WO2023013505A1 - ガラス部材及びその製造方法 - Google Patents

ガラス部材及びその製造方法 Download PDF

Info

Publication number
WO2023013505A1
WO2023013505A1 PCT/JP2022/029003 JP2022029003W WO2023013505A1 WO 2023013505 A1 WO2023013505 A1 WO 2023013505A1 JP 2022029003 W JP2022029003 W JP 2022029003W WO 2023013505 A1 WO2023013505 A1 WO 2023013505A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass plate
functional film
glass member
composition
Prior art date
Application number
PCT/JP2022/029003
Other languages
English (en)
French (fr)
Inventor
信樹 岩井
和孝 神谷
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Priority to EP22852928.5A priority Critical patent/EP4382496A1/en
Priority to KR1020247006539A priority patent/KR20240036677A/ko
Priority to CN202280050263.6A priority patent/CN117642370A/zh
Priority to JP2023540292A priority patent/JPWO2023013505A1/ja
Publication of WO2023013505A1 publication Critical patent/WO2023013505A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/30Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/002General methods for coating; Devices therefor for flat glass, e.g. float glass
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/18Materials not provided for elsewhere for application to surfaces to minimize adherence of ice, mist or water thereto; Thawing or antifreeze materials for application to surfaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings

Definitions

  • the present invention relates to a glass member and a manufacturing method thereof.
  • Patent Document 1 discloses glass in which an antibacterial substance is provided on the surface of a glass plate by ion-exchanging an antibacterial ion component.
  • an object of the present invention is to provide a glass member having a single functional film that performs a plurality of functions, and a manufacturing method thereof.
  • Section 1 a glass plate having a first side and a second side; a functional film formed on the first surface and composed of a single film; with The functional membrane is A composition mainly located near the surface of the functional film and having a fluoroalkyl group; an antibacterial metal ion; a carrier containing an inorganic oxide that forms a three-dimensional network bond; A glass member containing
  • Section 2 The concentration of the composition is highest near the surface of the functional film, and the concentration of the composition decreases as it approaches the glass plate.
  • Item 1 The glass member according to item 1.
  • Item 3 Item 1 or 2, wherein in the functional film, the content of the metal ion is 2 to 50% in molar ratio with respect to the main component having the largest weight ratio among the inorganic oxides constituting the network bond.
  • Item 4 The glass member according to any one of Items 1 to 3, wherein the metal ion is a monovalent or divalent copper ion.
  • Item 5 generating a precursor liquid in which antibacterial metal ions are added to silicon alkoxide; generating a solution in which a composition having a fluoroalkyl group is dissolved in a fluorine-based solvent; mixing the precursor liquid with the solution to form a coating liquid; applying the coating liquid to a glass plate; heating the glass plate coated with the coating liquid;
  • a method for manufacturing a glass member comprising:
  • FIG. 2 is a cross-sectional view showing an example of a schematic diagram of the functional film of FIG. 1; 10 is a graph showing the distribution of F element in the functional film of Example 4.
  • FIG. 2 is a cross-sectional view showing an example of a schematic diagram of the functional film of FIG. 1; 10 is a graph showing the distribution of F element in the functional film of Example 4.
  • the glass member according to the present embodiment can be used in various applications such as, for example, as a glass member for covering an article or as a part of a structure.
  • goods include mobile PCs, tablet PCs, in-vehicle devices such as car navigation systems, devices that at least partially have a display function using electronic components, and external displays that do not have an electronic display function.
  • Various devices such as a display device for displaying some kind of display are targeted.
  • a product to be shown to the outside such as a product
  • Examples of the above structures include various structures using glass, such as buildings, cases such as showcases, glass plates of copiers, partitions, and the like.
  • Fig. 1 is a cross-sectional view of the glass member.
  • a glass member 10 according to this embodiment includes a glass plate 1 having a first surface and a second surface, and a functional film 2 laminated on the first surface of the glass plate 1. ing.
  • this glass member 10 is used as a cover member, it is arranged so as to cover the article 100 described above.
  • the second surface of the glass plate 1 is arranged to face the article 100, and the functional film 2 is arranged to face the outside.
  • the functional film 2 is arranged to face the outside.
  • the glass plate 1 can be made of general-purpose soda-lime glass, borosilicate glass, aluminosilicate glass, alkali-free glass, or other glass, for example. Further, the glass plate 1 can be formed by a float method. According to this manufacturing method, a glass plate 1 having a smooth surface can be obtained. However, the glass plate 1 may have unevenness on its main surface, and may be, for example, figured glass. A figured glass can be molded by a manufacturing method called a roll-out method. A figured glass produced by this method usually has periodic irregularities in one direction along the main surface of the glass plate.
  • molten glass is continuously supplied onto molten tin or other molten metal, and the supplied molten glass is made to flow on the molten metal to form a strip.
  • the glass thus formed is called a glass ribbon.
  • the glass ribbon is cooled as it goes downstream, is cooled and solidified, and is pulled up from the molten metal by rollers. Then, it is conveyed to a slow cooling furnace by rollers, and cut after slow cooling. A float glass sheet is thus obtained.
  • the thickness of the glass plate 1 is not particularly limited, it should be thinner for weight reduction.
  • it is preferably 0.3 to 5 mm, more preferably 0.6 to 2.5 mm. This is because if the glass plate 1 is too thin, the strength is reduced, and if it is too thick, the article 100 viewed through the glass member 10 may be distorted.
  • the glass plate 1 may generally be a flat plate, but may also be a curved plate.
  • the glass plate 1 preferably has a non-planar main surface that conforms thereto.
  • the glass plate 1 may be bent so as to have a constant curvature as a whole, or may be bent locally.
  • the main surface of the glass plate 1 may be configured by, for example, connecting a plurality of flat surfaces with curved surfaces.
  • the radius of curvature of the glass plate 1 can be, for example, 5000 mm or less.
  • the lower limit of the radius of curvature can be, for example, 10 mm or more, but it may be even smaller, for example, 1 mm or more, especially in a locally bent portion.
  • a glass plate having the following composition can also be used.
  • percentages indicating the components of the glass plate 1 all mean mol%.
  • the phrase “substantially composed of” means that the total content of the listed components is 99.5% by mass or more, preferably 99.9% by mass or more, more preferably 99.95% by mass. It means that it occupies more than % by mass. “Substantially free” means that the content of the component is 0.1% by mass or less, preferably 0.05% by mass or less.
  • SL in a narrow sense a glass composition suitable for the production of glass plates by the float method
  • the composition range considered by those skilled in the art to be soda lime silicate glass suitable for the float process hereinafter sometimes referred to as “broadly defined SL”
  • mass% range in which the properties such as T 2 and T 4 are approximated to SL in the narrow sense as much as possible while improving the chemical strengthening properties of SL in the narrow sense.
  • SiO2 is a main component that constitutes the glass plate 1. If the content is too low, the chemical durability such as water resistance and heat resistance of the glass are lowered. On the other hand, if the SiO 2 content is too high, the viscosity of the glass plate 1 at high temperatures becomes high, making melting and molding difficult. Therefore, the content of SiO 2 is suitably in the range of 66-72 mol %, preferably 67-70 mol %.
  • Al2O3 Al 2 O 3 improves the chemical durability such as water resistance of the glass plate 1, and facilitates the movement of alkali metal ions in the glass to increase the surface compressive stress after chemical strengthening. It is a component for deepening the depth.
  • the content of Al 2 O 3 is too high, the viscosity of the glass melt will increase, T 2 and T 4 will increase, and the clarity of the glass melt will deteriorate, making it difficult to produce a high-quality glass plate. becomes difficult.
  • the content of Al 2 O 3 is appropriately in the range of 1 to 12 mol %.
  • the content of Al 2 O 3 is preferably 10 mol % or less, preferably 2 mol % or more.
  • the glass plate 1 preferably contains MgO.
  • MgO MgO
  • the content of MgO is less than 8 mol %, the surface compressive stress after chemical strengthening tends to decrease and the depth of the stress layer tends to become shallow.
  • the strengthening performance obtained by chemical strengthening is lowered, and in particular the depth of the surface compressive stress layer is sharply reduced.
  • MgO has the least adverse effect, but in this glass plate 1, the content of MgO is 15 mol % or less.
  • T 2 and T 4 are increased and the clarity of the glass melt is deteriorated, making it difficult to produce a high-quality glass plate.
  • the content of MgO is in the range of 1 to 15 mol%, preferably 8 mol% or more and 12 mol% or less.
  • CaO CaO has the effect of lowering the viscosity at high temperatures, but if the content is too high beyond an appropriate range, the glass plate 1 tends to devitrify and the movement of sodium ions in the glass plate 1 is inhibited. end up When CaO is not contained, the surface compressive stress after chemical strengthening tends to decrease. On the other hand, if the CaO content exceeds 8 mol %, the surface compressive stress after chemical strengthening is significantly reduced, the depth of the compressive stress layer is significantly reduced, and the glass plate 1 is likely to devitrify.
  • the appropriate CaO content is in the range of 1 to 8 mol%.
  • the CaO content is preferably 7 mol % or less, and preferably 3 mol % or more.
  • SrO, BaO greatly lower the viscosity of the glass plate 1, and when contained in small amounts, the effect of lowering the liquidus temperature TL is more pronounced than CaO.
  • SrO and BaO significantly hinder the movement of sodium ions in the glass plate 1, greatly reduce the surface compressive stress, and make the depth of the compressive stress layer considerably shallow.
  • the glass plate 1 does not substantially contain SrO and BaO.
  • ( Na2O ) Na 2 O is a component for increasing the surface compressive stress and increasing the depth of the surface compressive stress layer by replacing sodium ions with potassium ions.
  • the stress relaxation during the chemical strengthening treatment will exceed the generation of surface compressive stress due to ion exchange during the chemical strengthening treatment, and as a result, the surface compressive stress will tend to decrease. be.
  • Na 2 O is a component for improving the solubility and lowering T 4 and T 2 , but if the content of Na 2 O is too high, the water resistance of the glass is remarkably lowered.
  • the content of Na 2 O is 10 mol % or more, the effect of reducing T 4 and T 2 is sufficiently obtained, and if it exceeds 16 mol %, the surface compressive stress is significantly reduced due to stress relaxation. Become.
  • the content of Na 2 O in the glass plate 1 of this embodiment is appropriately in the range of 10 to 16 mol %.
  • the Na 2 O content is preferably 12 mol % or more, and more preferably 15 mol % or less.
  • K2O K 2 O is a component that improves the solubility of glass.
  • the ion exchange rate in chemical strengthening increases, the depth of the surface compressive stress layer increases, and the liquidus temperature TL of the glass plate 1 decreases. Therefore, it is preferable to contain K 2 O at a low content.
  • K 2 O is less effective than Na 2 O in reducing T 4 and T 2 , but a large amount of K 2 O inhibits clarification of the glass melt. Also, the higher the K 2 O content, the lower the surface compressive stress after chemical strengthening. Therefore, the appropriate K 2 O content is in the range of 0 to 1 mol %.
  • the glass plate 1 of the present embodiment may contain Li 2 O in an amount of 1 mol % or less, but preferably does not substantially contain Li 2 O.
  • B2O3 is a component that lowers the viscosity of the glass plate 1 and improves its solubility.
  • the content of B 2 O 3 is too high, the glass plate 1 tends to undergo phase separation and the water resistance of the glass plate 1 decreases.
  • the compound formed by B 2 O 3 and the alkali metal oxide may volatilize and damage the refractories in the glass melting chamber.
  • the inclusion of B 2 O 3 reduces the depth of the compressive stress layer in chemical strengthening. Therefore, the appropriate content of B 2 O 3 is 0.5 mol % or less. In the present invention, it is more preferable that the glass plate 1 does not substantially contain B 2 O 3 .
  • Fe2O3 Fe usually exists in the glass in the form of Fe 2+ or Fe 3+ and acts as a colorant.
  • Fe 3+ is a component that enhances the ultraviolet absorption performance of the glass
  • Fe 2+ is a component that enhances the heat ray absorption performance.
  • the iron oxide content in terms of Fe 2 O 3 is preferably 0.15% by mass or less, more preferably 0.1% by mass or less, when the entire glass plate 1 is taken as 100% by mass. It is preferably 0.02% by mass or less, more preferably 0.02% by mass or less.
  • TiO2 TiO 2 is a component that lowers the viscosity of the glass plate 1 and increases the surface compressive stress due to chemical strengthening. Therefore, the appropriate content of TiO 2 is 0 to 0.2% by mass. In addition, it is inevitably mixed with commonly used industrial raw materials, and may be contained in the glass plate 1 in an amount of about 0.05% by mass. This level of content does not color the glass, so it may be included in the glass plate 1 of the present embodiment.
  • ZrO2 ZrO 2 may be mixed into the glass plate 1 from the refractory bricks constituting the glass melting kiln, especially when the glass plate is manufactured by the float method, and its content is about 0.01% by mass.
  • ZrO 2 is a component that improves the water resistance of glass and increases surface compressive stress due to chemical strengthening.
  • a high ZrO 2 content may cause an increase in the working temperature T 4 and a rapid increase in the liquidus temperature TL . It tends to remain as a foreign substance in the manufactured glass. Therefore, the appropriate ZrO 2 content is 0 to 0.1% by mass.
  • SO3 In the float method, sulfates such as Glauber's salt (Na 2 SO 4 ) are commonly used as clarifiers. Sulfate decomposes in the molten glass to produce gas components, which promotes defoaming of the glass melt, but some of the gas components dissolve and remain in the glass plate 1 as SO 3 .
  • SO 3 is preferably 0 to 0.3% by mass.
  • CeO2 CeO 2 is used as a fining agent. CeO 2 contributes to degassing since it produces O 2 gas in the molten glass. On the other hand, too much CeO 2 causes the glass to turn yellow. Therefore, the CeO 2 content is preferably 0 to 0.5% by mass, more preferably 0 to 0.3% by mass, and even more preferably 0 to 0.1% by mass.
  • SnO2 ( SnO2 ) It is known that in a glass sheet molded by the float method, tin diffuses from the tin bath to the surface that comes into contact with the tin bath during molding, and the tin exists as SnO 2 . Also, SnO 2 mixed with the glass raw material contributes to defoaming. In the glass plate 1 of the present invention, SnO 2 is preferably 0 to 0.3% by mass.
  • the glass plate 1 according to the present embodiment is substantially composed of the components listed above.
  • the glass plate 1 according to the present embodiment may contain components other than the components listed above, preferably within a range where the content of each component is less than 0.1% by mass.
  • components that are allowed to be included include As2O5 , Sb2O5 , Cl , and F, which are added for the purpose of defoaming the molten glass, in addition to SO3 and SnO2 described above.
  • As 2 O 5 , Sb 2 O 5 , Cl, and F are preferably not added because they have a large adverse effect on the environment.
  • other examples that are allowed to be included are ZnO, P2O5 , GeO2 , Ga2O3 , Y2O3 and La2O3 .
  • Components other than the above derived from industrially used raw materials are acceptable as long as they do not exceed 0.1% by mass. Since these components are added as appropriate or mixed inevitably as necessary, the glass plate 1 of the present embodiment may be substantially free of these components. do not have.
  • the density of the glass plate 1 is reduced to 2.53 g ⁇ cm ⁇ 3 or less, further 2.51 g ⁇ cm ⁇ 3 or less, and in some cases 2.50 g ⁇ cm ⁇ 3 or less. be able to.
  • the density of soda-lime glass currently mass-produced by the float method is about 2.50 g ⁇ cm ⁇ 3 . Therefore, considering mass production by the float method, the density of the glass plate 1 should be close to the above values, specifically 2.45 to 2.55 g ⁇ cm ⁇ 3 , particularly 2.47 to 2.53 g ⁇ cm ⁇ 3 . cm ⁇ 3 is preferred, and 2.47 to 2.50 g ⁇ cm ⁇ 3 is more preferred.
  • the glass substrate may warp.
  • the elastic modulus of the glass plate 1 is high.
  • the elastic modulus (Young's modulus: E) of the glass plate 1 can be increased to 70 GPa or higher, or even 72 GPa or higher.
  • Chemical strengthening of the glass plate 1 will be described below. (Chemical strengthening conditions and compressive stress layer)
  • a glass plate 1 containing sodium is brought into contact with a molten salt containing monovalent cations having an ionic radius larger than that of sodium ions, preferably potassium ions, so that the sodium ions in the glass plate 1 are replaced with the above monovalent cations.
  • the chemical strengthening of the glass plate 1 according to the present invention can be carried out by performing an ion-exchange treatment that replaces with . Thereby, a compressive stress layer having a compressive stress applied to the surface is formed.
  • Potassium nitrate can typically be mentioned as the molten salt.
  • a mixed molten salt of potassium nitrate and sodium nitrate can also be used, but since it is difficult to control the concentration of the mixed molten salt, a molten salt of potassium nitrate alone is preferable.
  • the surface compressive stress and compressive stress layer depth in the tempered glass member can be controlled not only by the glass composition of the article, but also by the temperature and treatment time of the molten salt in the ion exchange treatment.
  • a tempered glass member having a very high surface compressive stress and a very deep compressive stress layer can be obtained. Specifically, a tempered glass member having a surface compressive stress of 700 MPa or more and a compressive stress layer having a depth of 20 ⁇ m or more can be obtained. Certain tempered glass members can also be obtained.
  • wind tempering can be used as a general strengthening method instead of chemical strengthening.
  • FIG. 2 is an enlarged cross-sectional view schematically showing the vicinity of the surface of the functional film.
  • the functional film 2 includes an inorganic oxide that forms a three-dimensional network bond, a composition having a fluoroalkyl group (hereinafter sometimes referred to as a fluorine-containing composition) held by this inorganic oxide, and an inorganic oxide and antimicrobial metal ions retained in the These will be described below.
  • the inorganic oxide serves as a carrier that retains the inorganic oxide fine particles and metal ions.
  • the inorganic oxide includes, for example, silicon oxide, which is an oxide of Si, and preferably contains silicon oxide as a main component. Using silicon oxide as a main component is suitable for lowering the refractive index of the film and suppressing the reflectance of the film.
  • the functional film 2 may contain a component other than silicon oxide, or may contain a component partially containing silicon oxide.
  • the component partially containing silicon oxide forms, for example, a three-dimensional network structure of siloxane bonds (Si--O--Si) in which silicon atoms and oxygen atoms are alternately connected and spread three-dimensionally. Also, it is a component in which atoms other than both atoms, functional groups, and the like are bonded to silicon atoms or oxygen atoms in this portion. Examples of atoms other than silicon atoms and oxygen atoms include nitrogen atoms, carbon atoms, hydrogen atoms, and metal elements described in the next paragraph. Examples of functional groups include organic groups described as R in the next paragraph. Such components are not strictly silicon oxides in that they are not composed solely of silicon and oxygen atoms.
  • the silicon oxide portion composed of silicon atoms and oxygen atoms is also consistent with the common practice in the field.
  • the silicon oxide portion is also treated as silicon oxide.
  • the atomic ratio of silicon atoms and oxygen atoms in silicon oxide need not be stoichiometric (1:2).
  • the functional film 2 may contain inorganic oxides other than silicon oxide, specifically inorganic oxide components or inorganic oxide portions containing other than silicon.
  • the inorganic oxide that the functional film 2 may contain is not particularly limited, but for example, an oxide of at least one metal element selected from the group consisting of Al, Ti, Zr, Ta, Nb, Nd, La, Ce and Sn. is.
  • the functional film 2 may contain inorganic compound components other than oxides, such as nitrides, carbides, and halides, or may contain organic compound components.
  • Inorganic oxides such as silicon oxide can be formed from hydrolyzable organometallic compounds.
  • hydrolyzable silicon compounds include compounds represented by formula (1).
  • RnSiY4 -n (1)
  • R is an organic group containing at least one selected from an alkyl group, a vinyl group, an epoxy group, a styryl group, a methacryloyl group and an acryloyl group.
  • Y is at least one hydrolyzable organic group selected from an alkoxy group, an acetoxy group, an alkenyloxy group and an amino group, or a halogen atom.
  • a halogen atom is preferably Cl.
  • n is an integer from 0 to 3, preferably 0 or 1;
  • R is preferably an alkyl group, such as an alkyl group having 1 to 3 carbon atoms, particularly a methyl group.
  • Y is preferably an alkoxy group such as an alkoxy group having 1 to 4 carbon atoms, particularly a methoxy group and an ethoxy group.
  • Two or more of the compounds represented by the above formulas may be used in combination. Such a combination includes, for example, a combination of a tetraalkoxysilane in which n is 0 and a monoalkyltrialkoxysilane in which n is 1.
  • the compound represented by formula (1) forms a network structure in which silicon atoms are bonded to each other via oxygen atoms.
  • the organic group represented by R is included directly attached to the silicon atom.
  • a composition having a fluoroalkyl group is a composition having a CF bond and exhibits water repellency. It is also a substance that exhibits oil repellency due to its structure.
  • a polymer (fluoroalkylsilane) having a structure based on a compound represented by the following formula (2) can be used.
  • CF3- ( CF2 ) n - CH2 - CH2 -Si(O- CH3 ) 3 (2) (n is a natural number of 1 or more, and generally 3 to 11 are used.
  • the Si-side group at the terminal reacts with the silicon alkoxide group of formula (1) to form a Si--O--Si bond. This allows the composition having a fluoroalkyl group to exist within the functional film 2 .
  • composition having a fluoroalkyl group is not limited to this, and the following compositions can be used.
  • C having a C—F bond may not be bonded only to the F atom, and may be a hydrogen atom, a chlorine atom, a bromine atom, an iodine atom, a CFX 1 X 2 group (provided that X 1 and X 2 are the same or different, hydrogen atom, fluorine atom or chlorine atom.), cyano group, linear or branched fluoroalkyl group having 1 to 6 carbon atoms, substituted or unsubstituted benzyl group, substituted or unsubstituted phenyl or a linear or branched alkyl group having 1 to 20 carbon atoms.
  • X is an alkyl group having 3 or more carbon atoms, it may be either cyclic or acyclic, and preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 2.
  • X is a fluoroalkyl group, these may be either cyclic or acyclic. Both the alkyl group and the fluoroalkyl group preferably have 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms, and still more preferably 1 to 2 carbon atoms.
  • composition having a fluoroalkyl group may contain an ether bond or a ketone group in the carbon chain, and may be an acrylate. Alternatively, the carbon chain may have double or triple bonds.
  • acrylates include a wide range of acrylic acid esters disclosed in the general formula (6) [Chemical 7] of International Publication No. 2016/056663.
  • the compound represented by the general formula (6) has X being a hydrogen atom or a fluorine atom and Y being an alkylene group having 1 to 10 carbon atoms (preferably carbon 1 to 6 alkylene groups, more preferably 1 to 2 carbon atoms), and R is a linear or branched alkyl group having 2 to 20 carbon atoms, a straight chain having 2 to 6 carbon atoms Alternatively, a combination of a branched fluoroalkyl group, or a polyether group or fluoropolyether group having a molecular weight of 400 to 5,000 can be mentioned.
  • a more preferable compound represented by the above general formula (6) is a compound in which X is a hydrogen atom, Y is an alkylene group having 1 to 2 carbon atoms, and R is a linear or branched fluoroalkyl group having 2 to 6 carbon atoms. be.
  • a specific example of the compound represented by the general formula (6) is a fluoroalkyl (meth)acrylate having a fluoroalkyl group with 1 to 6 carbon atoms.
  • the fluorine-containing composition contains a polymer having a structural unit based on the compound represented by the general formula (6)
  • the polymer contains 1 structural unit based on the compound represented by the general formula (6). It may be a single species or two or more species.
  • the molecular weight of the fluorine-containing composition is not particularly limited, and can be, for example, within the range of the mass-average molecular weight formed by known radical polymerization.
  • the fluorine-containing composition may be a homopolymer formed from a single type of structural unit, or a copolymer formed from two or more types of structural units. When it is a copolymer, it may be in any form such as random copolymer or block copolymer.
  • the fluorine-containing composition may be formed only of a polymer having a structural unit based on the compound represented by the general formula (6), or may be formed of a structural unit based on the compound represented by the general formula (6). It can also have structural units other than
  • the total content of structural units based on the compound represented by the general formula (6) contained in the fluorine-containing composition is, for example, 50% by mass or more, preferably 80% by mass or more, and 90% by mass. It is more preferably 99% by mass or more, and particularly preferably 99% by mass or more.
  • the content of the fluorine-containing composition in the functional film 2 is preferably 10 to 40% by weight, preferably 20 to 40%, relative to the main component having the largest weight ratio among the inorganic oxides constituting the network bond. More preferably 30%.
  • Metal ions have antibacterial properties and can be formed from monovalent or divalent copper ions, silver ions, and the like.
  • the content of the metal ions in the functional film 2 is preferably 2 to 50%, preferably 5 to 25%, in terms of molar ratio with respect to the main component having the largest weight ratio among the inorganic oxides forming the network bonds. is more preferred.
  • the thickness of the functional film 2 is, for example, preferably 10 to 300 nm, more preferably 20 to 150 nm. If the thickness is too thick, the haze ratio may increase or excessive coloring may occur. Also, the strength of the film-coated substrate may be reduced. On the other hand, if the thickness is too thin, the metal ions cannot be retained and may be separated from the functional film 2 .
  • the method for forming the functional film 2 is not particularly limited, it can be formed, for example, as follows.
  • a material constituting the above-described three-dimensional network structure for example, silicon alkoxide such as tetraethoxysilane, is made into an alcohol solution under acidic conditions to generate a precursor liquid.
  • a liquid containing the aforementioned antibacterial metal ions such as a dispersion liquid containing an aqueous copper chloride solution or an aqueous copper nitrate solution, is mixed with the precursor liquid.
  • a solution obtained by dissolving the liquid containing the fluorine-containing composition described above in a fluorine-based solvent is mixed with the precursor liquid.
  • the fluorine-based solvent is preferably a liquid that dissolves in a solvent such as alcohol.
  • a coating liquid for the functional film is produced.
  • various additives can be mixed as necessary.
  • a dispersion containing inorganic oxide fine particles such as colloidal silica or boron can be added as boric acid.
  • boron (BO ⁇ ) has the effect of attracting antibacterial copper ions, so it is possible to prevent the copper ions from aggregating into crystals such as copper oxide.
  • a coating liquid is applied to the first surface of the cleaned glass plate 1 .
  • the coating method is not particularly limited, for example, a flow coating method, a spray coating method, a spin coating method, or the like can be employed.
  • the applied coating liquid is dried in an oven or the like at a predetermined temperature (eg, 80 to 300 ° C.) to volatilize the alcohol content in the solution, for example, for hydrolysis and decomposition of the organic chain.
  • a predetermined temperature for example, 200 to 500° C.
  • the functional film 2 dries, water, solvents such as alcohol, and fluorine-based solvents evaporate.
  • the hydrophobic fluorine-containing composition which has been compatible with fluorine-based solvents and alcohols, loses its affinity during the formation of the hydrophilic glass plate 1 and the three-dimensional network structure described above. , and gather near the surface of the functional film 2 .
  • the fluorine-containing composition is contained near the surface of the functional film 2 .
  • a “composition having a fluoroalkyl group” having a Si group forms a bond with a silicon alkoxide, many of the fluoroalkyl groups are present near the surface of the functional film 2 .
  • the concentration of the fluorine-containing composition is highest near the surface of the functional film 2 and decreases as the glass plate 1 is approached.
  • the concentration of the fluorine-containing composition increases near the surface of the functional film 2, the antibacterial metal ions are relatively contained mainly on the glass plate 1 side. also exist. Therefore, as shown in FIG. 2, the functional film 2 has two functions in spite of being a single film.
  • the ratio of F to Si in the functional film 2 is preferably 0.7 or more, more preferably 1.0 or more.
  • the visible light transmittance is preferably 85% or more, more preferably 90% or more.
  • the haze ratio of the glass member 10 is, for example, 20% or less, further 15% or less, particularly 10% or less, and in some cases 0.1 to 8.0%, further 0.1 to 6.0%.
  • the functional film 2 includes an inorganic oxide forming a three-dimensional network bond and an antibacterial metal ion retained in the inorganic oxide.
  • the oxide acts as a carrier that holds metal ions. Therefore, elution of metal ions can be suppressed.
  • the functional film 2 is formed of a single film, but the fluorine-containing composition is unevenly distributed mainly near the surface of the glass plate, and the antibacterial metal ions are unevenly distributed mainly near the surface of the glass plate. are doing. Therefore, there is an advantage that a single film has two functions. That is, by unevenly distributing the fluorine-containing composition near the surface, anti-fingerprint performance, antifouling performance, water repellency, etc. can be achieved. On the other hand, since the functional film 2 contains antibacterial metal ions, it can exhibit antibacterial performance. In FIG. 2, the boundary between the anti-fingerprint performance area and the antibacterial performance area is indicated by a dotted line. Being a membrane, there is no interface between the two functional areas.
  • the antibacterial metal ions present on the surface of the functional membrane 2 can be eluted outside the membrane by moisture on the surface side (in the atmosphere). This is because metal ions can pass through even if there is a layer of fluoroalkyl groups near the surface of the functional membrane 2, and are likely to bond with moisture. In addition, since metal ions can move to the surface side in the membrane, even if the metal ions are released outside the membrane, the metal ions remaining in the membrane move to the surface side, thereby maintaining the antibacterial performance. . In particular, since the functional film 2 of the present embodiment is a single film having no interface, it is considered that such migration of metal ions is easier than in a multi-layer film.
  • Reduction in the hardness of the functional film 2 can be suppressed by reducing the amount of the fluorine-containing composition in the film of the functional film 2 . That is, since the fluoroalkyl groups contained in the fluorine-containing composition do not bond with SiO 2 , for example, when the fluoroalkyl groups in the functional film 2 increase, the hardness of the functional film 2 decreases. Therefore, as described above, when the concentration of the fluorine-containing composition near the surface of the functional film 2 increases, the decrease in hardness of the functional film 2 can be suppressed.
  • the functional film 2 exhibits two functions as described above, the glass member 10 can be easily manufactured because it is formed from one coating liquid.
  • Examples of the present invention will be described below. However, the present invention is not limited to the following examples.
  • (1) Preparation of Examples A float glass plate having a size of 50 mm x 50 mm and a thickness of 1.1 mm was prepared, and its surface was subjected to alkaline ultrasonic cleaning. Next, coating liquids for functional films having the compositions of Examples 1 to 3 shown below were prepared. The concentration of solids in the coating liquid was set to 0.5% by mass.
  • Novec7200 is a fluorinated solvent manufactured by 3M
  • P-7 is an alcohol solvent manufactured by Nippon Alcohol Sales Co., Ltd.
  • Optool UD120 is a fluorine-containing composition manufactured by Daikin Industries, Ltd.
  • the coating liquid described above was applied to the glass plate by spray coating.
  • the temperature and humidity during application were 22° C. and 87%. After that, it was temporarily dried at 300° C. for 100 seconds, and then heated at 200° C. for 30 minutes. Thus, a functional film was formed on the glass plate.
  • the thickness of the functional film was approximately 50 nm.
  • the composition of the functional film of the completed glass member is as follows. The unit is % by mass.
  • Example 3 (2-3) Distribution of Fluorine in Functional Film
  • Example 4 instead of OPTOOL UD120, the same amount of tridecafluorooctyltrichlorosilane was added to prepare the coating liquid according to Example 4. A glass member according to was produced.
  • the functional film of Example 4 was subjected to XPS analysis. The results are as shown in FIG. In the graph of FIG. 3, the horizontal axis represents the sputtering time, which corresponds to the film thickness of the functional film (the position of 10 roughly corresponds to the boundary between the functional film and the glass plate).
  • F/Si on the vertical axis is the ratio of F element to Si element.
  • the F element contained in the functional film is highest near the surface of the functional film, and the amount of F element decreases as it approaches the glass plate. That is, it can be seen that the concentration of the fluorine-containing composition is highest near the surface of the functional film and decreases as it approaches the glass plate. Therefore, it can be seen that the anti-fingerprint performance is strongly expressed in the vicinity of the surface of the functional film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plant Pathology (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

本発明に係るガラス部材は、第1面及び第2面を有するガラス板と、前記第1面に形成され、単一の膜で構成された機能膜と、を備え、前記機能膜は、主として、前記機能膜の表面付近に配置され、フルオロアルキル基を有する組成物と、抗菌性の金属イオンと、三次元ネットワーク結合を構成する無機酸化物を含有する担体と、を含有する。

Description

ガラス部材及びその製造方法
 本発明は、ガラス部材及びその製造方法に関する。
 特許文献1には、抗菌イオン成分をイオン交換してガラス板の表面に抗菌性物質が設けられているガラスが開示されている。
特開平11-228186号公報
 ところで、近年は抗菌性能に加え、撥水性能などの機能を付加した膜が求められている。しかしながら、このような複数の機能を奏する膜を生成するには、機能毎に複数の膜を積層しなければならず、製造が煩雑になるという問題があった。本発明は、この問題を解決するためになされたものであり、単一の膜で、複数の機能を奏する機能膜を有する、ガラス部材及びその製造方法を提供することを目的とする。
項1.第1面及び第2面を有するガラス板と、
 前記第1面に形成され、単一の膜で構成された機能膜と、
を備え、
 前記機能膜は、
 主として、前記機能膜の表面付近に配置され、フルオロアルキル基を有する組成物と、 抗菌性の金属イオンと、
 三次元ネットワーク結合を構成する無機酸化物を含有する担体と、
を含有する、ガラス部材。
項2.前記機能膜の表面付近において、前記組成物の濃度が最も高く、前記ガラス板に近づくにつれ、前記組成物の濃度が低くなるように構成されている、
項1に記載のガラス部材。
項3.前記機能膜は、前記金属イオンの含有量は、前記ネットワーク結合を構成する前記無機酸化物のうち最も重量比の大きい主成分に対し、モル比で2~50%である、項1または2に記載のガラス部材。
項4.前記金属イオンは、1価または2価の銅イオンである、項1から3のいずれかに記載にガラス部材。
項5.シリコンアルコキシドに、抗菌性の金属イオンを添加した前駆体液を生成するステップと、
 フッ素系溶媒に、フルオロアルキル基を有する組成物を溶解した、溶液を生成するステップと、
 前記前駆体液に、前記溶液を混合し、コーティング液を形成するステップと、
 前記コーティング液をガラス板に塗布するステップと、
 前記コーティング液が塗布されたガラス板を加熱するステップと、
を備えている、ガラス部材の製造方法。
 本発明によれば、単一の膜で、複数の機能を奏する機能膜を有するガラス部材を提供することができる。
本発明に係るガラス部材の一実施形態を示す断面図である。 図1の機能膜の模式図の例を示す断面図である。 実施例4の機能膜におけるF元素の分布を示すグラフである。
 以下、本発明に係るガラス部材の一実施形態について、図面を参照しつつ説明する。本実施形態に係るガラス部材は、例えば、物品を覆うガラス部材として用いたり、構造物の一部として用いるなど、種々の用途で用いることができる。なお、物品とは、例えば、一般的なディスプレイのほか、モバイルPC、タブレットPC、カーナビゲーションなどの車載機器、少なくとも一部に電子部品による表示機能を有する装置、電子表示機能を有さないが外部に対して何らかの表示を行うための表示装置等の種々の機器が対象となる。また、機器ではなくても、例えば、商品のように外部に見せるためのものも対象となる。上記構造物としては、建築物、ショーケースなどのケース、複写機のガラス板、仕切り材など、ガラスを用いる種々ものが対象となる。
 図1はガラス部材の断面図である。図1に示すように、本実施形態に係るガラス部材10は、第1面及び第2面を有するガラス板1と、このガラス板1の第1面に積層される機能膜2と、を備えている。このガラス部材10をカバー部材として用いる場合には、上述した物品100を覆うように配置される。このとき、ガラス板1の第2面が物品100と向き合うように配置され、機能膜2が外部を向くように配置される。以下、詳細に説明する。
 <1.ガラス板>
 ガラス板1は、例えば、汎用のソーダライムガラス、ホウケイ酸ガラス、アルミノシリケートガラス、無アルカリガラス等その他のガラスにより形成することができる。また、ガラス板1は、フロート法により成形することができる。この製法によると平滑な表面を有するガラス板1を得ることができる。但し、ガラス板1は、主面に凹凸を有していてもよく、例えば型板ガラスであってもよい。型板ガラスは、ロールアウト法と呼ばれる製法により成形することができる。この製法による型板ガラスは、通常、ガラス板の主面に沿った一方向について周期的な凹凸を有する。
 フロート法は、溶融スズなどの溶融金属の上に溶融ガラスを連続的に供給し、供給した溶融ガラスを溶融金属の上で流動させることにより帯板状に成形する。このように成形されたガラスをガラスリボンと称する。
 ガラスリボンは、下流側に向かうにつれて冷却され、冷却固化された上で溶融金属からローラにより引き上げられる。そして、ローラによって徐冷炉へと搬送され、徐冷された後、切断される。こうして、フロートガラス板が得られる。
 ガラス板1の厚さは、特に制限されないが、軽量化のためには薄いほうがよい。例えば、0.3~5mmであることが好ましく、0.6~2.5mmである事がさらに好ましい。これは、ガラス板1が薄すぎると、強度が低下するからであり、厚すぎると、ガラス部材10を介して視認される物品100に歪みが生じるおそれがある。
 ガラス板1は、通常、平板であってよいが、曲板であってもよい。特に、保護すべき被保護部材の表面形状が曲面等の非平面である場合、ガラス板1はそれに適合する非平面形状の主面を有することが好ましい。この場合、ガラス板1は、その全体が一定の曲率を有するように曲げられていてもよく、局部的に曲げられていてもよい。ガラス板1の主面は、例えば複数の平面が曲面で互いに接続されて構成されていてもよい。ガラス板1の曲率半径は、例えば5000mm以下とすることができる。この曲率半径の下限値は、例えば、10mm以上とすることができるが、特に局部的に曲げられている部位ではさらに小さくてもよく、例えば1mm以上とすることができる。
 次のような組成のガラス板を用いることもできる。以下では、ガラス板1の成分を示す%表示は特に断らない限り、すべてmol%を意味する。また、本明細書において、「実質的に構成される」とは、列挙された成分の含有率の合計が99.5質量%以上、好ましくは99.9質量%以上、より好ましくは99.95質量%以上を占めることを意味する。「実質的に含有しない」とは、当該成分の含有質が0.1質量%以下、好ましくは0.05質量%以下であることを意味する。
 本発明者は、フロート法によるガラス板の製造に適したガラス組成として広く用いられているフロート板ガラスの組成(以下、「狭義のSL」、または単に「SL」と呼ぶことがある)を元に、当業者がフロート法に適したソーダライムシリケートガラス(以下、「広義のSL」と呼ぶことがある)と見做している組成範囲、具体的には、以下のような質量%の範囲内で、T2、T4等の特性をできるだけ狭義のSLに近似させながら、狭義のSLの化学強化特性を向上させることのできる組成物を検討した。
 SiO2   65~80%
 Al23  0~16%
 MgO   0~20%
 CaO   0~20%
 Na2O  10~20%
 K2O   0~5%
 以下、ガラス板1のガラス組成を構成する各成分について説明する。
 (SiO2
 SiO2は、ガラス板1を構成する主要成分であり、その含有率が低すぎるとガラスの耐水性などの化学的耐久性および耐熱性が低下する。他方、SiO2の含有率が高すぎると、高温でのガラス板1の粘性が高くなり、溶解および成形が困難になる。したがって、SiO2の含有率は、66~72mol%の範囲が適切であり、67~70mol%が好ましい。
 (Al23
 Al23はガラス板1の耐水性などの化学的耐久性を向上させ、さらにガラス中のアルカリ金属イオンの移動を容易にすることにより化学強化後の表面圧縮応力を高め、かつ、応力層深さを深くするための成分である。他方、Al23の含有率が高すぎると、ガラス融液の粘度を増加させ、T2、T4を増加させると共にガラス融液の清澄性が悪化し高品質なガラス板を製造することが難しくなる。
 したがって、Al23の含有率は、1~12mol%の範囲が適切である。Al23の含有率は10mol%以下が好ましく、2mol%以上が好ましい。
 (MgO)
 MgOはガラスの溶解性を向上させる必須の成分である。この効果を十分に得る観点から、このガラス板1ではMgOが添加されていることが好ましい。また、MgOの含有率が8mol%を下回ると、化学強化後の表面圧縮応力が低下し、応力層深さが浅くなる傾向にある。一方、適量を越えて含有率を増やすと、化学強化により得られる強化性能が低下し、特に表面圧縮応力層の深さが急激に浅くなる。この悪影響は、アルカリ土類金属酸化物の中でMgOが最も少ないが、このガラス板1においては、MgOの含有率は15mol%以下である。また、MgOの含有率が高いと、T2、T4を増加させると共にガラス融液の清澄性が悪化し高品質なガラス板を製造することが難しくなる。
 したがって、このガラス板1においては、MgOの含有率は1~15mol%の範囲であり、8mol%以上、12mol%以下が好ましい。
 (CaO)
 CaOは、高温での粘性を低下させる効果を有するが、適度な範囲を超えて含有率が高すぎると、ガラス板1が失透しやすくなるとともに、ガラス板1におけるナトリウムイオンの移動が阻害されてしまう。CaOを含有しない場合に化学強化後の表面圧縮応力が低下する傾向にある。一方、8mol%を超えてCaOを含有すると、化学強化後の表面圧縮応力が顕著に低下し、圧縮応力層深さが顕著に浅くなるとともに、ガラス板1が失透しやすくなる。
 したがって、CaOの含有率は1~8mol%の範囲が適切である。CaOの含有率は、7mol%以下が好ましく、3mol%以上が好ましい。
 (SrO、BaO)
 SrO、BaOは、ガラス板1の粘性を大きく低下させ、少量の含有では液相温度TLを低下させる効果がCaOより顕著である。しかし、SrO、BaOは、ごく少量の添加であっても、ガラス板1におけるナトリウムイオンの移動を顕著に妨げ、表面圧縮応力を大きく低下させ、かつ、圧縮応力層の深さがかなり浅くなる。
 したがって、このガラス板1においては、SrO、BaOを実質的に含有しないことが好ましい。
 (Na2O)
 Na2Oは、ナトリウムイオンがカリウムイオンと置換されることにより、表面圧縮応力を大きくし、表面圧縮応力層の深さを深くするための成分である。しかし、適量を超えて含有率を増やすと、化学強化処理でのイオン交換による表面圧縮応力の発生を、化学強化処理中の応力緩和が上回るようになり、結果として表面圧縮応力が低下する傾向にある。
 また、Na2Oは溶解性を向上させ、T4、T2を低下させるための成分である一方、Na2Oの含有率が高すぎると、ガラスの耐水性が著しく低下する。ガラス板1においては、Na2Oの含有率が10mol%以上であればT4、T2を低下させる効果が充分に得られ、16mol%を超えると応力緩和による表面圧縮応力の低下が顕著になる。
 したがって、本実施形態のガラス板1におけるNa2Oの含有率は、10~16mol%の範囲が適切である。Na2Oの含有率は、12mol%以上が好ましく、15mol%以下がより好ましい。
 (K2O)
 K2Oは、Na2Oと同様、ガラスの溶解性を向上させる成分である。また、K2Oの含有率が低い範囲では、化学強化におけるイオン交換速度が増加し、表面圧縮応力層の深さが深くなる一方で、ガラス板1の液相温度TLを低下させる。したがってK2Oは低い含有率で含有させることが好ましい。
 一方、K2Oは、Na2Oと比較して、T4、T2を低下させる効果が小さいが、K2Oの多量の含有はガラス融液の清澄を阻害する。また、K2Oの含有率が高くなるほど化学強化後の表面圧縮応力が低下する。したがって、K2Oの含有率は0~1mol%の範囲が適切である。
 (Li2O)
 Li2Oは、少量含有されるだけであっても圧縮応力層の深さを著しく低下させる。また、Li2Oを含むガラス部材を硝酸カリウム単独の溶融塩で化学強化処理する場合、Li2Oを含まないガラス部材の場合と比較して、その溶融塩が劣化する速度が著しく速い。具体的には、同じ溶融塩で繰り返し化学強化処理を行なう場合に、より少ない回数でガラス表面に形成される表面圧縮応力が低下する。したがって、本実施形態のガラス板1においては、1mol%以下のLi2Oを含有してもよいが、実質的にLi2Oを含有しない方が好ましい。
 (B23
 B23は、ガラス板1の粘性を下げ、溶解性を改善する成分である。しかし、B23の含有率が高すぎると、ガラス板1が分相しやすくなり、ガラス板1の耐水性が低下する。また、B23とアルカリ金属酸化物とが形成する化合物が揮発してガラス溶解室の耐火物を損傷するおそれが生じる。さらに、B23の含有は化学強化における圧縮応力層の深さを浅くしてしまう。したがって、B23の含有率は0.5mol%以下が適切である。本発明では、B23を実質的に含有しないガラス板1であることがより好ましい。
 (Fe23
 通常Feは、Fe2+又はFe3+の状態でガラス中に存在し、着色剤として作用する。Fe3+はガラスの紫外線吸収性能を高める成分であり、Fe2+は熱線吸収性能を高める成分である。ガラス板1をディスプレイのカバーガラスとして用いる場合、着色が目立たないことが求められるため、Feの含有率は少ない方が好ましい。しかし、Feは工業原料により不可避的に混入することが多い。したがって、Fe23に換算した酸化鉄の含有率は、ガラス板1全体を100質量%として示して0.15質量%以下とすることがよく、0.1質量%以下であることがより好ましく、更に好ましくは0.02質量%以下である。
 (TiO2
 TiO2は、ガラス板1の粘性を下げると同時に、化学強化による表面圧縮応力を高める成分であるが、ガラス板1に黄色の着色を与えることがある。したがって、TiO2の含有率は0~0.2質量%が適切である。また、通常用いられる工業原料により不可避的に混入し、ガラス板1において0.05質量%程度含有されることがある。この程度の含有率であれば、ガラスに着色を与えることはないので、本実施形態のガラス板1に含まれてもよい。
 (ZrO2
 ZrO2は、とくにフロート法でガラス板を製造する際に、ガラスの溶融窯を構成する耐火レンガからガラス板1に混入することがあり、その含有率は0.01質量%程度であることが知られている。一方、ZrO2はガラスの耐水性を向上させ、また、化学強化による表面圧縮応力を高める成分である。しかし、ZrO2の高い含有率は、作業温度T4の上昇や液相温度TLの急激な上昇を引き起こすことがあり、またフロート法によるガラス板の製造においては、析出したZrを含む結晶が製造されたガラス中に異物として残留しやすい。したがって、ZrO2の含有率は0~0.1質量%が適切である。
 (SO3
 フロート法においては、ボウ硝(Na2SO4)など硫酸塩が清澄剤として汎用される。硫酸塩は溶融ガラス中で分解してガス成分を生じ、これによりガラス融液の脱泡が促進されるが、ガス成分の一部はSO3としてガラス板1中に溶解し残留する。本発明のガラス板1においては、SO3は0~0.3質量%であることが好ましい。
 (CeO2
 CeO2は清澄剤として使用される。CeO2により溶融ガラス中でO2ガスが生じるので、CeO2は脱泡に寄与する。一方、CeO2が多すぎると、ガラスが黄色に着色してしまう。そのため、CeO2の含有量は、0~0.5質量%が好ましく、0~0.3質量%がより好ましく、0~0.1質量%がさらに好ましい。
 (SnO2
 フロート法により成形されたガラス板において、成型時にスズ浴に触れた面はスズ浴からスズが拡散し、そのスズがSnO2として存在することが知られている。また、ガラス原料に混合させたSnO2は、脱泡に寄与する。本発明のガラス板1においては、SnO2は0~0.3質量%であることが好ましい。
 (その他の成分)
 本実施形態によるガラス板1は、上記に列挙した各成分から実質的に構成されていることが好ましい。ただし、本実施形態によるガラス板1は、上記に列記した成分以外の成分を、好ましくは各成分の含有率が0.1質量%未満となる範囲で含有していてもよい。
 含有が許容される成分としては、上述のSO3とSnO2以外に溶融ガラスの脱泡を目的として添加される、As25、Sb25、Cl、Fを例示できる。ただし、As25、Sb25、Cl、Fは、環境に対する悪影響が大きいなどの理由から添加しないことが好ましい。また、含有が許容されるまた別の例は、ZnO、P25、GeO2、Ga23、Y23、La23である。工業的に使用される原料に由来する上記以外の成分であっても0.1質量%を超えない範囲であれば許容される。これらの成分は、必要に応じて適宜添加したり、不可避的に混入したりするものであるから、本実施形態のガラス板1は、これらの成分を実質的に含有しないものであっても構わない。
 (密度(比重):d)
 上記組成より、本実施形態では、ガラス板1の密度を2.53g・cm-3以下、さらには2.51g・cm-3以下、場合によっては2.50g・cm-3以下にまで減少させることができる。
 フロート法などでは、ガラス品種間の密度の相違が大きいと、製造するガラス品種を切り換える際に溶融窯の底部に密度が高い方の溶融ガラスが滞留し、品種の切り換えに支障が生じる場合がある。現在、フロート法で量産されているソーダライムガラスの密度は約2.50g・cm-3である。したがって、フロート法による量産を考慮すると、ガラス板1の密度は、上記の値に近いこと、具体的には、2.45~2.55g・cm-3、特に2.47~2.53g・cm-3が好ましく、2.47~2.50g・cm-3がさらに好ましい。
 (弾性率:E)
 イオン交換を伴う化学強化を行うと、ガラス基板に反りが生じることがある。この反りを抑制するためには、ガラス板1の弾性率は高いことが好ましい。本発明によれば、ガラス板1の弾性率(ヤング率:E)を70GPa以上、さらには72GPa以上にまで増加させることができる。
 以下、ガラス板1の化学強化について説明する。
 (化学強化の条件と圧縮応力層)
 ナトリウムを含むガラス板1を、ナトリウムイオンよりもイオン半径の大きい一価の陽イオン、好ましくはカリウムイオン、を含む溶融塩に接触させ、ガラス板1中のナトリウムイオンを上記の一価の陽イオンによって置換するイオン交換処理を行うことにより、本発明によるガラス板1の化学強化を実施することができる。これによって、表面に圧縮応力が付与された圧縮応力層が形成される。
 溶融塩としては、典型的には硝酸カリウムを挙げることができる。硝酸カリウムと硝酸ナトリウムとの混合溶融塩を用いることもできるが、混合溶融塩は濃度管理が難しいため、硝酸カリウム単独の溶融塩が好ましい。
 強化ガラス部材における表面圧縮応力と圧縮応力層深さとは、該物品のガラス組成だけではなく、イオン交換処理における溶融塩の温度と処理時間によって制御することができる。
 以上のガラス板1は、硝酸カリウム溶融塩と接触させることによって、表面圧縮応力が非常に高く、かつ、圧縮応力層の深さが非常に深い強化ガラス部材を得ることができる。具体的には、表面圧縮応力が700MPa以上かつ圧縮応力層の深さが20μm以上である強化ガラス部材を得ることができ、さらに圧縮応力層の深さが20μm以上かつ表面圧縮応力が750MPa以上である強化ガラス部材を得ることもできる。
 なお、厚みが3mm以上のガラス板1を用いる場合には、化学強化ではなく、風例強化を一般的な強化方法として用いることができる。
 <2.機能膜>
 次に、機能膜2について、図2を参照しつつ説明する。図2は機能膜の表面付近の概略を示す拡大断面図である。機能膜2は、三次元ネットワーク結合を構成する無機酸化物と、この無機酸化物に保持される、フルオロアルキル基を有する組成物(以下、フッ素含有組成物ということがある)と、無機酸化物に保持される抗菌性の金属イオンと、を備えている。以下、これらについて説明する。
 <2-1.無機酸化物>
 無機酸化物は、無機酸化物微粒子及び金属イオンを保持する担体としての役割を果たす。無機酸化物としては、例えば、Siの酸化物である酸化シリコンを含み、酸化シリコンを主成分とすることが好ましい。酸化シリコンを主成分とすることで、膜の屈折率を低下させ、膜の反射率を抑制することに適している。機能膜2には、酸化シリコン以外の成分を含んでいてもよく、酸化シリコンを部分的に含む成分を含んでいてもよい。
 酸化シリコンを部分的に含む成分は、例えば、ケイ素原子及び酸素原子が交互に接続され、且つ三次元的に広がるシロキサン結合(Si-O-Si)の三次元ネットワーク構造を形成している。また、この部分のケイ素原子又は酸素原子に、両原子以外の原子、官能基その他が結合した成分である。ケイ素原子及び酸素原子以外の原子としては、例えば、窒素原子、炭素原子、水素原子、次段落に記述する金属元素を例示できる。官能基としては、例えば次段落にRとして記述する有機基を例示できる。このような成分は、ケイ素原子及び酸素原子のみから構成されていない点で、厳密には酸化シリコンではない。しかし、機能膜2の特性を記述する上では、ケイ素原子及び酸素原子により構成されている酸化シリコン部分も「酸化シリコン」として取り扱うことが適当であり、当該分野の慣用にも一致する。本明細書では、酸化シリコン部分も酸化シリコンとして取り扱うこととする。以上の説明からも明らかなとおり、酸化シリコンにおけるシリコン原子と酸素原子との原子比は化学量論的(1:2)でなくてもよい。
 機能膜2は、酸化シリコン以外の無機酸化物、具体的にはケイ素以外を含む無機酸化物成分又は無機酸化物部分を含み得る。機能膜2が含み得る無機酸化物は、特に制限されないが、例えば、Al、Ti、Zr、Ta、Nb、Nd、La、Ce及びSnからなる群より選ばれる少なくとも1種の金属元素の酸化物である。機能膜2は、酸化物以外の無機化合物成分、例えば、窒化物、炭化物、ハロゲン化物等を含んでいてもよく、有機化合物成分を含んでいてもよい。
 酸化シリコン等の無機酸化物は、加水分解可能な有機金属化合物から形成することができる。加水分解可能なシリコン化合物としては、式(1)で示される化合物を挙げることができる。
 RnSiY4-n (1)
 Rは、アルキル基、ビニル基、エポキシ基、スチリル基、メタクリロイル基及びアクリロイル基から選ばれる少なくとも1種を含む有機基である。Yは、アルコキシ基、アセトキシ基、アルケニルオキシ基及びアミノ基から選ばれる少なくとも1種である加水分解可能な有機基、又はハロゲン原子である。ハロゲン原子は、好ましくはClである。nは、0から3までの整数であり、好ましくは0又は1である。
 Rとしては、アルキル基、例えば炭素数1~3のアルキル基、特にメチル基が好適である。Yとしては、アルコキシ基、例えば炭素数1~4のアルコキシ基、特にメトキシ基及びエトキシ基が好適である。上記の式で示される化合物を2種以上組み合わせて用いてもよい。このような組み合わせとしては、例えばnが0であるテトラアルコキシシランと、nが1であるモノアルキルトリアルコキシシランとの併用が挙げられる。
 式(1)で表される加水分解性基を有するシリコン化合物の好ましい具体例は、式(1)におけるXがアルコキシル基であるシリコンアルコキシドである。また、シリコンアルコキシドは、式(1)においてm=0の化合物(SiX4)に相当する4官能シリコンアルコキシドを含むことがより好ましい。4官能シリコンアルコキシドの具体例としては、テトラメトキシシラン、テトラエトキシシランが挙げられる。シリコンアルコキシドは、単独で用いても2種以上を併用してもよく、2種以上を併用する場合には、シリコンアルコキシドの主成分が4官能シリコンアルコキシドであることがより好ましい。
 式(1)で示される化合物は、加水分解及び重縮合の後、シリコン原子が酸素原子を介して互いに結合したネットワーク構造を形成する。この構造において、Rで示される有機基は、シリコン原子に直接結合された状態で含まれる。
 <2-2.フッ素含有組成物>
 フルオロアルキル基を有する組成物は、C-F結合を有する組成物であり、撥水性を示す。また、その構造により撥油性も示す物質である。具体的には、例えば、下記式(2)で表される化合物に基づく構造を有する重合体(フルオロアルキルシラン)が挙げられる。
 CF3-(CF2n-CH2―CH2―Si(O-CH33  (2)
 (nは1以上の自然数で、一般的にはnが3から11のものが用いられる。)
 フルオロアルキルシラン基を有する物質の場合、末端のSi側の基と式(1)のシリコンアルコキシド基が反応して、Si-O-Si結合を形成することが可能である。これにより、フルオロアルキル基を有する組成物は機能膜2内に存在することが可能となる。
 但し、「フルオロアルキル基を有する組成物」は、これに限られず、以下の組成物を用いることができる。
 C―F結合を有するCは、F原子のみと結合していなくても良く、水素原子、塩素原子、臭素原子、ヨウ素原子、CFX12基(但し、X1およびX2は、同一又は異なって、水素原子、フッ素原子又は塩素原子である。)、シアノ基、炭素数1~6の直鎖状又は分岐状のフルオロアルキル基、置換又は非置換のベンジル基、置換又は非置換のフェニル基、若しくは炭素数1~20の直鎖状又は分岐状アルキル基と結合していても良い。Xが炭素数3以上のアルキル基である場合、これらは環状又は非環状のいずれであってもよく、その炭素数は、好ましくは1~10、より好ましくは1~6、さらに好ましくは1~2である。Xがフルオロアルキル基である場合、これらは環状又は非環状のいずれであってもよい。また、アルキル基及びフルオロアルキル基の炭素数はいずれも、好ましくは1~6、より好ましくは1~4、さらに好ましくは1~2である。
 「フルオロアルキル基を有する組成物」は、炭素鎖の中にエーテル結合やケトン基を含んでいても良く、アクリレートであっても良い。もしくは、炭素鎖の中に二重、三重結合があっても良い。
 アクリレートを含有する具体例として、例えば、国際公開第2016/056663号の一般式(6)[化7]に開示されているアクリル酸エステルを広く挙げることができる。中でも、撥水性及び撥油性に優れるという観点から、上記一般式(6)で表される化合物は、Xが水素原子又はフッ素原子であり、Yが炭素数1~10のアルキレン基(好ましくは炭素数1~6のアルキレン基、さらに好ましくは炭素数1~2のアルキレン基)であり、Rが炭素数2~20の直鎖状又は分岐状のアルキル基、炭素数2~6の直鎖状又は分岐状のフルオロアルキル基、若しくは分子量400~5000のポリエーテル基又はフルオロポリエーテル基である組み合わせを挙げることができる。より好ましい上記一般式(6)で表される化合物は、Xが水素原子、Yが炭素数1~2のアルキレン基、Rが炭素数2~6の直鎖状又は分岐状のフルオロアルキル基である。
 上記一般式(6)で表される化合物の具体な化合物を例示すると、フルオロアルキル基の炭素数が1~6のフルオロアルキル(メタ)アクリレートが挙げられる。
 フッ素含有組成物が上記一般式(6)で表される化合物に基づく構造単位を有する重合体を含む場合、重合体に含まれる上記一般式(6)で表される化合物に基づく構造単位は1種単独及び2種以上のいずれであってもよい。
 フッ素含有組成物の分子量は特に限定されず、例えば、公知のラジカル重合で形成される程度の質量平均分子量の範囲とすることができる。フッ素含有組成物は、ただ一種の構造単位で形成されるホモポリマーであってもよいし、二種以上の構造単位で形成されるコポリマーであってもよい。コポリマーである場合、ランダムコポリマー、ブロックコポリマー等のいずれの形態であってもよい。
 フッ素含有組成物は、上記一般式(6)で表される化合物に基づく構造単位を有する重合体のみで形成されていてもよいし、上記一般式(6)で表される化合物に基づく構造単位以外の構造単位を有することもできる。フッ素含有組成物に含まれる上記一般式(6)で表される化合物に基づく構造単位の総含有量は、例えば、50質量%以上であり、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、99質量%以上であることが特に好ましい。
 また、機能膜2のフッ素含有組成物の含有量は、ネットワーク結合を構成する無機酸化物のうち最も重量比の大きい主成分に対し、重量比で10~40%であることが好ましく、20~30%であることがさらに好ましい。
 <2-3.金属イオン>
 金属イオンは、抗菌性を有するものであり、1価または2価の銅イオン、銀イオンなどで形成することができる。機能膜2の金属イオンの含有量は、ネットワーク結合を構成する無機酸化物のうち最も重量比の大きい主成分に対し、モル比で2~50%であることが好ましく、5~25%であることがさらに好ましい。
 <2-4.機能膜の膜厚>
 機能膜2の厚みは、例えば、10~300nmであることが好ましく、20~150nmであることがさらに好ましい。厚みが厚すぎると、ヘイズ率が高くなったり、過度の着色が生じるおそれがある。また膜付き基板の強度が低下するおそれがある。一方、厚みが薄すぎると、金属イオンを保持できず、機能膜2から離脱するおそれがある。
 <2-5.機能膜の形成方法>
 機能膜2の形成方法は、特には限定されないが、例えば、以下のように形成することができる。まず、上述した三次元ネットワーク構造を構成する材料、例えば、テトラエトキシシラン等のシリコンアルコキシドを酸性条件下でアルコール溶液とし、前駆体液を生成する。また、上述した抗菌性の金属イオンを含む液、例えば、塩化銅水溶液または硝酸銅水溶液を含有する分散液を、前駆体液に混合する。また、上述したフッ素含有組成物を含む液をフッ素系溶媒に溶解した溶液を、前駆体液に混合する。なお、フッ素系溶媒は、アルコール等の溶媒に溶解する液であることが好ましい。こうして、機能膜用のコーティング液を生成する。その他、必要に応じて、各種の添加剤を混合することもできる。例えば、コロイダルシリカ等の無機酸化物微粒子を含有する分散液や、ホウ素をホウ酸として添加することができる。例えば、機能膜2にホウ素が残留すると、ホウ素(BO-)が抗菌性の銅イオンを引きつける効果があるため、銅イオンが凝集して酸化銅などの結晶となるのを抑制することができる。
 次に、洗浄したガラス板1の第1面に、コーティング液を塗布する。塗布方法は特には限定されないが、例えば、フローコート法、スプレーコート法、スピンコート法などを採用することができる。その後、塗布したコーティング液をオーブンなどで、例えば、溶液中のアルコール分を揮発させるため、所定温度(例えば、80~300℃)で乾燥した後、例えば、加水分解及び有機鎖の分解のため、所定温度(例えば、200~500℃)で焼結させると、機能膜2を得ることができる。
 この過程において、機能膜2が乾燥していくと、水、アルコール等の溶媒、フッ素系溶媒は蒸発していく。そして、フッ素系溶媒やアルコールを介して親和していた疎水性であるフッ素含有組成物は、親水性であるガラス板1や上述の三次元ネットワーク構造が形成されていく中で親和性を失っていき、機能膜2の表面付近に集まっていく。そして、機能膜2が硬化したときには、フッ素含有組成物は、機能膜2の表面付近に含有される。Si基を有する「フルオロアルキル基を有する組成物」がシリコンアルコキシドと結合を形成した場合も、同様に、フルオロアルキル基側が機能膜2の表面付近に多く存在する形になる。より詳細には、フッ素含有組成物の濃度は、機能膜2の表面付近が最も大きく、ガラス板1に近づくほど、小さくなる。このように、フッ素含有組成物の濃度が機能膜2の表面付近で大きくなると、相対的に、抗菌性の金属イオンは、主として、ガラス板1側に含有されることになるが、表面近くにも存在する。したがって、図2に示すように、機能膜2は単一の膜であるにもかかわらず、2つの機能を奏している。なお、機能膜2中のSiに対するFの割合は、0.7以上であることが好ましく、1.0以上であることがさらに好ましい。
 <3.ガラス部材の光学特性>
 ガラス部材10の光学特性としては、例えば、可視光透過率が85%以上であることが好ましく、90%以上であることがさらに好ましい。また、ガラス部材10のヘイズ率は、例えば20%以下、さらに15%以下、特に10%以下であり、場合によっては0.1~8.0%、さらに0.1~6.0%であってもよい。
 <4.特徴>
(1)本実施形態に係るガラス部材10では、機能膜2が、三次元ネットワーク結合を構成する無機酸化物と、無機酸化物に保持される抗菌性の金属イオンと、を備えており、無機酸化物が金属イオンを保持する担体として役割を果たす。したがって、金属イオンの溶出を抑制することができる。
(2)図2に示すように、機能膜2は単一の膜で形成されるが、主として表面付近にフッ素含有組成物が偏在し、主としてガラス板の表面付近に抗菌性の金属イオンが偏在している。したがって、単一の膜でありながら、2つの機能を奏するという利点がある。すなわち、表面付近にフッ素含有組成物が偏在することで、耐指紋付着性能、防汚性能、撥水性能等を奏することができる。一方、機能膜2には、抗菌性の金属イオンが含有されているため、抗菌性能を奏することができる。なお、図2では、耐指紋付着性能の領域と、抗菌性能の領域との間に点線にて境界を記載しているが、これは説明の便宜のためであり、機能膜2は単一の膜であるため、2つの機能領域の間に界面はない。
 なお、機能膜2の表面に存在する抗菌性の金属イオンは、表面側(大気中)の水分により膜外に溶出することが可能である。金属イオンは、機能膜2の表面付近にフルオロアルキル基の層があっても通り抜けることは可能であり、かつ水分と結びつきやすいためである。また、金属イオンは膜中で表面側に移動が可能であるため、金属イオンが膜外に放出されても、膜中に残る金属イオンが表面側へ移動することで、抗菌性能は維持される。特に、本実施形態の機能膜2は、界面がない単一膜であるため、複層膜に比較してこのような金属イオンの移動が容易であると考えられる。
(3)機能膜2の膜中のフッ素含有組成物の量が少なくなることで、機能膜2の硬度の低下を抑制することができる。すなわち、フッ素含有組成物に含有されるフルオロアルキル基は、SiO2と結合しないため、例えば、機能膜2中のフルオロアルキル基が多くなると、機能膜2の硬度が低下する。したがって、上記のように、機能膜2の表面付近のフッ素含有組成物の濃度が高くなると、機能膜2の硬度の低下を抑制することができる。
(4)上記のように機能膜2は、2つの機能を発現するにもかかわらず、1つのコーティング液によって形成されるため、ガラス部材10の製造が容易である。
 以下、本発明の実施例について説明する。但し、本発明は、以下の実施例には限定されない。
(1) 実施例の準備
 50mmx50mm、厚みが1.1mmのフロートガラス板を準備し、その表面に対し、アルカリ超音波洗浄を行った。次に、以下に示す実施例1~3の組成の機能膜用のコーティング液を調製した。コーティング液中の固形分の濃度は、0.5質量%とした。なお、Novec7200は、3M社製のフッ素系溶媒、P-7は、日本アルコール販売社製のアルコール溶媒、オプツールUD120は、ダイキン工業社製のフッ素含有組成物である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 上述したコーティング液をガラス板に対し、スプレーコートにより塗布した。塗布時の温度及び湿度は、22℃、87%であった。その後、300℃で100秒間仮乾燥した後、200℃で30分間加熱した。こうして、ガラス板上に機能膜が形成された。機能膜の厚みは、約50nmであった。また、完成したガラス部材の機能膜の組成は以下の通りである。単位は、質量%である。
Figure JPOXMLDOC01-appb-T000003
(2) 評価
 実施例1~3のガラス部材に対し、以下の試験を行った。
(2-1) 接触角
 実施例1~3について、それぞれ5個ずつサンプルを準備し、機能膜の静的接触角を測定した。測定方法は、液適法とした。結果は、以下の通りであり、5個のサンプルの平均を算出した。接触角が100°以上であると、耐指紋性能、撥水性能、防汚性能等を発現するため、実施例1~3は、いずれも耐指紋性能を有するといえる。特に、フッ素含有組成物の含有量が多いと、接触角が大きくなることが分かった。
Figure JPOXMLDOC01-appb-T000004
(2-2) 溶出試験
 実施例1~3に係るガラス部材を25ml、25℃の精製水に浸漬し、24時間後の銅の溶出量の関係を算出した。この溶出量の算出は、次のように行った。まず、パックテスト銅(共立理化学研究所製)で発色させた検水をデジタルパックテスト銅(同上)で測定し、液中に含まれる銅イオン濃度を求めた後、これを試験前の機能膜に含有される銅に対する質量%に換算した。結果は、表5に示すとおりである。
Figure JPOXMLDOC01-appb-T000005
 表5に示すとおり、銅の溶出量は、硝酸銅の添加量に概ね比例していることが分かる。また、本発明者が確認したところによると、JIS Z2801:2012(フィルム密着法)に基づく抗菌性の試験(ISO22916に相当)において、実施例1~3のガラス部材の抗菌活性は、いずれも2.5以上であることが確認されている。なお、抗菌活性が2.0以上であると抗菌性能があるとされている。
(2-3) 機能膜中のフッ素の分布
 実施例3において、オプツールUD120の代わりに、同量のトリデカフルオロオクチルトリクロロシランを添加した、実施例4に係るコーティング液を調整し、実施例4に係るガラス部材を作製した。この実施例4の機能膜に対し、XPS分析を行った。結果は、図3に示すとおりである。図3のグラフにおいて、横軸は、スパッタリング時間であり、機能膜の膜厚に相当する(10の位置が概ね機能膜とガラス板との境界に相当する)。縦軸のF/Siは、Si元素に対するF元素の割合である。同図示すように、機能膜中に含まれるF元素は、機能膜の表面付近が最も高く、ガラス板に近づくにつれ、F元素の量が減っていることが分かる。すなわち、フッ素含有組成物の濃度は、機能膜の表面付近が最も高く、ガラス板に近づくにつれ、減少していることが分かる。したがって、機能膜の表面付近では、耐指紋性能が強く発現されることが分かる。
1 ガラス板
2 機能膜
10 ガラス部材
100 物品

Claims (5)

  1.  第1面及び第2面を有するガラス板と、
     前記第1面に形成され、単一の膜で構成された機能膜と、
    を備え、
     前記機能膜は、
     主として、前記機能膜の表面付近に含有され、フルオロアルキル基を有する組成物と、
     抗菌性の金属イオンと、
     三次元ネットワーク結合を構成する無機酸化物を含有する担体と、
    を含有する、ガラス部材。
  2.  前記機能膜の表面付近において、前記フッ素含有組成物の濃度が最も高く、前記ガラス板に近づくにつれ、前記組成物の濃度が低くなるように構成されている、
    請求項1に記載のガラス部材。
  3.  前記機能膜は、前記金属イオンの含有量は、前記ネットワーク結合を構成する前記無機酸化物のうち最も重量比の大きい主成分に対し、モル比で2~50%である、請求項1または2に記載のガラス部材。
  4.  前記金属イオンは、1価または2価の銅イオンである、請求項1から3のいずれかに記載にガラス部材。
  5.  シリコンアルコキシドに、抗菌性の金属イオンを添加した前駆体液を生成するステップと、
     フッ素系溶媒に、フルオロアルキル基を有する組成物を溶解した、溶液を生成するステップと、
     前記前駆体液に、前記溶液を混合し、コーティング液を形成するステップと、
     前記コーティング液をガラス板に塗布するステップと、
     前記コーティング液が塗布されたガラス板を加熱するステップと、
    を備えている、ガラス部材の製造方法。
PCT/JP2022/029003 2021-08-02 2022-07-27 ガラス部材及びその製造方法 WO2023013505A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22852928.5A EP4382496A1 (en) 2021-08-02 2022-07-27 Glass member and production method therefor
KR1020247006539A KR20240036677A (ko) 2021-08-02 2022-07-27 유리 부재 및 그 제조 방법
CN202280050263.6A CN117642370A (zh) 2021-08-02 2022-07-27 玻璃构件及其制造方法
JP2023540292A JPWO2023013505A1 (ja) 2021-08-02 2022-07-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-127018 2021-08-02
JP2021127018 2021-08-02

Publications (1)

Publication Number Publication Date
WO2023013505A1 true WO2023013505A1 (ja) 2023-02-09

Family

ID=85154457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029003 WO2023013505A1 (ja) 2021-08-02 2022-07-27 ガラス部材及びその製造方法

Country Status (6)

Country Link
EP (1) EP4382496A1 (ja)
JP (1) JPWO2023013505A1 (ja)
KR (1) KR20240036677A (ja)
CN (1) CN117642370A (ja)
TW (1) TW202313498A (ja)
WO (1) WO2023013505A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228186A (ja) 1998-02-09 1999-08-24 Nippon Parkerizing Co Ltd ガラス、ガラスの製造方法、及び強化抗菌ガラス用組成物
JP2001049181A (ja) * 1999-08-10 2001-02-20 Jsr Corp 衛生陶器用コーティング組成物および衛生陶器
JP2002348542A (ja) * 2001-03-21 2002-12-04 Nippon Sheet Glass Co Ltd 被覆物品、被覆用液組成物および被覆物品を製造する方法
JP2014129530A (ja) * 2012-12-31 2014-07-10 Sumitomo Osaka Cement Co Ltd 防汚塗料および防汚膜付き透明材料積層体
JP2016033109A (ja) * 2014-07-29 2016-03-10 旭硝子株式会社 被膜付きガラスおよび被膜形成用組成物
WO2016056663A1 (ja) 2014-10-10 2016-04-14 ダイキン工業株式会社 被膜、それによるコーティング方法及びそれによりコーティングされてなる物品
WO2016175317A1 (ja) * 2015-04-30 2016-11-03 旭硝子株式会社 含フッ素化合物含有組成物、その製造方法、コーティング液、ハードコート層形成用組成物および物品
JP2018513920A (ja) * 2015-03-20 2018-05-31 セコ カンパニー リミテッド 抗菌力を有する真空蒸着用撥水型ナノコーティング剤及びそれを用いたコーティング方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228186A (ja) 1998-02-09 1999-08-24 Nippon Parkerizing Co Ltd ガラス、ガラスの製造方法、及び強化抗菌ガラス用組成物
JP2001049181A (ja) * 1999-08-10 2001-02-20 Jsr Corp 衛生陶器用コーティング組成物および衛生陶器
JP2002348542A (ja) * 2001-03-21 2002-12-04 Nippon Sheet Glass Co Ltd 被覆物品、被覆用液組成物および被覆物品を製造する方法
JP2014129530A (ja) * 2012-12-31 2014-07-10 Sumitomo Osaka Cement Co Ltd 防汚塗料および防汚膜付き透明材料積層体
JP2016033109A (ja) * 2014-07-29 2016-03-10 旭硝子株式会社 被膜付きガラスおよび被膜形成用組成物
WO2016056663A1 (ja) 2014-10-10 2016-04-14 ダイキン工業株式会社 被膜、それによるコーティング方法及びそれによりコーティングされてなる物品
JP2018513920A (ja) * 2015-03-20 2018-05-31 セコ カンパニー リミテッド 抗菌力を有する真空蒸着用撥水型ナノコーティング剤及びそれを用いたコーティング方法
WO2016175317A1 (ja) * 2015-04-30 2016-11-03 旭硝子株式会社 含フッ素化合物含有組成物、その製造方法、コーティング液、ハードコート層形成用組成物および物品

Also Published As

Publication number Publication date
JPWO2023013505A1 (ja) 2023-02-09
KR20240036677A (ko) 2024-03-20
CN117642370A (zh) 2024-03-01
EP4382496A1 (en) 2024-06-12
TW202313498A (zh) 2023-04-01

Similar Documents

Publication Publication Date Title
TWI775541B (zh) 具固有耐損性之可化學強化的鋰鋁矽酸鹽玻璃
JP5979330B2 (ja) ディスプレイのカバー部材及びその製造方法
JP7392914B2 (ja) ガラス
KR101221834B1 (ko) 강화 유리 기판
TWI529150B (zh) 用於化學強化之玻璃(二)
KR101460624B1 (ko) 터치 스크린을 위한 규산 알루미늄 유리
JP7431872B2 (ja) 改善された曲げ性および化学強化性を有する薄板ガラス
JP3187321B2 (ja) 化学強化用ガラス組成物および化学強化ガラス物品
US9840438B2 (en) Antimicrobial article with functional coating and methods for making the antimicrobial article
JP2022045925A (ja) 膜付き化学強化ガラス及び化学強化ガラスの表面応力測定方法
KR20230008048A (ko) 유리
WO2023013505A1 (ja) ガラス部材及びその製造方法
WO2022209835A1 (ja) 積層体
JP2001226137A (ja) 化学強化用のガラス素板の製造方法およびそれを用いて得られる化学強化ガラス物品
WO2022196834A1 (ja) カバー部材
WO2023095538A1 (ja) カバー部材
JP2022159240A (ja) ガラス部材及びその製造方法
JP2022159239A (ja) ガラス体
JP7219024B2 (ja) カバーガラス
WO2022054962A1 (ja) カバー部材
WO2022092319A1 (ja) ガラス体
TW202321174A (zh) 低模數可離子交換玻璃組成物
TW202229193A (zh) 強化玻璃板、強化玻璃板的製造方法以及強化用玻璃板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852928

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023540292

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280050263.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247006539

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022852928

Country of ref document: EP

Effective date: 20240304