WO2012008586A1 - プラズマディスプレイ装置 - Google Patents

プラズマディスプレイ装置 Download PDF

Info

Publication number
WO2012008586A1
WO2012008586A1 PCT/JP2011/066254 JP2011066254W WO2012008586A1 WO 2012008586 A1 WO2012008586 A1 WO 2012008586A1 JP 2011066254 W JP2011066254 W JP 2011066254W WO 2012008586 A1 WO2012008586 A1 WO 2012008586A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
less
plasma display
glass plate
display device
Prior art date
Application number
PCT/JP2011/066254
Other languages
English (en)
French (fr)
Inventor
和孝 小野
周作 秋葉
有一 黒木
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN2011800344371A priority Critical patent/CN102985993A/zh
Priority to JP2012524615A priority patent/JPWO2012008586A1/ja
Priority to KR1020127033526A priority patent/KR20130091252A/ko
Publication of WO2012008586A1 publication Critical patent/WO2012008586A1/ja
Priority to US13/708,354 priority patent/US8604693B2/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/02Details
    • H01J17/16Vessels; Containers

Definitions

  • the present invention relates to a plasma display device.
  • a cover glass plate also called a front plate or a front filter, is installed in front of the display panel, and the user visually recognizes the display panel display through the cover glass plate (see, for example, Patent Document 1). ).
  • the cover glass plate is installed mainly for the purpose of improving the aesthetics and strength of the display device and preventing impact damage.
  • the cover glass plate is often a chemically strengthened glass plate in which a compressive stress layer is provided on at least a part of the surface layer in order to improve scratch resistance.
  • a method for producing chemically strengthened glass for example, there is an ion exchange method.
  • a glass is immersed in a treatment solution, and ions having a small ion radius (for example, Na ions) contained in the surface layer of the glass are replaced with ions having a large ion radius (for example, K ions).
  • ions having a small ion radius for example, Na ions
  • ions having a large ion radius for example, K ions
  • LCD liquid crystal display
  • plasma display devices have become larger for stationary devices such as home televisions, and the screen size has become extremely large compared to mobile devices.
  • a cover glass plate mounted on a display device having such a large screen often has a larger area than that mounted on a mobile device.
  • a cover glass plate to the display side of the display panel. This eliminates the conventional gap between the display panel and the cover glass plate, and can suppress light reflection at the interface between the gap and the display panel and at the interface between the gap and the cover glass plate.
  • warpage or the like may occur due to a difference in thermal expansion between the glass substrate constituting the display panel and the cover glass plate.
  • a plasma display device has a self-luminous type display panel, and thus tends to become hot during a display operation. For this reason, warpage or the like is likely to occur due to the difference in thermal expansion, and the aesthetic appearance and display quality of the plasma display device are likely to be impaired. This effect is more conspicuous as the area (diagonal length) of the cover glass plate is larger.
  • the display device described in Patent Document 1 is assumed to be mounted on a mobile device and is small, the diagonal length of the cover glass plate is 81 cm (32 inches) or more. Furthermore, it is not the structure which can fully reduce curvature.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a plasma display device capable of improving the image quality and reducing the warping of a thin cover glass plate having a large area.
  • the present invention is a plasma display device comprising a plasma display panel comprising a glass substrate and a cover glass plate attached to the display side of the plasma display panel,
  • the cover glass plate has a diagonal length of 81 cm (32 inches) or more, a thickness of 1.5 mm or less
  • the plasma display device is characterized in that the average thermal expansion coefficient of the cover glass plate is 80 to 120% of the average thermal expansion coefficient of the glass substrate in the range of 50 to 350 ° C.
  • “to” indicating the numerical range described above is used to mean that the numerical values described before and after it are used as a lower limit value and an upper limit value, and hereinafter “to” Used with meaning.
  • the present invention it is possible to provide a plasma display device that can improve the image quality and reduce the warpage of a thin cover glass plate with a large area.
  • FIG. 3 It is side surface sectional drawing of the plasma display apparatus in one Embodiment of this invention. It is a front view of FIG. It is a diagram showing the relationship between the molten salt (KNO 3) Li content in the surface compression stress S of the glass after (mass%) and the chemical strengthening treatment (MPa). It is a diagram showing the relationship between content of ZrO 2 in the glass (mol%) and the glass after chemical strengthening treatment Vickers hardness (HV).
  • KNO 3 molten salt
  • MPa chemical strengthening treatment
  • HV Vickers hardness
  • FIG. 1 is a schematic side view of a plasma display apparatus according to an embodiment of the present invention.
  • the plasma display device 10 includes a plasma display panel 20 and a cover glass plate 30.
  • the cover glass plate 30 has a larger area than the plasma display panel 20, and the user visually recognizes the display of the plasma display panel 20 through the cover glass plate 30.
  • the plasma display panel 20 may have a general configuration. For example, as shown in FIG. 1, the two glass substrates 21 and 22 and the phosphor layer 23 provided between the two glass substrates 21 and 22. Etc.
  • the thermal expansion coefficient of the plasma display panel 20 is mainly determined by the thermal expansion coefficient of the glass substrates 21 and 22.
  • a transparent electrode film or the like is formed in advance in a predetermined pattern on the inner surfaces 24 and 25 of the two glass substrates 21 and 22.
  • a rare gas (for example, neon or helium) is sealed between the two glass substrates 21 and 22.
  • the plasma display panel 20 generates an ultraviolet ray by applying a voltage to a rare gas through a transparent electrode film, and causes the phosphor layer 23 to fluoresce, thereby displaying an image.
  • the glass substrates 21 and 22 are heat-treated in the manufacturing process of the plasma display panel 20, they are formed of glass having a high strain point temperature (for example, glass having a strain point of about 570 ° C.). As a result, it is possible to suppress pattern shift due to thermal contraction (structural relaxation). Further, the glass substrates 21 and 22 have a large coefficient of thermal expansion in order to reduce the difference in thermal expansion from the glass frit used for sealing the periphery of the glass substrates 21 and 22 in the manufacturing process of the plasma display panel 20. It is often formed of glass (typically glass having an average thermal expansion coefficient in the range of 50 to 350 ° C. (hereinafter simply referred to as “average thermal expansion coefficient”) of about 83 ⁇ 10 ⁇ 7 / ° C.). Although the two glass substrates 21 and 22 may have different compositions, it is desirable that the two glass substrates 21 and 22 have the same composition in order to reduce manufacturing costs and to reduce warpage due to a difference in thermal expansion.
  • a method of manufacturing the glass substrates 21 and 22 first, a plurality of glass raw materials are prepared so as to have a target composition, which is continuously charged into a melting furnace, heated to 1500 to 1600 ° C. and melted. . Next, this molten glass is formed into a predetermined plate thickness, and after slow cooling, it is cut to obtain glass substrates 21 and 22.
  • a molding method for molding the molten glass into a predetermined plate thickness is not particularly limited, and examples thereof include a float method and a fusion method.
  • molten glass is continuously supplied to a bath surface of molten metal (for example, molten tin) in a bathtub, and is formed into a strip shape.
  • molten glass is continuously supplied into the inside of a bowl having a substantially V-shaped cross section, and the molten glass overflowing from the bowl to the left and right sides is joined at the lower edge of the bowl to form a strip.
  • the two glass substrates 21 and 22 are used, but a light-transmitting substrate such as a resin substrate may be used instead of either one.
  • a light-transmitting substrate such as a resin substrate is also included as a glass substrate.
  • the flexibility of the plasma display panel 20 can be improved.
  • the resin substrate since the resin substrate has low heat resistance and chemical resistance, it is difficult to perform heat treatment or chemical treatment when forming a transparent electrode film or the like. Further, since the resin substrate has a large difference in thermal expansion from the glass substrate or the cover glass plate, warping is likely to occur. Therefore, it is desirable to use two glass substrates 21 and 22.
  • the cover glass plate 30 is installed mainly for the purpose of improving the aesthetics and strength of the plasma display device 10 and preventing impact damage.
  • the cover glass plate 30 is attached to the display side (front side) of the plasma display panel 20.
  • the cover glass plate 30 is attached to the display side of the plasma display panel 20 via a translucent adhesive film.
  • the adhesive film may have a general configuration, and the material and shape thereof are appropriately selected.
  • the cover glass plate 30 has a front surface 31 that emits light from the plasma display panel 20 and a back surface 32 that receives light from the plasma display panel 20.
  • a functional film 40 may be provided on the front surface 31 and / or the back surface 32. In FIG. 1, the functional film 40 is provided on the front surface 31.
  • the functional film 40 has functions such as preventing reflection of ambient light, preventing impact damage, shielding electromagnetic waves, shielding near infrared rays, correcting color tone, and / or improving scratch resistance.
  • the functional film 40 may be formed, for example, by attaching a resin film to the cover glass plate 30.
  • the functional film 40 may be formed by a thin film forming method such as a vapor deposition method, a sputtering method, or a CVD method.
  • the functional film 40 may have a general configuration, and the thickness, shape, and the like are appropriately selected according to the application.
  • a decorative layer 50 is provided along at least a part of the peripheral edge.
  • the decorative layer 50 may be disposed so as to surround the outer periphery of the plasma display panel 20.
  • the decorative layer 50 is installed in order to improve the design and decorativeness of the cover glass plate 30 and eventually the plasma display device 10. For example, when the decorative layer 50 is colored black, no light is emitted from the front surface 31 of the cover glass plate 30 including the peripheral portion of the cover glass plate 30 when the plasma display device 10 is in the off state. Therefore, the appearance of the plasma display device 10 is given to the user with a sharp impression, and the aesthetic appearance is improved.
  • the decoration layer 50 can form by apply
  • the ink is prepared, for example, by mixing and dispersing organic pigment particles or inorganic pigment particles in an organic vehicle.
  • the thickness of the cover glass plate 30 is 1.5 mm or less, preferably 1.3 mm or less, and more preferably 1.1 mm or less, from the viewpoints of reduction in thickness and weight. Moreover, it is preferable that the thickness of the cover glass plate 30 is 0.5 mm or more from a viewpoint of handling property.
  • the diagonal length L of the cover glass plate 30 is 81 cm (32 inches) or more, preferably 94 cm (37 inches) or more, more preferably 101 cm (40 inches) or more from the viewpoint of increasing the area. .
  • the average thermal expansion coefficient (JIS R3102) of the cover glass plate 30 is 80 to 120% of the average thermal expansion coefficient of the glass substrates 21 and 22 for the plasma display panel 20 in the range of 50 to 350 ° C.
  • glass substrate for plasma display panel means both glass substrates when the plasma display panel has two glass substrates. That is, when the two glass substrates of the plasma display panel have different average thermal expansion coefficients, the average thermal expansion coefficient of the cover glass plate is relative to any of the average thermal expansion coefficients of the glass substrates 21 and 22 for the plasma display panel. Even if it is 80 to 120%.
  • the average thermal expansion coefficient of the cover glass plate 30 By setting the average thermal expansion coefficient of the cover glass plate 30 within the above range, the difference in thermal expansion between the cover glass plate 30 and the glass substrates 21 and 22 can be sufficiently reduced, and the diagonal length is 32 inches (about 81 inches). .3 cm) or more, the thermal deformation of the cover glass plate 30 can be sufficiently reduced.
  • a more preferred range is 85 to 115%, and a particularly preferred range is 90 to 110%.
  • the curvature at the time of fixing the plasma display panel 20 and the cover glass plate 30 with a thermosetting type adhesive agent can be reduced.
  • the cover glass plate 30 may be formed of a material having the same composition as the glass substrate 21 or the glass substrate 22 in order to reduce warpage. If the composition is the same, the manufacturing cost can be reduced. Moreover, it is preferable that the cover glass plate 30 is a chemically strengthened glass plate in which a compressive stress layer is provided on at least a part of the surface layer by chemical strengthening treatment in order to improve scratch resistance. Examples of the chemical strengthening treatment include an ion exchange method. In the ion exchange method, a glass plate is immersed in a processing solution, and ions having a small ion radius (for example, Na ions) contained in the surface layer of the glass plate are replaced with ions having a large ion radius (for example, K ions). Thus, a compressive stress layer is provided on the surface layer of the glass plate.
  • ions having a small ion radius for example, Na ions
  • potassium nitrate (KNO 3 ) molten salt or the like is used as the treatment liquid.
  • KNO 3 molten salt potassium nitrate (KNO 3 ) molten salt or the like is used.
  • the specific conditions vary depending on the thickness of the glass plate, but it is typical to immerse the glass plate in KNO 3 molten salt at 400 to 550 ° C. for 2 to 20 hours. From an economical point of view, it is preferable to immerse at 400 to 500 ° C. for 2 to 16 hours, and a more preferable immersing time is 2 to 10 hours.
  • the cover glass plate 30 before the chemical strengthening treatment is not particularly limited, but is preferably glass A to glass D having the following composition, for example.
  • Glass A contains 55 to 70% of SiO 2 , 5 to 15% of Al 2 O 3 , 4 to 20% of Na 2 O and 1 to 15% of MgO. The total amount of the components is 85% or more.
  • the average coefficient of thermal expansion of glass A in the range of 50 to 350 ° C. is typically 66 ⁇ 10 ⁇ 7 to 100 ⁇ 10 ⁇ 7 / ° C.
  • the average thermal expansion coefficient of the chemically strengthened glass plate formed by chemically strengthening the glass A is substantially the same as the average thermal expansion coefficient of the glass A before chemical strengthening because the compressive stress layer thickness t is sufficiently small.
  • Glass B is a molar percentage based on oxides, SiO 2 50 ⁇ 74%, the Al 2 O 3 1 ⁇ 10% , a Na 2 O 6 ⁇ 14%, the K 2 O 3 ⁇ 15%, MgO 2-15%, CaO 0-10%, ZrO 2 0-5%, the total content of SiO 2 and Al 2 O 3 is 75% or less, the content of Na 2 O and K 2 O The total content of MgO and CaO is 7 to 15%.
  • the glass B may be the following glasses B1 to B3.
  • Glass B1 is the above glass B, and Na 2 O is 12% or less, K 2 O is 4% or more, Na 2 O + K 2 O is 14% or more, MgO + CaO is 8% or more, Na 2 O + K 2 O to Al The difference obtained by reducing the 2 O 3 content is 10% or more.
  • BaO is contained, the content is less than 1%.
  • this glass B1 contains SrO or BaO, the total content of alkaline earth metal oxides may be 15% or less.
  • SiO 2 is 60 to 70%
  • Al 2 O 3 is 2 to 8%
  • Na 2 O is 11% or less
  • K 2 O is 6 to 12%
  • MgO is 4 to 14%
  • CaO is 0%.
  • ZrO 2 may be 0-4%
  • Na 2 O + K 2 O may be 16-20%.
  • Glass B2 is glass B described above, and SiO 2 is 60 to 70%, Al 2 O 3 is 2 to 8%, K 2 O is 8% or less, MgO is 6% or more, and Na 2 O + K 2 O is 18%. % or less, and the sum Na 2 O + 1.7K 2 O and multiplied by 1.7 to content of K 2 O and the content of Na 2 O is less than 19%.
  • the glass B3 is the glass B, wherein SiO 2 is 63% or more, Al 2 O 3 is 3% or more, Na 2 O is 8% or more, K 2 O is 8% or less, MgO is 6 to 14%, CaO is 0 to 1%, ZrO 2 is 1 to 4%, and Na 2 O + K 2 O is 14 to 17%.
  • the sum of the multiplied by 1.7 to content of K 2 O and the content of Na 2 O, i.e. Na 2 O + 1.7K 2 O may be less than 19%.
  • the compressive stress layer thickness t can be increased without excessively increasing the ion exchange rate for chemical strengthening. Therefore, the thickness t of the compressive stress layer can be increased while the surface compressive stress S is set to less than 1050 MPa, for example, without performing a separate polishing process after the chemical strengthening process.
  • the compressive stress layer thickness t is preferably more than 20 ⁇ m. If it is 20 ⁇ m or less, there is a risk of being easily broken. More preferably, it is 30 ⁇ m or more, particularly preferably 40 ⁇ m or more, typically 45 ⁇ m or more, or 50 ⁇ m or more.
  • the surface compressive stress S is typically 300 MPa or more and less than 1050 MPa. If it is less than 300 MPa, there is a risk of being easily broken. In the chemically strengthened glass plate formed by chemically strengthening the glass B1, the surface compressive stress S is typically 300 MPa or more and less than 750 MPa. In the chemically strengthened glass plate formed by chemically strengthening the glass B2 or the glass B3, The compressive stress S is typically 700 MPa or more and less than 1050 MPa.
  • the glass transition point Tg (hereinafter also simply referred to as Tg) of the glass B is typically 540 to 610 ° C. for the glass B1, and typically 580 to 640 ° C. for the glasses B2 and B3.
  • the temperature T 4 (hereinafter also simply referred to as T 4 ) at which the viscosity of the glass B is 10 4 dPa ⁇ s is preferably 1190 ° C. or lower. If it exceeds 1190 ° C., it may be difficult to mold the glass. Typically, it is 1180 ° C. or lower.
  • the temperature T 2 (hereinafter also simply referred to as T 2 ) at which the viscosity of the glass B is 10 2 dPa ⁇ s is preferably 1650 ° C. or less. If it exceeds 1650 ° C., melting becomes difficult, and there is a risk that product defects such as unmelted material may increase, or the melting equipment may become expensive. Typically, it is 1600 ° C or lower. It is preferred devitrification temperature of the glass B is the temperature T 4 or less. Otherwise, for example, when the float method is applied, devitrification may occur and it may be difficult to mold.
  • the devitrification temperature is the maximum temperature at which devitrification precipitates when the glass is held at that temperature for 15 hours.
  • the specific gravity ⁇ of the glass B is preferably 2.6 or less. If it exceeds 2.6, the plasma display device 10 may be insufficiently reduced in weight.
  • the average thermal expansion coefficient ⁇ of glass B at 50 to 350 ° C. is typically 80 ⁇ 10 ⁇ 7 to 130 ⁇ 10 ⁇ 7 / ° C. Note that the average thermal expansion coefficient of the chemically strengthened glass plate obtained by chemically strengthening the glass B is substantially the same as the average thermal expansion coefficient ⁇ of the glass B before chemical strengthening because the compressive stress layer thickness t is sufficiently small. .
  • the glass B1 is a suitable mode when it is desired to increase the thickness t of the compressive stress layer while the surface compressive stress S is set to less than 750 MPa, for example, without performing a separate polishing process after the chemical strengthening process.
  • Glass B2 and glass B3 are a suitable aspect when clarification at the time of glass manufacture is performed with a sulfate.
  • SiO 2 is a component constituting the skeleton of glass and essential. If it is less than 50%, the stability as glass is lowered, or the weather resistance is lowered. Preferably it is 60% or more. In addition, in glass B2, it is 60% or more, Preferably it is 62% or more, and in glass B3, it is 63% or more. If the SiO 2 content exceeds 74%, the viscosity of the glass increases and the meltability decreases significantly. Preferably it is 70% or less, typically 68% or less. Incidentally, SiO 2 in the glass B2 is 70% or less.
  • Al 2 O 3 is a component that improves the ion exchange rate and is essential. If it is less than 1%, the ion exchange rate decreases. Preferably it is 2% or more, typically 3% or more. In addition, Al 2 O 3 is 2% or more in the glass B2, and 3 % or more in the glass B3. If Al 2 O 3 exceeds 10%, the viscosity of the glass becomes high and uniform melting becomes difficult. It is preferably 9% or less, more preferably 8% or less, and typically 7% or less. In the glass B2, Al 2 O 3 is 8% or less.
  • the viscosity of the glass at a high temperature increases and melting becomes difficult. Typically 72% or less.
  • the total is preferably 66% or more. If it is less than 66%, it is difficult to obtain a stable glass or the weather resistance tends to be lowered, and it is typically 68% or more.
  • Na 2 O is a component that forms a compressive stress layer by ion exchange and improves the meltability of the glass, and is essential. If it is less than 6%, it becomes difficult to form a desired compressive stress layer by ion exchange. Preferably it is 7% or more, typically 8% or more. In the glass B3, Na 2 O is 8% or more. If Na 2 O exceeds 14%, Tg and therefore the strain point is lowered, or the weather resistance is lowered. Preferably it is 13% or less, typically 12% or less. In the glass B1, Na 2 O is 12% or less, preferably 11% or less, and typically 10% or less.
  • K 2 O is a component for improving the meltability, and is a component for increasing the ion exchange rate in chemical strengthening to obtain a desired surface compressive stress S and compressive stress layer thickness t. is there. If it is less than 3%, the meltability is lowered, or the ion exchange rate is lowered. Typically 4% or more. In the glass B1, K 2 O is 4% or more, preferably 5% or more, more preferably 6% or more, and typically 7% or more. Note that the K 2 O mass percentage display content is typically 3% or more. If K 2 O exceeds 15%, the weather resistance decreases. Preferably it is 12% or less, typically 11% or less. In the glass B2 and the glass B3, K 2 O is 8% or less, preferably 7% or less, and typically 6% or less.
  • R 2 O content of Na 2 O and K 2 O is less than 12%, desired ion exchange characteristics cannot be obtained. Preferably it is 13% or more, More preferably, it is 14% or more. In the glass B1 and the glass B3, R 2 O is 14% or more, and in the glass B1, it is preferably 16% or more, more preferably 16.5% or more, and typically 17% or more. If R 2 O (total amount of Na 2 O and K 2 O) exceeds 25%, the chemical durability including the weather resistance of the glass becomes low. It is preferably 22% or less, more preferably 20% or less, and typically 19% or less. In order to reduce the basicity of the glass and improve the clarity with sulfates, R 2 O is 18% or less for glass B2 and 17% or less for glass B3.
  • the glass B2 contains Na 2 O + 1.7K 2 O of less than 19%. Also in the glass B3, Na 2 O + 1.7K 2 O is preferably less than 19%.
  • the phrase “reducing the basicity of the glass and improving the clarification with sulfate” means that the decomposition temperature of sodium sulfate is about 1500 ° C. or less in the case of clarification with sodium sulfate.
  • the difference R 2 O—Al 2 O 3 obtained by subtracting the Al 2 O 3 content from the R 2 O (total amount of Na 2 O and K 2 O) is preferably 10% or more. If it is less than 10%, the compressive stress layer thickness t may be small. It is considered that the compressive stress layer thickness t becomes smaller because Tg and hence the strain point becomes higher. In the glass B1, R 2 O—Al 2 O 3 is 10% or more.
  • the difference obtained by subtracting R 2 O (total amount of Na 2 O and K 2 O) from the total content of SiO 2 and Al 2 O 3 is preferably 60% or less. If it exceeds 60%, the T 2 may exceed 1650 ° C. and melting may be difficult. Li 2 O is a component that lowers the strain point and facilitates stress relaxation, and as a result makes it impossible to obtain a stable compressive stress layer. Therefore, it is preferably not contained, and even if it is contained, its content is It is preferably 2% or less, more preferably 0.05% or less, and particularly preferably less than 0.01%.
  • Li 2 O may be eluted in a molten salt such as KNO 3 during chemical strengthening treatment, but when the chemical strengthening treatment is performed using a molten salt containing Li, the surface compressive stress S is remarkably reduced. That is, the inventors have found that 0.005% by weight KNO 3, Li containing no Li, 0.01 wt%, 450 ° C.
  • the glass of the infra materials Example 19 using KNO 3 containing 0.04 wt% When the chemical strengthening treatment was performed under conditions of 6 hours, it was found that the surface compressive stress was remarkably lowered only by the molten salt containing 0.005% by mass of Li as shown in FIG. Therefore, it is preferable not to contain Li 2 O from this viewpoint.
  • the ratio of the total content of K 2 O and alkali metal oxide is preferably 0.25 or more, more preferably 0.4 or more, and typically more than 0.5.
  • Alkaline earth metal oxides are components that improve the meltability, and are effective components for adjusting the Tg and therefore the strain point. Since BaO has the greatest effect of reducing the ion exchange rate among alkaline earth metal oxides, BaO should not be contained, or even if contained, its content should be less than 1%. Preferably, in glass B1, even if it contains, it must be made less than 1%. SrO may be contained as necessary, but since the effect of lowering the ion exchange rate is greater than that of MgO and CaO, the content is preferably less than 1% even when contained.
  • the total content thereof is preferably 3% or less, more preferably less than 2%.
  • MgO and CaO are relatively small in the effect of lowering the ion exchange rate, and must contain at least 2% of MgO. If MgO is less than 2%, the meltability is lowered. It is preferably 4% or more, more preferably 6% or more, and typically 6.5% or more.
  • MgO is 6% or more, preferably 6.5% or more, and typically 10% or more.
  • MgO exceeds 15%, the ion exchange rate decreases. Preferably it is 14% or less, More preferably, it is 13.5% or less. In the glass B1, MgO is particularly preferably 13% or less, typically 12% or less, and in the glass B3, MgO is 14% or less.
  • MgO is particularly preferably 13% or less, typically 12% or less, and in the glass B3, MgO is 14% or less.
  • CaO When CaO is contained, its content is typically 1% or more. If the content exceeds 10%, the ion exchange rate decreases. Preferably it is 8% or less, typically 6% or less. Even when CaO is contained in glass B2, its content is typically 1% or less, and in glass B3, it must be 1% or less.
  • the ratio of the content of MgO and CaO is preferably 1 or more. More preferably, it is 1.1 or more.
  • the total MgO + CaO content of MgO and CaO is 7-15%, typically 8% or more, and should be 8% or more for glass B1.
  • the total content of MgO and CaO expressed in terms of mass percentage is typically 5.1% or more.
  • the ratio of the content of MgO + CaO and Al 2 O 3 is preferably 1.2 or higher, typically 1.5 or higher.
  • the total RO of the alkaline earth metal oxide content is preferably more than 2% and 15% or less. If it is 2% or less, the meltability is lowered, or the adjustment of the strain point becomes difficult. It is preferably 4% or more, more preferably 6% or more, and typically 8% or more. If it exceeds 15%, the ion exchange rate tends to be low, devitrification tends to occur, or the strain point may be too low.
  • ZrO 2 is not essential, but may be contained in a range of up to 5% in order to increase the ion exchange rate. If it exceeds 5%, the effect of increasing the ion exchange rate is saturated, and the meltability is deteriorated and may remain in the glass as an unmelted product. Further, the Vickers hardness of the glass after chemical strengthening treatment increases by containing ZrO 2 as shown in FIG. Incidentally, the tendency shown in FIG. 4 is as follows.
  • SiO 2 is 64.0%, Al 2 O 3 is 5.4%, Glass containing 9.6% Na 2 O, 9.1% K 2 O, 5.4% MgO, 4.0% CaO and 2.5% ZrO 2 , (2) in mole percentages SiO 2 64.0%, Al 2 O 3 5.3%, Na 2 O 9.6%, K 2 O 9.1%, MgO 5.2%, CaO 4.0% , Glass containing 2.7% of ZrO 2 , (3) in mole percentage, SiO 2 66.8%, Al 2 O 3 11.0%, Na 2 O 13.1%, K 2 O Is also observed in a glass containing 2.5% of Mg, 6.1% of MgO and 0.6% of CaO.
  • ZrO 2 is preferably at most 4%, typically at most 2%. When ZrO 2 is contained, its content is preferably 0.5% or more, and typically 1% or more.
  • Glass B In the glass B3, ZrO 2 is essential and is contained by 1 to 4%. Typically 1.5 to 3%.
  • Glass B consists essentially of the components described above, but may contain other components as long as the effects of glass B are not impaired. When such components are contained, the total content of these components is preferably 10% or less, and typically 5% or less.
  • the other components will be described as an example.
  • ZnO may be contained up to 2%, for example, in order to improve the melting property of the glass at high temperature, but it is preferably 1% or less. In the case of producing by the float process, etc., it is preferably 0.5% or less. If it exceeds 0.5%, it may be reduced during float molding, resulting in a product defect. Typically no ZnO is contained.
  • B 2 O 3 may be contained, for example, up to 1% in order to improve the melting property at high temperature or the glass strength. If it exceeds 1%, it is difficult to obtain homogeneous glass, and it may be difficult to form the glass. Typically no B 2 O 3 is contained.
  • TiO 2 changes the redox state of Fe ions (Fe 2+ , Fe 3+ ) present in the glass and the visible light transmittance may change, and the glass may be colored. It is preferred and typically not contained.
  • SO 3 As a fining agent for melting the glass, SO 3 , chloride, fluoride and the like may be appropriately contained.
  • Glass C Glass C is expressed in terms of mole percentage based on oxide, and SiO 2 is 68 to 80%, Al 2 O 3 is 4 to 10%, Na 2 O is 5 to 15%, K 2 O is 0 to 1%, MgO 4-15%, ZrO 2 0-1%, and the total content of SiO 2 and Al 2 O 3 SiO 2 + Al 2 O 3 is 85% or less.
  • Al 2 O 3 is preferably 4.5% or more. Further, in the glass C, preferably SiO 2 + Al 2 O 3 is 75% or more.
  • SiO 2 is 70 to 75%
  • Al 2 O 3 is 5% or more
  • Na 2 O is 8% or more
  • MgO is 5 to 12%
  • SiO 2 + Al 2 O 3 is 77 to 83%. It is more preferable that
  • the content when it does not contain CaO or contains CaO, the content may be less than 1%. Moreover, in this glass C, when one or more components of CaO, SrO, BaO, and ZrO 2 are contained, the total content of these four components is more preferably less than 1.5%. According to the glass C, it is possible to sufficiently improve the strength by the chemical strengthening method, and it is possible to suppress the generation (extension) of cracks starting from an indentation that occurs when the glass after chemical strengthening is used.
  • the surface compressive stress S is preferably 550 MPa or more, and typically 1200 MPa or less.
  • the compressive stress layer thickness t is preferably more than 10 ⁇ m, and typically 70 ⁇ m or less.
  • the glass transition point Tg of the glass C is preferably 400 ° C. or higher. If it is less than 400 ° C., the surface compressive stress is relaxed during ion exchange, and there is a possibility that sufficient stress cannot be obtained.
  • the temperature T 2 at which the viscosity of the glass C becomes 10 2 dPa ⁇ s is preferably 1750 ° C. or lower.
  • the temperature T 4 at which the viscosity of the glass C becomes 10 4 dPa ⁇ s is preferably 1350 ° C. or lower.
  • the specific gravity ⁇ of the glass C is preferably 2.50 or less.
  • the Young's modulus E of the glass C is preferably 68 GPa or more. If it is less than 68 GPa, the crack resistance and breaking strength of the glass may be insufficient.
  • the Poisson's ratio ⁇ of the glass C is preferably 0.25 or less. If it exceeds 0.25, the crack resistance of the glass may be insufficient.
  • the average coefficient of thermal expansion ⁇ of glass C at 50 to 350 ° C. is typically 57 ⁇ 10 ⁇ 7 to 81 ⁇ 10 ⁇ 7 / ° C.
  • the average thermal expansion coefficient of the chemically strengthened glass plate formed by chemically strengthening the glass C is substantially the same as the average thermal expansion coefficient ⁇ of the glass C before chemical strengthening because the compressive stress layer thickness t is sufficiently small. .
  • SiO 2 is a component constituting the skeleton of glass and essential. Moreover, it is a component which reduces generation
  • Al 2 O 3 is a component that improves ion exchange performance and chipping resistance and is essential. If it is less than 4%, the desired surface compressive stress value and stress layer depth cannot be obtained by ion exchange. Preferably it is 4.5% or more, More preferably, it is 5% or more. If it exceeds 10%, the viscosity of the glass becomes high and uniform melting becomes difficult.
  • the total SiO 2 + Al 2 O 3 content of SiO 2 and Al 2 O 3 is 85% increases the viscosity of the glass at high temperatures, it is difficult to melt. Preferably it is 83% or less. Further, it is preferable that SiO 2 + Al 2 O 3 is 75% or more. If it is less than 75%, the crack resistance when an indentation is made decreases. More preferably, it is 77% or more.
  • Na 2 O is a component that forms a compressive stress layer by ion exchange and improves the meltability of the glass, and is essential. If it is less than 5%, it becomes difficult to form a desired compressive stress layer by ion exchange. Preferably it is 8% or more. When Na 2 O exceeds 15%, the weather resistance decreases. In addition, cracks are likely to occur from the indentation. K 2 O is not essential, but may be contained up to 1% in order to increase the ion exchange rate. If it exceeds 1%, cracks tend to occur from the indentation.
  • MgO is a component that may lower the ion exchange rate, but it is an essential component that suppresses the generation of cracks and improves the meltability. If it is less than 4%, the viscosity increases and the meltability decreases. Preferably it is 5% or more. If it exceeds 15%, the glass tends to be devitrified. Preferably it is 12% or less.
  • ZrO 2 is not essential, but may be contained in a range of up to 1% in order to reduce the viscosity at high temperature or to increase the surface compressive stress. If it exceeds 1%, there is a possibility that the possibility of cracking from the indentation increases.
  • Glass C consists essentially of the components described above, but may contain other components as long as the effects of glass C are not impaired. When such components are contained, the total content of these components is preferably 5% or less, and typically 3% or less.
  • ZnO may be contained up to 2%, for example, in order to improve the melting property of the glass at high temperature, but it is preferably 1% or less. In the case of producing by the float process, etc., it is preferably 0.5% or less. If it exceeds 0.5%, it may be reduced during float molding, resulting in a product defect. Typically no ZnO is contained.
  • B 2 O 3 may be contained, for example, in a range of less than 1% in order to improve the melting property at high temperature or the glass strength. If it is 1% or more, it is difficult to obtain a homogeneous glass, and there is a possibility that it becomes difficult to form the glass, or the chipping resistance may be lowered. Typically no B 2 O 3 is contained. Since TiO 2 coexists with Fe ions present in the glass, the visible light transmittance is lowered and the glass may be colored brown, so even if it is contained, it is preferably 1% or less. Does not contain.
  • Li 2 O is a component that lowers the strain point and facilitates stress relaxation, and as a result makes it impossible to obtain a stable compressive stress layer. Therefore, it is preferably not contained, and even if it is contained, its content is It is preferably less than 1%, more preferably 0.05% or less, particularly preferably less than 0.01%.
  • Li 2 O may be eluted in a molten salt such as KNO 3 during chemical strengthening treatment, but when the chemical strengthening treatment is performed using a molten salt containing Li, the surface compressive stress is remarkably reduced. That is, the inventors have found that 0.005% by weight KNO 3, Li containing no Li, 0.01 wt%, 450 ° C.
  • the glass of the infra materials Example 76 using KNO 3 containing 0.04 wt% When the chemical strengthening treatment was performed under conditions of 6 hours, it was found that the surface compressive stress was remarkably reduced only when the molten salt contained 0.005% by mass of Li. Therefore, it is preferable not to contain Li 2 O from this viewpoint.
  • CaO may be contained in a range of less than 1% in order to improve the meltability at high temperature or to prevent devitrification. If it is 1% or more, the ion exchange rate or the resistance to cracking is lowered. Typically no CaO is contained. SrO may be contained as necessary, but since the effect of lowering the ion exchange rate is greater than that of MgO and CaO, the content is preferably less than 1% even when contained. Typically no SrO is contained.
  • BaO has the greatest effect of reducing the ion exchange rate among alkaline earth metal oxides, BaO should not be contained, or even if contained, its content should be less than 1%. preferable.
  • SrO or BaO the total content thereof is preferably 1% or less, more preferably less than 0.3%.
  • the total content of these four components is preferably less than 1.5%. If it is 1.5% or more, the ion exchange rate may decrease. Typically 1% or less.
  • SO 3 As a fining agent for melting the glass, SO 3 , chloride, fluoride and the like may be appropriately contained. However, in order to improve the image quality, it is preferable to reduce as much as possible components such as Fe 2 O 3 , NiO, and Cr 2 O 3 that have absorption in the visible region as impurities in the raw material, and 0.15 by mass percentage each. % Or less, more preferably 0.05% or less.
  • Glass D is expressed in terms of mole percentages based on oxides, 61 to 66% of SiO 2 , 6 to 12% of Al 2 O 3 , 7 to 13% of MgO, 9 to 17% of Na 2 O, K 2 O In the case of containing ZrO 2 , its content is 0.8% or less. Next, the composition of the glass D will be described using the mole percentage display content unless otherwise specified.
  • SiO 2 is a component constituting the skeleton of glass and essential. If it is less than 61%, the strength tends to decrease when an indentation is made, cracks are likely to occur when the glass surface is scratched, the weather resistance decreases, the specific gravity increases, or the liquidus temperature increases. The glass becomes unstable. Preferably it is 61.5% or more, more preferably 62% or more, and particularly preferably 63% or more. If SiO 2 exceeds 66%, T 2 or T 4 rises and it becomes difficult to melt or mold the glass. Preferably it is 65.5% or less. SiO 2 is typically 63 to 65% when it is desired to further suppress the decrease in strength when the glass surface is indented. Note that the SiO 2 mass percentage display content is typically less than 64%.
  • Al 2 O 3 is a component that improves ion exchange performance and weather resistance and is essential. If it is less than 6%, the strength tends to decrease when an indentation is formed, or the desired surface compressive stress S and stress layer thickness t cannot be obtained by ion exchange. Preferably it is 6.5% or more, More preferably, it is 7% or more, Most preferably, it is 7.5% or more. If it exceeds 12%, T 2 or T 4 rises and it becomes difficult to melt or mold the glass, or the liquidus temperature becomes high and the glass tends to devitrify. Preferably it is 11.5% or less.
  • the total content of SiO 2 and Al 2 O 3 is preferably 71% or more. If it is less than 71%, the strength tends to decrease when an indentation is formed. Typically over 72%. MgO is a component that may decrease the ion exchange rate, but it is an essential component that suppresses the generation of cracks or improves the meltability. If it is less than 7%, T 2 or T 4 rises, making it difficult to melt or mold the glass. Preferably it is 7.5% or more, More preferably, it is 8% or more. If it exceeds 13%, the liquidus temperature rises and devitrification tends to occur. Preferably it is 12.5% or less, More preferably, it is 12% or less. MgO is typically 8 to 11% when it is desired to further suppress the decrease in strength when the surface of the glass is indented.
  • Na 2 O is a component that forms a surface compressive stress layer by ion exchange or improves the meltability of glass, and is essential. If it is less than 9%, it becomes difficult to form a desired surface compressive stress layer by ion exchange. Preferably it is 9.5% or more, more preferably 10% or more, and particularly preferably 10.5% or more. If Na 2 O exceeds 17%, the weather resistance is lowered, or cracks are likely to occur from the indentation. Preferably it is 16% or less.
  • K 2 O is not essential, but is a component that increases the ion exchange rate, and may be contained up to 7%. If it exceeds 7%, cracks tend to occur from the indentation. Preferably it is 6.5% or less, More preferably, it is 6% or less. When K 2 O is contained, its content is preferably 0.5% or more. When K 2 O is contained, the total R 2 O content of Na 2 O and K 2 O is preferably 22% or less. If it exceeds 22%, the weather resistance is lowered, or cracks are likely to occur from the indentation. Preferably it is 21% or less, More preferably, it is 20% or less. R 2 O is preferably at least 14%, typically at least 15%.
  • Na 2 O is 11 to 16%
  • K 2 O is 0 to 5%
  • R 2 O Na 2 O and K 2 O content
  • the K 2 O content is less than 3%
  • Na 2 O is typically 13.5 to 16%.
  • the difference R 2 O—Al 2 O 3 obtained by subtracting the content of Al 2 O 3 from R 2 O (content of Na 2 O and K 2 O) is preferably less than 10%. .
  • ZrO 2 is not an essential component because it may reduce the strength when indentation is formed on the glass surface, but 0.8% for reducing the viscosity at high temperature or increasing the surface compressive stress. If it is the range to, you may contain. If it exceeds 0.8%, the strength tends to decrease when an indentation is formed, or chipping tends to occur. Preferably it is 0.7% or less, More preferably, it is 0.6% or less, Most preferably, it is 0.55% or less.
  • the glass D of the present invention consists essentially of the components described above, but may contain other components as long as the object of the present invention is not impaired.
  • the total content of these components is preferably 5% or less, and typically 3% or less. It is particularly preferable that the total content of SiO 2 , Al 2 O 3 , MgO, Na 2 O and K 2 O is 98% or more.
  • the other components will be described as an example.
  • CaO, SrO, and BaO may be included to improve the meltability at high temperatures or to make devitrification less likely to occur, but there is a possibility that the resistance to ion exchange rate or crack generation may be reduced.
  • the content of each component is preferably 1% or less, more preferably 0.5% or less. In this case, the total content of these three components is preferably 1% or less, more preferably 0.5% or less.
  • ZnO may be contained in order to improve the melting property of the glass at a high temperature, but the content in that case is preferably 1% or less. When manufacturing by a float process, it is preferable to make it 0.5% or less. If it exceeds 0.5%, it may be reduced during float molding, resulting in a product defect. Typically no ZnO is contained.
  • B 2 O 3 may be contained, for example, in a range of less than 1% in order to improve the melting property at high temperature or the glass strength. If it is 1% or more, it is difficult to obtain a homogeneous glass, and there is a possibility that it becomes difficult to form the glass, or the chipping resistance may be lowered. Typically no B 2 O 3 is contained.
  • Li 2 O is a component that lowers the strain point to facilitate stress relaxation, and as a result makes it impossible to obtain a stable surface compressive stress layer, so it is preferably not contained, and even if it is contained, its content Is preferably less than 1%, more preferably 0.05% or less, and particularly preferably less than 0.01%.
  • SO 3 As a fining agent for melting the glass, SO 3 , chloride, fluoride and the like may be appropriately contained.
  • SO 3 sulfur oxide
  • chloride chloride
  • fluoride fluoride
  • the components that are mixed as impurities in the raw material such as Fe 2 O 3 , NiO, Cr 2 O 3 having absorption in the visible region, Each of them is preferably 0.15% or less, more preferably 0.1% or less, and particularly preferably 0.05% or less in terms of mass percentage.
  • the compositions shown in mole percentages in the columns from SiO 2 to ZrO 2 (or Li 2 O or TiO 2 ) in Tables 1 to 5 and Table 19 are used.
  • glass materials such as oxides, hydroxides, carbonates, nitrates and the like are appropriately selected and weighed to 400 g as glass, and are not shown in the above composition, but SO 3 It mixed about what added the sodium sulfate equivalent to 0.4 mass% in conversion.
  • R 2 O—Al is obtained by subtracting the content of Al 2 O 3 from the above R 2 O (content of Na 2 O and K 2 O), and “Na + 1.7K” is Na 2 O
  • the mass percentage display compositions corresponding to the mole percentage display compositions in Tables 1 to 5 and Table 19 are shown in Tables 7 to 11 and Table 20 as the sum of the content and the K 2 O content multiplied by 1.7. Shown in Material examples 18, 36, 37, and 48 to 57 were not melted, and material example 47 was an example of soda lime silica glass prepared separately.
  • These glasses were subjected to the following chemical strengthening treatment. That is, these glasses were immersed in 450 ° C. KNO 3 molten salt for 6 hours, respectively, and subjected to chemical strengthening treatment.
  • the surface compressive stress S (unit: MPa) and the thickness t (unit: ⁇ m) of the compressive stress layer were measured with a surface stress meter FSM-6000 manufactured by Orihara Seisakusho. The results are shown in the corresponding columns of Tables 1-6. As is apparent from the table, S using the glass B is 300 MPa or more and 1024 MPa or less, and t is 45 ⁇ m or more, indicating that a desired compressive stress layer is formed.
  • the test for devitrification was performed as follows. That is, devitrification in the glass is subjected to one of the test occurs when holding the glass for 15 hours at a temperature T 4. ⁇ in the column of “D” in the table indicates that devitrification did not occur in the above test, and x indicates that devitrification occurred. Moreover, even if devitrification occurs at temperature T 4, the case where devitrification did not occur at (T 4 + 40 ° C.) is indicated by ⁇ .
  • the sulfate decomposition test was performed as follows. That is, the amount of SO 3 remaining in the glass was measured at 1350 ° C. and 1500 ° C., and the difference ⁇ was calculated (unit: mass%). In order to reduce bubbles in the glass, ⁇ is preferably 0.08% by mass or more.
  • ⁇ estimated values from the compositions are shown. Here, the ⁇ estimated value of 0.4 to 0.9 mass% is described as “0.08” in the table.
  • the glasses of material examples 58 to 75 and 83 satisfy the composition of glass C, and the glasses of material examples 76 to 82 are comparative examples of glass C and deviate from the composition of glass C. Is.
  • the oxides were prepared so as to have compositions represented by mole percentages in the columns from SiO 2 to K 2 O in Tables 13 to 15 and Table 19.
  • Commonly used glass materials such as hydroxide, carbonate or nitrate were appropriately selected and weighed to give 400 g as glass. This weighed material was mixed with a sodium sulfate having a mass corresponding to 0.2% of the mass. Next, the mixed raw materials were put into a platinum crucible, put into a resistance heating electric furnace at 1650 ° C., melted for 5 hours, defoamed and homogenized.
  • the obtained molten glass was poured into a mold material, held at a temperature of Tg + 50 ° C. for 1 hour, and then cooled to room temperature at a rate of 0.5 ° C./min to obtain a glass block.
  • This glass block was cut and ground, and finally both surfaces were processed into mirror surfaces to obtain a plate-like glass having a size of 30 mm ⁇ 30 mm and a thickness of 1.0 mm.
  • the material example 80 of Table 15 is the soda lime glass prepared separately, and about the material examples 74 and 75 of Table 14, the above-mentioned glass melting etc. are not performed.
  • Tables 16 to 18 and Table 20 show the mass percentage display compositions of the glass materials of Material Examples 58 to 83.
  • the glass transition point Tg of the glass (unit: ° C.), temperature T 2 at which the viscosity becomes 10 2 dPa ⁇ s (unit: ° C.), the temperature T 4 at which the viscosity becomes 10 4 dPa ⁇ s (unit: ° C.), a specific gravity ⁇ , average thermal expansion coefficient ⁇ at 50 to 350 ° C.
  • P 0 is the crack generation rate when a load of 500 gf (4.9 N) was applied using a Vickers hardness meter, and was measured as follows.
  • the plate-like glass was ground with a thickness of 300 to 1000 ⁇ m using a # 1000 (1000 grit) grindstone, and then polished with cerium oxide to give a mirror surface.
  • the temperature is raised to a temperature of Tg + 50 ° C. under atmospheric pressure in a resistance heating type electric furnace, held at that temperature for 1 hour, and then 0.5 ° C. to room temperature. The temperature was lowered at a rate of / min.
  • the temperature increase was performed at a temperature increase rate such that the time to reach Tg was 1 hour.
  • the crack generation rate was measured using the sample which performed the above process. That is, a 10-point Vickers indenter was driven at a temperature of 20 to 28 ° C. and a dew point of ⁇ 30 ° C. with a Vickers hardness meter load of 500 gf (4.9 N) and the number of cracks generated at the four corners of the indentation. It was measured.
  • the crack generation rate P 0 (unit:%) was obtained by dividing the number of generated cracks by the number of cracks that can be generated 40 to display the percentage. It is preferable that the glass crack occurrence rate P 0 when unstrengthened is low. Glass materials Examples 58-75 and 83 are not what P 0 is more than 50%, it can be seen that the cracking hardly occurs even when unreinforced.
  • the following chemical strengthening treatment was performed on the plate-like glasses of Material Examples 58 to 73, 76 to 82, and 83. That is, these glasses were each immersed in 400 ° C. KNO 3 molten salt for 8 hours to perform chemical strengthening treatment.
  • the KNO 3 molten salt has a KNO 3 content of 99.7 to 100% and a NaNO 3 content of 0 to 0.3%.
  • the surface compressive stress S (unit: MPa) and the compressive stress layer depth t (unit: ⁇ m) were measured with a surface stress meter FSM-6000 manufactured by Orihara Seisakusho. The results are shown in the corresponding column of the table.
  • the Vickers hardness tester Vickers under the conditions of atmospheric pressure, temperature 20 to 28 ° C., humidity 40 to 60%.
  • the indenter was driven at 5 kgf (49 N), and the number of fractures starting from the indenter was divided by the measured number of 20 and expressed as a percentage, which was designated as the fracture rate P 1 (unit:%).
  • P 1 the fracture rate
  • the glass was not broken at all and P 1 was 0%, whereas in the glass of the material examples 80 to 82, P 1 was 100%, and all of them were broken. That is, it can be seen that the glass C has a low risk of breaking even if there is an indentation.
  • glass having a shape of 4 mm ⁇ 10 mm ⁇ thickness 1 mm and a surface of 4 mm ⁇ 10 mm mirror-finished and the other surface processed to # 1000 finish was prepared.
  • These glasses were chemically strengthened at 425 to 450 ° C. using potassium nitrate molten salt (KNO 3 : 98 to 99.8%, NaNO 3 : 0.2 to 2%).
  • the surface compressive stress S and the compressive stress layer depth t are 757 MPa and 55 ⁇ m for material example 58, 878 MPa and 52 ⁇ m for material example 65, 607 MPa and 15 ⁇ m for material example 80, 790 MPa and 49 ⁇ m for material example 81, and 790 MPa and 49 ⁇ m for material example 82. 830 MPa and 59 ⁇ m.
  • a Vickers indenter was driven at a load of 10 kgf (98 N) using a Vickers hardness meter in the center of the 4 mm ⁇ 10 mm surface of the chemically strengthened glass to form an indentation.
  • the glass of the material examples 80 to 82 was broken at the time of forming the indentation, but the material examples 58, 65, and 83 were not broken.
  • a three-point bending test was performed with a span of 30 mm.
  • the very high fracture stress was shown above.
  • Example 1 In Example 1, the plasma display apparatus 10 shown in FIG. 1 is manufactured. In Example 1, the functional film 40 is not provided on the cover glass plate 30. (Plasma display panel) Two aluminosilicate glass substrates are prepared as glass substrates for the plasma display panel. These glass substrates, a mole percentage based on oxides, SiO 2 67%, the Al 2 O 3 5%, the Na 2 O 4.5%, the K 2 O 4.5%, the MgO 3 0.5%, CaO 6.0%, SrO 4.5%, BaO 3.5% and ZrO 2 1.5%. The average thermal expansion coefficient of these glass substrates in the range of 50 to 350 ° C. is 83 ⁇ 10 ⁇ 7 / ° C.
  • a transparent electrode is formed in a predetermined pattern on one aluminosilicate glass substrate to produce a front substrate. Further, on the other aluminosilicate glass substrate, a transparent electrode, a partition wall and a phosphor layer are formed in a predetermined order to produce a rear substrate. Thereafter, the front substrate and the rear substrate are bonded together, and a rare gas is sealed between them to produce a plasma display panel.
  • the diagonal length on the display side of the plasma display panel is 37 inches (about 94 cm).
  • cover glass plate As the cover glass plate, an aluminosilicate glass plate (thickness 1.5 mm, diagonal length 40 inches (102 cm)) having the same composition as the glass substrate for the plasma display panel is prepared.
  • the average thermal expansion coefficient of the cover glass plate is substantially the same as the average thermal expansion coefficient of the glass substrate for the plasma display panel.
  • the cover glass plate is bonded to the display surface side of the plasma display panel using an adhesive.
  • the adhesive a thermosetting adhesive is used. In this way, a plasma display device is manufactured.
  • the flatness of the cover glass plate is measured. As a result of the measurement, the cover glass plate has a sufficiently small difference in thermal expansion from the glass substrate for the plasma display panel, and has a good flatness (1.0 mm or less) (JIS B0021).
  • Example 2 a plasma display device is manufactured in the same manner as in Example 1 except that the following chemically strengthened glass plate is used as the cover glass plate.
  • the chemically strengthened glass plate of Example 2 is obtained by chemically strengthening a glass plate having the same composition as that of Material Example 19 shown in Table 2 in a 100% by mass potassium nitrate melt maintained at 450 ° C. for 6 hours.
  • the average thermal expansion coefficient of this chemically strengthened glass plate in the range of 50 to 350 ° C. is 91 ⁇ 10 ⁇ 7 / ° C., which is 110% of the average thermal expansion coefficient of the glass substrate for a plasma display panel.
  • the flatness of the cover glass plate is measured. As a result of the measurement, the cover glass plate has a sufficiently small difference in thermal expansion from the glass substrate for the plasma display panel, and has a good flatness (1.0 mm or less).
  • Example 3 a plasma display device is manufactured in the same manner as in Example 1 except that the following chemically strengthened glass plate is used as the cover glass plate.
  • the chemically strengthened glass plate of Example 3 is obtained by chemically strengthening a glass plate having the same composition as that of Material Example 65 shown in Table 13 in a 100% by mass potassium nitrate melt maintained at 450 ° C. for 10 hours.
  • the average thermal expansion coefficient of this chemically strengthened glass plate in the range of 50 to 350 ° C. is 72 ⁇ 10 ⁇ 7 / ° C., which is 87% of the average thermal expansion coefficient of the glass substrate for a plasma display panel.
  • the flatness of the cover glass plate is measured. As a result of the measurement, it is understood that the cover glass plate has a sufficiently small difference in thermal expansion from the glass substrate for the plasma display panel and has a good flatness (1.0 mm or less).
  • Comparative Example 1 a plasma display device was manufactured in the same manner as in Example 1 except that an alkali-free glass plate was used as the cover glass plate.
  • the average thermal expansion coefficient in the range of 50 to 350 ° C. of the chemically strengthened glass of Comparative Example 1 is 38 ⁇ 10 ⁇ 7 / ° C., which is 46% of the average thermal expansion coefficient of the glass substrate constituting the plasma display panel. .
  • the difference in average thermal expansion coefficient between the glass substrate on the display surface side of the plasma display panel and the cover glass plate attached to the display surface side of the plasma display panel is suppressed to a predetermined range.
  • the cover glass plate can be prevented from warping, and the flatness on the cover glass plate side can be obtained without impairing the display of the plasma display device. It is particularly useful as a large-screen plasma display device using a thin cover glass plate with a large area.
  • Plasma display apparatus 20 Plasma display panel 21 Glass substrate 22 Glass substrate 23 Phosphor layer 30 Cover glass plate 40 Functional film 50 Decorating layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Glass Compositions (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

 画質を向上すると共に、大面積で薄いカバーガラス板の反りを低減することができるプラズマディスプレイ装置を提供すること。 ガラス基板21、22を備えるプラズマディスプレイパネル20と、該プラズマディスプレイパネル20の表示側に貼り付けられるカバーガラス板30とを備えるプラズマディスプレイ装置10において、カバーガラス板30は、81cm以上の対角線長さ、1.5mm以下の厚さを有し、カバーガラス板30の平均熱膨張係数が、50~350℃の範囲において、ガラス基板21、22の平均熱膨張係数の80~120%であることを特徴とするプラズマディスプレイ装置10を提供する。

Description

プラズマディスプレイ装置
 本発明は、プラズマディスプレイ装置に関する。
 携帯電話、携帯情報端末(PDA)、ノートパソコンなどのモバイル機器には、液晶ディスプレイ(LCD)装置などの薄型のディスプレイ装置が搭載されている。このディスプレイ装置では、表示パネルの前方に、前面板または前面フィルタとも呼ばれるカバーガラス板が設置されており、ユーザは前記カバーガラス板を介して表示パネルの表示を視認する(例えば、特許文献1参照)。
 カバーガラス板は、主として、ディスプレイ装置の美観や強度の向上、衝撃破損防止などを目的として設置される。カバーガラス板は、耐傷付き性向上のため、表層の少なくとも一部に圧縮応力層を設けた化学強化ガラス板であることが多い。化学強化ガラスの製造方法としては、例えばイオン交換法などがある。
 イオン交換法では、ガラスを処理液に浸漬して、ガラスの表層に含まれる、小さなイオン半径のイオン(例えば、Naイオン)を、大きなイオン半径のイオン(例えば、Kイオン)と置換することで、ガラスの表層に圧縮応力層を設ける。
特開2007-11210号公報
 一方、近年では、家庭用テレビなどの据え置き型の機器向けに、液晶ディスプレイ(LCD)装置やプラズマディスプレイ装置などの大画面化が進んでおり、モバイル機器に比べて、画面サイズが極めて大きくなっている。
 このような大画面(例えば、対角線長さが81cm(32インチ)以上)のディスプレイ装置に搭載されるカバーガラス板は、モバイル機器に搭載されるものに比べて、大面積となることが多い。また、大面積化に伴う質量増加を抑制するため、板厚を薄くすることが望まれている。
 ところで、ディスプレイ装置の画質を向上するため、表示パネルの表示側にカバーガラス板を貼り付けることが考えられる。これによって表示パネルとカバーガラス板との間に従来あった空隙を無くし、空隙と表示パネルとの界面および空隙とカバーガラス板との界面における光の反射を抑えることができる。
 しかしながら、表示パネルの表示側にカバーガラス板を貼り付けると、表示パネルを構成するガラス基板とカバーガラス板との間の熱膨張差に起因して反りなどが発生することがある。
 特にプラズマディスプレイ装置は、LCD装置と異なり、自発光(self-luminous)型の表示パネルを有するので、表示動作時に高温になりやすい。そのため、上記熱膨張差に起因して反りなどが発生しやすく、プラズマディスプレイ装置の美観や表示品質が損なわれやすい。この影響は、カバーガラス板の面積(対角線長さ)が大きいほど顕著である。
 しかしながら、上記特許文献1に記載のディスプレイ装置は、モバイル機器に搭載されることを前提にしており、小型のものであるので、カバーガラス板の対角線長さが81cm(32インチ)以上である場合に、反りを十分に低減することができる構成となっていない。
 本発明は、上記課題に鑑みてなされたものであって、画質を向上すると共に、大面積で薄いカバーガラス板の反りを低減することができるプラズマディスプレイ装置を提供することを目的とする。
 上記目的を解決するため、本発明は、ガラス基板を備えるプラズマディスプレイパネルと、該プラズマディスプレイパネルの表示側に貼り付けられるカバーガラス板とを備えるプラズマディスプレイ装置であって、
 前記カバーガラス板は、81cm(32インチ)以上の対角線長さ、1.5mm以下の厚さを有し、
 前記カバーガラス板の平均熱膨張係数が、50~350℃の範囲において、前記ガラス基板の平均熱膨張係数の80~120%であることを特徴とするプラズマディスプレイ装置を提供する。
 上記した数値範囲を示す「~」とは、特段の定めがない限り、その前後に記載された数値を下限値及び上限値として含む意味で使用され、以下本明細書において「~」は、同様の意味をもって使用される。
 本発明によれば、画質を向上すると共に、大面積で薄いカバーガラス板の反りを低減することができるプラズマディスプレイ装置を提供することができる。
本発明の一実施形態におけるプラズマディスプレイ装置の側面断面図である。 図1の正面図である。 溶融塩(KNO)中のLi含有量(質量%)と化学強化処理後のガラスの表面圧縮応力S(MPa)との関係を示す図である。 ガラス中のZrO含有量(mol%)と化学強化処理後のガラスのビッカース硬度(HV)との関係を示す図である。
 以下、本発明を実施するための形態について図面を参照して説明する。なお、本発明は、後述の実施形態に制限されることはなく、本発明の範囲を逸脱することなく、後述の実施形態に種々の変形および置換を加えることができる。
 図1は、本発明の一実施形態におけるプラズマディスプレイ装置の概略側面図である。図1に示すように、プラズマディスプレイ装置10は、プラズマディスプレイパネル20と、カバーガラス板30とを備える。カバーガラス板30はプラズマディスプレイパネル20よりも大面積であって、ユーザはカバーガラス板30を介してプラズマディスプレイパネル20の表示を視認する。
 (プラズマディスプレイパネル)
 プラズマディスプレイパネル20は、一般的な構成であって良く、例えば図1に示すように、2枚のガラス基板21、22、および2枚のガラス基板21、22の間に設けられる蛍光体層23などで構成される。プラズマディスプレイパネル20の熱膨張係数は、主に、ガラス基板21、22の熱膨張係数にて定まる。
 2枚のガラス基板21、22の内面24、25には、透明電極膜などが所定パターンで予め形成されている。2枚のガラス基板21、22の間には、希ガス(例えば、ネオンやヘリウム)などが封入されている。
 このプラズマディスプレイパネル20は、透明電極膜を介して希ガスに電圧を印加することで、紫外線を発生させ、蛍光体層23を蛍光させて、画像を表示する。
 ガラス基板21、22は、プラズマディスプレイパネル20の製造工程において加熱処理されるので、歪み点の温度の高いガラス(例えば、歪み点が570℃程度のガラス)で形成される。これによって、熱収縮(構造緩和)によるパターンずれを抑制することができる。
 また、ガラス基板21、22は、プラズマディスプレイパネル20の製造工程でガラス基板21、22の周辺部のシールのために使用されるガラスフリットとの熱膨張差を小さくするため、熱膨張係数の大きいガラス(典型的には、50~350℃の範囲における平均熱膨張係数(以下、単に「平均熱膨張係数」という)が83×10-7/℃程度のガラス)で形成されることが多い。なお、2枚のガラス基板21、22は、異なる組成であっても良いが、製造コスト削減のため、また、熱膨張差に起因する反り低減のため、同一組成であることが望ましい。
 ガラス基板21、22を製造する方法としては、まず、複数のガラス原料を目標の配合になるように調合し、これを溶解炉に連続的に投入し、1500~1600℃に加熱して溶融する。次いで、この溶融ガラスを所定の板厚に成形し、徐冷後切断して、ガラス基板21、22を得る。
 ここで、溶融ガラスを所定の板厚に成形する成形方法は、特に限定されないが、例えばフロート法やフュージョン法などがある。フロート法では、浴槽内の溶融金属(例えば、溶融錫)の浴面に溶融ガラスを連続的に供給して、帯板状に成形する。フュージョン法では、断面略V字状の樋の内部に溶融ガラスを連続的に供給し、樋から左右両側に溢れ出た溶融ガラスを、樋の下縁で合流させて帯板状に成形する。
 なお、本実施形態では、2枚のガラス基板21、22を用いるとしたが、いずれか一方の代わりに、樹脂基板などの透光性基板を用いても良い。なお、ここにおいて、樹脂基板などの透光性基板もガラス基板として含める。これによって、プラズマディスプレイパネル20のフレキシブル性を高めることができる。なお、樹脂基板は、耐熱性や耐薬品性が低いので、透明電極膜などを形成する際に加熱処理や薬品処理することが難しい。また、樹脂基板は、ガラス基板やカバーガラス板との熱膨張差が大きいので、反りが発生しやすい。そのため、2枚のガラス基板21、22を用いることが望ましい。
 (カバーガラス板およびその周辺部材)
 カバーガラス板30は、主として、プラズマディスプレイ装置10の美観や強度の向上、衝撃破損防止などを目的として設置される。カバーガラス板30は、プラズマディスプレイパネル20の表示側(前側)に貼り付けられる。
 例えば、カバーガラス板30は、透光性を有する接着膜を介して、プラズマディスプレイパネル20の表示側に貼り付けられる。接着膜は、一般的な構成であって良く、その材質や形状は適宜選定される。
 このようにして、カバーガラス板30とプラズマディスプレイパネル20との間に空隙がない構成とすることによって、従来あった空隙と、カバーガラス板30(または、プラズマディスプレイパネル20)との界面における光の反射を抑えることができる。その結果、プラズマディスプレイ装置10の画質を高めることができる。また、プラズマディスプレイ装置10の薄型化にも貢献することができる。
 カバーガラス板30は、プラズマディスプレイパネル20からの光を出射する前面31と、プラズマディスプレイパネル20からの光が入射する背面32とを有する。前面31または/および背面32には、機能膜40が設けられていても良い。なお、図1では、機能膜40は前面31に設けられている。
 機能膜40は、例えば、周囲光の反射防止、衝撃破損防止、電磁波遮蔽、近赤外線遮蔽、色調補正、または/および耐傷性向上などの機能を有する。
 機能膜40は、例えば樹脂製の膜をカバーガラス板30に貼り付けることにより形成されてもよい。あるいは、機能膜40は、蒸着法、スパッタ法、CVD法などの薄膜形成法により形成されても良い。
 機能膜40は、一般的な構成であって良く、その厚さおよび形状などは、用途に応じて適宜選択される。
 カバーガラス板30の背面32には、周縁部の少なくとも一部に沿って、加飾層(decorative layer)50が設けられている。この加飾層50は、プラズマディスプレイパネル20の外周を取り囲むように配置されて良い。
 加飾層50は、カバーガラス板30、ひいてはプラズマディスプレイ装置10のデザイン性や装飾性を高めるために設置される。例えば、加飾層50を黒色に着色すると、プラズマディスプレイ装置10がオフ状態のときに、カバーガラス板30の周縁部を含めて、カバーガラス板30の前面31から全く光が出射されなくなる。従って、プラズマディスプレイ装置10の外観がシャープな印象をユーザに与えるようになり、美観が向上する。
 加飾層50の形成方法に制限はなく、例えば、有機顔料粒子又は無機顔料粒子を含むインクをカバーガラス板30に塗布し、これを紫外線照射あるいは加熱焼成することによって形成することができる。インクは、例えば有機ビヒクルに有機顔料粒子又は無機顔料粒子を混合、分散させることによって調製される。
 (カバーガラス板の材質や特性など)
 カバーガラス板30の厚さは、薄型化、軽量化の観点から、1.5mm以下であって、好ましくは1.3mm以下であり、さらに好ましくは1.1mm以下である。また、カバーガラス板30の厚さは、ハンドリング性の観点から、0.5mm以上であることが好ましい。
 カバーガラス板30の対角線長さLは、大面積化の観点から、81cm(32インチ)以上であって、好ましくは94cm(37インチ)以上であり、さらに好ましくは101cm(40インチ)以上である。
 カバーガラス板30の平均熱膨張係数(JIS R3102)は、50~350℃の範囲において、プラズマディスプレイパネル20用のガラス基板21、22の平均熱膨張係数の80~120%である。ここで、「プラズマディスプレイパネル用のガラス基板」とは、プラズマディスプレイパネルが2枚のガラス基板を有する場合、両方のガラス基板を意味する。すなわち、プラズマディスプレイパネルの2枚のガラス基板が異なる平均熱膨張係数を有する場合、カバーガラス板の平均熱膨張係数は、プラズマディスプレイパネル用のガラス基板21、22の平均熱膨張係数のいずれに対しても80~120%とされる。
 カバーガラス板30の平均熱膨張係数を上記範囲とすることで、カバーガラス板30とガラス基板21、22との熱膨張差を十分に低減することができ、対角線長さが32インチ(約81.3cm)以上のカバーガラス板30の熱変形を十分に小さくすることができる。より好ましい範囲は85~115%、特に好ましい範囲は90~110%である。
 具体的には、例えば、プラズマディスプレイ装置10の表示動作時において熱が発生するときの反りを低減することができる。あるいは、プラズマディスプレイ装置10の製造工程において、プラズマディスプレイパネル20とカバーガラス板30とを熱硬化型の接着剤で固定するときの反りを低減することができる。これらの効果は、カバーガラス板30やガラス基板21、22の面積(対角線長さ)が大きくなるほど顕著である。
 カバーガラス板30は、反り低減のため、ガラス基板21やガラス基板22と同一組成の材料で形成されて良い。同一組成であると、製造コストを削減することもできる。
 また、カバーガラス板30は、耐傷付き性向上のため、化学強化処理によって表層の少なくとも一部に圧縮応力層を設けた化学強化ガラス板であるのが好ましい。化学強化処理の方法としては、例えばイオン交換法などがある。
 イオン交換法では、ガラス板を処理液に浸漬して、ガラス板の表層に含まれる、小さなイオン半径のイオン(例えば、Naイオン)を、大きなイオン半径のイオン(例えば、Kイオン)と置換することで、ガラス板の表層に圧縮応力層を設ける。
 処理液としては、硝酸カリウム(KNO)溶融塩などが用いられる。具体的な条件は、ガラス板の厚さによっても異なるが、400~550℃のKNO溶融塩に2~20時間ガラス板を浸漬させることが典型的である。経済的な観点からは400~500℃、2~16時間の条件で浸漬させることが好ましく、より好ましい浸漬時間は2~10時間である。
 化学強化処理前のカバーガラス板30は、特に限定されないが、例えば下記の組成を有するガラスA~ガラスDであると好ましい。
 (ガラスA)
 ガラスAは、酸化物基準のモル百分率表示で、SiOを55~70%、Alを5~15%、NaOを4~20%、MgOを1~15%含有し、これらの成分の合計量が85%以上である。
 ガラスAの50~350℃の範囲における平均熱膨張係数は、典型的には66×10-7~100×10-7/℃である。なお、ガラスAを化学強化してなる化学強化ガラス板の平均熱膨張係数は、圧縮応力層厚さtが十分に小さいので、化学強化前のガラスAの平均熱膨張係数と略同じである。
 (ガラスB)
 ガラスBは、酸化物基準のモル百分率表示で、SiOを50~74%、Alを1~10%、NaOを6~14%、KOを3~15%、MgOを2~15%、CaOを0~10%、ZrOを0~5%含有し、SiOおよびAlの含有量の合計が75%以下、NaOおよびKOの含有量の合計が12~25%、MgOおよびCaOの含有量の合計MgO+CaOが7~15%である。このガラスBは、下記のガラスB1~B3であっても良い。
 ガラスB1は、上記ガラスBであって、NaOが12%以下、KOが4%以上、NaO+KOが14%以上、MgO+CaOが8%以上、NaO+KOからAl含有量を減じた差が10%以上であり、BaOを含有する場合その含有量が1%未満である。
 このガラスB1において、SrOまたはBaOを含有する場合アルカリ土類金属酸化物の含有量の合計が15%以下であっても良い。
 このガラスB1において、SiOが60~70%、Alが2~8%、NaOが11%以下、KOが6~12%、MgOが4~14%、CaOが0~8%、ZrOが0~4%、NaO+KOが16~20%であっても良い。
 ガラスB2は、上記ガラスBであって、SiOが60~70%、Alが2~8%、KOが8%以下、MgOが6%以上、NaO+KOが18%以下であり、KO含有量に1.7を乗じたものとNaO含有量との和NaO+1.7KOが19%未満である。
 ガラスB3は、上記ガラスBであって、SiOが63%以上、Alが3%以上、NaOが8%以上、KOが8%以下、MgOが6~14%、CaOが0~1%、ZrOが1~4%、NaO+KOが14~17%である。
 このガラスB3において、KO含有量に1.7を乗じたものとNaO含有量との和、すなわちNaO+1.7KOが19%未満であっても良い。
 これらのガラスB(B1~B3)によれば、KO含有量が十分に高いので、化学強化のイオン交換速度を過大にすることなく、圧縮応力層厚さtを増大させることができる。よって、化学強化処理後に、別途、研磨処理を施すことなく、表面圧縮応力Sをたとえば1050MPa未満としつつ圧縮応力層の厚さtを大きくできる。
 ガラスBを化学強化してなる化学強化ガラス板では、圧縮応力層厚さtは20μm超であることが好ましい。20μm以下では割れやすくなるおそれがある。より好ましくは30μm以上、特に好ましくは40μm以上、典型的には45μm以上または50μm以上である。
 ガラスBを化学強化してなる化学強化ガラス板では、表面圧縮応力Sは典型的には300MPa以上1050MPa未満である。300MPa未満では割れやすくなるおそれがある。なお、ガラスB1を化学強化してなる化学強化ガラス板では、表面圧縮応力Sは典型的には300MPa以上750MPa未満であり、ガラスB2またはガラスB3を化学強化してなる化学強化ガラス板では、表面圧縮応力Sは典型的には700MPa以上1050MPa未満である。
 ガラスBのガラス転移点Tg(以下、単にTgともいう)は、ガラスB1においては典型的には540~610℃、ガラスB2、B3においては典型的には580~640℃である。
 ガラスBの粘度が10dPa・sとなる温度T(以下、単にTともいう)は1190℃以下であることが好ましい。1190℃超ではガラスの成形が困難になるおそれがある。典型的には1180℃以下である。
 ガラスBの粘度が10dPa・sとなる温度T(以下、単にTともいう)は1650℃以下であることが好ましい。1650℃超では溶融が困難となり、未融物などの製品欠点が多くなるおそれがある、または溶融設備が高価になるおそれがある。典型的には1600℃以下である。
 ガラスBの失透温度は前記温度T以下であることが好ましい。そのようなものでないとたとえばフロート法を適用したときに失透が発生し成形することが困難になるおそれがある。ここで失透温度とはガラスを15時間その温度に保持したときに失透が析出する温度の最高値である。
 ガラスBの比重ρは2.6以下であることが好ましい。2.6超ではプラズマディスプレイ装置10の軽量化が不十分になるおそれがある。
 ガラスBの50~350℃における平均熱膨張係数αは典型的には80×10-7~130×10-7/℃である。なお、ガラスBを化学強化してなる化学強化ガラス板の平均熱膨張係数は、圧縮応力層厚さtが十分に小さいので、化学強化前のガラスBの平均熱膨張係数αと略同じである。
 ガラスBのうち、ガラスB1は化学強化処理後に、別途、研磨処理を施すことなく、表面圧縮応力Sをたとえば750MPa未満としつつ圧縮応力層の厚さtを大きくしたい場合に好適な態様である。ガラスB2およびガラスB3はガラス製造時の清澄を硫酸塩によって行う場合に好適な態様である。
 次に、ガラスBの組成について、特に断らない限りモル百分率表示含有量を用いて説明する。
 SiOはガラスの骨格を構成する成分であり必須である。50%未満ではガラスとしての安定性が低下する、または耐候性が低下する。好ましくは60%以上である。なお、ガラスB2においては60%以上、好ましくは62%以上であり、ガラスB3においては63%以上である。
 SiOが74%超ではガラスの粘性が増大し溶融性が著しく低下する。好ましくは70%以下、典型的には68%以下である。なお、ガラスB2ではSiOは70%以下である。
 Alはイオン交換速度を向上させる成分であり、必須である。1%未満ではイオン交換速度が低下する。好ましくは2%以上、典型的には3%以上である。なお、ガラスB2ではAlは2%以上であり、ガラスB3では3%以上である。
 Alが10%超ではガラスの粘性が高くなり均質な溶融が困難になる。好ましくは9%以下、より好ましくは8%以下、典型的には7%以下である。なお、ガラスB2ではAlは8%以下である。
 SiOおよびAlの含有量の合計が75%超では高温でのガラスの粘性が増大し、溶融が困難となる。典型的には72%以下である。また、同合計は66%以上であることが好ましい。66%未満では安定なガラスが得られにくくなったり、耐候性が低下しやすくなったりするおそれがあり、典型的には68%以上である。
 NaOはイオン交換により圧縮応力層を形成させ、またガラスの溶融性を向上させる成分であり、必須である。6%未満ではイオン交換により所望の圧縮応力層を形成することが困難となる。好ましくは7%以上、典型的には8%以上である。なお、ガラスB3ではNaOは8%以上である。
 NaOが14%超ではTgしたがって歪点が低くなる、または耐候性が低下する。好ましくは13%以下、典型的には12%以下である。なお、ガラスB1ではNaOは12%以下であり、好ましくは11%以下、典型的には10%以下である。
 KOは溶融性を向上させる成分であるとともに、化学強化におけるイオン交換速度を大きくして所望の表面圧縮応力Sと圧縮応力層厚さtを得るようにするための成分であり、必須である。3%未満では溶融性が低下する、またはイオン交換速度が低下する。典型的には4%以上である。なお、ガラスB1ではKOは4%以上であり、好ましくは5%以上、より好ましくは6%以上、典型的には7%以上である。なお、KOの質量百分率表示含有量は3%以上であることが典型的である。
 KOが15%超では耐候性が低下する。好ましくは12%以下、典型的には11%以下である。なお、ガラスB2、ガラスB3ではKOは8%以下であり、好ましくは7%以下、典型的には6%以下である。
 NaOおよびKOの含有量の合計ROが12%未満では所望のイオン交換特性を得ることができなくなる。好ましくは13%以上、より好ましくは14%以上である。なお、ガラスB1、ガラスB3ではROは14%以上であり、ガラスB1では好ましくは16%以上、より好ましくは16.5%以上、典型的には17%以上である。
 RO(NaOおよびKOの合計量)が25%超ではガラスの耐候性をはじめとする化学的耐久性が低くなる。好ましくは22%以下、より好ましくは20%以下、典型的には19%以下である。なお、ガラスの塩基性度を低下させ硫酸塩による清澄性を向上させるなどのために、ガラスB2ではROは18%以下、ガラスB3では17%以下である。
 ガラスの塩基性度を低下させ硫酸塩による清澄性を向上させるなどのために、ガラスB2では前記NaO+1.7KOは19%未満とされる。ガラスB3においてもNaO+1.7KOは19%未満であることが好ましい。なお、「ガラスの塩基性度を低下させ硫酸塩による清澄性を向上させる」とは、硫酸ナトリウムによる清澄の場合について言えば硫酸ナトリウムの分解温度を1500℃程度以下にすることを言う。
 前記RO(NaOおよびKOの合計量)からAl含有量を減じた差RO-Alは10%以上であることが好ましい。10%未満であると圧縮応力層厚さtが小さくなるおそれがある。圧縮応力層厚さtが小さくなるのはTgしたがって歪点が高くなるためであると考えられる。なお、ガラスB1ではRO-Alは10%以上である。
 SiOおよびAlの含有量の合計からRO(NaOおよびKOの合計量)を減じた差は60%以下であることが好ましい。60%超では前記Tが1650℃を超え溶融が困難になるおそれがある。
 LiOは歪点を低くして応力緩和を起こりやすくし、その結果安定した圧縮応力層を得られなくする成分であるので含有しないことが好ましく、含有する場合であってもその含有量は2%以下であることが好ましく、より好ましくは0.05%以下、特に好ましくは0.01%未満である。
 また、LiOは化学強化処理時にKNOなどの溶融塩中に溶出することがあるが、Liを含有する溶融塩を用いて化学強化処理を行うと表面圧縮応力Sが著しく低下する。すなわち、本発明者はLiを含有しないKNO、Liを0.005質量%、0.01質量%、0.04質量%含有するKNOを用いて後掲の材料例19のガラスを450℃6時間の条件で化学強化処理を行ったところ、図3に示すように溶融塩がLiを0.005質量%含有しているだけで表面圧縮応力が著しく低下することを見出した。したがって、LiOはこの観点からは含有しないことが好ましい。
 KOの含有量とアルカリ金属酸化物の含有量の合計の比は0.25以上であることが好ましく、より好ましくは0.4以上、典型的には0.5超である。
 アルカリ土類金属酸化物は溶融性を向上させる成分であるとともに、Tgしたがって歪点の調節に有効な成分である。
 BaOはアルカリ土類金属酸化物の中でイオン交換速度を低下させる効果が最も大きいので、BaOは含有しないこととするか、含有する場合であってもその含有量は1%未満とすることが好ましく、ガラスB1では含有する場合であっても1%未満にしなければならない。
 SrOは必要に応じて含有してもよいが、MgO、CaOに比べてイオン交換速度を低下させる効果が大きいので含有する場合であってもその含有量は1%未満であることが好ましい。
 SrOまたはBaOを含有する場合それらの含有量の合計は3%以下であることが好ましく、より好ましくは2%未満である。
 MgOおよびCaOはイオン交換速度を低下させる効果が比較的小さいものであり、少なくともMgOを2%以上含有しなければならない。
 MgOが2%未満では溶融性が低下する。好ましくは4%以上、より好ましくは6%以上、典型的には6.5%以上である。なお、ガラスB2、ガラスB3ではMgOは6%以上であり、好ましくは6.5%以上、典型的に10%以上である。
 MgOが15%超ではイオン交換速度が低下する。好ましくは14%以下、より好ましくは13.5%以下である。なお、ガラスB1ではMgOは13%以下であることが特に好ましく、典型的に12%以下であり、ガラスB3ではMgOは14%以下である。
 CaOを含有する場合、その含有量は典型的には1%以上である。その含有量が10%超ではイオン交換速度が低下する。好ましくは8%以下、典型的には6%以下である。なお、ガラスB2ではCaOを含有する場合でもその含有量は典型的には1%以下であり、ガラスB3では1%以下にしなければならない。
 CaOを含有する場合、MgOとCaOの含有量の比は1以上であることが好ましい。より好ましくは1.1以上である。
 MgOおよびCaOの含有量の合計MgO+CaOは7~15%であり、典型的には8%以上であり、ガラスB1では8%以上でなければならない。また、MgOおよびCaOの質量百分率表示の含有量の合計は典型的には5.1%以上である。
 MgO+CaOとAlの含有量の比は好ましくは1.2以上、典型的には1.5以上である。
 アルカリ土類金属酸化物の含有量の合計ROは2%超15%以下であることが好ましい。2%以下では溶融性が低下する、または歪点の調節が困難になる。好ましくは4%以上、より好ましくは6%以上、典型的には8%以上である。15%超ではイオン交換速度が低下する、失透しやすくなる、または歪点が低くなりすぎるおそれがある。
 ガラスB3を除くガラスBではZrOは必須ではないが、イオン交換速度を大きくするために5%までの範囲で含有してもよい。5%超ではイオン交換速度を大きくする効果が飽和し、また、溶融性が悪化して未溶融物としてガラス中に残る場合が起こる。また、図4に示すようにZrOを含有させることによって化学強化処理後のガラスのビッカース硬度が増大する。ちなみに、図4に示す傾向は、後掲の材料例5、9、10のガラスの他、(1)モル百分率表示で、SiOを64.0%、Alを5.4%、NaOを9.6%、KOを9.1%、MgOを5.4%、CaOを4.0%、ZrOを2.5%含有するガラス、(2)モル百分率表示で、SiOを64.0%、Alを5.3%、NaOを9.6%、KOを9.1%、MgOを5.2%、CaOを4.0%、ZrOを2.7%含有するガラス、(3)モル百分率表示で、SiOを66.8%、Alを11.0%、NaOを13.1%、KOを2.5%、MgOを6.1%、CaOを0.6%含有するガラスにおいても同様に認められる。ZrOは、好ましくは4%以下、典型的には2%以下である。ZrOを含有する場合、その含有量は好ましくは0.5%以上、典型的には1%以上である。
 ガラスB3において、ZrOは必須であり、1~4%含有する。典型的には1.5~3%である。
 ガラスBは本質的に以上で説明した成分からなるが、ガラスBの効果を損なわない範囲でその他の成分を含有してもよい。そのような成分を含有する場合、それら成分の含有量の合計は10%以下であることが好ましく、典型的には5%以下である。以下、上記その他成分について例示的に説明する。
 ZnOはガラスの高温での溶融性を向上するためにたとえば2%まで含有してもよい場合があるが、好ましくは1%以下である。フロート法で製造する場合などには0.5%以下にすることが好ましい。0.5%超ではフロート成形時に還元し製品欠点となるおそれがある。典型的にはZnOは含有しない。
 Bは高温での溶融性またはガラス強度の向上のためにたとえば1%まで含有してもよい場合がある。1%超では均質なガラスを得にくくなり、ガラスの成形が困難になるおそれがある。典型的にはBは含有しない。
 TiOはガラス中に存在するFeイオン(Fe2+、Fe3+)の酸化還元状態を変化させ可視光透過率が変化してガラスが着色するおそれがあるので、含有するとしても1%以下であることが好ましく、典型的には含有しない。
 ガラスの溶融の際の清澄剤として、SO、塩化物、フッ化物などを適宜含有してもよい。ただし、画質向上のため、可視域に吸収をもつFe、NiO、Crなど原料中の不純物として混入するような成分はできるだけ減らすことが好ましく、各々質量百分率表示で0.15%以下であることが好ましく、より好ましくは0.05%以下である。
 (ガラスC)
 ガラスCは、酸化物基準のモル百分率表示で、SiOを68~80%、Alを4~10%、NaOを5~15%、KOを0~1%、MgOを4~15%、ZrOを0~1%含有し、SiOおよびAlの含有量の合計SiO+Alが85%以下である。
 このガラスCにおいて、Alが4.5%以上であるのが好ましい。また、このガラスCにおいて、SiO+Alが75%以上であるのが好ましい。さらに、このガラスCにおいて、SiOが70~75%、Alが5%以上、NaOが8%以上、MgOが5~12%、SiO+Alが77~83%であるのがより好ましい。
 また、このガラスCにおいて、CaOを含有しない、またはCaOを含有する場合その含有量が1%未満であって良い。
 また、このガラスCにおいて、CaO、SrO、BaOおよびZrOのいずれか1以上の成分を含有する場合それら4成分の含有量の合計が1.5%未満であるのがより好ましい。
 このガラスCによれば、化学強化法による十分な強度向上が可能であり、しかも化学強化後のガラス使用時につく圧痕を起点としたクラックの発生(伸展)を抑制することができる。
 ガラスCを化学強化してなる化学強化ガラス板では、表面圧縮応力Sは550MPa以上であることが好ましく、また、典型的には1200MPa以下である。
 ガラスCを化学強化してなる化学強化ガラス板では、圧縮応力層厚さtは10μm超であることが好ましく、また、典型的には70μm以下である。
 ガラスCを化学強化してなる化学強化ガラス板は、ビッカース硬度計のビッカース圧子で5kgf=49Nの力を加えても破壊しないものであることが好ましい。7kgfの力を加えても破壊しないものであることがより好ましく、10kgfの力を加えても破壊しないものであることが特に好ましい。
 ガラスCのガラス転移点Tgは400℃以上であることが好ましい。400℃未満ではイオン交換時に表面圧縮応力が緩和してしまい、十分な応力を得られないおそれがある。
 ガラスCの粘度が10dPa・sとなる温度Tは1750℃以下であることが好ましい。
 ガラスCの粘度が10dPa・sとなる温度Tは1350℃以下であることが好ましい。
 ガラスCの比重ρは2.50以下であることが好ましい。
 ガラスCのヤング率Eは68GPa以上であることが好ましい。68GPa未満ではガラスの耐クラック性や破壊強度が不十分となるおそれがある。
 ガラスCのポアソン比σは0.25以下であることが好ましい。0.25超ではガラスの耐クラック性が不十分となるおそれがある。
 ガラスCの50~350℃における平均熱膨張係数αは典型的には57×10-7~81×10-7/℃である。なお、ガラスCを化学強化してなる化学強化ガラス板の平均熱膨張係数は、圧縮応力層厚さtが十分に小さいので、化学強化前のガラスCの平均熱膨張係数αと略同じである。
 次に、ガラスCの組成について、特に断らない限りモル百分率表示含有量を用いて説明する。
 SiOはガラスの骨格を構成する成分であり必須である。また、ガラス表面に傷がついた時のクラックの発生を低減させる成分である。68%未満ではガラスとしての安定性や耐候性またチッピング耐性が低下する。好ましくは70%以上である。SiOが80%超ではガラスの粘性が増大し溶融性が低下する。好ましくは75%以下である。
 Alはイオン交換性能およびチッピング耐性を向上させる成分であり必須である。4%未満ではイオン交換により、所望の表面圧縮応力値、応力層深さが得られなくなる。好ましくは4.5%以上、より好ましくは5%以上である。10%超ではガラスの粘性が高くなり均質な溶融が困難になる。
 SiOおよびAlの含有量の合計SiO+Alが85%超では高温でのガラスの粘性が増大し、溶融が困難となる。好ましくは83%以下である。また、SiO+Alは75%以上であることが好ましい。75%未満では圧痕がついた時のクラック耐性が低下する。より好ましくは77%以上である。
 NaOはイオン交換により圧縮応力層を形成させ、またガラスの溶融性を向上させる成分であり、必須である。5%未満ではイオン交換により所望の圧縮応力層を形成することが困難となる。好ましくは8%以上である。NaOが15%超では耐候性が低下する。また、圧痕からクラックが発生しやすくなる。
 KOは必須ではないがイオン交換速度を増大させるため、1%まで含有してもよい。1%超では圧痕からクラックが発生しやすくなる。
 MgOはイオン交換速度を低下させる可能性のある成分であるが、クラックの発生を抑制し、また溶融性を向上させる成分であり、必須である。4%未満では粘性が増大し溶融性が低下する。好ましくは5%以上である。15%超ではガラスが失透しやすくなる。好ましくは12%以下である。
 ZrOは必須ではないが、高温での粘性を低下させるために、または表面圧縮応力を大きくするために1%までの範囲で含有してもよい。1%超では圧痕からクラックが発生する可能性が高まるおそれがある。
 ガラスCは本質的に以上で説明した成分からなるが、ガラスCの効果を損なわない範囲でその他の成分を含有してもよい。そのような成分を含有する場合、それら成分の含有量の合計は5%以下であることが好ましく、典型的には3%以下である。以下、上記その他成分について例示的に説明する。
 ZnOはガラスの高温での溶融性を向上するためにたとえば2%まで含有してもよい場合があるが、好ましくは1%以下である。フロート法で製造する場合などには0.5%以下にすることが好ましい。0.5%超ではフロート成形時に還元し製品欠点となるおそれがある。典型的にはZnOは含有しない。
 Bは高温での溶融性またはガラス強度の向上のためにたとえば1%未満の範囲で含有してもよい場合がある。1%以上では均質なガラスを得にくくなり、ガラスの成形が困難になるおそれがある、またはチッピング耐性が低下するおそれがある。典型的にはBは含有しない。
 TiOはガラス中に存在するFeイオンと共存することにより、可視光透過率を低下させ、ガラスを褐色に着色するおそれがあるので、含有するとしても1%以下であることが好ましく、典型的には含有しない。
 LiOは歪点を低くして応力緩和を起こりやすくし、その結果安定した圧縮応力層を得られなくする成分であるので含有しないことが好ましく、含有する場合であってもその含有量は1%未満であることが好ましく、より好ましくは0.05%以下、特に好ましくは0.01%未満である。
 また、LiOは化学強化処理時にKNOなどの溶融塩中に溶出することがあるが、Liを含有する溶融塩を用いて化学強化処理を行うと表面圧縮応力が著しく低下する。すなわち、本発明者はLiを含有しないKNO、Liを0.005質量%、0.01質量%、0.04質量%含有するKNOを用いて後掲の材料例76のガラスを450℃6時間の条件で化学強化処理を行ったところ、溶融塩がLiを0.005質量%含有しているだけで表面圧縮応力が著しく低下することを見出した。したがって、LiOはこの観点からは含有しないことが好ましい。
 CaOは高温での溶融性を向上させる、または失透を起こりにくくするために1%未満の範囲で含有してもよい。1%以上ではイオン交換速度またはクラック発生に対する耐性が低下する。典型的にはCaOは含有しない。
 SrOは必要に応じて含有してもよいが、MgO、CaOに比べてイオン交換速度を低下させる効果が大きいので含有する場合であってもその含有量は1%未満であることが好ましい。典型的にはSrOは含有しない。
 BaOはアルカリ土類金属酸化物の中でイオン交換速度を低下させる効果が最も大きいので、BaOは含有しないこととするか、含有する場合であってもその含有量は1%未満とすることが好ましい。
 SrOまたはBaOを含有する場合それらの含有量の合計は1%以下であることが好ましく、より好ましくは0.3%未満である。
 CaO、SrO、BaOおよびZrOのいずれか1以上を含有する場合それら4成分の含有量の合計は1.5%未満であることが好ましい。1.5%以上ではイオン交換速度が低下するおそれがある。典型的には1%以下である。
 ガラスの溶融の際の清澄剤として、SO、塩化物、フッ化物などを適宜含有してもよい。ただし、画質向上のため、可視域に吸収をもつFe、NiO、Crなど原料中の不純物として混入するような成分はできるだけ減らすことが好ましく、各々質量百分率表示で0.15%以下であることが好ましく、より好ましくは0.05%以下である。
  (ガラスD)
 ガラスDは、酸化物基準のモル百分率表示で、SiOを61~66%、Alを6~12%、MgOを7~13%、NaOを9~17%、KOを0~7%含有し、ZrOを含有する場合その含有量が0.8%以下である。
 次に、ガラスDの組成について、特に断らない限りモル百分率表示含有量を用いて説明する。
 SiOはガラスの骨格を構成する成分であり必須である。61%未満では、圧痕が付いた時に強度の低下が起こりやすくなる、ガラス表面に傷がついた時にクラックが発生しやすくなる、耐候性が低下する、比重が大きくなる、または液相温度が上昇しガラスが不安定になる。好ましくは61.5%以上、より好ましくは62%以上、特に好ましくは63%以上である。SiOが66%超ではTまたはTが上昇しガラスの溶解または成形が困難となる。好ましくは65.5%以下である。ガラス表面に圧痕が付いた時の強度の低下をより抑制したい場合のSiOは典型的には63~65%である。なお、SiOの質量百分率表示含有量は典型的には64%未満である。
 Alはイオン交換性能および耐候性を向上させる成分であり必須である。6%未満では圧痕が付いた時に強度の低下が起こりやすくなる、またはイオン交換により所望の表面圧縮応力S、応力層厚みtが得られなくなる。好ましくは6.5%以上、より好ましくは7%以上、特に好ましくは7.5%以上である。12%超ではTもしくはTが上昇しガラスの溶解もしくは成形が困難となる、または液相温度が高くなり失透しやすくなる。好ましくは11.5%以下である。
 SiOおよびAlの含有量の合計は、好ましくは71%以上である。71%未満では圧痕が付いた時に強度の低下が起こりやすくなるおそれがある。典型的には72%超である。
 MgOはイオン交換速度を低下させる可能性のある成分であるが、クラックの発生を抑制し、または溶融性を向上させる成分であり、必須である。7%未満ではTまたはTが上昇しガラスの溶解または成形が困難となる。好ましくは7.5%以上、より好ましくは8%以上である。13%超では液相温度が上昇し失透しやすくなる。好ましくは12.5%以下、より好ましくは12%以下である。ガラス表面に圧痕が付いた時の強度の低下をより抑制したい場合のMgOは典型的には8~11%である。
 NaOはイオン交換により表面圧縮応力層を形成させ、またはガラスの溶融性を向上させる成分であり、必須である。9%未満ではイオン交換により所望の表面圧縮応力層を形成することが困難となる。好ましくは9.5%以上、より好ましくは10%以上、特に好ましくは10.5%以上である。NaOが17%超では耐候性が低下する、または圧痕からクラックが発生しやすくなる。好ましくは16%以下である。
 KOは必須ではないがイオン交換速度を増大させる成分であり、7%まで含有してもよい。7%超では圧痕からクラックが発生しやすくなる。好ましくは6.5%以下、より好ましくは6%以下である。KOを含有する場合その含有量は好ましくは0.5%以上である。
 KOを含有する場合、NaOおよびKOの含有量の合計ROは22%以下であることが好ましい。22%超では耐候性が低下する、または圧痕からクラックが発生しやすくなる。好ましくは21%以下、より好ましくは20%以下である。また、ROは好ましくは14%以上、典型的には15%以上である。
 ガラス表面に圧痕が付いた時の強度の低下をより抑制したい場合、典型的にはNaOは11~16%、KOは0~5%、RO(NaOおよびKOの含有量)は15~17%であり、KO含有量が3%未満の場合にはNaOは13.5~16%が典型的である。
 Tgを高くしたい場合などはRO(NaOおよびKOの含有量)からAl含有量を減じた差RO-Alが10%未満であることが好ましい。
 ZrOはガラス表面に圧痕が付いた時の強度を低下させる可能性があるので必須成分ではないが、高温での粘性を低下させる、または表面圧縮応力を大きくする等のため、0.8%までの範囲であれば含有してもよい。0.8%超では圧痕が付いた時に強度の低下が起こりやすくなる、またはチッピングが起こりやすくなる。好ましくは0.7%以下、より好ましくは0.6%以下、特に好ましくは0.55%以下である。
 本発明のガラスDは本質的に以上で説明した成分からなるが、本発明の目的を損なわない範囲でその他の成分を含有してもよい。そのような成分を含有する場合、それら成分の含有量の合計は5%以下であることが好ましく、典型的には3%以下である。SiO、Al、MgO、NaOおよびKOの含有量の合計が98%以上であることが特に好ましい。以下、上記その他成分について例示的に説明する。
 CaO、SrOおよびBaOは高温での溶融性を向上させる、または失透を起こりにくくするために含有してもよいが、イオン交換速度またはクラック発生に対する耐性が低下するおそれがある。CaO、SrOおよびBaOのいずれか1以上を含有する場合各成分の含有量は、好ましくは1%以下、より好ましくは0.5%以下である。また、この場合これら3成分の含有量の合計は1%以下であることが好ましく、より好ましくは0.5%以下である。
 ZnOはガラスの高温での溶融性を向上するために含有してもよい場合があるが、その場合における含有量は好ましくは1%以下である。フロート法で製造する場合には0.5%以下にすることが好ましい。0.5%超ではフロート成形時に還元し製品欠点となるおそれがある。典型的にはZnOは含有しない。
 Bは高温での溶融性またはガラス強度の向上のために、たとえば1%未満の範囲で含有してもよい場合がある。1%以上では均質なガラスを得にくくなり、ガラスの成形が困難になるおそれがある、またはチッピング耐性が低下するおそれがある。典型的にはBは含有しない。
 TiOはガラス中に存在するFeイオンと共存することにより、可視光透過率を低下させ、ガラスを褐色に着色するおそれがあるので、含有するとしても1%以下であることが好ましく、典型的には含有しない。
 LiOは歪点を低くして応力緩和を起こりやすくし、その結果安定した表面圧縮応力層を得られなくする成分であるので含有しないことが好ましく、含有する場合であってもその含有量は1%未満であることが好ましく、より好ましくは0.05%以下、特に好ましくは0.01%未満である。
 ガラスの溶融の際の清澄剤として、SO、塩化物、フッ化物などを適宜含有してもよい。ただし、タッチパネルなどディスプレイ装置の視認性を上げるためには、可視域に吸収をもつFe、NiO、Crなど原料中の不純物として混入するような成分はできるだけ減らすことが好ましく、各々質量百分率表示で0.15%以下であることが好ましく、より好ましくは0.1%以下、特に好ましくは0.05%以下である。
 以下に、実施例などにより本発明を具体的に説明するが、本発明はこれらの例によって限定されるものではない。
 (カバーガラス板の材料)
 (材料例1~57)
 材料例1~37のガラスは、上記ガラスBの組成を満足するものであって、材料例38~57のガラスは、上記ガラスBの比較例であって、上記ガラスBの組成から外れるものである。材料例84は上記ガラスDに関するものであり、上記ガラスDの組成を満足するものである。
 材料例1~17、19~35、38~47、84について、表1~5および表19のSiOからZrO(またはLiO若しくはTiO)までの欄にモル百分率表示で示す組成になるように、酸化物、水酸化物、炭酸塩、硝酸塩等一般に使用されているガラス原料を適宜選択し、ガラスとして400gとなるように秤量し、また前記組成には示していないが、SO換算で0.4質量%に相当する硫酸ナトリウムを添加したものについて混合した。ついで、白金製るつぼに入れ、1600℃の抵抗加熱式電気炉に投入し、3時間溶融し、脱泡、均質化した後、型材に流し込み、所定の温度で徐冷し、ガラスブロックを得た。このガラスブロックからサイズが40mm×40mm、厚みが0.8mmになるように切断、研削し、最後に両面を鏡面に加工し、板状のガラスを得た。
 なお、表中の「RO-Al」は前記RO(NaOおよびKOの含有量)からAl含有量を減じたもの、「Na+1.7K」はNaO含有量とKO含有量を1.7倍したものとの和であり、また、表1~5および表19のモル百分率表示組成に対応する質量百分率表示組成を表7~11および表20に示す。
 なお、材料例18、36、37、48~57はこのような溶融を行わなかったものであり、材料例47は別に用意したソーダライムシリカガラスの例である。
 これらガラスについて次のような化学強化処理を行った。すなわち、これらガラスを450℃のKNO溶融塩にそれぞれ6時間浸漬し、化学強化処理を行った。各ガラスについて、折原製作所社製表面応力計FSM-6000にて表面圧縮応力S(単位:MPa)および圧縮応力層の厚みt(単位:μm)を測定した。結果を表1~6の該当欄に示す。表から明らかなようにガラスBを用いたもののSは300MPa以上1024MPa以下であり、しかもtは45μm以上であり、所望の圧縮応力層が生じていることがわかる。
 なお、材料例18、36、37、48~57、84のS、tは組成から計算によって求めた。
 また、材料例5、40、47、84についてはガラス転移点Tg(単位:℃)、粘度が10dPa・sとなる温度T(単位:℃)、粘度が10dPa・sとなる温度T(単位:℃)、比重ρ、平均熱膨張係数α(単位:10-7/℃)を測定した。また、材料例19、20についてはTg、T、T、αを、材料例24~26についてはTg、αを測定した。結果を表の該当欄に示す。なお、その他の材料例については、組成から計算によってこれらの値を求めた。結果を表に示す。
 また、材料例1、4~10、15~17、19~35、40、43~47、84については次のようにして失透に関する試験を行った。すなわち、温度Tにガラスを15時間保持した時にガラスに失透が発生するかの試験を行った。表中の「D」の欄の○は上記試験で失透が発生しなかったことを、×は失透が発生したことをそれぞれ示す。また、温度Tで失透が発生するものであっても(T+40℃)で失透が発生しなかったものは△で示す。
 材料例19~35については次のようにして硫酸塩分解に関する試験を行った。すなわち、ガラス中に残存しているSO量を1350℃および1500℃で測定し、その差Δを算出した(単位:質量%)。ガラス中の泡を減らすためにはΔは0.08質量%以上であることが好ましい。材料例36、48~57については組成からのΔ推定値を示す。ここでΔ推定値が0.4~0.9質量%であるものは表には「0.08」と記す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
(材料例58~83)
 材料例58~75および83のガラスは、上記ガラスCの組成を満足するものであって、材料例76~82のガラスは、上記ガラスCの比較例であって、上記ガラスCの組成から外れるものである。
 材料例58~73、76~79、81、82、83について、表13~表15および表19のSiOからKOまでの欄にモル百分率表示で示す組成になるように、酸化物、水酸化物、炭酸塩または硝酸塩等一般に使用されているガラス原料を適宜選択し、ガラスとして400gとなるように秤量した。この秤量したものにその質量の0.2%に相当する質量の硫酸ナトリウムを添加したものについて混合した。ついで、白金製るつぼに混合した原料を入れ、1650℃の抵抗加熱式電気炉に投入し、5時間溶融し、脱泡、均質化した。得られた溶融ガラスを型材に流し込み、Tg+50℃の温度で1時間保持した後、0.5℃/分の速度で室温まで冷却し、ガラスブロックを得た。このガラスブロックを切断、研削し、最後に両面を鏡面に加工して、サイズが30mm×30mm、厚みが1.0mmである板状ガラスを得た。
 また、表15の材料例80は別に用意したソーダライムガラスであり、表14の材料例74、75については上で述べたようなガラスの溶融等を行っていない。
 参考のために、材料例58~83のガラスの質量百分率表示組成を表16~表18および表20に示す。
 これらガラスのガラス転移点Tg(単位:℃)、粘度が10dPa・sとなる温度T(単位:℃)、粘度が10dPa・sとなる温度T(単位:℃)、比重ρ、50~350℃における平均熱膨張係数α(単位:×10-7/℃)、ヤング率E(単位:GPa)、ポアソン比σ、未強化時のクラック発生率P(単位:%)を表に示す。なお、表中に「*」を付して示すデータは組成から計算または推定して求めたものである。
 Pはビッカース硬度計を用いて500gf(4.9N)の荷重をかけた時のクラック発生率であり、次のようにして測定した。
 板状ガラスを#1000(1000 grit)の砥石を用いて、厚さ300~1000μm研削し、その後、酸化セリウムを用いて研磨してその表面を鏡面とした。次に、この鏡面加工した表面の加工歪を除去するため、抵抗加熱型の電気炉にて大気圧下Tg+50℃の温度まで昇温し、その温度に1時間保持した後室温まで0.5℃/分の速度で降温した。なお、昇温はTgへの到達時間が1時間となるような昇温速度で行った。
 以上の処理を行ったサンプルを用いてクラック発生率を測定した。すなわち、大気雰囲気下、温度20~28℃、露点-30℃の条件で、ビッカース硬度計の荷重を500gf(4.9N)として10点ビッカース圧子を打ち込み、圧痕の四隅に発生するクラックの本数を測定した。この発生したクラック本数をクラック発生可能本数40で除して百分率表示としたものをクラック発生率P(単位:%)とした。
 未強化時のガラスのクラック発生率Pは低い方が好ましい。材料例58~75および83のガラスはPが50%を超えるものがなく、未強化の状態でもクラックが発生しにくいことがわかる。
 次に、材料例58~73、76~82、83の板状ガラスについて次のような化学強化処理を行った。すなわち、これらガラスを400℃のKNO溶融塩にそれぞれ8時間浸漬し、化学強化処理を行った。なお、KNO溶融塩のKNO含有割合は99.7~100%、NaNO含有割合は0~0.3%である。
 化学強化処理後の各ガラスについて、折原製作所社製表面応力計FSM-6000にて表面圧縮応力S(単位:MPa)および圧縮応力層深さt(単位:μm)を測定した。結果を表の該当欄に示す。
 また、材料例58、65、80~83の上記化学強化処理後の板状ガラス各20枚に関して、大気圧下、温度20~28℃、湿度40~60%の条件で、ビッカース硬度計のビッカース圧子を5kgf(49N)で打ち込み、それを起点に破壊した数を測定枚数の20で除して百分率表示としたものを破壊率P(単位:%)とした。
 材料例58、65、83ではガラスは全く破壊せずPが0%であるのに対して、材料例80~82のガラスではPが100%であり、すべて破壊してしまった。すなわち、ガラスCは圧痕がついても破壊するリスクが低いことがわかる。
 また、材料例58、65、80~82のガラスに関しては別に4mm×10mm×厚さ1mmの形状で4mm×10mmの面を鏡面仕上げ、その他の面を#1000仕上げに加工したガラスを用意した。これらガラスを硝酸カリウム溶融塩(KNO:98~99.8%、NaNO:0.2~2%)を用いて425~450℃で化学強化処理を行った。表面圧縮応力Sおよび圧縮応力層深さtはそれぞれ、材料例58は757MPa、55μm、材料例65は878MPa、52μm、材料例80は607MPa、15μm、材料例81は790MPa、49μm、材料例82は830MPa、59μmであった。
 これら化学強化処理後のガラスの4mm×10mmの面の中心にビッカース硬度計を用いて10kgf(98N)の荷重でビッカース圧子を打ち込み、圧痕を形成した。材料例80~82のガラスは圧痕形成時に破壊したが、材料例58、65、83は破壊しなかった。
 この10kgf(98N)の圧痕がついた材料例58、65、83のサンプルを用いて、スパン30mmで3点曲げ試験を行った。n=20での曲げ強度平均値(単位:MPa)を表13および表19のFの欄に示すが、圧痕がついた状態でも材料例58、65、83のガラスを化学強化したものは400MPa以上という非常に高い破壊応力を示した。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
 (実施例1)
 実施例1では、図1に示すプラズマディスプレイ装置10を製造する。なお、実施例1では、カバーガラス板30上に機能膜40を設けていない。
 (プラズマディスプレイパネル)
 プラズマディスプレイパネル用のガラス基板として、2枚のアルミノシリケートガラス基板を用意する。これらのガラス基板は、酸化物基準のモル百分率表示で、SiOを67%、Alを5%、NaOを4.5%、KOを4.5%、MgOを3.5%、CaOを6.0%、SrOを4.5%、BaOを3.5%、ZrOを1.5%含有するものである。これらのガラス基板の50~350℃の範囲における平均熱膨張係数は、83×10-7/℃である。
 一方のアルミノシリケートガラス基板上に、透明電極を所定パターンで形成し、フロント基板を作製する。また、他方のアルミノシリケートガラス基板上に、透明電極、隔壁、蛍光体層を所定の順序で形成し、リア基板を作製する。その後、フロント基板とリア基板とを貼り合わせ、その間に希ガスを封入して、プラズマディスプレイパネルを作製する。プラズマディスプレイパネルの表示側の対角線長さは、37インチ(約94cm)とする。
 (カバーガラス板)
 カバーガラス板として、プラズマディスプレイパネル用のガラス基板と同一組成のアルミノシリケートガラス板(厚さ1.5mm、対角線長さ40インチ(102cm))を用意する。このカバーガラス板の平均熱膨張係数は、プラズマディスプレイパネル用のガラス基板の平均熱膨張係数と略同一である。
 (プラズマディスプレイ装置)
 接着剤を用いて、上記プラズマディスプレイパネルの表示面側に上記カバーガラス板を貼り付ける。接着剤には、熱硬化型の接着剤を使用する。このようにして、プラズマディスプレイ装置を作製する。
 このプラズマディスプレイ装置の表示動作時に、カバーガラス板の平面度を測定する。測定の結果、カバーガラス板は、プラズマディスプレイパネル用のガラス基板との熱膨張差が十分に小さく、良好な平面度(1.0mm以下)(JIS B0021)を有する。
 (実施例2)
 実施例2では、カバーガラス板として、下記化学強化ガラス板を用いる他は、実施例1と同様にして、プラズマディスプレイ装置を製造する。
 実施例2の化学強化ガラス板は、表2に示す材料例19と同一組成を有するガラス板を、450℃に保持した100質量%の硝酸カリウム融液中で6時間化学強化したものである。この化学強化ガラス板の50~350℃の範囲における平均熱膨張係数は、91×10-7/℃であって、プラズマディスプレイパネル用のガラス基板の平均熱膨張係数の110%である。
 このプラズマディスプレイ装置の表示動作時に、カバーガラス板の平面度を測定する。測定の結果、カバーガラス板は、プラズマディスプレイパネル用のガラス基板との熱膨張差が十分に小さく、良好な平面度(1.0mm以下)を有する。
 (実施例3)
 実施例3では、カバーガラス板として、下記化学強化ガラス板を用いる他は、実施例1と同様にして、プラズマディスプレイ装置を製造する。
 実施例3の化学強化ガラス板は、表13に示す材料例65と同一組成を有するガラス板を、450℃に保持した100質量%の硝酸カリウム融液中で10時間化学強化したものである。この化学強化ガラス板の50~350℃の範囲における平均熱膨張係数は、72×10-7/℃であって、プラズマディスプレイパネル用のガラス基板の平均熱膨張係数の87%である。
 このプラズマディスプレイ装置の表示動作時に、カバーガラス板の平面度を測定する。測定の結果、カバーガラス板は、プラズマディスプレイパネル用のガラス基板との熱膨張差が十分に小さく、良好な平面度(1.0mm以下)を有することがわかる。
 (比較例1)
 比較例1では、カバーガラス板として、無アルカリガラス板を用いる他は、実施例1と同様にして、プラズマディスプレイ装置を製造した。
 比較例1の化学強化ガラスの50~350℃の範囲における平均熱膨張係数は、38×10-7/℃であって、プラズマディスプレイパネルを構成するガラス基板の平均熱膨張係数の46%である。
 このプラズマディスプレイ装置の表示動作時に、カバーガラス板の平面度を測定する。測定の結果、カバーガラス板とプラズマディスプレイパネル用のガラス基板との熱膨張差が大きく、良好な平面度を得られない。
 本実施例および比較例の結果から、表1~表20に記載されているガラスのうち、平均熱膨張係数がプラズマディスプレイパネル用のガラス基板の平均熱膨張係数の80~120%のものは良好な平坦度が得られることが推測される。
 本発明によれば、プラズマディスプレイパネルの表示面側のガラス基板と当該プラズマディスプレイパネルの表示面側に貼り付けられるカバーガラス板との平均熱膨張係数の差が所定範囲に抑えられているので、カバーガラス板が反ることを防止することができ、プラズマディスプレイ装置の表示を損なうことがなく、カバーガラス板側の良好な平面度を得ることができる。特に大面積で薄いカバーガラス板を用いた大画面のプラズマディスプレイ装置として有用である。
 なお、2010年7月15日に出願された日本特許出願2010-160957号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
10 プラズマディスプレイ装置
20 プラズマディスプレイパネル
21 ガラス基板
22 ガラス基板
23 蛍光体層
30 カバーガラス板
40 機能膜
50 加飾層

Claims (5)

  1.  ガラス基板を備えるプラズマディスプレイパネルと、該プラズマディスプレイパネルの表示側に貼り付けられるカバーガラス板とを備えるプラズマディスプレイ装置であって、
     前記カバーガラス板は、81cm以上の対角線長さ、1.5mm以下の厚さを有し、
     前記カバーガラス板の平均熱膨張係数が、50~350℃の範囲において、前記ガラス基板の平均熱膨張係数の80~120%であることを特徴とするプラズマディスプレイ装置。
  2.  前記カバーガラス板は、化学強化処理によって表層の少なくとも一部に圧縮応力層を設けた化学強化ガラス板である請求項1に記載のプラズマディスプレイ装置。
  3.  前記化学強化処理前のカバーガラス板は、酸化物基準のモル百分率表示で、SiOを55~70%、Alを5~15%、NaOを4~20%、MgOを1~15%含有し、これらの成分の合計量が85%以上である請求項2に記載のプラズマディスプレイ装置。
  4.  前記化学強化処理前のカバーガラス板は、酸化物基準のモル百分率表示で、SiOを50~74%、Alを1~10%、NaOを6~14%、KOを3~15%、MgOを2~15%、CaOを0~10%、ZrOを0~5%含有し、SiOおよびAlの含有量の合計が75%以下、NaOおよびKOの含有量の合計NaO+KOが12~25%、MgOおよびCaOの含有量の合計MgO+CaOが7~15%である請求項2に記載のプラズマディスプレイ装置。
  5.  前記化学強化処理前のカバーガラス板は、酸化物基準のモル百分率表示で、SiOを68~80%、Alを4~10%、NaOを5~15%、KOを0~1%、MgOを4~15%、ZrOを0~1%含有し、SiOおよびAlの含有量の合計SiO+Alが85%以下である請求項2に記載のプラズマディスプレイ装置。
PCT/JP2011/066254 2010-07-15 2011-07-15 プラズマディスプレイ装置 WO2012008586A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2011800344371A CN102985993A (zh) 2010-07-15 2011-07-15 等离子体显示装置
JP2012524615A JPWO2012008586A1 (ja) 2010-07-15 2011-07-15 プラズマディスプレイ装置
KR1020127033526A KR20130091252A (ko) 2010-07-15 2011-07-15 플라즈마 디스플레이 장치
US13/708,354 US8604693B2 (en) 2010-07-15 2012-12-07 Plasma display device containing cover glass and substrates having similar thermal expansion coefficients

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-160957 2010-07-15
JP2010160957 2010-07-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/708,354 Continuation US8604693B2 (en) 2010-07-15 2012-12-07 Plasma display device containing cover glass and substrates having similar thermal expansion coefficients

Publications (1)

Publication Number Publication Date
WO2012008586A1 true WO2012008586A1 (ja) 2012-01-19

Family

ID=45469580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066254 WO2012008586A1 (ja) 2010-07-15 2011-07-15 プラズマディスプレイ装置

Country Status (6)

Country Link
US (1) US8604693B2 (ja)
JP (1) JPWO2012008586A1 (ja)
KR (1) KR20130091252A (ja)
CN (1) CN102985993A (ja)
TW (1) TW201223908A (ja)
WO (1) WO2012008586A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012101221A1 (en) * 2011-01-28 2012-08-02 Kornerstone Materials Technology Co., Ltd High-strength alkali-aluminosilicate glass
US20120208309A1 (en) * 2009-10-19 2012-08-16 Asahi Glass Company, Limited Glass plate for substrate, method for producing same, and method for producing tft panel
CN102718404A (zh) * 2012-02-24 2012-10-10 河南安彩高科股份有限公司 一种高应变点硅酸盐玻璃及其应用
CN104114511A (zh) * 2012-07-09 2014-10-22 日本电气硝子株式会社 强化玻璃基板的制造方法及强化玻璃基板
JP2018162211A (ja) * 2012-08-17 2018-10-18 コーニング インコーポレイテッド 極薄強化ガラス
CN109415242A (zh) * 2016-06-27 2019-03-01 旭硝子欧洲玻璃公司 可化学回火的玻璃板

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105110636A (zh) * 2010-09-27 2015-12-02 旭硝子株式会社 玻璃、化学强化玻璃及显示装置用玻璃板
FR2995887B1 (fr) * 2012-09-21 2017-12-15 Saint Gobain Feuille de verre et dispositif comprenant ladite feuille de verre
WO2014148020A1 (ja) * 2013-03-22 2014-09-25 日本板硝子株式会社 ガラス組成物、化学強化用ガラス組成物、強化ガラス物品、およびディスプレイ用のカバーガラス
US9701567B2 (en) * 2013-04-29 2017-07-11 Corning Incorporated Photovoltaic module package
JPWO2016006538A1 (ja) 2014-07-07 2017-04-27 旭硝子株式会社 顔料プリント用ガラス板、顔料プリントガラス板、その製造方法および画像表示装置
US10043903B2 (en) 2015-12-21 2018-08-07 Samsung Electronics Co., Ltd. Semiconductor devices with source/drain stress liner
WO2017115731A1 (ja) * 2015-12-28 2017-07-06 旭硝子株式会社 ガラス基板、積層基板、積層体、および半導体パッケージの製造方法
CN108439813B (zh) * 2017-02-14 2022-04-15 康宁股份有限公司 具有弯曲减少的基于低闪光防眩光玻璃的制品和减少基于防眩光玻璃的制品中的弯曲的方法
CN110944953A (zh) * 2017-07-26 2020-03-31 Agc株式会社 半导体封装用支承玻璃
CN109949871B (zh) * 2017-10-30 2022-12-23 清远南玻节能新材料有限公司 铝硅酸盐玻璃化学强化膨胀率计算方法及铝硅酸盐玻璃产品的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208073A (ja) * 1999-01-14 2000-07-28 Canon Inc 画像表示装置および陰極管
JP2005255521A (ja) * 1996-03-14 2005-09-22 Asahi Glass Co Ltd 基板用ガラス組成物
WO2008084779A1 (ja) * 2007-01-10 2008-07-17 Hoya Corporation 情報記録媒体基板用素材、情報記録媒体基板、情報記録媒体それぞれの製造方法
JP2009151331A (ja) * 1996-09-26 2009-07-09 Asahi Glass Co Ltd プラズマディスプレイ用保護板とその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69700417T2 (de) 1996-03-14 2000-05-04 Asahi Glass Co Ltd Glaszusammensetzung für ein Substrat
JP4679272B2 (ja) * 2005-07-04 2011-04-27 セントラル硝子株式会社 入出力一体型表示装置及び保護ガラス板
KR100838080B1 (ko) * 2007-03-05 2008-06-13 삼성에스디아이 주식회사 플라즈마 디스플레이 패널
US7666511B2 (en) 2007-05-18 2010-02-23 Corning Incorporated Down-drawable, chemically strengthened glass for cover plate
JP5444846B2 (ja) 2008-05-30 2014-03-19 旭硝子株式会社 ディスプレイ装置用ガラス板
WO2012067164A1 (ja) 2010-11-17 2012-05-24 旭硝子株式会社 透明保護板、フラットパネルディスプレイ、およびフラットパネルディスプレイの製造方法
JP2012126615A (ja) 2010-12-16 2012-07-05 Asahi Glass Co Ltd フラットパネルディスプレイ用カバーガラス

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255521A (ja) * 1996-03-14 2005-09-22 Asahi Glass Co Ltd 基板用ガラス組成物
JP2009151331A (ja) * 1996-09-26 2009-07-09 Asahi Glass Co Ltd プラズマディスプレイ用保護板とその製造方法
JP2000208073A (ja) * 1999-01-14 2000-07-28 Canon Inc 画像表示装置および陰極管
WO2008084779A1 (ja) * 2007-01-10 2008-07-17 Hoya Corporation 情報記録媒体基板用素材、情報記録媒体基板、情報記録媒体それぞれの製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120208309A1 (en) * 2009-10-19 2012-08-16 Asahi Glass Company, Limited Glass plate for substrate, method for producing same, and method for producing tft panel
US8791036B2 (en) * 2009-10-19 2014-07-29 Asahi Glass Company, Limited Glass plate for substrate, method for producing same, and method for producing TFT panel
WO2012101221A1 (en) * 2011-01-28 2012-08-02 Kornerstone Materials Technology Co., Ltd High-strength alkali-aluminosilicate glass
CN102718404A (zh) * 2012-02-24 2012-10-10 河南安彩高科股份有限公司 一种高应变点硅酸盐玻璃及其应用
CN102718404B (zh) * 2012-02-24 2014-12-10 河南安彩高科股份有限公司 一种高应变点硅酸盐玻璃及其应用
CN104114511A (zh) * 2012-07-09 2014-10-22 日本电气硝子株式会社 强化玻璃基板的制造方法及强化玻璃基板
JP2018162211A (ja) * 2012-08-17 2018-10-18 コーニング インコーポレイテッド 極薄強化ガラス
CN109415242A (zh) * 2016-06-27 2019-03-01 旭硝子欧洲玻璃公司 可化学回火的玻璃板
JP2019519463A (ja) * 2016-06-27 2019-07-11 エージーシー グラス ユーロップAgc Glass Europe 化学強化可能なガラス板
CN109415242B (zh) * 2016-06-27 2022-01-28 旭硝子欧洲玻璃公司 可化学回火的玻璃板

Also Published As

Publication number Publication date
US20130093312A1 (en) 2013-04-18
CN102985993A (zh) 2013-03-20
US8604693B2 (en) 2013-12-10
TW201223908A (en) 2012-06-16
JPWO2012008586A1 (ja) 2013-09-09
KR20130091252A (ko) 2013-08-16

Similar Documents

Publication Publication Date Title
WO2012008586A1 (ja) プラズマディスプレイ装置
JP5459122B2 (ja) ディスプレイ装置
US10189739B2 (en) Glass for chemical tempering and chemically tempered glass
EP3230222B1 (en) Chemically temperable glass sheet
US10370286B2 (en) Glass for chemical tempering, chemically tempered glass, and glass plate for display device
US8518545B2 (en) Glass for chemical tempering and glass plate for display device
JP5929898B2 (ja) ディスプレイ装置用化学強化ガラス
TWI567041B (zh) 用於製造化學強化玻璃之方法
JP5838967B2 (ja) フラットパネルディスプレイ用カバーガラスおよび製造方法
WO2012108417A1 (ja) 強化ガラス板
JP5427278B2 (ja) ガラス組成物、それから得られたガラス、並びに、ガラスの製造方法及び使用。
US20130269392A1 (en) Process for producing chemically tempered glass
JP2012018207A (ja) 液晶ディスプレイ装置およびカバーガラス板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180034437.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806916

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012524615

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127033526

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11806916

Country of ref document: EP

Kind code of ref document: A1