiO2   65~80%
 Al23   0~16%
 MgO   0~20%
 CaO   0~20%
 Na2O   10~20%
 K2O   0~5%
 以下、ガラス板1のガラス組成を構成する各成分について説明する。
 (SiO2
 SiO2は、ガラス板1を構成する主要成分であり、その含有率が低すぎるとガラスの耐水性などの化学的耐久性および耐熱性が低下する。他方、SiO2の含有率が高すぎると、高温でのガラス板1の粘性が高くなり、溶解および成形が困難になる。したがって、SiO2の含有率は、66~72mol%の範囲が適切であり、67~70mol%が好ましい。
 (Al23
 Al23はガラス板1の耐水性などの化学的耐久性を向上させ、さらにガラス中のアルカリ金属イオンの移動を容易にすることにより化学強化後の表面圧縮応力を高め、かつ、応力層深さを深くするための成分である。他方、Al23の含有率が高すぎると、ガラス融液の粘度を増加させ、T2、T4を増加させると共にガラス融液の清澄性が悪化し高品質なガラス板を製造することが難しくなる。
 したがって、Al23の含有率は、1~12mol%の範囲が適切である。Al23の含有率は10mol%以下が好ましく、2mol%以上が好ましい。
 (MgO)
 MgOはガラスの溶解性を向上させる必須の成分である。この効果を十分に得る観点から、このガラス板1ではMgOが添加されていることが好ましい。また、MgOの含有率が8mol%を下回ると、化学強化後の表面圧縮応力が低下し、応力層深さが浅くなる傾向にある。一方、適量を越えて含有率を増やすと、化学強化により得られる強化性能が低下し、特に表面圧縮応力層の深さが急激に浅くなる。この悪影響は、アルカリ土類金属酸化物の中でMgOが最も少ないが、このガラス板1においては、MgOの含有率は15mol%以下である。また、MgOの含有率が高いと、T2、T4を増加させると共にガラス融液の清澄性が悪化し高品質なガラス板を製造することが難しくなる。
 したがって、このガラス板1においては、MgOの含有率は1~15mol%の範囲であり、8mol%以上、12mol%以下が好ましい。
 (CaO)
 CaOは、高温での粘性を低下させる効果を有するが、適度な範囲を超えて含有率が高すぎると、ガラス板1が失透しやすくなるとともに、ガラス板1におけるナトリウムイオンの移動が阻害されてしまう。CaOを含有しない場合に化学強化後の表面圧縮応力が低下する傾向にある。一方、8mol%を超えてCaOを含有すると、化学強化後の表面圧縮応力が顕著に低下し、圧縮応力層深さが顕著に浅くなるとともに、ガラス板1が失透しやすくなる。
 したがって、CaOの含有率は1~8mol%の範囲が適切である。CaOの含有率は、7mol%以下が好ましく、3mol%以上が好ましい。
 (SrO、BaO)
 SrO、BaOは、ガラス板1の粘性を大きく低下させ、少量の含有では液相温度TLを低下させる効果がCaOより顕著である。しかし、SrO、BaOは、ごく少量の添加であっても、ガラス板1におけるナトリウムイオンの移動を顕著に妨げ、表面圧縮応力を大きく低下させ、かつ、圧縮応力層の深さがかなり浅くなる。
 したがって、このガラス板1においては、SrO、BaOを実質的に含有しないことが好ましい。
 (Na2O)
 Na2Oは、ナトリウムイオンがカリウムイオンと置換されることにより、表面圧縮応力を大きくし、表面圧縮応力層の深さを深くするための成分である。しかし、適量を超えて含有率を増やすと、化学強化処理でのイオン交換による表面圧縮応力の発生を、化学強化処理中の応力緩和が上回るようになり、結果として表面圧縮応力が低下する傾向にある。
 また、Na2Oは溶解性を向上させ、T4、T2を低下させるための成分である一方、Na2Oの含有率が高すぎると、ガラスの耐水性が著しく低下する。ガラス板1においては、Na2Oの含有率が10mol%以上であればT4、T2を低下させる効果が充分に得られ、16mol%を超えると応力緩和による表面圧縮応力の低下が顕著になる。
 したがって、本実施形態のガラス板1におけるNa2Oの含有率は、10~16mol%の範囲が適切である。Na2Oの含有率は、12mol%以上が好ましく、15mol%以下がより好ましい。
 (K2O)
 K2Oは、Na2Oと同様、ガラスの溶解性を向上させる成分である。また、K2Oの含有率が低い範囲では、化学強化におけるイオン交換速度が増加し、表面圧縮応力層の深さが深くなる一方で、ガラス板1の液相温度TLを低下させる。したがってK2Oは低い含有率で含有させることが好ましい。
 一方、K2Oは、Na2Oと比較して、T4、T2を低下させる効果が小さいが、K2Oの多量の含有はガラス融液の清澄を阻害する。また、K2Oの含有率が高くなるほど化学強化後の表面圧縮応力が低下する。したがって、K2Oの含有率は0~1mol%の範囲が適切である。
 (Li2O)
 Li2Oは、少量含有されるだけであっても圧縮応力層の深さを著しく低下させる。また、Li2Oを含むガラス物品を硝酸カリウム単独の溶融塩で化学強化処理する場合、Li2Oを含まないガラス物品の場合と比較して、その溶融塩が劣化する速度が著しく速い。具体的には、同じ溶融塩で繰り返し化学強化処理を行なう場合に、より少ない回数でガラス表面に形成される表面圧縮応力が低下する。したがって、本実施形態のガラス板1においては、1mol%以下のLi2Oを含有してもよいが、実質的にLi2Oを含有しない方が好ましい。
 (B23
 B23は、ガラス板1の粘性を下げ、溶解性を改善する成分である。しかし、B23の含有率が高すぎると、ガラス板1が分相しやすくなり、ガラス板1の耐水性が低下する。また、B23とアルカリ金属酸化物とが形成する化合物が揮発してガラス溶解室の耐火物を損傷するおそれが生じる。さらに、B23の含有は化学強化における圧縮応力層の深さを浅くしてしまう。したがって、B23の含有率は0.5mol%以下が適切である。本発明では、B23を実質的に含有しないガラス板1であることがより好ましい。
 (Fe23
 通常Feは、Fe2+又はFe3+の状態でガラス中に存在し、着色剤として作用する。Fe3+はガラスの紫外線吸収性能を高める成分であり、Fe2+は熱線吸収性能を高める成分である。ガラス板1をディスプレイのカバーガラスとして用いる場合、着色が目立たないことが求められるため、Feの含有率は少ない方が好ましい。しかし、Feは工業原料により不可避的に混入することが多い。したがって、Fe23に換算した酸化鉄の含有率は、ガラス板1全体を100質量%として示して0.15質量%以下とすることがよく、0.1質量%以下であることがより好ましく、更に好ましくは0.02質量%以下である。
 (TiO2
 TiO2は、ガラス板1の粘性を下げると同時に、化学強化による表面圧縮応力を高める成分であるが、ガラス板1に黄色の着色を与えることがある。したがって、TiO2の含有率は0~0.2質量%が適切である。また、通常用いられる工業原料により不可避的に混入し、ガラス板1において0.05質量%程度含有されることがある。この程度の含有率であれば、ガラスに着色を与えることはないので、本実施形態のガラス板1に含まれてもよい。
 (ZrO2
 ZrO2は、とくにフロート法でガラス板を製造する際に、ガラスの溶融窯を構成する耐火レンガからガラス板1に混入することがあり、その含有率は0.01質量%程度であることが知られている。一方、ZrO2はガラスの耐水性を向上させ、また、化学強化による表面圧縮応力を高める成分である。しかし、ZrO2の高い含有率は、作業温度T4の上昇や液相温度TLの急激な上昇を引き起こすことがあり、またフロート法によるガラス板の製造においては、析出したZrを含む結晶が製造されたガラス中に異物として残留しやすい。したがって、ZrO2の含有率は0~0.1質量%が適切である。
 (SO3
 フロート法においては、ボウ硝(Na2SO4)など硫酸塩が清澄剤として汎用される。硫酸塩は溶融ガラス中で分解してガス成分を生じ、これによりガラス融液の脱泡が促進されるが、ガス成分の一部はSO3としてガラス板1中に溶解し残留する。本発明のガラス板1においては、SO3は0~0.3質量%であることが好ましい。
 (CeO2
 CeO2は清澄剤として使用される。CeO2により溶融ガラス中でO2ガスが生じるので、CeO2は脱泡に寄与する。一方、CeO2が多すぎると、ガラスが黄色に着色してしまう。そのため、CeO2の含有量は、0~0.5質量%が好ましく、0~0.3質量%がより好ましく、0~0.1質量%がさらに好ましい。
 (SnO2
 フロート法により成形されたガラス板において、成型時にスズ浴に触れた面はスズ浴からスズが拡散し、そのスズがSnO2として存在することが知られている。また、ガラス原料に混合させたSnO2は、脱泡に寄与する。本発明のガラス板1においては、SnO2は0~0.3質量%であることが好ましい。
 (その他の成分)
 本実施形態によるガラス板1は、上記に列挙した各成分から実質的に構成されていることが好ましい。ただし、本実施形態によるガラス板1は、上記に列記した成分以外の成分を、好ましくは各成分の含有率が0.1質量%未満となる範囲で含有していてもよい。
 含有が許容される成分としては、上述のSO3とSnO2以外に溶融ガラスの脱泡を目的として添加される、As25、Sb25、Cl、Fを例示できる。ただし、As25、Sb25、Cl、Fは、環境に対する悪影響が大きいなどの理由から添加しないことが好ましい。また、含有が許容されるまた別の例は、ZnO、P25、GeO2、Ga23、Y23、La23である。工業的に使用される原料に由来する上記以外の成分であっても0.1質量%を超えない範囲であれば許容される。これらの成分は、必要に応じて適宜添加したり、不可避的に混入したりするものであるから、本実施形態のガラス板1は、これらの成分を実質的に含有しないものであっても構わない。
 (密度(比重):d)
 上記組成より、本実施形態では、ガラス板1の密度を2.53g・cm-3以下、さらには2.51g・cm-3以下、場合によっては2.50g・cm-3以下にまで減少させることができる。
 フロート法などでは、ガラス品種間の密度の相違が大きいと、製造するガラス品種を切り換える際に溶融窯の底部に密度が高い方の溶融ガラスが滞留し、品種の切り換えに支障が生じる場合がある。現在、フロート法で量産されているソーダライムガラスの密度は約2.50g・cm-3である。したがって、フロート法による量産を考慮すると、ガラス板1の密度は、上記の値に近いこと、具体的には、2.45~2.55g・cm-3、特に2.47~2.53g・cm-3が好ましく、2.47~2.50g・cm-3がさらに好ましい。
 (弾性率:E)
 イオン交換を伴う化学強化を行うと、ガラス基板に反りが生じることがある。この反りを抑制するためには、ガラス板1の弾性率は高いことが好ましい。本発明によれば、ガラス板1の弾性率(ヤング率:E)を70GPa以上、さらには72GPa以上にまで増加させることができる。
 以下、ガラス板1の化学強化について説明する。
 (化学強化の条件と圧縮応力層)
 ナトリウムを含むガラス板1を、ナトリウムイオンよりもイオン半径の大きい一価の陽イオン、好ましくはカリウムイオン、を含む溶融塩に接触させ、ガラス板1中のナトリウムイオンを上記の一価の陽イオンによって置換するイオン交換処理を行うことにより、本発明によるガラス板1の化学強化を実施することができる。これによって、表面に圧縮応力が付与された圧縮応力層が形成される。
 溶融塩としては、典型的には硝酸カリウムを挙げることができる。硝酸カリウムと硝酸ナトリウムとの混合溶融塩を用いることもできるが、混合溶融塩は濃度管理が難しいため、硝酸カリウム単独の溶融塩が好ましい。
 強化ガラス物品における表面圧縮応力と圧縮応力層深さとは、該物品のガラス組成だけではなく、イオン交換処理における溶融塩の温度と処理時間によって制御することができる。
 以上のガラス板1は、硝酸カリウム溶融塩と接触させることによって、表面圧縮応力が非常に高く、かつ、圧縮応力層の深さが非常に深い強化ガラス物品を得ることができる。具体的には、表面圧縮応力が700MPa以上かつ圧縮応力層の深さが20μm以上である強化ガラス物品を得ることができ、さらに圧縮応力層の深さが20μm以上かつ表面圧縮応力が750MPa以上である強化ガラス物品を得ることもできる。
 なお、厚みが3mm以上のガラス板1を用いる場合には、化学強化ではなく、風例強化を一般的な強化方法として用いることができる。
 <2.機能膜>
 次に、機能膜2について、図2を参照しつつ説明する。図2は機能膜の表面付近の概略を示す拡大断面図である。機能膜2は、三次元ネットワーク結合を構成する無機酸化物と、この無機酸化物に保持される無機酸化物微粒子と、無機酸化物に保持される抗菌性の金属イオンと、を備えている。以下、これらについて説明する。
 <2-1.無機酸化物>
 無機酸化物は、無機酸化物微粒子及び金属イオンを保持するバインダとしての役割を果たす。無機酸化物としては、例えば、Siの酸化物である酸化シリコンを含み、酸化シリコンを主成分とすることが好ましい。酸化シリコンを主成分とすることで、膜の屈折率を低下させ、膜の反射率を抑制することに適している。機能膜には、酸化シリコン以外の成分を含んでいてもよく、酸化シリコンを部分的に含む成分を含んでいてもよい。
 酸化シリコンを部分的に含む成分は、例えば、ケイ素原子及び酸素原子が交互に接続され、且つ三次元的に広がるシロキサン結合(Si-O-Si)の三次元ネットワーク構造を形成している。また、この部分のケイ素原子又は酸素原子に、両原子以外の原子、官能基その他が結合した成分である。ケイ素原子及び酸素原子以外の原子としては、例えば、窒素原子、炭素原子、水素原子、次段落に記述する金属元素を例示できる。官能基としては、例えば次段落にRとして記述する有機基を例示できる。このような成分は、ケイ素原子及び酸素原子のみから構成されていない点で、厳密には酸化シリコンではない。しかし、機能膜2の特性を記述する上では、ケイ素原子及び酸素原子により構成されている酸化シリコン部分も「酸化シリコン」として取り扱うことが適当であり、当該分野の慣用にも一致する。本明細書では、酸化シリコン部分も酸化シリコンとして取り扱うこととする。以上の説明からも明らかなとおり、酸化シリコンにおけるシリコン原子と酸素原子との原子比は化学量論的(1:2)でなくてもよい。
 機能膜2は、酸化シリコン以外の金属酸化物、具体的にはケイ素以外を含む金属酸化物成分又は金属酸化物部分を含み得る。機能膜2が含み得る金属酸化物は、特に制限されないが、例えば、Al、Ti、Zr、Ta、Nb、Nd、La、Ce及びSnからなる群より選ばれる少なくとも1種の金属元素の酸化物である。機能膜2は、酸化物以外の無機化合物成分、例えば、窒化物、炭化物、ハロゲン化物等を含んでいてもよく、有機化合物成分を含んでいてもよい。
 酸化シリコン等の金属酸化物は、加水分解可能な有機金属化合物から形成することができる。加水分解可能なシリコン化合物としては、式(1)で示される化合物を挙げることができる。
 RnSiY4-n (1)
 Rは、アルキル基、ビニル基、エポキシ基、スチリル基、メタクリロイル基及びアクリロイル基から選ばれる少なくとも1種を含む有機基である。Yは、アルコキシ基、アセトキシ基、アルケニルオキシ基及びアミノ基から選ばれる少なくとも1種である加水分解可能な有機基、又はハロゲン原子である。ハロゲン原子は、好ましくはClである。nは、0から3までの整数であり、好ましくは0又は1である。
 Rとしては、アルキル基、例えば炭素数1~3のアルキル基、特にメチル基が好適である。Yとしては、アルコキシ基、例えば炭素数1~4のアルコキシ基、特にメトキシ基及びエトキシ基が好適である。上記の式で示される化合物を2種以上組み合わせて用いてもよい。このような組み合わせとしては、例えばnが0であるテトラアルコキシシランと、nが1であるモノアルキルトリアルコキシシランとの併用が挙げられる。
 式(I)で表される加水分解性基を有するシリコン化合物の好ましい具体例は、式(I)におけるXがアルコキシル基であるシリコンアルコキシドである。また、シリコンアルコキシドは、式(I)においてm=0の化合物(SiX4)に相当する4官能シリコンアルコキシドを含むことがより好ましい。4官能シリコンアルコキシドの具体例としては、テトラメトキシシラン、テトラエトキシシランが挙げられる。シリコンアルコキシドは、単独で用いても2種以上を併用してもよく、2種以上を併用する場合には、シリコンアルコキシドの主成分が4官能シリコンアルコキシドであることがより好ましい。
 式(1)で示される化合物は、加水分解及び重縮合の後、シリコン原子が酸素原子を介して互いに結合したネットワーク構造を形成する。この構造において、Rで示される有機基は、シリコン原子に直接結合された状態で含まれる。
 <2-2.無機酸化物微粒子>
 機能膜2は、無機酸化物の少なくとも一部として、無機酸化物微粒子をさらに含んでいる。無機酸化物微粒子を構成する無機酸化物は、<2-1>項で説明した無機酸化物と同じ元素で構成されており、例えば、Si、Al、Ti、Zr、Ta、Nb、Nd、La、Ce及びSnから選ばれる少なくとも1種の元素の酸化物であり、好ましくはシリカ微粒子である。シリカ微粒子は、例えば、コロイダルシリカを添加することにより機能膜2に導入できる。無機酸化物微粒子は、機能膜2に加えられた応力を、機能膜2を支持するガラス板1に伝達する作用に優れ、硬度も高い。したがって、無機酸化物微粒子の添加は、機能膜2の耐摩耗性を向上させる観点から有利である。無機酸化物微粒子は、機能膜2を形成するための塗工液に、予め形成した無機酸化物微粒子を添加することにより、機能膜2に供給することができる。
 無機酸化物微粒子の平均粒径が大きすぎると、機能膜2が白濁することがあり、小さすぎると凝集して均一に分散させることが困難となる。この観点から、無機酸化物微粒子の一次粒子の平均粒径は、好ましくは1~100nmであり、より好ましくは5~50nmである。なお、ここでは、無機酸化物微粒子の平均粒径を、一次粒子の状態で記述している。また、無機酸化物微粒子の平均粒径は、走査型電子顕微鏡を用いた観察により任意に選択した50個の微粒子の粒径を測定し、その平均値を採用して定めることとする。無機酸化物微粒子は、その含有量が多くなると、機能膜2が白濁するおそれがある。無機酸化物微粒子は、無機酸化物100重量部に対し、好ましくは10~200重量部であり、より好ましくは20~180重量部、さらに好ましくは5~25重量部、特に好ましくは50~160重量部となるように添加するとよい。
 <2-3.金属イオン>
 金属イオンは、抗菌性を有するものであり、1価または2価の銅イオン、銀イオンなどで形成することができる。機能膜2の金属イオンの含有量は、ネットワーク結合を構成する無機酸化物のうち最も重量比の大きい主成分に対し、モル比で2~50%であることが好ましく、5~25%であることがさらに好ましい。
 <2-4.機能膜の物性及び光学特性>
 機能膜2の厚みは、例えば、50nm以上500nm以下であることが好ましく、100nm以上450nm以下であることがさらに好ましく、200nm以上400nm以下であることが特に好ましい。厚みが厚すぎると、ヘイズ率が高くなったり、過度の着色が生じるおそれがある。一方、厚みが薄すぎると、無機酸化物微粒子や金属イオンを保持できず、機能膜2から離脱するおそれがある。また、耐久性が低くなるおそれもある。
 機能膜2の屈折率は、1.3~1.48であることが好ましく、1.35~1.45であることがさらに好ましい。図2に示すように、本発明に係る機能膜2では、無機酸化物微粒子が凝集することで表面に凹凸が形成されており、これによって光が散乱するため、屈折率を低くすることができる。特に、無機酸化物微粒子自体の屈折率は、例えば、1.4~1.55であることが多いが、機能膜2においては、無機酸化物微粒子が接触又は近接している部位に微細な空隙が形成されるため、機能膜2自体の見かけの屈折率を低減することができる。屈折率は、例えば、JIS B-7071-1:2015に準じた方法に基づいて測定することができる。
 機能膜2の反射率は、550nmにおいて3%以下であることが好ましく、2%以下であることがさらに好ましい。反射率は、例えば、JIS R-3106:2019に基づいて測定することができる。
 機能膜2の凹凸の表面粗さRaは、レーザー顕微鏡を使った測定によれば、例えば、0.03~0.3μm、好ましくは0.05~0.2μmとすることができる。これにより上記のような屈折率を実現できるが、機能膜2の表面にある無機酸化物微粒子の一次粒子の平均粒径は、上記のように1~100nm程度であるため、凹凸の表面粗さよりも遙かに小さいことが特徴である。すなわち、機能膜2の表面の凹凸は無機酸化物微粒子が球状に凝集して形成されるものではなく、図2に示すように、概ね均一に積層する無機酸化物微粒子の表面が粗れて凹凸が形成されたものである。このような凹凸は、例えば、機能膜用のコーティング液の調製により、無機酸化物微粒子の分散凝集を調整することで形成することができる。なお、図2は無機酸化物微粒子の概略図であり、正確な図を表したものではない。また、図2に示した線Aよりも下方にも同様に無機酸化物微粒子が積層されているが、主として機能膜2の表面性状を説明するため、線Aより上方のみを示している。
 <2-5.機能膜の形成方法>
 機能膜2の形成方法は、特には限定されないが、例えば、以下のように形成することができる。まず、上述した三次元ネットワーク構造を構成する材料、例えば、テトラエトキシシラン等のシリコンアルコキシドを酸性条件下で溶液とし、前駆体液を生成する。また、上述した抗菌性の金属イオンを含む液、例えば、塩化銅水溶液と、コロイダルシリカ等の無機酸化物微粒子を含有する分散液を、前駆体に混合し、機能膜用の塗布液を生成する。
 次に、洗浄したガラス板1の第1面に、コーティング液を塗布する。塗布方法は特には限定されないが、例えば、フローコート法、スプレーコート法、スピンコート法などを採用することができる。その後、塗布したコーティング液をオーブンなどで、例えば、溶液中のアルコール分を揮発させるため、所定温度(例えば、80~200℃)で乾燥した後、例えば、加水分解及び有機鎖の分解のため、所定温度(例えば、200~500℃)で焼結させると、機能膜2を得ることができる。
 <3.カバー部材の光学特性>
 カバー部材10の光学特性としては、例えば、可視光透過率が85%以上であることが好ましく、90%以上であることがさらに好ましい。また、カバー部材10のヘイズ率は、例えば20%以下、さらに15%以下、特に10%以下であり、場合によっては0.1~8.0%、さらに0.1~6.0%であってもよい。
 また、グロスは、鏡面光沢度により評価することができる。カバー部材10の60°鏡面光沢度は、例えば90~140%、さらに95~140%、特に100~140%である。これらの鏡面光沢度は、機能膜2を形成した面について測定された値である。なお、カーナビゲーション等の車載機器のディスプレイのカバー部材としては、一般的に、120~140%のグロスを示すものが用いられている。
 なお、グロスはJIS Z8741-1997の「鏡面光沢度測定方法」の「方法3(60度鏡面光沢)」に従って、ヘイズはJIS K7136:2000に従ってそれぞれ測定することができる。
 また、カバー部材10の色目が変化すると好ましくない場合がある。したがって、L*,a*,b*表色系において、半透過反射膜2側からの反射色調は、a*及びb*がともに、±2以内であることが好ましく、±1.5以下であることがさらに好ましく、±1以下であることが特に好ましい。これらa*及びb*は、機能膜2を構成する材料や膜厚、ガラス板1の材料や厚みを変更することで調整することができる。a*及びb*が±2以下であれば、透過像の色調を正しく見ることができる。また、一般的に、a*及びb*が-2.5~+2.5であれは、「印象レベルで同じ色と扱える範囲」と言われている。さらに、一般的には、a*及びb*が±2以下であれば、色の離間比較では、ほとんど気づかれない色調レベルと言われている。
 <4.特徴>
 本実施形態に係るカバー部材10では、機能膜2に、無機酸化物微粒子による凹凸が形成されるため、反射防止機能を得ることができる。また、抗菌性の金属イオンが含有されているため、抗菌機能を得ることもできる。そして、これら反射防止機能と抗菌機能を単一の機能膜2で実現できるため、製造を容易に行うことができる。
 また、上記のような機能膜2の屈折率は、脂肪や油の屈折率と同等であるため、機能膜2に脂肪や油が付着しても視認しがたいという効果を得ることができる。さらに、機能膜2の表面に凹凸が形成されているため、脂肪や油のような汚れが付着しても拭き取りやすいという効果がある。
 以下、本発明の実施例について説明する。但し、本発明は、以下の実施例には限定されない。
(1)実施例の準備
 50mmx50mm、厚みが1.1mmのフロートガラス板を準備し、その表面に対し、アルカリ超音波洗浄を行った。次に、以下に示す組成の機能膜用のコーティング液を調製した。
Figure JPOXMLDOC01-appb-T000001
・KBM-903(信越シリコーン製)
・KP-112(信越シリコーン製)
・MEK-ST-UP(日産化学製オルガノシリカゾル)
・PGM-ST-UP(日産化学製オルガノシリカゾル)
 続いて、ガラス板の表面に、実施例1に係るコーティング液をフローコートにより塗布した後、オーブンにおいて180℃で15分、その後300℃で20分間加熱した。また、ガラス板の表面に、実施例2~7に係るコーティング液をスプレーコートにより塗布した後、オーブンにおいて、300℃で30分間加熱した。こうして、実施例1~7に係るカバー部材を得た。
(2) 評価
 実施例1~7のカバー部材に対し、以下の試験を行った。結果は、表2に示すとおりである。
(2-1) 光学特性
 ヘイズ、グロス、透過率を測定した。ヘイズは、日本電色工業株式会社製ヘイズメータNDH2000により行った。この際、機能膜2を入射面とし、試料の3点でヘイズ率を測定し、その平均値をヘイズ率とした。グロスはJIS Z8741-1997の「鏡面光沢度測定方法」の「方法3(60度鏡面光沢)」に従って測定を行った。透過率は、日立製作所製分光光度計U-4100により測定した。
(2-2) 表面硬度
 各機能膜に対し、JIS-K5600-5-1(1999)で規定する表面鉛筆硬度試験を行った。
(2-3) 溶出試験
 実施例1~7に係るカバー部材を25ml、25℃の精製水に浸漬し、24時間後の銅の溶出率の関係を算出した。この溶出率の算出は、次のように行った。まず、パックテスト銅(共立理化学研究所製)で発色させた検水をデジタルパックテスト銅(同上)で測定し、液中に含まれる銅イオン濃度を求めた後、これを元の膜中に含有していた銅に対する重量比に換算した。
Figure JPOXMLDOC01-appb-T000002
 図3は、実施例1の機能膜の表面をSEMにより撮影したものである。この写真に示すように、機能膜の表面には無機酸化物微粒子により凹凸が形成され、その凹凸の内部に空隙が形成されていることが分かる。なお、実施例2~7においても同様の凹凸が形成されていることが確認されている。
 表2に示す結果より、実施例1~7に係るカバー部材は、十分な透過率を得ているため、反射防止機能が発現していることが分かる。また、本発明者は、表2中の全ての試料で、JIS Z2801:2012における抗菌試験において、大腸菌に対する抗菌活性が2.0以上の結果を得られることを確認している。したがって、実施例1~7に係るカバー部材は、十分な反射防止機能と抗菌機能を単一の膜で得られることが分かった。
1 ガラス板
2 機能膜
10 カバー部材
100 被保護部材

Claims (8)

  1.  物品を覆い、外部から当該物品を視認可能とするカバー部材であって、
     第1面及び第2面を有するガラス板と、
     前記第1面に形成された単一の機能膜と、
    を備え、
     前記機能膜は、
     三次元ネットワーク結合を構成する無機酸化物と、
     前記無機酸化物と同じ元素を含有する無機酸化物微粒子と、
     抗菌性の金属イオンと、
    を含有し、
     前記無機酸化物微粒子により、前記機能膜の表面に凹凸が形成されている、カバー部材。
  2.  前記機能膜の屈折率は、1.3~1.48である、請求項1に記載のカバー部材。
  3.  前記機能膜の550nmにおける反射率は、3%以下である、請求項1または2に記載のカバー部材。
  4.  前記機能膜の鏡面光沢度は、90~140%である、請求項1から3のいずれかに記載のカバー部材。
  5.  前記機能膜側からの反射色調が、L*a*b*表色系において、a*の値は、-2~+2であり、
     前記機能膜側からの反射色調が、L*a*b*表色系において、b*の値は、-2~+2である、請求項1から4のいずれかに記載のカバー部材。
  6.  前記金属イオンは、銅イオンである、請求項1から5のいずれかに記載のカバー部材。
  7.  前記機能層の膜厚は、50~500nmである、請求項1から6のいずれかに記載のカバー部材。
  8.  シリコンアルコキシドに、無機微粒子及び抗菌性の金属イオンを添加したコーティング液を形成するステップと、
     前記コーティング液をガラス板に塗布するステップと、
     前記コーティング液が塗布されたガラス板を加熱するステップと、
    を備えている、カバー部材の製造方法。
PCT/JP2022/013314 2021-03-19 2022-03-22 カバー部材 WO2022196834A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/282,700 US20240150231A1 (en) 2021-03-19 2022-03-22 Cover member
CN202280021864.4A CN116997535A (zh) 2021-03-19 2022-03-22 覆盖部件
JP2023507216A JPWO2022196834A1 (ja) 2021-03-19 2022-03-22
EP22771573.7A EP4309890A1 (en) 2021-03-19 2022-03-22 Cover member
KR1020237035240A KR20230159698A (ko) 2021-03-19 2022-03-22 커버 부재

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-046687 2021-03-19
JP2021046687 2021-03-19

Publications (1)

Publication Number Publication Date
WO2022196834A1 true WO2022196834A1 (ja) 2022-09-22

Family

ID=83320459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013314 WO2022196834A1 (ja) 2021-03-19 2022-03-22 カバー部材

Country Status (8)

Country Link
US (1) US20240150231A1 (ja)
EP (1) EP4309890A1 (ja)
JP (1) JPWO2022196834A1 (ja)
KR (1) KR20230159698A (ja)
CN (1) CN116997535A (ja)
AR (1) AR125541A1 (ja)
TW (1) TW202243881A (ja)
WO (1) WO2022196834A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1186757A (ja) * 1997-09-04 1999-03-30 Nippon Electric Glass Co Ltd ブラウン管用パネル
JP2000095969A (ja) * 1996-07-19 2000-04-04 Toto Ltd 光触媒性親水性コ―ティング組成物による自動車車体表面の親水化方法
JP2005092099A (ja) * 2003-09-19 2005-04-07 Fuji Photo Film Co Ltd 硬化性樹脂組成物、及び光学物品、並びにそれを用いた画像表示装置
WO2008081837A1 (ja) 2006-12-27 2008-07-10 Asahi Glass Company, Limited 反射防止体およびディスプレイ装置
JP2010282036A (ja) * 2009-06-05 2010-12-16 Kagawa Univ 表示装置用透光性部材とその製造方法並びにそれらを用いた表示装置及び物品
JP2013198826A (ja) * 2010-07-23 2013-10-03 Toto Ltd 光触媒層を備えてなる複合材の使用
JP2015161791A (ja) * 2014-02-27 2015-09-07 旭硝子株式会社 反射防止膜付き基材および物品
JP2017106944A (ja) * 2014-04-23 2017-06-15 旭硝子株式会社 アンチグレア層付き基材および物品

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000095969A (ja) * 1996-07-19 2000-04-04 Toto Ltd 光触媒性親水性コ―ティング組成物による自動車車体表面の親水化方法
JPH1186757A (ja) * 1997-09-04 1999-03-30 Nippon Electric Glass Co Ltd ブラウン管用パネル
JP2005092099A (ja) * 2003-09-19 2005-04-07 Fuji Photo Film Co Ltd 硬化性樹脂組成物、及び光学物品、並びにそれを用いた画像表示装置
WO2008081837A1 (ja) 2006-12-27 2008-07-10 Asahi Glass Company, Limited 反射防止体およびディスプレイ装置
JP2010282036A (ja) * 2009-06-05 2010-12-16 Kagawa Univ 表示装置用透光性部材とその製造方法並びにそれらを用いた表示装置及び物品
JP2013198826A (ja) * 2010-07-23 2013-10-03 Toto Ltd 光触媒層を備えてなる複合材の使用
JP2015161791A (ja) * 2014-02-27 2015-09-07 旭硝子株式会社 反射防止膜付き基材および物品
JP2017106944A (ja) * 2014-04-23 2017-06-15 旭硝子株式会社 アンチグレア層付き基材および物品

Also Published As

Publication number Publication date
JPWO2022196834A1 (ja) 2022-09-22
CN116997535A (zh) 2023-11-03
KR20230159698A (ko) 2023-11-21
EP4309890A1 (en) 2024-01-24
TW202243881A (zh) 2022-11-16
US20240150231A1 (en) 2024-05-09
AR125541A1 (es) 2023-07-26

Similar Documents

Publication Publication Date Title
TWI736571B (zh) 具固有耐損性之可化學強化的鋰鋁矽酸鹽玻璃
JP7258555B2 (ja) 高強度の超薄ガラスおよびその製造方法
JP7392914B2 (ja) ガラス
JP3187321B2 (ja) 化学強化用ガラス組成物および化学強化ガラス物品
US20170015584A1 (en) Asymmetrically structured thin glass sheet that is chemically strengthened on both surface sides, method for its manufacture as well as use of same
JP2001236634A (ja) 化学強化用ガラス組成物からなる磁気ディスク基板および磁気ディスク媒体。
JP2001229526A (ja) 化学強化用ガラス組成物からなる磁気ディスク基板および磁気ディスク媒体。
TW202108533A (zh) 玻璃陶瓷及其製法
JP2024045688A (ja) ガラス
JP3702360B2 (ja) 化学強化用のガラス素板の製造方法
WO2022196834A1 (ja) カバー部材
WO2023095538A1 (ja) カバー部材
WO2022209835A1 (ja) 積層体
WO2023013505A1 (ja) ガラス部材及びその製造方法
JP2022159240A (ja) ガラス部材及びその製造方法
JP7320929B2 (ja) カバーガラス及びカバーガラス用ガラス板の製造方法
JP7219024B2 (ja) カバーガラス
JP2022159239A (ja) ガラス体
JP2018505117A (ja) 化学強化可能なガラス板
WO2020021933A1 (ja) 強化ガラス及び強化用ガラス
WO2022054962A1 (ja) カバー部材
WO2022054961A1 (ja) カバー部材
TWI840457B (zh) 黑色β鋰輝石鋰矽酸鹽玻璃陶瓷
WO2022054960A1 (ja) 表示装置
WO2022092319A1 (ja) ガラス体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771573

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023507216

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280021864.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18282700

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237035240

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237035240

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022771573

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022771573

Country of ref document: EP

Effective date: 20231019