WO2023095538A1 - カバー部材 - Google Patents
カバー部材 Download PDFInfo
- Publication number
- WO2023095538A1 WO2023095538A1 PCT/JP2022/040272 JP2022040272W WO2023095538A1 WO 2023095538 A1 WO2023095538 A1 WO 2023095538A1 JP 2022040272 W JP2022040272 W JP 2022040272W WO 2023095538 A1 WO2023095538 A1 WO 2023095538A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cover member
- region
- glass plate
- regions
- glass
- Prior art date
Links
- 239000011521 glass Substances 0.000 claims abstract description 127
- 239000002245 particle Substances 0.000 claims description 43
- 239000011159 matrix material Substances 0.000 claims description 32
- 239000007788 liquid Substances 0.000 claims description 25
- 230000000844 anti-bacterial effect Effects 0.000 claims description 23
- 229910021645 metal ion Inorganic materials 0.000 claims description 21
- 229910052809 inorganic oxide Inorganic materials 0.000 claims description 17
- 238000000576 coating method Methods 0.000 claims description 16
- 239000011248 coating agent Substances 0.000 claims description 14
- 238000004519 manufacturing process Methods 0.000 claims description 10
- -1 silicon alkoxide Chemical class 0.000 claims description 10
- 229910052710 silicon Inorganic materials 0.000 claims description 8
- 239000010419 fine particle Substances 0.000 claims description 7
- 239000012528 membrane Substances 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 2
- 230000000845 anti-microbial effect Effects 0.000 abstract 1
- 239000004599 antimicrobial Substances 0.000 abstract 1
- 238000003426 chemical strengthening reaction Methods 0.000 description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 18
- 229910052814 silicon oxide Inorganic materials 0.000 description 16
- 230000000840 anti-viral effect Effects 0.000 description 12
- 230000000694 effects Effects 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 239000011734 sodium Substances 0.000 description 11
- 238000006124 Pilkington process Methods 0.000 description 10
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 10
- 150000003839 salts Chemical class 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 9
- 239000006185 dispersion Substances 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 229910044991 metal oxide Inorganic materials 0.000 description 7
- 150000004706 metal oxides Chemical class 0.000 description 7
- 125000004430 oxygen atom Chemical group O* 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 229910052718 tin Inorganic materials 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- 241000894006 Bacteria Species 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 238000005342 ion exchange Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000006060 molten glass Substances 0.000 description 6
- 239000002243 precursor Substances 0.000 description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 5
- 229910018068 Li 2 O Inorganic materials 0.000 description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 5
- 238000010828 elution Methods 0.000 description 5
- 239000000156 glass melt Substances 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000004323 potassium nitrate Substances 0.000 description 5
- 235000010333 potassium nitrate Nutrition 0.000 description 5
- 239000012798 spherical particle Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 229910001431 copper ion Inorganic materials 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 125000000962 organic group Chemical group 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 229910001415 sodium ion Inorganic materials 0.000 description 4
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 4
- 239000005341 toughened glass Substances 0.000 description 4
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- 229910006404 SnO 2 Inorganic materials 0.000 description 3
- 125000003545 alkoxy group Chemical group 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 230000001788 irregular Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 229910052684 Cerium Inorganic materials 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 2
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- COHDHYZHOPQOFD-UHFFFAOYSA-N arsenic pentoxide Chemical compound O=[As](=O)O[As](=O)=O COHDHYZHOPQOFD-UHFFFAOYSA-N 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 239000005329 float glass Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium dioxide Chemical compound O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000011081 inoculation Methods 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 229910001414 potassium ion Inorganic materials 0.000 description 2
- 238000010583 slow cooling Methods 0.000 description 2
- 239000005361 soda-lime glass Substances 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- DLYUQMMRRRQYAE-UHFFFAOYSA-N tetraphosphorus decaoxide Chemical compound O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N Li2O Inorganic materials [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 125000003668 acetyloxy group Chemical group [H]C([H])([H])C(=O)O[*] 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000002313 adhesive film Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 125000003302 alkenyloxy group Chemical group 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000005354 aluminosilicate glass Substances 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- LJCFOYOSGPHIOO-UHFFFAOYSA-N antimony pentoxide Inorganic materials O=[Sb](=O)O[Sb](=O)=O LJCFOYOSGPHIOO-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000006059 cover glass Substances 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- XUCJHNOBJLKZNU-UHFFFAOYSA-M dilithium;hydroxide Chemical compound [Li+].[Li+].[OH-] XUCJHNOBJLKZNU-UHFFFAOYSA-M 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000006025 fining agent Substances 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- QZQVBEXLDFYHSR-UHFFFAOYSA-N gallium(III) oxide Inorganic materials O=[Ga]O[Ga]=O QZQVBEXLDFYHSR-UHFFFAOYSA-N 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum oxide Inorganic materials [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000010446 mirabilite Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- KTUFCUMIWABKDW-UHFFFAOYSA-N oxo(oxolanthaniooxy)lanthanum Chemical compound O=[La]O[La]=O KTUFCUMIWABKDW-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 238000007372 rollout process Methods 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical class [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- RSIJVJUOQBWMIM-UHFFFAOYSA-L sodium sulfate decahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.[Na+].[Na+].[O-]S([O-])(=O)=O RSIJVJUOQBWMIM-UHFFFAOYSA-L 0.000 description 1
- HUAUNKAZQWMVFY-UHFFFAOYSA-M sodium;oxocalcium;hydroxide Chemical compound [OH-].[Na+].[Ca]=O HUAUNKAZQWMVFY-UHFFFAOYSA-M 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/22—Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
- C03C17/23—Oxides
- C03C17/25—Oxides by deposition from the liquid phase
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/006—Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
- C03C17/008—Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character comprising a mixture of materials covered by two or more of the groups C03C17/02, C03C17/06, C03C17/22 and C03C17/28
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/20—Materials for coating a single layer on glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/40—Coatings comprising at least one inhomogeneous layer
- C03C2217/43—Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/40—Coatings comprising at least one inhomogeneous layer
- C03C2217/43—Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
- C03C2217/46—Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
- C03C2217/47—Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
- C03C2217/475—Inorganic materials
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/70—Properties of coatings
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2218/00—Methods for coating glass
- C03C2218/10—Deposition methods
- C03C2218/11—Deposition methods from solutions or suspensions
- C03C2218/113—Deposition methods from solutions or suspensions by sol-gel processes
Definitions
- the present invention relates to a cover member provided on a member to be protected such as a display and a manufacturing method thereof.
- Patent Document 1 discloses glass in which an antibacterial substance is provided on the surface of a glass plate by ion-exchanging an antibacterial ion component.
- the present invention has been made to solve this problem, and an object of the present invention is to provide a cover member having a functional film that performs a plurality of functions with a single film, and a manufacturing method thereof.
- Section 1 a glass plate having a first side and a second side; a functional film formed on the first surface; with The cover member, wherein the functional film is formed of a single film and has an antiglare function and an antibacterial function.
- the functional membrane is a matrix containing an inorganic oxide that forms a three-dimensional network bond; inorganic oxide fine particles; an antibacterial metal ion; Item 1.
- the functional membrane is a first region in which the inorganic oxide particles are stacked in the thickness direction of the functional film; a valley-shaped second region surrounding the first region or surrounded by the first region; 3.
- Section 4. The cover member according to Item 3, wherein the first region is a plateau-shaped region.
- Item 5 The cover member according to Item 3 or 4, wherein the second region includes a portion where the inorganic oxide particles are not stacked or the inorganic oxide particles are not present.
- Item 6. the width of the first region is 3 ⁇ m or more; Item 6. The cover member according to any one of Items 3 to 5, wherein the width of the second region is 1 ⁇ m or more.
- Item 7. the width of the first region is 5 ⁇ m or more; Item 6.
- Item 8 The matrix is exposed in the second region, Item 8.
- the matrix is arranged on the glass plate, and the inorganic oxide particles are stacked on the carrier, Item 9.
- Item 10 The cover member according to any one of Items 3 to 9, wherein at least one of the second regions is formed by a closed curve.
- Item 11 The cover member according to Item 10, wherein the second region includes a plurality of regions formed by closed curves of different sizes.
- Item 12. The cover member according to any one of Items 3 to 11, wherein the first region is raised near a boundary with the second region.
- Item 13 Forming a coating liquid by adding inorganic oxide fine particles and antibacterial metal ions to silicon alkoxide; applying the coating liquid to a glass plate; heating the glass plate coated with the coating liquid; A method of manufacturing a cover member, comprising:
- FIG. 1 is a cross-sectional view showing an embodiment of a cover member according to the present invention
- FIG. 2 is an enlarged sectional view of FIG. 1
- FIG. 2 is an enlarged sectional view of FIG. 1
- FIG. FIG. 4 is a cross-sectional view schematically showing a cross-section of a convex portion of a functional film; It is each 1st sectional drawing of FIG. 4 is a SEM photograph showing the surface properties of Example 1.
- FIG. 4 is a SEM photograph showing the surface properties of Example 4.
- FIG. It is a SEM photograph showing the surface texture of a comparative example.
- the cover member according to this embodiment is configured to protect members to be protected such as a display, a keyboard, and an electronic blackboard, and to allow these members to be visually recognized from the outside.
- members to be protected such as a display, a keyboard, and an electronic blackboard
- displays include displays used in various devices such as mobile PCs, tablet PCs, and in-vehicle devices such as car navigation systems.
- this cover member can also be used as a manuscript glass for copiers and scanners.
- the members to be protected are parts of electronic equipment such as copiers and scanners covered by the cover member.
- FIG. 1 is a cross-sectional view of the cover member.
- the cover member 100 according to this embodiment includes a glass plate 10 having a first surface and a second surface, functional films 50 and 60 laminated on the first surface of the glass plate 10, It has The cover member 10 is arranged so as to cover the member to be protected 200 described above. At this time, the second surface of the glass plate 10 is arranged to face the protected member 200, and the functional films 50 and 60 are arranged to face the outside. A detailed description will be given below.
- the glass plate 10 can be made of general-purpose soda-lime glass, borosilicate glass, aluminosilicate glass, alkali-free glass, or other glass, for example. Also, the glass plate 10 can be formed by a float method. According to this manufacturing method, a glass plate 10 having a smooth surface can be obtained. However, the glass plate 10 may have unevenness on its main surface, and may be a figured glass, for example. A figured glass can be molded by a manufacturing method called a roll-out method. A figured glass produced by this method usually has periodic irregularities in one direction along the main surface of the glass plate.
- molten glass is continuously supplied onto molten tin or other molten metal, and the supplied molten glass is made to flow on the molten metal to form a strip.
- the glass thus formed is called a glass ribbon.
- the glass ribbon is cooled as it goes downstream, is cooled and solidified, and is pulled up from the molten metal by rollers. Then, it is conveyed to a slow cooling furnace by rollers, and cut after slow cooling. A float glass sheet is thus obtained.
- the thickness of the glass plate 10 is not particularly limited, it should be thinner for weight reduction.
- it is preferably 0.3 to 5 mm, more preferably 0.6 to 2.5 mm. This is because if the glass plate 10 is too thin, the strength will decrease, and if it is too thick, the protected member 200 viewed through the glass member 10 may be distorted.
- the glass plate 10 may generally be a flat plate, but may also be a curved plate.
- the glass plate 10 preferably has a non-planar main surface that conforms to it.
- the glass plate 10 may be bent so as to have a constant curvature as a whole, or may be bent locally.
- the main surface of the glass plate 10 may be configured by, for example, connecting a plurality of flat surfaces with curved surfaces.
- the radius of curvature of the glass plate 10 can be, for example, 5000 mm or less.
- the lower limit of the radius of curvature can be, for example, 10 mm or more, but it may be even smaller, for example, 1 mm or more, especially in a locally bent portion.
- a glass plate having the following composition can also be used.
- percentages indicating the components of the glass plate 10 all mean mol%.
- the phrase “consisting substantially of” means that the total content of the listed components is 99.5% by mass or more, preferably 99.9% by mass or more, more preferably 99.95% by mass. It means that it occupies more than % by mass. “Substantially free” means that the content of the component is 0.1% by mass or less, preferably 0.05% by mass or less.
- SL in a narrow sense a composition range that a person skilled in the art regards as a soda lime silicate glass suitable for the float process (hereinafter sometimes referred to as “SL in a broad sense”), specifically within the following mass% range in which the properties such as T 2 and T 4 are approximated to SL in the narrow sense as much as possible while improving the chemical strengthening properties of SL in the narrow sense.
- SiO2 is a main component that constitutes the glass plate 10. If the content is too low, the chemical durability such as water resistance and heat resistance of the glass are lowered. On the other hand, if the SiO 2 content is too high, the viscosity of the glass sheet 10 at high temperatures becomes high, making melting and molding difficult. Therefore, the content of SiO 2 is suitably in the range of 66-72 mol %, preferably 67-70 mol %.
- Al2O3 Al 2 O 3 improves the chemical durability such as water resistance of the glass plate 10, and facilitates the movement of alkali metal ions in the glass, thereby increasing the surface compressive stress after chemical strengthening and forming a stress layer. It is a component for deepening the depth.
- the content of Al 2 O 3 is too high, the viscosity of the glass melt will increase, T 2 and T 4 will increase, and the clarity of the glass melt will deteriorate, making it difficult to produce a high-quality glass plate. becomes difficult.
- the content of Al 2 O 3 is appropriately in the range of 1 to 12 mol %.
- the content of Al 2 O 3 is preferably 10 mol % or less, preferably 2 mol % or more.
- MgO MgO is an essential component for improving the meltability of glass. From the viewpoint of sufficiently obtaining this effect, it is preferable that MgO is added to the glass plate 10 . Moreover, when the content of MgO is less than 8 mol %, the surface compressive stress after chemical strengthening tends to decrease and the depth of the stress layer tends to become shallow. On the other hand, if the content is increased beyond the appropriate amount, the strengthening performance obtained by chemical strengthening is lowered, and in particular the depth of the surface compressive stress layer is sharply reduced. Among the alkaline earth metal oxides, MgO has the least adverse effect, but in this glass plate 1, the content of MgO is 15 mol % or less. Moreover, when the content of MgO is high, T 2 and T 4 are increased and the clarity of the glass melt is deteriorated, making it difficult to produce a high-quality glass plate.
- the content of MgO is in the range of 1 to 15 mol%, preferably 8 mol% or more and 12 mol% or less.
- CaO CaO has the effect of lowering the viscosity at high temperatures, but if the content is too high beyond an appropriate range, the glass plate 10 tends to devitrify and the movement of sodium ions in the glass plate 10 is inhibited. end up When CaO is not contained, the surface compressive stress after chemical strengthening tends to decrease. On the other hand, if the CaO content exceeds 8 mol %, the surface compressive stress after chemical strengthening is significantly reduced, the depth of the compressive stress layer is significantly reduced, and the glass plate 10 is likely to devitrify.
- the appropriate CaO content is in the range of 1 to 8 mol%.
- the CaO content is preferably 7 mol % or less, and preferably 3 mol % or more.
- the glass plate 10 does not substantially contain SrO and BaO.
- ( Na2O ) Na 2 O is a component for increasing the surface compressive stress and increasing the depth of the surface compressive stress layer by replacing sodium ions with potassium ions.
- the stress relaxation during the chemical strengthening treatment will exceed the generation of surface compressive stress due to ion exchange during the chemical strengthening treatment, and as a result, the surface compressive stress will tend to decrease. be.
- Na 2 O is a component for improving the solubility and lowering T 4 and T 2 , but if the content of Na 2 O is too high, the water resistance of the glass is remarkably lowered.
- the content of Na 2 O is 10 mol% or more, the effect of reducing T 4 and T 2 is sufficiently obtained, and if it exceeds 16 mol%, the surface compressive stress is significantly reduced due to stress relaxation. Become.
- the content of Na 2 O in the glass plate 10 of the present embodiment is appropriately in the range of 10-16 mol %.
- the Na 2 O content is preferably 12 mol % or more, and more preferably 15 mol % or less.
- K2O K 2 O is a component that improves the solubility of glass.
- the ion exchange rate in chemical strengthening increases, the depth of the surface compressive stress layer increases, and the liquidus temperature TL of the glass plate 10 decreases. Therefore, it is preferable to contain K 2 O at a low content.
- K 2 O is less effective than Na 2 O in reducing T 4 and T 2 , but a large amount of K 2 O inhibits clarification of the glass melt. Also, the higher the K 2 O content, the lower the surface compressive stress after chemical strengthening. Therefore, the appropriate K 2 O content is in the range of 0 to 1 mol %.
- the glass plate 10 of the present embodiment may contain Li 2 O in an amount of 1 mol % or less, but preferably does not substantially contain Li 2 O.
- B2O3 is a component that lowers the viscosity of the glass plate 10 and improves its solubility.
- the content of B 2 O 3 is too high, the glass plate 10 tends to undergo phase separation, and the water resistance of the glass plate 10 decreases.
- the compound formed by B 2 O 3 and the alkali metal oxide may volatilize and damage the refractories in the glass melting chamber.
- the inclusion of B 2 O 3 reduces the depth of the compressive stress layer in chemical strengthening. Therefore, the appropriate content of B 2 O 3 is 0.5 mol % or less. In the present invention, it is more preferable that the glass plate 10 does not substantially contain B 2 O 3 .
- Fe2O3 Fe usually exists in the glass in the form of Fe 2+ or Fe 3+ and acts as a colorant.
- Fe 3+ is a component that enhances the ultraviolet absorption performance of the glass
- Fe 2+ is a component that enhances the heat ray absorption performance.
- the iron oxide content in terms of Fe 2 O 3 is preferably 0.15% by mass or less, more preferably 0.1% by mass or less, when the entire glass plate 10 is taken as 100% by mass. It is preferably 0.02% by mass or less, more preferably 0.02% by mass or less.
- TiO2 TiO 2 is a component that lowers the viscosity of the glass plate 10 and increases the surface compressive stress due to chemical strengthening. Therefore, the appropriate content of TiO 2 is 0 to 0.2% by mass. In addition, it is inevitably mixed with commonly used industrial raw materials, and may be contained in the glass plate 10 in an amount of about 0.05% by mass. This level of content does not impart coloration to the glass, so it may be included in the glass plate 10 of the present embodiment.
- ZrO2 ZrO 2 may be mixed into the glass plate 10 from the refractory bricks constituting the glass melting furnace, especially when the glass plate is manufactured by the float method, and its content is about 0.01% by mass.
- ZrO 2 is a component that improves the water resistance of glass and increases surface compressive stress due to chemical strengthening.
- a high ZrO 2 content may cause an increase in the working temperature T 4 and a rapid increase in the liquidus temperature TL . It tends to remain as a foreign substance in the manufactured glass. Therefore, the appropriate ZrO 2 content is 0 to 0.1% by mass.
- SO3 In the float method, sulfates such as Glauber's salt (Na 2 SO 4 ) are commonly used as clarifiers. Sulfate decomposes in the molten glass to produce gas components, which promotes defoaming of the glass melt, but some of the gas components dissolve and remain in the glass plate 10 as SO 3 .
- SO 3 is preferably 0 to 0.3% by mass.
- CeO2 CeO 2 is used as a fining agent. CeO 2 contributes to degassing since it produces O 2 gas in the molten glass. On the other hand, too much CeO 2 causes the glass to turn yellow. Therefore, the CeO 2 content is preferably 0 to 0.5% by mass, more preferably 0 to 0.3% by mass, and even more preferably 0 to 0.1% by mass.
- SnO2 ( SnO2 ) It is known that in a glass sheet molded by the float method, tin diffuses from the tin bath to the surface that comes into contact with the tin bath during molding, and the tin exists as SnO 2 . Also, SnO 2 mixed with the glass raw material contributes to defoaming. In the glass plate 10 of the present invention, SnO 2 is preferably 0 to 0.3% by mass.
- the glass plate 10 according to the present embodiment is substantially composed of the components listed above.
- the glass plate 10 according to the present embodiment may contain components other than the components listed above, preferably within a range where the content of each component is less than 0.1% by mass.
- components that are allowed to be included include As2O5 , Sb2O5 , Cl , and F, which are added for the purpose of defoaming the molten glass, in addition to SO3 and SnO2 described above.
- As 2 O 5 , Sb 2 O 5 , Cl, and F are preferably not added because they have a large adverse effect on the environment.
- other examples that are allowed to be included are ZnO, P2O5 , GeO2 , Ga2O3 , Y2O3 and La2O3 .
- Components other than the above derived from industrially used raw materials are acceptable as long as they do not exceed 0.1% by mass. These components are appropriately added or mixed inevitably as necessary, so the glass plate 10 of the present embodiment may be substantially free of these components. do not have.
- the density of the glass plate 10 is reduced to 2.53 g ⁇ cm ⁇ 3 or less, further to 2.51 g ⁇ cm ⁇ 3 or less, and in some cases to 2.50 g ⁇ cm ⁇ 3 or less. be able to.
- the density of soda-lime glass currently mass-produced by the float method is about 2.50 g ⁇ cm ⁇ 3 . Therefore, considering mass production by the float method, the density of the glass plate 10 should be close to the above values, specifically 2.45 to 2.55 g ⁇ cm ⁇ 3 , particularly 2.47 to 2.53 g ⁇ cm ⁇ 3 . cm ⁇ 3 is preferred, and 2.47 to 2.50 g ⁇ cm ⁇ 3 is more preferred.
- the glass substrate may warp.
- the elastic modulus of the glass plate 10 is high.
- the elastic modulus (Young's modulus: E) of the glass plate 10 can be increased to 70 GPa or more, or even 72 GPa or more.
- Chemical strengthening of the glass plate 10 will be described below. (Chemical strengthening conditions and compressive stress layer)
- a glass plate 10 containing sodium is brought into contact with a molten salt containing monovalent cations having an ionic radius larger than that of sodium ions, preferably potassium ions.
- the chemical strengthening of the glass plate 10 according to the present invention can be carried out by performing an ion-exchange treatment that replaces with . Thereby, a compressive stress layer having a compressive stress applied to the surface is formed.
- Potassium nitrate can typically be mentioned as the molten salt.
- a mixed molten salt of potassium nitrate and sodium nitrate can also be used, but since it is difficult to control the concentration of the mixed molten salt, a molten salt of potassium nitrate alone is preferable.
- the surface compressive stress and compressive stress layer depth in the tempered glass member can be controlled not only by the glass composition of the article, but also by the molten salt temperature and treatment time in the ion exchange treatment.
- a tempered glass member having a very high surface compressive stress and a very deep compressive stress layer can be obtained. Specifically, a tempered glass member having a surface compressive stress of 700 MPa or more and a compressive stress layer having a depth of 20 ⁇ m or more can be obtained. Certain tempered glass members can also be obtained.
- wind tempering can be used as a general strengthening method instead of chemical strengthening.
- a toughening treatment is commonly performed for cover members, but is not essential depending on the application and desired properties. Further, the strengthening treatment is often performed prior to the formation of a functional film (described later), but may be performed after the formation of the functional film as long as it does not interfere with the functional expression of the functional film.
- FIG. 2 is a partial cross-sectional view of a glass plate laminated with a functional film
- FIG. 3 is a partial cross-sectional view showing another example of the glass plate laminated with a functional film.
- the cover members 400 and 500 each include a glass plate 10 and functional films 50 and 60 provided on the glass plate 10.
- the functional films 50 and 60 are directly formed on the first surface 10s of the glass plate 10, but another film is interposed between the glass plate 10 and the functional films 50 and 60. I don't mind.
- the functional films 50 and 60 contain inorganic oxide fine particles 5 (hereinafter sometimes simply referred to as "particles”), a matrix 2 that forms three-dimensional network bonds, and antibacterial metal ions.
- the functional films 50 and 60 may contain voids. Voids may be present in matrix 2 or in contact with particles 5 and matrix 2 .
- the functional films 50 and 60 have first regions 50p and 60p and second regions 50v and 60v.
- the particles 5 are stacked in the thickness direction of the functional films 50 and 60, respectively.
- the second regions 50v and 60v surround the first regions 50p and 60p when the functional films 50 and 60 are observed along the thickness direction from the surface side.
- the second regions 50v and 60v may be surrounded by the first regions 50p and 60p.
- one of the regions is interposed between the other regions that are separated from each other.
- the second regions 50v and 60v are valley-like regions whose surfaces are recessed from the surrounding first regions. Therefore, the islands of the sea-island structure protrude from the sea when the islands are the first regions 50p and 60p, and are recessed from the sea when the islands are the second regions 50v and 60v. In the second regions 50v and 60v, the particles 5 are less piled up than in the first regions 50p and 60p.
- the second regions 50v and 60v may include portions 50t where the particles 5 are stacked (see FIG. 2). Alternatively, the second regions 50v and 60v may include portions where the particles 5 are not stacked or no particles 5 are present (see FIG. 3).
- At least some of the second regions 50v and 60v may be composed of portions where the particles 5 are not stacked or where no particles 5 are present. At least a portion of the first regions 50p and 60p, 50% or more of the number of the first regions 50p and 60p, and in some cases all of them, may be plateau regions. Although the matrix 2 exists in both the first regions 50p and 60p and the second regions 50v and 60v, at least a portion of the second regions 50v and 60v is exposed to the outside. On the other hand, in the first regions 50p and 60p, the matrix 2 is arranged on the glass plate 10, and the particles 5 are laminated thereon.
- L1 is the length of the portion corresponding to 50% of the height H of each convex portion
- L2 is the length of the portion corresponding to 70%, preferably 75% of the height H. length.
- L2 may exist in two or more parts for one L1. In this case, L2 is defined by the total length of the two or more parts.
- Boundaries 50b and 60b between the first regions 50p and 60p and the second regions 50v and 60v can be determined by the average thickness T of the functional films 50 and 60 (see FIG. 3).
- the average thickness T can be measured using a laser microscope as described later.
- the spacing between the boundaries 50b and 60b determines the width Wp of the first regions 50p and 60p and the width Wv of the second regions 50v and 60v.
- the width Wp may be 3 ⁇ m or more, further 5 ⁇ m or more, preferably 7 ⁇ m or more.
- the width Wv may be 1 ⁇ m or more, 2 ⁇ m or more, preferably 3 ⁇ m or more.
- width Wp is preferably larger than width Wv.
- the width Wp is large, visible light is likely to be directly transmitted through the functional films 50 and 60, so the haze ratio tends to be low.
- the width Wv is small, the boundaries between the first regions 50p and 60p and the second regions 50v and 60v are close to each other.
- the width Wv is preferably 1 ⁇ m or more as described above.
- the first regions 50p and 60p and the second regions 50v and 60v each extend over e.g. It can be a region.
- the functional films 50 and 60 have first regions 50p and 60p and second regions 50v and 60v.
- the ratio of the second regions 50v and 60v to the area of the region where the functional film 50 is formed may be, for example, 5 to 90%, further 10 to 70%, particularly 20 to 50%.
- the functional films 50 and 60 may consist of only the first regions 50p and 60p and the second regions 50v and 60v.
- the vicinity of the boundary with the second region 60v is raised. This also moderately scatters the visible light incident on the functional film 60, so that the gloss tends to be low. This point also applies to the functional film 50 . Also, this effect is enhanced, especially when the width of the second regions 50v and 60v is small, due to the proximity of the raised portions.
- the shape of the second regions 50v and 60v is not particularly limited, but may include various shapes such as a shape formed by a closed curve (for example, a circular shape including an ellipse), a polygonal shape, and an irregular shape. Also, the sizes of the plurality of second regions 50v and 60v may be different. That is, a plurality of second regions 50v and 60v having different sizes may be dispersed in the functional films 50 and 60. FIG.
- the shape of the particles 5 is not particularly limited, it is preferably spherical.
- the particles 5 may substantially consist of spherical particles. However, part of the particles 5 may have a shape other than a spherical shape, such as a tabular shape.
- the particles 5 may be composed only of spherical particles.
- the spherical particles refer to particles having a ratio of the longest diameter to the shortest diameter passing through the center of gravity of 1 or more and 1.8 or less, particularly 1 or more and 1.5 or less, and having a curved surface.
- the average particle size of the spherical particles may be between 5 nm and 200 nm, also between 10 nm and 100 nm, especially between 20 nm and 60 nm.
- the average particle diameter of the spherical particles is determined by the average of individual particle diameters, specifically the average of the shortest and longest diameters described above. A target of 50 particles is preferred.
- the material constituting the particles 5 is not particularly limited, but preferably contains inorganic oxides such as metal oxides, particularly silicon oxide.
- the metal oxide may contain, for example, an oxide of at least one metal element selected from the group consisting of Al, Ti, Zr, Ta, Nb, Nd, La, Ce and Sn.
- the particles 5 can be supplied to the functional films 50 and 60 from a dispersion liquid of the particles 5, as will be described later.
- a dispersion liquid in which the particles 5 are individually and independently dispersed is suitable for realizing a desired state of agglomeration of particles in the functional films 50 and 60, as compared to a dispersion in which particles are chained together. This is because the mutually independent particles 5 tend to move as the liquid such as the dispersion medium volatilizes, and tend to be in an aggregated state suitable for achieving good properties in the film.
- the matrix 2 contains silicon oxide, which is an oxide of Si, and preferably contains silicon oxide as a main component.
- the matrix 2 containing silicon oxide as a main component is suitable for lowering the refractive index of the film and suppressing the reflectance of the film.
- the matrix 2 may contain a component other than silicon oxide, or may contain a component partially containing silicon oxide.
- a component partially containing silicon oxide includes, for example, a portion composed of a silicon atom and an oxygen atom, and is a component in which an atom other than the two atoms, a functional group, or the like is bonded to the silicon atom or the oxygen atom in this portion.
- Examples of atoms other than silicon atoms and oxygen atoms include nitrogen atoms, carbon atoms, hydrogen atoms, and metal elements described in the next paragraph.
- Examples of functional groups include organic groups described as R in the next paragraph.
- Such components are not strictly silicon oxides in that they are not composed solely of silicon and oxygen atoms.
- the silicon oxide portion composed of silicon atoms and oxygen atoms as "silicon oxide”, and is consistent with the practice in the field.
- the silicon oxide portion is also treated as silicon oxide.
- the atomic ratio of silicon atoms and oxygen atoms in silicon oxide need not be stoichiometric (1:2).
- the matrix 2 may contain metal oxides other than silicon oxide, specifically metal oxide components or metal oxide portions containing other than silicon.
- the metal oxide that the matrix 2 may contain is not particularly limited, but for example, an oxide of at least one metal element selected from the group consisting of Al, Ti, Zr, Ta, Nb, Nd, La, Ce and Sn. be.
- the matrix 2 may contain inorganic compound components other than oxides, such as nitrides, carbides, and halides, and may contain organic compound components.
- Metal oxides such as silicon oxide, can be formed from hydrolyzable organometallic compounds.
- hydrolyzable silicon compounds include compounds represented by formula (1).
- R is an organic group containing at least one selected from an alkyl group, a vinyl group, an epoxy group, a styryl group, a methacryloyl group and an acryloyl group.
- Y is at least one hydrolyzable organic group selected from an alkoxy group, an acetoxy group, an alkenyloxy group and an amino group, or a halogen atom.
- a halogen atom is preferably Cl.
- n is an integer from 0 to 3, preferably 0 or 1;
- R is preferably an alkyl group, such as an alkyl group having 1 to 3 carbon atoms, particularly a methyl group.
- Y is preferably an alkoxy group such as an alkoxy group having 1 to 4 carbon atoms, particularly a methoxy group and an ethoxy group.
- Two or more of the compounds represented by the above formulas may be used in combination. Such a combination includes, for example, a combination of a tetraalkoxysilane in which n is 0 and a monoalkyltrialkoxysilane in which n is 1.
- the compound represented by formula (1) forms a network structure in which silicon atoms are bonded to each other via oxygen atoms.
- the organic group represented by R is included directly attached to the silicon atom.
- Metal ions have antibacterial properties and can be formed from monovalent or divalent copper ions, silver ions, and the like.
- the content of metal ions in the functional films 50 and 60 is preferably 2 to 50%, preferably 5 to 25%, in molar ratio to the main component having the largest weight ratio among the compounds constituting the network bonds. is more preferred.
- the metal ions are contained in the matrix 2. Therefore, the second regions 50v and 60v where the matrix 2 is exposed to the outside exhibit antibacterial or antiviral performance against bacteria and viruses in contact with the second regions 50v and 60v. On the other hand, in the first regions 50p and 60p, almost no metal ions are present on the surface. Metal ions provide antibacterial or antiviral performance.
- the ratio of particles 1 to matrix 2 in the functional membranes 50, 60 is, for example, 0.05-10, more preferably 0.05-7, preferably 0.05-5, on a mass basis.
- the volume ratio of voids in the functional films 50 and 60 is not particularly limited, but may be 10% or more, and further 10 to 20%. However, voids do not have to exist.
- the film thickness of the functional films 50 and 60 is not particularly limited, the film thickness of the first regions 50p and 60p is, for example, 50 nm to 1000 nm, more preferably 100 nm to 700 nm, from the viewpoint of easily obtaining appropriate antiglare properties. , in particular 100 nm to 500 nm.
- the film thickness of the second regions 50v and 60v is, for example, 10 nm to 500 nm, preferably 30 nm to 300 nm.
- the difference between the highest portion and the lowest portion of the functional films 50 and 60 measured from the first surface of the glass plate 10 may be 3 times or more, or even 4 times or more the average particle size of the particles 5 .
- Sparkles are bright spots that occur depending on the relationship between the fine unevenness for imparting the antiglare function and the pixel size of the display panel. Sparkle is observed as irregular light fluctuations as the relative positions of the display device and the user's viewpoint change. Sparkles are becoming apparent as the definition of display devices increases.
- the functional films 50 and 60 are particularly suitable for reducing gloss and haze in a well-balanced manner while suppressing sparkle.
- the method of forming the functional films 50 and 60 is not particularly limited, they can be formed, for example, as follows. First, the material constituting the matrix described above, for example, silicon alkoxide such as tetraethoxysilane, is made into an alcohol solution under acidic conditions to generate a precursor liquid. Further, for example, a dispersion liquid containing inorganic oxide fine particles such as colloidal silica is mixed with the precursor liquid. Further, the precursor liquid is mixed with a liquid containing the aforementioned antibacterial metal ions, such as a dispersion liquid containing an aqueous copper chloride solution or an aqueous copper nitrate solution. In addition, various additives can be mixed as required.
- boron can be added as boric acid.
- boron (BO ⁇ ) has the effect of attracting antibacterial copper ions, so it is possible to suppress the aggregation of copper ions to form crystals such as copper oxide. can.
- a coating liquid for the functional films 50, 60 is produced.
- the solvent for the dispersion containing inorganic oxide fine particles is not particularly limited, but examples include propylene glycol monomethyl ether (PGME), methyl ethyl ketone, toluene, and methyl isobutyl ketone.
- PGME propylene glycol monomethyl ether
- methyl ethyl ketone methyl ethyl ketone
- toluene methyl isobutyl ketone
- methyl isobutyl ketone for example, if a non-polar compound with a high boiling point (for example, 75° C. or higher) such as methyl ethyl ketone, cyclohexane, toluene, or methyl isobutyl ketone is used as the solvent, the above-described first regions 50p and 60p and the second region Since 50v and 60v are formed, it is preferable.
- a coating liquid is applied to the first surface of the cleaned glass plate 10 .
- the coating method is not particularly limited, for example, a flow coating method, a spray coating method, a spin coating method, or the like can be employed.
- the applied coating liquid is dried in an oven or the like at a predetermined temperature (eg, 80 to 120 ° C.) to volatilize the alcohol content in the solution, for example, for hydrolysis and decomposition of the organic chain.
- a predetermined temperature for example, 200 to 500° C.
- the visible light transmittance is preferably 85% or more, more preferably 90% or more.
- the haze ratio of the cover member 10 is, for example, 20% or less, further 15% or less, particularly 10% or less, and may be 1 to 8%, further 1 to 6% depending on the case.
- the 60° specular glossiness of the glass plate 10 is, for example, 60-130%, further 70-120%, particularly 80-110%, 85-100%. These specular glosses are values measured for the surface 10s on which the functional films 50 and 60 are formed. As a cover member for displays of in-vehicle equipment such as car navigation systems, materials exhibiting a gloss of 120 to 140% are generally used. On the other hand, the haze ratio of the glass plate 10 is, for example, 20% or less, further 15% or less, particularly 10% or less, and in some cases 1 to 8%, further 1 to 6%, particularly 1 to 5%. good.
- the relational expression (a) holds, more preferably the relational expression (b) holds, and the relational expression (c) holds: It is more preferable to be established.
- G and H may satisfy the relationship (d). H ⁇ -0.2G+25 (a) H ⁇ -0.2G+24.5 (b) H ⁇ -0.2G+24 (c) H ⁇ -0.15G+18 (d)
- the gloss can be measured according to JIS Z8741-1997 "Method for measuring specular gloss”, “Method 3 (60 degree specular gloss)", and the haze can be measured according to JIS K7136:2000.
- the cover member 100 according to this embodiment can provide the following effects.
- the matrix 2 of the functional films 50 and 60 carries antibacterial metal ions. Therefore, antibacterial and antiviral functions can be exhibited.
- the matrix 2 that constitutes the three-dimensional network bond carries the metal ions, it is possible to suppress the elution of the metal ions. For example, in the first regions 50p and 60p, since the matrix 2 supporting metal ions is covered with the particles 5, the elution of metal ions can be further suppressed.
- the functional films 50 and 60 have the first regions 50p and 60p in which the particles are stacked, visible light can be easily transmitted directly, and the haze ratio can be lowered.
- the second regions 50v and 60v are provided, the visibility becomes difficult due to the scattering of visible light near the boundaries with the first regions 50p and 60p, resulting in a low gloss value.
- This effect is particularly enhanced when the width of the second regions 50v and 60v is small, due to the proximity of the walls and raised portions of the first regions 50p and 60p. Therefore, according to the functional film of this embodiment, the antiglare effect can be improved.
- the single functional films 50 and 60 can exhibit both the antiglare function and the antibacterial/antiviral function. Therefore, manufacturing of the functional films 50 and 60 is simple.
- the functional film shown in the above embodiment has the first regions 50p and 60p and the second regions 50v and 60v, it may be formed only with the first regions 50p and 60p.
- the particle dispersion may be formed from propylene glycol monomethyl ether.
- the cover member according to the present invention can be colorless and transparent, or colored and transparent or translucent by coloring at least one of the glass plate 1 and the functional films 50 and 60 .
- a coating liquid having the composition shown in Table 1 was prepared. First, a matrix precursor liquid was prepared (unit: g). Then, these mixed solutions were stirred at 60° C. for 7 hours to obtain a precursor liquid by a hydrolysis reaction of TEOS. The particle dispersion and copper nitrate were mixed with this precursor liquid while stirring. Then, this mixed solution was stirred at room temperature to obtain a coating liquid.
- the difference between Examples 1 to 4 and Comparative Example is that the coating solution of Comparative Example does not contain copper nitrate. Therefore, the comparative example has no antibacterial/antiviral function.
- this coating liquid is applied to a glass plate by flow coating to a thickness of about 200 to 300 nm, dried naturally for 10 minutes, and then heated in an oven set at 300 ° C. for 30 minutes. A film was formed. In this way, the cover members according to Examples 1 to 4 and Comparative Example were completed.
- the gloss value and haze ratio were measured.
- the 60° gloss value was measured from the side on which the functional film was formed using a gloss checker (“Gloss Checker IG-320” manufactured by Horiba Ltd.).
- the haze ratio was measured using a haze meter NDH2000 manufactured by Nippon Denshoku Industries Co., Ltd. At this time, the functional film was used as the incident surface, the haze ratio was measured at three points on the sample, and the average value was taken as the haze ratio.
- Example 1 shown in FIG. 6 the functional film is composed only of the above-described first region. As described above, the antiglare function and antiviral function were sufficient, but the surface had large irregularities, and slight film unevenness was observed in the appearance. On the other hand, in the functional film of Example 4 shown in FIG. 7, the first region and the substantially circular second region were formed, the antiglare function and the antiviral function were sufficient, and the appearance was satisfactory.
- the functional film of the comparative example shown in FIG. 8 also had a first region and a second region, but the second region had an irregular shape.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Composite Materials (AREA)
- Surface Treatment Of Glass (AREA)
- Laminated Bodies (AREA)
Abstract
Description
前記第1面に形成された、機能膜と、
を備え、
前記機能膜は、単一の膜で形成され、防眩機能と抗菌機能とを有している、カバー部材。
三次元ネットワーク結合を構成する無機酸化物を含有するマトリクスと、
無機酸化物微粒子と、
抗菌性の金属イオンと、
を備えている、項1に記載のカバー部材。
前記機能膜の厚み方向に前記無機酸化物粒子が積み重なっている第1領域と、
前記第1領域を囲む又は前記第1領域により囲まれる谷状の第2領域と、
が存在する、項2に記載のカバー部材。
前記第2領域の幅は1μm以上である、項3から5のいずれかに記載のカバー部材。
前記第2領域の幅は2μm以上である、項3から5のいずれかに記載のカバー部材。
露出している前記マトリクスに前記金属イオンが含有されている、項3から7のいずれかに記載のカバー部材。
前記第1領域の前記マトリクスに前記金属イオンが含有されている、項3から8のいずれかに記載のカバー部材。
前記コーティング液をガラス板に塗布するステップと、
前記コーティング液が塗布されたガラス板を加熱するステップと、
を備えている、カバー部材の製造方法。
ガラス板10は、例えば、汎用のソーダライムガラス、ホウケイ酸ガラス、アルミノシリケートガラス、無アルカリガラス等その他のガラスにより形成することができる。また、ガラス板10は、フロート法により成形することができる。この製法によると平滑な表面を有するガラス板10を得ることができる。但し、ガラス板10は、主面に凹凸を有していてもよく、例えば型板ガラスであってもよい。型板ガラスは、ロールアウト法と呼ばれる製法により成形することができる。この製法による型板ガラスは、通常、ガラス板の主面に沿った一方向について周期的な凹凸を有する。
SiO2 65~80%
Al2O3 0~16%
MgO 0~20%
CaO 0~20%
Na2O 10~20%
K2O 0~5%
(SiO2)
SiO2は、ガラス板10を構成する主要成分であり、その含有率が低すぎるとガラスの耐水性などの化学的耐久性および耐熱性が低下する。他方、SiO2の含有率が高すぎると、高温でのガラス板10の粘性が高くなり、溶解および成形が困難になる。したがって、SiO2の含有率は、66~72mol%の範囲が適切であり、67~70mol%が好ましい。
Al2O3はガラス板10の耐水性などの化学的耐久性を向上させ、さらにガラス中のアルカリ金属イオンの移動を容易にすることにより化学強化後の表面圧縮応力を高め、かつ、応力層深さを深くするための成分である。他方、Al2O3の含有率が高すぎると、ガラス融液の粘度を増加させ、T2、T4を増加させると共にガラス融液の清澄性が悪化し高品質なガラス板を製造することが難しくなる。
MgOはガラスの溶解性を向上させる必須の成分である。この効果を十分に得る観点から、このガラス板10ではMgOが添加されていることが好ましい。また、MgOの含有率が8mol%を下回ると、化学強化後の表面圧縮応力が低下し、応力層深さが浅くなる傾向にある。一方、適量を越えて含有率を増やすと、化学強化により得られる強化性能が低下し、特に表面圧縮応力層の深さが急激に浅くなる。この悪影響は、アルカリ土類金属酸化物の中でMgOが最も少ないが、このガラス板1においては、MgOの含有率は15mol%以下である。また、MgOの含有率が高いと、T2、T4を増加させると共にガラス融液の清澄性が悪化し高品質なガラス板を製造することが難しくなる。
CaOは、高温での粘性を低下させる効果を有するが、適度な範囲を超えて含有率が高すぎると、ガラス板10が失透しやすくなるとともに、ガラス板10におけるナトリウムイオンの移動が阻害されてしまう。CaOを含有しない場合に化学強化後の表面圧縮応力が低下する傾向にある。一方、8mol%を超えてCaOを含有すると、化学強化後の表面圧縮応力が顕著に低下し、圧縮応力層深さが顕著に浅くなるとともに、ガラス板10が失透しやすくなる。
SrO、BaOは、ガラス板10の粘性を大きく低下させ、少量の含有では液相温度TLを低下させる効果がCaOより顕著である。しかし、SrO、BaOは、ごく少量の添加であっても、ガラス板10におけるナトリウムイオンの移動を顕著に妨げ、表面圧縮応力を大きく低下させ、かつ、圧縮応力層の深さがかなり浅くなる。
Na2Oは、ナトリウムイオンがカリウムイオンと置換されることにより、表面圧縮応力を大きくし、表面圧縮応力層の深さを深くするための成分である。しかし、適量を超えて含有率を増やすと、化学強化処理でのイオン交換による表面圧縮応力の発生を、化学強化処理中の応力緩和が上回るようになり、結果として表面圧縮応力が低下する傾向にある。
K2Oは、Na2Oと同様、ガラスの溶解性を向上させる成分である。また、K2Oの含有率が低い範囲では、化学強化におけるイオン交換速度が増加し、表面圧縮応力層の深さが深くなる一方で、ガラス板10の液相温度TLを低下させる。したがってK2Oは低い含有率で含有させることが好ましい。
Li2Oは、少量含有されるだけであっても圧縮応力層の深さを著しく低下させる。また、Li2Oを含むガラス部材を硝酸カリウム単独の溶融塩で化学強化処理する場合、Li2Oを含まないガラス部材の場合と比較して、その溶融塩が劣化する速度が著しく速い。具体的には、同じ溶融塩で繰り返し化学強化処理を行なう場合に、より少ない回数でガラス表面に形成される表面圧縮応力が低下する。したがって、本実施形態のガラス板10においては、1mol%以下のLi2Oを含有してもよいが、実質的にLi2Oを含有しない方が好ましい。
B2O3は、ガラス板10の粘性を下げ、溶解性を改善する成分である。しかし、B2O3の含有率が高すぎると、ガラス板10が分相しやすくなり、ガラス板10の耐水性が低下する。また、B2O3とアルカリ金属酸化物とが形成する化合物が揮発してガラス溶解室の耐火物を損傷するおそれが生じる。さらに、B2O3の含有は化学強化における圧縮応力層の深さを浅くしてしまう。したがって、B2O3の含有率は0.5mol%以下が適切である。本発明では、B2O3を実質的に含有しないガラス板10であることがより好ましい。
通常Feは、Fe2+又はFe3+の状態でガラス中に存在し、着色剤として作用する。Fe3+はガラスの紫外線吸収性能を高める成分であり、Fe2+は熱線吸収性能を高める成分である。ガラス板10をディスプレイのカバーガラスとして用いる場合、着色が目立たないことが求められるため、Feの含有率は少ない方が好ましい。しかし、Feは工業原料により不可避的に混入することが多い。したがって、Fe2O3に換算した酸化鉄の含有率は、ガラス板10全体を100質量%として示して0.15質量%以下とすることがよく、0.1質量%以下であることがより好ましく、更に好ましくは0.02質量%以下である。
TiO2は、ガラス板10の粘性を下げると同時に、化学強化による表面圧縮応力を高める成分であるが、ガラス板10に黄色の着色を与えることがある。したがって、TiO2の含有率は0~0.2質量%が適切である。また、通常用いられる工業原料により不可避的に混入し、ガラス板10において0.05質量%程度含有されることがある。この程度の含有率であれば、ガラスに着色を与えることはないので、本実施形態のガラス板10に含まれてもよい。
ZrO2は、とくにフロート法でガラス板を製造する際に、ガラスの溶融窯を構成する耐火レンガからガラス板10に混入することがあり、その含有率は0.01質量%程度であることが知られている。一方、ZrO2はガラスの耐水性を向上させ、また、化学強化による表面圧縮応力を高める成分である。しかし、ZrO2の高い含有率は、作業温度T4の上昇や液相温度TLの急激な上昇を引き起こすことがあり、またフロート法によるガラス板の製造においては、析出したZrを含む結晶が製造されたガラス中に異物として残留しやすい。したがって、ZrO2の含有率は0~0.1質量%が適切である。
フロート法においては、ボウ硝(Na2SO4)など硫酸塩が清澄剤として汎用される。硫酸塩は溶融ガラス中で分解してガス成分を生じ、これによりガラス融液の脱泡が促進されるが、ガス成分の一部はSO3としてガラス板10中に溶解し残留する。本発明のガラス板10においては、SO3は0~0.3質量%であることが好ましい。
CeO2は清澄剤として使用される。CeO2により溶融ガラス中でO2ガスが生じるので、CeO2は脱泡に寄与する。一方、CeO2が多すぎると、ガラスが黄色に着色してしまう。そのため、CeO2の含有量は、0~0.5質量%が好ましく、0~0.3質量%がより好ましく、0~0.1質量%がさらに好ましい。
フロート法により成形されたガラス板において、成型時にスズ浴に触れた面はスズ浴からスズが拡散し、そのスズがSnO2として存在することが知られている。また、ガラス原料に混合させたSnO2は、脱泡に寄与する。本発明のガラス板10においては、SnO2は0~0.3質量%であることが好ましい。
本実施形態によるガラス板10は、上記に列挙した各成分から実質的に構成されていることが好ましい。ただし、本実施形態によるガラス板10は、上記に列記した成分以外の成分を、好ましくは各成分の含有率が0.1質量%未満となる範囲で含有していてもよい。
上記組成より、本実施形態では、ガラス板10の密度を2.53g・cm-3以下、さらには2.51g・cm-3以下、場合によっては2.50g・cm-3以下にまで減少させることができる。
イオン交換を伴う化学強化を行うと、ガラス基板に反りが生じることがある。この反りを抑制するためには、ガラス板10の弾性率は高いことが好ましい。本発明によれば、ガラス板10の弾性率(ヤング率:E)を70GPa以上、さらには72GPa以上にまで増加させることができる。
(化学強化の条件と圧縮応力層)
ナトリウムを含むガラス板10を、ナトリウムイオンよりもイオン半径の大きい一価の陽イオン、好ましくはカリウムイオン、を含む溶融塩に接触させ、ガラス板10中のナトリウムイオンを上記の一価の陽イオンによって置換するイオン交換処理を行うことにより、本発明によるガラス板10の化学強化を実施することができる。これによって、表面に圧縮応力が付与された圧縮応力層が形成される。
次に、図2及び図3を参照しつつ、機能膜について説明する。図2は機能膜が積層されたガラス板の一部断面図、図3は機能膜が積層されたガラス板の他の例示す一部断面図である。図2及び図3に示すように、カバー部材400及び500は、ガラス板10と、ガラス板10の上に設けられた機能膜50及び60とを備えている。図2及び図3では、ガラス板10の第1面10sに機能膜50及び60が直接形成されているが、ガラス板10と機能膜50及び60との間に別の膜が介在していても構わない。機能膜50及び60は、無機酸化物微粒子5(以下、単に「粒子」ということがある)と、三次元ネットワーク結合を構成するマトリクス2と、抗菌性の金属イオンを含んでいる。機能膜50及び60には空隙が含まれていてもよい。空隙は、マトリクス2中に、又は粒子5及びマトリクス2に接するように存在していてもよい。
粒子5の形状は、特に制限されないが、球状であることが好ましい。粒子5は球状粒子により実質的に構成されていてもよい。ただし、粒子5の一部は、球状以外の形状、例えば平板状の形状を有していてもよい。粒子5は球状粒子のみにより構成されていても構わない。ここで、球状粒子とは、重心を通過する最短径に対する最長径の比が1以上1.8以下、特に1以上1.5以下であって、表面が曲面により構成されている粒子をいう。球状粒子の平均粒径は、5nm~200nm、さらに10nm~100nm、特に20nm~60nmであってもよい。球状粒子の平均粒径は、個々の粒径、具体的には上述の最短径と最長径との平均値、の平均により定まるが、その測定は、SEM像に基づいて、30個、好ましくは50個の粒子を対象として実施することが望ましい。
マトリクス2は、Siの酸化物である酸化シリコンを含み、酸化シリコンを主成分とすることが好ましい。酸化シリコンを主成分とするマトリクス2は、膜の屈折率を低下させ、膜の反射率を抑制することに適している。マトリクス2は、酸化シリコン以外の成分を含んでいてもよく、酸化シリコンを部分的に含む成分を含んでいてもよい。
RnSiY4-n(1)
Rは、アルキル基、ビニル基、エポキシ基、スチリル基、メタクリロイル基及びアクリロイル基から選ばれる少なくとも1種を含む有機基である。Yは、アルコキシ基、アセトキシ基、アルケニルオキシ基及びアミノ基から選ばれる少なくとも1種である加水分解可能な有機基、又はハロゲン原子である。ハロゲン原子は、好ましくはClである。nは、0から3までの整数であり、好ましくは0又は1である。
金属イオンは、抗菌性を有するものであり、1価または2価の銅イオン、銀イオンなどで形成することができる。機能膜50,60の金属イオンの含有量は、ネットワーク結合を構成する化合物のうち最も重量比の大きい主成分に対し、モル比で2~50%であることが好ましく、5~25%であることがさらに好ましい。
機能膜50,60におけるマトリクス2に対する粒子1の比は、質量基準で、例えば0.05~10、さらに0.05~7であり、好ましくは0.05~5である。機能膜50,60における空隙の体積比率は、特に制限されないが、10%以上、さらに10~20%であってよい。ただし、空隙は存在しなくても構わない。
機能膜50,60の形成方法は、特には限定されないが、例えば、以下のように形成することができる。まず、上述したマトリクスを構成する材料、例えば、テトラエトキシシラン等のシリコンアルコキシドを酸性条件下でアルコール溶液とし、前駆体液を生成する。また、例えば、コロイダルシリカ等の無機酸化物微粒子を含有する分散液を、前駆体液に混合する。さらに、上述した抗菌性の金属イオンを含む液、例えば、塩化銅水溶液または硝酸銅水溶液を含有する分散液を、前駆体液に混合する。その他、必要に応じて、各種の添加剤を混合することもできる。例えば、ホウ素をホウ酸として添加することができる。例えば、機能膜50,60にホウ素が残留すると、ホウ素(BO-)が抗菌性の銅イオンを引きつける効果があるため、銅イオンが凝集して酸化銅などの結晶となるのを抑制することができる。こうして、機能膜50,60用のコーティング液が生成される。
上記のように抗菌膜2が形成されたカバー部材100の光学特性としては、例えば、可視光透過率が85%以上であることが好ましく、90%以上であることがさらに好ましい。また、カバー部材10のヘイズ率は、例えば20%以下、さらに15%以下、特に10%以下であり、場合によっては1~8%、さらに1~6%であってもよい。
H≦-0.2G+25 (a)
H≦-0.2G+24.5 (b)
H≦-0.2G+24 (c)
H≦-0.15G+18 (d)
本実施形態に係るカバー部材100は、以下の効果を奏することができる。
(1)本実施形態に係るガラス部材100では、機能膜50,60では、マトリクス2に抗菌性の金属イオンが担持されている。そのため、抗菌・抗ウイルス機能を発揮することができる。特に、三次元ネットワーク結合を構成するマトリクス2に金属イオンが担持されているため、金属イオンの溶出を抑制することができる。例えば、第1領域50p及び60pでは、金属イオンを担持するマトリクス2が粒子5に覆われているため、金属イオンの溶出をさらに抑制することができる。
以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて、種々の変更が可能である。なお、以下の変形例は適宜組み合わせることができる。
上記実施形態で示した機能膜は、第1領域50p及び60p、第2領域50v及び60vを有しているが、第1領域50p及び60pのみで形成されてもよい。この場合、粒子の分散液をプロピレングリコールモノメチルエーテルにより形成すればよい。このように、機能膜が第1領域50p及び60pだけで形成されていたとしても、後述するように、防眩機能及び抗菌・抗ウイルス機能を発現することができる。
本発明に係るカバー部材は、無色透明のほか、ガラス板1、機能膜50,60の少なくとも1つに着色することで、有色透明、又は半透明にすることができる。
(1)実施例及び比較例の準備
50mmx50mmのフロートガラス板上に、機能膜を積層することで、実施例1~4、比較例に係るカバー部材を形成した。
・MEK-ST-L(日産化学製オルガノシリカゾル)
・PGM-AC-4130Y(日産化学製オルガノシリカゾル)
・MIBK-ST-L(日産化学製オルガノシリカゾル)
実施例1~4及び比較例のカバー部材に対し、以下の試験を行った。結果は、表2に示すとおりである。
グロス値及びヘイズ率を測定した。グロス値として、60°グロス値をグロスチェッカ(堀場製作所製「グロスチェッカIG-320」)を用いて機能膜を形成した側から測定した。ヘイズ率は、日本電色工業株式会社製ヘイズメータNDH2000により行った。この際、機能膜を入射面とし、試料の3点でヘイズ率を測定し、その平均値をヘイズ率とした。
カバー部材の第2面を照明付きの検査台上に配置し、照明をカバー部材に照射した状態で、機能膜側から見たときのカバー部材の外観を、以下の基準で検査した。
A:目視で膜ムラが観察されない
B:目視で膜ムラがわずかに観察される
実施例2~4に係るカバー部材を25mlの水に24時間浸漬し、その間に所定時間おきに、その水から1.5mlを抽出し、銅イオンの溶出量(コーティング単位面積当たりの溶出量)を算出した。この溶出量の算出は、次のように行った。まず、パックテスト銅(共立理化学研究所製)で発色させた検水をデジタルパックテスト銅(同上)で測定し、液中に含まれる銅イオン濃度を求めた後、試験前の銅に対する溶出量の質量%を算出した。
抗菌性の評価を、以下の通り、JIS Z2801:2012(フィルム密着法)に基づいて行った(ISO22916に相当)。
・試験細菌:E.Coli(大腸菌 NBRC3972)
・試料形態:上記カバー部材
・作用時間:24時間
・抗菌活性値(R)の算出:R=(Ut-U0)-(At-U0)=Ut-At
U0:ガラス板の接種直後の生菌数の対数値の平均値
Ut:ガラス板の24時間後の生菌数の対数値の平均値
At:カバー部材の24時間後の生菌数の対数値の平均値
・作用条件:温度35℃、湿度90%以上(JIS準拠)
・密着フィルム:40mm×40mmのPPフィルム(JIS基準)
・試験菌液の摂取量:0.2ml
・試験菌液の生菌数:1.1×106
・生菌数測定:ガラス板の菌液接種直後および24時間培養後のカバー部材の生菌数を測定
上記試験の結果、本実施例1~4に係るカバー部材は、グロス値及びヘイズ率が適正であり、十分な防眩機能が得られていることが分かった。また、抗ウイルス活性は、いずれも2.5以上であった。2.0以上で抗ウイルス活性があると評価されるため、本実施例1~4に係るカバー部材においては十分な抗ウイルス性能が確認できた。また、銅の溶出量について、実施例1及び比較例では測定はしていないが、実施例2~4では、耐久試験においても約30~40%の銅が機能膜中に残存しているため、十分な耐久性能があると考えられる。外観に関し、実施例1は、僅かな膜ムラが見られたが、実施例2~4は特に問題はなかった。
50,60 機能膜
100 カバー部材
200 被保護部材
Claims (13)
- 第1面及び第2面を有するガラス板と、
前記第1面に形成された機能膜と、
を備え、
前記機能膜は、単一の膜で形成され、防眩機能と抗菌機能とを有している、カバー部材。 - 前記機能膜は、
三次元ネットワーク結合を構成するマトリクスと、
無機酸化物微粒子と、
抗菌性の金属イオンと、
を備えている、請求項1に記載のカバー部材。 - 前記機能膜は、
前記機能膜の厚み方向に前記無機酸化物粒子が積み重なっている第1領域と、
前記第1領域を囲む又は前記第1領域により囲まれる谷状の第2領域と、
が存在する、請求項2に記載のカバー部材。 - 前記第1領域は台地状の領域である、請求項3に記載のカバー部材。
- 前記第2領域は、前記無機酸化物粒子が積み重なっていないか又は前記無機酸化物粒子が存在しない部分を含む、請求項3または4に記載のカバー部材。
- 前記第1領域の幅は3μm以上、
前記第2領域の幅は1μm以上である、請求項3から5のいずれかに記載のカバー部材。 - 前記第1領域の幅は5μm以上、
前記第2領域の幅は2μm以上である、請求項3から5のいずれかに記載のカバー部材。 - 前記第2領域においては、前記マトリクスが露出しており、
露出している前記マトリクスに前記金属イオンが含有されている、請求項3から7のいずれかに記載のカバー部材。 - 前記第1領域においては、前記ガラス板上に前記マトリクスが配置され、当該マトリクス上に前記無機酸化物粒子が積み重なっており、
前記第1領域の前記マトリクスに前記金属イオンが含有されている、請求項3から8のいずれかに記載のカバー部材。 - 前記第2領域の少なくとも1つは、閉じた曲線により形成されている、請求項3から9のいずれかに記載のカバー部材。
- 前記第2領域として、複数の異なる大きさの閉じた曲線によって形成された領域を含んでいる、請求項10に記載のカバー部材。
- 前記第1領域において、前記第2領域との境界付近が隆起している、請求項3から11のいずれかに記載のカバー部材。
- シリコンアルコキシドに、無機酸化物微粒子及び抗菌性の金属イオンを添加したコーティング液を形成するステップと、
前記コーティング液をガラス板に塗布するステップと、
前記コーティング液が塗布されたガラス板を加熱するステップと、
を備えている、カバー部材の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020247016717A KR20240117082A (ko) | 2021-11-26 | 2022-10-27 | 커버 부재 |
EP22898322.7A EP4438574A1 (en) | 2021-11-26 | 2022-10-27 | Cover member |
CN202280074607.7A CN118215644A (zh) | 2021-11-26 | 2022-10-27 | 覆盖构件 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-192595 | 2021-11-26 | ||
JP2021192595A JP2023079123A (ja) | 2021-11-26 | 2021-11-26 | カバー部材 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023095538A1 true WO2023095538A1 (ja) | 2023-06-01 |
Family
ID=86539409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/040272 WO2023095538A1 (ja) | 2021-11-26 | 2022-10-27 | カバー部材 |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP4438574A1 (ja) |
JP (1) | JP2023079123A (ja) |
KR (1) | KR20240117082A (ja) |
CN (1) | CN118215644A (ja) |
TW (1) | TW202330263A (ja) |
WO (1) | WO2023095538A1 (ja) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1186757A (ja) * | 1997-09-04 | 1999-03-30 | Nippon Electric Glass Co Ltd | ブラウン管用パネル |
JPH11228186A (ja) | 1998-02-09 | 1999-08-24 | Nippon Parkerizing Co Ltd | ガラス、ガラスの製造方法、及び強化抗菌ガラス用組成物 |
JP2001328846A (ja) * | 2000-05-19 | 2001-11-27 | Nitto Shoji Kk | 透光性ノングレア面化加工方法と透光性ノングレアタッチスクリーン |
JP2008512747A (ja) * | 2004-08-26 | 2008-04-24 | スリーエム イノベイティブ プロパティズ カンパニー | 防眩コーティングおよび物品 |
CN102923966A (zh) * | 2012-11-20 | 2013-02-13 | 王德宪 | 抗菌减反射玻璃镀液组合物、其制法及用途 |
JP2016018068A (ja) * | 2014-07-08 | 2016-02-01 | 旭硝子株式会社 | 防眩膜付き基材および物品 |
JP2017530079A (ja) * | 2014-09-12 | 2017-10-12 | ショット アクチエンゲゼルシャフトSchott AG | 耐性を持つ多機能表面特性を有するコーティングされたガラス基板又はガラスセラミック基板、該基板を製造する方法及び該基板の使用 |
JP2018024240A (ja) * | 2016-07-28 | 2018-02-15 | 旭硝子株式会社 | 透明基材およびその製造方法 |
WO2021132696A1 (ja) * | 2019-12-27 | 2021-07-01 | 日本板硝子株式会社 | 透明積層体 |
WO2021221178A1 (ja) * | 2020-04-30 | 2021-11-04 | 日本板硝子株式会社 | 表示装置 |
-
2021
- 2021-11-26 JP JP2021192595A patent/JP2023079123A/ja active Pending
-
2022
- 2022-10-27 CN CN202280074607.7A patent/CN118215644A/zh active Pending
- 2022-10-27 EP EP22898322.7A patent/EP4438574A1/en active Pending
- 2022-10-27 WO PCT/JP2022/040272 patent/WO2023095538A1/ja active Application Filing
- 2022-10-27 KR KR1020247016717A patent/KR20240117082A/ko unknown
- 2022-11-01 TW TW111141604A patent/TW202330263A/zh unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1186757A (ja) * | 1997-09-04 | 1999-03-30 | Nippon Electric Glass Co Ltd | ブラウン管用パネル |
JPH11228186A (ja) | 1998-02-09 | 1999-08-24 | Nippon Parkerizing Co Ltd | ガラス、ガラスの製造方法、及び強化抗菌ガラス用組成物 |
JP2001328846A (ja) * | 2000-05-19 | 2001-11-27 | Nitto Shoji Kk | 透光性ノングレア面化加工方法と透光性ノングレアタッチスクリーン |
JP2008512747A (ja) * | 2004-08-26 | 2008-04-24 | スリーエム イノベイティブ プロパティズ カンパニー | 防眩コーティングおよび物品 |
CN102923966A (zh) * | 2012-11-20 | 2013-02-13 | 王德宪 | 抗菌减反射玻璃镀液组合物、其制法及用途 |
JP2016018068A (ja) * | 2014-07-08 | 2016-02-01 | 旭硝子株式会社 | 防眩膜付き基材および物品 |
JP2017530079A (ja) * | 2014-09-12 | 2017-10-12 | ショット アクチエンゲゼルシャフトSchott AG | 耐性を持つ多機能表面特性を有するコーティングされたガラス基板又はガラスセラミック基板、該基板を製造する方法及び該基板の使用 |
JP2018024240A (ja) * | 2016-07-28 | 2018-02-15 | 旭硝子株式会社 | 透明基材およびその製造方法 |
WO2021132696A1 (ja) * | 2019-12-27 | 2021-07-01 | 日本板硝子株式会社 | 透明積層体 |
WO2021221178A1 (ja) * | 2020-04-30 | 2021-11-04 | 日本板硝子株式会社 | 表示装置 |
Also Published As
Publication number | Publication date |
---|---|
CN118215644A (zh) | 2024-06-18 |
TW202330263A (zh) | 2023-08-01 |
JP2023079123A (ja) | 2023-06-07 |
EP4438574A1 (en) | 2024-10-02 |
KR20240117082A (ko) | 2024-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2024020435A (ja) | ガラス | |
WO2012108417A1 (ja) | 強化ガラス板 | |
WO2012008586A1 (ja) | プラズマディスプレイ装置 | |
JP5459122B2 (ja) | ディスプレイ装置 | |
TW202108533A (zh) | 玻璃陶瓷及其製法 | |
JP2024045688A (ja) | ガラス | |
WO2023095538A1 (ja) | カバー部材 | |
WO2022209835A1 (ja) | 積層体 | |
WO2022196834A1 (ja) | カバー部材 | |
WO2023013505A1 (ja) | ガラス部材及びその製造方法 | |
JP2022159239A (ja) | ガラス体 | |
JP2022159240A (ja) | ガラス部材及びその製造方法 | |
WO2022054960A1 (ja) | 表示装置 | |
US11897808B2 (en) | Tunable glass compositions having improved mechanical durability | |
WO2022054961A1 (ja) | カバー部材 | |
WO2023243574A1 (ja) | 化学強化用ガラス及びガラス | |
WO2022054962A1 (ja) | カバー部材 | |
US20240018035A1 (en) | Glass body | |
JP2016225225A (ja) | 表示装置用の導光板 | |
TW202321174A (zh) | 低模數可離子交換玻璃組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22898322 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280074607.7 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022898322 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022898322 Country of ref document: EP Effective date: 20240626 |