WO2022182021A1 - 희생 양극재 및 이를 포함하는 리튬 이차전지 - Google Patents

희생 양극재 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2022182021A1
WO2022182021A1 PCT/KR2022/002023 KR2022002023W WO2022182021A1 WO 2022182021 A1 WO2022182021 A1 WO 2022182021A1 KR 2022002023 W KR2022002023 W KR 2022002023W WO 2022182021 A1 WO2022182021 A1 WO 2022182021A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
sacrificial
cathode material
metal
sacrificial cathode
Prior art date
Application number
PCT/KR2022/002023
Other languages
English (en)
French (fr)
Inventor
유태구
정왕모
조치호
김지혜
정해정
허종욱
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to JP2022558534A priority Critical patent/JP2023519002A/ja
Priority to EP22759939.6A priority patent/EP4109601A4/en
Priority to CN202280003359.7A priority patent/CN115380410A/zh
Priority to US17/914,928 priority patent/US20230115280A1/en
Publication of WO2022182021A1 publication Critical patent/WO2022182021A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a sacrificial cathode material doped with a metal (M) such as Zn, Ge, Mg, or Si and the metal (M) defect formation energy is controlled to a specific level, and a lithium secondary battery including the same.
  • M metal
  • Graphite is mainly used as a negative electrode material for a lithium secondary battery, but since graphite has a small capacity per unit mass of 372 mAh/g, it is difficult to increase the capacity of the lithium secondary battery. Accordingly, in order to increase the capacity of the lithium secondary battery, as a non-carbon-based negative electrode material having a higher energy density than graphite, a negative electrode material that forms an intermetallic compound with lithium, such as silicon, tin, and oxides thereof, has been developed and used. However, in the case of such a non-carbon-based negative electrode material, although the capacity is large, the initial efficiency is low, the lithium consumption during the initial charge/discharge is large, and there is a problem that the irreversible capacity loss is large.
  • a method for overcoming the irreversible capacity loss of a negative electrode by using a material that can provide a lithium ion source or a reservoir to the positive electrode material and exhibits electrochemical activity after the first cycle so as not to degrade the overall performance of the battery This has been suggested.
  • a sacrificial positive electrode material or an irreversible additive (or an overdischarge inhibitor) for example, a method of applying an oxide containing an excess of lithium, such as Li 6 CoO 4 , to the positive electrode is known.
  • the sacrificial cathode material or the irreversible additive has an unstable structure, and may cause oxidation during the activation stage of the battery as well as the subsequent charge/discharge process to generate oxygen gas inside the battery.
  • Oxygen gas thus generated may be one of the main factors causing a decrease in battery performance by inducing volume expansion and the like.
  • an object of the present invention is to realize a high initial charge/discharge efficiency while improving the irreversible capacity loss generated in the negative electrode during initial charge/discharge, and to reduce the amount of gas additionally generated during charge/discharge after, a sacrificial cathode material comprising the same To provide a positive electrode and a lithium secondary battery.
  • Lithium cobalt oxide represented by the following formula (1)
  • sacrificial cathode material having a defect formation energy of -4.0 to -8.5 eV of metal (M) according to density functional theory (DFT):
  • M is at least one selected from the group consisting of Al, Fe, Zn, Ti, W, Mg, Ge and Si,
  • x and y are 5 ⁇ x ⁇ 7 and 0.05 ⁇ y ⁇ 0.6.
  • M may be at least one selected from the group consisting of Mg, Ge, and Si, and y may be 0.2 ⁇ y ⁇ 0.4.
  • defect formation energy of the metal M according to the density functional theory (DFT) of the sacrificial cathode material may be -4.9 to -6.4eV.
  • the sacrificial cathode material may have a tetragonal structure in which a space group is P4 2 /nmc.
  • the sacrificial cathode material may have a powder electrical conductivity of 5 ⁇ 10 -4 S/cm to 1 ⁇ 10 -2 S/cm.
  • a positive electrode mixture layer containing a positive electrode active material, a conductive material, an organic binder polymer, and a sacrificial positive electrode material on the positive electrode current collector;
  • the sacrificial cathode material includes lithium cobalt zinc oxide represented by the following Chemical Formula 1, and provides a cathode having a defect formation energy of -4.0 to -8.5 eV of the metal (M) according to the density functional theory (DFT):
  • M is at least one selected from the group consisting of Al, Fe, Zn, Ti, W, Mg, Ge and Si,
  • x and y are 5 ⁇ x ⁇ 7 and 0.05 ⁇ y ⁇ 0.6.
  • the content of the sacrificial cathode material may be 0.001 to 5.0 parts by weight based on 100 parts by weight of the cathode active material.
  • the content of the conductive material may be 0.5 to 10 parts by weight based on 100 parts by weight of the total positive electrode mixture layer.
  • the conductive material may include at least one carbon-based material selected from the group consisting of natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, and carbon fiber.
  • the positive active material is nickel (Ni), cobalt (Co), manganese (Mn), aluminum (Al), zinc (Zn), titanium (Ti), magnesium (Mg), chromium (Cr) and zirconium (Zr) It may include two or more elements selected from the group consisting of.
  • the average thickness of the positive electrode mixture layer may be 100 ⁇ m to 200 ⁇ m.
  • the positive electrode may have a change rate of resistance value of 10% or less after 30 times of charging and discharging compared to a resistance value during initial charging and discharging.
  • the present invention provides an electrode assembly including the above-described positive electrode.
  • the present invention provides a lithium secondary battery including the electrode assembly.
  • the sacrificial cathode material according to the present invention is doped with a specific metal, and the defect formation energy of the metal according to the density functional theory (DFT) is controlled within a specific range, thereby realizing high initial charging/discharging efficiency during the initial charging/discharging, and then charging and discharging. Since it is possible to reduce the amount of gas additionally generated during the operation, there is an advantage in that it is excellent in the effect of improving the stability and charging/discharging performance of the battery including the positive electrode.
  • DFT density functional theory
  • Li x CoO 4 Li x CoO 4 , 5 ⁇ x ⁇ 7.
  • Lithium cobalt oxide represented by the following formula (1)
  • sacrificial cathode material having a defect formation energy of -4.0 to -8.5 eV of metal (M) according to density functional theory (DFT):
  • M is at least one selected from the group consisting of Al, Fe, Zn, Ti, W, Mg, Ge and Si,
  • x and y are 5 ⁇ x ⁇ 7 and 0.05 ⁇ y ⁇ 0.6.
  • the sacrificial cathode material according to the present invention includes lithium cobalt metal oxide represented by Chemical Formula 1 as a main component.
  • the “main component” may mean 80 wt% or more, 90 wt% or more, 95 wt% or more, or 97.5 wt% or more, based on the total weight of the sacrificial cathode material, and in some cases, the sacrificial cathode material is lithium cobalt represented by Formula 1 When all of the metal oxide is made up, that is, it may mean 100% by weight.
  • the lithium cobalt metal oxide represented by Chemical Formula 1 is Al, Fe, Zn, Ti, W, Mg, Ge and It may have a structure doped with one or more metals selected from the group consisting of Si, and specifically may have a structure doped with one or more metals selected from the group consisting of Mg, Ge, and Si.
  • the amount of the metal doped may be 5 to 60 mole fraction (ie, 0.05 ⁇ y ⁇ 0.6), specifically, 10 to 50 mole fraction (0.1 ⁇ y ⁇ 0.5); 15 to 50 mole fractions (0.15 ⁇ y ⁇ 0.5); 15 to 45 mole fractions (0.15 ⁇ y ⁇ 0.45); 20 to 40 mole fractions (0.2 ⁇ y ⁇ 0.4); or 25 to 35 mole fractions (0.25 ⁇ y ⁇ 0.35).
  • structural distortion of lithium cobalt oxide can be alleviated by adjusting the doping amount of the metal within the molar fraction range, and thus structural stability can be further improved.
  • the lithium cobalt metal oxide represented by Formula 1 may have a tetragonal crystal structure, and among them, may have a space group of P4 2 /nmc.
  • lithium metal oxide having a tetragonal crystal structure has a structurally unstable structure due to the distortion of the tetrahedral structure formed by the cobalt element and the oxygen element. There is a problem that occurs.
  • the sacrificial cathode material of the present invention is one selected from the group consisting of Al, Fe, Zn, Ti, W, Mg, Ge and Si at the cobalt position of lithium cobalt oxide (Li x CoO 4 , 5 ⁇ x ⁇ 7).
  • the defect formation energy of the metal M according to the density functional theory (DFT) may be controlled to satisfy a specific range.
  • the defect formation energy of the metal (M) according to the density functional theory (DFT) of the sacrificial cathode material may be -4.0 to -8.5 eV, more specifically -4.0 to -7.0 eV; -4.0 to -6.5 eV; -4.5 to -7.0 eV; -4.9 to -6.4 eV; -5.0 to -6.0 eV; -4.5 to -5.6 eV; -5.0 to -5.5 eV; -5.5 to -5.9 eV; or -6.0 to -6.5 eV.
  • the defect formation energy of the metal (M) means the energy required to generate a crystallographic defect due to the metal (M) doped in lithium cobalt oxide (Li x CoO 4 , 5 ⁇ x ⁇ 7), and the present invention
  • the lithium cobalt metal oxide represented by Chemical Formula 1 may have a powder electrical conductivity of 5 ⁇ 10 -4 S/cm to 1 ⁇ 10 -2 S/cm, specifically 5 ⁇ 10 -4 S /cm to 1 x 10 -3 S/cm; 5 ⁇ 10 ⁇ 4 S/cm to 1 ⁇ 10 ⁇ 2 S/cm; 5 ⁇ 10 ⁇ 4 S/cm to 5 ⁇ 10 ⁇ 3 S/cm; 8 ⁇ 10 ⁇ 4 S/cm to 9 ⁇ 10 ⁇ 3 S/cm; 1 ⁇ 10 -3 S/cm to 8 ⁇ 10 -3 S/cm; 6.0 x 10 -3 S/cm to 7.5 x 10 -3 S/cm; Alternatively, it may have a powder electrical conductivity of 3.5 ⁇ 10 -3 S/cm to 6.5 ⁇ 10 -3 S/cm.
  • the powder electrical conductivity of the sacrificial cathode material is 10 -7 S/cm or less of a lithium cobalt oxide (Li x CoO 4 , 5 ⁇ x ⁇ 7) having a remarkably low powder electrical conductivity of a metal (M) doped at the cobalt position. It can be adjusted according to the amount or manufacturing conditions of the sacrificial cathode material, and by adjusting the electrical conductivity of the powder within the above range, the amount of gas generated during charging of the battery can be reduced and the charge/discharge capacity can be further improved.
  • the sacrificial cathode material according to the present invention includes lithium cobalt metal oxide represented by Chemical Formula 1 doped with a specific metal, and the defect formation energy of the metal according to the density functional theory (DFT) is controlled within a specific range.
  • DFT density functional theory
  • a positive electrode mixture layer containing a positive electrode active material, a conductive material, an organic binder polymer, and a sacrificial positive electrode material on the positive electrode current collector;
  • the sacrificial cathode material includes lithium cobalt zinc oxide represented by the following Chemical Formula 1, and provides a cathode having a defect formation energy of -4.0 to -8.5 eV of the metal (M) according to the density functional theory (DFT):
  • M is at least one selected from the group consisting of Al, Fe, Zn, Ti, W, Mg, Ge and Si,
  • x and y are 5 ⁇ x ⁇ 7 and 0.05 ⁇ y ⁇ 0.6.
  • the positive electrode according to the present invention has a structure in which a positive electrode mixture layer is formed on a positive electrode current collector, wherein the positive electrode mixture layer includes a positive electrode active material; conductive material; And together with the organic binder polymer, including the sacrificial cathode material of the present invention described above, the charge/discharge capacity is high, and the gas generated during charging and discharging of the battery, particularly oxygen (O 2 ) gas, is excellent in reducing effect.
  • the cathode active material is nickel (Ni), cobalt (Co), manganese (Mn), aluminum (Al), zinc (Zn), titanium (Ti), magnesium (Mg), chromium (Cr) and zirconium (Zr) It may be a lithium composite transition metal oxide containing two or more elements selected from the group consisting of.
  • the sacrificial cathode material may be included in an amount of 0.001 to 5.0 parts by weight based on 100 parts by weight of the cathode active material. More specifically, the sacrificial cathode material may include 0.001 to 4.0 parts by weight based on 100 parts by weight of the positive electrode active material; 0.001 to 3.0 parts by weight; 0.001 to 2.0 parts by weight; 0.001 to 1.0 parts by weight; 0.01 to 2.0 parts by weight; 0.05 to 2.0 parts by weight; 0.1 to 2.0 parts by weight; Or 0.1 to 1.5 parts by weight may be included.
  • the conductive material may be added in an amount of 1 to 20 parts by weight based on 100 parts by weight of the positive electrode active material, specifically, 1 to 10 parts by weight based on 100 parts by weight of the positive electrode active material; 1 to 5 parts by weight; 3 to 8 parts by weight; Or 2 to 5 parts by weight may be added.
  • the conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery.
  • graphite such as natural graphite or artificial graphite
  • carbon black such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black
  • conductive fibers such as carbon fibers and metal fibers
  • metal powders such as carbon fluoride, aluminum, and nickel powder
  • conductive whiskeys such as zinc oxide and potassium titanate
  • conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives may be used.
  • the organic binder polymer is a component that assists in bonding between the active material and the conductive material and bonding to the current collector, and may be added in an amount of 1 to 20% by weight based on 100 parts by weight of the positive electrode active material, specifically, 100 parts by weight of the positive electrode active material. 1 to 10 parts by weight based on parts by weight; 1 to 5 parts by weight; 3 to 8 parts by weight; Or 2 to 5 parts by weight may be added.
  • examples of the organic binder polymer include polyvinylidene fluoride (PVdF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diether polymer (EPDM), sulfonated EPDM, styrene-butyrene rubber, fluororubber, various copolymers, and the like.
  • PVdF polyvinylidene fluoride
  • CMC carboxymethyl cellulose
  • EPDM ethylene-propylene-diether polymer
  • EPDM ethylene-propylene-diether polymer
  • sulfonated EPDM styrene-butyrene rubber
  • fluororubber various copolymers, and the like.
  • the positive electrode may further include a filler for suppressing the expansion of the positive electrode in addition to the positive electrode active material, the conductive material, and the organic binder polymer in the positive electrode mixture layer, and with this filler, a fibrous filler without causing chemical change in the battery
  • a filler for suppressing the expansion of the positive electrode in addition to the positive electrode active material, the conductive material, and the organic binder polymer in the positive electrode mixture layer, and with this filler, a fibrous filler without causing chemical change in the battery
  • the material is not particularly limited.
  • the filler an olefin-based polymer such as polyethylene or polypropylene; A fibrous material such as glass fiber or carbon fiber may be used.
  • the positive electrode mixture layer may include: 1 part by weight of a sacrificial positive electrode material (Li 6 Co 0.7 Zn 0.3 O 4 ) based on 100 parts by weight of lithium nickel cobalt manganese oxide (LiNi 0.8 Co 0.1 Mn 0.1 O 2 ); 5 parts by weight of acetylene black as a conductive material; and 10 parts by weight of a binder (PVdF).
  • a sacrificial positive electrode material Li 6 Co 0.7 Zn 0.3 O 4
  • lithium nickel cobalt manganese oxide LiNi 0.8 Co 0.1 Mn 0.1 O 2
  • acetylene black as a conductive material
  • PVdF binder
  • the average thickness of the positive electrode mixture layer may be 100 ⁇ m to 200 ⁇ m, specifically, 120 ⁇ m to 180 ⁇ m; 140 ⁇ m to 170 ⁇ m; or 150 ⁇ m to 200 ⁇ m.
  • the positive electrode mixture layer may be a single layer or may have a multi-layer structure of two or more layers, and in the case of a multi-layer structure of two or more layers, the content of the sacrificial positive electrode material included in the positive electrode mixture layer may be different;
  • the type and/or content of the positive electrode active material, the conductive material, and the binder may be the same or different.
  • the positive electrode mixture layer may have a two-layer structure in which a first mixture layer and a second mixture layer are sequentially stacked on a positive electrode current collector, and the first mixture layer is lithium nickel cobalt manganese oxide (LiNi 0.8 1 part by weight of a sacrificial cathode material (Li 6 Co 0.7 Zn 0.3 O 4 ) based on 100 parts by weight of Co 0.1 Mn 0.1 O 2 ); 5 parts by weight of acetylene black as a conductive material; and 10 parts by weight of a binder (PVdF), wherein the second mixture layer is a sacrificial cathode material (Li 6 Co 0.7 Zn 0.3 O 4 ) 2 based on 100 parts by weight of lithium nickel cobalt manganese oxide (LiNi 0.6 Co 0.2 Mn 0.2 O 2 ) 2 parts by weight; 5 parts by weight of acetylene black as a conductive material; and 9 parts by weight of a binder (P
  • each layer may satisfy Equation 1 below:
  • SCM 1st represents the content of the positive electrode additive contained in the first positive electrode mixture layer
  • SCM 2nd indicates the content of the positive electrode additive contained in the second positive electrode mixture layer.
  • Equation 1 shows the ratio of the positive electrode additive contained in each of the first positive electrode mixture layer and the second positive electrode mixture layer, and the content of the positive electrode additive contained in the second positive electrode mixture layer, that is, the content of lithium cobalt oxide represented by Chemical Formula 3 This means that the content of the positive electrode additive contained in the first positive electrode mixture layer is greater than that of the positive electrode additive.
  • the positive electrode mixture layer according to the present invention may satisfy Equation 1 as 0.05 to 0.9 (eg, 0.05 ⁇ SCM 1st /SCM 2nd ⁇ 0.9), specifically 0.1 to 0.9 (eg, 0.1 ⁇ SCM 1st /SCM 2nd ⁇ 0.9), 0.2 to 0.8 (eg, 0.2 ⁇ SCM 1st /SCM 2nd ⁇ 0.8), 0.3 to 0.7 (eg, 0.3 ⁇ SCM 1st /SCM 2nd ⁇ 0.7) or 0.4 to 0.8 (eg, 0.4 ⁇ SCM 1st /SCM 2nd ) ⁇ 0.8) can be satisfied.
  • the positive electrode mixture layer according to the present invention can further improve the irreversible reaction efficiency of the positive electrode additive during initial charging by satisfying the condition of Equation 1, thereby reducing gas generation through charging and discharging after the initial charging and discharging. .
  • the positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • stainless steel, aluminum, nickel, titanium, sintered carbon, etc. may be used, and aluminum
  • a surface treated with carbon, nickel, titanium, silver, etc. may be used.
  • the positive electrode current collector may increase the adhesion of the positive electrode active material by forming fine irregularities on the surface, and various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven body are possible.
  • the average thickness of the positive electrode current collector may be appropriately applied in a range of 3 to 500 ⁇ m in consideration of the conductivity and total thickness of the positive electrode to be manufactured.
  • the positive electrode according to the present invention may have excellent electrical performance by including the above configuration.
  • the positive electrode may have low electrode resistance at room temperature (23 ⁇ 2° C.), and even after repeated charging and discharging of the battery, the change in resistance of the electrode may be low to improve the lifespan of the battery.
  • the positive electrode may have a resistance value change rate of 10% or less after 30 times of charging and discharging compared to an electrode resistance value during initial charging/discharging (eg, activation step).
  • the positive electrode has an electrode resistance value change rate of 8% or less after initial charge/discharge and 30 times of charge/discharge; 6% or less; 4% or less; or 3% or less.
  • the present invention provides an electrode assembly including the above-described positive electrode.
  • the electrode assembly according to the present invention may have a structure including the above-described positive electrode, the negative electrode, and a separator interposed between the positive electrode and the negative electrode, and in some cases, the separator may be excluded.
  • the negative electrode is manufactured by coating, drying, and pressing the negative electrode active material on the negative electrode current collector, and as necessary, the conductive material, organic binder polymer, filler, etc. as described above may be optionally further included.
  • the negative active material is, for example, graphite having a completely layered crystal structure such as natural graphite, and soft carbon having a low crystallinity layered crystal structure (graphene structure; a structure in which hexagonal honeycomb planes of carbon are arranged in layers).
  • LixFe 2 O 3 (0 ⁇ x ⁇ 1), LixWO 2 (0 ⁇ x ⁇ 1), SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me', Al, B, P, Si, periodic table metal complex oxides such as Group 1, Group 2, and Group 3 elements, halogen, 0 ⁇ x ⁇ 1;1 ⁇ y ⁇ 3;1 ⁇ z ⁇ 8); lithium metal; lithium alloy; silicon-based alloys; tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing a chemical change in the battery.
  • copper, stainless steel, nickel, titanium, sintered carbon, etc. may be used, and copper In the case of stainless steel, a surface treated with carbon, nickel, titanium, silver, etc. may be used.
  • the negative electrode current collector like the positive electrode current collector, may form fine irregularities on the surface to strengthen the bonding force with the negative electrode active material, and may have various forms such as films, sheets, foils, nets, porous bodies, foams, nonwovens, etc. It is possible.
  • the average thickness of the negative electrode current collector may be appropriately applied in the range of 3 to 500 ⁇ m in consideration of the conductivity and total thickness of the negative electrode to be manufactured.
  • the separator is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used.
  • the separation membrane is not particularly limited as long as it is conventionally used in the art, and specifically, chemical resistance and hydrophobic polypropylene; glass fiber; Alternatively, a sheet or non-woven fabric made of polyethylene may be used, and in some cases, a composite separator in which inorganic particles/organic particles are coated with an organic binder polymer on a porous polymer substrate such as the sheet or non-woven fabric may be used. When a solid electrolyte such as a polymer is used as the electrolyte, the solid electrolyte may also serve as a separator.
  • the membrane may have an average pore diameter of 0.01 to 10 ⁇ m, and an average thickness of 5 to 300 ⁇ m.
  • the electrode assembly may be wound in the form of a jelly roll and accommodated in a cylindrical battery, a prismatic battery, or a pouch-type battery, or may be accommodated in a pouch-type battery in a folding or stack-and-folding form, but is not limited thereto.
  • the present invention provides a lithium secondary battery including the above-mentioned electrode assembly.
  • the lithium secondary battery according to the present invention may have a structure in which the electrode assembly is impregnated with a lithium salt-containing electrolyte.
  • the lithium salt-containing electrolyte may be composed of an electrolyte and a lithium salt, and a non-aqueous organic solvent, an organic solid electrolyte, an inorganic solid electrolyte, and the like may be used as the electrolyte.
  • non-aqueous organic solvent examples include N-methyl-2-pyrrolidinone, ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butylolactone, 1,2-dimethoxy Ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, acetic acid Methyl, phosphoric acid triester, trimethoxy methane, dioxolane derivative, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ether, pyropionic acid
  • An aprotic organic solvent such as methyl or ethyl propionate may be used
  • organic solid electrolyte examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphoric acid ester polymers, poly agitation lysine, polyester sulfide, polyvinyl alcohol, polyvinylidene fluoride, ionic A polymer material containing a dissociating group or the like may be used.
  • Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 Ni 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 Nitride, halide, sulfate, etc. of Li may be used.
  • Lithium salt is a material easily soluble in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB10Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, lithium chloroborane, lithium lower aliphatic carboxylate, lithium 4-phenylboronate, imide, and the like may be used.
  • LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB10Cl 10 LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, lithium chloroborane, lithium lower alipha
  • pyridine triethylphosphite, triethanolamine, cyclic ether, ethylenediamine, n-glyme, hexaphosphate triamide, nitro Benzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N,N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrrole, 2-methoxyethanol, aluminum trichloride, etc. may be added.
  • pyridine triethylphosphite, triethanolamine
  • cyclic ether ethylenediamine
  • n-glyme hexaphosphate triamide
  • nitro Benzene derivatives sulfur, quinone imine dyes, N-substituted oxazolidinones, N,N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts,
  • a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high-temperature storage characteristics, and FEC (Fluoro-Ethylene Carbonate) ), PRS (propene sultone), and the like may be further included.
  • FEC Fluoro-Ethylene Carbonate
  • PRS propene sultone
  • the present invention provides a battery module including the above-described secondary battery as a unit cell, and provides a battery pack including the battery module.
  • the battery pack may be used as a power source for a medium or large device requiring high temperature stability, long cycle characteristics, and high rate characteristics, and specific examples of the medium or large device include a power tool that is powered by an omniscient motor; electric vehicles, including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters (E-scooter); electric golf carts; and a power storage system, and more specifically, a hybrid electric vehicle (HEV), but is not limited thereto.
  • a power tool that is powered by an omniscient motor
  • electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like
  • electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters (E-scooter)
  • E-scooter electric bicycles
  • electric golf carts and a power storage system, and more specifically
  • Lithium oxide (Li 2 O) and cobalt oxide (CoO) and the metal oxide (MO) shown in Table 1 were put into a reactor, and uniformly dry-mixed for about 30 minutes using a mixer. Then, the prepared raw material mixture was put into an electric furnace and calcined for 10 hours at about 700 ⁇ 10° C. under argon gas (Ar) conditions to obtain lithium cobalt oxide (Li 6 Co 1-y M y O 4 ) as a sacrificial cathode material.
  • the molar ratio of lithium oxide and cobalt oxide injected into the reactor was 1:3.0 to 3.03
  • i) the type of metal oxide (MO) and ii) the molar ratio of cobalt oxide and metal oxide (MO) is shown in Table 1 below.
  • 1 the defect generation energy of the doped metal (M) and 2 the electrical conductivity of the powder were analyzed.
  • each prepared sacrificial cathode material was compressed to prepare a powder. Then, the sheet resistance according to the volume and pressure change of each sacrificial cathode material was measured using a powder resistance characteristic measuring instrument for the prepared powder by a 4-point probe method, and the measured volume and the input mass were measured. was used to calculate the powder electrical conductivity of the sacrificial cathode material. The measured results are shown in Table 1 below.
  • MO metal oxide
  • N-methylpyrrolidone solvent was injected into a homo mixer, and each of the sacrificial cathode materials prepared in Examples 1 to 10 and Comparative Examples 1 to 3, an acetylene black conductive material, a modified silanol binder, and The dispersant was added in a weight ratio of 95:3:1.7:0.3 and mixed at 3,000 rpm for 60 minutes to prepare a pre-dispersion.
  • the content of the sacrificial cathode material is mixed with the cathode active material so that 2 parts by weight based on 100 parts by weight of the cathode active material (LiNi 0.6 Co 0.2 Mn 0.2 O 2 ) is mixed with the cathode active material, and the cathode active material mixed in N-methylpyrrolidone solvent, a binder Phosphorus PVdF and carbon black as a conductive material were put into a homo mixer in a weight ratio of 96:1:3, and then dispersed at 3,000 rpm for 80 minutes to prepare a slurry for a positive electrode.
  • the prepared positive electrode slurry was applied to one surface of an aluminum current collector, dried at 100° C., and rolled to prepare a positive electrode.
  • a 2032 type coin cell was manufactured using the positive electrode and the lithium metal counter electrode.
  • a separator (thickness: about 16 ⁇ m) made of a porous polyethylene (PE) film was interposed between the positive electrode and the lithium metal counter electrode, and electrolyte was injected to prepare a half-cell type coin cell.
  • E2DVC was used as the electrolyte.
  • E2DVC is a kind of carbonate-based electrolyte, and lithium hexafluorophosphate ( LiPF 6 , 1.0M) and vinyl carbonate (VC, 2 wt%) means a mixed solution.
  • initial charging and discharging capacity were measured by performing initial charge/discharge (formation) under the reference capacity condition of 200 mAh/200 mAh at 25°C, and the efficiency was calculated from the measured initial charge/discharge capacity.
  • Table 3 the results are shown in Table 3 below.
  • Example 1 690.2 56.8 8.2
  • Example 2 734.4 39.9 5.4
  • Example 3 513.8 25.6 5.0
  • Example 4 305.9 4.6 1.5
  • Example 5 717.4 28.6 4.0
  • Example 6 717.4 28.6 4.0
  • Example 7 654.8 13.5 2.1
  • Example 8 313.0 1.83 0.6
  • Example 9 718.0 27.9 3.9
  • Example 10 721.7 42.1 5.8
  • Example 11 675.3 61.8 9.2 Comparative Example 1 815.7 31.1 3.8 Comparative Example 2 807.9 32.3 4.0 Comparative Example 3 630.1 62.4 9.9
  • the sacrificial cathode material according to the present invention has a high initial charging capacity during initial charging and discharging and exhibiting high initial charging and discharging efficiency.
  • Example 1 Cumulative gas generation [mL/g] Example 1 4.5 Example 2 5.3 Example 3 6.1 Example 4 5.7 Example 5 7.1 Example 6 6.6 Example 7 5.8 Example 8 5.1 Example 9 4.9 Example 10 4.4 Example 11 4.1 Comparative Example 1 13.0 Comparative Example 2 9.7 Comparative Example 3 7.8
  • the sacrificial positive electrode materials of Examples had a low cumulative gas generation amount due to charging and discharging after the initial charge/discharge of 7.5 mL/g or less, but the sacrificial positive electrode materials of Comparative Examples had a high cumulative gas generation amount of 7.5 mL/g or more.
  • the sacrificial cathode material according to the present invention is doped with a specific metal, and the defect formation energy of the metal according to the density functional theory (DFT) is controlled within a specific range, thereby realizing high initial charging and discharging efficiency during initial charging and discharging. And, since it is possible to reduce the amount of gas additionally generated during charging and discharging afterward, it can be seen that the effect of improving the stability and charging/discharging performance of the battery including the positive electrode is excellent.
  • DFT density functional theory

Abstract

본 발명은 희생 양극재, 이를 포함하는 양극 및 상기 양극을 구비하는 리튬 이차전지에 관한 것으로, 상기 희생 양극재는 특정 금속이 도핑되고, 밀도범함수 이론(DFT)에 따른 상기 금속의 결함 형성 에너지가 특정 범위 내로 제어됨으로써 초기 충방전 시 높은 초기 충방전 효율을 구현하고, 이후 충방전 시 추가적으로 발생되는 가스량을 저감시킬 수 있으므로, 이를 양극에 포함하는 전지의 안정성과 충방전 성능을 향상시키는 효과가 우수한 이점이 있다.

Description

희생 양극재 및 이를 포함하는 리튬 이차전지
본 발명은 Zn, Ge, Mg, Si 등의 금속(M)이 도핑되고, 금속(M) 결함 형성 에너지가 특정 수준으로 제어된 희생 양극재 및 이를 포함하는 리튬 이차 전지에 관한 것이다.
본 출원은 2021. 02. 23일자 대한민국 특허 출원 제10-2021-0024259호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개신된 모든 내용은 본 명세서의 일부로서 포함된다.
최근 들어, 에너지원으로서 이차전지의 수요가 급격히 증가하고 있다. 이러한 이차전지 중 높은 에너지 밀도와 전압을 가지며, 사이클 수명이 길고, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
리튬 이차전지의 음극 재료로서는 흑연이 주로 이용되고 있지만, 흑연은 단위질량당의 용량이 372 mAh/g로 작기 때문에, 리튬 이차전지의 고용량화가 어렵다. 이에 따라, 리튬 이차전지의 고용량화를 위해, 흑연보다도 높은 에너지 밀도를 갖는 비탄소계 음극 재료로서, 실리콘, 주석 및 이들의 산화물 등과 같이, 리튬과 금속간 화합물을 형성하는 음극 재료가 개발, 사용되고 있다. 그러나, 이러한 비탄소계 음극 재료의 경우, 용량은 크지만, 초기 효율이 낮아 초기 충방전 동안의 리튬 소모량이 크고, 비가역 용량 손실이 크다는 문제가 있다.
이와 관련하여, 양극 재료에 리튬 이온 공급원 또는 저장소를 제공할 수 있으며, 전지 전체의 성능을 저하시키지 않도록 최초 사이클 후에 전기화학적으로 활성을 나타내는 재료를 사용하여, 음극의 비가역 용량 손실을 극복하고자 하는 방법이 제안되었다. 구체적으로 희생 양극재 또는 비가역 첨가제(또는 과방전 방지제)로서, 예를 들어, Li6CoO4와 같이 과량의 리튬을 포함하는 산화물을 양극에 적용하는 방법이 알려져 있다.
그러나, 이러한 희생 양극재 또는 비가역 첨가제는 그 구조가 불안정하여 전지의 활성화 단계는 물론 이후의 충방전 과정에서 산화를 일으켜 전지 내부에서 산소 기체를 발생시킬 수 있다. 이렇게 발생한 산소 기체는 부피 팽창 등을 유발하여 전지 성능의 저하를 초래하는 주된 요인의 하나로 될 수 있다.
따라서, 높은 충방전 용량을 나타내는 희생 양극재의 개발이 요구되고 있다.
[선행기술문헌]
대한민국 공개특허공보 제10-2019-0059115호
이에, 본 발명의 목적은 초기 충방전 시 음극에서 발생되는 비가역 용량 손실을 개선하면서 높은 초기 충방전 효율을 구현하고, 이후 충방전 시 추가적으로 발생되는 가스량을 저감시킬 수 있는 희생 양극재, 이를 포함하는 양극 및 리튬 이차전지를 제공하는데 있다.
상술된 문제를 해결하기 위하여,
본 발명은 일실시예에서,
하기 화학식 1로 나타내는 리튬코발트 산화물을 포함하고,
밀도범함수 이론(DFT)에 따른 금속(M)의 결함 형성 에너지가 -4.0 내지 -8.5eV인 희생 양극재를 제공한다:
[화학식 1]
LixCo(1-y)MyO4
상기 화학식 1에서,
M은 Al, Fe, Zn, Ti, W, Mg, Ge 및 Si으로 이루어진 군으로부터 선택되는 1종 이상이고,
x 및 y는 5≤x≤7 및 0.05≤y≤0.6이다.
이때, 상기 화학식 1에서, M은 Mg, Ge 및 Si로 이루어진 군으로부터 선택되는 1종 이상일 수 있고, y는 0.2≤y≤0.4일 수 있다.
또한, 희생 양극재의 밀도범함수 이론(DFT)에 따른 금속(M)의 결함 형성 에너지가 -4.9 내지 -6.4eV일 수 있다.
아울러, 상기 희생 양극재는 공간군이 P42/nmc인 정방정계 구조(tetragonal structure)를 가질 수 있다.
또한, 상기 희생 양극재는 5 × 10-4 S/㎝ 내지 1 × 10-2 S/㎝의 분체 전기 전도도를 가질 수 있다.
아울러, 본 발명은 일실시예에서,
양극 집전체; 및
상기 양극 집전체 상에 양극활물질, 도전재, 유기 바인더 고분자 및 희생 양극재를 함유하는 양극 합재층을 포함하고,
상기 희생 양극재는 하기 화학식 1로 나타내는 리튬 코발트 아연 산화물을 포함하며, 밀도범함수 이론(DFT)에 따른 금속(M)의 결함 형성 에너지가 -4.0 내지 -8.5eV인 양극을 제공한다:
[화학식 1]
LixCo(1-y)MyO4
상기 화학식 1에서,
M은 Al, Fe, Zn, Ti, W, Mg, Ge 및 Si으로 이루어진 군으로부터 선택되는 1종 이상이고,
x 및 y는 5≤x≤7 및 0.05≤y≤0.6이다.
여기서, 상기 희생 양극재의 함량은 양극활물질 100 중량부에 대하여 0.001 내지 5.0 중량부일 수 있다.
또한, 상기 도전재의 함량은 양극 합재층 전체 100 중량부에 대하여 0.5 내지 10 중량부일 수 있다.
아울러, 상기 도전재는 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙 및 탄소섬유로 이루어진 군으로부터 선택되는 1종 이상의 탄소계 물질을 포함할 수 있다.
또한, 상기 양극활물질은 니켈(Ni), 코발트(Co), 망간(Mn), 알루미늄(Al), 아연(Zn), 티타늄(Ti), 마그네슘(Mg), 크롬(Cr) 및 지르코늄(Zr)으로 이루어진 군으로부터 선택되는 2종 이상의 원소를 포함할 수 있다.
이와 더불어, 상기 양극합재층의 평균 두께는 100 ㎛ 내지 200 ㎛일 수 있다.
또한, 상기 양극은 초기 충방전 시 저항값 대비 30회 충방전 이후 저항값의 변화율이 10% 이하일 수 있다.
또한, 본 발명은 일실시예에서, 상술된 양극을 포함하는 전극 조립체를 제공한다.
나아가, 본 발명은 일실시예에서, 상기 전극 조립체를 포함하는 리튬 이차전지를 제공한다.
본 발명에 따른 희생 양극재는 특정 금속이 도핑되고, 밀도범함수 이론(DFT)에 따른 상기 금속의 결함 형성 에너지가 특정 범위 내로 제어됨으로써 초기 충방전 시 높은 초기 충방전 효율을 구현하고, 이후 충방전 시 추가적으로 발생되는 가스량을 저감시킬 수 있으므로, 이를 양극에 포함하는 전지의 안정성과 충방전 성능을 향상시키는 효과가 우수한 이점이 있다.
도 1은 리튬코발트 산화물(LixCoO4, 5≤x≤7)에 도핑되는 금속 종류별 초기 충전용량을 도시한 그래프이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 상세한 설명에 상세하게 설명하고자 한다.
그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 발명에서, "포함한다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또한, 본 발명에서, 층, 막, 영역, 판 등의 부분이 다른 부분 "상에" 있다고 기재된 경우, 이는 다른 부분 "바로 위에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 층, 막, 영역, 판 등의 부분이 다른 부분 "하에" 있다고 기재된 경우, 이는 다른 부분 "바로 아래에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 또한, 본 출원에서 "상에" 배치된다고 하는 것은 상부 뿐만 아니라 하부에 배치되는 경우도 포함하는 것일 수 있다.
이하, 본 발명을 보다 상세하게 설명한다.
희생 양극재
본 발명은 일실시예에서,
하기 화학식 1로 나타내는 리튬코발트 산화물을 포함하고,
밀도범함수 이론(DFT)에 따른 금속(M)의 결함 형성 에너지가 -4.0 내지 -8.5eV인 희생 양극재를 제공한다:
[화학식 1]
LixCo(1-y)MyO4
상기 화학식 1에서,
M은 Al, Fe, Zn, Ti, W, Mg, Ge 및 Si으로 이루어진 군으로부터 선택되는 1종 이상이고,
x 및 y는 5≤x≤7 및 0.05≤y≤0.6이다.
본 발명에 따른 희생 양극재는 화학식 1로 나타내는 리튬코발트 금속 산화물을 주성분으로 포함한다. 여기서 "주성분"이란 희생 양극재 전체 중량에 대하여 80 중량% 이상, 90중량% 이상, 95 중량% 이상 또는 97.5 중량% 이상인 것을 의미할 수 있으며, 경우에 따라서는 희생 양극재가 화학식 1로 나타내는 리튬코발트 금속 산화물로 모두 이루어진 경우, 즉 100 중량%를 의미할 수도 있다.
상기 화학식 1로 나타내는 리튬코발트 금속 산화물은 다량의 리튬 이온을 방출하는 리튬코발트 산화물(LixCoO4, 5≤x≤7)의 코발트 위치에 Al, Fe, Zn, Ti, W, Mg, Ge 및 Si으로 이루어진 군으로부터 선택되는 1종 이상의 금속이 도핑된 구조를 가지며, 구체적으로는 Mg, Ge 및 Si로 이루어진 군으로부터 선택되는 1종 이상의 금속이 도핑된 구조를 가질 수 있다.
이때, 상기 금속이 도핑되는 양은 5 내지 60 몰 분율(즉, 0.05≤y≤0.6)일 수 있고, 구체적으로는 10 내지 50 몰 분율 (0.1≤y≤0.5); 15 내지 50 몰 분율 (0.15≤y≤0.5); 15 내지 45 몰 분율 (0.15≤y≤0.45); 20 내지 40 몰 분율 (0.2≤y≤0.4); 또는 25 내지 35 몰 분율 (0.25≤y≤0.35)일 수 있다. 본 발명은 금속의 도핑량을 상기 몰 분율 범위로 조절함으로써 리튬 코발트 산화물의 구조적 뒤틀림을 완화시킬 수 있으므로 구조 안정성을 보다 향상시킬 수 있다.
또한, 상기 화학식 1로 나타내는 리튬코발트 금속 산화물은 정방정계(tetragonal) 결정 구조를 가질 수 있으며, 이 중에서도 P42/nmc의 공간군을 가질 수 있다. 일반적으로 정방정계 결정 구조를 갖는 리튬 금속 산화물은 코발트 원소와 산소 원소가 이루는 사면체 구조의 뒤틀림을 가져 구조적으로 불안정한 구조를 가지며, 이러한 구조적 불안정성으로 인해 전지의 활성화 이후 충전 시에도 산소 가스를 포함하는 가스가 발생되는 문제가 있다. 그러나, 본 발명의 희생 양극재는 리튬코발트 산화물(LixCoO4, 5≤x≤7)의 코발트 위치에 Al, Fe, Zn, Ti, W, Mg, Ge 및 Si으로 이루어진 군으로부터 선택되는 1종 이상의 금속이 도핑된 구조를 가짐으로써 정방정계 결정형을 갖는 화학식 1로 나타내는 리튬코발트 금속 산화물을 포함하여도 가스 발생량을 저감시키는 효과를 나타낼 수 있다.
아울러, 상기 희생 양극재는 밀도범함수 이론(DFT)에 따른 금속(M)의 결함 형성 에너지가 특정 범위를 만족하도록 제어된 것일 수 있다. 구체적으로, 상기 희생 양극재의 밀도범함수 이론(DFT)에 따른 금속(M)의 결함 형성 에너지는 -4.0 내지 -8.5 eV일 수 있고, 보다 구체적으로는 -4.0 내지 -7.0 eV; -4.0 내지 -6.5 eV; -4.5 내지 -7.0 eV; -4.9 내지 -6.4 eV; -5.0 내지 -6.0 eV; -4.5 내지 -5.6 eV; -5.0 내지 -5.5 eV; -5.5 내지 -5.9 eV; 또는 -6.0 내지 -6.5 eV일 수 있다. 금속(M)의 결함 형성 에너지는 리튬코발트 산화물(LixCoO4, 5≤x≤7)에 도핑되는 금속(M)으로 인해 결정학적 결함(defect)이 발생되는데 필요한 에너지를 의미하며, 본 발명은 상기 금속(M)의 결함 형성 에너지를 상기 범위로 제어함으로써 희생 양극재의 구조적 안정성을 향상시키고, 초기 충방전 시 발생되는 가스량과 이후 발생되는 누적 가스량을 모두 저감시킬 수 있다.
또한, 상기 희생 양극재는 화학식 1로 나타내는 리튬코발트 금속 산화물은 5 × 10-4 S/㎝ 내지 1 × 10-2 S/㎝의 분체 전기 전도도를 가질 수 있으며, 구체적으로는 5 × 10-4 S/㎝ 내지 1 × 10-3 S/㎝; 5 × 10-4 S/㎝ 내지 1 × 10-2 S/㎝; 5 × 10-4 S/㎝ 내지 5 × 10-3 S/㎝; 8 × 10-4 S/㎝ 내지 9 × 10-3 S/㎝; 1 × 10-3 S/㎝ 내지 8 × 10-3 S/㎝; 6.0 × 10-3 S/㎝ 내지 7.5 × 10-3 S/㎝; 또는 3.5 × 10-3 S/㎝ 내지 6.5 × 10-3 S/㎝의 분체 전기 전도도를 가질 수 있다. 상기 희생 양극재의 분체 전기 전도도는 10-7 S/㎝ 이하의 현저히 낮은 분체 전기 전도도를 갖는 리튬코발트 산화물(LixCoO4, 5≤x≤7)의 코발트 위치에 도핑되는 금속(M)의 도핑량이나 희생 양극재의 제조 조건 등에 따라 조절할 수 있으며, 이러한 분체 전기 전도도를 상기 범위로 조절함으로써 전지의 충전 시 가스 발생량을 저감시키면서 충방전 용량을 보다 향상시킬 수 있다.
상술된 바와 같이, 본 발명에 따른 희생 양극재는 특정 금속이 도핑된, 화학식 1로 나타내는 리튬코발트 금속 산화물을 포함하고, 밀도범함수 이론(DFT)에 따른 상기 금속의 결함 형성 에너지가 특정 범위 내로 제어됨으로써 초기 충방전 시 높은 초기 충방전 효율을 구현하고, 이후 충방전 시 추가적으로 발생되는 가스량을 저감시킬 수 있으므로, 이를 양극에 포함하는 전지의 안정성과 충방전 성능을 향상시키는 효과가 우수한 이점이 있다.
양극
또한, 본 발명은 일실시예예서,
양극 집전체; 및
상기 양극 집전체 상에 양극활물질, 도전재, 유기 바인더 고분자 및 희생 양극재를 함유하는 양극 합재층을 포함하고,
상기 희생 양극재는 하기 화학식 1로 나타내는 리튬 코발트 아연 산화물을 포함하며, 밀도범함수 이론(DFT)에 따른 금속(M)의 결함 형성 에너지가 -4.0 내지 -8.5eV인 양극을 제공한다:
[화학식 1]
LixCo(1-y)MyO4
상기 화학식 1에서,
M은 Al, Fe, Zn, Ti, W, Mg, Ge 및 Si으로 이루어진 군으로부터 선택되는 1종 이상이고,
x 및 y는 5≤x≤7 및 0.05≤y≤0.6이다.
본 발명에 따른 양극은 양극 집전체 상에 양극 합재층이 형성된 구조를 갖되, 상기 양극 합재층은 양극활물질; 도전재; 및 유기 바인더 고분자와 함께, 상술된 본 발명의 희생 양극재를 포함하여, 충방전 용량이 높고, 전지의 충방전 시 발생되는 가스, 특히 산소(O2) 가스를 저감시키는 효과가 우수하다.
여기서, 상기 양극활물질은 니켈(Ni), 코발트(Co), 망간(Mn), 알루미늄(Al), 아연(Zn), 티타늄(Ti), 마그네슘(Mg), 크롬(Cr) 및 지르코늄(Zr)으로 이루어진 군으로부터 선택되는 2종 이상의 원소를 포함하는 리튬 복합 전이금속 산화물일 수 있다. 예를 들어, 상기 양극활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1종 이상의 전이금속으로 치환된 층상 화합물; 화학식 Li1+xMn2-xO4 (여기서, x는 0~0.33임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; Li2CuO2 등의 리튬 구리 산화물; LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga이고, x = 0.01~0.3임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta이고, x = 0.01~0.1임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn임)으로 표현되는 리튬 망간 복합 산화물; LiNixMn2-xO4로 표현되는 스피넬 구조의 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등을 들 수 있다.
또한, 상기 희생 양극재는 양극활물질 100 중량부에 대하여 0.001 내지 5.0 중량부로 포함할 수 있다. 보다 구체적으로, 상기 희생 양극재는 양극활물질 100 중량부에 대하여, 0.001 내지 4.0 중량부; 0.001 내지 3.0 중량부; 0.001 내지 2.0 중량부; 0.001 내지 1.0 중량부; 0.01 내지 2.0 중량부; 0.05 내지 2.0 중량부; 0.1 내지 2.0 중량부; 또는 0.1 내지 1.5 중량부로 포함할 수 있다.
아울러, 상기 도전재는 양극활물질 100 중량부에 대하여 1 내지 20 중량부로 첨가될 수 있으며, 구체적으로는 양극활물질 100 중량부에 대하여 1 내지 10 중량부; 1 내지 5 중량부; 3 내지 8 중량부; 또는 2 내지 5 중량부로 첨가될 수 있다.
또한, 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니나, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
아울러, 상기 유기 바인더 고분자는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 양극활물질 100 중량부에 대하여 1 내지 20 중량%로 첨가될 수 있으며, 구체적으로는 양극활물질 100 중량부에 대하여 1 내지 10 중량부; 1 내지 5 중량부; 3 내지 8 중량부; 또는 2 내지 5 중량부로 첨가될 수 있다.
또한, 이러한 유기 바인더 고분자의 예로는, 폴리불화비닐리덴(PVdF), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필 셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디에테르 폴리머(EPDM), 술폰화 EPDM, 스티렌-부티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
이와 더불어, 상기 양극은 양극활물질, 도전재 및 유기 바인더 고분자 이외에 양극의 팽창을 억제시키기 위한 충진제를 양극 합재층에 더 포함할 수 있고, 이러한 충진재로는 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니다. 구체적으로, 상기 충진재로는 폴리에틸렌, 폴리프로필렌 등의 올레핀계 중합체나; 유리섬유, 탄소섬유 등의 섬유상 물질을 사용할 수 있다.
하나의 예로서, 상기 양극 합재층은 리튬 니켈 코발트 망간 산화물 (LiNi0.8Co0.1Mn0.1O2) 100 중량부에 대하여 희생 양극재(Li6Co0.7Zn0.3O4) 1 중량부; 도전재인 아세틸렌 블랙 5 중량부; 및 바인더(PVdF) 10 중량부를 포함할 수 있다.
아울러, 상기 양극 합재층의 평균 두께는 100 ㎛ 내지 200 ㎛일 수 있고, 구체적으로는 120 ㎛ 내지 180 ㎛; 140 ㎛ 내지 170 ㎛; 또는 150 ㎛ 내지 200 ㎛일 수 있다.
또한, 상기 양극 합재층은 단일층이거나, 2층 이상의 다층 구조를 가질 수 있으며, 2층 이상의 다층 구조인 경우 양극 합재층 내에 포함된 희생 양극재는 그 함량이 상이할 수 있고; 양극활물질, 도전재 및 바인더는 그 종류 및/또는 함량이 동일하거나 상이할 수 있다.
하나의 예로서, 상기 양극 합재층은 양극 집전체 상에 제1 합재층 및 제2 합재층이 순차적으로 적층된 2층 구조일 수 있고, 상기 제1 합재층은 리튬 니켈 코발트 망간 산화물 (LiNi0.8Co0.1Mn0.1O2) 100 중량부에 대하여 희생 양극재(Li6Co0.7Zn0.3O4) 1 중량부; 도전재인 아세틸렌 블랙 5 중량부; 및 바인더(PVdF) 10 중량부를 포함하며, 제2 합재층은 리튬 니켈 코발트 망간 산화물 (LiNi0.6Co0.2Mn0.2O2) 100 중량부에 대하여 희생 양극재(Li6Co0.7Zn0.3O4) 2 중량부; 도전재인 아세틸렌 블랙 5 중량부; 및 바인더(PVdF) 9 중량부를 포함할 수 있다.
나아가, 상기 양극 합재층은 양극 집전체 상에 제1 합재층 및 제2 합재층이 순차적으로 적층된 2층 구조를 갖는 경우 각 층은 하기 식 1을 만족할 수 있다:
[식 1]
0.05 ≤ SCM1st/SCM2nd ≤ 0.9
상기 식 1에서,
SCM1st은 제1 양극 합재층에 함유된 양극 첨가제의 함량을 나타내고,
SCM2nd는 제2 양극 합재층에 함유된 양극 첨가제의 함량을 나타낸다.
상기 식 1은 제1 양극 합재층과 제2 양극 합재층에 각각 함유된 양극 첨가제의 비율을 나타낸 것으로서, 제2 양극 합재층에 함유된 양극 첨가제의 함량, 즉 화학식 3으로 나타내는 리튬코발트 산화물의 함량이 제1 양극 합재층에 함유된 양극 첨가제의 함량보다 많음을 의미한다. 본 발명에 따른 양극 합재층은 상기 식 1을 0.05 내지 0.9 (예컨대, 0.05≤SCM1st/SCM2nd≤0.9)로 만족할 수 있고, 구체적으로는 0.1 내지 0.9 (예컨대, 0.1≤SCM1st/SCM2nd≤0.9), 0.2 내지 0.8 (예컨대, 0.2≤SCM1st/SCM2nd≤0.8), 0.3 내지 0.7 (예컨대, 0.3≤SCM1st/SCM2nd≤0.7) 또는 0.4 내지 0.8 (예컨대, 0.4≤SCM1st/SCM2nd≤0.8)로 만족할 수 있다. 본 발명에 따른 양극 합재층은 상기 식 1의 조건을 만족함으로써 초기 충전 시 양극 첨가제의 비가역적 반응 효율을 보다 향상시킬 수 있으며, 이를 통해 초기 충방전 이후 충방전을 통한 가스 발생을 저감시킬 수 있다.
또한, 상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 등을 사용할 수 있으며, 알루미늄이나 스테리인레스 스틸의 경우 카본, 니켈, 티탄, 은 등으로 표면처리된 것을 사용할 수도 있다. 또한, 상기 양극 집전체는 표면에 미세한 요철을 형성하여 양극활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다. 아울러, 상기 양극 집전체의 평균 두께는 제조되는 양극의 도전성과 총 두께를 고려하여 3~500 ㎛에서 적절하게 적용될 수 있다.
또한, 본 발명에 따른 양극은 상기와 같은 구성을 포함함으로써 전기적 성능이 우수할 수 있다. 구체적으로, 상기 양극은 상온(23±2℃)에서의 전극 저항이 낮을 수 있으며, 전지의 반복 충방전 이후에도 전극의 저항 변화량이 낮아 전지의 수명이 향상될 수 있다.
하나의 예로서, 상기 양극은 초기 충방전(예컨대, 활성화 단계) 시 전극 저항값 대비 30회 충방전 이후의 저항값 변화율이 10% 이하로 낮을 수 있다. 예를 들어, 상기 양극은 초기 충방전 및 30회 충방전 이후의 전극 저항값 변화율이 8% 이하; 6% 이하; 4% 이하; 또는 3% 이하일 수 있다.
전극 조립체
또한, 본 발명은 일실시예에서, 상술된 양극을 포함하는 전극 조립체를 제공한다.
본 발명에 따른 전극 조립체는 상술된 양극, 음극 및 상기 양극과 음극 사이에 게재된 분리막을 포함하는 구조를 가질 수 있으며, 경우에 따라서는 상기 분리막이 배제될 수도 있다.
여기서, 상기 음극은 음극 집전체 상에 음극활물질을 도포, 건조 및 프레싱하여 제조되며, 필요에 따라 상기에서와 같은 도전재, 유기 바인더 고분자, 충진제 등이 선택적으로 더 포함될 수 있다.
또한, 상기 음극활물질은 예를 들어, 천연 흑연과 같이 층상 결정구조가 완전히 이루어진 그라파이트, 저결정성 층상 결정 구조(graphene structure; 탄소의 6각형 벌집 모양 평면이 층상으로 배열된 구조)를 갖는 소프트 카본 및 이런 구조들이 비결정성 부분들과 혼합되어 있는 하드 카본, 인조 흑연, 팽창 흑연, 탄소섬유, 난흑연화 탄소, 카본블랙, 카본나노튜브, 플러렌, 활성탄 등의 탄소 및 흑연재료나; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me', Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4 및 Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni계 재료; 티타늄 산화물; 리튬 티타늄 산화물 등을 사용할 수 있다.
아울러, 상기 음극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 니켈, 티탄, 소성 탄소 등을 사용할 수 있으며, 구리나 스테리인레스 스틸의 경우 카본, 니켈, 티탄, 은 등으로 표면처리된 것을 사용할 수도 있다. 또한, 상기 음극 집전체는 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극활물질과의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다. 아울러, 상기 음극 집전체의 평균 두께는 제조되는 음극의 도전성과 총 두께를 고려하여 3~500 ㎛에서 적절하게 적용될 수 있다.
나아가, 상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막은 당업계에서 통상적으로 사용되는 것이라면 특별히 제한되지 않으나, 구체적으로는, 내화학성 및 소수성의 폴리프로필렌; 유리섬유; 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용될 수 있으며, 경우에 따라서는, 상기 시트나 부직포와 같은 다공성 고분자 기재에 무기물 입자/유기물 입자가 유기 바인더 고분자에 의해 코팅된 복합 분리막이 사용될 수도 있다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다. 아울러, 상기 분리막의 기공 직경은 평균 0.01~10 ㎛이고, 두께는 평균 5~300 ㎛일 수 있다.
한편, 상기 전극조립체는 젤리롤 형태로 권취되어 원통형 전지, 각형 전지 또는 파우치형 전지에 수납되거나, 또는 폴딩 또는 스택앤폴딩 형태로 파우치형 전지에 수납될 수 있으나, 이에 한정되는 것은 아니다.
리튬 이차전지
나아가, 본 발명은 일실시예에서, 상기에서 언급된 전극 조립체를 포함하는 리튬 이차전지를 제공한다.
본 발명에 따른 리튬 이차전지는 상기 전극 조립체에 리튬염 함유 전해액이 함침되어 있는 구조를 가질 수 있다.
이때, 상기 리튬염 함유 전해액은 전해액과 리튬염으로 이루어질 수 있으며, 상기 전해액으로는 비수계 유기용매, 유기고체 전해질, 무기 고체 전해질 등이 사용될 수 있다.
비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 에틸렌 카보네이트, 프로필렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 감마-부틸로락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸설폭사이드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 설파이드, 폴리비닐알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합재 등이 사용될 수 있다.
무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5Ni2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
리튬염은 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, (CF3SO2)2NLi, 클로로보란 리튬, 저급 지방족 카르본산 리튬, 4-페닐보론산 리튬, 이미드 등이 사용될 수 있다.
또한, 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환된 이미다졸리딘, 에틸렌글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄소 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene Carbonate), PRS(Propene sultone) 등을 더 포함시킬 수 있다.
한편, 본 발명은 일실시예에서, 상술된 이차전지를 단위전지로 포함하는 전지모듈을 제공하고, 상기 전지모듈을 포함하는 전지팩을 제공한다.
상기 전지팩은 고온 안정성 및 긴 사이클 특성과 높은 레이트 특성 등이 요구되는 중대형 디바이스의 전원으로 사용될 수 있으며, 이러한 중대형 디바이스의 구체적인 예로는 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기 자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있고, 좀더 구체적으로는 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV)를 들 수 있으나, 이에 한정되는 것은 아니다.
이하, 본 발명을 실시예 및 실험예에 의해 보다 상세히 설명한다.
단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예 및 실험예에 한정되는 것은 아니다.
실시예 1~11. 희생 양극재의 제조
산화리튬(Li2O) 및 산화코발트(CoO)와 하기 표 1에 나타낸 금속 산화물(MO)을 반응기에 투입하고, 믹서(mixer)를 이용하여 약 30분간 균일하게 건식 혼합하였다. 그런 다음, 준비된 원료 혼합물을 전기로에 넣고, 아르곤 가스(Ar) 조건 하에서 약 700±10℃로 10시간 동안 소성하여 희생 양극재인 리튬코발트 산화물(Li6Co1-yMyO4)을 얻었다.
이때, 반응기에 투입된 산화리튬과 산화코발트의 몰 비율은 1:3.0~3.03이였고, i) 금속 산화물(MO)의 종류와 ii) 산화코발트와 금속 산화물(MO)의 몰 비율은 하기 표 1에 나타낸 바와 같으며, 제조된 각 희생재를 대상으로 ① 도핑된 금속(M)의 결함 생성 에너지와 ② 분체 전기 전도도를 분석하였다.
구체적으로, 상기 ① 금속(M) 결함 생성 에너지의 경우, 밀도범함수이론(DFT)을 이용하여 계산하였으며, 상기 밀도범함수이론(DFT) 계산은 Vienna ab initio simulation package (VASP)를 이용하여 projector-augmented wave (PAW) 방법으로서 원자와 전자의 구조와 에너지를 계산하고; generalized gradient approximation (GGA)를 기반으로 한 Perdew, Burke, Ernzerhof (PBE) 모델 방법으로 전자 교환-상관성 범함수(exchange-correlation functional)를 계산하였으며; Kinetic energy cutoff는 500 eV로 설정하였고; 각 금속(M) 표면에 대하여 각각 2Х2Х3 Monkhorst-Pack 방법을 사용하여 수행되었다.
또한, ② 희생 양극재의 분체 전기 전도도를 측정하기 위하여, 제조된 각 희생 양극재를 압축하여 분체로 제조하였다. 그런 다음, 제조된 분체를 대상으로 분체 저항 특성 측정기를 이용하여 각 희생 양극재의 체적과 압력 변화에 따른 면저항을 4-점 프로브(4-point probe) 방식으로 측정하고, 측정된 체적과 입력된 질량을 이용하여 희생 양극재의 분체 전기 전도도를 산출하였다. 측정된 결과를 하기 표 1에 나타내었다.
금속 산화물(MO) 금속(M)의 결함 생성 에너지 분체 전기 전도도
종류 CoO:MO
실시예 1 GeO2 7:3 (y=0.3) -5.1±0.1 eV 6.2×10-3 S/㎝
실시예 2 MgO 7:3 (y=0.3) -5.8±0.1 eV 7.1×10-3 S/㎝
실시예 3 SiO2 7:3 (y=0.3) -6.2±0.1 eV 6.5×10-3 S/㎝
실시예 4 Al2O3 7:3 (y=0.3) -6.3±0.1 eV 5.3×10-3 S/㎝
실시예 5 Fe2O3 7:3 (y=0.3) -4.2±0.1 eV 7.8×10-3 S/㎝
실시예 6 ZnO 7:3 (y=0.3) -4.2±0.1 eV 6.0×10-3 S/㎝
실시예 7 TiO2 7:3 (y=0.3) -5.6±0.1 eV 4.9×10-3 S/㎝
실시예 8 WO3 7:3 (y=0.3) -8.3±0.1 eV 4.5×10-3 S/㎝
실시예 9 MnO2 7:3 (y=0.3) -4.4±0.1 eV 6.7×10-3 S/㎝
실시예 10 GeO2 9:1 (y=0.1) -5.1±0.1 eV 5.3×10-3 S/㎝
실시예 11 GeO2 5:5 (y=0.5) -5.1±0.1 eV 5.6×10-3 S/㎝
비교예 1~3. 희생 양극재의 제조
실시예 1과 동일한 방식으로 수행하되, 산화리튬(Li2O) 및 산화코발트(CoO)와 함께 혼합되는 i) 금속 산화물(MO)의 종류와 ii) 산화코발트와 금속 산화물의 몰 비율은 하기 표 2와 같이 조절하여 희생 양극재인 리튬코발트 산화물(Li6Co1-yMyO4)을 얻었다.
이때, 제조된 희생 양극재의 ① 도핑된 금속(M)의 결함 생성 에너지와 ② 분체 전기 전도도를 실시예와 동일한 방법으로 분석하였으며, 그 결과는 하기 표 2에 나타내었다.
금속 산화물(MO) 금속(M)의 결함 생성 에너지 분체 전기 전도도
종류 CoO:MO
비교예 1 - 10:0 (y=0) - 4.3×10-4 S/㎝
비교예 2 GeO2 9.9:0.1 (y=0.01) -5.1±0.1 eV 9.1×10-4 S/㎝
비교예 3 GeO2 3:7 (y=0.7) -5.1±0.1 eV 3.7×10-3 S/㎝
실험예.
본 발명에서 제조된 희생 양극재의 성능을 평가하기 위하여 하기와 같은 실험을 수행하였다.
가) 초기 충방전 용량 및 효율 평가
호모 믹서(homo mixer)에 N-메틸피롤리돈 용매를 주입하고, 실시예 1~10 및 비교예 1~3에서 제조된 각각의 희생 양극재와, 아세틸렌 블랙 도전재, 개질된 실란올 바인더 및 분산제를 95:3:1.7:0.3의 중량 비율로 투입한 후 3,000rpm에서 60분 동안 혼합하여 선분산액을 준비하였다.
희생 양극재의 함량이 양극활물질 (LiNi0.6Co0.2Mn0.2O2) 100 중량부에 대하여 2 중량부가 되도록 준비된 선분산액을 양극활물질에 혼합하고, N-메틸피롤리돈 용매에 혼합된 양극활물질, 바인더인 PVdF 및 도전재인 카본블랙을 96:1:3의 중량 비율이 되도록 호모 믹서(Homo mixer)에 투입한 다음, 3,000rpm에서 80분 동안 분산하여 양극용 슬러리를 제조하였다. 제조된 양극용 슬러리를 알루미늄 집전체의 일면에 도포하고, 100℃에서 건조 후, 압연하여 양극을 제조하였다.
상기 양극과 리튬 금속 대극을 사용하여 2032 타입의 코인셀(coin cell)을 제조하였다. 상기 양극과 리튬 금속 대극 사이에는 다공질 폴리에틸렌(PE) 필름으로 이루어진 세퍼레이터(두께: 약 16㎛)를 개재하고, 전해액을 주입하여 반쪽 전지 형태의 코인셀을 제작하였다.
이때, 상기 전해액으로 E2DVC를 사용하였다. 여기서, "E2DVC"란 카보네이트계 전해액의 일종으로서, 에틸렌카보네이트(EC):디메틸카보네이트(DMC):디에틸카보네이트(DEC)=1:1:1 (부피비)의 혼합물에, 리튬 헥사플루오로 포스페이트(LiPF6, 1.0M) 및 비닐카보네이트(VC, 2 중량%)을 혼합한 용액을 의미한다.
제작된 코인셀에 대하여, 25℃에서 200 mAh/200 mAh의 기준 용량 조건으로 초기 충방전(formation)을 수행하여 초기 충전 용량과 초기 방전 용량을 측정하였으며, 측정된 초기 충방전 용량으로부터 효율을 산출하여 그 결과를 하기 표 3에 나타내었다.
초기 충전 용량
[mAh/g]
초기 방전 용량
[mAh/g]
초기 충방전 효율
[%]
실시예 1 690.2 56.8 8.2
실시예 2 734.4 39.9 5.4
실시예 3 513.8 25.6 5.0
실시예 4 305.9 4.6 1.5
실시예 5 717.4 28.6 4.0
실시예 6 717.4 28.6 4.0
실시예 7 654.8 13.5 2.1
실시예 8 313.0 1.83 0.6
실시예 9 718.0 27.9 3.9
실시예 10 721.7 42.1 5.8
실시예 11 675.3 61.8 9.2
비교예 1 815.7 31.1 3.8
비교예 2 807.9 32.3 4.0
비교예 3 630.1 62.4 9.9
상기 표 3에 나타낸 바와 같이, 본 발명에 따른 희생 양극재는 초기 충방전 시 높은 초기 충전 용량을 가지고, 높은 초기 충방전 효율을 나타내는 것을 알 수 있다.
나) 초기 충방전 이후 가스 발생량 평가
앞서 사용된 코인셀을 대상으로 45℃에서 0.3C/0.3C 조건으로 50회 충방전을 반복 수행하여 각 충방전 시 발생되는 가스량을 측정하여 초기 충방전 이후 발생된 누적 가스량을 산출하였다. 그 결과는 하기 표 4에 나타내었다.
누적 가스 발생량 [mL/g]
실시예 1 4.5
실시예 2 5.3
실시예 3 6.1
실시예 4 5.7
실시예 5 7.1
실시예 6 6.6
실시예 7 5.8
실시예 8 5.1
실시예 9 4.9
실시예 10 4.4
실시예 11 4.1
비교예 1 13.0
비교예 2 9.7
비교예 3 7.8
본 발명에 따른 희생 양극재는 초기 충방전 이후 충방전으로 인한 가스 발생량이 저감되는 것을 알 수 있다.
구체적으로, 실시예의 희생 양극재들은 초기 충방전 이후 충방전으로 인한 누적 가스 발생량이 7.5 mL/g 이하로 낮았으나, 비교예의 희생 양극재들은 7.5 mL/g 이상의 높은 누적 가스 발생량을 갖는 것으로 나타났다.
이러한 결과들로부터, 본 발명에 따른 희생 양극재는 특정 금속이 도핑되고, 밀도범함수 이론(DFT)에 따른 상기 금속의 결함 형성 에너지가 특정 범위 내로 제어됨으로써 초기 충방전 시 높은 초기 충방전 효율을 구현하고, 이후 충방전 시 추가적으로 발생되는 가스량을 저감시킬 수 있으므로, 이를 양극에 포함하는 전지의 안정성과 충방전 성능을 향상시키는 효과가 우수한 것을 알 수 있다.
이상에서는 본 발명 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자 또는 해당 기술 분야에 통상의 지식을 갖는 자라면, 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허청구범위에 의해 정해져야만 할 것이다.

Claims (14)

  1. 하기 화학식 1로 나타내는 리튬코발트 산화물을 포함하고,
    밀도범함수 이론(DFT)에 따른 금속(M)의 결함 형성 에너지가 -4.0 내지 -8.5eV인 희생 양극재:
    [화학식 1]
    LixCo(1-y)MyO4
    상기 화학식 1에서,
    M은 Al, Fe, Zn, Ti, W, Mg, Ge 및 Si으로 이루어진 군으로부터 선택되는 1종 이상이고,
    x 및 y는 5≤x≤7 및 0.05≤y≤0.6이다.
  2. 제1항에 있어서,
    M은 Mg, Ge 및 Si로 이루어진 군으로부터 선택되는 1종 이상인 희생 양극재.
  3. 제1항에 있어서,
    화학식 1의 y는 0.2≤y≤0.4인 희생 양극재.
  4. 제1항에 있어서,
    희생 양극재의 밀도범함수 이론(DFT)에 따른 금속(M)의 결함 형성 에너지가 -4.9 내지 -6.4eV인 희생 양극재.
  5. 제1항에 있어서,
    희생 양극재는 공간군이 P42/nmc인 정방정계 구조(tetragonal structure)를 갖는 희생 양극재.
  6. 제1항에 있어서,
    희생 양극재는 5 × 10-4 S/㎝ 내지 1 × 10-2 S/㎝의 분체 전기 전도도를 갖는 희생 양극재.
  7. 양극 집전체; 및
    상기 양극 집전체 상에 양극활물질, 도전재, 유기 바인더 고분자 및 희생 양극재를 함유하는 양극 합재층을 포함하고,
    상기 희생 양극재는 하기 화학식 1로 나타내는 리튬 코발트 아연 산화물을 포함하며, 밀도범함수 이론(DFT)에 따른 금속(M)의 결함 형성 에너지가 -4.0 내지 -8.5eV인 양극:
    [화학식 1]
    LixCo(1-y)MyO4
    상기 화학식 1에서,
    M은 Al, Fe, Zn, Ti, W, Mg, Ge 및 Si으로 이루어진 군으로부터 선택되는 1종 이상이고,
    x 및 y는 5≤x≤7 및 0.05≤y≤0.6이다.
  8. 제7항에 있어서,
    희생 양극재의 함량은 양극활물질 100 중량부에 대하여 0.001 내지 5.0 중량부인 양극.
  9. 제7항에 있어서,
    도전재의 함량은 양극 합재층 전체 100 중량부에 대하여 0.5 내지 10 중량부인 양극.
  10. 제7항에 있어서,
    도전재는 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙 및 탄소섬유로 이루어진 군으로부터 선택되는 1종 이상의 탄소계 물질을 포함하는 양극.
  11. 제7항에 있어서,
    양극활물질은 니켈(Ni), 코발트(Co), 망간(Mn), 알루미늄(Al), 아연(Zn), 티타늄(Ti), 마그네슘(Mg), 크롬(Cr) 및 지르코늄(Zr)으로 이루어진 군으로부터 선택되는 2종 이상의 원소를 포함하는 리튬 복합 전이금속 산화물인 양극.
  12. 제7항에 있어서,
    양극합재층의 평균 두께는 100 ㎛ 내지 200 ㎛인 양극.
  13. 제7항에 따른 양극을 포함하는 전극 조립체.
  14. 제13항에 따른 전극 조립체를 포함하는 리튬 이차전지.
PCT/KR2022/002023 2021-02-23 2022-02-10 희생 양극재 및 이를 포함하는 리튬 이차전지 WO2022182021A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022558534A JP2023519002A (ja) 2021-02-23 2022-02-10 犠牲正極材およびこれを含むリチウム二次電池
EP22759939.6A EP4109601A4 (en) 2021-02-23 2022-02-10 SACRIFICIAL POSITIVE ELECTRODE MATERIAL AND LITHIUM SECONDARY BATTERY
CN202280003359.7A CN115380410A (zh) 2021-02-23 2022-02-10 牺牲正极材料和包含其的锂二次电池
US17/914,928 US20230115280A1 (en) 2021-02-23 2022-02-10 Sacrificial Positive Electrode Material and Lithium Secondary Battery Comprising the Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210024259A KR20220120315A (ko) 2021-02-23 2021-02-23 희생 양극재 및 이를 포함하는 리튬 이차전지
KR10-2021-0024259 2021-02-23

Publications (1)

Publication Number Publication Date
WO2022182021A1 true WO2022182021A1 (ko) 2022-09-01

Family

ID=83048352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/002023 WO2022182021A1 (ko) 2021-02-23 2022-02-10 희생 양극재 및 이를 포함하는 리튬 이차전지

Country Status (6)

Country Link
US (1) US20230115280A1 (ko)
EP (1) EP4109601A4 (ko)
JP (1) JP2023519002A (ko)
KR (1) KR20220120315A (ko)
CN (1) CN115380410A (ko)
WO (1) WO2022182021A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002319398A (ja) * 2001-04-20 2002-10-31 Matsushita Electric Ind Co Ltd 非水電解質二次電池
KR20130079109A (ko) * 2011-12-30 2013-07-10 국립대학법인 울산과학기술대학교 산학협력단 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
KR101724004B1 (ko) * 2013-02-06 2017-04-06 삼성에스디아이 주식회사 리튬 이차 전지
KR20190059115A (ko) 2017-11-22 2019-05-30 주식회사 엘지화학 리튬 이차전지용 양극재에 포함되는 비가역 첨가제, 이의 제조방법, 및 이 및 포함하는 양극재
KR20190078392A (ko) * 2017-12-26 2019-07-04 주식회사 엘지화학 양극 첨가제, 이의 제조 방법, 이를 포함하는 양극 및 리튬 이차 전지
KR20210015141A (ko) * 2019-07-31 2021-02-10 재단법인대구경북과학기술원 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
KR20210024259A (ko) 2012-05-14 2021-03-04 니코벤처스 트레이딩 리미티드 전자 증기 제공 디바이스

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105940528B (zh) * 2014-01-31 2019-08-02 三洋电机株式会社 非水电解质二次电池和非水电解质二次电池的制造方法
CN107706351A (zh) * 2017-09-30 2018-02-16 深圳市贝特瑞纳米科技有限公司 一种正极片、制备方法及包含其的锂离子电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002319398A (ja) * 2001-04-20 2002-10-31 Matsushita Electric Ind Co Ltd 非水電解質二次電池
KR20130079109A (ko) * 2011-12-30 2013-07-10 국립대학법인 울산과학기술대학교 산학협력단 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
KR20210024259A (ko) 2012-05-14 2021-03-04 니코벤처스 트레이딩 리미티드 전자 증기 제공 디바이스
KR101724004B1 (ko) * 2013-02-06 2017-04-06 삼성에스디아이 주식회사 리튬 이차 전지
KR20190059115A (ko) 2017-11-22 2019-05-30 주식회사 엘지화학 리튬 이차전지용 양극재에 포함되는 비가역 첨가제, 이의 제조방법, 및 이 및 포함하는 양극재
KR20190078392A (ko) * 2017-12-26 2019-07-04 주식회사 엘지화학 양극 첨가제, 이의 제조 방법, 이를 포함하는 양극 및 리튬 이차 전지
KR20210015141A (ko) * 2019-07-31 2021-02-10 재단법인대구경북과학기술원 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4109601A4

Also Published As

Publication number Publication date
US20230115280A1 (en) 2023-04-13
EP4109601A4 (en) 2024-04-03
KR20220120315A (ko) 2022-08-30
JP2023519002A (ja) 2023-05-09
EP4109601A1 (en) 2022-12-28
CN115380410A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
WO2019103460A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2019168301A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019103363A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019059552A2 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2020145639A1 (ko) 양극 활물질, 상기 양극 활물질의 제조 방법, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지
WO2019083221A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2022182019A1 (ko) 가스 발생량이 저감된 희생 양극재 및 이의 제조방법
WO2019212321A1 (ko) 양극 활물질의 세정 방법, 이를 포함하는 양극 활물질의 제조 방법 및 이에 의해 제조된 양극 활물질
WO2019059647A2 (ko) 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2019017643A9 (ko) 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019045399A2 (ko) 리튬 이차전지
WO2021187907A1 (ko) 리튬 이차전지용 양극재, 이를 포함하는 양극 및 리튬 이차전지
WO2020111545A1 (ko) 양극 활물질, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지
WO2021154035A1 (ko) 리튬 이차전지용 양극 활물질 및 이의 제조 방법
WO2019078688A2 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2019194609A1 (ko) 리튬 이차전지용 양극 활물질의 제조방법, 리튬 이차전지용 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021096204A1 (ko) 비가역 첨가제, 상기 비가역 첨가제를 포함하는 양극재, 상기 양극재를 포함하는 리튬 이차전지
WO2020145638A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조방법에 의해 제조된 양극 활물질
WO2020263023A1 (ko) 특정한 조성 조건을 가지는 리튬 이차전지용 전극 및 이를 포함하는 리튬 이차전지
WO2019093864A2 (ko) 리튬 코발트계 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 이차 전지
WO2022203434A1 (ko) 양극 활물질의 제조방법
WO2022114538A1 (ko) 리튬 이차전지의 제조 방법 및 이에 의하여 제조된 리튬 이차전지
WO2022250324A1 (ko) 양극 첨가제 및 이를 함유하는 리튬 이차전지용 양극
WO2022255665A1 (ko) 양극활물질과 비가역 첨가제를 포함하는 마스터 배치 및 이를 함유하는 리튬 이차전지용 양극 슬러리
WO2022182021A1 (ko) 희생 양극재 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022558534

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022759939

Country of ref document: EP

Effective date: 20220921

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE