WO2022185580A1 - リチウムイオン二次電池及びその製造方法 - Google Patents

リチウムイオン二次電池及びその製造方法 Download PDF

Info

Publication number
WO2022185580A1
WO2022185580A1 PCT/JP2021/034340 JP2021034340W WO2022185580A1 WO 2022185580 A1 WO2022185580 A1 WO 2022185580A1 JP 2021034340 W JP2021034340 W JP 2021034340W WO 2022185580 A1 WO2022185580 A1 WO 2022185580A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
material layer
secondary battery
negative electrode
Prior art date
Application number
PCT/JP2021/034340
Other languages
English (en)
French (fr)
Inventor
祐亮 刀川
康好 黒木
健 三木
Original Assignee
ビークルエナジージャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ビークルエナジージャパン株式会社 filed Critical ビークルエナジージャパン株式会社
Priority to JP2023503354A priority Critical patent/JPWO2022185580A1/ja
Priority to CN202180047401.0A priority patent/CN115868040A/zh
Priority to US18/041,863 priority patent/US20230318139A1/en
Priority to EP21928385.0A priority patent/EP4303947A1/en
Publication of WO2022185580A1 publication Critical patent/WO2022185580A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/103Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium-ion secondary battery and its manufacturing method, and for example, to a lithium-ion secondary battery used as a power source for hybrid vehicles, electric vehicles, etc., and its manufacturing method.
  • lithium-ion secondary batteries with high energy density are attracting attention.
  • automobiles are moving toward electrification.
  • lithium-ion secondary batteries are required to have higher energy density and higher safety.
  • a lithium-ion secondary battery generally comprises a positive electrode, a negative electrode, and a separator for electrically insulating them, and has a basic configuration in which the positive electrode and the negative electrode are laminated with the separator interposed therebetween.
  • the positive electrode and the negative electrode generally have an active material layer formed by applying a slurry containing an active material capable of intercalating/deintercalating lithium ions onto the surface of a strip-shaped metal foil.
  • the positive electrode, the negative electrode, and the separator are superimposed on each other and wound to form an electrode group.
  • the positive electrode and the negative electrode are insulated by interposing a separator made of, for example, a porous film such as polyethylene or polypropylene between the positive electrode and the negative electrode.
  • a separator made of, for example, a porous film such as polyethylene or polypropylene between the positive electrode and the negative electrode.
  • an insulating layer is provided on the surface of the active material layer of the electrode for the purpose of suppressing voltage drop and internal short circuit caused by contamination, etc., or improving heat resistance performance. is proposed.
  • an active material mixture layer is formed on an electrode foil in order to further improve insulation reliability without impairing the performance of the active material mixture layer formed on the electrode
  • a method for manufacturing a secondary battery having an electrode in which an insulating layer is formed on an active material mixture layer, wherein an active material mixture slurry and an insulating layer dispersion are simultaneously applied onto an electrode foil to activate the electrode has been proposed that includes a step of forming a material mixture layer and an insulating layer.
  • Patent Document 2 discloses that a protective layer is interposed between the positive electrode and the negative electrode to prevent secondary short-circuiting between the positive electrode and the negative electrode even when the secondary battery is in a high temperature state, thereby improving safety.
  • a negative electrode protective layer (insulating layer) is provided on the surface of the negative electrode active material layer of the negative electrode in order to improve the A secondary battery using a material having a melting point higher than that of the sintered body has been proposed.
  • the resin filler in the negative electrode protective layer softens and exhibits the function of the second binder, thereby suppressing movement of the inorganic filler.
  • the negative electrode protective layer even if the separator shrinks due to heat, secondary short-circuiting between the positive electrode and the negative electrode can be avoided by the negative electrode protective layer, and safety can be improved.
  • Patent Document 3 a method using a paste for an insulating heat-resistant layer containing an insulating heat-resistant material and an aqueous solvent (water or a solvent containing water and a polar organic solvent) is used to improve the surface of the active material layer of the positive electrode.
  • an aqueous solvent water or a solvent containing water and a polar organic solvent
  • hydrophilic conductive powder is attached to the surface of the positive electrode mixture layer.
  • the positive electrode mixture layer and the hydrophilic conductive material layer are dried Lithium ion secondary A method for manufacturing a positive electrode for a battery has been proposed.
  • a positive electrode insulating layer is formed on the surface of the positive electrode active material layer for the purpose of suppressing voltage drop and internal short circuit caused by contamination, etc., or improving heat resistance performance.
  • a positive electrode active material layer slurry containing a non-aqueous solvent and a positive electrode insulating layer slurry containing an aqueous solvent are applied to the surface of the positive electrode foil so as to overlap each other, and both the applied slurries are dried at the same time, It was difficult to separate and recover the non-aqueous solvent and the aqueous solvent in the drying process. For this reason, solvent recycling has become a problem.
  • the positive electrode active material layer slurry and the positive electrode insulating layer slurry both containing a non-aqueous solvent are applied to the surface of the positive electrode foil so as to overlap each other, and both the applied slurries are applied at the same time.
  • the material of the positive electrode insulating layer may sink into the positive electrode active material layer, and the insulating properties of the positive electrode insulating layer may deteriorate.
  • the present invention has been made in view of the above problems, and a lithium ion secondary battery that can suppress the material of the positive electrode insulating layer from sinking into the positive electrode active material layer and suppress the deterioration of the insulation of the positive electrode insulating layer.
  • the main object is to provide a manufacturing method thereof.
  • the lithium ion secondary battery of the present invention includes a positive electrode and a negative electrode, and is a lithium ion secondary battery in which the positive electrode and the negative electrode are laminated, wherein the positive electrode is a positive electrode foil and a positive electrode foil. , a positive electrode active material layer provided on the surface of the positive electrode foil, and a positive electrode insulating layer provided on the surface of the positive electrode active material layer, wherein the positive electrode active material layer includes a positive electrode active material and a first non- a water-based binder, and the positive electrode insulating layer includes an inorganic filler, a second non-aqueous binder, and a dispersant.
  • the lithium-ion secondary battery of the present invention it is possible to suppress the material of the positive electrode insulating layer from sinking into the positive electrode active material layer, thereby suppressing deterioration of the insulating properties of the positive electrode insulating layer.
  • a positive electrode active material layer is formed by mixing a positive electrode foil, a positive electrode active material, a first non-aqueous binder, and a first non-aqueous solvent.
  • a step of preparing a slurry for the positive electrode insulating layer a step of mixing an inorganic filler, a second non-aqueous binder, a dispersant, and a second non-aqueous solvent to prepare a slurry for the positive electrode insulating layer, and the positive electrode active material layer applying the positive electrode insulating layer slurry to the surface of the positive electrode foil; applying the positive electrode insulating layer slurry to the surface of the positive electrode active material layer slurry applied to the surface of the positive electrode foil; and drying the slurry for the active material layer and the slurry for the positive electrode insulating layer at the same time.
  • the present invention it is possible to suppress the material of the positive electrode insulating layer from sinking into the positive electrode active material layer, thereby suppressing the deterioration of the insulating properties of the positive electrode insulating layer.
  • FIG. 1 is an external perspective view showing an outline of a flat wound secondary battery, which is a lithium ion secondary battery according to one embodiment.
  • FIG. 2 is an exploded perspective view showing an outline of the components of the flat wound secondary battery shown in FIG. 1.
  • FIG. 3 is an exploded perspective view schematically showing a state in which a part of the electrode winding group shown in FIG. 2 is unfolded;
  • FIG. 4A is a cross-sectional view schematically showing the configuration of the positive electrode shown in FIG. 3 before cutting, and
  • FIG. 4B is a plan view schematically showing the configuration of the positive electrode shown in FIG. 3 before cutting;
  • the material may be selected singly or in combination as long as it is not inconsistent with the content disclosed in this specification. , materials other than those exemplified below may be selected as long as they are consistent with what is disclosed herein.
  • FIG. 1 is an external perspective view showing an outline of a flat wound secondary battery, which is a lithium ion secondary battery according to one embodiment.
  • FIG. 2 is an exploded perspective view showing an outline of components of the flat wound secondary battery shown in FIG.
  • FIG. 3 is an exploded perspective view schematically showing a state in which a part of the electrode winding group shown in FIG. 2 is unfolded.
  • the flat wound secondary battery 100 includes a battery can 1 and a battery lid (lid) 6 .
  • the battery can 1 has a rectangular bottom surface 1d, rectangular tubular side surfaces 1b and 1c rising from the bottom surface 1d, and an opening 1a that opens upward at the upper ends of the side surfaces 1b and 1c.
  • the square tubular side surfaces 1b and 1c include a pair of wide side surfaces 1b having a relatively large area and a pair of narrow side surfaces 1c having a relatively small area.
  • a winding group 3 is accommodated in the battery can 1 with an insulating protective film 2 interposed therebetween.
  • the battery lid 6 has a substantially rectangular flat plate shape and is welded so as to close the upper opening 1a of the battery can 1 . Thereby, the battery can 1 is sealed.
  • a positive electrode external terminal 14 and a negative electrode external terminal 12 are provided on the battery cover 6, and a gas exhaust valve 10 is integrally provided.
  • the wound group 3 is charged through the positive electrode external terminal 14 and the negative electrode external terminal 12, and electric power is supplied to the external load. Further, when the pressure inside the battery can 1 rises, the gas exhaust valve 10 opens and the gas is discharged from the inside of the battery can 1, and the pressure inside the battery can 1 is reduced. Thereby, the safety of the flat wound secondary battery 100 is ensured.
  • the winding group 3 since the winding group 3 is wound in a flat shape, there is a pair of opposing curved portions having a semicircular cross-section and a continuous line between the pair of curved portions. and a planar portion formed by The winding group 3 is inserted into the battery can 1 from one curved portion side so that the winding axis direction is along the width direction of the battery can 1 , and the other curved portion side is an upper opening of the battery can 1 . It is arranged on the 1a side.
  • the positive electrode foil exposed portion 34c of the winding group 3 is electrically connected to the positive electrode external terminal 14 provided on the battery lid 6 via the positive electrode collector plate (collector terminal) 44. Further, the negative electrode foil exposed portion 32 c of the wound group 3 is electrically connected to the negative electrode external terminal 12 provided on the battery cover 6 via the negative electrode collector plate (collector terminal) 24 .
  • electric power is supplied from the winding group 3 to the external load via the positive electrode current collecting plate 44 and the negative electrode current collecting plate 24 , and the external load is supplied to the winding group 3 via the positive electrode current collecting plate 44 and the negative electrode current collecting plate 24 . Generated power is supplied and charged.
  • a gasket 5 and an insulating plate 7 are provided on the battery lid 6 in order to electrically insulate the positive electrode external terminal 14, the negative electrode external terminal 12, the positive electrode current collector plate 44, and the negative electrode current collector plate 24 from the battery lid 6, respectively.
  • the battery cover 6 is provided with an injection port 9 for injecting an electrolytic solution into the battery can 1 .
  • the injection port 9 is sealed by joining the injection plug 11 to the battery lid 6 by laser welding. is stopped. Thereby, the flat wound secondary battery 100 is hermetically sealed.
  • the positive electrode external terminal 14 and the negative electrode external terminal 12 have weld joints that are welded to a bus bar or the like.
  • the weld joint has a rectangular parallelepiped block shape that protrudes upward from the surface of the battery lid 6, the lower surface faces the surface of the battery lid 6, and the upper surface is parallel to the surface of the battery lid 6 at a predetermined height position. It has become.
  • the positive electrode connection portion 14 a and the negative electrode connection portion 12 a protrude from the lower surface of the welded joint of the positive electrode external terminal 14 and the lower surface of the welded joint of the negative electrode external terminal 12 , respectively. 46 and a cylindrical shape that can be inserted into the negative electrode side through hole 26 .
  • the positive electrode connecting portion 14a and the negative electrode connecting portion 12a pass through the battery lid 6 and extend inside the battery can 1 from the positive electrode current collector plate base portion 41 of the positive electrode current collector plate 44 and the negative electrode current collector plate base portion 21 of the negative electrode current collector plate 24.
  • the positive electrode external terminal 14 , the negative electrode external terminal 12 , the positive electrode current collecting plate 44 , and the negative electrode current collecting plate 24 are integrally fixed to the battery lid 6 .
  • a gasket 5 is interposed between the battery cover 6 and the positive electrode external terminal 14 and the negative electrode external terminal 12 , and an insulating plate 7 is provided between the positive electrode collector plate 44 and the negative electrode collector plate 24 and the battery cover 6 . intervening.
  • the positive electrode current collector plate 44 and the negative electrode current collector plate 24 are composed of a rectangular plate-like positive electrode current collector plate base portion 41 and a negative electrode current collector plate base portion 21 arranged facing the lower surface of the battery lid 6 , and a positive electrode current collector plate base portion 41 . and bent at the side end of the negative electrode current collector plate base 21, extending toward the bottom side along the wide side surface 1b of the battery can 1, and forming the positive electrode foil exposed portion 34c and the negative electrode foil exposed portion 32c of the winding group 3. It has a positive electrode side connection end portion 42 and a negative electrode side connection end portion 22 that are connected in a state of being superimposed so as to face each other.
  • a positive electrode side opening hole 43 and a negative electrode side opening hole 23 through which the positive electrode connecting portion 14a and the negative electrode connecting portion 12a are respectively inserted are provided in the positive electrode current collector plate base portion 41 and the negative electrode current collector plate base portion 21, respectively.
  • the insulating protective film 2 is wound around the winding group 3 with the direction along the flat surface of the winding group 3 and perpendicular to the winding axial direction of the winding group 3 as the central axis direction.
  • the insulating protective film 2 is not particularly limited and can be a general one, and is made of, for example, a single sheet or a plurality of film members made of synthetic resin such as PP (polypropylene).
  • the insulating protective film 2 has such a length that it can be wound with the direction along the flat surface of the wound group 3 and perpendicular to the winding axis direction as the central axis direction of winding.
  • the winding group 3 is configured by interposing the separators 33 and 35 between the positive electrode 34 and the negative electrode 32 and winding the positive electrode 34 and the negative electrode 32 and the separators 33 and 35 in a flat shape. ing.
  • the outermost electrode is the negative electrode 32
  • the separator 35 is wound around the outermost negative electrode 32 .
  • the separators 33 and 35 have an insulating function to prevent short circuits between the positive electrode 34 and the negative electrode 32, and also have a function of retaining the non-aqueous solution.
  • the portion of the negative electrode 32 coated with the negative electrode active material layer 32b is larger in the width direction (winding axis direction) than the portion of the positive electrode 34 coated with the positive electrode active material layer 34b.
  • the winding group 3 is configured such that the entire portion coated with the positive electrode active material layer 34b is sandwiched between the portions coated with the negative electrode active material layer 32b.
  • the positive electrode foil exposed portion 34c and the negative electrode foil exposed portion 32c are bundled at the plane portion of the winding group 3 and connected by welding or the like.
  • the separators 33 and 35 are wider in the width direction than the portion where the negative electrode active material layer 32b is applied, but are wound at positions where the metal foil surfaces of the ends are exposed at the positive electrode foil exposed portion 34c and the negative electrode foil exposed portion 32c. is turned. Therefore, the separators 33 and 35 do not interfere with bundling and welding.
  • the negative electrode 32 includes negative electrode foil 32a and negative electrode active material layers 32b provided on both sides of the negative electrode foil 32a.
  • a slurry prepared by dispersing and kneading a negative electrode active material and a binder as a binder in an appropriate solvent for example, water, N-methyl-2-pyrrolidone, etc.
  • an appropriate solvent for example, water, N-methyl-2-pyrrolidone, etc.
  • FIG. 4(a) is a cross-sectional view schematically showing the configuration of the positive electrode shown in FIG. 3 before cutting
  • FIG. 4(b) schematically shows the configuration of the positive electrode shown in FIG. 3 before cutting. is a plan view shown in FIG.
  • the positive electrode 34 covers the surfaces of the positive electrode foil 34a, the positive electrode active material layers 34b provided on both sides of the positive electrode foil 34a, and both positive electrode active material layers 34b. and a positive electrode insulating layer 34d provided as follows.
  • the positive electrode insulating layer 34 d faces the negative electrode active material layer 32 b of the negative electrode 32 .
  • FIG. 4(b) when the positive electrode 34 is viewed from above, a portion not covered with the positive electrode insulating layer 34d is shown so that the positive electrode active material layer 34b is shown.
  • a positive electrode that is actually used is provided so that the entire surface of the portion where the positive electrode active material layer is provided when the positive electrode is viewed from above is covered with the insulating layer.
  • the positive electrode 34 is in a state before being cut, and is divided into two on both sides in the width direction by the center line CL in the width direction. 34 are formed.
  • the positive electrode active material layer 34b contains a positive electrode active material and a first non-aqueous binder.
  • the positive electrode insulating layer 34d contains an inorganic filler, a second non-aqueous binder, and a dispersant.
  • the dispersant contains at least one selected from the group consisting of carboxylic acid compounds and phosphoric acid compounds.
  • the positive electrode active material layer 34b and the positive electrode insulating layer 34d are formed by simultaneously applying the positive electrode active material layer slurry and the positive electrode insulating layer slurry to both surfaces of the positive electrode foil 34a.
  • “simultaneously applied” includes the case where the slurry for the positive electrode active material layer and the slurry for the positive electrode insulating layer are layered in advance, and the layered state is applied on the positive electrode foil 34a.
  • the positive electrode active material layer slurry is first applied onto the positive electrode foil 34a, and the positive electrode insulating layer slurry is applied onto the positive electrode active material layer slurry in a wet state before the surface of the positive electrode active material layer slurry dries. Including the case of coating.
  • the positive electrode 34 includes the positive electrode foil 34a and the positive electrode active material layer 34b provided on the surface of the positive electrode foil 34a. and a positive electrode insulating layer 34d provided on the surface of the positive electrode active material layer 34b, wherein the positive electrode active material layer 34b includes a positive electrode active material and a first non-aqueous binder, and the positive electrode insulating layer 34d is made of inorganic It contains a filler, a second non-aqueous binder, and a dispersant.
  • the positive electrode active material layer slurry and the positive electrode insulating layer slurry both containing a non-aqueous solvent are applied to the surface of the positive electrode foil 34a so as to overlap each other.
  • the material such as the inorganic filler can be dispersed by the dispersant in the applied positive electrode insulating layer slurry. This can suppress the material such as the inorganic filler of the positive electrode insulating layer 34d from sinking into the positive electrode active material layer 34b.
  • the deterioration of the insulating property of the positive electrode insulating layer 34d can be suppressed.
  • the non-aqueous solvent can be recovered and recycled from both slurries, so that cost reduction can be achieved.
  • the positive electrode has a positive electrode foil, a positive electrode active material layer provided on the surface of the positive electrode foil, and a positive electrode insulating layer provided on the surface of the positive electrode active material layer.
  • Positive electrode foil examples include, but are not limited to, aluminum foil, perforated aluminum foil, foamed aluminum plate, and the like.
  • the positive electrode active material layer includes a positive electrode active material and a first non-aqueous binder.
  • the positive electrode active material is not particularly limited, and one or a mixture of two or more materials applicable as a positive electrode active material for a lithium secondary battery can be used. O 4 etc.), layered system (eg LiCoO 2 , LiNiO 2 etc.), olivine system (eg LiFePO 4 etc.) or a mixture of two or more of them are preferable.
  • layered lithium-nickel-cobalt-manganese composite oxides containing Li, Ni, Co, and Mn as constituent elements for example, LiNi 0.33 Co 0.33 Mn 0.33 O 2 etc.
  • the lattice volume hardly changes due to charging and discharging until the amount of desorbed lithium ions is 2/3, and thus the durability is excellent.
  • the first non-aqueous binder is not particularly limited as long as it is a binder that disperses or dissolves in a non-aqueous solvent that is an organic solvent.
  • examples include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyacrylic acid ( PAA) and at least one selected from the group consisting of carboxymethyl cellulose (CMC).
  • each component contained in the positive electrode active material layer and the content of each component are determined by spectral analysis such as infrared spectroscopy (IR), chromatographic analysis such as gas chromatography mass spectrometry (Py-GC/MS), etc. can be confirmed or measured using spectral analysis such as infrared spectroscopy (IR), chromatographic analysis such as gas chromatography mass spectrometry (Py-GC/MS), etc. can be confirmed or measured using spectral analysis such as infrared spectroscopy (IR), chromatographic analysis such as gas chromatography mass spectrometry (Py-GC/MS), etc.
  • the positive electrode insulating layer contains an inorganic filler, a second non-aqueous binder, and a dispersant.
  • the inorganic filler is not particularly limited and can be a common one . 2 ), titania (TiO 2 ), iron oxide, silica (SiO 2 ), and barium titanate (BaTiO 2 ).
  • the inorganic filler preferably contains at least one selected from the group consisting of alumina, boehmite, magnesia, zirconia, and titania.
  • the second non-aqueous binder is not particularly limited as long as it is a binder that disperses or dissolves in a non-aqueous solvent that is an organic solvent.
  • a non-aqueous solvent that is an organic solvent.
  • examples include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyacrylic acid (PAA) and at least one selected from the group consisting of carboxymethyl cellulose (CMC).
  • the non-aqueous solvent is not particularly limited as long as it is an organic solvent.
  • NMP N-methyl-2-pyrrolidone
  • the dispersant is not particularly limited, but preferably contains at least one selected from the group consisting of carboxylic acid compounds and phosphoric acid compounds.
  • a carboxylic acid compound or a phosphoric acid compound is mixed with a material such as an inorganic filler as a dispersant in a non-aqueous solvent, for example, an anion such as COO- is generated, which forms an anion on the surface of the inorganic filler in the non-aqueous solvent.
  • an anion such as COO- is generated, which forms an anion on the surface of the inorganic filler in the non-aqueous solvent.
  • carboxylic acid compound means a compound having one or more carboxy groups.
  • a carboxy group may form a salt.
  • * represents a bond with other structural moieties in the phosphate compound.
  • R' and R'' each independently represent a hydrogen atom or a monovalent organic group.
  • the polar functional group represented by the above formula may form a salt.
  • the content of the second non-aqueous binder with respect to the total content of the inorganic filler and the second non-aqueous binder in the positive electrode insulating layer is not particularly limited, but is preferably in the range of 0.1 wt % or more and 10.0 wt % or less, for example. Among them, the range of 0.2 wt% or more and 1.5 wt% or less is preferable. This is because, when it is at least the lower limit of these ranges, the positive electrode insulating layer can have excellent durability, and when it is at most the upper limit of these ranges, short-circuiting between the positive electrode and the negative electrode can be effectively suppressed. It is from.
  • the content of the dispersant with respect to the total content of the inorganic filler and the dispersant in the positive electrode insulating layer is not particularly limited, but is preferably in the range of 0.5 wt% or more and 10.0 wt% or less, especially 1.3 wt%. It is preferably in the range of 5.0 wt % or more. This is because when it is at least the lower limit of these ranges, the inorganic filler can be suitably dispersed by the dispersant, and the sinking of the inorganic filler into the positive electrode active material layer can be effectively suppressed. This is because the short circuit between the positive electrode and the negative electrode can be effectively suppressed.
  • each component contained in the positive electrode insulating layer and the content of each component can be confirmed or measured using chromatographic analysis such as gas chromatography-mass spectrometry (Py-GC/MS).
  • the negative electrode is not particularly limited, but includes, for example, negative electrode foil and a negative electrode active material layer provided on the surface of the negative electrode foil.
  • Negative electrode foil The negative electrode foil is not particularly limited, but examples thereof include copper foil, perforated copper foil, foamed copper plate, and the like.
  • the negative electrode active material layer is not particularly limited, but includes, for example, a negative electrode active material and a binder.
  • the negative electrode active material is not particularly limited and general materials can be used.
  • carbon materials such as natural graphite, artificial graphite, non-graphitizable carbon (hard carbon), and easily graphitizable carbon (soft carbon). etc.
  • graphite by coating the surface of the graphite with amorphous carbon, it is possible to suppress the reaction with the electrolytic solution more than necessary.
  • the negative electrode active material a material obtained by mixing graphite with carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, etc. as a conductive aid, and graphite mixed with the conductive aid.
  • carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, etc.
  • graphite mixed with the conductive aid Materials further coated with amorphous carbon to form composites, graphite mixed with graphitizable carbon (hard carbon), graphitizable carbon (soft carbon), and metal oxides (e.g., iron oxide, copper oxide, etc.) and the like.
  • binder there is no particular limitation, and a common one can be used. Examples include, but are not limited to, styrene-butadiene rubber, carboxymethylcellulose, polyvinylidene fluoride (PVDF), and the like.
  • the negative electrode preferably further includes a negative electrode insulating layer provided on the surface of the negative electrode active material layer.
  • the negative electrode insulating layer is not particularly limited, it contains, for example, an inorganic filler and a binder.
  • the negative electrode further has a negative electrode insulating layer, the positive insulating layer of the positive electrode faces the negative insulating layer of the negative electrode.
  • Lithium-ion secondary battery is a lithium-ion secondary battery comprising a positive electrode and a negative electrode, wherein the positive electrode and the negative electrode are laminated, and the positive electrode comprises a positive electrode foil and a surface of the positive electrode foil. and a positive electrode insulating layer provided on the surface of the positive electrode active material layer, wherein the positive electrode active material layer includes a positive electrode active material and a first non-aqueous binder,
  • the positive electrode insulating layer is characterized by containing an inorganic filler, a second non-aqueous binder, and a dispersant.
  • the lithium ion secondary battery is not particularly limited, it is preferable that the battery further includes a separator and the positive electrode and the negative electrode are laminated with the separator interposed therebetween.
  • the separators 33 and 35 are not particularly limited and general separators can be used. etc.
  • the porous resin sheet may have a single-layer structure or a multi-layer structure (for example, a three-layer structure of PP/PE/PP, etc.).
  • the separators 33 and 35 preferably further have a layer made of an inorganic material (for example, alumina particles) and a binder provided on one side or both sides of a main body made of a resin porous sheet or the like.
  • Lithium ion secondary batteries usually have an electrolyte layer.
  • the electrolyte layer is, for example, an electrolytic solution that is injected inside the battery can.
  • the electrolytic solution is not particularly limited, and a common one can be used. and non-aqueous solutions.
  • a lithium-ion secondary battery may include a positive electrode external terminal and a positive current collector plate, and a negative electrode external terminal and a negative electrode current collector plate.
  • Materials constituting the positive electrode external terminal and the positive electrode current collecting plate are not particularly limited and general materials can be used, and examples thereof include aluminum alloys.
  • Materials constituting the negative electrode external terminal and the negative electrode current collecting plate are not particularly limited and general materials can be used, and examples thereof include copper alloys.
  • a lithium-ion secondary battery may be equipped with an insulating plate and a gasket.
  • the insulating plate 7 and the gasket 5 may be made of any general material without any particular limitation.
  • insulating resin materials such as polybutylene terephthalate, polyphenylene sulfide, and perfluoroalkoxy fluororesin may be used. mentioned.
  • a method for manufacturing a lithium-ion secondary battery comprises steps of preparing a positive electrode foil, mixing a positive electrode active material, a first non-aqueous binder, and a first non-aqueous solvent to form a positive electrode.
  • a step of preparing a slurry for an active material layer a step of preparing a slurry for a positive electrode insulating layer by mixing an inorganic filler, a second non-aqueous binder, a dispersant, and a second non-aqueous solvent; applying the slurry for the active material layer to the surface of the positive electrode foil; applying the slurry for the positive electrode insulating layer to the surface of the slurry for the positive electrode active material layer applied to the surface of the positive electrode foil; and drying the positive electrode active material layer slurry and the positive electrode insulating layer slurry at the same time.
  • the lithium ion secondary battery according to the embodiment is manufactured by this lithium ion secondary battery manufacturing method.
  • the first non-aqueous solvent contained in the positive electrode active material layer slurry is not particularly limited as long as it is an organic solvent, but for example, N-methyl-2-pyrrolidone (NMP) is preferable.
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode active material and the first non-aqueous binder contained in the slurry for the positive electrode active material layer are the same as the positive electrode active material and the first non-aqueous binder contained in the positive electrode active material layer, respectively, so the description is omitted here. do.
  • the second non-aqueous solvent contained in the positive electrode insulating layer slurry is not particularly limited as long as it is an organic solvent, but N-methyl-2-pyrrolidone (NMP), for example, is preferable.
  • NMP N-methyl-2-pyrrolidone
  • the inorganic filler, second non-aqueous binder, and dispersant contained in the positive electrode insulating layer slurry are the same as the inorganic filler, second non-aqueous binder, and dispersant contained in the positive electrode insulating layer, respectively. is omitted.
  • the same solvent is preferably used for the positive electrode active material layer slurry and the positive electrode insulating layer slurry. This is because they can be efficiently recycled.
  • a positive electrode according to the present invention was produced. Specifically, first, an aluminum foil (positive electrode foil) having a thickness of 15 ⁇ m was prepared.
  • Li 1.0 Ni 0.33 Co 0.33 Mn 0.33 O 2 powder positive electrode active material
  • PVDF polyvinylidene fluoride
  • acetylene black conductive assistant
  • NMP N-methyl-2-pyrrolidone
  • boehmite inorganic filler
  • PVDF polyvinylidene fluoride
  • dispersant having a structure having a carboxyl group
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode active material layer slurry was applied to both sides of the aluminum foil so that uncoated portions (positive electrode foil exposed portions) remained.
  • the positive electrode insulating layer slurry was applied to the surface of the liquid positive electrode active material layer slurry applied to both surfaces of the aluminum foil.
  • the applied liquid positive electrode active material layer slurry and positive electrode insulating layer slurry were dried at the same time.
  • a positive electrode active material layer and a positive electrode insulating layer were formed, and a laminate was obtained in which the positive electrode active material layer and the positive electrode insulating layer were laminated in this order on both sides of the aluminum foil.
  • the laminate of the aluminum foil, the positive electrode active material layer, and the positive electrode insulating layer was pressed and further cut to produce a positive electrode in which the positive electrode active material layer and the positive electrode insulating layer were formed by simultaneous coating.
  • an aluminum foil (positive electrode foil) was prepared in the same manner as in Examples, and a positive electrode active material layer slurry and a positive electrode insulating layer slurry were prepared.
  • the positive electrode active material layer slurry was applied to both sides of the aluminum foil so that uncoated portions (positive electrode foil exposed portions) remained.
  • the applied positive electrode active material layer slurry was dried to form a positive electrode active material layer.
  • the positive electrode insulating layer slurry was applied to the surfaces of the positive electrode active material layers formed on both sides of the aluminum foil.
  • the positive electrode insulating layer was formed by drying the applied positive electrode insulating layer slurry. As a result, a laminate was obtained in which the positive electrode active material layer and the positive electrode insulating layer were laminated in this order on both sides of the aluminum foil.
  • the laminate of the aluminum foil, the positive electrode active material layer, and the positive electrode insulating layer was pressed and further cut, whereby the positive electrode active material layer and the positive electrode insulating layer were sequentially formed by coating. A positive electrode was produced.
  • the inorganic filler of the positive electrode insulating layer did not sink into the positive electrode active material layer.
  • the present invention is not limited to the above-described embodiments and examples, but has substantially the same configuration as the technical idea described in the claims of the present invention, and has similar effects. Any thing is included in the technical scope of the present invention, and includes various modifications.
  • the above-described embodiments and examples have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • part of the configuration of one embodiment and example can be replaced with the configuration of another embodiment and example, and the configuration of one embodiment and example can be replaced with another embodiment and example. Additional configuration is also possible.
  • 1 battery can 1a opening 1b wide side 1c narrow side 1d bottom 2 insulating protective film 3 wound group 5 gasket 6 battery lid 7 insulating plate 9 liquid filling port 10 gas discharge valve 11 liquid filling plug 12 negative electrode external terminal 12a negative electrode connection Portion 14 Positive electrode external terminal 14a Positive electrode connection portion 21 Negative current collector plate base 22 Negative electrode side connection end portion 23 Negative electrode side opening hole 24 Negative electrode current collector plate 26 Negative electrode side through hole 32 Negative electrode 32a Negative electrode foil 32b Negative electrode active material layer 32c Negative foil exposure Part 33 Separator 34 Positive electrode 34a Positive electrode foil 34b Positive electrode active material layer 34c Positive electrode foil exposed portion 34d Positive electrode insulating layer 35 Separator 41 Positive electrode collector plate base 42 Positive electrode side connection end 43 Positive electrode side opening hole 44 Positive electrode collector plate 46 Positive electrode side penetration Hole 100 Flat wound secondary battery (lithium ion secondary battery) All publications, patents and patent applications cited herein are hereby incorporated by reference in their entirety.

Abstract

正極絶縁層の材料が正極活物質層に沈み込むことを抑制し、正極絶縁層の絶縁性の低下を抑制できるリチウムイオン二次電池を提供することを目的とする。本発明のリチウムイオン二次電池は、正極と負極とを備え、上記正極及び上記負極が積層されたリチウムイオン二次電池であって、上記正極は、正極箔と、上記正極箔の表面に設けられた正極活物質層と、上記正極活物質層の表面に設けられた正極絶縁層とを有し、上記正極活物質層は、正極活物質と、第一非水系バインダとを含み、上記正極絶縁層は、無機フィラーと、第二非水系バインダと、分散剤とを含むことを特徴とする。

Description

リチウムイオン二次電池及びその製造方法
 本発明は、リチウムイオン二次電池及びその製造方法に関し、例えば、ハイブリッド自動車、電気自動車等の動力用電源に用いるリチウムイオン二次電池及びその製造方法に関する。
 近年、ハイブリッド自動車、電気自動車等の動力源に用いる大容量の二次電池が開発されており、その中でもエネルギー密度が高いリチウムイオン二次電池が注目されている。そして、排気ガスを抑制し環境性能を重視する観点から自動車では電動化による走行が指向されている結果、リチウムイオン二次電池では、より高いエネルギー密度とともに、より高い安全性が求められている。
 リチウムイオン二次電池は、一般的には、正極及び負極と、それらを電気的に絶縁するためのセパレータとを備え、正極及び負極がセパレータを介して積層された基本構成を有している。正極及び負極は、通常、帯状の金属箔の表面にリチウムイオンを挿入・脱離可能な活物質を含むスラリーを塗布することで活物質層が形成されたものである。これらの正極及び負極並びにセパレータは、例えば、互いに重ね合わされた状態で捲回され電極群として成形され、缶あるいはラミネート外装体に入れられ電解液に含浸された状態で封入される。
 リチウムイオン二次電池では、正極及び負極の間に、例えば、ポリエチレン、ポリプロピレン等の多孔性フィルムなどからなるセパレータが介在することで、正極及び負極が絶縁されている。近年においては、より高い安全性を確保するべく、コンタミネーション等を原因とする電圧低下や内部短絡の抑制、あるいは耐熱性能の向上等を目的として、電極の活物質層の表面に絶縁層を設けることが提案されている。
 例えば、特許文献1には、電極に形成される活物質合剤層の性能を阻害することなく、より絶縁信頼性を向上させるために、電極箔の上に活物質合剤層が形成され、活物質合剤層の上に絶縁層が形成された電極を有する二次電池の製造方法であって、活物質合剤スラリーと絶縁層用分散液とを電極箔の上に同時に塗布して活物質合剤層と絶縁層とを形成する工程を備える二次電池の製造方法が提案されている。
 また、特許文献2には、正極と負極との間に保護層を介在させることで二次電池が高温状態に陥ったときにも正極と負極との間の二次短絡を回避し、安全性を向上させるために、負極の負極活物質層の表面に負極保護層(絶縁層)が設けられており、負極保護層が無機フィラーと樹脂フィラーと結着材とを有し、樹脂フィラーとしてセパレータよりも融点が高いものが用いられる二次電池が提案されている。この二次電池では、セパレータの融点以上の異常発熱時において、負極保護層の樹脂フィラーが軟化し第二の結着材の機能を発揮することで、無機フィラーの動きを抑制する。これにより、セパレータが熱によりシュリンクしても、負極保護層により正極と負極との間の二次短絡を回避することができ、安全性を向上させることができる。
 さらに、特許文献3には、絶縁性耐熱材料と水系溶媒(水又は水と極性有機溶媒とを含有する溶媒)とを含む絶縁性耐熱層用ペーストを用いた方法で正極の活物質層の表面に絶縁性耐熱層(絶縁層)を形成する際に、絶縁性耐熱層の欠陥の発生を抑制するために、正極合材層の表面に親水性導電材の粉末を付着させることにより親水性導電材層を形成し、親水性導電材層の表面に絶縁性耐熱層用ペーストを塗布して絶縁性耐熱層を形成した後に、正極合材層及び親水性導電材層を乾燥させるリチウムイオン二次電池用正極の製造方法が提案されている。
再表2019/008827号公報 再表2017/038327号公報 特開2019-169416号公報
 従来のリチウムイオン二次電池の製造方法において、コンタミネーション等を原因とする電圧低下や内部短絡の抑制、あるいは耐熱性能の向上等を目的として、正極活物質層の表面に正極絶縁層を形成するために、非水系溶媒を含む正極活物質層用スラリー及び水系溶媒を含む正極絶縁層用スラリーを正極箔の表面に重ね合わせて塗布し、塗布された両方のスラリーを同時に乾燥させる場合には、乾燥工程で非水系溶媒及び水系溶媒を分離し回収することが困難であった。このため、溶媒のリサイクルが問題となった。一方、このような問題を回避すべく、両方が非水系溶媒を含む正極活物質層用スラリー及び正極絶縁層用スラリーを正極箔の表面に重ね合わせて塗布し、塗布された両方のスラリーを同時に乾燥させる場合には、正極絶縁層の材料が正極活物質層に沈み込み、正極絶縁層の絶縁性が低下するおそれがあった。
 本発明は、上記課題に鑑みてなされたものであり、正極絶縁層の材料が正極活物質層に沈み込むことを抑制し、正極絶縁層の絶縁性の低下を抑制できるリチウムイオン二次電池及びその製造方法を提供することを主目的とする。
 上記課題を解決するために、本発明のリチウムイオン二次電池は、正極と負極とを備え、上記正極及び上記負極が積層されたリチウムイオン二次電池であって、上記正極は、正極箔と、上記正極箔の表面に設けられた正極活物質層と、上記正極活物質層の表面に設けられた正極絶縁層とを有し、上記正極活物質層は、正極活物質と、第一非水系バインダとを含み、上記正極絶縁層は、無機フィラーと、第二非水系バインダと、分散剤とを含むことを特徴とする。
 本発明のリチウムイオン二次電池によれば、正極絶縁層の材料が正極活物質層に沈み込むことを抑制し、正極絶縁層の絶縁性の低下を抑制できる。
 さらに、本発明のリチウムイオン二次電池の製造方法は、正極箔を準備する工程と、正極活物質と、第一非水系バインダと、第一非水系溶媒とを混合することで正極活物質層用スラリーを調製する工程と、無機フィラーと、第二非水系バインダと、分散剤と、第二非水系溶媒とを混合することで正極絶縁層用スラリーを調製する工程と、上記正極活物質層用スラリーを上記正極箔の表面に塗布する工程と、上記正極絶縁層用スラリーを上記正極箔の表面に塗布された上記正極活物質層用スラリーの表面に塗布する工程と、塗布された上記正極活物質層用スラリー及び上記正極絶縁層用スラリーを同時に乾燥させる工程と、を備えることを特徴とする。
 本発明のリチウムイオン二次電池の製造方法によれば、正極絶縁層の材料が正極活物質層に沈み込むことを抑制し、正極絶縁層の絶縁性の低下を抑制できる。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2021-035639号の開示内容を包含する。
 本発明によれば、正極絶縁層の材料が正極活物質層に沈み込むことを抑制し、正極絶縁層の絶縁性の低下を抑制できる。
 以上に説明した内容以外の本発明の課題、構成、及び効果は、以下の発明を実施するための形態の説明により明らかにされる。
一の実施形態に係るリチウムイオン二次電池である扁平捲回形二次電池の概略を示す外観斜視図である。 図1に示す扁平捲回形二次電池の構成部品概略を示す分解斜視図である。 図2に示す電極捲回群の一部を展開した状態の概略を示す分解斜視図である。 (a)は、図3に示す正極の裁断前の構成を模式的に示す断面図であり、(b)は、図3に示す正極の裁断前の構成を模式的に示す平面図である。
 以下、図面等を用いて、本発明のリチウムイオン二次電池及びその製造方法に係る実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明は、これらの説明に限定されるものではなく、本明細書で開示されている技術的思想の範囲内において当業者による様々な変更及び修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。
 本明細書に記載される「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。本明細書に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的に記載されている上限値又は下限値に置き換えてもよい。本明細書に記載される数値範囲の上限値又は下限値は、実施例中に示されている値に置き換えてもよい。
 以下で例示している材料群から材料を選択する場合、本明細書で開示されている内容と矛盾しない範囲で、材料を単独で選択してもよく、複数組み合わせて選択してもよい、また、本明細書で開示されている内容と矛盾しない範囲で、以下で例示している材料群以外の材料を選択してもよい。
 最初に、実施形態に係るリチウムイオン二次電池の概略について、一の実施形態に係るリチウムイオン二次電池を例示して説明する。ここで、図1は、一の実施形態に係るリチウムイオン二次電池である扁平捲回形二次電池の概略を示す外観斜視図である。図2は、図1に示す扁平捲回形二次電池の構成部品概略を示す分解斜視図である。図3は、図2に示す電極捲回群の一部を展開した状態の概略を示す分解斜視図である。
 図1及び図2に示すように、扁平捲回形二次電池100は、電池缶1及び電池蓋(蓋)6を備えている。電池缶1は、矩形の底面1dと、底面1dから立ち上がる角筒状の側面1b、1cと、側面1b、1cの上端で上方に向かって開放された開口部1aとを有している。角筒状の側面1b、1cは、相対的に面積の大きい一対の対向する幅広側面1bと相対的に面積の小さい一対の対向する幅狭側面1cとを含んでいる。電池缶1内には絶縁保護フィルム2を介して捲回群3が収納されている。電池蓋6は、略矩形平板状であり、電池缶1の上方の開口部1aを塞ぐように溶接されている。これにより、電池缶1が封止されている。
 電池蓋6には正極外部端子14と負極外部端子12とが設けられており、ガス排出弁10が一体的に設けられている。扁平捲回形二次電池100では、正極外部端子14及び負極外部端子12を介して捲回群3に充電され、外部負荷に電力が供給される。また、電池缶1の内部の圧力が上昇すると、ガス排出弁10が開いて電池缶1の内部からガスが排出され、電池缶1の内部の圧力が低減される。これにより、扁平捲回形二次電池100の安全性が確保される。
 図2及び図3示すように、捲回群3は、扁平形状に捲回されているため、断面半円形状を有する互いに対向する一対の湾曲部と、これら一対の湾曲部の間に連続して形成される平面部とを有している。捲回群3は、捲回軸方向が電池缶1の横幅方向に沿うように、一方の湾曲部側から電池缶1の内部に挿入され、他方の湾曲部側が電池缶1の上方の開口部1a側に配置される。
 捲回群3の正極箔露出部34cは、正極集電板(集電端子)44を介して電池蓋6に設けられた正極外部端子14と電気的に接続されている。また、捲回群3の負極箔露出部32cは、負極集電板(集電端子)24を介して電池蓋6に設けられた負極外部端子12と電気的に接続されている。これにより、正極集電板44及び負極集電板24を介して捲回群3から外部負荷へ電力が供給され、正極集電板44及び負極集電板24を介して捲回群3へ外部発電電力が供給され充電される。
 正極外部端子14及び負極外部端子12並びに正極集電板44及び負極集電板24をそれぞれ電池蓋6から電気的に絶縁するために、ガスケット5及び絶縁板7が電池蓋6に設けられている。電池蓋6には、電池缶1の内部に電解液を注入するための注液口9が穿設されている。扁平捲回形二次電池100では、電解液を注液口9から電池缶1の内部に注入した後、注液栓11を電池蓋6にレーザ溶接により接合することで注液口9が封止されている。これにより、扁平捲回形二次電池100が密閉されている。
 正極外部端子14及び負極外部端子12は、バスバー等に溶接接合される溶接接合部を有している。溶接接合部は、電池蓋6の表面から上方に突出する直方体のブロック形状を有しており、下面が電池蓋6の表面に対向し、上面が所定高さ位置で電池蓋6の表面と平行となっている。
 正極接続部14a及び負極接続部12aは、正極外部端子14の溶接接合部の下面及び負極外部端子12の溶接接合部の下面からそれぞれ突出しており、それらの先端が電池蓋6の正極側貫通孔46及び負極側貫通孔26に挿入可能な円柱形状をそれぞれ有している。正極接続部14a及び負極接続部12aは、電池蓋6を貫通して正極集電板44の正極集電板基部41及び負極集電板24の負極集電板基部21よりも電池缶1の内部側にそれぞれ突出しており、先端が加締められ、正極外部端子14及び負極外部端子12と正極集電板44及び負極集電板24とを電池蓋6に一体に固定している。電池蓋6と正極外部端子14及び負極外部端子12との間にはガスケット5が介在しており、正極集電板44及び負極集電板24と電池蓋6との間には絶縁板7が介在している。
 正極集電板44及び負極集電板24は、電池蓋6の下面に対向して配置される矩形板状の正極集電板基部41及び負極集電板基部21と、正極集電板基部41及び負極集電板基部21の側端で折曲されて、電池缶1の幅広側面1bに沿って底面側に向かって延出し、捲回群3の正極箔露出部34c及び負極箔露出部32cに対向して重ね合わされた状態で接続される正極側接続端部42及び負極側接続端部22を有している。
 正極集電板基部41及び負極集電板基部21には、正極接続部14a及び負極接続部12aがそれぞれ挿通される正極側開口穴43及び負極側開口穴23がそれぞれ設けられている。
 捲回群3の扁平面に沿う方向でかつ捲回群3の捲回軸方向に直交する方向を中心軸方向として上記捲回群3の周囲には絶縁保護フィルム2が巻き付けられる。絶縁保護フィルム2は、特に限定されず一般的なものを用いることができるが、例えば、PP(ポリプロピレン)等の合成樹脂製の一枚のシート又は複数のフィルム部材からなる。絶縁保護フィルム2は、捲回群3の扁平面に沿う方向でかつ捲回軸方向に直交する方向を巻き付けの中心軸方向として巻き付けることができる長さを有している。
 図3に示すように、捲回群3は、正極34及び負極32の間にセパレータ33、35を介在させ、正極34及び負極32並びにセパレータ33、35を扁平状に捲回することにより構成されている。捲回群3は、最外周の電極が負極32であり、さらに最外周の負極32の外周側にセパレータ35が捲回されている。
 セパレータ33、35は、正極34及び負極32の短絡を防止する絶縁機能を有し、かつ非水系解液の保持機能を有している。
 負極32の負極活物質層32bが塗布された部分は、正極34の正極活物質層34bが塗布された部分よりも幅方向(捲回軸方向)に大きくなっている。これにより、捲回群3は、正極活物質層34bが塗布された部分の全体が、負極活物質層32bが塗布された部分に挟まれるように構成されている。正極箔露出部34c及び負極箔露出部32cは、捲回群3の平面部で束ねられて溶接等により接続される。なお、セパレータ33、35は、幅方向で負極活物質層32bが塗布された部分よりも広いが、正極箔露出部34c及び負極箔露出部32cで端部の金属箔面が露出する位置に捲回される。このため、セパレータ33、35は、束ねて溶接する場合の支障にはならない。
 図3に示すように、負極32は、負極箔32aと、負極箔32aの両面に設けられた負極活物質層32bとを備えている。
 負極32は、負極活物質と結着剤であるバインダとを適切な溶媒(例えば、水、N-メチル-2-ピロリドン等)に分散し混練することで調製したスラリーを負極箔32aの両面に塗布し、負極箔32aの両面に塗布されたスラリーを乾燥することで溶媒を除去することにより、負極活物質層32bを形成した後に、さらに負極箔32a及び負極活物質層32bをプレス機でプレスすることで適切な厚みにすることにより作製できる。
 ここで、図4(a)は、図3に示す正極の裁断前の構成を模式的に示す断面図であり、図4(b)は、図3に示す正極の裁断前の構成を模式的に示す平面図である。
 図3及び図4(a)に示すように、正極34は、正極箔34aと、正極箔34aの両面に設けられた正極活物質層34bと、両方の正極活物質層34bの表面をそれぞれ覆うように設けられた正極絶縁層34dとを備えている。正極絶縁層34dは、負極32の負極活物質層32bに対向している。
 図4(b)では、正極34を平面視した場合において、正極活物質層34bが示されるように、正極絶縁層34dで覆われていない部分が示されている。実際に使用する正極では、正極を平面視した場合の正極活物質層が設けられた部分の全面が絶縁層で覆われるように設けられる。図4(b)に示すように、正極34は、裁断前の状態であり、幅方向の中央線CLで幅方向の両側の2つに分割されるように裁断されることで2枚の正極34が形成される。
 正極活物質層34bは、正極活物質と、第一非水系バインダとを含んでいる。正極絶縁層34dは、無機フィラーと、第二非水系バインダと、分散剤とを含んでいる。分散剤は、カルボン酸化合物及びリン酸化合物からなる群より選ばれる少なくとも一種を含有するものである。
 正極活物質層34b及び正極絶縁層34dは、正極活物質層用スラリー及び正極絶縁層用スラリーを正極箔34aに両面に同時に塗布することにより形成される。ここで「同時に塗布」とは、正極活物質層用スラリーと正極絶縁層用スラリーとを予め層状に重ね合わせた状態とし、その重ね合わせた状態のまま正極箔34a上に塗布する場合を含み、また、正極箔34a上に先に正極活物質層用スラリーを塗布し、正極活物質層用スラリーの表面が乾燥する前のウエットな状態で正極活物質層用スラリー上に正極絶縁層用スラリーを塗布する場合も含む。
 以上のように一の実施形態に係るリチウムイオン二次電池である扁平捲回形二次電池100では、正極34が、正極箔34aと、正極箔34aの表面に設けられた正極活物質層34bと、正極活物質層34bの表面に設けられた正極絶縁層34dとを有し、正極活物質層34bが、正極活物質と、第一非水系バインダとを含み、正極絶縁層34dが、無機フィラーと、第二非水系バインダと、分散剤とを含んでいる。このため、扁平捲回形二次電池100の製造時において、両方が非水系溶媒を含む正極活物質層用スラリー及び正極絶縁層用スラリーを正極箔34aの表面に重ね合わせて塗布し、塗布された両方のスラリーを同時に乾燥させることで、正極活物質層34b及び正極絶縁層34dを形成する際には、塗布された正極絶縁層用スラリーにおいて無機フィラー等の材料を分散剤により分散できる。これにより、正極絶縁層34dの無機フィラー等の材料が正極活物質層34bに沈み込むことを抑制できる。よって、正極絶縁層34dの絶縁性の低下を抑制できる。また、塗布された正極活物質層用スラリー及び正極絶縁層用スラリーを同時に乾燥させる場合に、両方のスラリーから非水系溶媒を回収しリサイクルできるため、低コスト化を図ることができる。
 続いて、実施形態に係るリチウムイオン二次電池及びその製造方法の構成の詳細について説明する。
1.正極
 上記正極は、正極箔と、上記正極箔の表面に設けられた正極活物質層と、上記正極活物質層の表面に設けられた正極絶縁層とを有する。
(1)正極箔
 正極箔としては、特に限定されないが、アルミニウム箔、アルミニウム製穿孔箔、発泡アルミニウム板等が挙げられる。
(2)正極活物質層
 上記正極活物質層は、正極活物質と、第一非水系バインダとを含む。
 正極活物質としては、特に限定されず、リチウム二次電池の正極活物質として適用可能な材料の1種若しくは2種以上混合した材料を用いることができるが、例えば、スピネル系(例えば、LiMn等)、層状系(例えば、LiCoO、LiNiO等)、オリビン系(例えば、LiFePO等)の1種若しくは2種以上混合した材料などが好ましい。中でも、Li、Ni、Co、及びMnを構成元素として含む層状系のリチウムニッケルコバルトマンガン複合酸化物(例えば、LiNi0.33Co0.33Mn0.33等)がより好ましい。リチウムイオンの脱離量が2/3までは充放電に伴う格子体積の変化がほとんどないことから、耐久性にも優れているからである。
 第一非水系バインダとしては、有機溶媒である非水系溶媒に分散又は溶解するバインダであれば特に限定されないが、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリアクリル酸(PAA)、及びカルボキシメチルセルロース(CMC)からなる群より選ばれる少なくとも一種を含有するものが好ましい。
 なお、正極活物質層に含まれる各成分及び各成分の含有量は、赤外分光法(IR)等のスペクトル分析、ガスクロマトグラフィー質量分析法(Py-GC/MS)等のクロマトグラフ分析などを用いて確認又は測定できる。
(3)正極絶縁層
 上記正極絶縁層は、無機フィラーと、第二非水系バインダと、分散剤とを含む。
 上記無機フィラーとしては、特に限定されず一般的なものを用いることができるが、例えば、アルミナ(Al)、ベーマイト(Al水和物)、マグネシア(MgO)、ジルコニア(ZrO)、チタニア(TiO2)、酸化鉄、シリカ(SiO)、及びチタン酸バリウム(BaTiO)等からなる群より選ばれる少なくとも一種を含有するものなどが挙げられる。上記無機フィラーとしては、アルミナ、ベーマイト、マグネシア、ジルコニア、及びチタニアからなる群より選ばれる少なくとも一種を含有するものが好ましい。
 上記第二非水系バインダとしては、有機溶媒である非水系溶媒に分散又は溶解するバインダであれば特に限定されないが、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリアクリル酸(PAA)、及びカルボキシメチルセルロース(CMC)からなる群より選ばれる少なくとも一種を含有するものが好ましい。ここで、非水系溶媒は、有機溶媒であれば特に限定されないが、例えば、N-メチル-2-ピロリドン(NMP)等が好ましい。
 上記分散剤としては、特に限定されないが、カルボン酸化合物及びリン酸化合物からなる群より選ばれる少なくとも一種を含有するものが好ましい。カルボン酸化合物又はリン酸化合物を、非水系溶媒に分散剤として無機フィラー等の材料と一緒に混合すると、例えば、COO等の陰イオンなどが生じ、これが非水系溶媒中の無機フィラーの表面の極性による電荷と反発し合うことで無機フィラーが分散する結果、無機フィラーの沈み込みを効果的に抑制できるからである。
 ここで、「カルボン酸化合物」とは、カルボキシ基を1又は2以上有する化合物を意味する。なお、カルボキシ基は塩を形成してもよい。
 また、「リン酸化合物」とは、*-O-P(=O)(OR’)(OR’’)で表される極性官能基を1又は2以上有する化合物を意味する。式中、*は、リン酸化合物における他の構造部分との結合手を表す。R’及びR’’は、それぞれ独立に、水素原子又は1価の有機基を表す。なお、上記式で表される極性官能基は塩を形成していてもよい。
 正極絶縁層における無機フィラー及び第二非水系バインダの合計含有量に対する第二非水系バインダの含有量としては、特に限定されないが、例えば、0.1wt%以上10.0wt%以下の範囲内が好ましく、中でも0.2wt%以上1.5wt%以下の範囲内が好ましい。これらの範囲の下限以上であることにより、正極絶縁層を耐久性に優れたものにできるからであり、これらの範囲の上限以下であることにより、正極及び負極間の短絡を効果的に抑制できるからである。
 正極絶縁層における無機フィラー及び分散剤の合計含有量に対する分散剤の含有量としては、特に限定されないが、例えば、0.5wt%以上10.0wt%以下の範囲内が好ましく、中でも1.3wt%以上5.0wt%以下の範囲内が好ましい。これらの範囲の下限以上であることにより、分散剤により無機フィラーを好適に分散し、正極活物質層への無機フィラーの沈み込みを効果的に抑制できるからであり、これらの範囲の上限以下であることにより、正極及び負極間の短絡を効果的に抑制できるからである。
 また、正極絶縁層に含まれる各成分及び各成分の含有量は、ガスクロマトグラフィー質量分析法(Py-GC/MS)等のクロマトグラフ分析などを用いて確認又は測定できる。
2.負極
 上記負極は、特に限定されないが、例えば、負極箔と、上記負極箔の表面に設けられた負極活物質層とを有するものである。
(1)負極箔
 負極箔としては、特に限定されないが、例えば、銅箔、銅製穿孔箔、発泡銅板等が挙げられる。
(2)負極活物質層
 負極活物質層は、特に限定されないが、例えば、負極活物質と、バインダとを含むものである。
 負極活物質としては、特に限定されず一般的なものを用いることができるが、例えば、天然黒鉛、人造黒鉛、難黒鉛化炭素(ハードカーボン)、易黒鉛化炭素(ソフトカーボン)等の炭素材料などが挙げられる。黒鉛については、黒鉛表面に非晶質炭素を被覆することで必要以上に電解液と反応することを抑制できる。
 負極活物質としては、黒鉛にアセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラックを導電助剤として混合させた材料、黒鉛にその導電助剤を混合させた材料をさらに非晶質炭素で被覆し複合化させた材料、黒鉛に黒鉛化炭素(ハードカーボン)、易黒鉛化炭素(ソフトカーボン)、金属酸化物(例えば、酸化鉄、酸化銅等)を混合させた材料などが挙げられる。
 バインダとしては、特に限定されず一般的なものを用いることができるが、例えば、特に限定されないが、スチレン-ブタジエンゴム、カルボキシメチルセルロース、ポリフッ化ビニリデン(PVDF)等が挙げられる。
(3)その他
 上記負極としては、上記負極活物質層の表面に設けられた負極絶縁層をさらに有するものが好ましい。負極絶縁層としては、特に限定されないが、例えば、無機フィラーと、バインダとを含むものである。なお、負極が負極絶縁層をさらに有する場合には、正極の正極絶縁層は、負極の負極絶縁層に対向する。
3.リチウムイオン二次電池
 リチウムイオン二次電池は、正極と負極とを備え、上記正極及び上記負極が積層されたリチウムイオン二次電池であって、上記正極は、正極箔と、上記正極箔の表面に設けられた正極活物質層と、上記正極活物質層の表面に設けられた正極絶縁層とを有し、上記正極活物質層は、正極活物質と、第一非水系バインダとを含み、上記正極絶縁層は、無機フィラーと、第二非水系バインダと、分散剤とを含むことを特徴とする。
 上記リチウムイオン二次電池としては、特に限定されないが、セパレータをさらに備え、上記正極及び上記負極が上記セパレータを介して積層されたものが好ましい。
 セパレータ33、35としては、特に限定されず一般的なものを用いることができるが、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等の樹脂製の多孔質シートを有するものなどが挙げられる。樹脂製の多孔質シートは、単層構成でもよく、複数層構成(例えば、PP/PE/PPの三層構成等)でもよい。セパレータ33、35としては、樹脂製の多孔質シート等からなる本体の片側若しくは両側に設けられた無機材料(例えば、アルミナ粒子等)及びバインダから構成される層をさらに有するものが好ましい。これにより、リチウム二次電池が異常な状態で使用された場合(例えば、過充電や圧壊等で二次電池の温度が160℃以上まで上昇した場合)であっても溶融せず絶縁機能を保持でき、安全性を確保できる。
 リチウムイオン二次電池は、通常、電解質層を備える。電解質層は、例えば、電池缶の内部に注入される電解液である。電解液としては、特に限定されず一般的なものを用いることができるが、例えば、エチレンカーボネート等の炭酸エステル系の有機溶媒に6フッ化リン酸リチウム(LiPF)等のリチウム塩が溶解された非水系解液などが挙げられる。
 リチウムイオン二次電池は、正極外部端子及び正極集電板並びに負極外部端子及び負極集電板を備えていてもよい。正極外部端子及び正極集電板の構成材料としては、特に限定されず一般的なものを用いることができるが、例えば、アルミニウム合金等が挙げられる。負極外部端子及び負極集電板の構成材料としては、特に限定されず一般的なものを用いることができるが、例えば、銅合金等が挙げられる。
 リチウムイオン二次電池は、絶縁板及びガスケットを備えていてもよい。絶縁板7及びガスケット5の構成材料としては、特に限定されず一般的なものを用いることができるが、例えば、ポリブチレンテレフタレートやポリフェニレンサルファイド、ペルフルオロアルコキシフッ素樹脂等の絶縁性を有する樹脂材などが挙げられる。
4.リチウムイオン二次電池の製造方法
 リチウムイオン二次電池の製造方法は、正極箔を準備する工程と、正極活物質と、第一非水系バインダと、第一非水系溶媒とを混合することで正極活物質層用スラリーを調製する工程と、無機フィラーと、第二非水系バインダと、分散剤と、第二非水系溶媒とを混合することで正極絶縁層用スラリーを調製する工程と、上記正極活物質層用スラリーを上記正極箔の表面に塗布する工程と、上記正極絶縁層用スラリーを上記正極箔の表面に塗布された上記正極活物質層用スラリーの表面に塗布する工程と、塗布された上記正極活物質層用スラリー及び上記正極絶縁層用スラリーを同時に乾燥させる工程と、を備える。このリチウムイオン二次電池の製造方法により、実施形態に係るリチウムイオン二次電池を製造する。
 正極活物質層用スラリーに含まれる第一非水系溶媒は、有機溶媒であれば特に限定されないが、例えば、N-メチル-2-ピロリドン(NMP)等が好ましい。
 正極活物質層用スラリーに含まれる正極活物質及び第一非水系バインダについては、正極活物質層に含まれる正極活物質及び第一非水系バインダとそれぞれ同様であるため、ここでの説明は省略する。
 正極絶縁層用スラリーに含まれる第二非水系溶媒は、有機溶媒であれば特に限定されないが、例えば、N-メチル-2-ピロリドン(NMP)等が好ましい。
 正極絶縁層用スラリーに含まれる無機フィラー、第二非水系バインダ、及び分散剤については、正極絶縁層に含まれる無機フィラー、第二非水系バインダ、及び分散剤とそれぞれ同様であるため、ここでの説明は省略する。
 上記正極活物質層用スラリー及び上記正極絶縁層用スラリーとしては、同一の溶媒を用いることが好ましい。効率よくリサイクルできるからである。
 以下、実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明の技術的範囲はこれらの実施例に限定されるものではない。
[実施例]
 本発明に係る正極を作製した。具体的には、まず、厚さ15μmのアルミニウム箔(正極箔)を準備した。
 次に、Li1.0Ni0.33Co0.33Mn0.33粉末(正極活物質)と、ポリフッ化ビニリデン(PVDF)(第一非水系バインダ)と、アセチレンブラック(導電助剤)とを90:5:5となる重量比で混合し、それらの混合物をN-メチル-2-ピロリドン(NMP)(第一非水系溶媒)と混合し粘度を調整することで正極活物質層用スラリーを調製した。
 次に、ベーマイト(無機フィラー)と、ポリフッ化ビニリデン(PVDF)(第二非水系バインダ)と、カルボキシル基を有する構造の分散剤とを98:1:1となる重量比で混合し、それらの混合物をN-メチル-2-ピロリドン(NMP)(第二非水系溶媒)と混合し粘度を調製することで正極絶縁層用スラリーを調製した。
 次に、正極活物質層用スラリーをアルミニウム箔の両面に未塗工部(正極箔露出部)が残るように塗布した。次に、正極絶縁層用スラリーを、アルミニウム箔の両面に塗布された液状の正極活物質層用スラリーの表面に塗布した。
 次に、塗布された液状の正極活物質層用スラリー及び正極絶縁層用スラリーを同時に乾燥させた。これにより、正極活物質層及び正極絶縁層を形成し、アルミニウム箔の両面に正極活物質層及び正極絶縁層がこの順番に積層された積層体を得た。
 次に、アルミニウム箔、正極活物質層、及び正極絶縁層の積層体をプレスし、さらに裁断することで、正極活物質層及び正極絶縁層が同時塗工で形成された正極を作製した。
[比較例]
 まず、実施例と同様に、アルミニウム箔(正極箔)を準備し、正極活物質層用スラリー及び正極絶縁層用スラリーを調整した。
 次に、正極活物質層用スラリーをアルミニウム箔の両面に未塗工部(正極箔露出部)が残るように塗布した。次に、塗布された正極活物質層用スラリーを乾燥させることで正極活物質層を形成した。
 次に、正極絶縁層用スラリーを、アルミニウム箔の両面に形成された正極活物質層の表面に塗布した。次に、塗布された正極絶縁層用スラリーを乾燥させることで正極絶縁層を形成した。これにより、アルミニウム箔の両面に正極活物質層及び正極絶縁層がこの順番に積層された積層体を得た。
 次に、実施例と同様に、アルミニウム箔、正極活物質層、及び正極絶縁層の積層体をプレスし、さらに裁断することで、正極活物質層及び正極絶縁層が逐次塗工で形成された正極を作製した。
[外観観察]
 実施例の正極絶縁層に分散剤を用いた正極の作製時において、正極活物質層用スラリーをアルミニウム箔の両面に塗布した後に、正極活物質層用スラリーを乾燥させる前に、正極絶縁層用スラリーを液状の正極活物質層用スラリーの表面に塗布した際に、正極絶縁層の無機フィラーが正極活物質層に沈み込むかどうかについて、外観観察を行った。
 その結果、図示しないが、実施例の正極では、正極絶縁層の無機フィラーが正極活物質層に沈み込んでいなかった。
 本発明は、上記実施形態及び上記実施例に限定されるものではなく、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含され、様々な変形例が含む。例えば、上記実施形態及び上記実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態及び実施例の構成の一部を他の実施形態及び実施例の構成に置き換えることが可能であり、また、ある実施形態及び実施例の構成に他の実施形態及び実施例の構成を加えることも可能である。また、各実施形態及び各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
1    電池缶
1a   開口部
1b   幅広側面
1c   幅狭側面
1d   底面
2    絶縁保護フィルム
3    捲回群
5    ガスケット
6    電池蓋
7    絶縁板
9    注液口
10   ガス排出弁
11   注液栓
12   負極外部端子
12a  負極接続部
14   正極外部端子
14a  正極接続部
21   負極集電板基部
22   負極側接続端部
23   負極側開口穴
24   負極集電板
26   負極側貫通孔
32   負極
32a  負極箔
32b  負極活物質層
32c  負極箔露出部
33   セパレータ
34   正極
34a  正極箔
34b  正極活物質層
34c  正極箔露出部
34d  正極絶縁層
35   セパレータ
41   正極集電板基部
42   正極側接続端部
43   正極側開口穴
44   正極集電板
46   正極側貫通孔
100  扁平捲回形二次電池(リチウムイオン二次電池)
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。

Claims (11)

  1.  正極と負極とを備え、前記正極及び前記負極が積層されたリチウムイオン二次電池であって、
     前記正極は、正極箔と、前記正極箔の表面に設けられた正極活物質層と、前記正極活物質層の表面に設けられた正極絶縁層とを有し、
     前記正極活物質層は、正極活物質と、第一非水系バインダとを含み、
     前記正極絶縁層は、無機フィラーと、第二非水系バインダと、分散剤とを含むことを特徴とするリチウムイオン二次電池。
  2.  前記分散剤は、カルボン酸化合物及びリン酸化合物からなる群より選ばれる少なくとも一種を含有することを特徴とする請求項1に記載のリチウムイオン二次電池。
  3.  前記無機フィラーは、アルミナ、ベーマイト、マグネシア、ジルコニア、及びチタニアからなる群より選ばれる少なくとも一種を含有することを特徴とする請求項1又は2に記載のリチウムイオン二次電池。
  4.  前記第二非水系バインダは、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリアクリル酸(PAA)、及びカルボキシメチルセルロース(CMC)からなる群より選ばれる少なくとも一種を含有することを特徴とする請求項1~3のいずれか1項に記載のリチウムイオン二次電池。
  5.  前記負極は、負極箔と、前記負極箔の表面に設けられた負極活物質層とを有することを特徴とする請求項1~4のいずれか1項に記載のリチウムイオン二次電池。
  6.  前記負極は、前記負極活物質層の表面に設けられた負極絶縁層をさらに有することを特徴とする請求項5に記載のリチウムイオン二次電池。
  7.  セパレータをさらに備え、前記正極及び前記負極が前記セパレータを介して積層されたことを特徴とする請求項1~6のいずれか1項に記載のリチウムイオン二次電池。
  8.  正極箔を準備する工程と、
     正極活物質と、第一非水系バインダと、第一非水系溶媒とを混合することで正極活物質層用スラリーを調製する工程と、
     無機フィラーと、第二非水系バインダと、分散剤と、第二非水系溶媒とを混合することで正極絶縁層用スラリーを調製する工程と、
     前記正極活物質層用スラリーを前記正極箔の表面に塗布する工程と、
     前記正極絶縁層用スラリーを前記正極箔の表面に塗布された前記正極活物質層用スラリーの表面に塗布する工程と、
     塗布された前記正極活物質層用スラリー及び前記正極絶縁層用スラリーを同時に乾燥させる工程と、を備えることを特徴とするリチウムイオン二次電池の製造方法。
  9.  前記分散剤は、カルボン酸化合物及びリン酸化合物からなる群より選ばれる少なくとも一種を含有することを特徴とする請求項8に記載のリチウムイオン二次電池の製造方法。
  10.  前記無機フィラーは、ベーマイト、アルミナ、マグネシア、ジルコニア、及びチタニアからなる群より選ばれる少なくとも一種を含有することを特徴とする請求項8又は9に記載のリチウムイオン二次電池の製造方法。
  11.  前記第二非水系バインダは、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリアクリル酸(PAA)、及びカルボキシメチルセルロース(CMC)からなる群より選ばれる少なくとも一種を含有することを特徴とする請求項8~10のいずれか1項に記載のリチウムイオン二次電池の製造方法。 
PCT/JP2021/034340 2021-03-05 2021-09-17 リチウムイオン二次電池及びその製造方法 WO2022185580A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023503354A JPWO2022185580A1 (ja) 2021-03-05 2021-09-17
CN202180047401.0A CN115868040A (zh) 2021-03-05 2021-09-17 锂离子二次电池及其制造方法
US18/041,863 US20230318139A1 (en) 2021-03-05 2021-09-17 Lithium ion secondary battery and method for producing same
EP21928385.0A EP4303947A1 (en) 2021-03-05 2021-09-17 Lithium ion secondary battery and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021035639 2021-03-05
JP2021-035639 2021-03-05

Publications (1)

Publication Number Publication Date
WO2022185580A1 true WO2022185580A1 (ja) 2022-09-09

Family

ID=83155245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034340 WO2022185580A1 (ja) 2021-03-05 2021-09-17 リチウムイオン二次電池及びその製造方法

Country Status (5)

Country Link
US (1) US20230318139A1 (ja)
EP (1) EP4303947A1 (ja)
JP (1) JPWO2022185580A1 (ja)
CN (1) CN115868040A (ja)
WO (1) WO2022185580A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009302009A (ja) * 2008-06-17 2009-12-24 Sanyo Electric Co Ltd 非水電解質二次電池及びその製造方法
WO2012132934A1 (ja) * 2011-03-30 2012-10-04 三洋電機株式会社 非水電解質二次電池及びその製造方法
WO2015045350A1 (ja) * 2013-09-26 2015-04-02 株式会社豊田自動織機 リチウムイオン二次電池
WO2017038327A1 (ja) 2015-09-02 2017-03-09 日立オートモティブシステムズ株式会社 二次電池
WO2017038067A1 (ja) * 2015-08-31 2017-03-09 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用機能層、及び非水系二次電池
JP2017224496A (ja) * 2016-06-15 2017-12-21 株式会社東芝 非水電解質電池、電池モジュール及び車両
WO2019008827A1 (ja) 2017-07-03 2019-01-10 日立オートモティブシステムズ株式会社 二次電池の製造方法
JP2019096501A (ja) * 2017-11-24 2019-06-20 日本電気株式会社 二次電池用電極の製造方法および二次電池の製造方法
JP2019169416A (ja) 2018-03-26 2019-10-03 トヨタ自動車株式会社 リチウムイオン二次電池用正極の製造方法
US20200373558A1 (en) * 2018-02-01 2020-11-26 Lg Chem, Ltd. Electrode for Lithium Secondary Battery, Method of Preparing the Same and Lithium Secondary Battery Including the Same
JP2021035639A (ja) 2019-08-07 2021-03-04 株式会社三洋物産 遊技機

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009302009A (ja) * 2008-06-17 2009-12-24 Sanyo Electric Co Ltd 非水電解質二次電池及びその製造方法
WO2012132934A1 (ja) * 2011-03-30 2012-10-04 三洋電機株式会社 非水電解質二次電池及びその製造方法
WO2015045350A1 (ja) * 2013-09-26 2015-04-02 株式会社豊田自動織機 リチウムイオン二次電池
WO2017038067A1 (ja) * 2015-08-31 2017-03-09 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用機能層、及び非水系二次電池
WO2017038327A1 (ja) 2015-09-02 2017-03-09 日立オートモティブシステムズ株式会社 二次電池
JP2017224496A (ja) * 2016-06-15 2017-12-21 株式会社東芝 非水電解質電池、電池モジュール及び車両
WO2019008827A1 (ja) 2017-07-03 2019-01-10 日立オートモティブシステムズ株式会社 二次電池の製造方法
JP2019096501A (ja) * 2017-11-24 2019-06-20 日本電気株式会社 二次電池用電極の製造方法および二次電池の製造方法
US20200373558A1 (en) * 2018-02-01 2020-11-26 Lg Chem, Ltd. Electrode for Lithium Secondary Battery, Method of Preparing the Same and Lithium Secondary Battery Including the Same
JP2019169416A (ja) 2018-03-26 2019-10-03 トヨタ自動車株式会社 リチウムイオン二次電池用正極の製造方法
JP2021035639A (ja) 2019-08-07 2021-03-04 株式会社三洋物産 遊技機

Also Published As

Publication number Publication date
JPWO2022185580A1 (ja) 2022-09-09
US20230318139A1 (en) 2023-10-05
CN115868040A (zh) 2023-03-28
EP4303947A1 (en) 2024-01-10

Similar Documents

Publication Publication Date Title
WO2014162437A1 (ja) リチウムイオン二次電池及びその製造方法
JP5334894B2 (ja) リチウムイオン二次電池
JP2009163942A (ja) 非水系二次電池およびその製造方法
JP2010086780A (ja) 角形二次電池
US20140023919A1 (en) Non-aqueous electrolyte secondary cell
JP6747577B2 (ja) リチウムイオン二次電池
JP6674657B2 (ja) 蓄電素子
CN110870106B (zh) 二次电池的制造方法
JP2023018128A (ja) リチウム二次電池用電極及びリチウム二次電池
JP6586169B2 (ja) 二次電池
JP2011210549A (ja) 非水電解質二次電池、車両及び電池使用機器
JP6913766B2 (ja) リチウムイオン二次電池用正極及びそれを用いたリチウムイオン二次電池
JP2017142896A (ja) 二次電池
WO2022185580A1 (ja) リチウムイオン二次電池及びその製造方法
JP6765268B2 (ja) 二次電池
JP2017174662A (ja) 二次電池
WO2014175212A1 (ja) 蓄電装置
WO2021095818A1 (ja) リチウムイオン二次電池用正極、及びリチウムイオン二次電池
JP2017098207A (ja) 電極体を有する二次電池
JP2008311011A (ja) 非水電解質二次電池
JP6216203B2 (ja) 捲回式二次電池
JPWO2019003770A1 (ja) 二次電池およびその製造方法
JP5954339B2 (ja) 角形二次電池及びその製造方法
JP6978500B2 (ja) 二次電池
WO2023188395A1 (ja) リチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928385

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023503354

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021928385

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021928385

Country of ref document: EP

Effective date: 20231005

NENP Non-entry into the national phase

Ref country code: DE