WO2022176382A1 - タッチセンサ - Google Patents

タッチセンサ Download PDF

Info

Publication number
WO2022176382A1
WO2022176382A1 PCT/JP2021/047449 JP2021047449W WO2022176382A1 WO 2022176382 A1 WO2022176382 A1 WO 2022176382A1 JP 2021047449 W JP2021047449 W JP 2021047449W WO 2022176382 A1 WO2022176382 A1 WO 2022176382A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent
transparent layer
layer
mass
meth
Prior art date
Application number
PCT/JP2021/047449
Other languages
English (en)
French (fr)
Inventor
健太郎 豊岡
正弥 鈴木
裕之 米澤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2022176382A1 publication Critical patent/WO2022176382A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means

Definitions

  • the present disclosure relates to touch sensors.
  • Touch sensors are widely used in input devices (for example, touch panels) that detect an input position by various methods such as a resistive film method and a capacitive method.
  • Patent Literature 1 discloses a touch sensor having an electrode pattern with excellent concealability.
  • a first transparent layer having a refractive index of 1.6 or more and a thickness of 200 nm or less; is less than 1.6 and the thickness is 0.5 ⁇ m or more, and a second transparent layer is sequentially stacked.
  • Patent Literature 2 discloses a method of forming a protective film for touch panel electrodes.
  • a photosensitive resin composition containing a specific binder polymer, a specific photopolymerizable compound, and a photopolymerization initiator is used as raw materials for the protective film.
  • Patent Document 1 International Publication No. 2018/186428
  • Patent Document 2 Japanese Patent No. 5304973
  • touch sensors include not only electrode patterns provided in an area where an input position is detected, for example, an area corresponding to an image display section in a touch panel, but also wiring provided around the electrode patterns (hereinafter referred to as "peripheral wiring section ).
  • the peripheral wiring portion is sometimes referred to as frame wiring or lead wiring.
  • the peripheral wiring part especially the peripheral wiring part containing highly conductive metals such as copper and silver, is easily affected by the moist and hot environment.
  • Patent Document 2 discloses a method for forming a protective film for electrodes for a touch panel.
  • An object of one embodiment of the present disclosure is to provide a touch sensor including a peripheral wiring portion with improved wet heat durability.
  • the present disclosure includes the following aspects. ⁇ 1> a transparent substrate, a fifth transparent layer, a first electrode pattern extending in a first direction in plan view of the transparent substrate between the transparent substrate and the fifth transparent layer, the transparent substrate and the Between the fifth transparent layer, a second electrode pattern extending in a second direction intersecting with the first direction in plan view of the transparent substrate; Between the peripheral wiring portion electrically connected to at least one selected from the group consisting of one electrode pattern and the second electrode pattern, and the first electrode pattern and the fifth transparent layer, less than 1.60 and a second transparent layer having a refractive index of and an average thickness of 0.5 ⁇ m or more, wherein at least part of the peripheral wiring portion is covered with the second transparent layer and the fifth transparent layer. touch sensor.
  • ⁇ 2> The touch sensor according to ⁇ 1>, wherein the fifth transparent layer has a refractive index of less than 1.60 and an average thickness of 0.5 ⁇ m or more.
  • ⁇ 3> ⁇ 1> or ⁇ 2> further including a first transparent layer having a refractive index of 1.60 or more and an average thickness of 200 nm or less between the first electrode pattern and the second transparent layer.
  • the touch sensor described in . ⁇ 4> Further comprising a fourth transparent layer having a refractive index of 1.60 or more and an average thickness of 200 nm or less between the second transparent layer and the fifth transparent layer, ⁇ 1> to ⁇ 3>
  • ⁇ 5> Further comprising a third transparent layer having a refractive index of 1.60 or more and an average thickness of 200 nm or less between the second transparent layer and the fifth transparent layer, ⁇ 1> to ⁇ 4>
  • the touch sensor according to any one of. ⁇ 6> The fifth transparent layer has a water vapor transmission rate of 500 g/( m day) or less per 40 ⁇ m thickness in an environment of a temperature of 65° C. and a relative humidity of 90%.
  • the first electrode pattern includes a plurality of first island-shaped electrode portions spaced apart along the first direction, and two adjacent island-shaped electrode portions among the plurality of first island-shaped electrode portions.
  • the second electrode pattern includes a plurality of second island-shaped electrode portions arranged at intervals along the second direction. and a second wiring section that electrically connects two adjacent second island-shaped electrode sections among the plurality of second island-shaped electrode sections across the second transparent layer, ⁇ 1> to The touch sensor according to any one of ⁇ 6>.
  • a touch sensor that includes a peripheral wiring portion with improved wet heat durability.
  • FIG. 1 is a schematic plan view showing a touch sensor according to an embodiment
  • FIG. 2 is a schematic cross-sectional view showing the structure of the touch sensor shown in FIG. 1.
  • FIG. 3 is a schematic cross-sectional view showing the structure of a touch sensor according to one embodiment.
  • a numerical range indicated using "-" indicates a range that includes the numerical values described before and after "-" as the minimum and maximum values, respectively.
  • upper or lower limits described in a certain numerical range may be replaced with upper or lower limits of other numerical ranges described step by step.
  • upper or lower limits described in a certain numerical range may be replaced with values shown in Examples.
  • the amount of each component in the composition means the total amount of the multiple substances present in the composition unless otherwise specified when there are multiple substances corresponding to each component in the composition. do.
  • process is not only an independent process, but even if it cannot be clearly distinguished from other processes, it is included in the term as long as the intended purpose of the process is achieved. .
  • transparent means that the average transmittance of visible light with a wavelength of 400 nm to 700 nm is 80% or more.
  • the average transmittance is a value measured using a spectrophotometer, and can be measured using a spectrophotometer U-3310 manufactured by Hitachi, Ltd., for example.
  • the content ratio of each structural unit of the polymer is the molar ratio.
  • the molecular weight when there is a molecular weight distribution represents the weight average molecular weight (Mw) unless otherwise specified.
  • the refractive index is a value measured by ellipsometry at a wavelength of 550 nm unless otherwise specified.
  • ordinal numbers are terms used to distinguish constituent elements, and do not limit the number of constituent elements or their superiority or inferiority.
  • a touch sensor includes: a transparent substrate; a fifth transparent layer; A second electrode pattern extending in a second direction intersecting with the first direction in plan view of the transparent substrate; a peripheral wiring portion electrically connected to at least one selected from the group consisting of the first electrode pattern and the second electrode pattern, and the first electrode pattern and the fifth transparent layer between the transparent layer and the peripheral wiring portion; and a second transparent layer having a refractive index of less than 1.60 and an average thickness of 0.5 ⁇ m or more, wherein at least part of the peripheral wiring portion includes the second transparent layer and the second transparent layer 5 covered by a transparent layer.
  • the touch sensor according to an embodiment of the present disclosure includes the transparent substrate, the first electrode pattern, and the second transparent layer. , a fifth transparent layer, and so on in this order.
  • the wet heat durability of the peripheral wiring portion is improved by covering at least a portion of the peripheral wiring portion with the second transparent layer and the fifth transparent layer.
  • a touch sensor includes a transparent substrate.
  • the transparent substrate may have a single layer structure or a multilayer structure.
  • transparent substrates include glass substrates and resin films.
  • resin films include polyethylene terephthalate film (PET film), polycarbonate film (PC film), cycloolefin polymer film (COP film) and polyvinyl chloride film (PVC film).
  • PET film polyethylene terephthalate film
  • PC film polycarbonate film
  • COP film cycloolefin polymer film
  • PVC film polyvinyl chloride film
  • the transparent substrate is preferably a cycloolefin polymer film because of its excellent optical isotropy, dimensional stability and processing accuracy.
  • the thickness of the transparent substrate is not limited.
  • the thickness of the glass substrate is preferably 0.3 mm to 3 mm.
  • the thickness of the resin film is preferably 20 ⁇ m to 3 mm.
  • a touch sensor includes a first electrode pattern extending in a first direction in plan view of the transparent substrate between the transparent substrate and the fifth transparent layer. That is, the first electrode pattern is arranged along the first direction in plan view of the transparent substrate. “Planar view of the transparent substrate” specifically means planar view in which the observation direction is parallel to the thickness direction of the transparent substrate.
  • the first electrode pattern may contact the transparent substrate. Another layer may be arranged between the transparent substrate and the first electrode pattern.
  • the first electrode pattern may contact a second transparent layer disposed between the first electrode pattern and the fifth transparent layer. Another layer may be arranged between the first electrode pattern and the second transparent layer.
  • a layer other than the second transparent layer may be arranged between the first electrode pattern and the fifth transparent layer.
  • the first electrode pattern may be arranged between the transparent substrate and the first transparent layer described below.
  • the components of the first electrode pattern include, for example, metals and metal oxides.
  • Metals include, for example, aluminum, zinc, copper, iron, nickel, chromium, molybdenum, silver, gold, and copper-nickel alloys.
  • Metal oxides include, for example, silicon dioxide, indium tin oxide (ITO), zinc aluminum oxide (AZO) and indium zinc oxide (IZO).
  • the component of the first electrode pattern contains at least one selected from the group consisting of indium tin oxide (ITO), zinc aluminum oxide (AZO) and indium zinc oxide (IZO). is preferred, and more preferably contains indium tin oxide (ITO).
  • Indium tin oxide (ITO) may be amorphous or polycrystalline. Polycrystalline indium tin oxide (ITO) is obtained, for example, by firing amorphous indium tin oxide (ITO).
  • the refractive index of the first electrode pattern is preferably 1.75 to 2.10.
  • the thickness of the first electrode pattern is preferably 10 nm to 200 nm.
  • the first electrode pattern includes a plurality of first island-shaped electrode portions spaced apart along the first direction, and two adjacent first island-shaped electrode portions among the plurality of first island-shaped electrode portions. and a first wiring portion for electrical connection.
  • the component of the first island-shaped electrode portion may be the same as or different from the component of the first wiring portion.
  • the interval between two adjacent first island-shaped electrode portions is determined, for example, within the range of 1 ⁇ m to 100 ⁇ m.
  • the shape of the first island-shaped electrode portion in a plan view may be a quadrangle.
  • the shape of the first island electrode portion is not limited as long as the function as the first electrode pattern is exhibited.
  • the method of forming the first electrode pattern is not limited.
  • the first electrode pattern is formed, for example, by etching a thin film formed by sputtering.
  • the matter described in International Publication No. 2018/186428 may be referred to for the method of forming the first electrode pattern in the present disclosure.
  • a touch sensor includes a second electrode pattern extending in a second direction intersecting the first direction in plan view of the transparent substrate, between the transparent substrate and the fifth transparent layer. That is, the second electrode pattern is arranged along the second direction in plan view of the transparent substrate. The second electrode pattern may contact the transparent substrate. Another layer may be arranged between the transparent substrate and the second electrode pattern. The second electrode pattern may contact the fifth transparent layer. Another layer may be arranged between the second electrode pattern and the fifth transparent layer. A second electrode pattern may be disposed between the second transparent layer and the fifth transparent layer. A second electrode pattern may be disposed between the transparent substrate and the second transparent layer. The second electrode pattern may be arranged between the transparent substrate and the first transparent layer described below.
  • the components of the second electrode pattern include, for example, the components of the first electrode pattern already described.
  • the preferred components of the second electrode pattern are the same as the preferred components of the first electrode pattern.
  • the components of the second electrode pattern may be the same as or different from the components of the first electrode pattern.
  • the refractive index of the second electrode pattern is preferably 1.75 to 2.10.
  • the thickness of the second electrode pattern is preferably 10 nm to 200 nm.
  • the second electrode pattern includes a plurality of second island-shaped electrode portions spaced apart along the second direction, and two adjacent second island-shaped electrode portions among the plurality of second island-shaped electrode portions. and a second wiring portion for electrical connection. It is preferable that the second wiring portion electrically connecting two adjacent second island-shaped electrode portions is arranged across the second transparent layer. In other words, it is preferable that the second wiring section has a bridge-like structure extending over the second transparent layer. A 2nd wiring part may be arrange
  • the interval between two adjacent second island electrode portions is determined, for example, within the range of 1 ⁇ m to 100 ⁇ m.
  • the shape of the second island-shaped electrode portion in a plan view may be a quadrangle.
  • the shape of the second island electrode portion is not limited as long as the function as the second electrode pattern is exhibited.
  • the method of forming the second electrode pattern is not limited.
  • the second electrode pattern is formed, for example, by a method conforming to the method for forming the first electrode pattern described above.
  • a touch sensor includes a peripheral electrically connected to at least one selected from the group consisting of a first electrode pattern and a second electrode pattern between a transparent substrate and a fifth transparent layer. Including wiring.
  • the peripheral wiring section can transmit an electrical change such as capacitance generated between the first electrode pattern and the second electrode pattern to an external circuit.
  • a connection terminal with an external circuit may be connected to an end of the peripheral wiring portion.
  • the peripheral wiring portion may contact the target electrode pattern. Other layers may be arranged between the peripheral wiring portion and the target electrode pattern as long as the peripheral wiring portion is electrically connected to the target electrode pattern.
  • the peripheral wiring portion may include a first peripheral wiring portion electrically connected to the first electrode pattern and a second peripheral wiring portion electrically connected to the second electrode pattern.
  • At least part of the peripheral wiring part is covered with the second transparent layer and the fifth transparent layer.
  • the wet heat durability of the peripheral wiring portion is improved.
  • the second transparent layer is arranged between the peripheral wiring portion and the fifth transparent layer.
  • the ratio of the area of the peripheral wiring portion covered by the second transparent layer and the fifth transparent layer to the area of the peripheral wiring portion is preferably 80% to 100%, more preferably 90% to 100%, and further preferably 95% to 100%. 100% is particularly preferred. That is, it is particularly preferable that the entire peripheral wiring portion is covered with the second transparent layer and the fifth transparent layer.
  • the area of the peripheral wiring portion used for calculating the above ratio is calculated based on a plan view (specifically, a plan view in which the observation direction is parallel to the thickness direction of the transparent substrate). From the viewpoint of wet heat durability, at least part of the peripheral wiring portion is formed by a transparent layer other than the second transparent layer and the fifth transparent layer (for example, the first transparent layer, the third transparent layer and the fourth transparent layer described later). It may also be covered.
  • the peripheral wiring portion and the fifth transparent layer are compared with the region that does not include the second transparent layer (for example, the region where the fifth transparent layer is in contact with the peripheral wiring portion) between the peripheral wiring portion and the fifth transparent layer.
  • the adhesion of the fifth transparent layer is improved.
  • the adhesiveness of the fifth transparent layer may decrease due to curing shrinkage occurring during the formation process of the fifth transparent layer.
  • the peripheral wiring portion and the fifth transparent layer are compared with the region that does not include the second transparent layer (for example, the region where the fifth transparent layer is in contact with the peripheral wiring portion) between the peripheral wiring portion and the fifth transparent layer.
  • the region that does not include the second transparent layer for example, the region where the fifth transparent layer is in contact with the peripheral wiring portion
  • the number of air bubbles entering the touch sensor is reduced.
  • the difference in height between the second transparent layer and the peripheral wiring portion causes air bubbles to form. more likely to occur.
  • the components of the peripheral wiring portion include, for example, the components of the first electrode pattern already described.
  • the component of the peripheral wiring portion preferably contains a metal, and examples of the metal include copper, silver, nickel, molybdenum, and alloys thereof.
  • the component of the peripheral wiring portion more preferably contains at least one selected from the group consisting of copper and silver, and particularly preferably contains copper.
  • the component of the peripheral wiring portion may contain at least one selected from the group consisting of indium tin oxide (ITO), zinc aluminum oxide (AZO) and indium zinc oxide (IZO). More preferably, it contains indium tin oxide (ITO).
  • the method of forming the peripheral wiring portion is not limited.
  • the copper-containing peripheral wiring portion is formed by etching a copper-containing thin film formed by a sputtering method.
  • the peripheral wiring portion may be formed by a method conforming to the method of forming the first electrode pattern described above.
  • a touch sensor includes a second transparent layer having a refractive index of less than 1.60 and an average thickness of 0.5 ⁇ m or more between the first electrode pattern and the fifth transparent layer. .
  • the second transparent layer can protect components between the transparent substrate and the second transparent layer.
  • the second transparent layer covering the peripheral wiring portion can improve the wet heat durability of the peripheral wiring portion.
  • the second transparent layer may contact the first electrode pattern.
  • Another layer may be arranged between the first electrode pattern and the second transparent layer.
  • the second transparent layer may contact the fifth transparent layer.
  • Other layers may be arranged between the second transparent layer and the fifth transparent layer. At least part of the second transparent layer may be arranged between the transparent substrate and the second wiring portion of the second electrode pattern that extends over the second transparent layer.
  • the refractive index of the second transparent layer is less than 1.60. From the viewpoint of hiding the electrode pattern, the refractive index of the second transparent layer is preferably 1.40 or more and less than 1.60, and more preferably 1.45 or more and 1.55 or less.
  • the average thickness of the second transparent layer is 0.5 ⁇ m or more. From the viewpoint of wet heat durability and hiding property of the electrode pattern, the average thickness of the second transparent layer is preferably 0.5 ⁇ m or more and 20 ⁇ m or less, more preferably 1 ⁇ m or more and 12 ⁇ m or less, and 3 ⁇ m or more and 10 ⁇ m or less. is particularly preferred.
  • the average thickness of the second transparent layer is measured using a transmission electron microscope (TEM). A section of the touch sensor is produced using an ultramicrotome, and a cross section along the thickness direction of the section is observed using a transmission electron microscope. A region with a length of 5 mm is scanned along the direction perpendicular to the thickness direction of the section. Based on the image obtained, the thickness of the second transparent layer is measured at 20 equally spaced areas having a length of 5 mm. The arithmetic mean of the measurements is taken as the average thickness of the second transparent layer.
  • TEM transmission electron microscope
  • the refractive index of the second transparent layer is 1.40 or more and less than 1.60, and the average thickness of the second transparent layer is 0.5 ⁇ m or more and 20 ⁇ m or less.
  • the upper and lower limits of each characteristic may be replaced by the numerical values already mentioned.
  • the ratio of the area of the second transparent layer to the area of the transparent substrate is preferably 80% to 100%, more preferably 90% to 100%, and particularly preferably 95% to 100%.
  • the area of the transparent substrate and the area of the second transparent layer used to calculate the above ratio are calculated based on a plan view (specifically, a plan view in which the observation direction is parallel to the thickness direction of the transparent substrate). be done.
  • a plan view specifically, a plan view in which the observation direction is parallel to the thickness direction of the transparent substrate.
  • the components of the second transparent layer include, for example, the components of the second transparent transfer layer to be described later.
  • the component of the second transparent layer preferably contains a polymer (preferably an alkali-soluble resin). Aspects of the polymer are described below in the description of the components of the second transparent transfer layer.
  • the second transparent layer may be formed using a composition containing at least one of the components described above.
  • the second transparent layer may be a cured product of a composition containing at least one of the components described above.
  • the second transparent layer is preferably a cured product of a composition containing a polymer (preferably an alkali-soluble resin), a polymerizable compound and a polymerization initiator.
  • a cured product of the above composition improves the wet heat durability of the peripheral wiring portion. Curing of the composition is accelerated, for example, by actinic energy rays or heat.
  • the “second transparent transfer layer” should be read as “composition”
  • the “total mass of the second transparent transfer layer” should be read as “total solid content of the composition”.
  • the content of each component in the composition forming the second transparent layer may be determined based on the description of the content of each component in the second transparent transfer layer.
  • the second transparent layer may be formed using a transfer material.
  • the second transparent layer is formed by transferring a second transparent transfer layer of transfer material onto the first electrode pattern.
  • the second transparent transfer layer may have the property of being cured by application of energy.
  • the second transparent transfer layer may be photocurable, thermosetting, or both photocurable and thermosetting.
  • the second transparent transfer layer may be cured. That is, the second transparent layer may be a cured product of the second transparent transfer layer. Aspects of the transfer material are described in the description of the touch sensor manufacturing method described below.
  • the refractive index of the second transparent transfer layer is substantially the same as the refractive index of the second transparent layer.
  • a touch sensor includes a fifth transparent layer.
  • the fifth transparent layer can protect components between the transparent substrate and the fifth transparent layer.
  • the fifth transparent layer covering the peripheral wiring portion can improve the wet heat durability of the peripheral wiring portion.
  • a fifth transparent layer may contact the second transparent layer.
  • Other layers may be arranged between the second transparent layer and the fifth transparent layer.
  • the refractive index of the fifth transparent layer is preferably less than 1.60, more preferably 1.40 or more and less than 1.60, and 1.45 or more and 1.55. The following are particularly preferred.
  • the average thickness of the fifth transparent layer is preferably 0.5 ⁇ m or more, more preferably 0.5 ⁇ m or more and 20 ⁇ m or less, and 1 ⁇ m or more and 12 ⁇ m or less. more preferably, and particularly preferably 3 ⁇ m or more and 10 ⁇ m or less.
  • the average thickness of the fifth transparent layer is measured by a method according to the method for measuring the average thickness of the second transparent layer described above.
  • the lower limit of the ratio of the average thickness of the fifth transparent layer to the average thickness of the second transparent layer is preferably 1 or more, more preferably 1.5 or more, and 2 It is particularly preferable that it is above.
  • the upper limit of the ratio of the average thickness of the fifth transparent layer to the average thickness of the second transparent layer is preferably 10 or less, more preferably 8 or less. 5 or less is particularly preferred.
  • the ratio of the average thickness of the fifth transparent layer to the average thickness of the second transparent layer is preferably 1 to 10, preferably 1.5 to 8. 1 is more preferred, and 2 to 5 is particularly preferred.
  • the lower limit of the total value of the average thickness of the second transparent layer and the average thickness of the fifth transparent layer is preferably 3 ⁇ m or more, more preferably 8 ⁇ m or more, and 10 ⁇ m or more. is particularly preferred.
  • the upper limit of the total value of the average thickness of the second transparent layer and the average thickness of the fifth transparent layer is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less. , 15 ⁇ m or less.
  • the total value of the average thickness of the second transparent layer and the average thickness of the fifth transparent layer is preferably 5 ⁇ m to 30 ⁇ m, more preferably 8 ⁇ m to 20 ⁇ m. is more preferable, and 10 ⁇ m to 15 ⁇ m is particularly preferable.
  • the water vapor transmission rate of the fifth transparent layer per 40 ⁇ m thickness in an environment of 65° C. and 90% relative humidity is preferably 500 g/(m 2 day) or less, and 400 g/(m 2 *day) or less, and particularly preferably 300 g/(m 2 ⁇ day) or less.
  • Water vapor permeability is measured by the cup method based on "JIS Z 0208 (1976)". Change in mass of the sample left for 24 hours at a temperature of 65 ° C. and a relative humidity of 90% in a constant temperature and humidity chamber, that is, the difference between the mass of the sample before the test and the mass of the sample after the test, Calculate the water vapor permeability of the sample (unit: g/(m 2 ⁇ day)). The above measurements are performed three times, and the average value of the water vapor permeability is calculated.
  • the components of the fifth transparent layer include, for example, the components of the second transparent layer already described. However, the components of the fifth transparent layer may be the same as or different from the components of the second transparent layer.
  • the component of the fifth transparent layer preferably contains a polymer (preferably an alkali-soluble resin).
  • the fifth transparent layer is preferably a cured product of a composition containing a polymer (preferably an alkali-soluble resin), a polymerizable compound and a polymerization initiator.
  • a 5th transparent layer is formed by the method according to the formation method of the 2nd transparent layer mentioned above.
  • the fifth transparent layer is formed, for example, using a transfer material containing a fifth transparent transfer layer to be described later.
  • the touch sensor according to an embodiment of the present disclosure further includes a first transparent layer between the first electrode pattern and the second transparent layer.
  • the first transparent layer can protect components between the transparent substrate and the first transparent layer.
  • the first transparent layer may contact the first electrode pattern.
  • Another layer may be arranged between the first electrode pattern and the first transparent layer.
  • the first transparent layer is preferably the layer closest to the first electrode pattern among the plurality of transparent layers.
  • the first transparent layer is preferably arranged in contact with the first electrode pattern between the first electrode pattern and the second transparent layer.
  • the first transparent layer may contact the second transparent layer.
  • Other layers may be arranged between the first transparent layer and the second transparent layer.
  • the first transparent layer is preferably arranged in contact with the second transparent layer between the first electrode pattern and the second transparent layer. It is also preferred that the first transparent layer is arranged in contact with the first electrode pattern and the second transparent layer.
  • the refractive index of the first transparent layer is preferably 1.60 or more, more preferably 1.60 or more and 1.90 or less, and 1.65 or more and 1.80. The following are particularly preferred.
  • the average thickness of the first transparent layer is preferably 200 nm or less, more preferably 40 nm or more and 200 nm or less, and 50 nm or more and 100 nm or less. Especially preferred.
  • the average thickness of the first transparent layer is measured by a method according to the method for measuring the average thickness of the second transparent layer described above.
  • the refractive index of the first transparent layer is 1.60 or more and the average thickness of the first transparent layer is 200 nm or less. More preferably, the ratio is 1.60 or more and 1.90 or less, and the average thickness of the first transparent layer is 40 nm or more and 200 nm or less.
  • the upper and lower limits of each characteristic may be replaced by the numerical values already mentioned.
  • the components of the first transparent layer include, for example, the components of the first transparent transfer layer described later.
  • the components of the first transparent layer preferably include a polymer (preferably an alkali-soluble resin) and metal oxide particles.
  • the mode of each component is described in the description of the components of the first transparent transfer layer, which will be described later.
  • Components of the first transparent layer also include, for example, components described in paragraphs [0081] to [0107] of WO2018/186428.
  • the first transparent layer may be formed using a composition containing at least one of the components described above.
  • the first transparent layer may be a cured product of a composition containing at least one of the components described above.
  • the first transparent transfer layer should be read as “composition”
  • total mass of the first transparent transfer layer should be read as “total solid content of the composition”.
  • the content of each component in the composition forming the first transparent layer may be determined based on the description of the content of each component in the first transparent transfer layer.
  • the first transparent layer may be formed using a transfer material.
  • the first transparent layer is formed by transferring a first transparent transfer layer of transfer material onto the first electrode pattern.
  • the first transparent transfer layer may have the property of being cured by application of energy.
  • the first transparent transfer layer may be photocurable, thermosetting, or both photocurable and thermosetting.
  • the first transparent transfer layer may be cured. That is, the first transparent layer may be a cured product of the second transparent transfer layer. Aspects of the transfer material are described in the description of the touch sensor manufacturing method described below.
  • the touch sensor according to an embodiment of the present disclosure further includes a third transparent layer between the second transparent layer and the fifth transparent layer.
  • the third transparent layer can protect components between the transparent substrate and the third transparent layer.
  • a third transparent layer may contact the second transparent layer.
  • Other layers may be arranged between the second transparent layer and the third transparent layer.
  • the third transparent layer is preferably arranged in contact with the second transparent layer between the second transparent layer and the fifth transparent layer.
  • the third transparent layer may contact the fifth transparent layer.
  • Other layers may be arranged between the third transparent layer and the fifth transparent layer.
  • the refractive index of the third transparent layer is preferably 1.60 or more, more preferably 1.60 or more and 1.90 or less, and 1.65 or more and 1.80. The following are particularly preferred.
  • the average thickness of the third transparent layer is preferably 200 nm or less, more preferably 40 nm or more and 200 nm or less, and 50 nm or more and 100 nm or less. Especially preferred.
  • the average thickness of the third transparent layer is measured by a method according to the method for measuring the average thickness of the second transparent layer described above.
  • the refractive index of the third transparent layer is 1.60 or more and the average thickness of the third transparent layer is 200 nm or less. More preferably, the ratio is 1.60 or more and 1.90 or less, and the average thickness of the third transparent layer is 40 nm or more and 200 nm or less.
  • the upper and lower limits of each characteristic may be replaced by the numerical values already mentioned.
  • the components of the third transparent layer include, for example, the components of the first transparent layer already described. However, the components of the third transparent layer may be the same as or different from the components of the first transparent layer.
  • the components of the third transparent layer preferably contain a polymer (preferably an alkali-soluble resin) and metal oxide particles.
  • a 3rd transparent layer is formed by the method according to the formation method of a 1st transparent layer.
  • the third transparent layer is formed, for example, using a transfer material containing a third transparent transfer layer to be described later.
  • the touch sensor according to an embodiment of the present disclosure further includes a fourth transparent layer between the second transparent layer and the fifth transparent layer.
  • the fourth transparent layer can protect components between the transparent substrate and the fourth transparent layer.
  • a fourth transparent layer may contact the second transparent layer.
  • Other layers may be arranged between the second transparent layer and the fourth transparent layer.
  • the fourth transparent layer may contact the fifth transparent layer.
  • Other layers may be arranged between the fourth transparent layer and the fifth transparent layer.
  • the fourth transparent layer is preferably arranged in contact with the fifth transparent layer between the second transparent layer and the fifth transparent layer.
  • the refractive index of the fourth transparent layer is preferably 1.60 or more, more preferably 1.60 or more and 1.90 or less, and 1.65 or more and 1.80. The following are particularly preferred.
  • the average thickness of the fourth transparent layer is preferably 200 nm or less, more preferably 40 nm or more and 200 nm or less, and 50 nm or more and 100 nm or less. Especially preferred.
  • the average thickness of the fourth transparent layer is measured by a method according to the method for measuring the average thickness of the second transparent layer described above.
  • the fourth transparent layer has a refractive index of 1.60 or more and an average thickness of 200 nm or less. More preferably, the ratio is 1.60 or more and 1.90 or less, and the average thickness of the fourth transparent layer is 40 nm or more and 200 nm or less.
  • the upper and lower limits of each characteristic may be replaced by the numerical values already mentioned.
  • the components of the fourth transparent layer include, for example, the components of the first transparent layer already described. However, the components of the fourth transparent layer may be the same as or different from the components of the first transparent layer.
  • the components of the fourth transparent layer preferably contain a polymer (preferably an alkali-soluble resin) and metal oxide particles.
  • a 4th transparent layer is formed by the method according to the formation method of a 1st transparent layer. The fourth transparent layer is formed, for example, using a transfer material including a fourth transparent transfer layer to be described later.
  • Through holes are preferably formed in the second transparent layer (preferably the first transparent layer, the second transparent layer and the third transparent layer).
  • the second wiring portion can electrically connect two adjacent second island electrode portions through the through hole.
  • the hole diameter of the through hole is preferably smaller than the width of the second wiring portion.
  • the through-holes are patterned by, for example, irradiating light through a mask for forming desired through-holes in the second transparent layer (preferably the first transparent layer, the second transparent layer and the third transparent layer). It is formed by
  • the average thickness of the touch sensor is preferably 5 ⁇ m or more and 300 ⁇ m or less, more preferably 10 ⁇ m or more and 200 ⁇ m or less, and particularly 30 ⁇ m or more and 100 ⁇ m or less. preferable.
  • the average thickness of the touch sensor is measured by a method according to the method for measuring the average thickness of the second transparent layer described above.
  • FIG. 1 is a schematic plan view showing a touch sensor according to an embodiment
  • FIG. 2 is a schematic cross-sectional view showing the structure of the touch sensor shown in FIG. 1.
  • FIG. 3 is a schematic cross-sectional view showing the structure of a touch sensor according to one embodiment.
  • the touch sensor 100 shown in FIGS. 1 and 2 includes a transparent substrate 10, a first electrode pattern 20, a second electrode pattern 30, a peripheral wiring portion 40, a second transparent layer 60 and a fifth transparent layer 90.
  • the first electrode pattern 20 , the second electrode pattern 30 , the peripheral wiring portion 40 and the second transparent layer 60 are arranged between the transparent substrate 10 and the fifth transparent layer 90 .
  • the touch sensor 100 includes a second transparent layer 60 and a fifth transparent layer 90 in this order.
  • the first electrode pattern 20 extends in the first direction X.
  • the first electrode pattern 20 includes a first island electrode portion 20A and a first wiring portion 20B.
  • the first island electrode portions 20A are arranged along the first direction X at regular intervals.
  • the first wiring portion 20B electrically connects two adjacent first island electrode portions 20A. As a result, electrodes are formed along the first direction X. As shown in FIG.
  • the second electrode pattern 30 extends in the second direction Y intersecting the first direction X.
  • the second electrode pattern 30 includes a second island electrode portion 30A and a second wiring portion 30B.
  • the second island electrode portions 30A are arranged along the second direction Y at regular intervals.
  • the second wiring portion 30B electrically connects two adjacent second island electrode portions 30A. As a result, electrodes are formed along the second direction Y. As shown in FIG.
  • the second wiring portion 30B electrically connects two adjacent second island electrode portions 30A across the second transparent layer 60 through through holes H formed in the second transparent layer 60 .
  • the first electrode pattern 20 and the second electrode pattern 30 can function as electrodes independent of each other by forming a bridge wiring by the second wiring part 30B at the intersection point of the first electrode pattern 20 and the second electrode pattern 30. .
  • the peripheral wiring part 40 is arranged around the first electrode pattern 20 and the second electrode pattern 30 .
  • a certain peripheral wiring portion 40 is electrically connected to the first electrode pattern 20
  • a certain peripheral wiring portion 40 is electrically connected to the second electrode pattern 30 .
  • a connection terminal with an external circuit may be connected to the end of the peripheral wiring section 40 .
  • the peripheral wiring portion 40 is covered with the second transparent layer 60 and the fifth transparent layer 90 . By covering the peripheral wiring portion 40 with the second transparent layer 60 and the fifth transparent layer 90, the wet heat durability of the peripheral wiring portion 40 is improved.
  • the second transparent layer 60 covers the transparent substrate 10 , the first electrode pattern 20 , the second electrode pattern 30 and the peripheral wiring portion 40 . However, the second transparent layer 60 is covered with the second wiring portion 30B in the region where the second wiring portion 30B is arranged.
  • the refractive index of the second transparent layer 60 is less than 1.60, and the average thickness of the second transparent layer 60 is 0.5 ⁇ m or more.
  • the fifth transparent layer 90 covers the transparent substrate 10 , the first electrode pattern 20 , the second electrode pattern 30 , the peripheral wiring portion 40 and the second transparent layer 60 .
  • the touch sensor 200 shown in FIG. 3 corresponds to the touch sensor 100 shown in FIGS. 1 and 2 with a first transparent layer, a third transparent layer, and a fourth transparent layer. That is, the touch sensor 200 shown in FIG. 3 includes the transparent substrate 10, the first electrode pattern 20 (however, FIG. 3 shows the first wiring part 20B included in the first electrode pattern 20. Hereinafter, FIG. 3). ), the second electrode pattern 30 (however, FIG. 3 shows the second island-shaped electrode portion 30A and the second wiring portion 30B included in the second electrode pattern 30). 3), the peripheral wiring section 40, the first transparent layer 50, the second transparent layer 60, the third transparent layer 70, the fourth transparent layer 80, and the fifth transparent layer 80. Includes layer 90 .
  • the first electrode pattern 20, the second electrode pattern 30, the peripheral wiring portion 40, the first transparent layer 50, the second transparent layer 60, the third transparent layer 70, and the fourth transparent layer 80 are formed by the transparent substrate 10 and the fifth transparent layer. It is located between 90 and Regarding transparent layers, the touch sensor 200 includes a first transparent layer 50, a second transparent layer 60, a third transparent layer 70, a fourth transparent layer 80 and a fifth transparent layer 90 in this order.
  • the peripheral wiring section 40 is covered with a first transparent layer 50, a second transparent layer 60, a third transparent layer 70, a fourth transparent layer 80 and a fifth transparent layer 90.
  • the first transparent layer 50 covers the transparent substrate 10 , the first electrode pattern 20 , the second electrode pattern 30 and the peripheral wiring portion 40 .
  • the first transparent layer 50 is arranged between the first electrode pattern 20 and the second transparent layer 60 .
  • the refractive index of the first transparent layer 50 is 1.60 or more, and the average thickness of the first transparent layer 50 is 200 nm or less.
  • the third transparent layer 70 covers the transparent substrate 10 , the first electrode pattern 20 , the second electrode pattern 30 , the peripheral wiring section 40 , the first transparent layer 50 and the second transparent layer 60 .
  • the third transparent layer 70 is disposed between the second transparent layer 60 and the fifth transparent layer 90 and is in contact with the second transparent layer 60 .
  • the refractive index of the third transparent layer 70 is 1.60 or more, and the average thickness of the third transparent layer 70 is 200 nm or less.
  • the fourth transparent layer 80 covers the transparent substrate 10 , the first electrode pattern 20 , the second electrode pattern 30 , the peripheral wiring section 40 , the first transparent layer 50 and the second transparent layer 60 .
  • a fourth transparent layer 80 is disposed between the second transparent layer 60 and the fifth transparent layer 90 and is in contact with the fifth transparent layer 90 .
  • the refractive index of the fourth transparent layer 80 is 1.60 or more, and the average thickness of the fourth transparent layer 80 is 200 nm or less.
  • a touch sensor according to an embodiment of the present disclosure is manufactured, for example, by combining methods of forming each component according to the target structure of the touch sensor.
  • the touch sensor having the structure as shown in FIGS. a second transparent layer having a refractive index of less than 1.60 and an average thickness of 0.5 ⁇ m or more, and a fifth transparent layer on the second transparent layer Manufactured by molding.
  • the transparent layer is preferably formed using a transfer material including a transparent transfer layer for forming the desired transparent layer. For example, by bonding a substrate with an electrode pattern and a transfer material, a transparent transfer layer of the transfer material is transferred onto the substrate with an electrode pattern.
  • the transparent transfer layer transferred onto the substrate with the electrode pattern may be exposed in a pattern if necessary.
  • the transparent transfer layer may be patternwise exposed through a photomask.
  • the transparent transfer layer may be patternwise exposed by scanning exposure with a laser beam. Exposure may be performed by refractive exposure using a lens or reflective exposure using a reflector. Exposure methods such as contact exposure, proximity exposure, reduction projection exposure and reflection projection exposure may be used.
  • the active energy rays with which the transparent transfer layer is irradiated are preferably ultraviolet rays such as g-line, h-line, i-line and j-line.
  • Light sources include, for example, metal halide lamps, high pressure mercury lamps, and light emitting diodes (LEDs).
  • the exposed transparent transfer layer may be developed using a developer.
  • the developer include an alkaline developer. Exposure and development of the transparent transfer layer forms, for example, a transparent layer having the desired shape. Exposure and development of the transparent transfer layer forms, for example, through holes in the transparent layer.
  • the transfer material preferably includes a temporary support and a transparent transfer layer for forming the desired transparent layer.
  • the transfer material may further comprise other layers such as a thermoplastic layer, an intermediate layer and a protective film, if desired.
  • the temporary support is peeled off, for example, after bonding the substrate with the electrode pattern and the transfer material.
  • the temporary support may be peeled off before the exposure of the transparent transfer layer, which will be described later.
  • the temporary support may be peeled off after exposure of the transparent transfer layer, which will be described later, and before development of the transparent transfer layer, which will be described later.
  • the temporary support is preferably a resin film.
  • the resin film is preferably a film that has flexibility and does not undergo significant deformation, shrinkage, or elongation under pressure or under pressure and heat.
  • Preferred temporary supports include, for example, polyethylene terephthalate film (PET film), cellulose triacetate film (TAC film), polystyrene film (PS film) and polycarbonate film (PC film).
  • PET film polyethylene terephthalate film
  • TAC film cellulose triacetate film
  • PS film polystyrene film
  • PC film polycarbonate film
  • the temporary support is preferably a biaxially stretched polyethylene terephthalate film.
  • the temporary support may be a transparent film.
  • the temporary support may be a colored film. Colored films include, for example, resin films containing components such as dyed silicon, alumina sols, chromium salts and zirconium salts. Conductivity may be imparted to the temporary support by the method described in JP-A
  • the type of transparent transfer layer included in the transfer material is determined, for example, according to the target structure of the touch sensor.
  • transparent transfer layers include a first transparent transfer layer, a second transparent transfer layer, a third transparent transfer layer, a fourth transparent transfer layer and a fifth transparent transfer layer.
  • the first transparent transfer layer forms the first transparent layer
  • the second transparent transfer layer forms the second transparent layer
  • the third transparent transfer layer forms the third transparent layer
  • the fourth transparent transfer layer forms the fourth
  • a transparent layer is formed
  • a fifth transparent transfer layer forms a fifth transparent layer.
  • the transfer material may include one or more transparent transfer layers.
  • a transfer material according to some embodiments may comprise a first transparent transfer layer and a second transparent transfer layer.
  • a transfer material may include a first transparent transfer layer, a second transparent transfer layer and a third transparent transfer layer.
  • a transfer material according to some embodiments may include a fourth transparent transfer layer and a fifth transparent transfer layer.
  • the combination of two or more transparent transfer layers contained in the transfer material is not limited to the above examples. The components of each transparent transfer layer are described below.
  • first transparent transfer layer examples of components of the first transparent transfer layer include the following components.
  • the first transparent transfer layer may contain components other than the following components.
  • the first transparent transfer layer preferably contains a polymer.
  • the polymer may function as a binder.
  • a polymer that functions as a binder is referred to as a binder polymer.
  • an alkali-soluble resin is preferable, and a resin having a structural unit derived from at least one selected from the group consisting of (meth)acrylic acid and (meth)acrylic acid ester (e.g., (meth)acrylic resin). is more preferable.
  • the alkali-soluble resin may be the already-described alkali-soluble resin for the second transparent layer.
  • Preferred examples of polymers include ammonium salts of polymers having acid groups.
  • ammonium salts of polymers having acid groups include ammonium salts of (meth)acrylic resins.
  • the ammonium salt of the acid group-containing polymer is produced, for example, by mixing the acid group-containing polymer with an aqueous ammonia solution.
  • a polymer having an acid group exhibits solubility in an aqueous solvent (preferably water or a mixed solvent of a lower alcohol having 1 to 3 carbon atoms and water).
  • a preferred example of the polymer having an acid group is a polymer having a monovalent acid group (for example, a carboxy group). It is particularly preferable that the polymer contained in the first transparent transfer layer is a resin having a carboxy group.
  • the polymer having an acid group is preferably an alkali-soluble resin.
  • the alkali-soluble resin is, for example, a linear organic high-molecular polymer and is appropriately selected from polymers having at least one alkali-solubility-promoting group in the molecule.
  • Groups that promote alkali solubility, ie, acid groups include, for example, carboxy groups, phosphoric acid groups, and sulfonic acid groups.
  • the acid group is preferably a carboxy group.
  • Preferred alkali-soluble resins include, for example, copolymers containing, in the main chain, structural units derived from at least one selected from the group consisting of (meth)acrylic acid and styrene.
  • Examples of more preferable alkali-soluble resins include polymers that are soluble in organic solvents and developable with weakly alkaline aqueous solutions.
  • the polymer having an acid group is preferably a (meth)acrylic resin having an acid group, preferably a copolymer of (meth)acrylic acid and a vinyl compound. ) is more preferably a copolymer with allyl acrylate.
  • the first transparent transfer layer preferably contains a copolymer having a (meth)acrylic acid-derived structural unit and a styrene-derived structural unit as a polymer. It is more preferable to contain a copolymer having a structural unit derived from a (meth)acrylic acid ester having a structural unit and an ethyleneoxy chain.
  • the polymer described above improves the film thickness uniformity in the process of forming the first transparent transfer layer.
  • the polymer having an acid group may be a commercial product.
  • Commercial products of polymers having an acid group include, for example, ARUFON manufactured by Toagosei Co., Ltd. (Alfon: registered trademark, trade names: UC-3000, UC-3510, UC-3080, UC-3920 and UF-5041). is mentioned.
  • Examples of commercially available polymers having acid groups include JONCRYL (registered trademark) 67, JONCRYL611, JONCRYL678, JONCRYL690 and JONCRYL819 manufactured by BASF.
  • the first transparent transfer layer may contain one or more polymers.
  • the content of the acid group-containing polymer in the first transparent transfer layer is preferably 10% by mass to 80% by mass, more preferably 15% by mass to 65% by mass, based on the total mass of the first transparent transfer layer. more preferably 20% by mass to 50% by mass.
  • the first transparent transfer layer may contain a polymer having no acid group.
  • the first transparent transfer layer preferably contains metal oxide particles.
  • the metal oxide particles can adjust the refractive index and light transmittance of the first transparent transfer layer.
  • Metal oxide particles include known metal oxide particles.
  • Metal oxide particles include, for example, zirconium oxide particles (eg, ZrO2 particles), niobium oxide particles ( eg, Nb2O5 particles) and titanium oxide particles ( eg, TiO2 particles).
  • the first transparent transfer layer preferably contains at least one selected from the group consisting of zirconium oxide particles, niobium oxide particles and titanium oxide particles, and at least one selected from the group consisting of zirconium oxide particles and titanium oxide particles. It is more preferred to contain seeds, and it is particularly preferred to contain zirconium oxide particles.
  • the refractive index of the metal oxide particles is preferably higher than the refractive index of the first transparent transfer layer containing no metal oxide particles.
  • the refractive index of the metal oxide particles to light having a wavelength of 400 nm to 750 nm is preferably 1.50 or more, more preferably 1.55 or more, and even more preferably 1.70 or more, 1.90 or higher is particularly preferred, and 2.00 or higher is most preferred.
  • the refractive index of metal oxide particles for light with wavelengths between 400 nm and 750 nm is represented by the average refractive index.
  • the average refractive index is a value obtained by dividing the sum of measured refractive index values for each light having a wavelength in the above range by the number of measurement points.
  • the average primary particle size of the metal oxide particles is preferably 100 nm or less, more preferably 50 nm or less, and even more preferably 20 nm or less.
  • the average primary particle size of metal oxide particles is a value obtained by measuring the diameters of 100 arbitrary particles by observation using a transmission electron microscope (TEM) and calculating the arithmetic mean of the diameters of 100 particles.
  • the first transparent transfer layer may contain one or more metal oxide particles.
  • the content of the metal oxide particles in the first transparent transfer layer is preferably 20% by mass to 95% by mass with respect to the total mass of the first transparent transfer layer. , more preferably 30% by mass to 95% by mass, still more preferably 30% by mass to 85% by mass, and particularly preferably 30% by mass or more and less than 80% by mass.
  • the content of zirconium oxide particles in the first transparent transfer layer is 20% with respect to the total mass of the first transparent transfer layer. It is preferably from 40% by mass to 95% by mass, more preferably from 40% by mass to 95% by mass, even more preferably from 60% by mass to 95% by mass, and is 60% by mass or more and less than 80% by mass. is particularly preferred.
  • the content of titanium oxide particles in the first transparent transfer layer is 30% with respect to the total mass of the first transparent transfer layer. It is preferably from 70% by mass, more preferably from 40% by mass to less than 60% by mass.
  • the first transparent transfer layer preferably contains a metal oxidation inhibitor.
  • the metal oxidation inhibitor is preferably a compound having an aromatic ring containing a nitrogen atom.
  • the aromatic ring containing a nitrogen atom is preferably at least one selected from the group consisting of an imidazole ring, a triazole ring, a tetrazole ring, a thiadiazole ring, and condensed rings of these rings and other aromatic rings, and the triazole ring Alternatively, it is more preferably a condensed ring of a triazole ring and another aromatic ring.
  • the other aromatic ring may be a carbocyclic ring or a heterocyclic ring, preferably a carbocyclic ring, more preferably a benzene ring or a naphthalene ring, particularly preferably a benzene ring.
  • a condensed ring of a triazole ring and a benzene ring includes, for example, a benzotriazole ring.
  • Preferable metal oxidation inhibitors include, for example, imidazole, benzimidazole, tetrazole, mercaptothiadiazole and benzotriazole.
  • the metal oxidation inhibitor preferably contains at least one selected from the group consisting of imidazole, benzimidazole and benzotriazole.
  • the metal oxidation inhibitor may be a commercially available product.
  • Examples of commercially available products include BT-120 and BT-LX manufactured by Johoku Chemical Industry Co., Ltd.
  • BT-120 and BT-LX are compounds containing a benzotriazole skeleton.
  • the first transparent transfer layer may contain one or more metal oxidation inhibitors.
  • the content of the metal oxidation inhibitor in the first transparent transfer layer is preferably 0.1% by mass to 20% by mass, more preferably 0.5% by mass to 10% by mass, relative to the total mass of the first transparent transfer layer. %, and particularly preferably 1% by mass to 5% by mass.
  • the first transparent transfer layer may contain a polymerizable compound.
  • the polymerizable compound include polymerizable compounds described in paragraphs [0023] to [0024] of Japanese Patent No. 4098550.
  • Preferred polymerizable compounds include, for example, pentaerythritol tetraacrylate, pentaerythritol triacrylate, and pentaerythritol ethylene oxide adduct tetraacrylate.
  • the ratio of the content of pentaerythritol triacrylate to the content of pentaerythritol tetraacrylate is more than 0% and 80% or less on a mass basis. is preferred, and 10% to 60% is more preferred.
  • Preferred polymerizable compounds include, for example, polymerizable compounds soluble in aqueous solvents such as water or a mixed solvent of a lower alcohol having 1 to 3 carbon atoms and water, and polymerizable compounds having an acid group. be done.
  • Polymerizable compounds soluble in aqueous solvents include, for example, polymerizable compounds having hydroxyl groups and polymerizable compounds having ethylene oxide, polypropylene oxide or phosphoric acid groups in the molecule.
  • the polymerizable compound having an acid group is preferably a polymerizable compound having a carboxy group, more preferably (meth)acrylic acid and its derivatives.
  • Preferred commercially available polymerizable compounds having a carboxyl group include, for example, Aronix TO-2349 (Toagosei Co., Ltd.).
  • the first transparent transfer layer may contain a polymerization initiator.
  • a polymerization initiator that is soluble in an aqueous solvent is preferred.
  • Polymerization initiators soluble in aqueous solvents include, for example, IRGACURE 2959 and photopolymerization initiators represented by Structural Formula 2 below.
  • Components of the second transparent transfer layer include, for example, the following components.
  • the second transparent transfer layer may contain components other than the following components.
  • the second transparent transfer layer may contain a polymer.
  • polymers include (meth)acrylic resins, styrene resins, epoxy resins, amide resins, amidoepoxy resins, alkyd resins, phenolic resins, ester resins, urethane resins, and reactions between epoxy resins and (meth)acrylic acid. Acid-modified epoxy acrylate resins obtained by reacting epoxy acrylate resins obtained and epoxy acrylate resins with acid anhydrides are exemplified.
  • a (meth)acrylic resin is one of the preferred embodiments of the polymer in terms of excellent alkali developability and film formability.
  • "(meth)acrylic resin” means a resin having structural units derived from (meth)acrylic compounds.
  • the lower limit of the content of structural units derived from the (meth)acrylic compound is preferably 50% by mass or more, more preferably 70% by mass or more, based on the total structural units of the (meth)acrylic resin. , more preferably 90% by mass or more.
  • the (meth)acrylic resin may be composed only of structural units derived from the (meth)acrylic compound, or may have structural units derived from polymerizable monomers other than the (meth)acrylic compound. . That is, the upper limit of the content of structural units derived from the (meth)acrylic compound is 100% by mass or less with respect to all structural units of the (meth)acrylic resin.
  • (Meth)acrylic compounds include, for example, (meth)acrylic acid, (meth)acrylic acid esters, (meth)acrylamides and (meth)acrylonitrile.
  • (meth)acrylic acid esters examples include (meth)acrylic acid alkyl ester, (meth)acrylic acid tetrahydrofurfuryl ester, (meth)acrylic acid dimethylaminoethyl ester, (meth)acrylic acid diethylaminoethyl ester, (meth) ) acrylic acid glycidyl ester, (meth)acrylic acid benzyl ester, 2,2,2-trifluoroethyl (meth)acrylate and 2,2,3,3-tetrafluoropropyl (meth)acrylate, (meth) Acrylic acid alkyl esters are preferred.
  • the alkyl group of the (meth)acrylic acid alkyl ester may be a linear or branched alkyl group.
  • (Meth)acrylic acid alkyl esters include, for example, (meth)acrylic acid alkyl esters having an alkyl group having 1 to 12 carbon atoms.
  • (meth) acrylic acid alkyl esters include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, (meth) ) hexyl acrylate, heptyl (meth)acrylate, octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, nonyl (meth)acrylate, decyl (meth)acrylate, undecyl (meth)acrylate and ( Meth) dodecyl acrylate.
  • the (meth)acrylic acid ester is preferably a (meth)acrylic acid alkyl ester having an alkyl group having 1 to 4 carbon atoms, and more preferably methyl (meth)acrylate or ethyl (meth)acrylate.
  • (Meth)acrylamides include, for example, acrylamides such as diacetone acrylamide.
  • the (meth)acrylic resin may have structural units other than the structural units derived from the (meth)acrylic compound.
  • the polymerizable monomer forming the structural unit is not particularly limited as long as it is a compound other than the (meth)acrylic compound copolymerizable with the (meth)acrylic compound.
  • Examples include styrene, vinyl toluene, and ⁇ - Styrene compounds optionally having a substituent at the ⁇ -position or aromatic ring such as methylstyrene, vinyl alcohol esters such as acrylonitrile and vinyl-n-butyl ether, maleic acid, maleic anhydride, monomethyl maleate, maleic acid Maleic acid monoesters such as monoethyl and monoisopropyl maleate, fumaric acid, cinnamic acid, ⁇ -cyanocinnamic acid, itaconic acid and crotonic acid. These polymerizable monomers may be used singly or in combination of two or more.
  • the (meth)acrylic resin preferably has a structural unit having an acid group in order to improve the alkali developability.
  • Acid groups include, for example, carboxy groups, sulfo groups, phosphoric acid groups, and phosphonic acid groups.
  • the (meth)acrylic resin more preferably has a structural unit having a carboxy group, and more preferably has a structural unit derived from the above (meth)acrylic acid.
  • the lower limit of the content of structural units having an acid group (preferably structural units derived from (meth)acrylic acid) in the (meth)acrylic resin is from the viewpoint of excellent developability, relative to the total mass of the (meth)acrylic resin. Therefore, 10% by mass or more is preferable.
  • the upper limit of the content of the structural unit having an acid group in the (meth)acrylic resin is not particularly limited, it is preferably 50% by mass or less, more preferably 40% by mass or less, from the viewpoint of excellent alkali resistance.
  • the (meth)acrylic resin preferably has structural units derived from the (meth)acrylic acid alkyl ester described above.
  • the content of structural units derived from (meth)acrylic acid alkyl ester in the (meth)acrylic resin is preferably 50% by mass to 90% by mass, and 60% by mass to 90% by mass is more preferable, and 65% to 90% by mass is even more preferable.
  • the (meth)acrylic resin a resin having both a structural unit derived from (meth)acrylic acid and a structural unit derived from a (meth)acrylic acid alkyl ester is preferable, and a structural unit derived from (meth)acrylic acid and A resin composed only of structural units derived from a (meth)acrylic acid alkyl ester is more preferable.
  • an acrylic resin having a structural unit derived from methacrylic acid, a structural unit derived from methyl methacrylate, and a structural unit derived from ethyl acrylate is also preferable.
  • the (meth)acrylic resin preferably has at least one selected from the group consisting of structural units derived from methacrylic acid and structural units derived from methacrylic acid alkyl esters, from the viewpoint that the effects of the present invention are more excellent. It is preferable to have both a structural unit derived from methacrylic acid and a structural unit derived from a methacrylic acid alkyl ester.
  • the lower limit of the total content of structural units derived from methacrylic acid and structural units derived from methacrylic acid alkyl esters in the (meth)acrylic resin is the total structural units of the (meth)acrylic resin from the viewpoint that the effects of the present invention are more excellent. 40% by mass or more is preferable, and 60% by mass or more is more preferable.
  • the upper limit of the total content is not particularly limited, and may be 100% by mass or less, preferably 80% by mass or less.
  • (Meth)acrylic resin from the viewpoint that the effect of the present invention is more excellent, at least one selected from the group consisting of structural units derived from methacrylic acid and structural units derived from methacrylic acid alkyl esters, and derived from acrylic acid and at least one selected from the group consisting of structural units derived from alkyl acrylates.
  • the total content of the structural units derived from methacrylic acid and the structural units derived from the methacrylic acid alkyl ester is is preferably 60/40 to 80/20 in mass ratio with respect to the total content of
  • the (meth)acrylic resin preferably has an ester group at its end in terms of excellent developability.
  • the terminal portion of the (meth)acrylic resin is composed of a site derived from the polymerization initiator used in the synthesis.
  • a (meth)acrylic resin having an ester group at its terminal can be synthesized by using a polymerization initiator that generates a radical having an ester group.
  • the polymer is preferably, for example, a polymer having an acid value of 60 mgKOH/g or more from the viewpoint of developability.
  • the polymer is, for example, a resin having a carboxy group with an acid value of 60 mgKOH/g or more (so-called carboxy group-containing resin) because it is thermally cross-linked with a cross-linking component by heating and tends to form a strong film. More preferably, it is a (meth)acrylic resin having a carboxyl group with an acid value of 60 mgKOH/g or more (so-called carboxyl group-containing (meth)acrylic resin).
  • the three-dimensional crosslink density can be increased by, for example, adding a thermally crosslinkable compound such as a blocked isocyanate compound to thermally crosslink. Moist heat resistance can be improved when the carboxy group of the resin having the carboxy group is dehydrated and hydrophobized.
  • the carboxy group-containing (meth)acrylic resin having an acid value of 60 mgKOH/g or more is not particularly limited as long as it satisfies the above acid value conditions, and can be appropriately selected from known (meth)acrylic resins.
  • a carboxy group-containing acrylic resin having an acid value of 60 mgKOH/g or more paragraphs [0033] to [0052] of JP-A-2010-237589
  • carboxy group-containing acrylic resins having an acid value of 60 mgKOH/g or more can be preferably used.
  • a styrene-acrylic copolymer refers to a resin having structural units derived from a styrene compound and structural units derived from a (meth)acrylic compound.
  • the total content of the structural units derived from the styrene compound and the structural units derived from the (meth)acrylic compound is preferably 30% by mass or more, preferably 50% by mass, based on the total structural units of the copolymer. The above is more preferable.
  • the content of structural units derived from a styrene compound is preferably 1% by mass or more, more preferably 5% by mass or more, and still more preferably 5% to 80% by mass, based on all the structural units of the copolymer.
  • the content of the structural units derived from the (meth)acrylic compound is preferably 5% by mass or more, more preferably 10% by mass or more, and 20% by mass to 95% by mass, based on the total structural units of the copolymer. is more preferred.
  • the polymer preferably has an aromatic ring structure, and more preferably has a structural unit having an aromatic ring structure, from the viewpoint that the effects of the present invention are more excellent.
  • Monomers that form structural units having an aromatic ring structure include monomers having an aralkyl group, styrene, and polymerizable styrene derivatives (e.g., methylstyrene, vinyltoluene, tert-butoxystyrene, acetoxystyrene, 4-vinylbenzoic acid , styrene dimers, and styrene trimers).
  • the monomer forming the structural unit having an aromatic ring structure is preferably a monomer having an aralkyl group or styrene.
  • the aralkyl group includes a substituted or unsubstituted phenylalkyl group (excluding a benzyl group), a substituted or unsubstituted benzyl group, and the like, and a substituted or unsubstituted benzyl group is preferred.
  • Examples of monomers having a phenylalkyl group include phenylethyl (meth)acrylate.
  • Examples of monomers having a benzyl group include (meth)acrylates having a benzyl group such as benzyl (meth)acrylate and chlorobenzyl (meth)acrylate; having a benzyl group such as vinylbenzyl chloride and vinylbenzyl alcohol; Vinyl monomers are mentioned. Among them, the monomer having a benzyl group is preferably benzyl (meth)acrylate.
  • the polymer more preferably has a structural unit (a structural unit derived from styrene) represented by the following formula (S), from the viewpoint that the effects of the present invention are more excellent.
  • the content of the structural unit having an aromatic ring structure is from 5% by mass to the total structural units of the polymer from the viewpoint that the effect of the present invention is more excellent. 90 wt% is preferred, 10 wt% to 70 wt% is more preferred, and 20 wt% to 60 wt% is even more preferred.
  • the content of structural units having an aromatic ring structure in the polymer is preferably 5 mol% to 70 mol%, preferably 10 mol% to 60 mol%, based on the total structural units of the polymer, from the viewpoint that the effects of the present invention are more excellent.
  • mol % is more preferred, and 20 mol % to 60 mol % is even more preferred.
  • the content of the structural unit represented by the above formula (S) in the polymer is preferably 5 mol% to 70 mol%, based on the total structural units of the polymer, from the viewpoint of more excellent effects of the present invention, and 10 mol % to 60 mol % is more preferable, 20 mol % to 60 mol % is even more preferable, and 20 mol % to 50 mol % is particularly preferable.
  • the "structural unit” when the content of the "structural unit” is defined by the molar ratio, the "structural unit” is synonymous with the “monomer unit”.
  • the above “monomer unit” may be modified after polymerization by a polymer reaction or the like. The same applies to the following.
  • the polymer preferably has an aliphatic hydrocarbon ring structure from the viewpoint that the effects of the present invention are more excellent.
  • the polymer preferably has structural units having an aliphatic hydrocarbon ring structure.
  • the aliphatic hydrocarbon ring structure may be monocyclic or polycyclic.
  • the polymer more preferably has a ring structure in which two or more aliphatic hydrocarbon rings are condensed.
  • rings constituting the aliphatic hydrocarbon ring structure in the constituent unit having the aliphatic hydrocarbon ring structure include tricyclodecane ring, cyclohexane ring, cyclopentane ring, norbornane ring, and isoboron ring.
  • the ring constituting the aliphatic hydrocarbon ring structure in the structural unit having the aliphatic hydrocarbon ring structure is a ring in which two or more aliphatic hydrocarbon rings are condensed. and more preferably a tetrahydrodicyclopentadiene ring (tricyclo[5.2.1.0 2,6 ]decane ring).
  • Examples of monomers forming structural units having an aliphatic hydrocarbon ring structure include dicyclopentanyl (meth)acrylate, cyclohexyl (meth)acrylate, and isobornyl (meth)acrylate.
  • the polymer more preferably has a structural unit represented by the following formula (Cy). ) is more preferable.
  • RM represents a hydrogen atom or a methyl group
  • R Cy represents a monovalent group having an aliphatic hydrocarbon ring structure
  • RM in formula ( Cy ) is preferably a methyl group.
  • R Cy in the formula (Cy) is preferably a monovalent group having an aliphatic hydrocarbon ring structure having 5 to 20 carbon atoms from the viewpoint of better effects of the present invention, and an aliphatic A monovalent group having an aliphatic hydrocarbon ring structure is more preferred, and a monovalent group having an aliphatic hydrocarbon ring structure having 8 to 14 carbon atoms is even more preferred.
  • the aliphatic hydrocarbon ring structure in R Cy of formula (Cy) is a cyclopentane ring structure, a cyclohexane ring structure, a tetrahydrodicyclopentadiene ring structure, a norbornane ring structure, or an isoboron ring structure, from the viewpoint that the effects of the present invention are more excellent.
  • structure more preferably a cyclohexane ring structure or a tetrahydrodicyclopentadiene ring structure, and even more preferably a tetrahydrodicyclopentadiene ring structure.
  • the aliphatic hydrocarbon ring structure in R Cy of formula (Cy) is preferably a ring structure in which two or more aliphatic hydrocarbon rings are condensed, from the viewpoint that the effects of the present invention are more excellent. It is more preferable that the tetracyclic aliphatic hydrocarbon ring is a condensed ring.
  • the polymer may have one type of structural unit having an aliphatic hydrocarbon ring structure, or may have two or more types.
  • the content of the structural unit having an aliphatic hydrocarbon ring structure is based on all the structural units of the binder polymer from the viewpoint that the effects of the present invention are more excellent. 5% by mass to 90% by mass is preferable, 10% by mass to 80% by mass is more preferable, and 20% by mass to 70% by mass is even more preferable.
  • the content of the structural unit having an aliphatic hydrocarbon ring structure in the polymer is preferably 5 mol% to 70 mol%, and 10 mol, based on the total structural units of the polymer, from the viewpoint that the effect of the present invention is more excellent. % to 60 mol %, more preferably 20 mol % to 50 mol %.
  • the content of the structural unit represented by the above formula (Cy) in the polymer is preferably 5 mol% to 70 mol% with respect to the total structural units of the polymer, from the viewpoint that the effect of the present invention is more excellent. , more preferably 10 mol % to 60 mol %, even more preferably 20 mol % to 50 mol %.
  • the total content of structural units having an aromatic ring structure and structural units having an aliphatic hydrocarbon ring structure is from the viewpoint that the effect of the invention is more excellent, it is preferably 10% by mass to 90% by mass, more preferably 20% by mass to 80% by mass, and even more preferably 40% by mass to 75% by mass, based on the total structural units of the polymer. .
  • the total content of the structural units having an aromatic ring structure and the structural units having an aliphatic hydrocarbon ring structure in the polymer is 10 mol% with respect to the total structural units of the binder polymer, from the viewpoint that the effects of the present invention are more excellent. ⁇ 80 mol% is preferred, 20 mol% to 70 mol% is more preferred, and 40 mol% to 60 mol% is even more preferred.
  • the total content of the structural units represented by the above formula (S) and the structural units represented by the above formula (Cy) in the polymer is based on all the structural units of the binder polymer, since the effects of the present invention are more excellent. 10 mol % to 80 mol % is preferable, 20 mol % to 70 mol % is more preferable, and 40 mol % to 60 mol % is even more preferable.
  • the molar amount nS of the structural unit represented by the formula (S) and the molar amount nCy of the structural unit represented by the formula (Cy) in the polymer are determined by the following formula (SCy ), more preferably satisfy the following formula (SCy-1), and further preferably satisfy the following formula (SCy-2).
  • SCy 0.2 ⁇ nS/(nS+nCy) ⁇ 0.8:
  • SCy 0.30 ⁇ nS / (nS + nCy) ⁇ 0.75:
  • the polymer preferably has a structural unit having an acid group from the viewpoint that the effect of the present invention is more excellent.
  • the acid group includes a carboxy group, a sulfo group, a phosphonic acid group, and a phosphoric acid group, with the carboxy group being preferred.
  • a structural unit having an acid group a structural unit derived from (meth)acrylic acid shown below is preferable, and a structural unit derived from methacrylic acid is more preferable.
  • the polymer may have one type of structural unit having an acid group, or may have two or more types.
  • the content of the structural unit having an acid group is 5% by mass to 50% by mass with respect to the total structural units of the polymer from the viewpoint that the effect of the present invention is more excellent. %, more preferably 5% by mass to 40% by mass, and even more preferably 10% by mass to 30% by mass.
  • the content of the structural unit having an acid group in the polymer is preferably 5 mol% to 70 mol%, preferably 10 mol% to 50 mol, based on the total structural units of the polymer, from the viewpoint that the effect of the present invention is more excellent. %, more preferably 20 mol % to 40 mol %.
  • the content of structural units derived from (meth)acrylic acid in the polymer is preferably 5 mol% to 70 mol%, preferably 10 mol%, based on the total structural units of the polymer, from the viewpoint that the effects of the present invention are more excellent. ⁇ 50 mol% is more preferred, and 20 mol% to 40 mol% is even more preferred.
  • the polymer preferably has a reactive group, and more preferably has a structural unit having a reactive group, from the viewpoint that the effects of the present invention are more excellent.
  • the reactive group is preferably a radically polymerizable group, more preferably an ethylenically unsaturated group.
  • the binder polymer preferably has a structural unit having an ethylenically unsaturated group in its side chain.
  • the "main chain” represents the relatively longest bond chain in the molecule of the polymer compound that constitutes the resin
  • the "side chain” represents an atomic group branched from the main chain.
  • the ethylenically unsaturated group is more preferably an allyl group or a (meth)acryloxy group. Examples of structural units having a reactive group include, but are not limited to, those shown below.
  • the polymer may have one type of structural unit having a reactive group, or may have two or more types.
  • the content of the structural unit having a reactive group is more excellent, relative to the total structural units of the polymer, 5 wt% ⁇ 70 mass % is preferred, 10 mass % to 50 mass % is more preferred, and 20 mass % to 40 mass % is even more preferred.
  • the content of the structural unit having a reactive group in the polymer is preferably 5 mol% to 70 mol%, preferably 10 mol% to 60 mol%, based on the total structural units of the polymer, from the viewpoint that the effect of the present invention is more excellent.
  • mol % is more preferred, and 20 mol % to 50 mol % is even more preferred.
  • a reactive group into a polymer functional groups such as a hydroxyl group, a carboxy group, a primary amino group, a secondary amino group, an acetoacetyl group, and a sulfo group may be added to an epoxy compound, a blocked isocyanate, or the like.
  • functional groups such as a hydroxyl group, a carboxy group, a primary amino group, a secondary amino group, an acetoacetyl group, and a sulfo group may be added to an epoxy compound, a blocked isocyanate, or the like.
  • compounds, isocyanate compounds, vinylsulfone compounds, aldehyde compounds, methylol compounds, and carboxylic acid anhydrides may be added to an epoxy compound, a blocked isocyanate, or the like.
  • glycidyl (meth)acrylate is added to a part of the carboxy group of the obtained polymer by a polymer reaction. to introduce a (meth)acryloxy group into the polymer.
  • a polymer having (meth)acryloxy groups in side chains can be obtained.
  • the polymerization reaction is preferably carried out at a temperature of 70°C to 100°C, more preferably at a temperature of 80°C to 90°C.
  • an azo initiator is preferable, and for example, V-601 (trade name) or V-65 (trade name) manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd. is more preferable.
  • the polymer reaction is preferably carried out under temperature conditions of 80°C to 110°C. In the polymer reaction, it is preferable to use a catalyst such as an ammonium salt.
  • the following polymers are preferable because the effects of the present invention are more excellent.
  • the content ratio (a to d) of each structural unit shown below, the weight average molecular weight Mw, and the like can be appropriately changed depending on the purpose.
  • the polymer may contain a polymer having a structural unit having a carboxylic anhydride structure (hereinafter also referred to as "polymer X").
  • the carboxylic anhydride structure may be either a linear carboxylic anhydride structure or a cyclic carboxylic anhydride structure, but is preferably a cyclic carboxylic anhydride structure.
  • the ring of the cyclic carboxylic acid anhydride structure is preferably a 5- to 7-membered ring, more preferably a 5- or 6-membered ring, and still more preferably a 5-membered ring.
  • a structural unit having a carboxylic anhydride structure is a structural unit containing in the main chain a divalent group obtained by removing two hydrogen atoms from a compound represented by the following formula P-1, or a structural unit represented by the following formula P-1 It is preferably a structural unit in which a monovalent group obtained by removing one hydrogen atom from the represented compound is bonded to the main chain directly or via a divalent linking group.
  • R A1a represents a substituent
  • n 1a R A1a may be the same or different
  • Examples of the substituent represented by RA1a include an alkyl group.
  • Z 1a is preferably an alkylene group having 2 to 4 carbon atoms, more preferably an alkylene group having 2 or 3 carbon atoms, and still more preferably an alkylene group having 2 carbon atoms.
  • n1a represents an integer of 0 or more.
  • Z 1a represents an alkylene group having 2 to 4 carbon atoms
  • n 1a is preferably an integer of 0 to 4, more preferably an integer of 0 to 2, even more preferably 0.
  • R A1a When n1a represents an integer of 2 or more, multiple R A1a may be the same or different.
  • a plurality of RA1a may be bonded to each other to form a ring, but preferably not bonded to each other to form a ring.
  • the structural unit having a carboxylic anhydride structure is preferably a structural unit derived from an unsaturated carboxylic anhydride, more preferably a structural unit derived from an unsaturated cyclic carboxylic anhydride, and an unsaturated aliphatic cyclic carboxylic acid anhydride.
  • Structural units derived from acid anhydride are more preferred, structural units derived from maleic anhydride or itaconic anhydride are particularly preferred, and structural units derived from maleic anhydride are most preferred.
  • Rx represents a hydrogen atom, a methyl group, a CH2OH group, or a CF3 group
  • Me represents a methyl group
  • the structural unit having a carboxylic anhydride structure in the polymer X may be of one type alone, or may be of two or more types.
  • the total content of structural units having a carboxylic anhydride structure is preferably 0 mol% to 60 mol%, more preferably 5 mol% to 40 mol%, and 10 mol% with respect to all structural units of polymer X. ⁇ 35 mol% is more preferred.
  • the second transparent transfer layer may contain only one type of polymer X, or may contain two or more types.
  • the content of the polymer X is 0.1% by mass to 30% with respect to the total mass of the second transparent transfer layer, since the effects of the present invention are more excellent. % by mass is preferable, 0.2% by mass to 20% by mass is more preferable, 0.5% by mass to 20% by mass is still more preferable, and 1% by mass to 20% by mass is even more preferable.
  • the weight average molecular weight (Mw) of the polymer is preferably 5,000 or more, more preferably 10,000 or more, still more preferably 10,000 to 50,000, and 20,000, from the viewpoint that the effects of the present invention are more excellent. ⁇ 30,000 is particularly preferred.
  • the acid value of the polymer is preferably 10 mgKOH/g to 200 mgKOH/g, more preferably 60 mgKOH/g to 200 mgKOH/g, still more preferably 60 mgKOH/g to 150 mgKOH/g, and particularly preferably 70 mgKOH/g to 125 mgKOH/g.
  • the acid value of the polymer is a value measured according to the method described in "JIS K0070:1992".
  • the degree of dispersion of the polymer is preferably 1.0 to 6.0, more preferably 1.0 to 5.0, still more preferably 1.0 to 4.0, and 1.0 to 3. 0.0 is particularly preferred.
  • the second transparent transfer layer may contain only one type of polymer, or may contain two or more types.
  • the content of the polymer is preferably 10% by mass to 90% by mass, more preferably 20% by mass to 80% by mass, based on the total mass of the second transparent transfer layer, from the viewpoint that the effect of the present invention is more excellent. 30% by mass to 70% by mass is more preferable.
  • the second transparent transfer layer may contain a polymerizable compound.
  • a polymerizable compound is a compound having a polymerizable group. Examples of the polymerizable group include radically polymerizable groups and cationic polymerizable groups, with radically polymerizable groups being preferred.
  • the polymerizable compound preferably contains a radically polymerizable compound having an ethylenically unsaturated group (hereinafter also simply referred to as "ethylenically unsaturated compound").
  • a (meth)acryloxy group is preferred as the ethylenically unsaturated group.
  • the ethylenically unsaturated compound in the present disclosure is a compound other than the above polymer, and preferably has a molecular weight of less than 5,000.
  • One preferred embodiment of the polymerizable compound is a compound represented by the following formula (M) (also simply referred to as "compound M”).
  • Q 2 -R 1 -Q 1 Formula (M)
  • Q 1 and Q 2 each independently represent a (meth)acryloyloxy group, and R 1 represents a divalent linking group having a chain structure.
  • Q 1 and Q 2 in formula (M) are preferably the same group from the viewpoint of ease of synthesis. From the viewpoint of reactivity, Q 1 and Q 2 in formula (M) are preferably acryloyloxy groups.
  • R 1 in formula (M) is an alkylene group, an alkyleneoxyalkylene group (-L 1 -OL 1 -), or a polyalkyleneoxyalkylene group (-(L 1 -O) p -L 1 -) is preferred, a hydrocarbon group having 2 to 20 carbon atoms or a polyalkyleneoxyalkylene group is more preferred, an alkylene group having 4 to 20 carbon atoms is even more preferred, and 6 to 6 carbon atoms. 18 straight-chain alkylene groups are particularly preferred.
  • the hydrocarbon group only needs to have a chain structure at least in part.
  • the portion other than the chain structure is not particularly limited, and may be, for example, a branched, cyclic, or linear alkylene group having 1 to 5 carbon atoms, an arylene group, an ether bond, or a combination thereof. , preferably an alkylene group or a group in which two or more alkylene groups and one or more arylene groups are combined, more preferably an alkylene group, and still more preferably a linear alkylene group.
  • Each L 1 independently represents an alkylene group, preferably an ethylene group, a propylene group or a butylene group, more preferably an ethylene group or a 1,2-propylene group.
  • p represents an integer of 2 or more, preferably an integer of 2-10.
  • the number of atoms in the shortest linking chain linking Q 1 and Q 2 in compound M is preferably 3 to 50, more preferably 4 to 40, from the viewpoint of more excellent effects of the present invention. It is more preferable to have one, more preferably 6 to 20, and particularly preferably 8 to 12.
  • “the number of atoms in the shortest linking chain linking between Q1 and Q2 ” means the shortest is the number of atoms in
  • compound M examples include 1,3-butanediol di(meth)acrylate, tetramethylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,7-heptanediol di(meth)acrylate, 1,8-octanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, hydrogenation bisphenol A di(meth)acrylate, hydrogenated bisphenol F di(meth)acrylate, polyethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, poly(ethylene glycol/propylene glycol) di(meth)acrylate, and polybutylene glycol di(meth)acrylate.
  • ester monomers can also be used as a mixture.
  • the compound M is 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decanediol, because the effects of the present invention are more excellent.
  • a preferred embodiment of the polymerizable compound is a bifunctional or higher ethylenically unsaturated compound.
  • difunctional or higher ethylenically unsaturated compound means a compound having two or more ethylenically unsaturated groups in one molecule.
  • a (meth)acryloyl group is preferable as the ethylenically unsaturated group in the ethylenically unsaturated compound.
  • a (meth)acrylate compound is preferable as the ethylenically unsaturated compound.
  • bifunctional ethylenically unsaturated compound is not particularly limited and can be appropriately selected from known compounds.
  • Bifunctional ethylenically unsaturated compounds other than compound M include tricyclodecanedimethanol di(meth)acrylate and 1,4-cyclohexanediol di(meth)acrylate.
  • bifunctional ethylenically unsaturated compounds include tricyclodecanedimethanol diacrylate (trade name: NK Ester A-DCP, manufactured by Shin-Nakamura Chemical Co., Ltd.), tricyclodecanedimenanol dimethacrylate (trade name: Name: NK Ester DCP, manufactured by Shin-Nakamura Chemical Co., Ltd.), 1,9-nonanediol diacrylate (product name: NK Ester A-NOD-N, manufactured by Shin-Nakamura Chemical Co., Ltd.), 1,6-hexanediol Diacrylate (trade name: NK Ester A-HD-N, manufactured by Shin-Nakamura Chemical Co., Ltd.) can be mentioned.
  • NK Ester A-DCP manufactured by Shin-Nakamura Chemical Co., Ltd.
  • NK Ester DCP manufactured by Shin-Nakamura Chemical Co., Ltd.
  • 1,9-nonanediol diacrylate product name
  • the trifunctional or higher ethylenically unsaturated compound is not particularly limited and can be appropriately selected from known compounds.
  • Examples of tri- or higher ethylenically unsaturated compounds include dipentaerythritol (tri/tetra/penta/hexa) (meth)acrylate, pentaerythritol (tri/tetra) (meth)acrylate, trimethylolpropane tri(meth)acrylate, Ditrimethylolpropane tetra(meth)acrylate, isocyanuric acid (meth)acrylate, and (meth)acrylate compounds having a glycerin tri(meth)acrylate skeleton can be mentioned.
  • (tri/tetra/penta/hexa) (meth)acrylate is a concept that includes tri(meth)acrylate, tetra(meth)acrylate, penta(meth)acrylate, and hexa(meth)acrylate.
  • (tri/tetra)(meth)acrylate” is a concept that includes tri(meth)acrylate and tetra(meth)acrylate.
  • caprolactone-modified compounds of (meth)acrylate compounds (KAYARAD (registered trademark) DPCA-20 manufactured by Nippon Kayaku Co., Ltd., A-9300-1CL manufactured by Shin-Nakamura Chemical Co., Ltd., etc.), (meth)acrylates Alkylene oxide-modified compounds of compounds (KAYARAD (registered trademark) RP-1040 manufactured by Nippon Kayaku Co., Ltd., ATM-35E, A-9300 manufactured by Shin-Nakamura Chemical Co., Ltd., EBECRYL (registered trademark) 135 manufactured by Daicel Allnex, etc.) , and ethoxylated glycerin triacrylate (NK Ester A-GLY-9E manufactured by Shin-Nakamura Chemical Co., Ltd.).
  • a urethane (meth)acrylate compound can also be mentioned as a polymerizable compound.
  • Urethane (meth)acrylates include urethane di(meth)acrylates.
  • Urethane di(meth)acrylates include, for example, propylene oxide-modified urethane di(meth)acrylates, and ethylene oxide and propylene oxide-modified urethane di(meth)acrylates.
  • Urethane (meth)acrylates also include trifunctional or higher urethane (meth)acrylates.
  • the lower limit of the number of functional groups is more preferably 6 or more, and still more preferably 8 or more.
  • the upper limit of the number of functional groups is preferably 20 or less.
  • Trifunctional or higher urethane (meth)acrylates include, for example, 8UX-015A (manufactured by Taisei Fine Chemicals Co., Ltd.), UA-32P (manufactured by Shin-Nakamura Chemical Co., Ltd.), and U-15HA (manufactured by Shin-Nakamura Chemical Co., Ltd.).
  • UA-1100H manufactured by Shin-Nakamura Chemical Co., Ltd.
  • AH-600 trade name manufactured by Kyoeisha Chemical Co., Ltd.
  • UA-306H, UA-306T, UA-306I, UA-510H, and UX-5000 both manufactured by Nippon Kayaku Co., Ltd.
  • One of the preferred embodiments of the polymerizable compound is an ethylenically unsaturated compound having an acid group.
  • Acid groups include phosphate groups, sulfo groups, and carboxy groups. Among these, a carboxy group is preferable as the acid group.
  • Examples of the ethylenically unsaturated compound having an acid group include trifunctional to tetrafunctional ethylenically unsaturated compounds having an acid group [pentaerythritol tri- and tetraacrylate (PETA) having a carboxyl group introduced into its skeleton (acid value: 80 mg KOH / g to 120 mg KOH / g)], pentafunctional to hexafunctional ethylenically unsaturated compounds having acid groups (dipentaerythritol penta and hexaacrylate (DPHA) skeletons with carboxy groups introduced [acid value: 25 mg KOH / g ⁇ 70 mgKOH/g)] and the like. If necessary, these trifunctional or higher ethylenically unsaturated compounds having an acid group may be used in combination with a difunctional ethylenically unsaturated compound having an acid group.
  • PETA pentafunctional to hexafunctional ethyl
  • the ethylenically unsaturated compound having an acid group is preferably at least one selected from the group consisting of bifunctional or higher ethylenically unsaturated compounds having a carboxy group and carboxylic acid anhydrides thereof.
  • the ethylenically unsaturated compound having an acid group is at least one selected from the group consisting of a bifunctional or higher ethylenically unsaturated compound having a carboxyl group and its carboxylic acid anhydride, the developability and film strength are improved. increase.
  • the bifunctional or higher ethylenically unsaturated compound having a carboxy group is not particularly limited and can be appropriately selected from known compounds.
  • Examples of bifunctional or higher ethylenically unsaturated compounds having a carboxyl group include Aronix (registered trademark) TO-2349 (manufactured by Toagosei Co., Ltd.), Aronix (registered trademark) M-520 (manufactured by Toagosei Co., Ltd.), Aronix ( registered trademark) M-510 (manufactured by Toagosei Co., Ltd.).
  • the ethylenically unsaturated compound having an acid group is preferably a polymerizable compound having an acid group described in paragraphs [0025] to [0030] of JP-A-2004-239942. incorporated into the disclosure.
  • the polymerizable compound for example, a compound obtained by reacting a polyhydric alcohol with an ⁇ , ⁇ -unsaturated carboxylic acid, a compound obtained by reacting a glycidyl group-containing compound with an ⁇ , ⁇ -unsaturated carboxylic acid, urethane Urethane monomers such as (meth)acrylate compounds having bonds, phthalic acid compounds, and (meth)acrylic acid alkyl esters are also included.
  • Phthalic acid compounds include ⁇ -chloro- ⁇ -hydroxypropyl- ⁇ '-(meth)acryloyloxyethyl-o-phthalate, ⁇ -hydroxyethyl- ⁇ '-(meth)acryloyloxyethyl-o-phthalate, and , ⁇ -hydroxypropyl- ⁇ '-(meth)acryloyloxyethyl-o-phthalate and the like. These are used alone or in combination of two or more.
  • Compounds obtained by reacting a polyhydric alcohol with an ⁇ , ⁇ -unsaturated carboxylic acid include, for example, 2,2-bis(4-((meth)acryloxypolyethoxy)phenyl)propane, 2,2-bis Bisphenol A-based (meth)acrylate compounds such as (4-((meth)acryloxypolypropoxy)phenyl)propane and 2,2-bis(4-((meth)acryloxypolyethoxypolypropoxy)phenyl)propane polyethylene glycol di(meth)acrylate having 2 to 14 ethylene oxide groups; polypropylene glycol di(meth)acrylate having 2 to 14 propylene oxide groups; and 2 to 14 ethylene oxide groups; and polyethylene polypropylene glycol di(meth)acrylate having 2 to 14 propylene oxide groups; trimethylolpropane di(meth)acrylate; trimethylolpropane tri(meth)acrylate; trimethylolpropane ethoxytri(meth)acryl
  • the compound obtained by reacting a polyhydric alcohol with an ⁇ , ⁇ -unsaturated carboxylic acid is preferably an ethylenically unsaturated compound having a tetramethylolmethane structure or a trimethylolpropane structure. More preferred are meth)acrylate, tetramethylolmethane tetra(meth)acrylate, trimethylolpropane tri(meth)acrylate, or di(trimethylolpropane)tetraacrylate.
  • Examples of the polymerizable compound include caprolactone-modified compounds of ethylenically unsaturated compounds (e.g., Nippon Kayaku Co., Ltd. KAYARAD (registered trademark) DPCA-20, Shin-Nakamura Chemical Co., Ltd.
  • A-9300-1CL, etc. ethylenic Alkylene oxide modified compounds of unsaturated compounds (e.g., KAYARAD RP-1040 manufactured by Nippon Kayaku Co., Ltd., ATM-35E, A-9300 manufactured by Shin-Nakamura Chemical Co., Ltd., EBECRYL (registered trademark) 135 manufactured by Daicel Allnex, etc.) , ethoxylated glycerin triacrylate (A-GLY-9E manufactured by Shin-Nakamura Chemical Co., Ltd., etc.) and the like.
  • unsaturated compounds e.g., KAYARAD RP-1040 manufactured by Nippon Kayaku Co., Ltd., ATM-35E, A-9300 manufactured by Shin-Nakamura Chemical Co., Ltd., EBECRYL (registered trademark) 135 manufactured by Daicel Allnex, etc.
  • A-GLY-9E manufactured by Shin-Nakamura Chemical Co., Ltd., etc.
  • the polymerizable compound especially, an ethylenically unsaturated compound
  • those containing an ester bond are also preferable from the viewpoint of excellent developability.
  • the ethylenically unsaturated compound containing an ester bond is not particularly limited as long as it contains an ester bond in the molecule. Saturated compounds are preferred, and tetramethylolmethane tri(meth)acrylate, tetramethylolmethane tetra(meth)acrylate, trimethylolpropane tri(meth)acrylate, or di(trimethylolpropane)tetraacrylate are more preferred.
  • the ethylenically unsaturated compounds include an ethylenically unsaturated compound having an aliphatic group having 6 to 20 carbon atoms, and an ethylenically unsaturated compound having the above tetramethylolmethane structure or trimethylolpropane structure. It preferably contains a compound and
  • Ethylenically unsaturated compounds having an aliphatic structure with 6 or more carbon atoms include 1,9-nonanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, and tricyclodecanedimethanol di(meth)acrylate. (Meth)acrylates are mentioned.
  • a preferred embodiment of the polymerizable compound is a polymerizable compound having an aliphatic hydrocarbon ring structure (preferably a bifunctional ethylenically unsaturated compound).
  • a polymerizable compound having a ring structure in which two or more aliphatic hydrocarbon rings are condensed preferably a structure selected from the group consisting of a tricyclodecane structure and a tricyclodecene structure.
  • Bifunctional ethylenically unsaturated compounds having a ring structure in which two or more aliphatic hydrocarbon rings are condensed are preferred, and tricyclodecanedimethanol di(meth)acrylate is even more preferred.
  • a cyclopentane structure, a cyclohexane structure, a tricyclodecane structure, a tricyclodecene structure, a norbornane structure, or an isoboron structure is preferable from the viewpoint that the effects of the present invention are more excellent.
  • the molecular weight of the polymerizable compound is preferably 200 to 3,000, more preferably 250 to 2,600, still more preferably 280 to 2,200, and particularly preferably 300 to 2,200.
  • the content ratio of polymerizable compounds having a molecular weight of 300 or less is 30 mass with respect to the content of all polymerizable compounds contained in the second transparent transfer layer. % or less is preferable, 25 mass % or less is more preferable, and 20 mass % or less is even more preferable.
  • the second transparent transfer layer preferably contains a bifunctional or higher ethylenically unsaturated compound, and more preferably contains a trifunctional or higher ethylenically unsaturated compound. , trifunctional or tetrafunctional ethylenically unsaturated compounds are further preferred.
  • the second transparent transfer layer is a polymer having a bifunctional ethylenically unsaturated compound having an aliphatic hydrocarbon ring structure and a structural unit having an aliphatic hydrocarbon ring. and preferably include
  • the second transparent transfer layer preferably contains a compound represented by formula (M) and an ethylenically unsaturated compound having an acid group.
  • the second transparent transfer layer comprises a compound represented by formula (M), an ethylenically unsaturated compound having an acid group, and a thermally crosslinkable compound described later. It preferably contains a compound represented by formula (M), an ethylenically unsaturated compound having an acid group, and a blocked isocyanate compound described later.
  • the second transparent transfer layer is composed of a bifunctional ethylenically unsaturated compound (preferably a bifunctional ( meth)acrylate compound) and a tri- or more functional ethylenically unsaturated compound (preferably a tri- or more functional (meth)acrylate compound).
  • a bifunctional ethylenically unsaturated compound preferably a bifunctional ( meth)acrylate compound
  • a tri- or more functional ethylenically unsaturated compound preferably a tri- or more functional (meth)acrylate compound
  • the mass ratio of the content of the difunctional ethylenically unsaturated compound to the content of the trifunctional or higher ethylenically unsaturated compound is , 10:90 to 90:10, more preferably 30:70 to 70:30.
  • the content of the bifunctional ethylenically unsaturated compound is preferably 20% by mass to 80% by mass, more preferably 30% by mass to 70% by mass, based on the total amount of all ethylenically unsaturated compounds.
  • the bifunctional ethylenically unsaturated compound in the second transparent transfer layer is preferably 10% by mass to 60% by mass, more preferably 15% by mass to 40% by mass.
  • the second transparent transfer layer contains the compound M and a bifunctional ethylenically unsaturated compound having an aliphatic hydrocarbon ring structure from the viewpoint of rust prevention. is preferred.
  • the second transparent transfer layer is composed of the compound M and an ethylenically unsaturated compound having an acid group, from the viewpoints of substrate adhesion, development residue suppression, and rust prevention. It preferably contains a saturated compound, more preferably contains a compound M, a bifunctional ethylenically unsaturated compound having an aliphatic hydrocarbon ring structure, and an ethylenically unsaturated compound having an acid group, compound M, an aliphatic It is more preferable to contain a bifunctional ethylenically unsaturated compound having a hydrocarbon ring structure, a trifunctional or higher ethylenically unsaturated compound, and an ethylenically unsaturated compound having an acid group, compound M, an aliphatic hydrocarbon ring It is particularly preferable to include a bifunctional ethylenically unsaturated compound having a structure, a tri- or higher functional ethylenically unsaturated
  • the second transparent transfer layer contains 1,9-nonanediol diacrylate and carboxylic acid from the viewpoints of substrate adhesion, development residue suppression, and rust prevention. It preferably contains a polyfunctional ethylenically unsaturated compound having an acid group, including 1,9-nonanediol diacrylate, tricyclodecanedimethanol diacrylate, and a polyfunctional ethylenically unsaturated compound having a carboxylic acid group.
  • 1,9-nonanediol diacrylate, tricyclodecanedimethanol diacrylate, dipentaerythritol hexaacrylate, and an ethylenically unsaturated compound having a carboxylic acid group more preferably 1,9- Particularly preferred are nonanediol diacrylate, tricyclodecanedimethanol diacrylate, ethylenically unsaturated compounds having carboxylic acid groups, and urethane acrylate compounds.
  • the second transparent transfer layer may contain a monofunctional ethylenically unsaturated compound as the ethylenically unsaturated compound.
  • the content of the difunctional or higher ethylenically unsaturated compound in the ethylenically unsaturated compound is 60% by mass to 100% by mass with respect to the total content of all ethylenically unsaturated compounds contained in the second transparent transfer layer. is preferred, 80% by mass to 100% by mass is more preferred, and 90% by mass to 100% by mass is even more preferred.
  • the polymerizable compounds (especially ethylenically unsaturated compounds) may be used singly or in combination of two or more.
  • the content of the polymerizable compound (particularly, the ethylenically unsaturated compound) in the second transparent transfer layer is preferably 1% by mass to 70% by mass, more preferably 5% by mass to 70% by mass, based on the total mass of the second transparent transfer layer. 5% by mass to 60% by mass is more preferable, and 5% by mass to 50% by mass is particularly preferable.
  • the second transparent transfer layer may contain a polymerization initiator.
  • a photopolymerization initiator is preferable as the polymerization initiator.
  • the photopolymerization initiator is not particularly limited, and known photopolymerization initiators can be used.
  • a photopolymerization initiator having an oxime ester structure hereinafter also referred to as an “oxime photopolymerization initiator”
  • a photopolymerization initiator having an ⁇ -aminoalkylphenone structure hereinafter, “ ⁇ - Also referred to as "aminoalkylphenone-based photopolymerization initiator”.
  • a photopolymerization initiator having an ⁇ -hydroxyalkylphenone structure hereinafter also referred to as an " ⁇ -hydroxyalkylphenone-based polymerization initiator”
  • an acylphosphine oxide structure A photopolymerization initiator having Also referred to as "agent”.
  • the photopolymerization initiator is selected from the group consisting of oxime-based photopolymerization initiators, ⁇ -aminoalkylphenone-based photopolymerization initiators, ⁇ -hydroxyalkylphenone-based polymerization initiators, and N-phenylglycine-based photopolymerization initiators. It preferably contains at least one selected from the group consisting of oxime-based photopolymerization initiators, ⁇ -aminoalkylphenone-based photopolymerization initiators, and N-phenylglycine-based photopolymerization initiators. is more preferable.
  • photopolymerization initiator for example, paragraphs [0031] to [0042] of JP-A-2011-95716, and paragraphs [0064] to [0081] of JP-A-2015-014783 initiate polymerization described in agent may be used.
  • photopolymerization initiators include 1-[4-(phenylthio)phenyl]-1,2-octanedione-2-(O-benzoyloxime) [trade name: IRGACURE (registered trademark) OXE-01, BASF company], 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]ethanone-1-(O-acetyloxime) [trade name: IRGACURE (registered trademark) OXE-02 , manufactured by BASF], IRGACURE (registered trademark) OXE03 (manufactured by BASF), IRGACURE (registered trademark) OXE04 (manufactured by BASF), 2-(dimethylamino)-2-[(4-methylphenyl)methyl]-1 -[4-(4-morpholinyl)phenyl]-1-butanone [trade name: Omnirad (registered trademark) 379EG, IGM Resins B
  • oxime ester [trade name: Lunar (registered trademark) 6, manufactured by DKSH Japan], 1-[4-(phenylthio)phenyl]-3-cyclopentylpropane-1,2-dione- 2-(O-benzoyloxime) (trade name: TR-PBG-305, manufactured by Changzhou Power Electronics New Materials Co., Ltd.), 1,2-propanedione-3-cyclohexyl-1-[9-ethyl-6-(2- furanylcarbonyl)-9H-carbazol-3-yl]-2-(O-acetyloxime) (trade name: TR-PBG-326, manufactured by Changzhou Tenryu Electric New Materials Co., Ltd.), 3-cyclohexyl-1-(6- (2-(Benzoyloxyimino)hexanoyl)-9-ethyl-9H-carbazol-3-yl)-propane-1,2-dione-2-(O-benzoyloxime) (trade name: TR-P
  • the polymerization initiator may be used singly or in combination of two or more. When two or more are used in combination, an oxime photopolymerization initiator and at least one selected from ⁇ -aminoalkylphenone photopolymerization initiators and ⁇ -hydroxyalkylphenone polymerization initiators can be used. preferable.
  • the lower limit of the content of the polymerization initiator is preferably 0.1% by mass or more, preferably 0.5%, based on the total mass of the second transparent transfer layer. It is more preferably at least 1.0% by mass, even more preferably at least 1.0% by mass.
  • the upper limit of the polymerization initiator is preferably 10% by mass or less, more preferably 5% by mass or less, relative to the total mass of the second transparent transfer layer.
  • the second transparent transfer layer may contain a heterocyclic compound.
  • the heterocyclic ring contained in the heterocyclic compound may be either monocyclic or polycyclic heterocyclic ring.
  • a nitrogen atom, an oxygen atom, and a sulfur atom are mentioned as a heteroatom which a heterocyclic compound has.
  • the heterocyclic compound preferably has at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom, and a sulfur atom, and more preferably has a nitrogen atom.
  • heterocyclic compounds examples include triazole compounds, benzotriazole compounds, tetrazole compounds, thiadiazole compounds, triazine compounds, rhodanine compounds, thiazole compounds, benzothiazole compounds, benzimidazole compounds, benzoxazole compounds, and pyrimidine compounds.
  • the heterocyclic compound is at least one selected from the group consisting of triazole compounds, benzotriazole compounds, tetrazole compounds, thiadiazole compounds, triazine compounds, rhodanine compounds, thiazole compounds, benzimidazole compounds, and benzoxazole compounds.
  • At least one compound selected from the group consisting of triazole compounds, benzotriazole compounds, tetrazole compounds, thiadiazole compounds, thiazole compounds, benzothiazole compounds, benzimidazole compounds, and benzoxazole compounds is more preferred.
  • heterocyclic compound Preferred specific examples of the heterocyclic compound are shown below.
  • triazole compounds and benzotriazole compounds include the following compounds.
  • the following compounds can be exemplified as thiadiazole compounds.
  • triazine compounds include the following compounds.
  • the following compounds can be exemplified as rhodanine compounds.
  • the following compounds can be exemplified as thiazole compounds.
  • the following compounds can be exemplified as benzimidazole compounds.
  • the heterocyclic compound may be used singly or in combination of two or more.
  • the content of the heterocyclic compound is preferably 0.01% by mass to 20.0% by mass, preferably 0.10% by mass, based on the total mass of the second transparent transfer layer. % to 10.0% by mass is more preferred, 0.30% to 8.0% by mass is even more preferred, and 0.50% to 5.0% by mass is particularly preferred.
  • the second transparent transfer layer may contain an aliphatic thiol compound.
  • the en-thiol reaction between the aliphatic thiol compound and a radically polymerizable compound having an ethylenically unsaturated group causes curing shrinkage of the film formed. is suppressed and the stress is relieved.
  • aliphatic thiol compound a monofunctional aliphatic thiol compound or a polyfunctional aliphatic thiol compound (that is, a bifunctional or higher aliphatic thiol compound) is preferable.
  • polyfunctional aliphatic thiol compounds are preferable as the aliphatic thiol compound from the viewpoint of adhesion of the formed pattern (particularly, adhesion after exposure).
  • polyfunctional aliphatic thiol compound means an aliphatic compound having two or more thiol groups (also referred to as "mercapto groups”) in the molecule.
  • a low-molecular-weight compound having a molecular weight of 100 or more is preferable as the polyfunctional aliphatic thiol compound.
  • the molecular weight of the polyfunctional aliphatic thiol compound is more preferably 100 to 1,500, still more preferably 150 to 1,000.
  • the number of functional groups of the polyfunctional aliphatic thiol compound is, for example, preferably 2 to 10, more preferably 2 to 8, and even more preferably 2 to 6, from the viewpoint of adhesion of the pattern to be formed.
  • polyfunctional aliphatic thiol compounds include trimethylolpropane tris(3-mercaptobutyrate), 1,4-bis(3-mercaptobutyryloxy)butane, pentaerythritol tetrakis(3-mercaptobutyrate), 1,3,5-tris(3-mercaptobutyryloxyethyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione, trimethylolethane tris(3-mercaptobutyrate ), tris [(3-mercaptopropionyloxy) ethyl] isocyanurate, trimethylolpropane tris (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptopropionate), tetraethylene glycol bis (3-mercaptopropionate pionate), dipentaerythritol hexakis(3-mercaptopropionat
  • polyfunctional aliphatic thiol compounds include trimethylolpropane tris(3-mercaptobutyrate), 1,4-bis(3-mercaptobutyryloxy)butane, and 1,3,5- At least one compound selected from the group consisting of tris(3-mercaptobutyryloxyethyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione is preferred.
  • Examples of monofunctional aliphatic thiol compounds include 1-octanethiol, 1-dodecanethiol, ⁇ -mercaptopropionic acid, methyl-3-mercaptopropionate, 2-ethylhexyl-3-mercaptopropionate, n- Octyl-3-mercaptopropionate, methoxybutyl-3-mercaptopropionate, and stearyl-3-mercaptopropionate.
  • the second transparent transfer layer may contain a single aliphatic thiol compound, or may contain two or more aliphatic thiol compounds.
  • the content of the aliphatic thiol compound is preferably 5% by mass or more, and 5% to 50% by mass, based on the total mass of the second transparent transfer layer. More preferably, 5% by mass to 30% by mass is even more preferable, and 8% by mass to 20% by mass is particularly preferable.
  • the second transparent transfer layer preferably contains a thermally crosslinkable compound from the viewpoint of the strength of the resulting cured film and the adhesiveness of the resulting uncured film.
  • a thermally crosslinkable compound having an ethylenically unsaturated group which will be described later, is not treated as an ethylenically unsaturated compound, but as a thermally crosslinkable compound.
  • thermally crosslinkable compounds examples include epoxy compounds, oxetane compounds, methylol compounds, and blocked isocyanate compounds. Among them, a blocked isocyanate compound is preferable from the viewpoint of the strength of the cured film to be obtained and the adhesiveness of the uncured film to be obtained.
  • the blocked isocyanate compound reacts with a hydroxy group and a carboxy group, for example, when at least one of a polymer and a radically polymerizable compound having an ethylenically unsaturated group has at least one of a hydroxy group and a carboxy group, The hydrophilicity of the formed film tends to decrease, and the function as a protective film tends to be strengthened.
  • the blocked isocyanate compound refers to "a compound having a structure in which the isocyanate group of isocyanate is protected (so-called masked) with a blocking agent".
  • the dissociation temperature of the blocked isocyanate compound is not particularly limited, it is preferably 100°C to 160°C, more preferably 130°C to 150°C.
  • the dissociation temperature of the blocked isocyanate means "the temperature of the endothermic peak associated with the deprotection reaction of the blocked isocyanate when measured by DSC (Differential Scanning Calorimetry) analysis using a differential scanning calorimeter".
  • DSC Different Scanning Calorimetry
  • a differential scanning calorimeter for example, a differential scanning calorimeter (model: DSC6200) manufactured by Seiko Instruments Inc. can be preferably used. However, the differential scanning calorimeter is not limited to this.
  • Blocking agents having a dissociation temperature of 100° C. to 160° C. include active methylene compounds [malonic acid diesters (dimethyl malonate, diethyl malonate, di-n-butyl malonate, di-2-ethylhexyl malonate, etc.)] and oxime compounds.
  • malonic acid diesters dimethyl malonate, diethyl malonate, di-n-butyl malonate, di-2-ethylhexyl malonate, etc.
  • the blocking agent having a dissociation temperature of 100° C. to 160° C. is preferably at least one selected from oxime compounds from the viewpoint of storage stability.
  • the blocked isocyanate compound preferably has an isocyanurate structure in terms of, for example, improving the brittleness of the film and improving the adhesion to the transferred material.
  • a blocked isocyanate compound having an isocyanurate structure is obtained, for example, by isocyanurating hexamethylene diisocyanate and protecting it.
  • blocked isocyanate compounds having an isocyanurate structure compounds having an oxime structure using an oxime compound as a blocking agent tend to have a dissociation temperature within a preferred range and produce less development residue than compounds having no oxime structure. It is preferable because it is easy to
  • the blocked isocyanate compound may have a polymerizable group.
  • the polymerizable group is not particularly limited, and any known polymerizable group can be used, and a radically polymerizable group is preferred.
  • Polymerizable groups include groups having ethylenically unsaturated groups such as (meth)acryloxy groups, (meth)acrylamide groups, and styryl groups, and epoxy groups such as glycidyl groups. Among them, the polymerizable group is preferably an ethylenically unsaturated group, more preferably a (meth)acryloxy group, and still more preferably an acryloxy group.
  • a commercially available product can be used as the blocked isocyanate compound.
  • Examples of commercially available blocked isocyanate compounds include Karenz (registered trademark) AOI-BM, Karenz (registered trademark) MOI-BM, Karenz (registered trademark) MOI-BP, etc. (manufactured by Showa Denko K.K.), block type Duranate series (for example, Duranate (registered trademark) TPA-B80E, Duranate (registered trademark) WT32-B75P, etc., manufactured by Asahi Kasei Chemicals Corporation).
  • the thermally crosslinkable compound may be used singly or in combination of two or more.
  • the content of the thermally crosslinkable compound is preferably 1% by mass to 50% by mass, more preferably 5% by mass to 30% by mass, based on the total mass of the second transparent transfer layer. % by mass is more preferred.
  • the second transparent transfer layer may contain a surfactant.
  • surfactants include those described in paragraph [0017] of Japanese Patent No. 4502784 and paragraphs [0060] to [0071] of JP-A-2009-237362.
  • a nonionic surfactant a fluorosurfactant or a silicone surfactant is preferred.
  • fluorosurfactants include, for example, Megafac F-171, F-172, F-173, F-176, F-177, F-141, F-142, F-143, F-144 , F-437, F-475, F-477, F-479, F-482, F-551-A, F-552, F-554, F-555-A, F-556, F-557, F -558, F-559, F-560, F-561, F-565, F-563, F-568, F-575, F-780, EXP, MFS-330, MFS-578, MFS-579, MFS -586, MFS-587, R-41, R-41-LM, R-01, R-40, R-40-LM, RS-43, TF-1956, RS-90, R-94, RS-72 -K, DS-21 (manufactured by DIC Corporation), Florard FC430, FC431, FC171 (manufactured by Sumitomo 3M
  • an acrylic compound having a molecular structure with a functional group containing a fluorine atom is also suitable, in which the portion of the functional group containing a fluorine atom is cleaved when heat is applied to volatilize the fluorine atom.
  • a fluorosurfactant Megafac DS series manufactured by DIC Corporation (The Chemical Daily (February 22, 2016), Nikkei Sangyo Shimbun (February 23, 2016)), for example, Megafac DS -21.
  • fluorosurfactant it is also preferable to use a polymer of a fluorine atom-containing vinyl ether compound having a fluorinated alkyl group or a fluorinated alkylene ether group and a hydrophilic vinyl ether compound.
  • a block polymer can also be used as a fluorosurfactant.
  • the fluorosurfactant has 2 or more (preferably 5 or more) structural units derived from a (meth)acrylate compound having a fluorine atom and an alkyleneoxy group (preferably an ethyleneoxy group or a propyleneoxy group) (preferably 5 or more). ) and a structural unit derived from an acrylate compound can also be preferably used.
  • a fluorine-containing polymer having an ethylenically unsaturated bond-containing group in a side chain can also be used as the fluorine-based surfactant.
  • Megafac RS-101, RS-102, RS-718K, RS-72-K manufactured by DIC Corporation
  • DIC Corporation DIC Corporation
  • fluorine-based surfactants from the viewpoint of improving environmental friendliness, compounds having linear perfluoroalkyl groups having 7 or more carbon atoms, such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), are used.
  • PFOA perfluorooctanoic acid
  • PFOS perfluorooctane sulfonic acid
  • Surfactants derived from alternative materials are preferred.
  • Nonionic surfactants include glycerol, trimethylolpropane, trimethylolethane and their ethoxylates and propoxylates (e.g., glycerol propoxylate, glycerol ethoxylate, etc.), polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, Polyoxyethylene oleyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol distearate, sorbitan fatty acid ester, Pluronic (registered trademark) L10, L31, L61, L62, 10R5, 17R2 , 25R2 (manufactured by BASF), Tetronic 304, 701, 704, 901, 904, 150R1 (manufactured by BASF), Solsperse 20000 (manufactured by Nippon Lubrizol Co., Ltd.), NCW-101, NC
  • silicone-based surfactants include straight-chain polymers composed of siloxane bonds, and modified siloxane polymers in which organic groups are introduced into side chains and terminals.
  • silicone surfactants include DOWSIL 8032 ADDITIVE, Toray Silicone DC3PA, Toray Silicone SH7PA, Toray Silicone DC11PA, Toray Silicone SH21PA, Toray Silicone SH28PA, Toray Silicone SH29PA, Toray Silicone SH30PA, and Toray Silicone SH8400 (toray ⁇ Dow Corning Co., Ltd.) and X-22-4952, X-22-4272, X-22-6266, KF-351A, K354L, KF-355A, KF-945, KF-640, KF-642, KF -643, X-22-6191, X-22-4515, KF-6004, KP-341, KF-6001, KF-6002 (manufactured by Shin-Etsu Chemical Co., Ltd.), F-4440, TSF-4300, TSF -4445, TSF-4460, TSF-4452 (manufactured by Momentive Performance Materials), BYK307, BYK
  • the surfactants may be used singly or in combination of two or more.
  • the content of the surfactant is preferably 0.01% by mass to 3.0% by mass, preferably 0.01% by mass, based on the total mass of the second transparent transfer layer. % to 1.0% by mass is more preferred, and 0.05% to 0.80% by mass is even more preferred.
  • the second transparent transfer layer may contain a polymerization inhibitor.
  • a polymerization inhibitor means a compound having a function of delaying or inhibiting a polymerization reaction.
  • known compounds used as polymerization inhibitors can be used.
  • polymerization inhibitors include phenothiazine, bis-(1-dimethylbenzyl)phenothiazine, and phenothiazine compounds such as 3,7-dioctylphenothiazine; bis[3-(3-tert-butyl-4-hydroxy-5- methylphenyl)propionic acid][ethylenebis(oxyethylene)]2,4-bis[(laurylthio)methyl]-o-cresol, 1,3,5-tris(3,5-di-t-butyl-4- hydroxybenzyl), 1,3,5-tris(4-t-butyl-3-hydroxy-2,6-dimethylbenzyl), 2,4-bis-(n-octylthio)-6-(4-hydroxy-3 ,5-di-t-butylanilino)-1,3,5-triazine and hindered phenol compounds such as pentaerythritol tetrakis 3-(3,5-di-tert
  • the polymerization inhibitor is preferably at least one selected from the group consisting of phenothiazine compounds, nitroso compounds or salts thereof, and hindered phenol compounds, and phenothiazine, bis[ 3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propionic acid], [ethylenebis(oxyethylene)]2,4-bis[(laurylthio)methyl]-o-cresol, 1,3, More preferred are 5-tris(3,5-di-t-butyl-4-hydroxybenzyl), p-methoxyphenol, and N-nitrosophenylhydroxylamine aluminum salt.
  • the polymerization inhibitor may be used singly or in combination of two or more.
  • the content of the polymerization inhibitor is preferably 0.001% by mass to 5.0% by mass, preferably 0.01% by mass, based on the total mass of the second transparent transfer layer. More preferably 0.02% to 2.0% by mass, more preferably 0.02% to 2.0% by mass.
  • the content of the polymerization inhibitor is preferably 0.005% by mass to 5.0% by mass, more preferably 0.01% by mass to 3.0% by mass, and 0.005% by mass to 5.0% by mass, based on the total mass of the polymerizable compound. 01% by mass to 1.0% by mass is more preferable.
  • the second transparent transfer layer may contain a hydrogen donating compound.
  • the hydrogen-donating compound has actions such as further improving the sensitivity of the photopolymerization initiator to actinic rays and suppressing inhibition of polymerization of the polymerizable compound by oxygen.
  • Hydrogen-donating compounds include, for example, amines and amino acid compounds.
  • amines for example, M.I. R. "Journal of Polymer Society" by Sander et al., Vol. JP-A-60-084305, JP-A-62-018537, JP-A-64-033104, and Research Disclosure 33825. More specifically, amines include 4,4′-bis(diethylamino)benzophenone, tris(4-dimethylaminophenyl)methane (alias: leuco crystal violet), triethanolamine, and ethyl p-dimethylaminobenzoate. esters, p-formyldimethylaniline, and p-methylthiodimethylaniline.
  • At least one selected from the group consisting of 4,4′-bis(diethylamino)benzophenone and tris(4-dimethylaminophenyl)methane is used as the amine, since the effects of the present invention are more excellent. preferable.
  • Amino acid compounds include, for example, N-phenylglycine, N-methyl-N-phenylglycine, N-ethyl-N-phenylglycine. Among them, N-phenylglycine is preferable as the amino acid compound because the effects of the present invention are more excellent.
  • hydrogen-donating compounds examples include organometallic compounds (such as tributyltin acetate) described in JP-B-48-042965, hydrogen donors described in JP-B-55-034414, and JP-A-6-308727. Sulfur compounds (such as trithiane) described in JP-A-2004-203163 are also included.
  • the hydrogen-donating compounds may be used singly or in combination of two or more.
  • the content of the hydrogen-donating compound should be within the total mass of the second transparent transfer layer, from the viewpoint of improving the curing rate by the balance between the polymerization growth rate and the chain transfer.
  • 0.01% by mass to 10.0% by mass is preferable, 0.01% by mass to 8.0% by mass is more preferable, and 0.03% by mass to 5.0% by mass is even more preferable.
  • the second transparent transfer layer may contain a certain amount of impurities.
  • impurities include sodium, potassium, magnesium, calcium, iron, manganese, copper, aluminum, titanium, chromium, cobalt, nickel, zinc, tin, halogens and ions thereof.
  • halide ions, sodium ions, and potassium ions are likely to be mixed as impurities.
  • the content of impurities in the second transparent transfer layer is preferably 80 ppm or less, more preferably 10 ppm or less, and even more preferably 2 ppm or less on a mass basis.
  • the content of impurities in the second transparent transfer layer can be 1 ppb or more or 0.1 ppm or more on a mass basis.
  • the content of compounds such as benzene, formaldehyde, trichlorethylene, 1,3-butadiene, carbon tetrachloride, chloroform, N,N-dimethylformamide, N,N-dimethylacetamide, and hexane in the second transparent transfer layer is Less is preferred.
  • the upper limit of the content of these compounds in the second transparent transfer layer is preferably 100 ppm or less, more preferably 20 ppm or less, and even more preferably 4 ppm or less, based on mass.
  • the lower limit of the content of these compounds in the second transparent transfer layer can be 10 ppb or more, and can be 100 ppb or more on a mass basis.
  • the content of these compounds can be suppressed in the same manner as the metal impurities described above.
  • the content of the above compound can be quantified by a known measuring method.
  • the water content in the second transparent transfer layer is preferably 0.01% by mass to 1.0% by mass, more preferably 0.05% by mass to 0.5% by mass, from the viewpoint of improving reliability and laminating properties. preferable.
  • the second transparent transfer layer may contain residual monomers of the constitutional units of the alkali-soluble resin described above.
  • the upper limit of the residual monomer content is preferably 5,000 ppm by mass or less, more preferably 2,000 ppm by mass or less, more preferably 500 mass ppm, relative to the total mass of the alkali-soluble resin, from the viewpoints of patterning properties and reliability. ppm or less is more preferred.
  • the lower limit of the residual monomer content is not particularly limited, but is preferably 1 mass ppm or more, more preferably 10 mass ppm or more.
  • the upper limit of the residual monomer content of each structural unit of the alkali-soluble resin is preferably 3,000 ppm by mass or less, and 600 mass ppm, based on the total mass of the second transparent transfer layer, from the viewpoints of patterning properties and reliability. It is more preferably 100 mass ppm or less, more preferably 100 mass ppm or less.
  • the lower limit of the residual monomer content of each constituent unit of the alkali-soluble resin is not particularly limited, but is preferably 0.1 mass ppm or more, more preferably 1 mass ppm or more.
  • the amount of residual monomers when synthesizing an alkali-soluble resin in a polymer reaction is also preferably within the above range.
  • the content of glycidyl acrylate is preferably within the above range.
  • the amount of residual monomer can be measured by known methods such as liquid chromatography and gas chromatography.
  • the second transparent transfer layer may contain components other than the components described above (hereinafter also referred to as "other components”).
  • Other ingredients include, for example, colorants, antioxidants, and particles (eg, metal oxide particles).
  • Other components include other additives described in paragraphs [0058] to [0071] of JP-A-2000-310706.
  • the particles are preferably metal oxide particles.
  • Metals in metal oxide particles also include semimetals such as B, Si, Ge, As, Sb, and Te.
  • the average primary particle size of the particles is, for example, preferably 1 nm to 200 nm, more preferably 3 nm to 80 nm, from the viewpoint of the transparency of the cured film.
  • the average primary particle diameter of particles is calculated by measuring the particle diameters of 200 arbitrary particles using an electron microscope and arithmetically averaging the measurement results. When the shape of the particles is not spherical, the longest side is taken as the particle diameter.
  • the second transparent transfer layer contains particles, it may contain only one type of particles with different metal types and sizes, or may contain two or more types.
  • the second transparent transfer layer does not contain particles, or if the second transparent transfer layer contains particles, the content of particles is more than 0% by weight35 based on the total weight of the second transparent transfer layer. % by mass or less is preferable, and no particles are contained, or the content of particles is more preferably more than 0% by mass and 10% by mass or less with respect to the total mass of the second transparent transfer layer, and no particles are contained, or , More preferably, the content of particles is more than 0% by mass and 5% by mass or less with respect to the total mass of the second transparent transfer layer. It is more preferably more than 0% by mass and 1% by mass or less, and it is particularly preferable that no particles are included.
  • the second transparent transfer layer may contain a small amount of coloring agent (pigment, dye, etc.), it is preferable that it does not substantially contain coloring agent, for example, from the viewpoint of transparency.
  • the content of the colorant is preferably less than 1% by mass, more preferably less than 0.1% by mass, relative to the total mass of the second transparent transfer layer.
  • antioxidants examples include 1-phenyl-3-pyrazolidone (alias: phenidone), 1-phenyl-4,4-dimethyl-3-pyrazolidone, and 1-phenyl-4-methyl-4-hydroxymethyl- 3-pyrazolidones such as 3-pyrazolidone; polyhydroxybenzenes such as hydroquinone, catechol, pyrogallol, methylhydroquinone, and chlorohydroquinone; paramethylaminophenol, paraaminophenol, parahydroxyphenylglycine, and paraphenylenediamine be done.
  • 3-pyrazolidones are preferable, and 1-phenyl-3-pyrazolidone is more preferable as the antioxidant, because the effects of the present invention are more excellent.
  • the lower limit of the content of the antioxidant is preferably 0.001% by mass or more, and 0.005% by mass or more, based on the total mass of the second transparent transfer layer. is more preferable, and 0.01% by mass or more is even more preferable.
  • the upper limit of the content of the antioxidant is not particularly limited, it is preferably 1% by mass or less.
  • Components of the third transparent transfer layer include, for example, the components of the first transparent transfer layer described above. Preferred embodiments of the components of the third transparent transfer layer are the same as the preferred embodiments of the components of the first transparent transfer layer previously described.
  • Components of the fourth transparent transfer layer include, for example, the components of the first transparent transfer layer described above. Preferred embodiments of the components of the fourth transparent transfer layer are the same as the preferred embodiments of the components of the first transparent transfer layer previously described.
  • Components of the fifth transparent transfer layer include, for example, the components of the second transparent transfer layer described above. Preferred embodiments of the components of the fifth transparent transfer layer are the same as the preferred embodiments of the components of the second transparent transfer layer previously described.
  • the weight average molecular weight was measured by gel permeation chromatography (GPC) under the following conditions.
  • the calibration curve is manufactured by Tosoh Corporation "Standard sample TSK standard, polystyrene""F-40",”F-20”,”F-4",”F-1","A-5000”,”A-2500”,”A-1000" and "n-propylbenzene".
  • HLC (registered trademark)-8020GPC (manufactured by Tosoh Corporation)
  • Column TSKgel (registered trademark), Super MultiporeHZ-H (Tosoh Corporation, 4.6 mm ID ⁇ 15 cm) 3 eluent: THF (tetrahydrofuran)
  • Sample concentration 0.45% by mass
  • Flow rate 0.35 mL/min
  • Sample injection volume 10 ⁇ L
  • Measurement temperature 40°C
  • Detector differential refractometer (RI)
  • A-1 through A-12 were prepared as described in Table 1 below. Each material is a composition used as a raw material for the second transparent transfer layer or the fifth transparent transfer layer. The amount of each component listed in Table 1 represents parts by weight.
  • P-1 solution is a solution containing polymer P-1 represented by the following chemical formula.
  • the composition ratio of the constituent units of the polymer P-1 is represented by the molar ratio.
  • a P-1 solution was prepared by the following method.
  • Methacrylic acid manufactured by Mitsubishi Chemical Corporation, trade name: Acryester M, 107.1 g
  • methyl methacrylate manufactured by Mitsubishi Gas Chemical Co., Ltd., trade name: MMA, 5.46 g
  • cyclohexyl methacrylate Mitsubishi Gas Chemical Co., Ltd. (trade name: CHMA, 231.42 g)
  • PGM-Ac 60 g
  • Dropping liquid (1) and dropping liquid (2) are simultaneously added dropwise over 3 hours to the above-described 2,000 mL flask (specifically, a 2,000 mL flask containing a liquid heated to 90 ° C.). did.
  • the container of dropping liquid (1) was washed with PGM-Ac (12 g), and the washing liquid was dropped into the 2,000 mL flask.
  • the container of dropping liquid (2) was washed with PGM-Ac (6 g), and the washing liquid was dropped into the 2,000 mL flask.
  • the reaction solution in the 2,000 mL flask was kept at 90° C. and stirred at a stirring speed of 250 rpm. Furthermore, as a post-reaction, the mixture was stirred at 90° C. for 1 hour.
  • V-601 (2.401 g) was added as the first additional addition of the initiator. Furthermore, the vessel of V-601 was washed with PGM-Ac (6 g) and the washing liquid was introduced into the reaction liquid. After that, the mixture was stirred at 90° C. for 1 hour.
  • V-601 (2.401 g) was added to the reaction solution as the second additional addition of the initiator. Further, the vessel of V-601 was washed with PGM-Ac (6 g) and the wash was introduced into the reaction. After that, the mixture was stirred at 90° C. for 1 hour.
  • V-601 (2.401 g) was added to the reaction solution as the third addition of the initiator. Furthermore, the vessel of V-601 was washed with PGM-Ac (6 g) and the washing liquid was introduced into the reaction liquid. After that, the mixture was stirred at 90° C. for 3 hours.
  • glycidyl methacrylate manufactured by NOF Corporation, trade name: Blemmer G, 76.03 g
  • the Bremmer G vessel was washed with PGM-Ac (6 g) and the wash was introduced into the reaction. After that, as an addition reaction, the mixture was stirred at 100° C. for 6 hours.
  • reaction solution was cooled and filtered through a mesh filter (100 mesh) for dust removal to obtain a solution (1,158 g) containing polymer P-1.
  • the solid concentration of the solution containing polymer P-1 was 36.3% by mass.
  • the weight average molecular weight of polymer P-1 was 27,000, the number average molecular weight of polymer P-1 was 15,000, and the acid value of polymer P-1 was 95 mgKOH/g.
  • P-2 solution is a solution containing polymer P-2 represented by the following chemical formula.
  • the compositional ratio of the constituent units of the polymer P-2 is represented by the molar ratio.
  • a P-2 solution was prepared by the following method.
  • Propylene glycol monomethyl ether (82.4 g) was charged into a flask and heated to 90°C under a nitrogen stream. In a flask, a solution of styrene (38.4 g), dicyclopentanyl methacrylate (30.1 g) and methacrylic acid (34.0 g) dissolved in propylene glycol monomethyl ether 20 g, and polymerization initiator V-601 (Fuji Film Wako Pure Chemical Co., Ltd., 5.4 g) dissolved in propylene glycol monomethyl ether acetate (43.6 g) was added dropwise over 3 hours.
  • V-601 (0.75 g) was added 3 times at intervals of 1 hour, and the reaction was further continued for 3 hours.
  • the reaction solution was diluted with propylene glycol monomethyl ether acetate (58.4 g) and propylene glycol monomethyl ether (11.7 g).
  • the reaction solution was heated to 100° C. under an air stream, and tetraethylammonium bromide (0.53 g) and p-methoxyphenol (0.26 g) were added.
  • Glycidyl methacrylate (Blenmer GH manufactured by NOF Corporation, 25.5 g) was added dropwise to the resulting mixture over 20 minutes. The resulting mixture was reacted at 100° C.
  • the solid concentration of the solution containing polymer P-2 was 36.5% by mass.
  • the polymer P-2 had a weight average molecular weight of 17,000, a dispersity of 2.4, and an acid value of 95 mgKOH/g.
  • the amount of residual monomer measured using gas chromatography was less than 0.1% by mass based on the solid content of polymer P-2 for all monomers.
  • P-3 solution is a solution containing polymer P-3 represented by the following chemical formula.
  • the compositional ratio of the constituent units of the polymer P-3 is represented by the molar ratio.
  • a P-3 solution was prepared by the following method.
  • Propylene glycol monomethyl ether (113.5 g) was charged in a flask and heated to 90°C under a nitrogen stream.
  • V-601 (2.5 g) was added 3 times at intervals of 1 hour, and the reaction was further continued for 3 hours.
  • the reaction solution was diluted with propylene glycol monomethyl ether acetate (160.7 g) and propylene glycol monomethyl ether (233.3 g).
  • the reaction solution was heated to 100° C. under an air stream, and tetraethylammonium bromide (1.8 g) and p-methoxyphenol (0.86 g) were added.
  • Glycidyl methacrylate (Blenmer G manufactured by NOF Corporation, 71.9 g) was added dropwise to the resulting mixture over 20 minutes. The resulting mixture was reacted at 100° C.
  • polymer P-3 had a weight average molecular weight of 18,000, a dispersity of 2.3, and an acid value of 124 mgKOH/g.
  • the amount of residual monomer measured using gas chromatography was less than 0.1% by mass based on the solid content of polymer P-3 for any monomer.
  • P-4 solution is a solution containing polymer P-4 represented by the following chemical formula.
  • the compositional ratio of the constituent units of the polymer P-4 is represented by the molar ratio.
  • a P-4 solution was prepared by the following method.
  • a solution containing the polymer P-4 was obtained by changing the type and addition amount of the monomer.
  • the solid content concentration of the solution containing polymer P-4 was 36.2% by mass.
  • Polymer P-4 had a weight average molecular weight of 18,000, a dispersity of 2.3, and an acid value of 124 mgKOH/g.
  • allyl methacrylate (45.6 g, manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) and methacrylic acid (14.4 g, manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) were combined with 1-methoxypropanol (manufactured by Tokyo Chemical Industry Co., Ltd., 270 .0 g), and further dissolve V-65 (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., 3.94 g) to prepare a dropping liquid, and drop it into the above three-necked flask over 2.5 hours. Drop the liquid. The reaction was carried out while maintaining the stirring state for 2 hours.
  • the ratio of structural units derived from methacrylic acid to structural units derived from allyl methacrylate was 76% by mass:24% by mass.
  • the weight average molecular weight of the copolymer was 38,000.
  • Example 1> Transfer film 1-1 On a temporary support (Lumirror 16KS40, manufactured by Toray Industries, Inc.) which is a polyethylene terephthalate film with a thickness of 16 ⁇ m, a slit-shaped nozzle is used to adjust the coating amount so that the film thickness after drying is 3.0 ⁇ m, Material A-1 was applied. Then, the solvent was volatilized at a drying temperature of 80° C. to form a second transparent transfer layer.
  • a temporary support Limirror 16KS40, manufactured by Toray Industries, Inc.
  • a slit-shaped nozzle is used to adjust the coating amount so that the film thickness after drying is 3.0 ⁇ m
  • Material A-1 was applied. Then, the solvent was volatilized at a drying temperature of 80° C. to form a second transparent transfer layer.
  • the coating amount was adjusted so that the film thickness after drying was about 70 nm, and after applying the material B-1, it was heated at 70 ° C.
  • a first transparent transfer layer was formed by drying at a drying temperature.
  • a 16 ⁇ m-thick polyethylene terephthalate (Lumirror 16KS40, manufactured by Toray Industries, Inc.) was pressure-bonded as a protective film to prepare a transfer film 1-1.
  • the refractive index of the first transparent transfer layer was 1.68 and the refractive index of the second transparent transfer layer was 1.53.
  • Transfer film 1-2 Material A-2 was applied onto a temporary support, which is a polyethylene terephthalate film having a thickness of 16 ⁇ m, using a slit-shaped nozzle and adjusting the coating amount so that the film thickness after drying would be 8.0 ⁇ m. Then, the solvent was volatilized at a drying temperature of 80° C. to form a fifth transparent transfer layer.
  • the coating amount was adjusted so that the film thickness after drying would be about 70 nm, and after coating on the fifth transparent transfer layer using a slit-shaped nozzle, 70 nm was applied. C. to form a fourth transparent transfer layer.
  • a 16 ⁇ m-thick polyethylene terephthalate (Lumirror 16KS40, manufactured by Toray Industries, Inc.) was pressure-bonded as a protective film to prepare a transfer film 1-2.
  • the refractive index of the fourth transparent transfer layer was 1.68 and the refractive index of the fifth transparent transfer layer was 1.51.
  • ⁇ Touch sensor> transparent film
  • a cycloolefin polymer film having a thickness of 38 ⁇ m and a refractive index of 1.53 was subjected to corona discharge treatment using a high frequency oscillator to prepare a transparent substrate.
  • the conditions for corona discharge treatment are shown below.
  • Processing time 3 seconds
  • Material-C shown in Table 3 below was applied to the corona discharge-treated surface of the transparent substrate using a slit-shaped nozzle, and then irradiated with ultraviolet rays (accumulated light amount: 300 mJ/cm 2 ). Then, it was dried at about 110° C. to form a transparent film with a refractive index of 1.60 and a thickness of 80 nm. The obtained laminate is called a film with a transparent membrane.
  • the heating temperature of the cycloolefin polymer film was 150° C.
  • the argon pressure was 0.13 Pa
  • the oxygen pressure was 0.01 Pa.
  • the surface resistance of the ITO thin film was 80 ⁇ / ⁇ ( ⁇ per square).
  • the ITO thin film was etched and patterned by a known chemical etching method to obtain a laminate including a transparent substrate, a transparent film, and a transparent electrode pattern in this order.
  • the obtained laminate is called an electrode-attached film.
  • the transparent electrode pattern includes a first electrode pattern and a second electrode pattern.
  • the first electrode pattern extends in the first direction in plan view as shown in FIG.
  • the second electrode pattern extends in a second direction crossing the first direction in plan view as shown in FIG.
  • the first electrode pattern includes a plurality of first island-shaped electrode portions spaced apart along the first direction, and two adjacent first island-shaped electrode portions among the plurality of first island-shaped electrode portions. and a first wiring portion for electrical connection.
  • the second electrode pattern includes a plurality of second island electrode portions spaced apart along the second direction.
  • Peripheral wiring Copper is sputtered on the film with electrodes, the copper film is etched and patterned by a known chemical etching method, and the first peripheral wiring portion electrically connected to the first electrode pattern and the second electrode pattern are electrically connected. A second peripheral wiring portion for connection was formed.
  • the first peripheral wiring portion and the second peripheral wiring portion are collectively referred to as "peripheral wiring portion”.
  • the obtained laminate is called a film with electrodes and peripheral wiring portions.
  • the distance between the surface of the exposure mask (mask for forming through holes) and the surface of the temporary support was set to 125 ⁇ m.
  • a proximity type exposure machine (Hitachi High-Tech Electronic Engineering Co., Ltd.) having an ultra-high pressure mercury lamp, i-rays were applied to each transparent transfer layer in a pattern at an exposure amount of 100 mJ/cm 2 via a temporary support. irradiated.
  • the temporary support was peeled off from the second transparent transfer layer, and each transparent transfer layer was washed for 60 seconds with a 2% by mass sodium carbonate aqueous solution (temperature: 32° C.). A pattern-shaped cured product of the transparent transfer layer was formed by the washing treatment.
  • the first transparent layer was a cured product of the first transparent transfer layer of transfer film 1-1.
  • the refractive index of the first transparent layer was 1.68.
  • the thickness of the first transparent layer was 70 nm.
  • the second transparent layer was a cured product of the second transparent transfer layer of transfer film 1-1.
  • the refractive index of the second transparent layer was 1.53.
  • the thickness of the second transparent layer was 3.0 ⁇ m.
  • the first transparent layer and the second transparent layer cover the peripheral wiring portion.
  • An ITO thin film having a thickness of 50 nm and a refractive index of 1.90 was formed on the second transparent layer by a method similar to the method for forming an ITO thin film described above.
  • the refractive index of the ITO thin film was adjusted by the content of SnO2 in the ITO target.
  • the ITO thin film was etched and patterned by a known chemical etching method to form a bridge wiring.
  • the bridge wiring straddles the second transparent layer and electrically connects two adjacent second island-shaped electrode portions among the plurality of second island-shaped electrode portions. That is, the bridge wiring corresponds to the second wiring section.
  • the distance between the surface of the exposure mask (quartz exposure mask having an overcoat pattern) and the surface of the temporary support was set to 125 ⁇ m.
  • a proximity type exposure machine (Hitachi High-Tech Electronic Engineering Co., Ltd.) having an ultra-high pressure mercury lamp, i-rays were applied to each transparent transfer layer in a pattern at an exposure amount of 100 mJ/cm 2 via a temporary support. irradiated.
  • the temporary support was peeled off, and each transparent transfer layer was washed for 60 seconds with a 2% by mass sodium carbonate aqueous solution (temperature: 32° C.). A pattern-shaped cured product of the transparent transfer layer was formed by the washing treatment.
  • the residue was removed by spraying ultrapure water from an ultrahigh-pressure washing nozzle onto the surface of the cured patterned transparent transfer layer after the washing treatment. Next, air was blown onto the surface of the cured patterned transparent transfer layer to remove moisture, and post-baking was performed at a temperature of 145° C. for 30 minutes.
  • the fourth transparent layer was a cured product of the fourth transparent transfer layer of transfer film 1-2.
  • the refractive index of the fourth transparent layer was 1.68.
  • the thickness of the fourth transparent layer was 70 nm.
  • the fifth transparent layer was a cured product of the fifth transparent transfer layer of transfer film 1-2.
  • the refractive index of the fifth transparent layer was 1.51.
  • the thickness of the fifth transparent layer was 8.0 ⁇ m.
  • the fourth transparent layer and the fifth transparent layer cover the peripheral wiring portion.
  • a cycloolefin polymer that is, a transparent substrate
  • a transparent film that is, a transparent film
  • a transparent electrode pattern that is, a peripheral wiring portion
  • a first transparent layer a second transparent layer
  • a fourth transparent layer a fifth A touch sensor including a transparent layer
  • the transparent film, the transparent electrode pattern, the peripheral wiring portion, the first transparent layer, the second transparent layer and the fourth transparent layer are arranged between the transparent substrate and the fifth transparent layer.
  • the transparent electrode pattern includes a first island-shaped electrode portion, a first wiring portion, a second island-shaped electrode portion, and a bridge wiring. Each transparent layer is arranged as shown in FIG.
  • Ratio of the area of the peripheral wiring portion covered by the second transparent layer and the fifth transparent layer to the area of the peripheral wiring portion was 100%. That is, the entire peripheral wiring portion was covered with the second transparent layer and the fifth transparent layer. The ratio of the area of the second transparent layer to the area of the transparent substrate was 98%.
  • Examples 2 to 12 According to Table 4, a touch sensor was obtained in the same manner as in Example 1, except that the material of the transparent layer and the thickness of the transparent layer were appropriately changed.
  • Example 13> A touch sensor was obtained in the same manner as in Example 1, except that Transfer Film 1-1 was changed to Transfer Film 13-1. A method for manufacturing the transfer film 13-1 is shown below.
  • a slit-shaped nozzle is used to adjust the coating amount so that the film thickness after drying is 70 nm. -1 was applied. Then, it was dried at a drying temperature of 70° C. to form a third transparent transfer layer.
  • Material A-1 was applied onto the third transparent transfer layer using a slit-shaped nozzle, adjusting the coating amount so that the film thickness after drying would be 3.0 ⁇ m. Then, the solvent was volatilized at a drying temperature of 80° C. to form a second transparent transfer layer.
  • the coating amount is adjusted so that the film thickness after drying is about 70 nm, and the material B-1 is applied and dried at 70 ° C. It was dried at temperature to form the first transparent transfer layer.
  • a transfer film 13-1 was produced by pressing polyethylene terephthalate with a thickness of 16 ⁇ m as a protective film on the first transparent transfer layer.
  • the refractive index of the first transparent layer was 1.68
  • the refractive index of the second transparent layer was 1.53
  • the refractive index of the third transparent layer was 1.68.
  • Example 14 A touch sensor was obtained by the same method as in Example 1, except that the first transparent layer and the fourth transparent layer were not formed.
  • the temperature of the membrane filter was 40° C.
  • the lamination roll temperature was 110° C.
  • the linear pressure was 3 N/cm
  • the transport speed was 2 m/min.
  • a proximity type exposure machine manufactured by Hitachi High-Tech Electronics Engineering Co., Ltd.
  • the transparent transfer layer is irradiated with i-rays in a pattern at an exposure dose of 120 mJ/cm 2 through the temporary support. did.
  • the temporary support was peeled off, and the transparent transfer layer was irradiated with i-line at an exposure amount of 400 mJ/cm 2 using a post-exposure machine (manufactured by Ushio Inc.) having a high-pressure mercury lamp at 145° C. for 30 minutes.
  • the transparent transfer layer was cured by performing a post-bake of .
  • a sample for water vapor transmission rate measurement was obtained by the above procedure.
  • the water vapor transmission rate was measured by the cup method with reference to "JIS Z 0208 (1976)". Specific procedures are shown below. First, a circular sample with a diameter of 70 mm was cut out from a sample for water vapor permeability measurement. A lidded measuring cup was then prepared by placing 20 g of dried calcium chloride in the measuring cup and then capping with a circular sample. The lidded measuring cup was left for 24 hours in a constant temperature/humidity chamber at a temperature of 65° C. and a relative humidity of 90%. The water vapor transmission rate (unit: g/(m 2 ⁇ day)) of the circular sample was calculated from the mass change of the lidded measuring cup before and after being left for 24 hours.
  • the above measurements were performed three times, and the average value of the water vapor permeability was calculated.
  • the average value of the water vapor permeability of circular samples produced using each material was all less than 300 g/(m 2 ⁇ day).
  • the water vapor permeability of a circular sample including a cured transparent transfer layer and a membrane filter was measured. Since the water vapor transmission rate of the membrane filter is extremely high compared to the water vapor transmission rate of the cured product of the transparent transfer layer, the above-described measuring method essentially measures the water vapor transmission rate of the cured transparent transfer layer itself. I did. In other words, the above results can be regarded as the water vapor permeability of the cured transparent transfer layer itself.
  • wet heat durability After allowing the touch sensor to stand still for 1,000 hours in a moist heat environment adjusted to a temperature of 87°C and a relative humidity of 90%, the color of copper in the peripheral wiring portion was visually observed. Durability was evaluated.
  • the evaluation result of wet heat durability is preferably A. Table 4 shows the evaluation results. A: There is no change in copper color before and after the test. B: Copper is slightly reddish after the test. C: Copper is reddish after the test. D: Copper discolored blue after the test.
  • the residual rate of the transparent layer represents the ratio of the area of the transparent layer remaining on the peripheral wiring portion after peeling the transparent adhesive tape to the area of the transparent layer disposed on the peripheral wiring portion before peeling the transparent adhesive tape. .
  • Table 4 shows the evaluation results.
  • the peripheral wiring portion of the touch sensor was observed visually and with an optical microscope (magnification: 500 times), and the appearance was evaluated according to the following criteria. In the following criteria, the appearance evaluation results must be A and B for practical use, and A is preferred. Table 4 shows the evaluation results. A: No defects were observed visually or with an optical microscope. B: No defect was observed visually, but air bubbles were observed in the vicinity of a very small portion of the peripheral wiring portion when observed with an optical microscope. C: No defects were observed visually, but air bubbles were observed near the peripheral wiring portion when observed with an optical microscope. D: Bubbles were observed in the vicinity of the peripheral wiring portion both visually and with an optical microscope.
  • a transparent adhesive tape (trade name: OCA tape 8171CL, manufactured by 3M Japan Co., Ltd.) is used to attach a black polyethylene terephthalate (PET) material to the transparent base material (i.e., cycloolefin polymer film) of the touch sensor, The entire transparent substrate was shielded from light. Fluorescent light was applied to the overcoat layer of the touch sensor in a dark room, reflected light from the overcoat layer was visually observed from an angle, and the hiding property of the electrode pattern was evaluated according to the following criteria. In the following criteria, the evaluation of the hiding property of the electrode pattern is preferably AA or A, more preferably AA. Table 4 shows the evaluation results.
  • AA No electrode pattern was observed at a position 15 cm away from the touch sensor, and no electrode pattern was observed at a position 40 cm away from the touch sensor.
  • A A slight electrode pattern was observed at a position 15 cm away from the touch sensor, and no electrode pattern was observed at a position 40 cm away from the touch sensor.
  • B The electrode pattern was slightly observed at a position 15 cm away from the touch sensor, and the electrode pattern was slightly observed at a position 40 cm away from the touch sensor.
  • Table 1 shows that in Comparative Examples 1 to 4, the peripheral wiring portion was not covered with both the second transparent layer and the fifth transparent layer, and in Examples 1 to 14, the peripheral wiring portion was covered with the second transparent layer and the fifth transparent layer. indicates that it is covered by both layers. Table 1 shows that the wet heat durability of Examples 1-14 is superior to that of Comparative Examples 1-4.
  • Example 15 In the formation of the transparent film of Example 1, a transparent film with a refractive index of 1.60 and a thickness of 80 nm was formed, and a vacuum deposition method was used to form a SiO2 film with a thickness of 5 nm. A touch sensor was obtained in the same manner as in Example 1 except for the above. The evaluation result of the obtained touch sensor was the same as the evaluation result of the first embodiment.
  • Example 16 In the formation of the transparent film of Example 1, a transparent film with a refractive index of 1.60 and a thickness of 80 nm was formed, and a vacuum deposition method was used to form a SiO2 film with a thickness of 15 nm. A touch sensor was obtained in the same manner as in Example 1 except for the above. The evaluation result of the obtained touch sensor was the same as the evaluation result of the first embodiment.
  • Example 17 In the formation of the transparent film of Example 1, a transparent film with a refractive index of 1.75 and a thickness of 530 nm was formed, and a vacuum deposition method was used to form a SiO2 film with a thickness of 10 nm. A touch sensor was obtained in the same manner as in Example 1 except for the above. The evaluation result of the obtained touch sensor was the same as the evaluation result of the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

透明基板と、第5透明層と、上記透明基板と上記第5透明層との間に、1.60未満の屈折率及び0.5μm以上の平均厚さを有する第2透明層と、上記透明基板と上記第2透明層との間に、上記透明基板の平面視において第1方向へ延びる第1電極パターンと、上記透明基板と上記第5透明層との間に、上記透明基板の平面視において上記第1方向と交差する第2方向へ延びる第2電極パターンと、上記透明基板と上記第5透明層との間に、上記第1電極パターン及び上記第2電極パターンからなる群より選択される少なくとも1つに電気的に接続する周辺配線部と、を含み、上記周辺配線部の少なくとも一部が、上記第2透明層及び上記第5透明層によって覆われている、タッチセンサ。

Description

タッチセンサ
 本開示は、タッチセンサに関する。
 タッチセンサは、抵抗膜方式及び静電容量方式といった種々の方式によって入力位置を検出する入力装置(例えば、タッチパネル)に広く利用されている。例えば、特許文献1は、電極パターンの隠蔽性に優れたタッチセンサを開示している。特許文献1に開示されたタッチセンサでは、第1電極パターン及び第2電極パターンの上に、屈折率が1.6以上であり、かつ、厚みが200nm以下である第1透明層と、屈折率が1.6未満であり、かつ、厚みが0.5μm以上である第2透明層と、が順次重ねられている。
 タッチパネルにおける電極は、水分及び塩分といった成分によって腐食されることがある。そこで、電極を保護する技術が検討されている。例えば、特許文献2は、タッチパネル用電極の保護膜の形成方法を開示している。特許文献2に開示されたタッチパネル用電極の保護膜の形成方法では、保護膜の原材料として、特定のバインダーポリマー、特定の光重合性化合物及び光重合開始剤を含有する感光性樹脂組成物が使用されている。
  特許文献1:国際公開第2018/186428号
  特許文献2:特許第5304973号公報
 タッチセンサの使用環境の多様化の観点から、タッチセンサの湿熱耐久性の向上が求められている。タッチセンサの多くは、入力位置を検出する領域、例えば、タッチパネルにおける画像表示部に対応する領域に設けられた電極パターンだけでなく、電極パターンの周辺に設けられた配線(以下、「周辺配線部」という場合がある。)を含む。周辺配線部は、額縁配線又は引き出し配線と称されることがある。一方、周辺配線部、特に、銅及び銀といった高い導電性を有する金属を含む周辺配線部は、湿熱環境の影響を受けやすい。既述のとおり特許文献2ではタッチパネル用電極の保護膜の形成方法が開示されているものの、周辺配線部の湿熱耐久性の更なる向上が求められている。
 本開示の一実施形態は、湿熱耐久性が向上された周辺配線部を含むタッチセンサを提供することを目的とする。
 本開示は、以下の態様を包含する。
<1> 透明基板と、第5透明層と、上記透明基板と上記第5透明層との間に、上記透明基板の平面視において第1方向へ延びる第1電極パターンと、上記透明基板と上記第5透明層との間に、上記透明基板の平面視において上記第1方向と交差する第2方向へ延びる第2電極パターンと、上記透明基板と上記第5透明層との間に、上記第1電極パターン及び上記第2電極パターンからなる群より選択される少なくとも1つに電気的に接続する周辺配線部と、上記第1電極パターンと上記第5透明層との間に、1.60未満の屈折率及び0.5μm以上の平均厚さを有する第2透明層と、を含み、上記周辺配線部の少なくとも一部が、上記第2透明層及び上記第5透明層によって覆われている、タッチセンサ。
<2> 上記第5透明層の屈折率が、1.60未満であり、上記第5透明層の平均厚さが、0.5μm以上である、<1>に記載のタッチセンサ。
<3> 上記第1電極パターンと上記第2透明層との間に、1.60以上の屈折率及び200nm以下の平均厚さを有する第1透明層を更に含む、<1>又は<2>に記載のタッチセンサ。
<4> 上記第2透明層と上記第5透明層との間に、1.60以上の屈折率及び200nm以下の平均厚さを有する第4透明層を更に含む、<1>~<3>のいずれか1つに記載のタッチセンサ。
<5> 上記第2透明層と上記第5透明層との間に、1.60以上の屈折率及び200nm以下の平均厚さを有する第3透明層を更に含む、<1>~<4>のいずれか1つに記載のタッチセンサ。
<6> 65℃の温度及び90%の相対湿度の環境下における40μmの厚さあたりの上記第5透明層の水蒸気透過度が、500g/(m・day)以下である、<1>~<5>のいずれか1つに記載のタッチセンサ。
<7> 上記第1電極パターンが、上記第1方向に沿って間隔をあけて配置された複数の第1島状電極部と、上記複数の第1島状電極部のうち隣り合う2つの第1島状電極部を電気的に接続する第1配線部と、を含み、上記第2電極パターンが、上記第2方向に沿って間隔をあけて配置された複数の第2島状電極部と、上記第2透明層にまたがって、上記複数の第2島状電極部のうち隣り合う2つの第2島状電極部を電気的に接続する第2配線部と、を含む、<1>~<6>のいずれか1つに記載のタッチセンサ。
 本開示の一実施形態によれば、湿熱耐久性が向上された周辺配線部を含むタッチセンサが提供される。
図1は、ある実施形態に係るタッチセンサを示す概略平面図である。 図2は、図1に示されるタッチセンサの構造を示す概略断面図である。 図3は、ある実施形態に係るタッチセンサの構造を示す概略断面図である。
 以下、本開示の実施形態について詳細に説明する。本開示は、以下の実施形態に何ら制限されない。以下の実施形態は、本開示の目的の範囲内において適宜変更されてもよい。
 本開示の実施形態について図面を参照して説明する場合、図面において重複する構成要素及び符号の説明を省略することがある。図面において同一の符号を用いて示す構成要素は、同一の構成要素であることを意味する。図面における寸法の比率は、必ずしも実際の寸法の比率を表すものではない。
 本開示において、「~」を用いて示された数値範囲は、「~」の前後に記載された数値をそれぞれ最小値及び最大値として含む範囲を示す。本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合は、特に断らない限り、組成物中に存在する複数の物質の合計量を意味する。
 本開示において、「工程」との用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であっても、その工程の所期の目的が達成されれば本用語に含まれる。
 本開示において、「透明」とは、波長400nm~700nmの可視光の平均透過率が、80%以上であることを意味する。平均透過率は、分光光度計を用いて測定される値であり、例えば、日立製作所株式会社製の分光光度計U-3310を用いて測定することができる。
 本開示において、特に断りの無い限り、ポリマーの各構成単位の含有比率はモル比である。
 本開示において、分子量分布がある場合の分子量は、特に断りが無い限り、重量平均分子量(Mw)を表す。
 本開示において、屈折率は、特に断りがない限り、波長550nmでエリプソメトリーによって測定される値である。
 本開示において、「質量%」と「重量%」とは同義であり、「質量部」と「重量部」とは同義である。
 本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
 本開示において、序数詞(例えば、「第1」及び「第2」)は、構成要素を区別するために使用する用語であり、構成要素の数、及び構成要素の優劣を制限するものではない。
<タッチセンサ>
 本開示の一実施形態に係るタッチセンサは、透明基板と、第5透明層と、上記透明基板と上記第5透明層との間に、上記透明基板の平面視において第1方向へ延びる第1電極パターンと、上記透明基板と上記第5透明層との間に、上記透明基板の平面視において上記第1方向と交差する第2方向へ延びる第2電極パターンと、上記透明基板と上記第5透明層との間に、上記第1電極パターン及び上記第2電極パターンからなる群より選択される少なくとも1つに電気的に接続する周辺配線部と、上記第1電極パターンと上記第5透明層との間に、1.60未満の屈折率及び0.5μm以上の平均厚さを有する第2透明層と、を含み、上記周辺配線部の少なくとも一部が、上記第2透明層及び上記第5透明層によって覆われている。つまり、透明基板、第1電極パターン、第2透明層及び第5透明層の配置に関して、本開示の一実施形態に係るタッチセンサは、透明基板と、第1電極パターンと、第2透明層と、第5透明層と、をこの順に含む。本開示の一実施形態に係るタッチセンサでは、第2透明層及び第5透明層によって周辺配線部の少なくとも一部が覆われることで、周辺配線部の湿熱耐久性が向上すると推定される。
(透明基板)
 本開示の一実施形態に係るタッチセンサは、透明基板を含む。透明基板は、単層構造又は多層構造を有してもよい。
 透明基板としては、例えば、ガラス基板及び樹脂フィルムが挙げられる。樹脂フィルムとしては、例えば、ポリエチレンテレフタレートフィルム(PETフィルム)、ポリカーボネートフィルム(PCフィルム)、シクロオレフィンポリマーフィルム(COPフィルム)及びポリ塩化ビニルフィルム(PVCフィルム)が挙げられる。光学等方性、寸法安定性及び加工精度に優れていることから、透明基板は、シクロオレフィンポリマーフィルムであることが好ましい。
 透明基板の厚さは、制限されない。ガラス基板の厚さは、0.3mm~3mmであることが好ましい。樹脂フィルムの厚さは、20μm~3mmであることが好ましい。
(第1電極パターン)
 本開示の一実施形態に係るタッチセンサは、透明基板と第5透明層との間に、透明基板の平面視において第1方向へ延びる第1電極パターンを含む。つまり、第1電極パターンは、透明基板の平面視において第1方向に沿って配置される。「透明基板の平面視」とは、具体的に、観察方向が透明基板の厚さ方向に平行である平面視を意味する。第1電極パターンは、透明基板に接触してもよい。透明基板と第1電極パターンとの間に他の層が配置されてもよい。第1電極パターンは、第1電極パターンと第5透明層との間に配置された第2透明層に接触してもよい。第1電極パターンと第2透明層との間に、他の層が配置されてもよい。第1電極パターンと第5透明層との間に第2透明層以外の他の層が配置されてもよい。第1電極パターンは、透明基板と後述する第1透明層との間に配置されてもよい。
 第1電極パターンの成分としては、例えば、金属及び金属酸化物が挙げられる。金属としては、例えば、アルミニウム、亜鉛、銅、鉄、ニッケル、クロム、モリブデン、銀、金及び銅ニッケル合金が挙げられる。金属酸化物としては、例えば、二酸化ケイ素、酸化インジウムスズ(ITO)、酸化亜鉛アルミニウム(AZO)及び酸化インジウム亜鉛(IZO)が挙げられる。導電性及び透明性の観点から、第1電極パターンの成分は、酸化インジウムスズ(ITO)、酸化亜鉛アルミニウム(AZO)及び酸化インジウム亜鉛(IZO)からなる群より選択される少なくとも1種を含むことが好ましく、酸化インジウムスズ(ITO)を含むことがより好ましい。酸化インジウムスズ(ITO)は、アモルファス又は多結晶であってもよい。多結晶の酸化インジウムスズ(ITO)は、例えば、アモルファスの酸化インジウムスズ(ITO)を焼成することによって得られる。
 第1電極パターンの屈折率は、1.75~2.10であることが好ましい。
 第1電極パターンの厚さは、10nm~200nmであることが好ましい。
 第1電極パターンは、第1方向に沿って間隔をあけて配置された複数の第1島状電極部と、複数の第1島状電極部のうち隣り合う2つの第1島状電極部を電気的に接続する第1配線部と、を含むことが好ましい。第1島状電極部の成分は、第1配線部の成分と同じであっても異なっていてもよい。隣り合う2つの第1島状電極部の間隔は、例えば、1μm~100μmの範囲内で決定される。平面視における第1島状電極部の形状としては、例えば、四角形が挙げられる。ただし、第1電極パターンとしての機能が発現される限り、第1島状電極部の形状は制限されない。
 第1電極パターンの形成方法は、制限されない。第1電極パターンは、例えば、スパッタリング法によって形成された薄膜をエッチングすることによって形成される。国際公開第2018/186428号に記載された事項は、本開示における第1電極パターンの形成方法に参照されてもよい。
(第2電極パターン)
 本開示の一実施形態に係るタッチセンサは、透明基板と第5透明層との間に、透明基板の平面視において第1方向と交差する第2方向へ延びる第2電極パターンを含む。つまり、第2電極パターンは、透明基板の平面視において第2方向に沿って配置される。第2電極パターンは、透明基板に接触してもよい。透明基板と第2電極パターンとの間に他の層が配置されてもよい。第2電極パターンは、第5透明層に接触してもよい。第2電極パターンと第5透明層との間に他の層が配置されてもよい。第2電極パターンは、第2透明層と第5透明層との間に配置されてもよい。第2電極パターンは、透明基板と第2透明層との間に配置されてもよい。第2電極パターンは、透明基板と後述する第1透明層との間に配置されてもよい。
 第2電極パターンの成分としては、例えば、既述した第1電極パターンの成分が挙げられる。第2電極パターンの好ましい成分は、第1電極パターンの好ましい成分と同じである。ただし、第2電極パターンの成分は、第1電極パターンの成分と同じであっても異なっていてもよい。
 第2電極パターンの屈折率は、1.75~2.10であることが好ましい。
 第2電極パターンの厚さは、10nm~200nmであることが好ましい。
 第2電極パターンは、第2方向に沿って間隔をあけて配置された複数の第2島状電極部と、複数の第2島状電極部のうち隣り合う2つの第2島状電極部を電気的に接続する第2配線部と、を含むことが好ましい。隣り合う2つの第2島状電極部を電気的に接続する第2配線部は、第2透明層にまたがって配置されていることが好ましい。つまり、第2配線部は、第2透明層を越える橋のような構造を有することが好ましい。第2配線部は、第2透明層と第5透明層と間に配置された他の層にまたがって配置されてもよい。第2島状電極部の成分は、第2配線部の成分と同じであっても異なっていてもよい。隣り合う2つの第2島状電極部の間隔は、例えば、1μm~100μmの範囲内で決定される。平面視における第2島状電極部の形状としては、例えば、四角形が挙げられる。ただし、第2電極パターンとしての機能が発現される限り、第2島状電極部の形状は制限されない。
 第2電極パターンの形成方法は、制限されない。第2電極パターンは、例えば、既述した第1電極パターンの形成方法に準ずる方法によって形成される。
(周辺配線部)
 本開示の一実施形態に係るタッチセンサは、透明基板と第5透明層との間に、第1電極パターン及び第2電極パターンからなる群より選択される少なくとも1つに電気的に接続する周辺配線部を含む。周辺配線部は、第1電極パターンと第2電極パターンとの間で生じる静電容量といった電気的な変化を外部回路に伝えることができる。周辺配線部の末端に、外部回路との接続端子が接続されてもよい。
 周辺配線部が対象の電極パターンに電気的に接続している限り、両者の接続方式は制限されない。周辺配線部は、対象の電極パターンに接触してもよい。周辺配線部が対象の電極パターンに電気的に接続している限り、周辺配線部と対象の電極パターンとの間に他の層が配置されてもよい。周辺配線部は、第1電極パターンに電気的に接続する第1周辺配線部と、第2電極パターンに電気的に接続する第2周辺配線部と、を含んでもよい。
 周辺配線部の少なくとも一部は、第2透明層及び第5透明層によって覆われている。周辺配線部の少なくとも一部が第2透明層及び第5透明層によって覆われることで、周辺配線部の湿熱耐久性が向上する。周辺配線部が第2透明層及び第5透明層によって覆われた領域では、周辺配線部と第5透明層との間に第2透明層が配置される。
 湿熱耐久性の観点から、周辺配線部の面積に対する第2透明層及び第5透明層によって覆われた周辺配線部の面積の比(すなわち、[第2透明層及び第5透明層によって覆われた周辺配線部の面積]/[周辺配線部の面積])は、80%~100%であることが好ましく、90%~100%であることがより好ましく、95%~100%であることが更に好ましく、100%であることが特に好ましい。すなわち、周辺配線部の全部が第2透明層及び第5透明層によって覆われていることが特に好ましい。上記した比の算出に使用される周辺配線部の面積は、平面視(具体的には、観察方向が透明基板の厚さ方向に平行である平面視)に基づいて算出される。湿熱耐久性の観点から、周辺配線部の少なくとも一部は、第2透明層及び第5透明層以外の透明層(例えば、後述する第1透明層、第3透明層及び第4透明層)によって更に覆われてもよい。
 周辺配線部と第5透明層との間に第2透明層を含まない領域(例えば、周辺配線部に第5透明層が接触している領域)に比べて、周辺配線部と第5透明層との間に第2透明層を含む領域では、第5透明層の密着性が向上する。例えば、保護膜として機能する第5透明層の厚さが厚くなるほど、第5透明層の形成過程で起こる硬化収縮によって第5透明層の密着性が低下することがある。周辺配線部と第5透明層との間に第2透明層が配置されると、上記のような硬化収縮が発生しても、第2透明層によって第5透明層の密着性の低下が抑制される。周辺配線部と第5透明層との間に第2透明層を含まない領域(例えば、周辺配線部に第5透明層が接触している領域)に比べて、周辺配線部と第5透明層との間に第2透明層を含む領域では、タッチセンサに混入する気泡の数が低減される。例えば、第2透明層によって覆われていない周辺配線部の上に第5透明層が形成される過程では、第2透明層の高さと周辺配線部の高さとの差に起因する段差によって気泡が発生しやすくなる。周辺配線部を覆う第2透明層の上に第5透明層が形成されると、上記のような段差の形成が抑制される。
 周辺配線部の成分としては、例えば、既述した第1電極パターンの成分が挙げられる。導電性の観点から、周辺配線部の成分は、金属を含むことが好ましく、金属としては、例えば、銅、銀、ニッケル、及びモリブデン、又はこれらの合金が挙げられる。周辺配線部の成分は、銅及び銀からなる群より選択される少なくとも1種を含むことがより好ましく、銅を含むことが特に好ましい。導電性及び透明性の観点から、周辺配線部の成分は、酸化インジウムスズ(ITO)、酸化亜鉛アルミニウム(AZO)及び酸化インジウム亜鉛(IZO)からなる群より選択される少なくとも1種を含むことが好ましく、酸化インジウムスズ(ITO)を含むことがより好ましい。
 周辺配線部の形成方法は、制限されない。例えば、銅を含む周辺配線部は、スパッタリング法によって形成された銅を含む薄膜をエッチングすることによって形成される。周辺配線部は、既述した第1電極パターンの形成方法に準ずる方法によって形成されてもよい。
(第2透明層)
 本開示の一実施形態に係るタッチセンサは、第1電極パターンと第5透明層との間に、1.60未満の屈折率及び0.5μm以上の平均厚さを有する第2透明層を含む。第2透明層は、透明基板と第2透明層との間にある構成要素を保護できる。既述のとおり、周辺配線部を覆う第2透明層は、周辺配線部の湿熱耐久性を向上できる。第2透明層は、第1電極パターンに接触してもよい。第1電極パターンと第2透明層との間に他の層が配置されてもよい。第2透明層は、第5透明層に接触してもよい。第2透明層と第5透明層との間に他の層が配置されてもよい。第2透明層の少なくとも一部は、第2電極パターンのうち第2透明層にまたがる第2配線部と透明基板との間に配置されてもよい。
 第2透明層の屈折率は、1.60未満である。電極パターンの隠蔽性の観点から、第2透明層の屈折率は、1.40以上1.60未満であることが好ましく、1.45以上1.55以下であることがより好ましい。
 第2透明層の平均厚さは、0.5μm以上である。湿熱耐久性及び電極パターンの隠蔽性の観点から、第2透明層の平均厚さは、0.5μm以上20μm以下であることが好ましく、1μm以上12μm以下であることがより好ましく、3μm以上10μm以下であることが特に好ましい。第2透明層の平均厚さは、透過型電子顕微鏡(TEM)を用いて測定される。ウルトラミクロトームを用いてタッチセンサの切片を作製し、透過型電子顕微鏡を用いて切片の厚さ方向に沿う断面を観察する。切片の厚さ方向に直交する方向に沿って5mmの長さを有する領域を走査する。得られた画像に基づき、5mmの長さを有する領域を等間隔に区切る20か所で第2透明層の厚さを測定する。測定値の算術平均を、第2透明層の平均厚さとして採用する。
 屈折率と厚さとの好ましい関係に関して、第2透明層の屈折率が1.40以上1.60未満であり、第2透明層の平均厚さが0.5μm以上20μm以下であることが好ましい。各特性の上限及び下限は、既述した数値によって置き換えられてもよい。
 透明基板の面積に対する第2透明層の面積の比は、80%~100%であることが好ましく、90%~100%であることがより好ましく、95%~100%であることが特に好ましい。上記した比の算出に使用される透明基板の面積及び第2透明層の面積は、平面視(具体的には、観察方向が透明基板の厚さ方向に平行である平面視)に基づいて算出される。上記した比が大きくなると、第2透明層によって覆われる周辺配線部の面積が大きくなり、透明基板と第5透明層との間に配置される第2透明層の面積も大きくなる。この結果、湿熱耐久性の向上、透明層の密着性の向上及びタッチセンサの製造過程で混入する気泡の数の低減が期待される。
 第2透明層の成分としては、例えば、後述する第2透明転写層の成分が挙げられる。第2透明層の成分は、重合体(好ましくはアルカリ可溶性樹脂)を含むことが好ましい。重合体の態様は、後述する第2透明転写層の成分に関する説明に記載されている。
 第2透明層は、既述した成分の少なくとも1つを含む組成物を用いて形成されてもよい。第2透明層は、既述した成分の少なくとも1つを含む組成物の硬化物であってもよい。第2透明層は、重合体(好ましくはアルカリ可溶性樹脂)、重合性化合物及び重合開始剤を含む組成物の硬化物であることが好ましい。上記のような組成物の硬化物は、周辺配線部の湿熱耐久性を向上させる。組成物の硬化は、例えば、活性エネルギー線又は熱によって促進される。後述する第2透明転写層の成分に関する事項は、「第2透明転写層」を「組成物」に読み替え、「第2透明転写層の全質量」を「組成物の全固形分」に読み替えることで、第2透明層を形成する組成物の態様に適用される。例えば、第2透明層を形成する組成物における各成分の含有量は、第2透明転写層における各成分の含有量に関する説明に基づいて決定されてもよい。
 第2透明層は、転写材料を用いて形成されてもよい。例えば、第2透明層は、第1電極パターンの上に転写材料の第2透明転写層を転写することによって形成される。第2透明転写層は、エネルギーの付与によって硬化する性質を有してもよい。第2透明転写層は、光硬化性、熱硬化性又は光硬化性及び熱硬化性の両方を有してもよい。第2透明層の形成過程において、第2透明転写層は、硬化されてもよい。すなわち、第2透明層は、第2透明転写層の硬化物であってもよい。転写材料の態様は、後述するタッチセンサの製造方法に関する説明に記載されている。
 第2透明転写層の屈折率は、第2透明層の屈折率と実質的に同一である。
(第5透明層)
 本開示の一実施形態に係るタッチセンサは、第5透明層を含む。第5透明層は、透明基板と第5透明層との間にある構成要素を保護できる。既述のとおり、周辺配線部を覆う第5透明層は、周辺配線部の湿熱耐久性を向上できる。第5透明層は、第2透明層に接触してもよい。第2透明層と第5透明層との間に他の層が配置されてもよい。
 電極パターンの隠蔽性の観点から、第5透明層の屈折率は、1.60未満であることが好ましく、1.40以上1.60未満であることがより好ましく、1.45以上1.55以下であることが特に好ましい。
 湿熱耐久性及び電極パターンの隠蔽性の観点から、第5透明層の平均厚さは、0.5μm以上であることが好ましく、0.5μm以上20μm以下であることがより好ましく、1μm以上12μm以下であることが更に好ましく、3μm以上10μm以下であることが特に好ましい。第5透明層の平均厚さは、既述した第2透明層の平均厚さの測定方法に準ずる方法によって測定される。
 湿熱耐久性の観点から、第2透明層の平均厚さに対する第5透明層の平均厚さの比の下限は、1以上であることが好ましく、1.5以上であることがより好ましく、2以上であることが特に好ましい。タッチセンサの厚みを薄くする観点から、第2透明層の平均厚さに対する第5透明層の平均厚さの比の上限は、10以下であることが好ましく、8以下であることがより好ましく、5以下であることが特に好ましい。湿熱耐久性及びタッチセンサの厚みを薄くする観点から、第2透明層の平均厚さに対する第5透明層の平均厚さの比は、1~10であることが好ましく、1.5~8であることがより好ましく、2~5であることが特に好ましい。
 湿熱耐久性の観点から、第2透明層の平均厚さ及び第5透明層の平均厚さの合計値の下限は、3μm以上であることが好ましく、8μm以上であることがより好ましく、10μm以上であることが特に好ましい。タッチセンサの厚みを薄くする観点から、第2透明層の平均厚さ及び第5透明層の平均厚さの合計値の上限は、30μm以下であることが好ましく、20μm以下であることがより好ましく、15μm以下であることが特に好ましい。湿熱耐久性及びタッチセンサの厚みを薄くする観点から、第2透明層の平均厚さ及び第5透明層の平均厚さの合計値は、5μm~30μmであることが好ましく、8μm~20μmであることがより好ましく、10μm~15μmであることが特に好ましい。
 65℃の温度及び90%の相対湿度の環境下における40μmの厚さあたりの第5透明層の水蒸気透過度は、500g/(m・day)以下であることが好ましく、400g/(m・day)以下であることがより好ましく、300g/(m・day)以下であることが特に好ましい。水蒸気透過度は、「JIS Z 0208(1976)」に基づくカップ法によって測定される。恒温恒湿槽内にて65℃の温度及び90%の相対湿度の条件で24時間放置された試料の質量変化、すなわち、試験前の試料の質量と試験後の試料の質量との差から、試料の水蒸気透過度(単位:g/(m・day))を算出する。上記測定を3回実施し、水蒸気透過度の平均値を算出する。
 第5透明層の成分としては、例えば、既述した第2透明層の成分が挙げられる。ただし、第5透明層の成分は、第2透明層の成分と同じであっても異なっていてもよい。第5透明層の成分は、重合体(好ましくはアルカリ可溶性樹脂)を含むことが好ましい。第5透明層は、重合体(好ましくはアルカリ可溶性樹脂)、重合性化合物及び重合開始剤を含む組成物の硬化物であることが好ましい。第5透明層は、既述した第2透明層の形成方法に準ずる方法によって形成される。第5透明層は、例えば、後述する第5透明転写層を含む転写材料を用いて形成される。
(第1透明層)
 本開示の一実施形態に係るタッチセンサは、第1電極パターンと第2透明層との間に、第1透明層を更に含むことが好ましい。第1透明層は、透明基板と第1透明層との間にある構成要素を保護できる。第1透明層は、第1電極パターンに接触してもよい。第1電極パターンと第1透明層との間に他の層が配置されてもよい。第1透明層は、複数の透明層のうち第1電極パターンに最も近い位置にある層であることが好ましい。例えば、第1透明層は、第1電極パターンと第2透明層との間で第1電極パターンに接触して配置されていることが好ましい。第1透明層は、第2透明層に接触してもよい。第1透明層と第2透明層との間に他の層が配置されてもよい。第1透明層は、第1電極パターンと第2透明層との間で第2透明層に接触して配置されていることが好ましい。第1透明層は、第1電極パターン及び第2透明層に接触して配置されていることも好ましい。
 電極パターンの隠蔽性の観点から、第1透明層の屈折率は、1.60以上であることが好ましく、1.60以上1.90以下であることがより好ましく、1.65以上1.80以下であることが特に好ましい。
 湿熱耐久性及び電極パターンの隠蔽性の観点から、第1透明層の平均厚さは、200nm以下であることが好ましく、40nm以上200nm以下であることがより好ましく、50nm以上100nm以下であることが特に好ましい。第1透明層の平均厚さは、既述した第2透明層の平均厚さの測定方法に準ずる方法によって測定される。
 屈折率と厚さとの好ましい関係に関して、第1透明層の屈折率が1.60以上であり、かつ、第1透明層の平均厚さが200nm以下であることが好ましく、第1透明層の屈折率が1.60以上1.90以下であり、第1透明層の平均厚さが40nm以上200nm以下であることがより好ましい。各特性の上限及び下限は、既述した数値によって置き換えられてもよい。
 第1透明層の成分としては、例えば、後述する第1透明転写層の成分が挙げられる。第1透明層の成分は、重合体(好ましくはアルカリ可溶性樹脂)及び金属酸化物粒子を含むことが好ましい。各成分の態様は、後述する第1透明転写層の成分に関する説明に記載されている。第1透明層の成分としては、例えば、国際公開第2018/186428号の段落[0081]~[0107]に記載された成分も挙げられる。
 第1透明層は、既述した成分の少なくとも1つを含む組成物を用いて形成されてもよい。第1透明層は、既述した成分の少なくとも1つを含む組成物の硬化物であってもよい。後述する第1透明転写層の成分に関する事項は、「第1透明転写層」を「組成物」に読み替え、「第1透明転写層の全質量」を「組成物の全固形分」に読み替えることで、第1透明層を形成する組成物の態様に適用される。例えば、第1透明層を形成する組成物における各成分の含有量は、第1透明転写層における各成分の含有量に関する説明に基づいて決定されてもよい。
 第1透明層は、転写材料を用いて形成されてもよい。例えば、第1透明層は、第1電極パターンの上に転写材料の第1透明転写層を転写することによって形成される。第1透明転写層は、エネルギーの付与によって硬化する性質を有してもよい。第1透明転写層は、光硬化性、熱硬化性又は光硬化性及び熱硬化性の両方を有してもよい。第1透明層の形成過程において、第1透明転写層は、硬化されてもよい。すなわち、第1透明層は、第2透明転写層の硬化物であってもよい。転写材料の態様は、後述するタッチセンサの製造方法に関する説明に記載されている。
(第3透明層)
 本開示の一実施形態に係るタッチセンサは、第2透明層と第5透明層との間に、第3透明層を更に含むことが好ましい。第3透明層は、透明基板と第3透明層との間にある構成要素を保護できる。第3透明層は、第2透明層に接触してもよい。第2透明層と第3透明層との間に他の層が配置されてもよい。第3透明層は、第2透明層と第5透明層との間で第2透明層に接触して配置されていることが好ましい。第3透明層は、第5透明層に接触してもよい。第3透明層と第5透明層との間に他の層が配置されてもよい。
 電極パターンの隠蔽性の観点から、第3透明層の屈折率は、1.60以上であることが好ましく、1.60以上1.90以下であることがより好ましく、1.65以上1.80以下であることが特に好ましい。
 湿熱耐久性及び電極パターンの隠蔽性の観点から、第3透明層の平均厚さは、200nm以下であることが好ましく、40nm以上200nm以下であることがより好ましく、50nm以上100nm以下であることが特に好ましい。第3透明層の平均厚さは、既述した第2透明層の平均厚さの測定方法に準ずる方法によって測定される。
 屈折率と厚さとの好ましい関係に関して、第3透明層の屈折率が1.60以上であり、かつ、第3透明層の平均厚さが200nm以下であることが好ましく、第3透明層の屈折率が1.60以上1.90以下であり、第3透明層の平均厚さが40nm以上200nm以下であることがより好ましい。各特性の上限及び下限は、既述した数値によって置き換えられてもよい。
 第3透明層の成分としては、例えば、既述した第1透明層の成分が挙げられる。ただし、第3透明層の成分は、第1透明層の成分と同じであっても異なっていてもよい。第3透明層の成分は、重合体(好ましくはアルカリ可溶性樹脂)及び金属酸化物粒子を含むことが好ましい。第3透明層は、第1透明層の形成方法に準ずる方法によって形成される。第3透明層は、例えば、後述する第3透明転写層を含む転写材料を用いて形成される。
(第4透明層)
 本開示の一実施形態に係るタッチセンサは、第2透明層と第5透明層との間に、第4透明層を更に含むことが好ましい。第4透明層は、透明基板と第4透明層との間にある構成要素を保護できる。第4透明層は、第2透明層に接触してもよい。第2透明層と第4透明層との間に他の層が配置されてもよい。第4透明層は、第5透明層に接触してもよい。第4透明層と第5透明層との間に他の層が配置されてもよい。第4透明層は、第2透明層と第5透明層との間で第5透明層に接触して配置されていることが好ましい。
 電極パターンの隠蔽性の観点から、第4透明層の屈折率は、1.60以上であることが好ましく、1.60以上1.90以下であることがより好ましく、1.65以上1.80以下であることが特に好ましい。
 湿熱耐久性及び電極パターンの隠蔽性の観点から、第4透明層の平均厚さは、200nm以下であることが好ましく、40nm以上200nm以下であることがより好ましく、50nm以上100nm以下であることが特に好ましい。第4透明層の平均厚さは、既述した第2透明層の平均厚さの測定方法に準ずる方法によって測定される。
 屈折率と厚さとの好ましい関係に関して、第4透明層の屈折率が1.60以上であり、かつ、第4透明層の平均厚さが200nm以下であることが好ましく、第4透明層の屈折率が1.60以上1.90以下であり、第4透明層の平均厚さが40nm以上200nm以下であることがより好ましい。各特性の上限及び下限は、既述した数値によって置き換えられてもよい。
 第4透明層の成分としては、例えば、既述した第1透明層の成分が挙げられる。ただし、第4透明層の成分は、第1透明層の成分と同じであっても異なっていてもよい。第4透明層の成分は、重合体(好ましくはアルカリ可溶性樹脂)及び金属酸化物粒子を含むことが好ましい。第4透明層は、第1透明層の形成方法に準ずる方法によって形成される。第4透明層は、例えば、後述する第4透明転写層を含む転写材料を用いて形成される。
(スルーホール)
 第2透明層(好ましくは第1透明層、第2透明層及び第3透明層)には、スルーホールが形成されていることが好ましい。第2配線部は、スルーホールを通じて、隣り合う2つの第2島状電極部を電気的に接続できる。スルーホールの孔径は、第2配線部の幅長よりも小さいことが好ましい。スルーホールは、例えば、第2透明層(好ましくは第1透明層、第2透明層及び第3透明層)に対して所望のスルーホールを形成するためのマスクを介して光照射してパターニングすることにより形成される。
(タッチセンサの厚さ)
 タッチセンサの薄膜軽量及びハンドリング性の観点から、タッチセンサの平均厚さは、5μm以上300μm以下であることが好ましく、10μm以上200μm以下であることがより好ましく、30μm以上100μm以下であることが特に好ましい。タッチセンサの平均厚さは、既述した第2透明層の平均厚さの測定方法に準ずる方法によって測定される。
(タッチセンサの構造)
 図面を参照して、タッチセンサの構造を説明する。図1は、ある実施形態に係るタッチセンサを示す概略平面図である。図2は、図1に示されるタッチセンサの構造を示す概略断面図である。図3は、ある実施形態に係るタッチセンサの構造を示す概略断面図である。
 図1及び図2に示されるタッチセンサ100は、透明基板10、第1電極パターン20、第2電極パターン30、周辺配線部40、第2透明層60及び第5透明層90を含む。第1電極パターン20、第2電極パターン30、周辺配線部40及び第2透明層60は、透明基板10と第5透明層90との間に配置されている。透明層に関して、タッチセンサ100は、第2透明層60及び第5透明層90をこの順に含む。
 第1電極パターン20は、第1方向Xへ延びている。第1電極パターン20は、第1島状電極部20Aと、第1配線部20Bと、を含む。第1島状電極部20Aは、第1方向Xに沿って等間隔に配置されている。第1配線部20Bは、隣り合う2つの第1島状電極部20Aを電気的に接続している。この結果、第1方向Xに沿って電極が形成される。
 第2電極パターン30は、第1方向Xに交差する第2方向Yへ延びている。第2電極パターン30は、第2島状電極部30Aと、第2配線部30Bと、を含む。第2島状電極部30Aは、第2方向Yに沿って等間隔に配置されている。第2配線部30Bは、隣り合う2つの第2島状電極部30Aを電気的に接続している。この結果、第2方向Yに沿って電極が形成される。
 第2配線部30Bは、第2透明層60に形成されたスルーホールHを通じて、第2透明層60にまたがって、隣り合う2つの第2島状電極部30Aを電気的に接続している。第1電極パターン20と第2電極パターン30との交差地点において第2配線部30Bによるブリッジ配線が形成されることで、第1電極パターン20及び第2電極パターン30は互いに独立した電極として機能できる。
 周辺配線部40は、第1電極パターン20及び第2電極パターン30の周辺に配置されている。ある周辺配線部40は第1電極パターン20に電気的に接続しており、ある周辺配線部40は第2電極パターン30に電気的に接続している。周辺配線部40の末端に外部回路との接続端子が接続されてもよい。周辺配線部40は、第2透明層60及び第5透明層90によって覆われている。周辺配線部40が第2透明層60及び第5透明層90によって覆われることで、周辺配線部40の湿熱耐久性が向上する。
 第2透明層60は、透明基板10、第1電極パターン20、第2電極パターン30及び周辺配線部40を覆っている。ただし、第2配線部30Bが配置された領域では、第2透明層60は第2配線部30Bによって覆われている。第2透明層60の屈折率は1.60未満であり、第2透明層60の平均厚さは0.5μm以上である。
 第5透明層90は、透明基板10、第1電極パターン20、第2電極パターン30、周辺配線部40及び第2透明層60を覆っている。
 図3に示されるタッチセンサ200は、図1及び図2に示されるタッチセンサ100に第1透明層、第3透明層及び第4透明層を導入した態様に相当する。すなわち、図3に示されるタッチセンサ200は、透明基板10、第1電極パターン20(ただし、図3では第1電極パターン20に含まれる第1配線部20Bが示されている。以下、図3に関する第1電極パターン20の説明で同じ。)、第2電極パターン30(ただし、図3では第2電極パターン30に含まれる第2島状電極部30A及び第2配線部30Bが示されている。以下、図3に関する第2電極パターン30の説明で同じ。)、周辺配線部40、第1透明層50、第2透明層60、第3透明層70、第4透明層80及び第5透明層90を含む。第1電極パターン20、第2電極パターン30、周辺配線部40、第1透明層50、第2透明層60、第3透明層70及び第4透明層80は、透明基板10と第5透明層90との間に配置されている。透明層に関して、タッチセンサ200は、第1透明層50、第2透明層60、第3透明層70、第4透明層80及び第5透明層90をこの順に含む。
 図3において、周辺配線部40は、第1透明層50、第2透明層60、第3透明層70、第4透明層80及び第5透明層90によって覆われている。
 第1透明層50は、透明基板10、第1電極パターン20、第2電極パターン30及び周辺配線部40を覆っている。第1透明層50は、第1電極パターン20と第2透明層60との間に配置されている。第1透明層50の屈折率は1.60以上であり、第1透明層50の平均厚さは200nm以下である。
 第3透明層70は、透明基板10、第1電極パターン20、第2電極パターン30、周辺配線部40、第1透明層50及び第2透明層60を覆っている。第3透明層70は、第2透明層60と第5透明層90との間に配置され、第2透明層60に接触している。第3透明層70の屈折率は1.60以上であり、第3透明層70の平均厚さは200nm以下である。
 第4透明層80は、透明基板10、第1電極パターン20、第2電極パターン30、周辺配線部40、第1透明層50及び第2透明層60を覆っている。第4透明層80は、第2透明層60と第5透明層90との間に配置され、第5透明層90に接触している。第4透明層80の屈折率は1.60以上であり、第4透明層80の平均厚さは200nm以下である。
(タッチセンサの製造方法)
 本開示の一実施形態に係るタッチセンサは、例えば、目的とするタッチセンサの構造に応じて、各構成要素の形成方法を組み合わせて製造される。例えば、図1及び図2に示されるような構造を有するタッチセンサは、例えば、透明基板、第1電極パターン、第2電極パターン及び周辺配線部を含む基板(以下、「電極パターン付き基板」という場合がある。)の上に、1.60未満の屈折率及び0.5μm以上の平均厚さを有する第2透明層を形成し、そして、第2透明層の上に、第5透明層を形成することによって製造される。
 透明層は、目的の透明層を形成するための透明転写層を含む転写材料を用いて形成されることが好ましい。例えば、電極パターン付き基板と転写材料とを貼り合わせることで、電極パターン付き基板の上に転写材料の透明転写層が転写される。
 電極パターン付き基板の上に転写された透明転写層は、必要に応じて、パターン状に露光されてもよい。透明転写層は、フォトマスクを介してパターン状に露光されてもよい。透明転写層は、レーザービームを用いる走査露光によってパターン状に露光されてもよい。露光は、レンズを用いた屈折式露光又は反射鏡を用いた反射式露光によって実施されてもよい。コンタクト露光、プロキシミティー露光、縮小投影露光及び反射投影露光といった露光方式が利用されてもよい。透明転写層に照射される活性エネルギー線は、g線、h線、i線及びj線といった紫外線であることが好ましい。光源としては、例えば、メタルハライドランプ、高圧水銀ランプ及び発光ダイオード(LED)が挙げられる。
 露光された透明転写層は、現像液を用いて現像されてもよい。現像液としては、例えば、アルカリ性現像液が挙げられる。透明転写層の露光及び現像によって、例えば、目的の形状を有する透明層が形成される。透明転写層の露光及び現像によって、例えば、透明層にスルーホールが形成される。
(転写材料)
 以下、タッチセンサの製造方法に使用される転写材料の具体的な態様を説明する。転写材料は、仮支持体と、目的の透明層を形成するための透明転写層と、を含むことが好ましい。転写材料は、必要に応じて、熱可塑性樹脂層、中間層及び保護フィルムといった他の層を更に含んでもよい。
 仮支持体は、例えば、電極パターン付き基板と転写材料との貼り合わせの後に剥離される。仮支持体は、後述する透明転写層の露光の前に剥離されてもよい。仮支持体は、後述する透明転写層の露光の後、かつ、後述する透明転写層の現像の前に剥離されてもよい。
 成形性及びコストの観点から、仮支持体は、樹脂フィルムであることが好ましい。樹脂フィルムは、可撓性を有し、加圧下又は、加圧及び加熱下で著しい変形、収縮若しくは伸びを生じないフィルムであることが好ましい。好ましい仮支持体としては、例えば、ポリエチレンテレフタレートフィルム(PETフィルム)、トリ酢酸セルロースフィルム(TACフィルム)、ポリスチレンフィルム(PSフィルム)及びポリカーボネートフィルム(PCフィルム)が挙げられる。仮支持体は、2軸延伸ポリエチレンテレフタレートフィルムであることが好ましい。仮支持体は、透明フィルムであってもよい。仮支持体は、着色されたフィルムであってもよい。着色されたフィルムとしては、例えば、染料化ケイ素、アルミナゾル、クロム塩及びジルコニウム塩といった成分を含む樹脂フィルムが挙げられる。仮支持体に対して、特開2005-221726号公報に記載の方法により導電性を付与してもよい。
 転写材料に含まれる透明転写層の種類は、例えば、目的とするタッチセンサの構造に応じて決定される。透明転写層としては、例えば、第1透明転写層、第2透明転写層、第3透明層、第4透明転写層及び第5透明転写層が挙げられる。第1透明転写層は第1透明層を形成し、第2透明転写層は第2透明層を形成し、第3透明転写層は第3透明層を形成し、第4透明転写層は第4透明層を形成し、そして、第5透明転写層は第5透明層を形成する。転写材料は、1種又は2種以上の透明転写層を含んでもよい。ある実施形態に係る転写材料は、第1透明転写層及び第2透明転写層を含んでもよい。ある実施形態に係る転写材料は、第1透明転写層、第2透明転写層及び第3透明転写層を含んでもよい。ある実施形態に係る転写材料は、第4透明転写層及び第5透明転写層を含んでもよい。ただし、転写材料に含まれる2種以上の透明転写層の組み合わせは、上記した例に制限されるものではない。以下、各透明転写層の成分について説明する。
(第1透明転写層)
 第1透明転写層の成分としては、例えば、以下のような成分が挙げられる。第1透明転写層は、以下の成分以外の成分を含んでもよい。
(重合体)
 第1透明転写層は、重合体を含むことが好ましい。重合体は、バインダーとしての機能を有してもよい。バインダーとしての機能を有する重合体は、バインダーポリマーと称される。
 重合体としては、アルカリ可溶性樹脂が好ましく、(メタ)アクリル酸及び(メタ)アクリル酸エステルからなる群より選択される少なくとも1種に由来する構成単位を有する樹脂(例えば、(メタ)アクリル樹脂)であることがより好ましい。アルカリ可溶性樹脂は、既述した第2透明層に関するアルカリ可溶性樹脂であってもよい。
 重合体の好ましい例として、酸基を有する重合体のアンモニウム塩も挙げられる。酸基を有する重合体のアンモニウム塩としては、例えば、(メタ)アクリル樹脂のアンモニウム塩が挙げられる。酸基を有する重合体のアンモニウム塩は、例えば、酸基を有する重合体とアンモニア水溶液との混合によって製造される。
 酸基を有する重合体は、水性溶媒(好ましくは、水又は炭素数が1~3である低級アルコールと水との混合溶媒)に対して溶解性を示す。酸基を有する重合体の好ましい例として、1価の酸基(例えば、カルボキシ基)を有する重合体が挙げられる。第1透明転写層に含まれる重合体は、カルボキシ基を有する樹脂であることが特に好ましい。
 酸基を有する重合体は、アルカリ可溶性樹脂であることが好ましい。アルカリ可溶性樹脂は、例えば、線状有機高分子重合体であって、分子中に少なくとも1つのアルカリ可溶性を促進する基を有する重合体の中から適宜選択される。アルカリ可溶性を促進する基、すなわち、酸基としては、例えば、カルボキシ基、リン酸基及びスルホン酸基が挙げられる。なかでも、酸基は、カルボキシ基であることが好ましい。
 好ましいアルカリ可溶性樹脂としては、例えば、(メタ)アクリル酸及びスチレンからなる群より選択される少なくとも1種に由来する構成単位を主鎖に含む共重合体が挙げられる。より好ましいアルカリ可溶性樹脂としては、例えば、有機溶剤に可溶で、かつ、弱アルカリ水溶液により現像可能な重合体が挙げられる。
 酸基を有する重合体は、酸基を有する(メタ)アクリル樹脂であることが好ましく、(メタ)アクリル酸とビニル化合物との共重合体であることが好ましく、(メタ)アクリル酸と(メタ)アクリル酸アリルとの共重合体であることがより好ましい。
 第1透明転写層は、重合体として、(メタ)アクリル酸由来の構成単位及びスチレン由来の構成単位を有する共重合体を含むことが好ましく、(メタ)アクリル酸由来の構成単位、スチレン由来の構成単位及びエチレンオキシ鎖を有する(メタ)アクリル酸エステル由来の構成単位を有する共重合体を含むことがより好ましい。上記のような重合体は、第1透明転写層の形成過程において膜厚均一性を向上させる。
 酸基を有する重合体は、市販品であってもよい。酸基を有する重合体の市販品としては、例えば、東亞合成株式会社製のARUFON(アルフォン:登録商標、商品名:UC-3000、UC-3510、UC-3080、UC-3920及びUF-5041)が挙げられる。酸基を有する重合体の市販品としては、例えば、BASF社製のJONCRYL(登録商標)67、JONCRYL611、JONCRYL678、JONCRYL690及びJONCRYL819が挙げられる。
 第1透明転写層は、1種又は2種以上の重合体を含んでもよい。
 第1透明転写層における酸基を有する重合体の含有率は、第1透明転写層の全質量に対して、10質量%~80質量%であることが好ましく、15質量%~65質量%であることがより好ましく、20質量%~50質量%であることが特に好ましい。
 第1透明転写層は、酸基を有しない重合体を含んでもよい。
(金属酸化物粒子)
 第1透明転写層は、金属酸化物粒子を含むことが好ましい。金属酸化物粒子は、第1透明転写層の屈折率及び光透過性を調整できる。金属酸化物粒子は、公知の金属酸化物粒子を包含する。金属酸化物粒子としては、例えば、酸化ジルコニウム粒子(例えば、ZrO粒子)、酸化ニオブ粒子(例えば、Nb粒子)及び酸化チタン粒子(例えば、TiO粒子)が挙げられる。第1透明転写層は、酸化ジルコニウム粒子、酸化ニオブ粒子及び酸化チタン粒子からなる群より選択される少なくとも1種を含むことが好ましく、酸化ジルコニウム粒子及び酸化チタン粒子からなる群より選択される少なくとも1種を含むことがより好ましく、酸化ジルコニウム粒子を含むことが特に好ましい。
 金属酸化物粒子の屈折率は、金属酸化物粒子を含まない第1透明転写層の屈折率より高いことが好ましい。400nm~750nmの波長を有する光における金属酸化物粒子の屈折率は、1.50以上であることが好ましく、1.55以上であることがより好ましく、1.70以上であることが更に好ましく、1.90以上であることが特に好ましく、2.00以上であることが最も好ましい。400nm~750nmの波長を有する光における金属酸化物粒子の屈折率は、平均屈折率によって表される。平均屈折率は、上記範囲の波長を有する各光に対する屈折率の測定値の総和を測定点の数で割った値である。
 ヘイズといった光学性能の観点から、金属酸化物粒子の平均一次粒子径は、100nm以下であることが好ましく、50nm以下であることがより好ましく、20nm以下であることがさらに好ましい。金属酸化物粒子の平均一次粒子径は、透過型電子顕微鏡(TEM)を用いた観測により任意の100個の粒子の直径を測定し、100個の直径の算術平均により求められる値である。
 第1透明転写層は、1種又は2種以上の金属酸化物粒子を含んでもよい。
 電極パターンの隠蔽性の向上の観点から、第1透明転写層における金属酸化物粒子の含有率は、第1透明転写層の全質量に対して、20質量%~95質量%であることが好ましく、30質量%~95質量%であることがより好ましく、30質量%~85質量%であることが更に好ましく、30質量%以上80質量%未満であることが特に好ましい。
 第1透明転写層の欠陥の低視認性及び電極パターンの隠蔽性の向上といった観点から、第1透明転写層における酸化ジルコニウム粒子の含有率は、第1透明転写層の全質量に対して、20質量%~95質量%であることが好ましく、40質量%~95質量%であることがより好ましく、60質量%~95質量%であることが更に好ましく、60質量%以上80質量%未満であることが特に好ましい。
 第1透明転写層の欠陥の低視認性及び電極パターンの隠蔽性の向上といった観点から、第1透明転写層における酸化チタン粒子の含有率は、第1透明転写層の全質量に対して、30質量%~70質量%であることが好ましく、40質量%以上60質量%未満であることがより好ましい。
(金属酸化抑制剤)
 第1透明転写層は、金属酸化抑制剤を含むことが好ましい。金属酸化抑制剤としては、窒素原子を含む芳香環を有する化合物であることが好ましい。窒素原子を含む芳香環は、イミダゾール環、トリアゾール環、テトラゾール環、チアジアゾール環及びこれらの環と他の芳香環との縮合環からなる群より選択される少なくとも1種であることが好ましく、トリアゾール環又はトリアゾール環と他の芳香環との縮合環であることがより好ましい。他の芳香環は、炭素環又は複素環であってもよく、炭素環であることが好ましく、ベンゼン環又はナフタレン環であることがより好ましく、ベンゼン環であることが特に好ましい。トリアゾール環とベンゼン環との縮合環としては、例えば、ベンゾトリアゾール環が挙げられる。
 好ましい金属酸化抑制剤としては、例えば、イミダゾール、ベンゾイミダゾール、テトラゾール、メルカプトチアジアゾール及びベンゾトリアゾールが挙げられる。金属酸化抑制剤は、イミダゾール、ベンゾイミダゾール及びベンゾトリアゾールからなる群より選択される少なくとも1種を含むことが好ましい。
 金属酸化抑制剤は、市販品であってもよい。市販品としては、例えば、城北化学工業株式会社製のBT-120及びBT-LXが挙げられる。BT-120及びBT-LXは、ベンゾトリアゾール骨格を含む化合物である。
 第1透明転写層は、1種又は2種以上の金属酸化抑制剤を含んでもよい。
 第1透明転写層における金属酸化抑制剤の含有率は、第1透明転写層の全質量に対して、0.1質量%~20質量%であることが好ましく、0.5質量%~10質量%であることがより好ましく、1質量%~5質量%であることが特に好ましい。
(重合性化合物)
 第1透明転写層は、重合性化合物を含んでもよい。重合性化合物としては、特許第4098550号の段落[0023]~[0024]に記載の重合性化合物が挙げられる。好ましい重合性化合物としては、例えば、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリアクリレート及びペンタエリスリトールエチレンオキサイド付加物のテトラアクリレートが挙げられる。第1透明転写層がペンタエリスリトールテトラアクリレート及びペンタエリスリトールトリアクリレートを含む場合、ペンタエリスリトールテトラアクリレートの含有量に対するペンタエリスリトールトリアクリレートの含有量の比は、質量基準で、0%超80%以下であることが好ましく、10%~60%であることがより好ましい。
 重合性化合物としては、例えば、下記構造式1により表される水溶性の重合性モノマー、ペンタエリスリトールテトラアクリレート混合物(NKエステル A-TMMT、新中村化学工業株式会社、不純物としてトリアクリレート約10%含有)、ペンタエリスリトールテトラアクリレートとトリアクリレートの混合物(NKエステル A-TMM3LM-N、新中村化学工業株式会社、トリアクリレート37%)、ペンタエリスリトールテトラアクリレートとトリアクリレートの混合物(NKエステル A-TMM-3L、新中村化学工業株式会社、トリアクリレート55%)、ペンタエリスリトールテトラアクリレートとトリアクリレートの混合物(NKエステル A-TMM3、新中村化学工業株式会社、トリアクリレート57%)及びペンタエリスリトールエチレンオキサイド付加物のテトラアクリレート(カヤラッドRP-1040、日本化薬株式会社)が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 好ましい重合性化合物としては、例えば、水又は炭素数が1~3である低級アルコールと水との混合溶媒といった水性溶媒に対して溶解性を有する重合性化合物及び酸基を有する重合性化合物が挙げられる。水性溶媒に対して溶解性を有する重合性化合物としては、例えば、水酸基を有する重合性化合物及び分子内にエチレンオキサイド、ポリプロピレンオキサイド又はリン酸基を有する重合性化合物が挙げられる。酸基を有する重合性化合物は、カルボキシ基を有する重合性化合物であることが好ましく、(メタ)アクリル酸及びその誘導体がより好ましい。カルボキシ基を有する重合性化合物の好ましい市販品としては、例えば、アロニックスTO-2349(東亞合成株式会社)が挙げられる。
(重合開始剤)
 第1透明転写層は、重合開始剤を含んでもよい。重合開始剤としては、水性溶媒に対して溶解性を有する重合開始剤が好ましい。水性溶媒に対して溶解性を有する重合開始剤としては、例えば、IRGACURE 2959及び下記構造式2により表される光重合開始剤が挙げられる。
Figure JPOXMLDOC01-appb-C000002
(第2透明転写層)
 第2透明転写層の成分としては、例えば、以下のような成分が挙げられる。第2透明転写層は、以下の成分以外の成分を含んでもよい。
(重合体)
 第2透明転写層は、重合体を含んでいてもよい。重合体としては、例えば、(メタ)アクリル樹脂、スチレン樹脂、エポキシ樹脂、アミド樹脂、アミドエポキシ樹脂、アルキド樹脂、フェノール樹脂、エステル樹脂、ウレタン樹脂、エポキシ樹脂と(メタ)アクリル酸との反応で得られるエポキシアクリレート樹脂及びエポキシアクリレート樹脂と酸無水物との反応で得られる酸変性エポキシアクリレート樹脂が挙げられる。アルカリ現像性及びフィルム形成性に優れる点で、重合体の好適態様の一つとして、(メタ)アクリル樹脂が挙げられる。本開示において、「(メタ)アクリル樹脂」とは、(メタ)アクリル化合物に由来する構成単位を有する樹脂を意味する。
 (メタ)アクリル化合物に由来する構成単位の含有量の下限は、(メタ)アクリル樹脂の全構成単位に対して、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることが更に好ましい。(メタ)アクリル樹脂は、(メタ)アクリル化合物に由来する構成単位のみで構成されていてもよく、(メタ)アクリル化合物以外の重合性単量体に由来する構成単位を有していてもよい。すなわち、(メタ)アクリル化合物に由来する構成単位の含有量の上限は、(メタ)アクリル樹脂の全構成単位に対して、100質量%以下である。
 (メタ)アクリル化合物としては、例えば、(メタ)アクリル酸、(メタ)アクリル酸エステル、(メタ)アクリルアミド及び(メタ)アクリロニトリルが挙げられる。
 (メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸テトラヒドロフルフリルエステル、(メタ)アクリル酸ジメチルアミノエチルエステル、(メタ)アクリル酸ジエチルアミノエチルエステル、(メタ)アクリル酸グリシジルエステル、(メタ)アクリル酸ベンジルエステル、2,2,2-トリフルオロエチル(メタ)アクリレート及び2,2,3,3-テトラフルオロプロピル(メタ)アクリレートが挙げられ、(メタ)アクリル酸アルキルエステルが好ましい。
 (メタ)アクリル酸アルキルエステルのアルキル基は、直鎖状又は分岐状のアルキル基であってもよい。(メタ)アクリル酸アルキルエステルとしては、例えば、炭素数が1~12のアルキル基を有する(メタ)アクリル酸アルキルエステルが挙げられる。(メタ)アクリル酸アルキルエステルの具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル及び(メタ)アクリル酸ドデシルが挙げられる。
 (メタ)アクリル酸エステルとしては、炭素数が1~4のアルキル基を有する(メタ)アクリル酸アルキルエステルが好ましく、(メタ)アクリル酸メチル又は(メタ)アクリル酸エチルがより好ましい。
 (メタ)アクリルアミドとしては、例えば、ジアセトンアクリルアミド等のアクリルアミドが挙げられる。
 (メタ)アクリル樹脂は、(メタ)アクリル化合物に由来する構成単位以外の構成単位を有していてもよい。上記構成単位を形成する重合性単量体としては、(メタ)アクリル化合物と共重合可能な(メタ)アクリル化合物以外の化合物であれば特に制限されず、例えば、スチレン、ビニルトルエン、及び、α-メチルスチレン等のα位又は芳香族環に置換基を有してもよいスチレン化合物、アクリロニトリル及びビニル-n-ブチルエーテル等のビニルアルコールエステル、マレイン酸、マレイン酸無水物、マレイン酸モノメチル、マレイン酸モノエチル、及び、マレイン酸モノイソプロピル等のマレイン酸モノエステル、フマル酸、ケイ皮酸、α-シアノケイ皮酸、イタコン酸、並びに、クロトン酸が挙げられる。これらの重合性単量体は、1種又は2種以上を組み合わせて用いてもよい。
 (メタ)アクリル樹脂は、アルカリ現像性をより良好にする点から、酸基を有する構成単位を有することが好ましい。酸基としては、例えば、カルボキシ基、スルホ基、リン酸基、及び、ホスホン酸基が挙げられる。(メタ)アクリル樹脂は、カルボキシ基を有する構成単位を有することがより好ましく、上記の(メタ)アクリル酸に由来する構成単位を有することが更に好ましい。
 (メタ)アクリル樹脂における酸基を有する構成単位(好ましくは(メタ)アクリル酸に由来する構成単位)の含有量の下限は、現像性に優れる点で、(メタ)アクリル樹脂の全質量に対して、10質量%以上が好ましい。(メタ)アクリル樹脂における酸基を有する構成単位の含有量の上限は特に制限されないが、アルカリ耐性に優れる点で、50質量%以下が好ましく、40質量%以下がより好ましい。
 (メタ)アクリル樹脂は、上述した(メタ)アクリル酸アルキルエステルに由来する構成単位を有することが好ましい。(メタ)アクリル樹脂における(メタ)アクリル酸アルキルエステルに由来する構成単位の含有量は、(メタ)アクリル樹脂の全構成単位に対して、50質量%~90質量%が好ましく、60質量%~90質量%がより好ましく、65質量%~90質量%が更に好ましい。
 (メタ)アクリル樹脂としては、(メタ)アクリル酸に由来する構成単位及び(メタ)アクリル酸アルキルエステルに由来する構成単位の両者を有する樹脂が好ましく、(メタ)アクリル酸に由来する構成単位及び(メタ)アクリル酸アルキルエステルに由来する構成単位のみで構成されている樹脂がより好ましい。
 (メタ)アクリル樹脂としては、メタクリル酸に由来する構成単位、メタクリル酸メチルに由来する構成単位、及び、アクリル酸エチルに由来する構成単位を有するアクリル樹脂も好ましい。
 (メタ)アクリル樹脂は、本発明の効果がより優れる点から、メタクリル酸に由来する構成単位及びメタクリル酸アルキルエステルに由来する構成単位からなる群より選択される少なくとも1種を有することが好ましく、メタクリル酸に由来する構成単位及びメタクリル酸アルキルエステルに由来する構成単位の両者を有することが好ましい。(メタ)アクリル樹脂におけるメタクリル酸に由来する構成単位及びメタクリル酸アルキルエステルに由来する構成単位の合計含有量の下限は、本発明の効果がより優れる点から、(メタ)アクリル樹脂の全構成単位に対して、40質量%以上が好ましく、60質量%以上がより好ましい。上記合計含有量の上限は、特に制限されず、100質量%以下であってもよく、80質量%以下が好ましい。
 (メタ)アクリル樹脂は、本発明の効果がより優れる点から、メタクリル酸に由来する構成単位及びメタクリル酸アルキルエステルに由来する構成単位からなる群より選択される少なくとも1種と、アクリル酸に由来する構成単位及びアクリル酸アルキルエステルに由来する構成単位からなる群より選択される少なくとも1種とを有することも好ましい。本発明の効果がより優れる点から、メタクリル酸に由来する構成単位及びメタクリル酸アルキルエステルに由来する構成単位の合計含有量は、アクリル酸に由来する構成単位及びアクリル酸アルキルエステルに由来する構成単位の合計含有量に対して、質量比で60/40~80/20が好ましい。
 (メタ)アクリル樹脂は、現像性に優れる点で、末端にエステル基を有することが好ましい。なお、(メタ)アクリル樹脂の末端部は、合成に用いた重合開始剤に由来する部位により構成される。末端にエステル基を有する(メタ)アクリル樹脂は、エステル基を有するラジカルを発生する重合開始剤を用いることにより合成できる。
 重合体の別の好適態様としては、アルカリ可溶性樹脂が挙げられる。重合体は、例えば、現像性の点から、酸価が60mgKOH/g以上である重合体であることが好ましい。重合体は、例えば、加熱により架橋成分と熱架橋し、強固な膜を形成しやすいという点から、酸価60mgKOH/g以上のカルボキシ基を有する樹脂(いわゆる、カルボキシ基含有樹脂)であることがより好ましく、酸価60mgKOH/g以上のカルボキシ基を有する(メタ)アクリル樹脂(いわゆる、カルボキシ基含有(メタ)アクリル樹脂)であることが更に好ましい。重合体がカルボキシ基を有する樹脂であると、例えば、ブロックイソシアネート化合物等の熱架橋性化合物を添加して熱架橋することで、3次元架橋密度を高めることができる。カルボキシ基を有する樹脂のカルボキシ基が無水化され、疎水化すると、湿熱耐性が改善し得る。
 酸価が60mgKOH/g以上であるカルボキシ基含有(メタ)アクリル樹脂としては、上記酸価の条件を満たす限りにおいて、特に制限はなく、公知の(メタ)アクリル樹脂から適宜選択できる。例えば、特開2011-095716号公報の段落[0025]に記載のポリマーのうち、酸価60mgKOH/g以上のカルボキシ基含有アクリル樹脂、特開2010-237589号公報の段落[0033]~[0052]に記載のポリマーのうち、酸価60mgKOH/g以上のカルボキシ基含有アクリル樹脂等を好ましく使用できる。
 重合体の他の好適態様としてはスチレン-アクリル共重合体が挙げられる。なお、本開示において、スチレン-アクリル共重合体とは、スチレン化合物に由来する構成単位と、(メタ)アクリル化合物に由来する構成単位とを有する樹脂を指す。上記スチレン化合物に由来する構成単位、及び、上記(メタ)アクリル化合物に由来する構成単位の合計含有量は、上記共重合体の全構成単位に対して、30質量%以上が好ましく、50質量%以上がより好ましい。スチレン化合物に由来する構成単位の含有量は、上記共重合体の全構成単位に対して、1質量%以上が好ましく、5質量%以上がより好ましく、5質量%~80質量%が更に好ましい。上記(メタ)アクリル化合物に由来する構成単位の含有量は、上記共重合体の全構成単位に対して、5質量%以上が好ましく、10質量%以上がより好ましく、20質量%~95質量%が更に好ましい。
 重合体は、本発明の効果がより優れる点から、芳香環構造を有することが好ましく、芳香環構造を有する構成単位を有することがより好ましい。芳香環構造を有する構成単位を形成するモノマーとしては、アラルキル基を有するモノマー、スチレン、及び重合可能なスチレン誘導体(例えば、メチルスチレン、ビニルトルエン、tert-ブトキシスチレン、アセトキシスチレン、4-ビニル安息香酸、スチレンダイマー、及びスチレントリマー等)が挙げられる。なかでも、芳香環構造を有する構成単位を形成するモノマーは、アラルキル基を有するモノマー、又はスチレンであることが好ましい。アラルキル基としては、置換又は非置換のフェニルアルキル基(ベンジル基を除く)、及び置換又は非置換のベンジル基等が挙げられ、置換又は非置換のベンジル基が好ましい。
 フェニルアルキル基を有する単量体としては、フェニルエチル(メタ)アクリレート等が挙げられる。
 ベンジル基を有する単量体としては、例えば、ベンジル(メタ)アクリレート、及びクロロベンジル(メタ)アクリレート等のベンジル基を有する(メタ)アクリレート;ビニルベンジルクロライド、及びビニルベンジルアルコール等のベンジル基を有するビニルモノマーが挙げられる。なかでも、ベンジル基を有する単量体は、ベンジル(メタ)アクリレートであることが好ましい。
 重合体は、本発明の効果がより優れる点から、下記式(S)で表される構成単位(スチレンに由来する構成単位)を有することがより好ましい。
Figure JPOXMLDOC01-appb-C000003
 重合体が芳香環構造を有する構成単位を有する場合、芳香環構造を有する構成単位の含有量は、本発明の効果がより優れる点から、重合体の全構成単位に対して、5質量%~90質量%が好ましく、10質量%~70質量%より好ましく、20質量%~60質量%が更に好ましい。
 重合体における芳香環構造を有する構成単位の含有量は、本発明の効果がより優れる点から、重合体の全構成単位に対して、5モル%~70モル%が好ましく、10モル%~60モル%がより好ましく、20モル%~60モル%が更に好ましい。
 重合体における上記式(S)で表される構成単位の含有量は、本発明の効果がより優れる点から、重合体の全構成単位に対して、5モル%~70モル%が好ましく、10モル%~60モル%がより好ましく、20モル%~60モル%が更に好ましく、20モル%~50モル%が特に好ましい。
 本開示において、「構成単位」の含有量をモル比で規定する場合、上記「構成単位」は「モノマー単位」と同義であるものとする。本開示において、上記「モノマー単位」は、高分子反応等により重合後に修飾されていてもよい。以下においても同様である。
 重合体は、本発明の効果がより優れる点から、脂肪族炭化水素環構造を有することが好ましい。つまり、重合体は、脂肪族炭化水素環構造を有する構成単位を有することが好ましい。脂肪族炭化水素環構造としては単環でも多環でもよい。なかでも、重合体は、2環以上の脂肪族炭化水素環が縮環した環構造を有することがより好ましい。
 脂肪族炭化水素環構造を有する構成単位における脂肪族炭化水素環構造を構成する環としては、トリシクロデカン環、シクロヘキサン環、シクロペンタン環、ノルボルナン環、及び、イソボロン環が挙げられる。なかでも、本発明の効果がより優れる点から、脂肪族炭化水素環構造を有する構成単位における脂肪族炭化水素環構造を構成する環は、2環以上の脂肪族炭化水素環が縮環した環であることが好ましく、テトラヒドロジシクロペンタジエン環(トリシクロ[5.2.1.02,6]デカン環)であることがより好ましい。
 脂肪族炭化水素環構造を有する構成単位を形成するモノマーとしては、ジシクロペンタニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、及び、イソボルニル(メタ)アクリレートが挙げられる。
 重合体は、本発明の効果がより優れる点から、下記式(Cy)で表される構成単位を有することがより好ましく、上記式(S)で表される構成単位、及び、下記式(Cy)で表される構成単位を有することがより好ましい。
Figure JPOXMLDOC01-appb-C000004
 式(Cy)中、Rは水素原子又はメチル基を表し、RCyは脂肪族炭化水素環構造を有する一価の基を表す。
 式(Cy)におけるRは、メチル基であることが好ましい。
 式(Cy)におけるRCyは、本発明の効果がより優れる点から、炭素数5~20の脂肪族炭化水素環構造を有する一価の基であることが好ましく、炭素数6~16の脂肪族炭化水素環構造を有する一価の基であることがより好ましく、炭素数8~14の脂肪族炭化水素環構造を有する一価の基であることが更に好ましい。
 式(Cy)のRCyにおける脂肪族炭化水素環構造は、本発明の効果がより優れる点から、シクロペンタン環構造、シクロヘキサン環構造、テトラヒドロジシクロペンタジエン環構造、ノルボルナン環構造、又は、イソボロン環構造であることが好ましく、シクロヘキサン環構造、又は、テトラヒドロジシクロペンタジエン環構造であることがより好ましく、テトラヒドロジシクロペンタジエン環構造であることが更に好ましい。
 式(Cy)のRCyにおける脂肪族炭化水素環構造は、本発明の効果がより優れる点から、2環以上の脂肪族炭化水素環が縮環した環構造であることが好ましく、2環~4環の脂肪族炭化水素環が縮環した環であることがより好ましい。
 式(Cy)におけるRCyは、本発明の効果がより優れる点から、式(Cy)における-C(=O)O-の酸素原子と脂肪族炭化水素環構造とが直接結合する基、すなわち、脂肪族炭化水素環基であることが好ましく、シクロヘキシル基、又は、ジシクロペンタニル基であることがより好ましく、ジシクロペンタニル基であることが更に好ましい。
 重合体は、脂肪族炭化水素環構造を有する構成単位を1種単独で有していても、2種以上有していてもよい。
 重合体が脂肪族炭化水素環構造を有する構成単位を有する場合、脂肪族炭化水素環構造を有する構成単位の含有量は、本発明の効果がより優れる点から、バインダーポリマーの全構成単位に対して、5質量%~90質量%が好ましく、10質量%~80質量%がより好ましく、20質量%~70質量%が更に好ましい。
 重合体における脂肪族炭化水素環構造を有する構成単位の含有量は、本発明の効果がより優れる点から、重合体の全構成単位に対して、5モル%~70モル%が好ましく、10モル%~60モル%がより好ましく、20モル%~50モル%が更に好ましい。
 更に、重合体における上記式(Cy)で表される構成単位の含有量は、本発明の効果がより優れる点から、重合体の全構成単位に対して、5モル%~70モル%が好ましく、10モル%~60モル%がより好ましく、20モル%~50モル%が更に好ましい。
 重合体が芳香環構造を有する構成単位及び脂肪族炭化水素環構造を有する構成単位を有する場合、芳香環構造を有する構成単位及び脂肪族炭化水素環構造を有する構成単位の総含有量は、本発明の効果がより優れる点から、重合体の全構成単位に対して、10質量%~90質量%が好ましく、20質量%~80質量%がより好ましく、40質量%~75質量%が更に好ましい。
 重合体における芳香環構造を有する構成単位及び脂肪族炭化水素環構造を有する構成単位の総含有量は、本発明の効果がより優れる点から、バインダーポリマーの全構成単位に対して、10モル%~80モル%が好ましく、20モル%~70モル%がより好ましく、40モル%~60モル%が更に好ましい。
 重合体における上記式(S)で表される構成単位及び上記式(Cy)で表される構成単位の総含有量は、本発明の効果がより優れる点から、バインダーポリマーの全構成単位に対して、10モル%~80モル%が好ましく、20モル%~70モル%がより好ましく、40モル%~60モル%が更に好ましい。
 重合体における上記式(S)で表される構成単位のモル量nSと上記式(Cy)で表される構成単位のモル量nCyは、本発明の効果がより優れる点から、下記式(SCy)に示す関係を満たすことが好ましく、下記式(SCy-1)を満たすことがより好ましく、下記式(SCy-2)を満たすことが更に好ましい。
  0.2≦nS/(nS+nCy)≦0.8 :式(SCy)
  0.30≦nS/(nS+nCy)≦0.75 :式(SCy-1)
  0.40≦nS/(nS+nCy)≦0.70 :式(SCy-2)
 重合体は、本発明の効果がより優れる点から、酸基を有する構成単位を有することが好ましい。酸基としては、カルボキシ基、スルホ基、ホスホン酸基、及び、リン酸基が挙げられ、カルボキシ基が好ましい。酸基を有する構成単位としては、下記に示す、(メタ)アクリル酸由来の構成単位が好ましく、メタクリル酸由来の構成単位がより好ましい。
Figure JPOXMLDOC01-appb-C000005
 重合体は、酸基を有する構成単位を1種単独で有していても、2種以上有していてもよい。
 重合体が酸基を有する構成単位を有する場合、酸基を有する構成単位の含有量は、本発明の効果がより優れる点から、重合体の全構成単位に対して、5質量%~50質量%が好ましく、5質量%~40質量%がより好ましく、10質量%~30質量%が更に好ましい。
 重合体における酸基を有する構成単位の含有量は、本発明の効果がより優れる点から、重合体の全構成単位に対して、5モル%~70モル%が好ましく、10モル%~50モル%がより好ましく、20モル%~40モル%が更に好ましい。
 重合体における(メタ)アクリル酸由来の構成単位の含有量は、本発明の効果がより優れる点から、重合体の全構成単位に対して、5モル%~70モル%が好ましく、10モル%~50モル%がより好ましく、20モル%~40モル%が更に好ましい。
 重合体は、本発明の効果がより優れる点から、反応性基を有することが好ましく、反応性基を有する構成単位を有することがより好ましい。反応性基としては、ラジカル重合性基が好ましく、エチレン性不飽和基がより好ましい。重合体がエチレン性不飽和基を有している場合、バインダーポリマーは、側鎖にエチレン性不飽和基を有する構成単位を有することが好ましい。本開示において、「主鎖」とは、樹脂を構成する高分子化合物の分子中で相対的に最も長い結合鎖を表し、「側鎖」とは、主鎖から枝分かれしている原子団を表す。エチレン性不飽和基としては、アリル基又は(メタ)アクリロキシ基がより好ましい。反応性基を有する構成単位の一例としては、下記に示すものが挙げられるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000006
 重合体は、反応性基を有する構成単位を1種単独で有していても、2種以上有していてもよい。
 重合体が反応性基を有する構成単位を有する場合、反応性基を有する構成単位の含有量は、本発明の効果がより優れる点から、重合体の全構成単位に対して、5質量%~70質量%が好ましく、10質量%~50質量%がより好ましく、20質量%~40質量%が更に好ましい。
 重合体における反応性基を有する構成単位の含有量は、本発明の効果がより優れる点から、重合体の全構成単位に対して、5モル%~70モル%が好ましく、10モル%~60モル%がより好ましく、20モル%~50モル%が更に好ましい。
 反応性基を重合体に導入する手段としては、ヒドロキシ基、カルボキシ基、第一級アミノ基、第二級アミノ基、アセトアセチル基、及び、スルホ基等の官能基に、エポキシ化合物、ブロックイソシアネート化合物、イソシアネート化合物、ビニルスルホン化合物、アルデヒド化合物、メチロール化合物、及び、カルボン酸無水物等の化合物を反応させる方法が挙げられる。反応性基を重合体に導入する手段の好ましい例としては、カルボキシ基を有するポリマーを重合反応により合成した後、高分子反応により、得られたポリマーのカルボキシ基の一部にグリシジル(メタ)アクリレートを反応させて、(メタ)アクリロキシ基をポリマーに導入する手段が挙げられる。この手段により、側鎖に(メタ)アクリロキシ基を有する重合体を得ることができる。上記重合反応は、70℃~100℃の温度条件で行うことが好ましく、80℃~90℃の温度条件で行うことがより好ましい。上記重合反応に用いる重合開始剤としては、アゾ系開始剤が好ましく、例えば、富士フイルム和光純薬株式会社製のV-601(商品名)又はV-65(商品名)がより好ましい。上記高分子反応は、80℃~110℃の温度条件で行うことが好ましい。上記高分子反応においては、アンモニウム塩等の触媒を用いることが好ましい。
 重合体としては、本発明の効果がより優れる点から、以下に示す重合体が好ましい。なお、以下に示す各構成単位の含有比率(a~d)及び重量平均分子量Mw等は目的に応じて適宜変更できる。
Figure JPOXMLDOC01-appb-C000007
 上記重合体における各構成単位の含有比率の好ましい範囲を以下に示す。
 a:20質量%~60質量%
 b:10質量%~50質量%
 c:5.0質量%~25質量%
 d:10質量%~50質量%
Figure JPOXMLDOC01-appb-C000008
 上記重合体における各構成単位の含有比率の好ましい範囲を以下に示す。
 a:20質量%~60質量%
 b:10質量%~50質量%
 c:5.0質量%~25質量%
 d:10質量%~50質量%
Figure JPOXMLDOC01-appb-C000009
 上記重合体における各構成単位の含有比率の好ましい範囲を以下に示す。
 a:30質量%~65質量%
 b:1.0質量%~20質量%
 c:5.0質量%~25質量%
 d:10質量%~50質量%
Figure JPOXMLDOC01-appb-C000010
 上記重合体における各構成単位の含有比率の好ましい範囲を以下に示す。
 a:1.0質量%~20質量%
 b:20質量%~60質量%
 c:5.0質量%~25質量%
 d:10質量%~50質量%
 重合体は、カルボン酸無水物構造を有する構成単位を有する重合体(以下、「重合体X」ともいう。)を含んでいてもよい。カルボン酸無水物構造は、鎖状カルボン酸無水物構造、及び、環状カルボン酸無水物構造のいずれであってもよいが、環状カルボン酸無水物構造であることが好ましい。環状カルボン酸無水物構造の環としては、5員環~7員環が好ましく、5員環又は6員環がより好ましく、5員環が更に好ましい。
 カルボン酸無水物構造を有する構成単位は、下記式P-1で表される化合物から水素原子を2つ除いた2価の基を主鎖中に含む構成単位、又は、下記式P-1で表される化合物から水素原子を1つ除いた1価の基が主鎖に対して直接又は2価の連結基を介して結合している構成単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000011
 式P-1中、RA1aは、置換基を表し、n1a個のRA1aは、同一でも異なっていてもよく、Z1aは、-C(=O)-O-C(=O)-を含む環を形成する2価の基を表し、n1aは、0以上の整数を表す。
 RA1aで表される置換基としては、例えば、アルキル基が挙げられる。
 Z1aとしては、炭素数2~4のアルキレン基が好ましく、炭素数2又は3のアルキレン基がより好ましく、炭素数2のアルキレン基が更に好ましい。
 n1aは、0以上の整数を表す。Z1aが炭素数2~4のアルキレン基を表す場合、n1aは、0~4の整数であることが好ましく、0~2の整数であることがより好ましく、0であることが更に好ましい。
 n1aが2以上の整数を表す場合、複数存在するRA1aは、同一でも異なっていてもよい。複数存在するRA1aは、互いに結合して環を形成してもよいが、互いに結合して環を形成していないことが好ましい。
 カルボン酸無水物構造を有する構成単位としては、不飽和カルボン酸無水物に由来する構成単位が好ましく、不飽和環式カルボン酸無水物に由来する構成単位がより好ましく、不飽和脂肪族環式カルボン酸無水物に由来する構成単位が更に好ましく、無水マレイン酸又は無水イタコン酸に由来する構成単位が特に好ましく、無水マレイン酸に由来する構成単位が最も好ましい。
 以下、カルボン酸無水物構造を有する構成単位の具体例を挙げるが、カルボン酸無水物構造を有する構成単位は、これらの具体例に限定されるものではない。下記の構成単位中、Rxは、水素原子、メチル基、CHOH基、又は、CF基を表し、Meは、メチル基を表す。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 重合体Xにおけるカルボン酸無水物構造を有する構成単位は、1種単独であってもよく、2種以上であってもよい。
 カルボン酸無水物構造を有する構成単位の総含有量は、重合体Xの全構成単位に対して、0モル%~60モル%が好ましく、5モル%~40モル%がより好ましく、10モル%~35モル%が更に好ましい。
 第2透明転写層は、重合体Xを1種のみ含んでいてもよく、2種以上含んでいてもよい。第2透明転写層が重合体Xを含む場合、本発明の効果がより優れる点から、重合体Xの含有量は、第2透明転写層の全質量に対して、0.1質量%~30質量%が好ましく、0.2質量%~20質量%がより好ましく、0.5質量%~20質量%が更に好ましく、1質量%~20質量%が更に好ましい。
 重合体の重量平均分子量(Mw)は、本発明の効果がより優れる点から、5,000以上が好ましく、10,000以上がより好ましく、10,000~50,000が更に好ましく、20,000~30,000が特に好ましい。
 重合体の酸価は、10mgKOH/g~200mgKOH/gが好ましく、60mgKOH/g~200mgKOH/gがより好ましく、60mgKOH/g~150mgKOH/gが更に好ましく、70mgKOH/g~125mgKOH/gが特に好ましい。なお、重合体の酸価は、「JIS K0070:1992」に記載の方法に従って、測定される値である。
 重合体の分散度は、現像性の観点から、1.0~6.0が好ましく、1.0~5.0がより好ましく、1.0~4.0が更に好ましく、1.0~3.0が特に好ましい。
 第2透明転写層は、重合体を1種のみ含んでいてもよく、2種以上含んでいてもよい。
 重合体の含有量は、本発明の効果がより優れる点から、第2透明転写層の全質量に対して、10質量%~90質量%が好ましく、20質量%~80質量%がより好ましく、30質量%~70質量%が更に好ましい。
(重合性化合物)
 第2透明転写層は、重合性化合物を含んでいてもよい。重合性化合物は、重合性基を有する化合物である。重合性基としては、例えば、ラジカル重合性基、及び、カチオン重合性基が挙げられ、ラジカル重合性基が好ましい。
 重合性化合物は、エチレン性不飽和基を有するラジカル重合性化合物(以下、単に「エチレン性不飽和化合物」ともいう。)を含むことが好ましい。エチレン性不飽和基としては、(メタ)アクリロキシ基が好ましい。なお、本開示におけるエチレン性不飽和化合物は、上記重合体以外の化合物であり、分子量5,000未満であることが好ましい。
 重合性化合物の好適態様の一つとして、下記式(M)で表される化合物(単に、「化合物M」ともいう。)が挙げられる。
  Q-R-Q :式(M)
 式(M)中、Q及びQはそれぞれ独立に、(メタ)アクリロイルオキシ基を表し、Rは鎖状構造を有する二価の連結基を表す。
 式(M)におけるQ及びQは、合成容易性の点から、Q及びQは同じ基であることが好ましい。式(M)におけるQ及びQは、反応性の点から、アクリロイルオキシ基であることが好ましい。
 式(M)におけるRとしては、本発明の効果がより優れる点から、アルキレン基、アルキレンオキシアルキレン基(-L-O-L-)、又は、ポリアルキレンオキシアルキレン基(-(L-O)-L-)が好ましく、炭素数2~20の炭化水素基、又は、ポリアルキレンオキシアルキレン基がより好ましく、炭素数4~20のアルキレン基が更に好ましく、炭素数6~18の直鎖アルキレン基が特に好ましい。
 炭化水素基は、少なくとも一部に鎖状構造を有していればよい。上記鎖状構造以外の部分としては、特に制限はなく、例えば、分岐鎖状、環状、又は、炭素数1~5の直鎖状アルキレン基、アリーレン基、エーテル結合、及び、それらの組み合わせのいずれであってもよく、アルキレン基、又は、2以上のアルキレン基と1以上のアリーレン基とを組み合わせた基が好ましく、アルキレン基がより好ましく、直鎖アルキレン基が更に好ましい。
 Lは、それぞれ独立に、アルキレン基を表し、エチレン基、プロピレン基、又は、ブチレン基であることが好ましく、エチレン基又は1,2-プロピレン基であることがより好ましい。
 pは、2以上の整数を表し、2~10の整数であることが好ましい。
 化合物MにおけるQとQとの間を連結する最短の連結鎖の原子数は、本発明の効果がより優れる点から、3個~50個であることが好ましく、4個~40個であることがより好ましく、6個~20個であることが更に好ましく、8個~12個であることが特に好ましい。本開示において、「QとQの間を連結する最短の連結鎖の原子数」とは、Qに連結するRにおける原子からQに連結するRにおける原子までを連結する最短の原子数である。
 化合物Mの具体例としては、1,3-ブタンジオールジ(メタ)アクリレート、テトラメチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,7-ヘプタンジオールジ(メタ)アクリレート、1,8-オクタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、水添ビスフェノールAのジ(メタ)アクリレート、水添ビスフェノールFのジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリ(エチレングリコール/プロピレングリコール)ジ(メタ)アクリレート、及び、ポリブチレングリコールジ(メタ)アクリレートが挙げられる。上記エステルモノマーは混合物としても使用できる。上記化合物のなかでも、本発明の効果がより優れる点から、化合物Mは、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、及び、ネオペンチルグリコールジ(メタ)アクリレートからなる群から選ばれた少なくとも1種の化合物であることが好ましく、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、及び、1,10-デカンジオールジ(メタ)アクリレートからなる群から選ばれた少なくとも1種の化合物であることがより好ましく、1,9-ノナンジオールジ(メタ)アクリレート、及び、1,10-デカンジオールジ(メタ)アクリレートからなる群から選ばれた少なくとも1種の化合物であることが更に好ましい。
 重合性化合物の好適態様の一つとして、2官能以上のエチレン性不飽和化合物が挙げられる。本開示において、「2官能以上のエチレン性不飽和化合物」とは、一分子中にエチレン性不飽和基を2つ以上有する化合物を意味する。
 エチレン性不飽和化合物におけるエチレン性不飽和基としては、(メタ)アクリロイル基が好ましい。
 エチレン性不飽和化合物としては、(メタ)アクリレート化合物が好ましい。
 2官能のエチレン性不飽和化合物としては、特に制限はなく、公知の化合物の中から適宜選択できる。上記化合物M以外の2官能のエチレン性不飽和化合物としては、トリシクロデカンジメタノールジ(メタ)アクリレート、及び、1,4-シクロヘキサンジオールジ(メタ)アクリレートが挙げられる。
 2官能のエチレン性不飽和化合物の市販品としては、トリシクロデカンジメタノールジアクリレート(商品名:NKエステル A-DCP、新中村化学工業株式会社製)、トリシクロデカンジメナノールジメタクリレート(商品名:NKエステル DCP、新中村化学工業株式会社製)、1,9-ノナンジオールジアクリレート(商品名:NKエステル A-NOD-N、新中村化学工業株式会社製)、1,6-ヘキサンジオールジアクリレート(商品名:NKエステル A-HD-N、新中村化学工業株式会社製)が挙げられる。
 3官能以上のエチレン性不飽和化合物としては、特に制限はなく、公知の化合物の中から適宜選択できる。3官能以上のエチレン性不飽和化合物としては、ジペンタエリスリトール(トリ/テトラ/ペンタ/ヘキサ)(メタ)アクリレート、ペンタエリスリトール(トリ/テトラ)(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、イソシアヌル酸(メタ)アクリレート、及び、グリセリントリ(メタ)アクリレート骨格の(メタ)アクリレート化合物が挙げられる。ここで、「(トリ/テトラ/ペンタ/ヘキサ)(メタ)アクリレート」は、トリ(メタ)アクリレート、テトラ(メタ)アクリレート、ペンタ(メタ)アクリレート、及び、ヘキサ(メタ)アクリレートを包含する概念であり、「(トリ/テトラ)(メタ)アクリレート」は、トリ(メタ)アクリレート及びテトラ(メタ)アクリレートを包含する概念である。
 重合性化合物としては、(メタ)アクリレート化合物のカプロラクトン変性化合物(日本化薬株式会社製KAYARAD(登録商標) DPCA-20、新中村化学工業株式会社製A-9300-1CL等)、(メタ)アクリレート化合物のアルキレンオキサイド変性化合物(日本化薬株式会社製KAYARAD(登録商標) RP-1040、新中村化学工業株式会社製ATM-35E、A-9300、ダイセル・オルネクス社のEBECRYL(登録商標) 135等)、エトキシル化グリセリントリアクリレート(新中村化学工業株式会社製NKエステル A-GLY-9E等)も挙げられる。
 重合性化合物としては、ウレタン(メタ)アクリレート化合物も挙げられる。ウレタン(メタ)アクリレートとしては、ウレタンジ(メタ)アクリレートが挙げられる。ウレタンジ(メタ)アクリレートとしては、例えば、プロピレンオキサイド変性ウレタンジ(メタ)アクリレート、並びに、エチレンオキサイド及びプロピレンオキサイド変性ウレタンジ(メタ)アクリレートが挙げられる。
 ウレタン(メタ)アクリレートとしては、3官能以上のウレタン(メタ)アクリレートも挙げられる。官能基数の下限としては、6官能以上がより好ましく、8官能以上が更に好ましい。官能基数の上限としては、20官能以下が好ましい。3官能以上のウレタン(メタ)アクリレートとしては、例えば、8UX-015A(大成ファインケミカル株式会社製)、UA-32P(新中村化学工業株式会社製)、U-15HA(新中村化学工業株式会社製)、UA-1100H(新中村化学工業株式会社製)、共栄社化学株式会社製のAH-600(商品名)、並びに、UA-306H、UA-306T、UA-306I、UA-510H、及びUX-5000(いずれも日本化薬株式会社製)等が挙げられる。
 重合性化合物の好適態様の一つとして、酸基を有するエチレン性不飽和化合物が挙げられる。酸基としては、リン酸基、スルホ基、及び、カルボキシ基が挙げられる。これらのなかでも、酸基としては、カルボキシ基が好ましい。酸基を有するエチレン性不飽和化合物としては、酸基を有する3官能~4官能のエチレン性不飽和化合物〔ペンタエリスリトールトリ及びテトラアクリレート(PETA)骨格にカルボキシ基を導入したもの(酸価:80mgKOH/g~120mgKOH/g)〕、酸基を有する5官能~6官能のエチレン性不飽和化合物(ジペンタエリスリトールペンタ及びヘキサアクリレート(DPHA)骨格にカルボキシ基を導入したもの〔酸価:25mgKOH/g~70mgKOH/g)〕等が挙げられる。これら酸基を有する3官能以上のエチレン性不飽和化合物は、必要に応じ、酸基を有する2官能のエチレン性不飽和化合物と併用してもよい。
 酸基を有するエチレン性不飽和化合物としては、カルボキシ基を有する2官能以上のエチレン性不飽和化合物及びそのカルボン酸無水物からなる群から選ばれる少なくとも1種が好ましい。酸基を有するエチレン性不飽和化合物が、カルボキシ基を有する2官能以上のエチレン性不飽和化合物及びそのカルボン酸無水物からなる群から選ばれる少なくとも1種であると、現像性及び膜強度がより高まる。カルボキシ基を有する2官能以上のエチレン性不飽和化合物は、特に制限されず、公知の化合物の中から適宜選択できる。カルボキシ基を有する2官能以上のエチレン性不飽和化合物としては、アロニックス(登録商標)TO-2349(東亞合成株式会社製)、アロニックス(登録商標)M-520(東亞合成株式会社製)、アロニックス(登録商標)M-510(東亞合成株式会社製)が挙げられる。
 酸基を有するエチレン性不飽和化合物としては、特開2004-239942号公報の段落[0025]~[0030]に記載の酸基を有する重合性化合物が好ましく、この公報に記載の内容は、本開示に組み込まれる。
 重合性化合物としては、例えば、多価アルコールにα,β-不飽和カルボン酸を反応させて得られる化合物、グリシジル基含有化合物にα,β-不飽和カルボン酸を反応させて得られる化合物、ウレタン結合を有する(メタ)アクリレート化合物等のウレタンモノマー、フタル酸系化合物、並びに、(メタ)アクリル酸アルキルエステルも挙げられる。フタル酸系化合物としては、γ-クロロ-β-ヒドロキシプロピル-β’-(メタ)アクリロイルオキシエチル-o-フタレート、β-ヒドロキシエチル-β’-(メタ)アクリロイルオキシエチル-o-フタレート、及び、β-ヒドロキシプロピル-β’-(メタ)アクリロイルオキシエチル-o-フタレート等が挙げられる。これらは単独で又は2種類以上を組み合わせて使用される。
 多価アルコールにα,β-不飽和カルボン酸を反応させて得られる化合物としては、例えば、2,2-ビス(4-((メタ)アクリロキシポリエトキシ)フェニル)プロパン、2,2-ビス(4-((メタ)アクリロキシポリプロポキシ)フェニル)プロパン、及び、2,2-ビス(4-((メタ)アクリロキシポリエトキシポリプロポキシ)フェニル)プロパン等のビスフェノールA系(メタ)アクリレート化合物;エチレンオキサイド基の数が2~14であるポリエチレングリコールジ(メタ)アクリレート;プロピレンオキサイド基の数が2~14であるポリプロピレングリコールジ(メタ)アクリレート;エチレンオキサイド基の数が2~14であり、かつ、プロピレンオキサイド基の数が2~14であるポリエチレンポリプロピレングリコールジ(メタ)アクリレート;トリメチロールプロパンジ(メタ)アクリレート;トリメチロールプロパントリ(メタ)アクリレート;トリメチロールプロパンエトキシトリ(メタ)アクリレート;トリメチロールプロパンジエトキシトリ(メタ)アクリレート;トリメチロールプロパントリエトキシトリ(メタ)アクリレート;トリメチロールプロパンテトラエトキシトリ(メタ)アクリレート;トリメチロールプロパンペンタエトキシトリ(メタ)アクリレート;ジ(トリメチロールプロパン)テトラアクリレート;テトラメチロールメタントリ(メタ)アクリレート;テトラメチロールメタンテトラ(メタ)アクリレート;ジペンタエリスリトールテトラ(メタ)アクリレート;ジペンタエリスリトールペンタ(メタ)アクリレート;並びに、ジペンタエリスリトールヘキサ(メタ)アクリレートが挙げられる。なかでも、多価アルコールにα,β-不飽和カルボン酸を反応させて得られる化合物は、テトラメチロールメタン構造又はトリメチロールプロパン構造を有するエチレン不飽和化合物であることが好ましく、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、又は、ジ(トリメチロールプロパン)テトラアクリレートであることがより好ましい。
 重合性化合物としては、エチレン性不飽和化合物のカプロラクトン変性化合物(例えば、日本化薬株式会社製KAYARAD(登録商標)DPCA-20、新中村化学工業株式会社製A-9300-1CL等)、エチレン性不飽和化合物のアルキレンオキサイド変性化合物(例えば、日本化薬株式会社製KAYARAD RP-1040、新中村化学工業株式会社製ATM-35E、A-9300、ダイセル・オルネクス社製 EBECRYL(登録商標)135等)、エトキシル化グリセリントリアクリレート(新中村化学工業株式会社製A-GLY-9E等)等も挙げられる。
 重合性化合物(特に、エチレン性不飽和化合物)としては、現像性に優れる点で、なかでも、エステル結合を含むものも好ましい。エステル結合を含むエチレン性不飽和化合物としては、分子内にエステル結合を含むものであれば特に制限されないが、本発明の効果が優れる点で、テトラメチロールメタン構造又はトリメチロールプロパン構造を有するエチレン不飽和化合物が好ましく、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、又は、ジ(トリメチロールプロパン)テトラアクリレートがより好ましい。
 信頼性付与の点からは、エチレン性不飽和化合物としては、炭素数6~20の脂肪族基を有するエチレン性不飽和化合物と、上記のテトラメチロールメタン構造又はトリメチロールプロパン構造を有するエチレン不飽和化合物と、を含むことが好ましい。
 炭素数6以上の脂肪族構造を有するエチレン性不飽和化合物としては、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、及び、トリシクロデカンジメタノールジ(メタ)アクリレートが挙げられる。
 重合性化合物の好適態様の一つとしては、脂肪族炭化水素環構造を有する重合性化合物(好ましくは、2官能エチレン性不飽和化合物)が挙げられる。上記重合性化合物としては、2環以上の脂肪族炭化水素環が縮環した環構造(好ましくは、トリシクロデカン構造及びトリシクロデセン構造からなる群から選択される構造)を有する重合性化合物が好ましく、2環以上の脂肪族炭化水素環が縮環した環構造を有する2官能エチレン性不飽和化合物がより好ましく、トリシクロデカンジメタノールジ(メタ)アクリレートが更に好ましい。上記脂肪族炭化水素環構造としては、本発明の効果がより優れる点から、シクロペンタン構造、シクロヘキサン構造、トリシクロデカン構造、トリシクロデセン構造、ノルボルナン構造、又は、イソボロン構造が好ましい。
 重合性化合物の分子量は、200~3,000が好ましく、250~2,600がより好ましく、280~2,200が更に好ましく、300~2,200が特に好ましい。
 第2透明転写層に含まれる重合性化合物のうち、分子量300以下の重合性化合物の含有量の割合は、第2透明転写層に含まれる全ての重合性化合物の含有量に対して、30質量%以下が好ましく、25質量%以下がより好ましく、20質量%以下が更に好ましい。
 第2透明転写層の好適態様の一つとして、第2透明転写層は、2官能以上のエチレン性不飽和化合物を含むことが好ましく、3官能以上のエチレン性不飽和化合物を含むことがより好ましく、3官能又は4官能のエチレン性不飽和化合物を含むことが更に好ましい。
 第2透明転写層の好適態様の一つとして、第2透明転写層は、脂肪族炭化水素環構造を有する2官能エチレン性不飽和化合物と、脂肪族炭化水素環を有する構成単位を有する重合体とを含むことが好ましい。
 第2透明転写層の好適態様の一つとして、第2透明転写層は、式(M)で表される化合物と、酸基を有するエチレン性不飽和化合物とを含むことが好ましく、1,9-ノナンジオールジアクリレートと、トリシクロデカンジメタノールジアクリレートと、カルボン酸基を有する多官能エチレン性不飽和化合物とを含むことがより好ましく、1,9-ノナンジオールジアクリレートと、トリシクロデカンジメタノールジアクリレートと、ジペンタエリスリトールペンタアクリレートのコハク酸変性体とを含むことが更に好ましい。
 第2透明転写層の好適態様の一つとして、第2透明転写層は、式(M)で表される化合物と、酸基を有するエチレン性不飽和化合物と、後述する熱架橋性化合物とを含むことが好ましく、式(M)で表される化合物と、酸基を有するエチレン性不飽和化合物と、後述するブロックイソシアネート化合物とを含むことがより好ましい。
 第2透明転写層の好適態様の一つとして、第2透明転写層は、現像残渣抑制性、及び、防錆性の点から、2官能のエチレン性不飽和化合物(好ましくは、2官能の(メタ)アクリレート化合物)と、3官能以上のエチレン性不飽和化合物(好ましくは、3官能以上の(メタ)アクリレート化合物)と、を含むことが好ましい。
 2官能のエチレン性不飽和化合物の含有量と、3官能以上のエチレン性不飽和化合物の含有量との質量比(2官能のエチレン性不飽和化合物:3官能以上のエチレン性不飽和化合物)は、10:90~90:10が好ましく、30:70~70:30がより好ましい。
 全てのエチレン性不飽和化合物の合計量に対する、2官能のエチレン性不飽和化合物の含有量は、20質量%~80質量%が好ましく、30質量%~70質量%がより好ましい。
 第2透明転写層における2官能のエチレン性不飽和化合物は、10質量%~60質量%が好ましく、15質量%~40質量%がより好ましい。
 第2透明転写層の好適態様の一つとして、第2透明転写層は、防錆性の点から、化合物M、及び、脂肪族炭化水素環構造を有する2官能エチレン性不飽和化合物を含むことが好ましい。
 第2透明転写層の好適態様の一つとして、第2透明転写層は、基板密着性、現像残渣抑制性、及び、防錆性の点から、化合物M、及び、酸基を有するエチレン性不飽和化合物を含むことが好ましく、化合物M、脂肪族炭化水素環構造を有する2官能エチレン性不飽和化合物、及び、酸基を有するエチレン性不飽和化合物を含むことがより好ましく、化合物M、脂肪族炭化水素環構造を有する2官能エチレン性不飽和化合物、3官能以上のエチレン性不飽和化合物、及び、酸基を有するエチレン性不飽和化合物を含むことが更に好ましく、化合物M、脂肪族炭化水素環構造を有する2官能エチレン性不飽和化合物、3官能以上のエチレン性不飽和化合物、酸基を有するエチレン性不飽和化合物、及び、ウレタン(メタ)アクリレート化合物を含むことが特に好ましい。
 第2透明転写層の好適態様の一つとして、第2透明転写層は、基板密着性、現像残渣抑制性、及び、防錆性の点から、1,9-ノナンジオールジアクリレート、及び、カルボン酸基を有する多官能エチレン性不飽和化合物を含むことが好ましく、1,9-ノナンジオールジアクリレート、トリシクロデカンジメタノールジアクリレート、及び、カルボン酸基を有する多官能エチレン性不飽和化合物を含むことが好ましく、1,9-ノナンジオールジアクリレート、トリシクロデカンジメタノールジアクリレート、ジペンタエリスリトールヘキサアクリレート、及び、カルボン酸基を有するエチレン性不飽和化合物を含むことが更に好ましく、1,9-ノナンジオールジアクリレート、トリシクロデカンジメタノールジアクリレート、カルボン酸基を有するエチレン性不飽和化合物、及び、ウレタンアクリレート化合物を含むことが特に好ましい。
 第2透明転写層は、エチレン性不飽和化合物として、単官能エチレン性不飽和化合物を含んでいてもよい。上記エチレン性不飽和化合物における2官能以上のエチレン性不飽和化合物の含有量は、第2透明転写層に含まれる全てのエチレン性不飽和化合物の総含有量に対し、60質量%~100質量%が好ましく、80質量%~100質量%がより好ましく、90質量%~100質量%が更に好ましい。
 重合性化合物(特に、エチレン性不飽和化合物)は、1種単独で使用してもよいし、2種以上を併用することもできる。
 第2透明転写層における重合性化合物(特に、エチレン性不飽和化合物)の含有量は、第2透明転写層の全質量に対して、1質量%~70質量%が好ましく、5質量%~70質量%がより好ましく、5質量%~60質量%が更に好ましく、5質量%~50質量%が特に好ましい。
(重合開始剤)
 第2透明転写層は、重合開始剤を含んでいてもよい。重合開始剤としては、光重合開始剤が好ましい。光重合開始剤としては特に制限はなく、公知の光重合開始剤を使用できる。光重合開始剤としては、オキシムエステル構造を有する光重合開始剤(以下、「オキシム系光重合開始剤」ともいう。)、α-アミノアルキルフェノン構造を有する光重合開始剤(以下、「α-アミノアルキルフェノン系光重合開始剤」ともいう。)、α-ヒドロキシアルキルフェノン構造を有する光重合開始剤(以下、「α-ヒドロキシアルキルフェノン系重合開始剤」ともいう。)、アシルフォスフィンオキサイド構造を有する光重合開始剤(以下、「アシルフォスフィンオキサイド系光重合開始剤」ともいう。)、及び、N-フェニルグリシン構造を有する光重合開始剤(以下、「N-フェニルグリシン系光重合開始剤」ともいう。)等が挙げられる。
 光重合開始剤は、オキシム系光重合開始剤、α-アミノアルキルフェノン系光重合開始剤、α-ヒドロキシアルキルフェノン系重合開始剤、及び、N-フェニルグリシン系光重合開始剤よりなる群から選ばれる少なくとも1種を含むことが好ましく、オキシム系光重合開始剤、α-アミノアルキルフェノン系光重合開始剤、及び、N-フェニルグリシン系光重合開始剤よりなる群から選ばれる少なくとも1種を含むことがより好ましい。
 光重合開始剤としては、例えば、特開2011-95716号公報の段落[0031]~[0042]、及び、特開2015-014783号公報の段落[0064]~[0081]に記載された重合開始剤を用いてもよい。
 光重合開始剤の市販品としては、1-[4-(フェニルチオ)フェニル]-1,2-オクタンジオン-2-(O-ベンゾイルオキシム)〔商品名:IRGACURE(登録商標) OXE-01、BASF社製〕、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン-1-(O-アセチルオキシム)〔商品名:IRGACURE(登録商標) OXE-02、BASF社製〕、IRGACURE(登録商標)OXE03(BASF社製)、IRGACURE(登録商標)OXE04(BASF社製)、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン〔商品名:Omnirad(登録商標)379EG、IGM Resins B.V社製〕、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン〔商品名:Omnirad(登録商標)907、IGM Resins B.V社製〕、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチルプロピオニル)ベンジル]フェニル}-2-メチルプロパン-1-オン〔商品名:Omnirad(登録商標)127、IGM Resins B.V社製〕、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタノン-1〔商品名:Omnirad(登録商標)369、IGM Resins B.V社製〕、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン〔商品名:Omnirad(登録商標)1173、IGM Resins B.V社製〕、1-ヒドロキシシクロヘキシルフェニルケトン〔商品名:Omnirad(登録商標)184、IGM Resins B.V社製〕、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン〔商品名:Omnirad(登録商標)651、IGM Resins B.V社製〕等、オキシムエステル系の〔商品名:Lunar(登録商標) 6、DKSHジャパン株式会社製〕、1-[4-(フェニルチオ)フェニル]-3-シクロペンチルプロパン-1,2-ジオン-2-(O-ベンゾイルオキシム)(商品名:TR-PBG-305、常州強力電子新材料社製)、1,2-プロパンジオン-3-シクロヘキシル-1-[9-エチル-6-(2-フラニルカルボニル)-9H-カルバゾール-3-イル]-2-(O-アセチルオキシム)(商品名:TR-PBG-326、常州強力電子新材料社製)、3-シクロヘキシル-1-(6-(2-(ベンゾイルオキシイミノ)ヘキサノイル)-9-エチル-9H-カルバゾール-3-イル)-プロパン-1,2-ジオン-2-(O-ベンゾイルオキシム)(商品名:TR-PBG-391、常州強力電子新材料社製)、APi-307(1-(ビフェニル-4-イル)-2-メチル-2-モルホリノプロパン-1-オン、Shenzhen UV-ChemTech Ltd.製)等が挙げられる。
 重合開始剤は、1種単独で使用してもよいし、2種以上を使用することもできる。2種以上を併用する場合は、オキシム系光重合開始剤と、α-アミノアルキルフェノン系光重合開始剤及びα-ヒドロキシアルキルフェノン系重合開始剤から選ばれる少なくとも1種と、を使用することが好ましい。
 第2透明転写層が重合開始剤を含む場合、重合開始剤の含有量の下限は、第2透明転写層の全質量に対して、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましく、1.0質量%以上であることが更に好ましい。重合開始剤の上限は、第2透明転写層の全質量に対して、10質量%以下であることが好ましく、5質量%以下であることがより好ましい。
(複素環化合物)
 第2透明転写層は、複素環化合物を含んでいてもよい。複素環化合物が有する複素環は、単環及び多環のいずれの複素環でもよい。複素環化合物が有するヘテロ原子としては、窒素原子、酸素原子、及び、硫黄原子が挙げられる。複素環化合物は、窒素原子、酸素原子、及び、硫黄原子からなる群より選ばれる少なくとも1種の原子を有することが好ましく、窒素原子を有することがより好ましい。
 複素環化合物としては、例えば、トリアゾール化合物、ベンゾトリアゾール化合物、テトラゾール化合物、チアジアゾール化合物、トリアジン化合物、ローダニン化合物、チアゾール化合物、ベンゾチアゾール化合物、ベンゾイミダゾール化合物、ベンゾオキサゾール化合物、及び、ピリミジン化合物が挙げられる。上記のなかでも、複素環化合物としては、トリアゾール化合物、ベンゾトリアゾール化合物、テトラゾール化合物、チアジアゾール化合物、トリアジン化合物、ローダニン化合物、チアゾール化合物、ベンゾイミダゾール化合物、及び、ベンゾオキサゾール化合物からなる群より選ばれる少なくとも1種の化合物が好ましく、トリアゾール化合物、ベンゾトリアゾール化合物、テトラゾール化合物、チアジアゾール化合物、チアゾール化合物、ベンゾチアゾール化合物、ベンゾイミダゾール化合物、及び、ベンゾオキサゾール化合物からなる群より選ばれる少なくとも1種の化合物がより好ましい。
 複素環化合物の好ましい具体例を以下に示す。トリアゾール化合物及びベンゾトリアゾール化合物としては、以下の化合物が例示できる。
Figure JPOXMLDOC01-appb-C000014

 
Figure JPOXMLDOC01-appb-C000015
 テトラゾール化合物としては、以下の化合物が例示できる。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 チアジアゾール化合物としては、以下の化合物が例示できる。
Figure JPOXMLDOC01-appb-C000018
 トリアジン化合物としては、以下の化合物が例示できる。
Figure JPOXMLDOC01-appb-C000019
 ローダニン化合物としては、以下の化合物が例示できる。
Figure JPOXMLDOC01-appb-C000020
 チアゾール化合物としては、以下の化合物が例示できる。
Figure JPOXMLDOC01-appb-C000021
 ベンゾチアゾール化合物としては、以下の化合物が例示できる。
Figure JPOXMLDOC01-appb-C000022
 ベンゾイミダゾール化合物としては、以下の化合物が例示できる。
Figure JPOXMLDOC01-appb-C000023

 
Figure JPOXMLDOC01-appb-C000024
 ベンゾオキサゾール化合物としては、以下の化合物が例示できる。
Figure JPOXMLDOC01-appb-C000025
 複素環化合物は、1種単独で使用してもよいし、2種以上を併用することもできる。
 第2透明転写層が複素環化合物を含む場合、複素環化合物の含有量は、第2透明転写層の全質量に対して、0.01質量%~20.0質量%が好ましく、0.10質量%~10.0質量%がより好ましく、0.30質量%~8.0質量%が更に好ましく、0.50質量%~5.0質量%が特に好ましい。
(脂肪族チオール化合物)
 第2透明転写層は、脂肪族チオール化合物を含んでいてもよい。第2透明転写層が脂肪族チオール化合物を含むことで、脂肪族チオール化合物がエチレン性不飽和基を有するラジカル重合性化合物との間でエン-チオール反応することで、形成される膜の硬化収縮が抑えられ、応力が緩和される。
 脂肪族チオール化合物としては、単官能の脂肪族チオール化合物、又は、多官能の脂肪族チオール化合物(すなわち、2官能以上の脂肪族チオール化合物)が好ましい。上記のなかでも、脂肪族チオール化合物としては、形成されるパターンの密着性(特に、露光後における密着性)の点から、多官能の脂肪族チオール化合物が好ましい。本開示において、「多官能の脂肪族チオール化合物」とは、チオール基(「メルカプト基」ともいう。)を分子内に2個以上有する脂肪族化合物を意味する。
 多官能の脂肪族チオール化合物としては、分子量が100以上の低分子化合物が好ましい。具体的には、多官能の脂肪族チオール化合物の分子量は、100~1,500がより好ましく、150~1,000が更に好ましい。
 多官能の脂肪族チオール化合物の官能基数としては、例えば、形成されるパターンの密着性の点から、2~10が好ましく、2~8がより好ましく、2~6が更に好ましい。
 多官能の脂肪族チオール化合物としては、例えば、トリメチロールプロパントリス(3-メルカプトブチレート)、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、1,3,5-トリス(3-メルカプトブチリルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、トリメチロールエタントリス(3-メルカプトブチレート)、トリス[(3-メルカプトプロピオニルオキシ)エチル]イソシアヌレート、トリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、テトラエチレングリコールビス(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、エチレングリコールビスチオプロピオネート、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、1,2-エタンジチオール、1,3-プロパンジチオール、1,6-ヘキサメチレンジチオール、2,2’-(エチレンジチオ)ジエタンチオール、meso-2,3-ジメルカプトコハク酸、及び、ジ(メルカプトエチル)エーテルが挙げられる。   
 上記のなかでも、多官能の脂肪族チオール化合物としては、トリメチロールプロパントリス(3-メルカプトブチレート)、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、及び、1,3,5-トリス(3-メルカプトブチリルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオンからなる群より選ばれる少なくとも1種の化合物が好ましい。
 単官能の脂肪族チオール化合物としては、例えば、1-オクタンチオール、1-ドデカンチオール、β-メルカプトプロピオン酸、メチル-3-メルカプトプロピオネート、2-エチルヘキシル-3-メルカプトプロピオネート、n-オクチル-3-メルカプトプロピオネート、メトキシブチル-3-メルカプトプロピオネート、及び、ステアリル-3-メルカプトプロピオネートが挙げられる。
 第2透明転写層は、1種単独の脂肪族チオール化合物を含んでいてもよく、2種以上の脂肪族チオール化合物を含んでいてもよい。
 第2透明転写層が脂肪族チオール化合物を含む場合、脂肪族チオール化合物の含有量は、第2透明転写層の全質量に対して、5質量%以上が好ましく、5質量%~50質量%がより好ましく、5質量%~30質量%が更に好ましく、8質量%~20質量%が特に好ましい。
(熱架橋性化合物)
 第2透明転写層は、得られる硬化膜の強度、及び、得られる未硬化膜の粘着性の点から、熱架橋性化合物を含むことが好ましい。なお、本開示においては、後述するエチレン性不飽和基を有する熱架橋性化合物は、エチレン性不飽和化合物としては扱わず、熱架橋性化合物として扱うものとする。
 熱架橋性化合物としては、エポキシ化合物、オキセタン化合物、メチロール化合物、及び、ブロックイソシアネート化合物が挙げられる。なかでも、得られる硬化膜の強度、及び、得られる未硬化膜の粘着性の点から、ブロックイソシアネート化合物が好ましい。
 ブロックイソシアネート化合物は、ヒドロキシ基及びカルボキシ基と反応するため、例えば、重合体及びエチレン性不飽和基を有するラジカル重合性化合物の少なくとも一方が、ヒドロキシ基及びカルボキシ基の少なくとも一方を有する場合には、形成される膜の親水性が下がり、保護膜としての機能が強化される傾向がある。なお、ブロックイソシアネート化合物とは、「イソシアネートのイソシアネート基をブロック剤で保護(いわゆる、マスク)した構造を有する化合物」を指す。
 ブロックイソシアネート化合物の解離温度は、特に制限されないが、100℃~160℃が好ましく、130℃~150℃がより好ましい。ブロックイソシアネートの解離温度とは、「示差走査熱量計を用いて、DSC(Differential scanning calorimetry)分析にて測定した場合における、ブロックイソシアネートの脱保護反応に伴う吸熱ピークの温度」を意味する。示差走査熱量計としては、例えば、セイコーインスツルメンツ株式会社製の示差走査熱量計(型式:DSC6200)を好適に使用できる。但し、示差走査熱量計は、これに限定されない。
 解離温度が100℃~160℃であるブロック剤としては、活性メチレン化合物〔マロン酸ジエステル(マロン酸ジメチル、マロン酸ジエチル、マロン酸ジn-ブチル、マロン酸ジ2-エチルヘキシル等)〕、オキシム化合物(ホルムアルドオキシム、アセトアルドオキシム、アセトオキシム、メチルエチルケトオキシム、及び、シクロヘキサノンオキシム等の分子内に-C(=N-OH)-で表される構造を有する化合物)が挙げられる。
 これらのなかでも、解離温度が100℃~160℃であるブロック剤としては、例えば、保存安定性の点から、オキシム化合物から選ばれる少なくとも1種が好ましい。
 ブロックイソシアネート化合物は、例えば、膜の脆性改良、被転写体との密着力向上等の点から、イソシアヌレート構造を有することが好ましい。イソシアヌレート構造を有するブロックイソシアネート化合物は、例えば、ヘキサメチレンジイソシアネートをイソシアヌレート化して保護することにより得られる。イソシアヌレート構造を有するブロックイソシアネート化合物のなかでも、オキシム化合物をブロック剤として用いたオキシム構造を有する化合物が、オキシム構造を有さない化合物よりも解離温度を好ましい範囲にしやすく、かつ、現像残渣を少なくしやすいという点から好ましい。
 ブロックイソシアネート化合物は、重合性基を有していてもよい。重合性基としては、特に制限はなく、公知の重合性基を用いることができ、ラジカル重合性基が好ましい。重合性基としては、(メタ)アクリロキシ基、(メタ)アクリルアミド基、及び、スチリル基等のエチレン性不飽和基、並びに、グリシジル基等のエポキシ基を有する基が挙げられる。なかでも、重合性基としては、エチレン性不飽和基が好ましく、(メタ)アクリロキシ基がより好ましく、アクリロキシ基が更に好ましい。
 ブロックイソシアネート化合物としては、市販品を使用できる。ブロックイソシアネート化合物の市販品の例としては、カレンズ(登録商標) AOI-BM、カレンズ(登録商標) MOI-BM、カレンズ(登録商標) MOI-BP等(以上、昭和電工株式会社製)、ブロック型のデュラネートシリーズ(例えば、デュラネート(登録商標) TPA-B80E、デュラネート(登録商標) WT32-B75P等、旭化成ケミカルズ株式会社製)が挙げられる。
 熱架橋性化合物は、1種単独で使用してもよいし、2種以上を併用することもできる。   
 第2透明転写層が熱架橋性化合物を含む場合、熱架橋性化合物の含有量は、第2透明転写層の全質量に対して、1質量%~50質量%が好ましく、5質量%~30質量%がより好ましい。
(界面活性剤)
 第2透明転写層は、界面活性剤を含んでいてもよい。界面活性剤としては、例えば、特許第4502784号公報の段落[0017]、及び、特開2009-237362号公報の段落[0060]~[0071]に記載の界面活性剤が挙げられる。界面活性剤としては、ノニオン系界面活性剤、フッ素系界面活性剤又はシリコーン系界面活性剤が好ましい。
 フッ素系界面活性剤の市販品としては、例えば、メガファック F-171、F-172、F-173、F-176、F-177、F-141、F-142、F-143、F-144、F-437、F-475、F-477、F-479、F-482、F-551-A、F-552、F-554、F-555-A、F-556、F-557、F-558、F-559、F-560、F-561、F-565、F-563、F-568、F-575、F-780、EXP、MFS-330、MFS-578、MFS-579、MFS-586、MFS-587、R-41、R-41-LM、R-01、R-40、R-40-LM、RS-43、TF-1956、RS-90、R-94、RS-72-K、DS-21(以上、DIC株式会社製)、フロラード FC430、FC431、FC171(以上、住友スリーエム株式会社製)、サーフロンS-382、SC-101、SC-103、SC-104、SC-105、SC-1068、SC-381、SC-383、S-393、KH-40(以上、AGC株式会社製)、PolyFox PF636、PF656、PF6320、PF6520、PF7002(以上、OMNOVA社製)、フタージェント 710FL、710FM、610FM、601AD、601ADH2、602A、215M、245F、251、212M、250、209F、222F、208G、710LA、710FS、730LM、650AC、681、683(以上、株式会社NEOS製)等が挙げられる。
 フッ素系界面活性剤としては、フッ素原子を含有する官能基を持つ分子構造を有し、熱を加えるとフッ素原子を含有する官能基の部分が切断されてフッ素原子が揮発するアクリル系化合物も好適に使用できる。このようなフッ素系界面活性剤としては、DIC株式会社製のメガファック DSシリーズ(化学工業日報(2016年2月22日)、日経産業新聞(2016年2月23日))、例えばメガファック DS-21が挙げられる。フッ素系界面活性剤としては、フッ素化アルキル基またはフッ素化アルキレンエーテル基を有するフッ素原子含有ビニルエーテル化合物と、親水性のビニルエーテル化合物との重合体を用いることも好ましい。
 フッ素系界面活性剤としては、ブロックポリマーも使用できる。
 フッ素系界面活性剤としては、フッ素原子を有する(メタ)アクリレート化合物に由来する構成単位と、アルキレンオキシ基(好ましくはエチレンオキシ基、プロピレンオキシ基)を2以上(好ましくは5以上)有する(メタ)アクリレート化合物に由来する構成単位と、を含む含フッ素高分子化合物も好ましく使用できる。
 フッ素系界面活性剤としては、エチレン性不飽和結合含有基を側鎖に有する含フッ素重合体も使用できる。メガファック RS-101、RS-102、RS-718K、RS-72-K(以上、DIC株式会社製)等が挙げられる。
 フッ素系界面活性剤としては、環境適性向上の観点から、パーフルオロオクタン酸(PFOA)及びパーフルオロオクタンスルホン酸(PFOS)等の炭素数が7以上の直鎖状パーフルオロアルキル基を有する化合物の代替材料に由来する界面活性剤であることが好ましい。
 ノニオン系界面活性剤としては、グリセロール、トリメチロールプロパン、トリメチロールエタン並びにそれらのエトキシレート及びプロポキシレート(例えば、グリセロールプロポキシレート、グリセロールエトキシレート等)、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート、ソルビタン脂肪酸エステル、プルロニック(登録商標) L10、L31、L61、L62、10R5、17R2、25R2(以上、BASF社製)、テトロニック 304、701、704、901、904、150R1(以上、BASF社製)、ソルスパース 20000(以上、日本ルーブリゾール株式会社製)、NCW-101、NCW-1001、NCW-1002(以上、富士フイルム和光純薬株式会社製)、パイオニン D-6112、D-6112-W、D-6315(以上、竹本油脂株式会社製)、オルフィンE1010、サーフィノール104、400、440(以上、日信化学工業株式会社製)等が挙げられる。
 シリコーン系界面活性剤としては、シロキサン結合からなる直鎖状ポリマー、及び、側鎖や末端に有機基を導入した変性シロキサンポリマーが挙げられる。
 シリコーン系界面活性剤の具体例としては、DOWSIL 8032 ADDITIVE、トーレシリコーンDC3PA、トーレシリコーンSH7PA、トーレシリコーンDC11PA、トーレシリコーンSH21PA、トーレシリコーンSH28PA、トーレシリコーンSH29PA、トーレシリコーンSH30PA、トーレシリコーンSH8400(以上、東レ・ダウコーニング株式会社製)並びに、X-22-4952、X-22-4272、X-22-6266、KF-351A、K354L、KF-355A、KF-945、KF-640、KF-642、KF-643、X-22-6191、X-22-4515、KF-6004、KP-341、KF-6001、KF-6002(以上、信越化学工業株式会社製)、F-4440、TSF-4300、TSF-4445、TSF-4460、TSF-4452(以上、モメンティブ・パフォーマンス・マテリアルズ社製)、BYK307、BYK323、BYK330(以上、ビックケミー社製)等が挙げられる。
 界面活性剤は、1種単独で使用してもよいし、2種以上を併用することもできる。
 第2透明転写層が界面活性剤を含む場合、界面活性剤の含有量は、第2透明転写層の全質量に対して、0.01質量%~3.0質量%が好ましく、0.01質量%~1.0質量%がより好ましく、0.05質量%~0.80質量%が更に好ましい。
(重合禁止剤)
 第2透明転写層は、重合禁止剤を含んでいてもよい。重合禁止剤とは、重合反応を遅延又は禁止させる機能を有する化合物を意味する。重合禁止剤としては、例えば、重合禁止剤として用いられる公知の化合物を使用できる。
 重合禁止剤としては、例えば、フェノチアジン、ビス-(1-ジメチルベンジル)フェノチアジン、及び、3,7-ジオクチルフェノチアジン等のフェノチアジン化合物;ビス[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオン酸][エチレンビス(オキシエチレン)]2,4-ビス〔(ラウリルチオ)メチル〕-o-クレゾール、1,3,5-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、及び、ペンタエリスリトールテトラキス3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート等のヒンダードフェノール化合物;4-ニトロソフェノール、N-ニトロソジフェニルアミン、N-ニトロソシクロヘキシルヒドロキシルアミン、及び、N-ニトロソフェニルヒドロキシルアミン等のニトロソ化合物又はその塩;メチルハイドロキノン、t-ブチルハイドロキノン、2,5-ジ-t-ブチルハイドロキノン、及び、4-ベンゾキノン等のキノン化合物;4-メトキシフェノール、4-メトキシ-1-ナフトール、及び、t-ブチルカテコール等のフェノール化合物;ジブチルジチオカルバミン酸銅、ジエチルジチオカルバミン酸銅、ジエチルジチオカルバミン酸マンガン、及び、ジフェニルジチオカルバミン酸マンガン等の金属塩化合物が挙げられる。なかでも、本発明の効果がより優れる点で、重合禁止剤としては、フェノチアジン化合物、ニトロソ化合物又はその塩、及び、ヒンダードフェノール化合物からなる群より選ばれる少なくとも1種が好ましく、フェノチアジン、ビス[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオン酸]、[エチレンビス(オキシエチレン)]2,4-ビス〔(ラウリルチオ)メチル〕-o-クレゾール、1,3,5-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)、p-メトキシフェノール、及び、N-ニトロソフェニルヒドロキシルアミンアルミニウム塩がより好ましい。
 重合禁止剤は、1種単独で使用してもよいし、2種以上を併用することもできる。
 第2透明転写層が重合禁止剤を含む場合、重合禁止剤の含有量は、第2透明転写層の全質量に対して、0.001質量%~5.0質量%が好ましく、0.01質量%~3.0質量%がより好ましく、0.02質量%~2.0質量%が更に好ましい。重合禁止剤の含有量は、重合性化合物の全質量に対しては、0.005質量%~5.0質量%が好ましく、0.01質量%~3.0質量%がより好ましく、0.01質量%~1.0質量%が更に好ましい。
(水素供与性化合物)
 第2透明転写層は、水素供与性化合物を含んでいてもよい。水素供与性化合物は、光重合開始剤の活性光線に対する感度を一層向上させる、及び、酸素による重合性化合物の重合阻害を抑制する等の作用を有する。水素供与性化合物としては、例えば、アミン類、及び、アミノ酸化合物が挙げられる。
 アミン類としては、例えば、M.R.Sanderら著「Journal of Polymer Society」第10巻3173頁(1972)、特公昭44-020189号公報、特開昭51-082102号公報、特開昭52-134692号公報、特開昭59-138205号公報、特開昭60-084305号公報、特開昭62-018537号公報、特開昭64-033104号公報、及び、Research Disclosure 33825号等に記載の化合物が挙げられる。より具体的には、アミン類としては、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、トリス(4-ジメチルアミノフェニル)メタン(別名:ロイコクリスタルバイオレット)、トリエタノールアミン、p-ジメチルアミノ安息香酸エチルエステル、p-ホルミルジメチルアニリン、及び、p-メチルチオジメチルアニリンが挙げられる。なかでも、本発明の効果がより優れる点で、アミン類としては、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、及び、トリス(4-ジメチルアミノフェニル)メタンからなる群より選ばれる少なくとも1種が好ましい。
 アミノ酸化合物としては、例えば、N-フェニルグリシン、N-メチル-N-フェニルグリシン、N-エチル-N-フェニルグリシンが挙げられる。
 なかでも、本発明の効果がより優れる点で、アミノ酸化合物としては、N-フェニルグリシンが好ましい。
 水素供与性化合物としては、例えば、特公昭48-042965号公報に記載の有機金属化合物(トリブチル錫アセテート等)、特公昭55-034414号公報に記載の水素供与体、及び、特開平6-308727号公報に記載のイオウ化合物(トリチアン等)も挙げられる。
 水素供与性化合物は、1種単独で使用してもよいし、2種以上を併用することもできる。
 第2透明転写層が水素供与性化合物を含む場合、水素供与性化合物の含有量は、重合成長速度と連鎖移動のバランスとによる硬化速度の向上の点から、第2透明転写層の全質量に対して、0.01質量%~10.0質量%が好ましく、0.01質量%~8.0質量%がより好ましく、0.03質量%~5.0質量%が更に好ましい。
(不純物等)
 第2透明転写層は、所定量の不純物を含んでいてもよい。不純物の具体例としては、ナトリウム、カリウム、マグネシウム、カルシウム、鉄、マンガン、銅、アルミニウム、チタン、クロム、コバルト、ニッケル、亜鉛、スズ、ハロゲン及びこれらのイオンが挙げられる。なかでも、ハロゲン化物イオン、ナトリウムイオン、及び、カリウムイオンは不純物として混入し易いため、第2透明転写層における不純物の含有量は、下記の含有量にすることが好ましい。
 第2透明転写層における不純物の含有量は、質量基準で、80ppm以下が好ましく、10ppm以下がより好ましく、2ppm以下が更に好ましい。第2透明転写層における不純物の含有量は、質量基準で、1ppb以上又は0.1ppm以上とすることができる。不純物を上記範囲にする方法としては、第2透明転写層の原料として不純物の含有量が少ないものを選択すること、及び、第2透明転写層の形成時に不純物の混入を防ぐこと、洗浄して除去することが挙げられる。このような方法により、不純物量を上記範囲内とすることができる。不純物は、例えば、ICP(Inductively Coupled Plasma)発光分光分析法、原子吸光分光法、及び、イオンクロマトグラフィー法等の公知の方法で定量できる。
 第2透明転写層における、ベンゼン、ホルムアルデヒド、トリクロロエチレン、1,3-ブタジエン、四塩化炭素、クロロホルム、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、及び、ヘキサン等の化合物の含有量は、少ないことが好ましい。これら化合物の第2透明転写層中における含有量の上限としては、質量基準で、100ppm以下が好ましく、20ppm以下がより好ましく、4ppm以下が更に好ましい。これら化合物の第2透明転写層中における含有量の下限は、質量基準で、10ppb以上とすることができ、100ppb以上とすることができる。これら化合物は、上記の金属の不純物と同様の方法で含有量を抑制できる。上記化合物の含有量は、公知の測定法により定量できる。
 第2透明転写層における水の含有量は、信頼性及びラミネート性を向上させる点から、0.01質量%~1.0質量%が好ましく、0.05質量%~0.5質量%がより好ましい。
(残存モノマー)
 第2透明転写層は、上述したアルカリ可溶性樹脂の各構成単位の残存モノマーを含む場合がある。残存モノマーの含有量の上限は、パターニング性、及び、信頼性の点から、アルカリ可溶性樹脂全質量に対して、5,000質量ppm以下が好ましく、2,000質量ppm以下がより好ましく、500質量ppm以下が更に好ましい。残存モノマーの含有量の下限は、特に制限されないが、1質量ppm以上が好ましく、10質量ppm以上がより好ましい。
 アルカリ可溶性樹脂の各構成単位の残存モノマーの含有量の上限は、パターニング性、及び、信頼性の点から、第2透明転写層の全質量に対して、3,000質量ppm以下が好ましく、600質量ppm以下がより好ましく、100質量ppm以下が更に好ましい。アルカリ可溶性樹脂の各構成単位の残存モノマーの含有量の下限は、特に制限されないが、0.1質量ppm以上が好ましく、1質量ppm以上がより好ましい。
 高分子反応でアルカリ可溶性樹脂を合成する際のモノマーの残存モノマー量も、上記範囲とすることが好ましい。例えば、カルボン酸側鎖にアクリル酸グリシジルを反応させてアルカリ可溶性樹脂を合成する場合には、アクリル酸グリシジルの含有量を上記範囲にすることが好ましい。
 残存モノマーの量は、液体クロマトグラフィー、及び、ガスクロマトグラフィー等の公知の方法で測定できる。
(他の成分)
 第2透明転写層は、既述の成分以外の成分(以下、「他の成分」ともいう。)を含んでいてもよい。他の成分としては、例えば、着色剤、酸化防止剤、及び、粒子(例えば、金属酸化物粒子)が挙げられる。他の成分としては、特開2000-310706号公報の段落[0058]~[0071]に記載のその他の添加剤も挙げられる。
 粒子としては、金属酸化物粒子が好ましい。金属酸化物粒子における金属には、B、Si、Ge、As、Sb、及び、Te等の半金属も含まれる。
 粒子の平均一次粒子径は、例えば、硬化膜の透明性の点から、1nm~200nmが好ましく、3nm~80nmがより好ましい。粒子の平均一次粒子径は、電子顕微鏡を用いて任意の粒子200個の粒子径を測定し、測定結果を算術平均することにより算出される。なお、粒子の形状が球形でない場合には、最も長い辺を粒子径とする。
 第2透明転写層が粒子を含む場合、金属種、及び、大きさ等の異なる粒子を1種のみ含んでいてもよく、2種以上含んでいてもよい。
 第2透明転写層は、粒子を含まないか、或いは、第2透明転写層が粒子を含む場合には、粒子の含有量が第2透明転写層の全質量に対して、0質量%超35質量%以下が好ましく、粒子を含まないか、或いは、粒子の含有量が第2透明転写層の全質量に対して、0質量%超10質量%以下がより好ましく、粒子を含まないか、或いは、粒子の含有量が第2透明転写層の全質量に対して0質量%超5質量%以下が更に好ましく、粒子を含まないか、或いは、粒子の含有量が第2透明転写層の全質量に対して0質量%超1質量%以下が更に好ましく、粒子を含まないことが特に好ましい。
 第2透明転写層は、微量の着色剤(顔料、染料等)を含んでいてもよいが、例えば、透明性の点からは、着色剤を実質的に含まないことが好ましい。第2透明転写層が着色剤を含む場合、着色剤の含有量は、第2透明転写層の全質量に対して、1質量%未満が好ましく、0.1質量%未満がより好ましい。
 酸化防止剤としては、例えば、1-フェニル-3-ピラゾリドン(別名:フェニドン)、1-フェニル-4,4-ジメチル-3-ピラゾリドン、及び、1-フェニル-4-メチル-4-ヒドロキシメチル-3-ピラゾリドン等の3-ピラゾリドン類;ハイドロキノン、カテコール、ピロガロール、メチルハイドロキノン、及び、クロルハイドロキノン等のポリヒドロキシベンゼン類;パラメチルアミノフェノール、パラアミノフェノール、パラヒドロキシフェニルグリシン、及び、パラフェニレンジアミンが挙げられる。なかでも、本発明の効果がより優れる点で、酸化防止剤としては、3-ピラゾリドン類が好ましく、1-フェニル-3-ピラゾリドンがより好ましい。
 第2透明転写層が酸化防止剤を含む場合、酸化防止剤の含有量の下限は、第2透明転写層の全質量に対して、0.001質量%以上が好ましく、0.005質量%以上がより好ましく、0.01質量%以上が更に好ましい。酸化防止剤の含有量の上限は、特に制限されないが、1質量%以下が好ましい。
(第3透明転写層)
 第3透明転写層の成分としては、例えば、既述した第1透明転写層の成分が挙げられる。第3透明転写層の成分の好ましい態様は、既述した第1透明転写層の成分の好ましい態様と同じである。
(第4透明転写層)
 第4透明転写層の成分としては、例えば、既述した第1透明転写層の成分が挙げられる。第4透明転写層の成分の好ましい態様は、既述した第1透明転写層の成分の好ましい態様と同じである。
(第5透明転写層)
 第5透明転写層の成分としては、例えば、既述した第2透明転写層の成分が挙げられる。第5透明転写層の成分の好ましい態様は、既述した第2透明転写層の成分の好ましい態様と同じである。
 以下、実施例により本開示を詳細に説明する。ただし、本開示は、以下の実施例に制限されるものではない。
 以下の実施例において、重量平均分子量は、下記の条件にてゲル浸透クロマトグラフィ(GPC)により測定された。検量線は、東ソー株式会社製「標準試料TSK standard,polystyrene」の「F-40」、「F-20」、「F-4」、「F-1」、「A-5000」、「A-2500」、「A-1000」及び「n-プロピルベンゼン」の8サンプルを用いて作成された。
 装置:HLC(登録商標)-8020GPC(東ソー株式会社製)
 カラム:TSKgel(登録商標)、Super MultiporeHZ-H(東ソー株式会社、4.6mmID×15cm)を3本
 溶離液:THF(テトラヒドロフラン)
 試料濃度:0.45質量%
 流速:0.35mL/分
 サンプル注入量:10μL
 測定温度:40℃
 検出器:示差屈折計(RI)
<材料A-1~A-12>
 以下の表1の記載に従って、材料A-1~A-12を調製した。各材料は、第2透明転写層又は第5透明転写層の原材料として使用される組成物である。表1に記載された各成分の量は、質量部を表す。
Figure JPOXMLDOC01-appb-T000026
(化合物B)
 表1に記載された化合物Bは、以下の化学式によって表される。
Figure JPOXMLDOC01-appb-C000027
(化合物C)
 表1に記載された化合物Cは、以下の化学式によって表される。
Figure JPOXMLDOC01-appb-C000028
(P-1溶液)
 P-1溶液は、以下の化学式によって表される重合体P-1を含む溶液である。重合体P-1の構成単位の組成比は、モル比によって表される。P-1溶液は、以下の方法により製造された。
Figure JPOXMLDOC01-appb-C000029
-重合工程-
 2,000mLのフラスコに、プロピレングリコールモノメチルエーテルアセテート(三和化学産業株式会社製、商品名:PGM-Ac、60g)及びプロピレングリコールモノメチルエーテル(三和化学産業株式会社製、商品名:PGM、240g)を導入した。得られた液体を、250rpm(revolutions per minute)の撹拌速度で撹拌しつつ90℃に昇温した。
 メタクリル酸(三菱ケミカル株式会社製、商品名:アクリエステルM、107.1g)、メタクリル酸メチル(三菱ガス化学株式会社製、商品名:MMA、5.46g)及びシクロヘキシルメタクリレート(三菱ガス化学株式会社製、商品名:CHMA、231.42g)を混合し、PGM-Ac(60g)で希釈することにより、滴下液(1)を得た。
 ジメチル2,2’-アゾビス(2-メチルプロピオネート)(富士フイルム和光純薬株式会社製、商品名:V-601、9.637g)をPGM-Ac(136.56g)で溶解させることにより、滴下液(2)を得た。
 滴下液(1)と滴下液(2)とを同時に3時間かけて、上述した2,000mLのフラスコ(詳細には、90℃に昇温された液体が入った2,000mLのフラスコ)に滴下した。次に、滴下液(1)の容器をPGM-Ac(12g)で洗浄し、洗浄液を上記2,000mLのフラスコに滴下した。次に、滴下液(2)の容器をPGM-Ac(6g)で洗浄し、洗浄液を上記2,000mLのフラスコに滴下した。これらの滴下中、上記2,000mLのフラスコ内の反応液を90℃に保ち、250rpmの撹拌速度で撹拌した。更に、後反応として、90℃で1時間撹拌した。
 後反応後の反応液に、1回目の開始剤の追加添加として、V-601(2.401g)を添加した。更に、V-601の容器をPGM-Ac(6g)で洗浄し、洗浄液を反応液に導入した。その後、90℃で1時間撹拌した。
 次に、2回目の開始剤の追加添加として、V-601(2.401g)を反応液に添加した。更にV-601の容器をPGM-Ac(6g)で洗浄し、洗浄液を反応液に導入した。その後90℃で1時間撹拌した。
 次に、3回目の開始剤の追加添加として、V-601(2.401g)を反応液に添加した。更に、V-601の容器をPGM-Ac(6g)で洗浄し、洗浄液を反応液に導入した。その後90℃で3時間撹拌した。
-付加工程-
 90℃で3時間撹拌後、PGM-Ac(178.66g)を反応液へ導入した。次に、テトラエチルアンモニウムブロミド(富士フイルム和光純薬株式会社製、1.8g)とハイドロキノンモノメチルエーテル(富士フイルム和光純薬株式会社製、0.8g)とを反応液に添加した。更にそれぞれの容器をPGM-Ac(6g)で洗浄し、洗浄液を反応液へ導入した。その後、反応液の温度を100℃まで昇温させた。
 次に、グリシジルメタクリレート(日油株式会社製、商品名:ブレンマーG、76.03g)を1時間かけて反応液に滴下した。ブレンマーGの容器をPGM-Ac(6g)で洗浄し、洗浄液を反応液に導入した。この後、付加反応として、100℃で6時間撹拌した。
 次に、反応液を冷却し、ゴミ取り用のメッシュフィルター(100メッシュ)でろ過し、重合体P-1を含む溶液(1,158g)を得た。重合体P-1を含む溶液の固形分濃度は、36.3質量%であった。重合体P-1の重量平均分子量は27,000であり、重合体P-1の数平均分子量は15,000であり、重合体P-1の酸価は95mgKOH/gであった。
(P-2溶液)
 P-2溶液は、以下の化学式によって表される重合体P-2を含む溶液である。重合体P-2の構成単位の組成比は、モル比によって表される。P-2溶液は、以下の方法により製造された。
Figure JPOXMLDOC01-appb-C000030
 プロピレングリコールモノメチルエーテル(82.4g)をフラスコに仕込み、窒素気流下で90℃に加熱した。フラスコに、スチレン(38.4g)、ジシクロペンタニルメタクリレート(30.1g)及びメタクリル酸(34.0g)をプロピレングリコールモノメチルエーテル20gに溶解させた溶液、そして、重合開始剤V-601(富士フイルム和光純薬株式会社製、5.4g)をプロピレングリコールモノメチルエーテルアセテート(43.6g)に溶解させた溶液を同時に3時間かけて滴下した。滴下終了後、1時間おきにV-601(0.75g)を3回添加し、更に3時間反応させた。反応液を、プロピレングリコールモノメチルエーテルアセテート(58.4g)及びプロピレングリコールモノメチルエーテル(11.7g)で希釈した。空気気流下、反応液を100℃に昇温し、テトラエチルアンモニウムブロミド(0.53g)及びp-メトキシフェノール(0.26g)を添加した。得られた混合物に、グリシジルメタクリレート(日油株式会社製ブレンマーGH、25.5g)を20分かけて滴下した。得られた混合物を100℃で7時間反応させ、重合体P-2を含む溶液を得た。重合体P-2を含む溶液の固形分濃度は36.5質量%であった。重合体P-2の重量平均分子量は17,000であり、重合体P-2の分散度は2.4であり、重合体P-2の酸価は95mgKOH/gであった。ガスクロマトグラフィーを用いて測定した残存モノマー量はいずれのモノマーにおいても重合体P-2の固形分に対し0.1質量%未満であった。
(P-3溶液)
 P-3溶液は、以下の化学式によって表される重合体P-3を含む溶液である。重合体P-3の構成単位の組成比は、モル比によって表される。P-3溶液は、以下の方法により製造された。
Figure JPOXMLDOC01-appb-C000031
 プロピレングリコールモノメチルエーテル(113.5g)をフラスコに仕込み窒素気流下90℃に加熱した。フラスコに、スチレン(172g)、メタクリル酸メチル(4.7g)及びメタクリル酸(112.1g)をプロピレングリコールモノメチルエーテル30gに溶解させた溶液、そして、重合開始剤V-601(富士フイルム和光純薬株式会社製、27.6g)をプロピレングリコールモノメチルエーテル(57.7g)に溶解させた溶液を同時に3時間かけて滴下した。滴下終了後、1時間おきにV-601(2.5g)を3回添加し、更に3時間反応させた。反応液を、プロピレングリコールモノメチルエーテルアセテート(160.7g)及びプロピレングリコールモノメチルエーテル(233.3g)で希釈した。空気気流下、反応液を100℃に昇温し、テトラエチルアンモニウムブロミド(1.8g)及びp-メトキシフェノール(0.86g)を添加した。得られた混合物に、グリシジルメタクリレート(日油株式会社製ブレンマーG、71.9g)を20分かけて滴下した。得られた混合物を100℃で7時間反応させ、重合体P-3を含む溶液を得た。重合体P-3を含む溶液の固形分濃度は36.2質量%であった。重合体P-3の重量平均分子量は18,000であり、重合体P-3の分散度は2.3であり、重合体P-3の酸価は124mgKOH/gであった。ガスクロマトグラフィーを用いて測定した残存モノマー量はいずれのモノマーにおいても重合体P-3の固形分に対し0.1質量%未満であった。
(P-4溶液)
 P-4溶液は、以下の化学式によって表される重合体P-4を含む溶液である。重合体P-4の構成単位の組成比は、モル比によって表される。P-4溶液は、以下の方法により製造された。
Figure JPOXMLDOC01-appb-C000032
 P-3溶液の製造において、モノマーの種類及び添加量を変更することにより、重合体P-4を含む溶液を得た。重合体P-4を含む溶液の固形分濃度は36.2質量%であった。重合体P-4の重量平均分子量は18,000であり、重合体P-4の分散度は2.3であり、重合体P-4の酸価は124mgKOH/gであった。
<材料B-1~B-4>
 以下の表2の記載に従って、材料B-1~B-4を調製した。各材料は、第1透明転写層、第3透明転写層又は第4透明転写層の原材料として使用される組成物である。表2に記載された各成分の量は、質量部を表す。
Figure JPOXMLDOC01-appb-T000033
(メタクリル酸とメタクリル酸アリルとの共重合体)
 表2に記載されたメタクリル酸とメタクリル酸アリルとの共重合体は、以下の方法により製造された。1Lの三口フラスコに1-メトキシプロパノール(東京化成工業株式会社製、270.0g)を導入し、撹拌しつつ窒素気流下で70℃に昇温させた。一方、メタクリル酸アリル(45.6g、富士フイルム和光純薬株式会社製)及びメタクリル酸(14.4g、富士フイルム和光純薬株式会社製)を1-メトキシプロパノール(東京化成工業株式会社製、270.0g)に溶解させ、更にV-65(富士フイルム和光純薬株式会社製、3.94g)を溶解させることで滴下液を作製し、上述の三口フラスコの中に2.5時間かけて滴下液を滴下し。そのまま2時間、撹拌状態を保持し反応を行った。その後、温度を室温まで戻し、撹拌状態のイオン交換水(2.7L)へ滴下し、再沈殿を実施し、懸濁液を得た。ろ紙を引いたヌッチェを用いて懸濁液をろ過し、濾過物をさらにイオン交換水で洗浄し、湿潤状態の粉体を得た。45℃の送風乾燥にかけ、恒量になったことを確認し、粉体として収率70%のメタクリル酸とメタクリル酸アリルとの共重合体を得た。メタクリル酸に由来の構成単位とメタクリル酸アリルに由来の構成単位との比率(メタクリル酸に由来の構成単位:メタクリル酸アリルに由来の構成単位)は、76質量%:24質量%であった。共重合体の重量平均分子量は38,000であった。
<実施例1>
(転写フィルム1-1)
 厚み16μmのポリエチレンテレフタレートフィルムである仮支持体(ルミラー16KS40、東レ株式会社製)の上に、スリット状ノズルを用いて、塗布量を乾燥後の膜厚が3.0μmになる量に調整し、材料A-1を塗布した。次いで、80℃の乾燥温度で溶剤を揮発させて第2透明転写層を形成した。
 第2透明転写層の上に、スリット状ノズルを用いて、塗布量を乾燥後の膜厚が約70nmの膜厚になる量に調整して、材料B-1を塗布した後、70℃の乾燥温度で乾燥させて第1透明転写層を形成した。
 第1透明転写層の上に、保護フィルムとして、厚み16μmのポリエチレンテレフタレート(ルミラー16KS40、東レ株式会社製)を圧着し、転写フィルム1-1を作製した。第1透明転写層の屈折率は1.68であり、第2透明転写層の屈折率は1.53であった。
(転写フィルム1-2)
 厚み16μmのポリエチレンテレフタレートフィルムである仮支持体の上に、スリット状ノズルを用いて、塗布量を、乾燥後の膜厚が8.0μmになる量に調整し、材料A-2を塗布した。次いで、80℃の乾燥温度で溶剤を揮発させて第5透明転写層を形成した。
 材料B-1を用いて、塗布量を、乾燥後の膜厚が約70nmの膜厚になる量に調整して、第5透明転写層の上にスリット状ノズルを用いて塗布した後、70℃の乾燥温度で乾燥させて第4透明転写層を形成した。
 第4透明転写層の上に、保護フィルムとして、厚み16μmのポリエチレンテレフタレート(ルミラー16KS40、東レ株式会社製)を圧着し、転写フィルム1-2を作製した。第4透明転写層の屈折率は1.68であり、第5透明転写層の屈折率は1.51であった。
<タッチセンサ>
(透明膜)
 38μmの厚さ及び1.53の屈折率を有するシクロオレフィンポリマーフィルムに対して、高周波発振機を用いてコロナ放電処理を行い、透明基板を準備した。コロナ放電処理の条件を以下に示す。
 出力電圧:100%
 出力:250W
 電極:直径1.2mmのワイヤー電極
 電極長:240mm
 ワーク電極間の距離:1.5mm
 処理時間:3秒間
 下記表3に記載された材料-Cを、スリット状ノズルを用いて、透明基板のコロナ放電処理面に塗工した後、紫外線照射(積算光量:300mJ/cm)した。次いで、約110℃で乾燥することにより、1.60の屈折率及び80nmの厚さを有する透明膜を形成した。得られた積層体を、透明膜付きフィルムという。
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-C000035
(透明電極パターン)
 透明膜付きフィルムを真空チャンバー内に導入し、SnOの含有率が10質量%であるITOターゲット(インジウム:錫=95:5(モル比))を用いて、直流(DC)マグネトロンスパッタリングにより、透明電極層として40nmの厚さ及び1.82の屈折率を有するITO薄膜を形成し、透明基板と、透明膜と、透明電極層と、をこの順に含む積層体を得た。スパッタリングの条件において、シクロオレフィンポリマーフィルムの加熱温度は150℃であり、アルゴン圧は0.13Paであり、酸素圧は0.01Paであった。ITO薄膜の表面抵抗は、80Ω/□(Ω毎スクエア)であった。
 公知の化学エッチング法によりITO薄膜をエッチングしてパターンニングし、透明基板と、透明膜と、透明電極パターンと、をこの順に含む積層体を得た。得られた積層体を、電極付きフィルムという。透明電極パターンは、第1電極パターン及び第2電極パターンを含む。第1電極パターンは、図1に示されるように平面視において第1方向へ延びている。第2電極パターンは、図1に示されるように平面視において前記第1方向と交差する第2方向へ延びている。第1電極パターンは、第1方向に沿って間隔をあけて配置された複数の第1島状電極部と、複数の第1島状電極部のうち隣り合う2つの第1島状電極部を電気的に接続する第1配線部と、を含む。第2電極パターンは、第2方向に沿って間隔をあけて配置された複数の第2島状電極部を含む。
(周辺配線部)
 電極付きフィルムに銅をスパッタリングし、公知の化学エッチング法により銅膜をエッチングしてパターンニングし、第1電極パターンに電気的に接続する第1周辺配線部と、第2電極パターンに電気的に接続する第2周辺配線部と、を形成した。以下、第1周辺配線部及び第2周辺配線部をあわせて「周辺配線部」という。得られた積層体を、電極及び周辺配線部付きフィルムという。
(層間絶縁層:第1透明層及び第2透明層)
 転写フィルム1-1の保護フィルムを剥離した。以下の条件で、電極及び周辺配線部付きフィルムと転写フィルム1-1とを貼り合わせ、電極パターン及び周辺配線部の上に、第1透明層転写層、第2透明転写層及び仮支持体をこの順に配置した。
 シクロオレフィンポリマーフィルムの加熱温度:40℃
 ゴムローラーの温度:110℃
 線圧:3N/cm
 搬送速度:2m/分
 露光マスク(スルーホール形成用マスク)の表面と仮支持体の表面との間の距離を125μmに設定した。超高圧水銀灯を有するプロキシミティー型露光機(日立ハイテク電子エンジニアリング株式会社)を用いて、仮支持体を介して各透明転写層に対してi線を100mJ/cmの露光量にてパターン状に照射した。第2透明転写層から仮支持体を剥離し、2質量%の炭酸ソーダ水溶液(温度:32℃)を用いて、各透明転写層に対して60秒間洗浄処理した。洗浄処理によって、パターン状の透明転写層の硬化物が形成された。洗浄処理後、更に、パターン状の透明転写層の硬化物の表面に超高圧洗浄ノズルから超純水を噴射することにより残渣を除去した。次いで、パターン状の透明転写層の硬化物の表面にエアを吹きかけて水分を除去し、温度145℃で30分間のポストベーク処理を施した。パターン状の透明転写層の硬化物の形成過程において、後述するブリッジ配線(すなわち、隣り合う2つの第2島状電極部を電気的に接続する第2配線部)を形成するためのスルーホールを形成した。以上の手順によって、電極パターン及び周辺配線部の上に、第1透明層及び第2透明層を形成した。第1透明層は、転写フィルム1-1の第1透明転写層の硬化物であった。第1透明層の屈折率は1.68であった。第1透明層の厚みは70nmであった。第2透明層は、転写フィルム1-1の第2透明転写層の硬化物であった。第2透明層の屈折率は1.53であった。第2透明層の厚みは3.0μmあった。第1透明層及び第2透明層は、周辺配線部を覆っている。
(ブリッジ配線(第2配線部))
 第2透明層の上に、既述したITO薄膜の形成方法に準ずる方法によって、50nmの厚さ及び1.90の屈折率を有するITO薄膜を形成した。ITO薄膜の屈折率は、ITOターゲットにおけるSnOの含有率によって調整された。公知の化学エッチング法によりITO薄膜をエッチングしてパターンニングし、ブリッジ配線を形成した。ブリッジ配線は、第2透明層にまたがって、複数の第2島状電極部のうち隣り合う2つの第2島状電極部を電気的に接続している。すなわち、ブリッジ配線は、第2配線部に該当する。
(オーバーコート層:第4透明層及び第5透明層)
 転写フィルム1-2の保護フィルムを剥離した。以下の条件で、ブリッジ配線を含む積層体と転写フィルム1-2とを貼り合わせ、第2透明層及びブリッジ配線(すなわち、台2配線部)の上に、第4透明層転写層、第5透明転写層及び仮支持体をこの順に配置した。
 シクロオレフィンポリマーフィルムの加熱温度:40℃
 ゴムローラーの温度:110℃
 線圧:3N/cm
 搬送速度:2m/分
 露光マスク(オーバーコート用パターンを有する石英露光マスク)の表面と仮支持体の表面との間の距離を125μmに設定した。超高圧水銀灯を有するプロキシミティー型露光機(日立ハイテク電子エンジニアリング株式会社)を用いて、仮支持体を介して各透明転写層に対してi線を100mJ/cmの露光量にてパターン状に照射した。仮支持体を剥離し、2質量%の炭酸ソーダ水溶液(温度:32℃)を用いて、各透明転写層に対して60秒間洗浄処理した。洗浄処理によって、パターン状の透明転写層の硬化物が形成された。洗浄処理後のパターン状の透明転写層の硬化物の表面に、超高圧洗浄ノズルから超純水を噴射することにより残渣を除去した。次いで、パターン状の透明転写層の硬化物の表面にエアを吹きかけて水分を除去し、温度145℃で30分間のポストベーク処理を行った。以上の手順によって、第2透明層の上に、第4透明層及び第5透明層を形成した。第4透明層は、転写フィルム1-2の第4透明転写層の硬化物であった。第4透明層の屈折率は1.68であった。第4透明層の厚みは70nmであった。第5透明層は、転写フィルム1-2の第5透明転写層の硬化物であった。第5透明層の屈折率は1.51であった。第5透明層の厚みは8.0μmであった。第4透明層及び第5透明層は、周辺配線部を覆っている。
 以下の方法によって、シクロオレフィンポリマー(すなわち、透明基板)と、透明膜と、透明電極パターンと、周辺配線部と、第1透明層と、第2透明層と、第4透明層と、第5透明層と、を含むタッチセンサを得た。透明膜、透明電極パターン、周辺配線部、第1透明層、第2透明層及び第4透明層は、透明基板と第5透明層と間に配置されている。透明電極パターンは、第1島状電極部、第1配線部、第2島状電極部及びブリッジ配線を含む。各透明層は、図3のように配置されている。周辺配線部の面積に対する第2透明層及び第5透明層によって覆われた周辺配線部の面積の比(すなわち、[第2透明層及び第5透明層によって覆われた周辺配線部の面積]/[周辺配線部の面積])は、100%であった。つまり、周辺配線部の全部が、第2透明層及び第5透明層によって覆われていた。透明基板の面積に対する第2透明層の面積の比は、98%であった。
<実施例2~12>
 表4の記載に従って、透明層の材料及び透明層の厚さを適宜変更したこと以外は、実施例1と同じ方法によって、タッチセンサを得た。
<実施例13>
 転写フィルム1-1を、転写フィルム13-1に変更したこと以外は、実施例1と同じ方法によって、タッチセンサを得た。転写フィルム13-1の製造方法を以下に示す。
 厚み16μmのポリエチレンテレフタレートフィルムである仮支持体(ルミラー16KS40、東レ株式会社製)の上に、スリット状ノズルを用いて、塗布量を乾燥後の膜厚が70nmになる量に調整し、材料B-1を塗布した。次いで、70℃の乾燥温度で乾燥させて第3透明転写層を形成した。
 第3透明転写層の上に、スリット状ノズルを用いて、塗布量を乾燥後の膜厚が3.0μmになる量に調整し、材料A-1を塗布した。次いで、80℃の乾燥温度で溶剤を揮発させて第2透明転写層を形成した。
 第2透明転写層の上に、スリット状ノズルを用いて、塗布量を乾燥後の膜厚が約70nmの膜厚になる量に調整して、材料B-1を塗布し、70℃の乾燥温度で乾燥させて第1透明転写層を形成した。
 第1透明転写層の上に、保護フィルムとして、厚み16μmのポリエチレンテレフタレートを圧着し、転写フィルム13-1を作製した。第1透明層の屈折率は1.68であり、第2透明層の屈折率は1.53であり、第3透明層の屈折率は1.68であった。
<実施例14>
 第1透明層及び第4透明層を形成しなかったこと以外は、実施例1と同じ方法によって、タッチセンサを得た。
<比較例1~4>
 表4の記載に従って、層間絶縁層(第1透明層及び第2透明層)及びオーバーコート層(第4透明層及び第5透明層)による周辺配線部の被覆の有無を適宜変更したこと以外は、実施例1と同じ方法によって、タッチセンサを得た。
<評価>
(水蒸気透過度)
 厚み16μmのポリエチレンテレフタレートフィルムである仮支持体(ルミラー16KS40、東レ株式会社製)の上に、乾燥後の透明転写層の厚みが40μmとなるように、材料A-1~A-12のいずれか1つを塗布し、各材料によって形成された透明転写層を含む転写フィルムを作製した。転写フィルムと、住友電気工業株式会社製PTFE(四フッ化エチレン樹脂)メンブレンフィルターFP-100-100とを貼り合わせ、仮支持体と、透明転写層(厚さ:40μm)と、メンブレンフィルターと、をこの順に含む積層体を形成した。転写フィルムとメンブレンフィルターとの貼り合わせの条件において、メンブレンフィルターの温度を40℃とし、ラミロール温度を110℃として、線圧を3N/cmとし、搬送速度を2m/分とした。超高圧水銀灯を有するプロキシミティー型露光機(日立ハイテク電子エンジニアリング株式会社製)を用いて、仮支持体を介して透明転写層に対してi線を120mJ/cmの露光量でパターン状に照射した。仮支持体を剥離し、高圧水銀灯を有するポスト露光機(ウシオ電機株式会社製)を用いて、透明転写層に対してi線を400mJ/cmの露光量で照射し、145℃及び30分間のポストベークを行うことにより、透明転写層を硬化させた。以上の手順により、水蒸気透過度測定用試料を得た。
 水蒸気透過度測定用試料を用い、「JIS Z 0208(1976)」を参考にして、カップ法による水蒸気透過度測定を実施した。具体的な手順を以下に示す。まず、水蒸気透過度測定用試料から直径70mmの円形試料を切り出した。次に、測定カップ内に乾燥させた20gの塩化カルシウムを入れ、次いで、円形試料によって蓋をすることにより、蓋付き測定カップを準備した。蓋付き測定カップを、恒温恒湿槽内にて65℃の温度及び90%の相対湿度の条件で24時間放置した。24時間の放置前後での蓋付き測定カップの質量変化から、円形試料の水蒸気透過度(単位:g/(m・day))を算出した。上記測定を3回実施し、水蒸気透過度の平均値を算出した。各材料を用いて作製された円形試料の水蒸気透過度の平均値は、いずれも300g/(m・day)未満であった。なお、上記した測定方法では、透明転写層の硬化物と、メンブレンフィルターと、を含む円形試料の水蒸気透過度を測定した。メンブレンフィルターの水蒸気透過度が透明転写層の硬化物の水蒸気透過度と比較して極めて高いことから、上記した測定方法では、実質的には、透明転写層の硬化物自体の水蒸気透過度を測定したことになる。つまり、上記した結果は、透明転写層の硬化物自体の水蒸気透過度とみなされる。
(湿熱耐久性)
 87℃の温度及び90%の相対湿度に調整された湿熱環境下にて、タッチセンサを1,000時間静置した後、周辺配線部における銅の色を目視で観察し、以下の基準に従って湿熱耐久性を評価した。湿熱耐久性の評価結果は、Aであることが好ましい。評価結果を表4に示す。
 A:試験前後で銅の色に変化がない。
 B:試験後に銅がわずかに赤味を帯びている。
 C:試験後に銅が赤味を帯びている。
 D:試験後に銅が青く変色している。
(透明層の密着性)
 「JIS K 5400」を参考に100マスのクロスカット試験を実施した。タッチセンサの各透明層に対して、カッターナイフを用いて1mm四方の碁盤目の切り傷を入れ、タッチセンサの第5透明層の表面に透明粘着テープ#600(スリーエムジャパン株式会社)を強く圧着させた。透明粘着テープ#600を90度方向に剥離した後、周辺配線部の上に残った透明層を目視で観察し、以下の基準に従って、透明層の密着性を評価した。透明層の残存率は、透明粘着テープの剥離前に周辺配線部の上に配置された透明層の面積に対する透明粘着テープの剥離後に周辺配線部の上に残った透明層の面積の比を表す。評価結果を表4に示す。
 A:透明層の残存率が100%であった。
 B:透明層の残存率が95%以上100%未満であった。
 C:透明層の残存率が65%以上95%未満であった。
 D:透明層の残存率が35%以上65%未満であった。
 E:透明層の残存率が35%未満であった。
(外観)
 タッチセンサの周辺配線部を目視及び光学顕微鏡(倍率:500倍)によって観察して、以下の基準に従って、外観を評価した。以下の基準において、外観の評価結果は、実用的にはA及びBであることが必要であり、Aであることが好ましい。評価結果を表4に示す。
 A:目視及び光学顕微鏡のいずれにおいても欠陥が観察されなかった。
 B:目視では欠陥が観察されなかったが、光学顕微鏡観察では周辺配線部のごく一部の近傍で気泡が観察された。
 C:目視では欠陥が観察されなかったが、光学顕微鏡観察では周辺配線部の近傍で気泡が観察された。
 D:目視及び光学顕微鏡のいずれにおいても周辺配線部の近傍で気泡が観察された。
(電極パターンの隠蔽性)
 タッチセンサの透明基材(すなわち、シクロオレフィンポリマーフィルム)に対して、透明接着テープ(商品名:OCAテープ8171CL、スリーエムジャパン株式会社製)を用いて黒色のポリエチレンテレフタレート(PET)材を貼り付け、透明基材全体を遮光した。暗室内でタッチセンサのオーバーコート層に対して蛍光灯の光をあて、オーバーコート層からの反射光を斜めから目視で観察し、以下の基準に従って、電極パターンの隠蔽性を評価した。以下の基準において、電極パターンの隠蔽性の評価は、AA又はAであることが好ましく、AAであることがより好ましい。評価結果を表4に示す。
 AA:タッチセンサから15cm離れた位置での観察では電極パターンが観察されず、タッチセンサから40cm離れた位置での観察でも電極パターンが観察されなかった。
 A:タッチセンサから15cm離れた位置での観察では電極パターンが僅かに観察され、タッチセンサから40cm離れた位置での観察では電極パターンが観察されなかった。
 B:タッチセンサから15cm離れた位置での観察では電極パターンが僅かに観察され、タッチセンサから40cm離れた位置での観察でも電極パターンが僅かに観察された。
Figure JPOXMLDOC01-appb-T000036
 表1は、比較例1~4では周辺配線部が第2透明層及び第5透明層の両方によって覆われておらず、実施例1~14では周辺配線部が第2透明層及び第5透明層の両方によって覆われていることを示す。表1は、実施例1~14の湿熱耐久性が比較例1~4の湿熱耐久性よりも優れていることを示す。
(実施例15)
 実施例1の透明膜の形成において、1.60の屈折率及び80nmの厚さを有する透明膜を形成し、さらに、真空蒸着法を用いて、5nmの厚さを有するSiO膜を形成したこと以外は、実施例1と同じ方法によって、タッチセンサを得た。得られたタッチセンサの評価結果は、実施例1の評価結果と同じであった。
(実施例16)
 実施例1の透明膜の形成において、1.60の屈折率及び80nmの厚さを有する透明膜を形成し、さらに、真空蒸着法を用いて、15nmの厚さを有するSiO膜を形成したこと以外は、実施例1と同じ方法によって、タッチセンサを得た。得られたタッチセンサの評価結果は、実施例1の評価結果と同じであった。
(実施例17)
 実施例1の透明膜の形成において、1.75の屈折率及び530nmの厚さを有する透明膜を形成し、さらに、真空蒸着法を用いて、10nmの厚さを有するSiO膜を形成したこと以外は、実施例1と同じ方法によって、タッチセンサを得た。得られたタッチセンサの評価結果は、実施例1の評価結果と同じであった。
 2021年2月19日に出願された日本国特許出願2021-025549の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (7)

  1.  透明基板と、
     第5透明層と、
     前記透明基板と前記第5透明層との間に、前記透明基板の平面視において第1方向へ延びる第1電極パターンと、
     前記透明基板と前記第5透明層との間に、前記透明基板の平面視において前記第1方向と交差する第2方向へ延びる第2電極パターンと、
     前記透明基板と前記第5透明層との間に、前記第1電極パターン及び前記第2電極パターンからなる群より選択される少なくとも1つに電気的に接続する周辺配線部と、
     前記第1電極パターンと前記第5透明層との間に、1.60未満の屈折率及び0.5μm以上の平均厚さを有する第2透明層と、を含み、
     前記周辺配線部の少なくとも一部が、前記第2透明層及び前記第5透明層によって覆われている、
     タッチセンサ。
  2.  前記第5透明層の屈折率が、1.60未満であり、前記第5透明層の平均厚さが、0.5μm以上である、請求項1に記載のタッチセンサ。
  3.  前記第1電極パターンと前記第2透明層との間に、1.60以上の屈折率及び200nm以下の平均厚さを有する第1透明層を更に含む、請求項1又は請求項2に記載のタッチセンサ。
  4.  前記第2透明層と前記第5透明層との間に、1.60以上の屈折率及び200nm以下の平均厚さを有する第4透明層を更に含む、請求項1~請求項3のいずれか1項に記載のタッチセンサ。
  5.  前記第2透明層と前記第5透明層との間に、1.60以上の屈折率及び200nm以下の平均厚さを有する第3透明層を更に含む、請求項1~請求項4のいずれか1項に記載のタッチセンサ。
  6.  65℃の温度及び90%の相対湿度の環境下における40μmの厚さあたりの前記第5透明層の水蒸気透過度が、500g/(m・day)以下である、請求項1~請求項5のいずれか1項に記載のタッチセンサ。
  7.  前記第1電極パターンが、前記第1方向に沿って間隔をあけて配置された複数の第1島状電極部と、前記複数の第1島状電極部のうち隣り合う2つの第1島状電極部を電気的に接続する第1配線部と、を含み、前記第2電極パターンが、前記第2方向に沿って間隔をあけて配置された複数の第2島状電極部と、前記第2透明層にまたがって、前記複数の第2島状電極部のうち隣り合う2つの第2島状電極部を電気的に接続する第2配線部と、を含む、請求項1~請求項6のいずれか1項に記載のタッチセンサ。
PCT/JP2021/047449 2021-02-19 2021-12-21 タッチセンサ WO2022176382A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-025549 2021-02-19
JP2021025549 2021-02-19

Publications (1)

Publication Number Publication Date
WO2022176382A1 true WO2022176382A1 (ja) 2022-08-25

Family

ID=82930614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047449 WO2022176382A1 (ja) 2021-02-19 2021-12-21 タッチセンサ

Country Status (1)

Country Link
WO (1) WO2022176382A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090790A1 (ja) * 2010-12-27 2012-07-05 シャープ株式会社 タッチパネル
WO2017018406A1 (ja) * 2015-07-27 2017-02-02 富士フイルム株式会社 透明電極付き複合体、転写フィルム、透明電極付き複合体の製造方法および静電容量型入力装置
WO2018186428A1 (ja) * 2017-04-06 2018-10-11 富士フイルム株式会社 タッチセンサ及びタッチセンサの製造方法
JP2020531935A (ja) * 2017-08-15 2020-11-05 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. タッチ構造及びその製造方法、表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090790A1 (ja) * 2010-12-27 2012-07-05 シャープ株式会社 タッチパネル
WO2017018406A1 (ja) * 2015-07-27 2017-02-02 富士フイルム株式会社 透明電極付き複合体、転写フィルム、透明電極付き複合体の製造方法および静電容量型入力装置
WO2018186428A1 (ja) * 2017-04-06 2018-10-11 富士フイルム株式会社 タッチセンサ及びタッチセンサの製造方法
JP2020531935A (ja) * 2017-08-15 2020-11-05 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. タッチ構造及びその製造方法、表示装置

Similar Documents

Publication Publication Date Title
KR102123886B1 (ko) 전사 필름, 전극 보호막, 적층체, 정전 용량형 입력 장치, 정전 용량형 입력 장치의 제조 방법, 및 전사 필름의 제조 방법
JP2019101322A (ja) 感光性組成物、転写フィルム、硬化膜、並びに、タッチパネル及びその製造方法
US20230025871A1 (en) Transfer film, laminate, acoustic speaker, and method for producing laminate
US20230106830A1 (en) Transfer film, method for producing laminate, and blocked isocyanate compound
CN112352199A (zh) 转印薄膜、层叠体及图案形成方法
US20220382396A1 (en) Sensor film, touch sensor, and image display device
WO2022176382A1 (ja) タッチセンサ
JP7213981B2 (ja) 転写フィルム、積層体の製造方法およびタッチパネルの製造方法
WO2017155003A1 (ja) 転写フィルム、電極保護膜、積層体、静電容量型入力装置、静電容量型入力装置の製造方法、および転写フィルムの製造方法
CN115698856A (zh) 转印膜、层叠体的制造方法
WO2022209307A1 (ja) 積層体及び積層体の製造方法
WO2022196537A1 (ja) 積層体及びその製造方法
WO2020066405A1 (ja) 積層体、積層体の製造方法、及び静電容量型入力装置
WO2021246251A1 (ja) 転写フィルム、積層体の製造方法
US20230069709A1 (en) Touch panel sensor and manufacturing method of touch panel sensor
WO2021125168A1 (ja) 感光性転写材料及びその製造方法、パターン付き金属導電性材料の製造方法、膜、タッチパネル、劣化抑制方法、並びに、積層体
WO2021246366A1 (ja) 転写フィルム、積層体の製造方法
JP7285331B2 (ja) 組成物、組成物の製造方法、硬化膜、転写フィルムおよびタッチパネルの製造方法
WO2021225162A1 (ja) 転写フィルム、積層体の製造方法、タッチセンサー、プリント配線基板の製造方法
CN115702386A (zh) 转印膜及层叠体的制造方法
WO2022039027A1 (ja) 感光性組成物、転写フィルム
JP2022184080A (ja) 転写フィルム、表示パネル用基材、表示パネル用基材の製造方法及び表示パネル
CN115943347A (zh) 转印膜、层叠体的制造方法、电路配线的制造方法
CN114830034A (zh) 转印膜、层叠体的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21926805

Country of ref document: EP

Kind code of ref document: A1