WO2022165803A1 - 蔗糖-6-酯的生产设备及生产方法 - Google Patents

蔗糖-6-酯的生产设备及生产方法 Download PDF

Info

Publication number
WO2022165803A1
WO2022165803A1 PCT/CN2021/075813 CN2021075813W WO2022165803A1 WO 2022165803 A1 WO2022165803 A1 WO 2022165803A1 CN 2021075813 W CN2021075813 W CN 2021075813W WO 2022165803 A1 WO2022165803 A1 WO 2022165803A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
sucrose
condensing
ester
turntable
Prior art date
Application number
PCT/CN2021/075813
Other languages
English (en)
French (fr)
Inventor
张正颂
李正华
赵金刚
张从勇
郑学连
卜永峰
Original Assignee
安徽金禾实业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽金禾实业股份有限公司 filed Critical 安徽金禾实业股份有限公司
Priority to CN202180000712.1A priority Critical patent/CN112969517B/zh
Priority to US18/002,467 priority patent/US20230399352A1/en
Priority to PCT/CN2021/075813 priority patent/WO2022165803A1/zh
Priority to EP21923814.4A priority patent/EP4147760A4/en
Publication of WO2022165803A1 publication Critical patent/WO2022165803A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/08Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in rotating vessels; Atomisation on rotating discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/22Evaporating by bringing a thin layer of the liquid into contact with a heated surface
    • B01D1/222In rotating vessels; vessels with movable parts
    • B01D1/223In rotating vessels; vessels with movable parts containing a rotor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/009Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in combination with chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/34Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0057Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
    • B01D5/006Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with evaporation or distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1887Stationary reactors having moving elements inside forming a thin film
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/006Processes utilising sub-atmospheric pressure; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H13/00Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids
    • C07H13/02Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids
    • C07H13/04Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids having the esterifying carboxyl radicals attached to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H13/00Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids
    • C07H13/02Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids
    • C07H13/04Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids having the esterifying carboxyl radicals attached to acyclic carbon atoms
    • C07H13/06Fatty acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H13/00Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids
    • C07H13/02Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids
    • C07H13/08Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids having the esterifying carboxyl radicals directly attached to carbocyclic rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor

Definitions

  • the invention belongs to the technical field of fine chemicals, and in particular relates to a production equipment and a production method of sucrose-6-ester.
  • Sucralose belongs to a new generation of sweeteners, which has the advantages of high sweetness, no calories, good stability and high safety, and has a very broad market prospect.
  • Sucralose-6-ester is an important intermediate in the production of sucralose.
  • the process flow of the method for synthesizing sucrose-6-ester mainly includes: mixing sucrose, aprotic polar solvent and organotin esterification accelerator into a first reaction mixture; then mixing the first reaction mixture in a specific Contact with a gas or solvent vapor capable of removing water under the temperature and pressure environment and keep a certain reaction time, remove moisture from it to obtain a second reaction mixture; then add carboxylic acid anhydride to the second reactant to obtain a third reaction mixture, and use The third reaction mixture is maintained for a time sufficient to prepare the sucrose-6-ester.
  • This method requires the use of gas or solvent vapor that can remove water. The existence of this link seriously affects the continuity of the production process of synthetic sucrose-6-ester, increases the production cycle, reduces the production efficiency, and consumes a lot of energy that can be removed.
  • the gas or solvent of water greatly increases the production cost and energy consumption.
  • the present application is made in order to provide a production apparatus and production method of sucrose-6-ester that overcome the above-mentioned problems or at least partially solve the above-mentioned problems.
  • a production equipment for sucrose-6-ester includes a tank body, a rotary distillation device, and a condensation device;
  • the rotary distillation device In the rotary distillation device, the rotary distillation device is slidably connected in the separation chamber; the lower end of the reaction chamber is provided with a discharge port;
  • the rotary distillation device comprises a rotating drum and a rotating plate, the rotating plate is fixed on the top surface of the rotating drum through a plurality of connecting plates, and a first heating device is arranged on the outer wall of the rotating plate;
  • the condensing device includes a condensing pipe, a water receiving plate and a condensing water tank which are connected up and down in sequence; the condensing water tank is provided with a condensing water outlet pipe, and the condensing water outlet pipe extends to the outside of the tank;
  • the condensing device is non-contact sleeved in the rotary drum of the rotary distillation device, and wherein, the condensing pipe is arranged in contact with the top surface of the tank through the rotary plate;
  • the tank body is provided with a reaction liquid feed pipe and a carboxylate feed pipe.
  • the reaction liquid feed pipe runs through the top surface of the tank body and extends to the bottom of the turntable;
  • the carboxylate feed pipe runs through the side wall of the tank body and extends to the condensation point. below the water tank;
  • the rotary distillation device can be rotated along the central axis of the turntable to separate the reaction liquid entering from the reaction liquid feed pipe into steam and residual liquid.
  • the position of the side wall of the rotating drum opposite to the turntable is set at an incline, and the inclination direction is opposite to the inclination direction of the side wall of the turntable.
  • a second heating device is provided on the inclined outer side wall surface of the rotating drum.
  • the condensing device further comprises an annular and inclined condensing wall, and the condensing wall is arranged on the water receiving plate, between the outer wall of the turntable and the outer edge of the water receiving plate, and its inclination direction is the same as that of the rotating drum.
  • the inclined directions of the side walls of the inclined parts are consistent.
  • annular sliders are respectively provided at the middle part and the bottom of the side wall of the rotary distillation device, and the outer edge of the annular slider is inserted into the outer slide on the inner wall of the tank body, and the annular slider is inserted into the outer slide on the inner wall of the tank.
  • the inner edge of the drum is inserted into the inner slide of the side wall of the drum.
  • the condensate water tank is annular, and is arranged close to the outer edge of the water access plate.
  • the rotary distillation device is also provided with an annular baffle, the diameter of the annular baffle is smaller than the diameter of the rotating drum, and is arranged below the opening of the carboxylate feed pipe, and the annular baffle passes through a plurality of connecting rods. Fixed connection with the drum;
  • the carboxylate feed pipe and the condensed water outlet pipe are arranged through the hollow part of the annular baffle.
  • the tank body is further provided with a vacuum tube, and the vacuum tube can be connected to a vacuum pump.
  • the reaction chamber is provided with a temperature control device.
  • sucrose-6-ester a method for producing sucrose-6-ester, the method being carried out using any of the above-mentioned equipment, comprising:
  • the reaction liquid separation step start the rotary distillation device, and input the reaction liquid from the reaction liquid feed pipe, so that the turntable separates the reaction liquid into residual liquid and water vapor, wherein the reaction liquid includes sucrose, aprotic polar solvent and organotin Ester accelerator; the residual liquid flows out of the turntable and flows down the side wall of the turntable to the reaction chamber, and the water vapor condenses on the condensation pipe into condensed water and flows into the condensed water tank; and
  • the esterification reaction step the reaction solution entering the reaction chamber and the carboxylic acid ester entering from the carboxylic acid anhydride feed port undergo an esterification reaction under preset conditions to generate a solution containing sucrose-6-ester.
  • the beneficial effects of the present application are: through the rotatable distillation device, the reactants can form a very thin liquid film on the inner wall of the turntable with the rotation of the turntable, and the water vapor can be fully separated, and the water vapor can be condensed along the
  • the device is collected in the condensate water tank, which can condense the residual liquid, so that the residual liquid can quickly reach the temperature of the esterification reaction. It flows down along the wall of the bowl, and then fully mixes with the carboxylate on the wall of the bowl, and then enters the reaction chamber to react to generate the target product sucrose-6-ester.
  • the equipment of the present application makes the preparation process of sucrose-6-ester integrated from distillation, cooling, mixing and reaction, the reaction raw materials can be continuously added to the production equipment, the reaction liquid separation step and the esterification reaction step are continuously performed, Make the sucrose-6-ester realize continuous production, shorten the production cycle to a great extent, improve the production efficiency of the sucrose-6-ester, on the one hand, avoid the need to use a large amount of energy in the process of removing the original moisture in the prior art.
  • the problem of removing water gas or solvent vapor overcomes the defects of the prior art that the second reaction mixture needs to be injected into another space and mixes with the carboxylic anhydride and takes a long time; and the device has a simple structure, small footprint, and cost Low.
  • FIG. 1 shows a schematic side view of the overall external structure of a production equipment for sucrose-6-ester according to an embodiment of the present application
  • Fig. 2 shows a cross-sectional internal and external structure perspective view of a production equipment of sucrose-6-ester according to an embodiment of the present application
  • Fig. 3 shows the cross-sectional internal and external structural schematic diagram of the rotary distillation device of the production equipment of sucrose-6-ester according to an embodiment of the present application
  • FIG. 4 shows a schematic cross-sectional structure diagram of a cooling device of a production equipment for sucrose-6-ester according to an embodiment of the present application
  • Fig. 5 shows the schematic diagram of the material flow direction of the production equipment of sucrose-6-ester according to an embodiment of the present application
  • FIG. 6 shows a schematic flowchart of a production method of sucrose-6-ester according to an embodiment of the present application.
  • the concept of the present application is that, in the prior art, the reaction solution for the production of sucrose-6-ester needs to first remove moisture by using steam or solvent in one reactor, then press it into another reactor, and then react with carboxylic anhydride, Sucrose-6-ester is produced.
  • the step of removing water by steam or solvent consumes a lot of energy, and the equipment is large, covers a large area, and the degree of water removal is not thorough enough; after removing the water, the reaction hydraulic pressure needs to be put into another reactor , to carry out the esterification reaction, this process requires extra energy and time, which reduces the production efficiency of sucrose-6-ester; and this production mode of the prior art is discontinuous, and can only be carried out after each feeding reaction is completed. Another reaction also seriously affected the production efficiency of sucrose-6-ester.
  • Fig. 1 shows a schematic side view of the overall external structure of a production equipment for sucrose-6-ester according to an embodiment of the present application
  • Fig. 2 shows a cross-section of the production equipment for sucrose-6-ester according to an embodiment of the present application Schematic diagram of the external structure
  • Fig. 3 shows a cross-sectional internal and external structural schematic diagram of a rotary distillation device of a production equipment for sucrose-6-ester according to an embodiment of the present application
  • Fig. 4 shows the production of sucrose-6-ester according to an embodiment of the present application Schematic diagram of the cross-sectional structure of the cooling device of the equipment.
  • the production equipment 100 of sucrose-6-ester includes a tank body 1, a rotary distillation device 2, and a condensation device 3; It is sleeved in the rotary distillation device 2, and the rotary distillation device 2 is slidably connected in the separation chamber 11; the lower end of the reaction chamber 12 is provided with a discharge port 121.
  • the rotary distillation device 2 includes a rotating drum 22 and a rotating plate 21 .
  • the rotating plate 21 is fixed on the top surface of the rotating drum through a plurality of connecting plates 25 , and a first heating device 211 is provided on the outer wall of the rotating plate 21 .
  • the plurality of connecting plates 25 may Welded on the top surfaces of the turntable 21 and the turntable 22; in order to balance the turntable and the turntable during the rotation, it is recommended that the turntable and the turntable be coaxially arranged, and the maximum diameter of the turntable 21 is smaller than the inner diameter of the top surface of the turntable 22 , so as to ensure that there is a gap between the rotating disc 21 and the rotating drum, so that the reaction liquid can flow out.
  • a first heating device 211 is provided on the outer wall of the turntable 21, and the first heating device 211 can heat the liquid film formed by the reaction liquid in the turntable to increase the evaporation rate of water.
  • the first heating device 211 may be, but not limited to, a heating device composed of an electric heating element, a water bath or an oil bath heating element.
  • a groove 212 may be provided at the bottom of the side wall of the turntable 21 .
  • the reaction solution in order to make the water in the reaction liquid evaporate more thoroughly, the side wall of the rotating drum 22 can be inclined at a position opposite to the rotating plate 21, which is referred to as the heating wall 222 here.
  • a second heating device 221 is provided on the inclined outer side wall surface of the rotating drum 22 .
  • reaction solution moves upward from the groove 212 along the side wall of the turntable until it is thrown out from the space between the plurality of connecting plates 25 on the edge of the turntable 21 to the side wall of the turntable 22, It is heated for a second time at the heating wall 222 of the drum 22, and is further evaporated and purified.
  • the condensing device 3 includes a condensing pipe 31, a water receiving plate 32 and a condensing water tank 33 connected up and down in sequence; the condensing water tank 33 is provided with a condensing water outlet pipe 331, and the condensing water outlet pipe 331 extends to the tank body 1 outside.
  • the condensing pipe 31 can be, but is not limited to, a hollow metal pipe, and a plurality of small condensing pipes with water or air as the medium are wrapped around its side wall, which can be referred to other technical solutions in the prior art, and this application does not do it. limit.
  • the water receiving plate 32 is closely arranged below the condensing pipe for receiving and guiding the condensed water flowing down the condensing pipe to the condensing water tank 33.
  • an upper surface of the water receiving plate 32 may be provided
  • a plurality of guide grooves (not shown in the figure) can be connected to the inlet of the condensed water tank 33 to guide the condensed water into the condensed water tank 33 .
  • a condensed water tank 33 is connected below the water receiving plate to receive condensed water, and these condensed water can cool the reaction liquid after being evaporated and removed from the water flowing down the side wall of the rotating drum 22, that is, the evaporated residual liquid, so as to cool the residual liquid. Make the residual liquid reach the appropriate temperature for the esterification reaction as soon as possible.
  • the condensing device 3 is non-contact sleeved in the rotating drum of the rotary distillation device, wherein the condensing pipe 31 penetrates through the rotating disk 21 and is arranged in contact with the top surface of the tank body 1 .
  • the condensing device 3 does not contact the inner wall of the rotating drum 22, and there is a certain space between the two, so that the residual liquid can flow down from the space.
  • the condensing pipe 31 runs through the bottom surface of the turntable 21, and can be arranged with a gap between the bottom surface of the turntable 21, that is, a small gap is left between the two for the condensed water to flow down;
  • the condensing pipe 31 may be provided with a gap between the inner side wall forming the groove 212 .
  • the tank body 1 is provided with a reaction liquid feed pipe 13 and a carboxylate feed pipe 14.
  • the reaction liquid feed pipe 13 runs through the top surface of the tank body 1 and extends to the bottom of the turntable 21, specifically the groove 212 at the bottom of the turntable 21.
  • the carboxylate feed pipe 14 runs through the side wall of the tank 1 and extends to the bottom of the condensate water tank 33 .
  • the rotary distillation device 2 can be rotated along the central axis of the rotary table 21, so that the reaction liquid entering from the reaction liquid feed pipe 13 is evaporated and separated into Water vapor and residual liquid.
  • the condensing device 3 further includes an annular and inclined condensing wall 34 .
  • the condensing wall 34 is disposed on the water receiving plate 32 and is located between the outer wall of the turntable 21 and the water receiving wall 34 . Between the outer edges of the plates 32, the inclination direction of the inclination direction coincides with the inclination direction of the side wall of the inclined portion of the drum 22.
  • a condensing wall 34 can be provided, and the condensing wall 34 surrounds the side wall of the rotating plate 21 . , which is consistent with the inclination direction of the heating wall 222 .
  • annular sliders 23 are respectively provided at the middle part and the bottom of the side wall of the rotary distillation device 2 , and the outer edge of the annular slider 23 is inserted into the outer slide on the inner wall of the tank body 1 . 15, the inner edge of the annular slider 23 is inserted into the inner slideway 223 of the side wall of the drum 22.
  • the function of the annular slider is to stabilize and fix the rotating drum, and it can rotate with the rotating drum. Therefore, the rotating drum is driven by its power equipment (not shown in the figure), and can freely and Turn at high speed.
  • the condensate water tank 33 is annular and is disposed close to the outer edge of the water contact plate 32 .
  • the purpose of this is to make the condensed water more close to the inner wall of the rotating drum 22, so as to have a better cooling effect on the residual liquid.
  • the bottom surface of the condensed water tank 33 can be inclined. Specifically, The length of the side wall of the water tank close to the inner side wall of the drum 22 is longer, and the length of the side wall of the water tank away from the inner side wall of the drum 22 is shorter, so as to achieve better cooling effect.
  • the rotary distillation device 2 is further provided with an annular baffle 26 , the diameter of the annular baffle 26 is smaller than the diameter of the rotating drum 22 , and is arranged below the opening of the carboxylate feed pipe 14 , the annular baffle 26 is fixedly connected to the drum 22 through a plurality of connecting rods 27 ;
  • the function of the annular baffle is to store the carboxylic acid anhydride entering from the carboxylate feed pipe 14.
  • the carboxylate anhydride is usually in powder form, and is blown into the carboxylate feed pipe 14 by a pump, and the carboxylate feed pipe 14 is blown from the carboxylate feed pipe 14.
  • the opening of the rotating drum 22 is sprayed to the inner wall of the rotating drum 22 and mixed with the residual liquid, but there will still be some powders that cannot be mixed in time and fall into the annular baffle. Under the action of centrifugal force, these powders can still fly up to The inner wall of the drum 22 is mixed with the residual liquid.
  • the tank body 1 is further provided with a vacuum tube 16, and the vacuum tube 16 can be connected to a vacuum pump (not shown in the figure).
  • a vacuum pump not shown in the figure.
  • the equipment can also be decompressed.
  • the above-mentioned purpose can be achieved by connecting the vacuum pipe 16 to a vacuum pump.
  • the reaction chamber 12 is provided with a temperature control device (not shown in the figure).
  • the reaction chamber 12 can be provided with a temperature control device.
  • the esterification reaction can be carried out in the reaction chamber 12, or a separate esterification reactor can be connected under the outlet 121 of the reaction chamber 12, which is not limited in this application.
  • Fig. 5 shows a schematic diagram of the material flow direction of the production equipment of sucrose-6-ester according to an embodiment of the present application
  • the arrows in Fig. 5 indicate the moving direction of the material, and it can be seen from Fig.
  • the feed pipe 13 enters into the groove 212 of the turntable 21.
  • the reaction liquid is distilled and moves to the edge of the turntable 21 along the side wall of the turntable 21, and then flies out from the edge of the turntable 21 to the edge of the turntable 21.
  • the heating wall 222 of the rotating drum 22 is evaporated again, and the condensed water flows down the condensing pipe 31 and the condensing wall 34 to the water receiving plate 32 and flows into the condensed water tank 33 .
  • the residual liquid flows down along the inner wall of the rotating drum 22, mixes with the carboxylate sprayed from the carboxylate feed pipe 14, and flows into the reaction chamber 12, where the esterification reaction is carried out in the reaction chamber, and is discharged from the discharge port. 121 outflow.
  • the device of the present application uses a rotatable distillation device, so that the reactant can form a thin liquid film on the inner wall of the turntable with the rotation of the turntable, and fully separate the water vapor, and the water vapor is collected along the condensing device into the condensed water tank. , which can condense the residual liquid, so that the residual liquid can quickly reach the temperature of the esterification reaction.
  • the residual liquid is affected by centrifugal force, and flies out from the edge of the turntable to the inner wall of the rotating drum, and flows down along the wall of the rotating drum. Then, after fully mixing with the carboxylate on the wall of the drum, it enters the reaction chamber to react to generate the target product sucrose-6-ester.
  • the equipment of the present application makes the preparation process of sucrose-6-ester integrated from distillation, cooling, mixing and reaction, the reaction raw materials can be continuously added to the production equipment, the reaction liquid separation step and the esterification reaction step are continuously performed, Make the sucrose-6-ester realize continuous production, shorten the production cycle to a great extent, improve the production efficiency of the sucrose-6-ester, on the one hand, avoid the need to use the prior art in the process of removing the moisture in the raw material of the reaction solution.
  • Fig. 6 shows the schematic flow chart of the production method of sucrose-6-ester according to an embodiment of the present application, the method is carried out by adopting any of the above-mentioned equipment, and the method comprises at least the steps S610 to S620 described below:
  • Step S610 of separating the reaction liquid start the rotary distillation device, and input the reaction liquid from the reaction liquid feed pipe, so that the rotary disc separates the reaction liquid into residual liquid and water vapor, wherein the reaction liquid includes sucrose, aprotic polar solvent and organic Tin ester accelerator; the residual liquid flows out of the turntable and flows down the side wall of the turntable to the reaction chamber, and the water vapor condenses on the condenser tube into condensed water and flows into the condensed water tank.
  • Esterification reaction step S620 the reaction solution entering the reaction chamber and the carboxylic acid ester entering from the carboxylic acid anhydride feed port undergo an esterification reaction under preset conditions to generate a solution containing sucrose-6-ester.
  • the rotation speed of the rotary distillation device is not limited in the present application, and in some embodiments of the present application, it may be set to 40 rpm to 200 rpm. If the rotation speed of the rotary distillation device is less than 40rpm, the rotation speed is too slow, and there is a possibility that the rotary table cannot fly out; The time to be evaporated is short, and there is a possibility that the water in the reaction solution is insufficiently evaporated, which is not conducive to the rapid production of sucrose-6-ester.
  • reaction raw materials and preset conditions of the esterification reaction are not limited, and the prior art can be referred to, and the following recommended technical solutions can also be adopted.
  • the type of organotin compound is not limited, and a single-tin organic compound can be used, or a double-tin organic compound can be used, and in some embodiments, it can be selected as 1,3-dihydrocarbyloxy-1,1 ,3,3-tetra-(hydrocarbyl)distannoxane, bis(hydrocarbyl)tin oxide, 1,3-diacyloxy-1,1,3,3-tetra-(hydrocarbyl)distannoxane, and 1 - any one or more of diacyloxy-1,1,3,3-tetra-(hydrocarbyl)distannoxane, in other embodiments 1,3-diacyloxy-1, 1,3,3-tetra-(hydrocarbyl)distannoxane, in yet other embodiments 1,3-diacetoxy-1,1,3,3-tetrabutyldistannoxane; wherein, The alkoxy group can be selected from alkoxy group
  • the application does not limit the types of polar aprotic solvents, in some embodiments, selected from acetonitrile, 1,4-dioxane, methyl ethyl ketone, methyl isobutyl ketone, nitromethane, nitroethane , any one or more of cyclohexanone, dimethyl sulfoxide, N-methylpyrrolidone, N,N-dimethylacetamide, hexamethylphosphoramide and N,N-dimethylformamide, In other embodiments, it is acetonitrile.
  • the application does not limit the amount of polar aprotic solvent.
  • the ratio of the mass amount of solvent to the mass amount of sucrose is 2 to 20, and in other embodiments, it is 3 ⁇ 10, and in further embodiments 4-8.
  • the heating temperature of the heating chamber is not limited, in some embodiments, it may be 65-150°C, and in other embodiments, it may be 85-120°C.
  • the size of the negative pressure in the generating device is not limited.
  • the negative pressure in the generating device is maintained at 0.01kPa ⁇ 50kPa, and in other embodiments , the negative pressure in the generating equipment can be maintained at 0.5kPa ⁇ 20kPa.
  • the types of carboxylic acid anhydrides are not limited, and can be selected from any one of acetic anhydride, butyric anhydride, benzoic anhydride, stearic anhydride, and lauric anhydride, preferably acetic anhydride, according to the types of the above-mentioned organic acid anhydrides , the obtained corresponding sucrose-6-carboxylate is sucrose-6-acetate, sucrose-6-butyrate, sucrose-6-benzoate, sucrose-6-fatty acid ester, or sucrose-6-butyrate, respectively. 6-laurate.
  • Sucrose-6-acetate and sucrose-6-benzoate can be used as raw materials for the synthesis of other types of sucrose-6-carboxylate and intermediates for the synthesis of the sweetener sucralose, while other types of sucrose- 6-Carboxylic acid esters can be used as synthetic intermediates for food additives, chemical products and other reactions.
  • the amount of carboxylic anhydride is not limited.
  • the mass amount of carboxylic acid anhydride and the mass amount of sucrose are 0.6 to 3.0 based on the mass of sucrose. In other embodiments , is 0.8 to 1.
  • reaction conditions of the esterification reaction are not limited.
  • the reaction temperature of the esterification reaction can be 0-50°C, and in other embodiments, it can be 1-20°C;
  • the reaction time of the esterification reaction is 10 min to 24 h, and in other embodiments, 30 min to 4 h.
  • the chemical reagents involved in this application and the original preparation of sucrose-6-ester can all be commercially available products, which are not limited in this application.
  • the sucrose-6-ester production equipment shown in FIG. 2 is used to generate sucrose-6-ester, wherein the production equipment is connected to an external vacuum pump.
  • acetic anhydride is blown into the production equipment through the carboxylate feed pipe according to the ratio of the mass ratio of sucrose to the mass ratio of acetic anhydride to 1:1.1, and the acylation reaction is carried out.
  • Effluent product containing sucrose-6-ester is carried out under the temperature condition of less than 20°C.
  • the water content is less than 500 ppm.
  • the sucrose-6-ester production equipment shown in FIG. 2 is used to generate sucrose-6-ester, wherein the production equipment is connected to an external vacuum pump.
  • the rotary distillation device start the rotary distillation device, make the rotary distillation device rotate at a rotating speed of 150rpm, and continuously feed the reaction solution prepared above into the above-mentioned production equipment at a rate of 6m 3 /h, and the reaction device maintains a negative pressure at 0.5kPa.
  • acetic anhydride is blown into the production equipment through the carboxylate feed pipe according to the ratio of the mass ratio of sucrose and the mass ratio of acetic anhydride to 1:1.1, and the acylation reaction is carried out.
  • the water content is less than 500 ppm.
  • the sucrose-6-ester production equipment shown in FIG. 2 is used to generate sucrose-6-ester, wherein the production equipment is connected to an external vacuum pump.
  • the rotary distillation device start the rotary distillation device, make the rotary distillation device rotate at a rotating speed of 200rpm, and continuously feed the reaction solution prepared above into the above-mentioned production equipment at a rate of 8m 3 /h, and the reaction device maintains a negative pressure at 0.5kPa.
  • the water content is less than 400 ppm.
  • the dehydration is carried out by the method of falling liquid in the packed tower.
  • the diameter of the packed tower is 40 mm, 3 ⁇ 8 glass spring packing, and the packing height is 1 meter, which is equivalent to a 10-stage tray.
  • reaction mixture solution prepared above was placed at the inlet of the top of the packed column, and the negative pressure was kept at 0.5 kPa, and at the same time, cyclohexane vapor (100° C., 4 atm) was fed to the gas inlet of the flask at the bottom of the packed column.
  • the reaction mixture solution is reacted with cyclohexane vapor in countercurrent contact, and the vapor containing cyclohexane, water and DMF in the top distillate of the packed column is condensed and collected, and can be recycled after being dried and anhydrous.
  • a liquid sample was collected in the bottom flask of the packed column and the resulting product was clear, light amber in color.
  • the residence time of the reaction solution in the gas-liquid exchange reactor is about 1 min.
  • the obtained solution is calculated to contain 10% sucrose, and the obtained solution is pressed into another reactor, and acetic anhydride is added in a ratio of 1:1.1 according to the mass ratio of sucrose to acetic anhydride at a temperature lower than 10 °C.
  • the acylation reaction was carried out, and after the reaction was continued at a temperature lower than 10° C. for 2 hours, the quenching reaction was carried out with water in a mass ratio of 0.25:1 to the reaction solution.
  • the cyclohexane extraction organotin compound that is 1:1 with the mass ratio of the reaction solution, the obtained sucrose-6-ethyl ester solution is analyzed by high performance liquid chromatography, and the product is as follows:
  • the production equipment provided by the present application is compared with the filler liquid drop production equipment in Comparative Example 1, the yield of the sucrose-6-carboxylate prepared by the present application is high, The probability of side reactions is low, and the sucrose reaction is complete. It can be seen from the yield of sucrose-6-acetate that some examples in the present application can reach 90.45% (normalized), while the yield of sucrose-6-acetate in Comparative Example 1 is only 72.05% (normalized). A), that is to say, the output of sucrose-6-carboxylate in the application is significantly higher than the prior art; Similarly, it can be seen from the content of diacetate and sucrose in the reaction product that side reactions occur in the application. The probability is significantly reduced and the sucrose is converted more completely.
  • the beneficial effects of the present application are: through the rotatable distillation device, the reactants can form a very thin liquid film on the inner wall of the turntable with the rotation of the turntable, and the water vapor can be fully separated, and the water vapor can be condensed along the
  • the device is collected in the condensate water tank, which can condense the residual liquid, so that the residual liquid can quickly reach the temperature of the esterification reaction. It flows down along the wall of the bowl, and then fully mixes with the carboxylate on the wall of the bowl, and then enters the reaction chamber to react to generate the target product sucrose-6-ester.
  • the equipment of the present application makes the preparation process of sucrose-6-ester integrated from distillation, cooling, mixing and reaction, the reaction raw materials can be continuously added to the production equipment, the reaction liquid separation step and the esterification reaction step are continuously performed, Make the sucrose-6-ester realize continuous production, shorten the production cycle to a great extent, improve the production efficiency of the sucrose-6-ester, on the one hand, avoid the need to use the prior art in the process of removing the moisture in the raw material of the reaction solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Saccharide Compounds (AREA)

Abstract

蔗糖-6-酯的生产设备及生产方法,其中设备包括罐体、旋转蒸馏装置、冷凝装置;罐体包括分离腔和反应腔,冷凝装置套设在旋转蒸馏装置内,旋转蒸馏装置滑动连接在分离腔内;旋转蒸馏的转盘通过多个连接板固设在转筒的顶面,转盘的外壁上设有第一加热装置;冷凝装置包括依次上下连接的冷凝管、接水板以及冷凝水水箱;冷凝装置非接触套设在旋转蒸馏装置的转筒内,冷凝管贯穿转盘与罐体的顶面接触设置;旋转蒸馏装置能够沿着转盘的中轴线旋转,以将从反应液进料管进入的反应液分离为水蒸气和蒸余液。该设备实现了蔗糖-6-酯的连续生产,极大程度上缩短了生产周期,提高了生产效率。

Description

蔗糖-6-酯的生产设备及生产方法 技术领域
本发明属于精细化工技术领域,具体涉及蔗糖-6-酯的生产设备及生产方法。
发明背景
三氯蔗糖属于新一代甜味剂,具有甜度高、无热量、稳定性好、安全性高等优点,市场前景非常广阔。三氯蔗糖-6-酯是生产三氯蔗糖的重要中间体。
现有技术中,合成蔗糖-6-酯的方法的工艺流程主要包括:将蔗糖、非质子极性溶剂和有机锡类酯化促进剂混合成第一反应混合物;接着将第一反应混合物在特定温度、压力环境下与能够去除水的气体或溶剂蒸汽接触并保持一定的反应时间,从中除去水分得到第二反应混合物;再向第二反应物中加入羧酸酐,得到第三反应混合物,并将第三反应混合物保持足以制备蔗糖-6-酯的时间。这一方法需要使用能够除去水的气体或溶剂蒸气,这一环节的存在严重影响了合成蔗糖-6-酯生产过程的连续性,增加了生产周期,降底了生产效率,且消耗大量能够去除水的气体或溶剂,极大地增加了生产成本和能耗。
需要说明的是,这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有技术。
发明内容
鉴于上述问题,提出了本申请以便提供一种克服上述问题或者至少部分地解决上述问题的蔗糖-6-酯的生产设备及生产方法。
依据本申请的一方面,提供了一种蔗糖-6-酯的生产设备,该设备包括罐体、旋转蒸馏装置、冷凝装置;罐体包括上下贯通连接的分离腔和反应腔,冷凝装置套设在旋转蒸馏装置内,旋转蒸馏装置滑动连接在分离腔内;反应腔下端设有出料口;
旋转蒸馏装置包括转筒、转盘,转盘通过多个连接板固设在转筒的顶面,转盘的外壁上设有第一加热装置;
冷凝装置包括依次上下连接的冷凝管、接水板以及冷凝水水箱;冷凝水水箱设有冷凝水出水管,冷凝水出水管延伸至罐体外;
冷凝装置非接触套设在旋转蒸馏装置的转筒内,其中,冷凝管贯穿转盘与罐体 的顶面接触设置;
罐体设有反应液进料管和羧酸酯进料管,反应液进料管贯穿罐体的顶面,延伸至转盘底部;羧酸酯进料管贯穿罐体的侧壁,延伸至冷凝水水箱的下方;
旋转蒸馏装置能够沿着转盘的中轴线旋转,以将从反应液进料管进入的反应液分离为水蒸气和蒸余液。
可选的,在上述设备中,转筒的侧壁与转盘相对的位置为倾斜设置,其倾斜的方向与转盘的侧壁的倾斜方向相反。
可选的,在上述设备中,在转筒的倾斜的外侧壁面上设有第二加热装置。
可选的,在上述设备中,冷凝装置还包括环形且倾斜设置的冷凝壁,冷凝壁设置在接水板上,位于转盘的外壁与接水板的外缘之间,其倾斜方向与转筒的倾斜部分的侧壁的倾斜方向一致。
可选的,在上述设备中,在旋转蒸馏装置的侧壁的中间部位和底部分别设有环形滑块,环形滑块的外缘插设在罐体的内壁上的外滑道内,环形滑块的内缘插设在转筒的侧壁的内滑道内。
可选的,在上述设备中,冷凝水水箱为环状,贴近接水板的外缘设置。
可选的,在上述设备中,旋转蒸馏装置还设有环形挡板,环形挡板的直径小于转筒的直径,设置在羧酸酯进料管的开口下方,环形挡板通过多个连接杆与转筒固定连接;
羧酸酯进料管和冷凝水出水管贯穿环形挡板的中空部分设置。
可选的,在上述设备中,罐体还设有真空管,真空管可连接真空泵。
可选的,在上述设备中,反应腔设有温控装置。
根据本申请的另一方面,提供了一种蔗糖-6-酯的生产方法,该方法是采用上述任一的设备进行的,包括:
反应液分离步骤:启动旋转蒸馏装置,从反应液进料管输入反应液,以使转盘将反应液分离为蒸余液和水蒸气,其中,反应液包括蔗糖、非质子极性溶剂和有机锡酯促进剂;蒸余液沿流出转盘并沿转筒的侧壁流下至反应腔,水蒸气在冷凝管上冷凝成冷凝水流入冷凝水水箱;和
酯化反应步骤:进入反应腔内的反应液与从羧酸酐进料口进入的羧酸酯在预设条件下进行酯化反应,生成含蔗糖-6-酯的溶液。
综上所述,本申请的有益效果在于:通过可旋转的蒸馏装置,使得反应物能够 随着转盘的旋转,在转盘的内壁上形成很薄的液膜,充分分离出水蒸气,水蒸气沿冷凝装置被收集到冷凝水水箱内,能够对蒸余液进行冷凝,使得蒸余液快速达到酯化反应的温度,蒸余液受离心力影响,从转盘的边缘飞出至转筒的内壁,并沿着转筒壁向下流动,随后在转筒壁上与羧酸酯充分混合后,进入反应腔反应,生成目标产物蔗糖-6-酯。本申请的设备使得蔗糖-6-酯的制备过程从蒸馏、冷却、混合、反应一体化,反应原料可以持续不断地被加入至生产设备中,反应液分离步骤和酯化反应步骤不间断进行,使得蔗糖-6-酯实现连续生产,极大程度上缩短了生产周期,提高了蔗糖-6-酯的生产效率,一方面避免了现有技术在去除原来中的水分的过程中需要采用大量能够去除水的气体或溶剂蒸气的问题,另一方面,克服了现有技术中第二反应混合物需要注入另一空间内与羧酸酐混合需要耗时长的缺陷;且设备结构简单、占地小、成本低。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图简要说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1示出了根据本申请一个实施例的蔗糖-6-酯的生产设备的整体外部结构侧面示意图;
图2示出了根据本申请一个实施例的蔗糖-6-酯的生产设备的剖面内外部结构立体示意图;
图3示出了根据本申请一个实施例的蔗糖-6-酯的生产设备的旋转蒸馏装置的剖面内外部结构示意图;
图4示出了根据本申请一个实施例的蔗糖-6-酯的生产设备的冷却装置的剖面结构示意图;
图5示出了根据本申请一个实施例的蔗糖-6-酯的生产设备的物料流动方向的示意图;
图6示出了根据本申请一个实施例的蔗糖-6-酯的生产方法的流程示意图。
实施本发明的方式
下面将参照附图更详细地描述本申请的示例性实施例。虽然附图中显示了本申请的示例性实施例,然而应当理解,可以以各种形式实现本申请而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本申请,并且能够将本申请的范围完整的传达给本领域的技术人员。
本申请的构思在于,现有技术中,对生产蔗糖-6-酯的反应液需要首先在一个反应釜中采用蒸汽或溶剂去除水分,然后压入另一个反应釜中,再与羧酸酐反应,生成蔗糖-6-酯。在这个过程中,采用蒸汽或溶剂去除水分的步骤消耗大量的能源,且设备大,占地面积大,去除水分程度也不够彻底;在去除水分后,还需将反应液压入另一个反应釜中,以进行酯化反应,这个过程需要额外的能源和时间,降低了蔗糖-6-酯的生产效率;且现有技术的这种生产方式是不连续的,每次加料反应结束后,才能进行另一次反应,也严重影响了蔗糖-6-酯的生产效率。
图1示出了根据本申请一个实施例的蔗糖-6-酯的生产设备的整体外部结构侧面示意图;图2示出了根据本申请一个实施例的蔗糖-6-酯的生产设备的剖面内外部结构立体示意图。图3示出了根据本申请一个实施例的蔗糖-6-酯的生产设备的旋转蒸馏装置的剖面内外部结构示意图;图4示出了根据本申请一个实施例的蔗糖-6-酯的生产设备的冷却装置的剖面结构示意图。
请同时参考图1~图4,蔗糖-6-酯的生产设备100包括罐体1、旋转蒸馏装置2、冷凝装置3;罐体包括上下贯通连接的分离腔11和反应腔12,冷凝装置3套设在旋转蒸馏装置2内,旋转蒸馏装置2滑动连接在分离腔11内;反应腔12下端设有出料口121。
从图3可以看出,旋转蒸馏装置2包括转筒22、转盘21,转盘21通过多个连接板25固设在转筒的顶面,转盘21的外壁上设有第一加热装置211。
从图3可以看出,多个连接板25之间有很大的空隙,可供转盘内的反应液在转盘旋转的过程中流出,在本申请的一些实施例中,多个连接板25可以焊接在转盘21和转筒22的顶面上;为了使转筒和转盘在旋转的过程中平衡,推荐转筒和转盘同轴设置,且转盘21的最大直径小于转筒22的顶面的内径,以保证转盘21与转筒之间存有空隙,可使反应液流出。
在转盘21的外壁上设有第一加热装置211,第一加热装置211可对转盘内的反应液形成的液膜进行加热,以提高水分的蒸发速率。第一加热装置211可以为但不限于电加热元件、水浴或油浴加热元件构成的加热装置。
在本申请的一些实施例中,为了使得反应液更加容易储存以及沿转盘21的底面向上移动,可在转盘21侧壁的底部设置凹槽212。反应液被加入至转盘内时能够暂时存储于上述凹槽212内。在本申请的一些实施例中,为了使反应液中的水分蒸发得更加彻底,可以将转筒22的侧壁以与转盘21相对的位置倾斜设置,这里称为加热壁222,其倾斜的方向与转盘21的侧壁的倾斜方向相反;在转筒22的倾斜设置的外侧壁面上设有第二加热装置221。反应液在离心力的作用下,从凹槽212沿着转盘的侧壁向上移动,直至从处于转盘21边缘的多个连接板25之间的空隙中被甩出至转筒22的侧壁上,在转筒22的加热壁222处被二次加热,进一步蒸发提纯。
从图4可以看出,冷凝装置3包括依次上下连接的冷凝管31、接水板32以及冷凝水水箱33;冷凝水水箱33设有冷凝水出水管331,冷凝水出水管331延伸至罐体1外。
冷凝管31可以为但不限于中空的金属管,在其侧壁上缠有以水或空气为介质的多个细小的冷凝管,可以为参考现有技术中的其他技术方案,本申请不做限制。
接水板32紧密的设置在冷凝管下方,用于接收和引导沿冷凝管流下的冷凝水至冷凝水水箱33中,在本申请的一些实施例中,在接水板32的上表面可以设置多条引导槽(图中未示出),这些引导槽可以连接冷凝水水箱33的入口,用来引导冷凝水进入冷凝水水箱33中。
接水板下方连接设置有冷凝水水箱33,用于接收冷凝水,这些冷凝水能够对沿着转筒22的侧壁流下的被蒸发去除水分后的反应液,即蒸余液进行冷却,以使蒸余液尽快达到酯化反应的适宜温度。冷凝装置3非接触套设在旋转蒸馏装置的转筒内,其中,冷凝管31贯穿转盘21与罐体1的顶面接触设置。
冷凝装置3不接触转筒22的内壁,二者之间留有一定的空间,以使蒸余液能够从上述空间内流下。冷凝管31从转盘21的底面贯穿,可以与转盘21的底面间隙设置,即二者之间留有一个小缝隙,以供冷凝水流下;在转盘21的地面设有凹槽212的情况下,冷凝管31可以与形成凹槽212的内侧壁间隙设置。
罐体1设有反应液进料管13和羧酸酯进料管14,反应液进料管13贯穿罐体1 的顶面,延伸至转盘21底部,具体可以为转盘21底部的凹槽212;羧酸酯进料管14贯穿罐体1的侧壁,延伸至冷凝水水箱33的下方。
这里需要说明的是,转筒22的地面是不封闭的,反应液进料管13、羧酸酯进料管14以及冷凝水出水管331都是固定设置的。
旋转蒸馏装置2能够沿着转盘21的中轴线旋转,以将从反应液进料管13进入的反应液在转盘21的侧壁内,进一步地,在转筒22的加热壁上被蒸发分离为水蒸气和蒸余液。
请参考图2和图4,在本申请的一些实施例中,冷凝装置3还包括环形且倾斜设置的冷凝壁34,冷凝壁34设置在接水板32上,位于转盘21的外壁与接水板32的外缘之间,其倾斜方向与转筒22的倾斜部分的侧壁的倾斜方向一致。
为了使在转筒22倾斜部分的侧壁,即在加热壁222上产生的冷凝水顺利地流入冷凝水水箱33中,可以设置一冷凝壁34,冷凝壁34围绕在转盘21的侧壁之外,与加热壁222的倾斜方向一致。
请同时参考图1和图2,在旋转蒸馏装置2的侧壁的中间部位和底部分别设有环形滑块23,环形滑块23的外缘插设在罐体1的内壁上的外滑道15内,环形滑块23的内缘插设在转筒22的侧壁的内滑道223内。
环形滑块的作用是稳定、固定转筒的作用,其与转筒之间可以转动,因此,转筒在其动力设备(图中未示出)的带动下,在环形滑块中能够自由、高速转动。
请同时参考图2和图4,在本申请的一些实施例中,冷凝水水箱33为环状,贴近接水板32外缘设置。这样的目的是为了使得冷凝水能够更多地靠近转筒22的内侧壁,以对蒸余液起到更好的降温作用,进一步的,冷凝水水箱33的底面可以倾斜设置,具体的是,靠近转筒22的内侧壁的水箱侧壁的长度长一些,而远离转筒22的内侧壁的水箱侧壁的长度短一些,以达到更好的冷却作用。
请参考图2,本申请的一些实施例中,旋转蒸馏装置2还设有环形挡板26,环形挡板26的直径小于转筒22的直径,设置在羧酸酯进料管14的开口下方,环形挡板26通过多个连接杆27与转筒22固定连接;羧酸酯进料管14和冷凝水出水管331贯穿环形挡板26的中空部分设置。
环形挡板的作用是用于存储从羧酸酯进料管14进入的羧酸酐,羧酸酐通常为粉末状态,通过泵吹入羧酸酯进料管14内,从羧酸酯进料管14的开口喷向旋转的转筒22的内壁,与蒸余液混合,但是仍然会有一些粉末不能够及时混合,而落入 环形挡板中,在离心力的作用下,这些粉末仍然能够飞起至转筒22的内壁,与蒸余液混合。
请同时参考图1和图2,在本申请的一些实施例中,罐体1还设有真空管16,真空管16可连接真空泵(图中未示出)。为了使水蒸气更好地排出设备外,还可以对设备进行减压处理,具体的,可以通过真空管16连接真空泵来实现上述目的。
请同时参考图1和图2,在本申请的一些实施例中,反应腔12设有温控装置(图中未示出)。为了使酯化反应更快更好进行,可以对反应腔12设有温控装置。酯化反应可以在反应腔12内进行,也可以在反应腔12的出料口121下接一个单独的酯化反应器,本申请不作限制。
图5示出了根据本申请一个实施例的蔗糖-6-酯的生产设备的物料流动方向的示意图,图5中的箭头表示物料的移动方向,从图5可以看出,反应液从反应液进料管13进入至转盘21的凹槽212,随着转盘21的转动,反应液一边被蒸馏,一边沿着转盘21的侧壁向转盘21的边缘移动,然后从转盘21的边缘飞出至转筒22的加热壁222上,被再次蒸发,冷凝水沿冷凝管31和冷凝壁34流下至接水板32上,并流入冷凝水水箱33中。蒸余液沿着转筒22的内壁流下,与从羧酸酯进料管14喷入的羧酸酯混合,并流入反应腔12中,在反应腔中进行酯化反应,并从出料口121流出。
本申请的设备通过可旋转的蒸馏装置,使得反应物能够随着转盘的旋转,在转盘的内壁上形成很薄的液膜,充分分离出水蒸气,水蒸气沿冷凝装置被收集到冷凝水水箱内,能够对蒸余液进行冷凝,使得蒸余液快速达到酯化反应的温度,蒸余液受离心力影响,从转盘的边缘飞出至转筒的内壁,并沿着转筒壁向下流动,随后在转筒壁上与羧酸酯充分混合后,进入反应腔反应,生成目标产物蔗糖-6-酯。本申请的设备使得蔗糖-6-酯的制备过程从蒸馏、冷却、混合、反应一体化,反应原料可以持续不断地被加入至生产设备中,反应液分离步骤和酯化反应步骤不间断进行,使得蔗糖-6-酯实现连续生产,极大程度上缩短了生产周期,提高了蔗糖-6-酯的生产效率,一方面避免了现有技术在去除反应液原料中的水分的过程中需要采用大量能够去除水的气体或溶剂蒸气的问题,另一方面,克服了现有技术中第二反应混合物需要注入另一空间内与羧酸酐混合需要耗时长的缺陷;且设备结构简单、占地小、成本低。
图6示出了根据本申请一个实施例的蔗糖-6-酯的生产方法的流程示意图,该 方法是采用上述任一的设备进行的,该方法至少包括以下所述的步骤S610至步骤S620:
反应液分离步骤S610:启动旋转蒸馏装置,从反应液进料管输入反应液,以使转盘将反应液分离为蒸余液和水蒸气,其中,反应液包括蔗糖、非质子极性溶剂和有机锡酯促进剂;蒸余液沿流出转盘并沿转筒的侧壁流下至反应腔,水蒸气在冷凝管上冷凝成冷凝水流入冷凝水水箱。
酯化反应步骤S620:进入反应腔内的反应液与从羧酸酐进料口进入的羧酸酯在预设条件下进行酯化反应,生成含蔗糖-6-酯的溶液。
在上述方法中,对旋转蒸馏装置的旋转速度本申请不做限制,在本申请的一些实施例中,可设置为40rpm至200rpm。若旋转蒸馏装置的旋转速度小于40rpm,则旋转速度过慢,存在不能从转盘飞出的可能性;若旋转蒸馏装置的旋转速度大于200rpm,则速度过快,对设备要求高,也使得反应液被蒸发的时间短,存在反应液的水分蒸发不充分的可能,不利于蔗糖-6-酯的快速生产。
在上述方法中的对酯化反应的反应原料和预设条件不做限制,可参考现有技术,也可采用下述推荐的技术方案。
在本申请中,对有机锡化合物的种类不做限制,可采用单锡有机化合物,也可采用双锡有机化合物,在一些实施例中可选为1,3-二烃氧基-1,1,3,3-四-(烃基)二锡氧烷、氧化二(烃基)锡、1,3-二酰氧基-1,1,3,3-四-(烃基)二锡氧烷和1-二酰氧基-1,1,3,3-四-(烃基)二锡氧烷中的任一种或多种,在另一些实施例中为1,3-二酰氧基-1,1,3,3-四-(烃基)二锡氧烷,在又一些实施例中为1,3-二乙酰氧基-1,1,3,3-四丁基二锡氧烷;其中,烃氧基可选为烷氧基或苯氧基,在一些实施例中,烷氧基可选为甲氧基、乙氧基、正丙氧基、正丁氧基、正戊氧基或正己氧基,在另一些实施例中,为甲氧基;在一些实施例中,烃基可选为烷基、环烷基、芳基或芳烷基,在另一些实施例中,为烷基,在又一些实施例中为正丁基。
本申请对极性非质子溶剂的种类不做限制,在一些实施例中,选自乙腈、1,4-二氧六环、甲乙酮、甲基异丁基酮、硝基甲烷、硝基乙烷、环己酮、二甲亚砜、N-甲基吡咯烷酮、N,N-二甲基乙酰胺、六甲基磷酰胺和N,N-二甲基甲酰胺中的任意一种或多种,在另一些实施例中为乙腈。
本申请对极性非质子溶剂的用量不做限制,在一些实施例中,以蔗糖的质量为基准,溶剂的质量用量与蔗糖的质量用量比为2~20,在另一些实施例中为3~10, 在又一些实施例中为4~8。
在本申请中,对加热腔的加热温度不做限制,在一些实施例中,可以为65~150℃,在另一些实施例中,可以为85~120℃。
在本申请中,在真空管连接真空泵的情况下,对生成设备内的负压大小不做限制,在一些实施例中,生成设备内的负压保持在0.01kPa~50kPa,在另一些实施例中,生成设备内的负压可以保持在0.5kPa~20kPa。
在本申请中,对有羧酸酐的种类不做限制,可选自乙酸酐、丁酸酐、苯甲酸酐、硬脂酸酐、月桂酸酐中的任意一种,优选乙酸酐,根据上述有机酸酐的种类,得到的对应的蔗糖-6-羧酸酯分别为蔗糖-6-乙酸酯、蔗糖-6-丁酸酯、蔗糖-6-苯甲酸酯、蔗糖-6-脂肪酸酯、或蔗糖-6-月桂酸酯。蔗糖-6-乙酸酯和蔗糖-6-苯甲酸酯可以用作合成其他种类蔗糖-6-羧酸酯的原料和合成甜味剂三氯蔗糖的中间体,而其他的各类蔗糖-6-羧酸酯可以用作食品添加剂、化工产品以及其他反应的合成中间体。
在本申请中,对有羧酸酐的用量不做限制,在一些实施例中,以蔗糖的质量为基准,羧酸酐的质量用量与蔗糖的质量用量比为0.6~3.0,在另一些实施例中,为0.8~1。
在本申请中,对酯化反应的反应条件不做限制,在一些实施例中,酯化反应的反应温度可以为0~50℃,在另一些实施例中,可以为1~20℃;在一些实施例中,酯化反应的反应时间为10min到24h,在另一些实施例中,为30min到4h。
需要说明的是,上述未尽述的反应条件可参考现有技术。
本申请中涉及的测试手段以及药品来源
高效液相色谱(用于测试反应产物中蔗糖、蔗糖-6-酯等物质的含量)
日本岛津高效液相色谱仪,配RID-10A示差折光检测,LC-10ADVP高压泵,CTO-10ASVP恒温箱;色谱柱:Agilent XDB C18柱(250mm×4.6mm,5μm);流动相:甲醇-0.125%磷酸氢二钾水溶液(4:6);柱温:30℃;流量:1.0mL/min。其中,需要甲醇(色谱纯)、磷酸氢二钾(分析纯)、超纯水、三氯蔗糖标准(纯度99.9%),外标法测量含量。
水分的测试方法
水含量的测定使用卡尔费休法,请参考现有技术,在各个实施例中不再赘述。
药品来源
本申请中涉及的化学试剂以及制备蔗糖-6-酯的原来均可采用市售产品,本申 请不做限制。
实施例1
按照蔗糖、有机锡酯促进剂(1,1,3-二乙酰氧基-1,1,3,3-四丁基二锡氧烷)、非质子极性溶剂(DMF)的质量比例为1:2:10配置成300公斤反应液。
采用的图2所示的蔗糖-6-酯的生产设备生成蔗糖-6-酯,其中,生产设备外接真空泵。
启动旋转蒸馏装置,使旋转蒸馏装置以100rpm的转速旋转,将上述制备的反应液以4m 3/h的速率连续进料至上述的生产设备中,反应设备保持负压在1kPa,同时,打开第一加热装置211、第二加热装置221、冷凝装置3以及反应腔的温控装置。
在小于20℃的温度条件下按照蔗糖的投放质量与乙酸酐的质量比1:1.1的比例通过羧酸酯进料管向生产设备内吹送乙酸酐进行酰化反应,收集从反应产物出料口流出的含有蔗糖-6-酯的产物。
在蒸余液未与乙酸酯混合之前可取样测试其中水含量,本实施例中水含量小于500ppm。
用与反应体系总体积的体积比为0.25:1的水进行淬灭反应,并用与反应体系总体积的体积比为1:1的己烷萃取有机锡酯促进剂,得到的蔗糖-6-乙酯溶液,并通过高效液相色谱法分析各物质含量,下述的以及以下各实施例中的归一化,是指在采用高效液相色谱法的混合物质进行分离测定时,人为规定所有物质的量为100%,按照谱峰面积确定各物质占所有物质的百分比,产物分布如下:
a.蔗糖-6-乙酸酯86.97%(归一化);
b.二乙酸酯8.26(归一化);
c.蔗糖0.58%(归一化)。
实施例2
按照蔗糖、有机锡酯促进剂(1,1,3-二乙酰氧基-1,1,3,3-四丁基二锡氧烷)、非质子极性溶剂(DMF)的质量比例为1:2:10配置成500公斤反应液。
采用的图2所示的蔗糖-6-酯的生产设备生成蔗糖-6-酯,其中,生产设备外接真空泵。
启动旋转蒸馏装置,使旋转蒸馏装置以150rpm的转速旋转,将上述制备的反应液以6m 3/h的速率连续进料至上述的生产设备中,反应设备保持负压在0.5kPa,同时,打开第一加热装置211、第二加热装置221、冷凝装置3以及反应腔的温控装置。
在小于10℃的温度条件下按照蔗糖的投放质量与乙酸酐的质量比1:1.1的比例通过羧酸酯进料管向生产设备内吹送乙酸酐进行酰化反应,收集从反应产物出料口流出的含有蔗糖-6-酯的产物。
在蒸余液未与乙酸酯混合之前可取样测试其中水含量,本实施例中水含量小于500ppm。
用与反应体系总体积的体积比为0.25:1的水进行淬灭反应,并用与反应体系总体积的体积比为1:1的己烷萃取有机锡酯促进剂,得到的蔗糖-6-乙酯溶液,并通过高效液相色谱法分析各物质含量,下述的以及以下各实施例中的归一化,是指在采用高效液相色谱法的混合物质进行分离测定时,人为规定所有物质的量为100%,按照谱峰面积确定各物质占所有物质的百分比,产物分布如下:
a.蔗糖-6-乙酸酯89.50%(归一化);
b.二乙酸酯7.55(归一化);
c.蔗糖0.68%(归一化)。
实施例3
按照蔗糖、有机锡酯促进剂(1,1,3-二乙酰氧基-1,1,3,3-四丁基二锡氧烷)、非质子极性溶剂(DMF)的质量比例为1:2:10配置成300公斤反应液。
采用的图2所示的蔗糖-6-酯的生产设备生成蔗糖-6-酯,其中,生产设备外接真空泵。
启动旋转蒸馏装置,使旋转蒸馏装置以200rpm的转速旋转,将上述制备的反应液以8m 3/h的速率连续进料至上述的生产设备中,反应设备保持负压在0.5kPa,同时,打开第一加热装置211、第二加热装置221、冷凝装置3以及反应腔的温控装置。
在小于15℃的温度条件下按照蔗糖的投放质量与乙酸酐的质量比1:1.1的比例通过羧酸酯进料管向生产设备内吹送乙酸酐进行酰化反应,收集从反应产物出料口流出的含有蔗糖-6-酯的产物。
在蒸余液未与乙酸酯混合之前可取样测试其中水含量,本实施例中水含量小于400ppm。
用与反应体系总体积的体积比为0.25:1的水进行淬灭反应,并用与反应体系总体积的体积比为1:1的己烷萃取有机锡酯促进剂,得到的蔗糖-6-乙酯溶液,并通过高效液相色谱法分析各物质含量,下述的以及以下各实施例中的归一化,是指在采用高效液相色谱法的混合物质进行分离测定时,人为规定所有物质的量为100%,按照谱峰面积确定各物质占所有物质的百分比,产物分布如下:
a.蔗糖-6-乙酸酯90.45%(归一化);
b.二乙酸酯7.22(归一化);
c.蔗糖0.24%(归一化)。
对比例1
按照蔗糖、有机锡酯促进剂(1,1,3-二乙酰氧基-1,1,3,3-四丁基二锡氧烷)、非质子极性溶剂(DMF)的质量比例为1:2:10配置成300公斤反应液,加热90℃溶解成反应混合溶液。
采用填料塔降液的方式进行脱水,填料塔直径40毫米,3×8玻璃弹簧填料,填料高度1米,相当于10级塔板。
将上述制备的反应混合溶液在填料塔的顶部的入口,保持负压在0.5kPa,同时,将环己烷蒸气(100℃,4atm)进料至填料塔底部烧瓶气体入口。反应混合溶液与环己烷蒸气逆流接触反应,填料塔的顶部馏出物含有环己烷、水和DMF的蒸气经冷凝并且收集,经过干燥无水处理后方可循环使用。
填料塔底部烧瓶收集液体样品,所得产物为透明、浅琥珀色。反应液在气液交换反应器内停留时间约1min。
得到的溶液经计算含有10%的蔗糖,将得到的溶液压到另一个反应釜,在低于10℃的温度条件下按照蔗糖的投放质量与乙酸酐的质量比1:1.1的比例加入乙酸酐进行酰化反应,在低于10℃的温度下继续反应2小时之后,用与反应液的质量比为0.25:1的水进行淬灭反应。用与反应液的质量比为1:1的环己烷萃取有机锡化合物,得到的蔗糖-6-乙酯溶液通过高效液相色谱法分析,产物如下:
a.蔗糖-6-乙酸酯72.05%(归一化);
b.二乙酸酯4.36%(归一化);
c.蔗糖22.76%(归一化)。
从实施例1~3和对比例1中可以看出,采用本申请提供的生产设备与对比例1采用填料降液生产设备相比,本申请制备的蔗糖-6-羧酸酯的产量高、副反应发生概率低、蔗糖反应完全。以蔗糖-6-乙酸酯产量可以看出,本申请中一些实施例可达到90.45%(归一化),而对比例1中蔗糖-6-乙酸酯中的产量仅为72.05%(归一化),也就是说本申请蔗糖-6-羧酸酯的产量显著高于现有技术;同理,由反应产物中的二乙酸酯、蔗糖含量可以看出,本申请中副反应发生概率显著降低,蔗糖转化得更加彻底。
综上所述,本申请的有益效果在于:通过可旋转的蒸馏装置,使得反应物能够随着转盘的旋转,在转盘的内壁上形成很薄的液膜,充分分离出水蒸气,水蒸气沿冷凝装置被收集到冷凝水水箱内,能够对蒸余液进行冷凝,使得蒸余液快速达到酯化反应的温度,蒸余液受离心力影响,从转盘的边缘飞出至转筒的内壁,并沿着转筒壁向下流动,随后在转筒壁上与羧酸酯充分混合后,进入反应腔反应,生成目标产物蔗糖-6-酯。本申请的设备使得蔗糖-6-酯的制备过程从蒸馏、冷却、混合、反应一体化,反应原料可以持续不断地被加入至生产设备中,反应液分离步骤和酯化反应步骤不间断进行,使得蔗糖-6-酯实现连续生产,极大程度上缩短了生产周期,提高了蔗糖-6-酯的生产效率,一方面避免了现有技术在去除反应液原料中的水分的过程中需要采用大量能够去除水的气体或溶剂蒸气的问题,另一方面,克服了现有技术中第二反应混合物需要注入另一空间内与羧酸酐混合需要耗时长的缺陷;且设备结构简单、占地小、成本低。
以上所述,仅为本申请的具体实施方式,在本申请的上述教导下,本领域技术人员可以在上述实施例的基础上进行其他的改进或变形。本领域技术人员应该明白,上述的具体描述只是更好的解释本申请的目的,本申请的保护范围应以权利要求的保护范围为准。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本申请的范围之内并且形成不同的实施例。例如,在下面的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。

Claims (10)

  1. 一种蔗糖-6-酯的生产设备,其特征在于,所述设备包括罐体、旋转蒸馏装置、冷凝装置;所述罐体包括上下贯通连接的分离腔和反应腔,所述冷凝装置套设在所述旋转蒸馏装置内,所述旋转蒸馏装置滑动连接在所述分离腔内;所述反应腔下端设有出料口;
    所述旋转蒸馏装置包括转筒、转盘,所述转盘通过多个连接板固设在所述转筒的顶面,所述转盘的外壁上设有第一加热装置;
    所述冷凝装置包括依次上下连接的冷凝管、接水板以及冷凝水水箱;冷凝水水箱设有冷凝水出水管,所述冷凝水出水管延伸至所述罐体外;
    所述冷凝装置非接触套设在所述旋转蒸馏装置的转筒内,其中,所述冷凝管贯穿所述转盘与所述罐体的顶面接触设置;
    所述罐体设有反应液进料管和羧酸酯进料管,所述反应液进料管贯穿所述罐体的顶面,延伸至所述转盘底部;所述羧酸酯进料管贯穿所述罐体的侧壁,延伸至所述冷凝水水箱的下方;
    所述旋转蒸馏装置能够沿着所述转盘的中轴线旋转,以将从所述反应液进料管进入的反应液分离为水蒸气和蒸余液。
  2. 根据权利要求1所述的设备,其特征在于,所述转筒的侧壁与所述转盘相对的位置为倾斜设置,其倾斜的方向与所述转盘的侧壁的倾斜方向相反。
  3. 根据权利要求2所述的设备,其特征在于,在所述转筒的倾斜的外侧壁面上设有第二加热装置。
  4. 根据权利要求2所述的设备,其特征在于,所述冷凝装置还包括环形且倾斜设置的冷凝壁,所述冷凝壁设置在所述接水板上,位于所述转盘的外壁与所述接水板的外缘之间,其倾斜方向与所述转筒的倾斜部分的侧壁的倾斜方向一致。
  5. 根据权利要求1所述的设备,其特征在于,在所述旋转蒸馏装置的侧壁的中间部位和底部分别设有环形滑块,所述环形滑块的外缘插设在所述罐体的内壁上的外滑道内,所述环形滑块的内缘插设在所述转筒的侧壁的内滑道内。
  6. 根据权利要求1所述的设备,其特征在于,所述冷凝水水箱为环状,贴近所述接水板的外缘设置。
  7. 根据权利要求1所述的设备,其特征在于,所述旋转蒸馏装置还设有环形挡板,所述环形挡板的直径小于所述转筒的直径,设置在所述羧酸酯进料管的开口 下方,所述环形挡板通过多个连接杆与所述转筒固定连接;
    所述羧酸酯进料管和所述冷凝水出水管贯穿所述环形挡板的中空部分设置。
  8. 根据权利要求1所述的设备,其特征在于,所述罐体还设有真空管,所述真空管可连接真空泵。
  9. 根据权利要求1所述的设备,其特征在于,所述反应腔设有温控装置。
  10. 一种蔗糖-6-酯的生产方法,其特征在于,所述方法是采用权利要求1~9中任一项所述的设备进行的,包括:
    反应液分离步骤:启动所述旋转蒸馏装置,从反应液进料管输入反应液,以使所述转盘将所述反应液分离为蒸余液和水蒸气,其中,反应液包括蔗糖、非质子极性溶剂和有机锡酯促进剂;所述蒸余液沿流出所述转盘并沿所述转筒的侧壁流下至反应腔,所述水蒸气在冷凝管上冷凝成冷凝水流入所述冷凝水水箱;和
    酯化反应步骤:进入所述反应腔内的反应液与从羧酸酐进料口进入的羧酸酯在预设条件下进行酯化反应,生成含所述蔗糖-6-酯的溶液。
PCT/CN2021/075813 2021-02-07 2021-02-07 蔗糖-6-酯的生产设备及生产方法 WO2022165803A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180000712.1A CN112969517B (zh) 2021-02-07 2021-02-07 蔗糖-6-酯的生产设备及生产方法
US18/002,467 US20230399352A1 (en) 2021-02-07 2021-02-07 Production apparatus and production method of sucrose-6-ester
PCT/CN2021/075813 WO2022165803A1 (zh) 2021-02-07 2021-02-07 蔗糖-6-酯的生产设备及生产方法
EP21923814.4A EP4147760A4 (en) 2021-02-07 2021-02-07 DEVICE AND METHOD FOR PRODUCING SUCROSE-6-ESTER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/075813 WO2022165803A1 (zh) 2021-02-07 2021-02-07 蔗糖-6-酯的生产设备及生产方法

Publications (1)

Publication Number Publication Date
WO2022165803A1 true WO2022165803A1 (zh) 2022-08-11

Family

ID=76275625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075813 WO2022165803A1 (zh) 2021-02-07 2021-02-07 蔗糖-6-酯的生产设备及生产方法

Country Status (4)

Country Link
US (1) US20230399352A1 (zh)
EP (1) EP4147760A4 (zh)
CN (1) CN112969517B (zh)
WO (1) WO2022165803A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115364520A (zh) * 2022-09-06 2022-11-22 新琪安科技股份有限公司 一种三氯蔗糖新型母液萃取工艺

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114768280B (zh) * 2022-05-20 2023-08-15 广西桂平悦达香料有限公司 一种肉桂油用蒸馏分离装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1431214A (zh) * 2003-01-08 2003-07-23 中国科学院新疆理化技术研究所 合成高酯化度蔗糖脂肪酸多酯的新工艺
CN102639551A (zh) * 2009-10-12 2012-08-15 塔特和莱利技术有限公司 蔗糖-6-酯的生产方法
CN104774226A (zh) * 2015-04-08 2015-07-15 常州市牛塘化工厂有限公司 一种蔗糖-6-乙酯的制备方法
CN109575090A (zh) * 2018-12-10 2019-04-05 安徽金禾实业股份有限公司 一种蔗糖-6-乙酸酯的制备方法
CN209317067U (zh) * 2018-12-25 2019-08-30 江西天奕香料有限公司 一种乙酸异丁酸蔗糖酯生产用高精度减压蒸馏装置
US20210002317A1 (en) * 2018-05-22 2021-01-07 Zhejiang Nhu Company Ltd. Method for synthesizing sucrose-6-ester
CN112218874A (zh) * 2020-09-10 2021-01-12 安徽金禾实业股份有限公司 一种蔗糖-6-酯的制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE755107A (fr) * 1969-08-25 1971-02-22 Ucb Sa Evaporateur a couche mince
GB1485577A (en) * 1976-01-05 1977-09-14 Slovenskej Vysokej Skoly Distilling
US6908533B2 (en) * 2002-01-17 2005-06-21 Ovation Products Corporation Rotating heat exchanger
AT412951B (de) * 2003-10-02 2005-09-26 Vtu Engineering Planungs Und B Dünnschichtverdampfer
US7875248B1 (en) * 2007-12-07 2011-01-25 Clarkson University Thin film tube reactor with rotating reservoir
US8003059B2 (en) * 2009-05-18 2011-08-23 R3 Fusion, Inc. Continuous processing reactors and methods of using same
US10463984B2 (en) * 2015-09-07 2019-11-05 Kansai Chemical Engineering Co., Ltd. Evaporator
CN109603176A (zh) * 2018-12-12 2019-04-12 安徽金禾实业股份有限公司 一种三氯蔗糖中和液的浓缩装置和浓缩方法
CN111514601A (zh) * 2020-05-07 2020-08-11 常熟市新世纪化工设备有限公司 分子蒸馏系统
CN111701259B (zh) * 2020-06-04 2021-12-21 江西纵横特种设备有限公司 一种旋转式升膜蒸发器
CN112717452B (zh) * 2021-01-04 2022-04-08 安徽金禾实业股份有限公司 蔗糖6酯加工设备及其方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1431214A (zh) * 2003-01-08 2003-07-23 中国科学院新疆理化技术研究所 合成高酯化度蔗糖脂肪酸多酯的新工艺
CN102639551A (zh) * 2009-10-12 2012-08-15 塔特和莱利技术有限公司 蔗糖-6-酯的生产方法
CN104774226A (zh) * 2015-04-08 2015-07-15 常州市牛塘化工厂有限公司 一种蔗糖-6-乙酯的制备方法
US20210002317A1 (en) * 2018-05-22 2021-01-07 Zhejiang Nhu Company Ltd. Method for synthesizing sucrose-6-ester
CN109575090A (zh) * 2018-12-10 2019-04-05 安徽金禾实业股份有限公司 一种蔗糖-6-乙酸酯的制备方法
CN209317067U (zh) * 2018-12-25 2019-08-30 江西天奕香料有限公司 一种乙酸异丁酸蔗糖酯生产用高精度减压蒸馏装置
CN112218874A (zh) * 2020-09-10 2021-01-12 安徽金禾实业股份有限公司 一种蔗糖-6-酯的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4147760A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115364520A (zh) * 2022-09-06 2022-11-22 新琪安科技股份有限公司 一种三氯蔗糖新型母液萃取工艺
CN115364520B (zh) * 2022-09-06 2023-06-02 新琪安科技股份有限公司 一种三氯蔗糖新型母液萃取工艺

Also Published As

Publication number Publication date
EP4147760A4 (en) 2023-09-13
CN112969517A (zh) 2021-06-15
CN112969517B (zh) 2022-11-18
US20230399352A1 (en) 2023-12-14
EP4147760A1 (en) 2023-03-15

Similar Documents

Publication Publication Date Title
WO2022165803A1 (zh) 蔗糖-6-酯的生产设备及生产方法
WO2022155947A1 (zh) 蔗糖-6-酯的生产设备及生产方法
WO2022056913A1 (zh) 一种蔗糖-6-羧酸酯的制备方法
WO2022051988A1 (zh) 一种蔗糖-6-酯的制备方法
JP7014496B2 (ja) 硫化リチウム、及びその製造方法
WO2022174382A1 (zh) 蔗糖-6-酯的生产设备及生产方法
WO2022174381A1 (zh) 蔗糖-6-酯的生产设备及生产方法
WO2022155909A1 (zh) 蔗糖-6-酯的生产设备及生产方法
CN1970560B (zh) 高纯均苯四甲酸二酐的生产方法
CN103588759B (zh) 5,6-o-异亚丙基-l-抗坏血酸的制备工艺
CN102600627B (zh) 旋流闪蒸布料-薄膜再沸式热管蒸馏器
CN112771058B (zh) 单锡有机化合物、制备方法及其应用
CN113195099B (zh) 负载型催化剂以及蔗糖-6-酯的合成方法
CN102206201B (zh) 一种工业化生产环丙基亚磺酸酯的方法
CN112390808B (zh) 一种捕集纯化均苯四甲酸二酐的方法
CN106883100B (zh) 一种三十烷醇晶型ⅰ及其制备方法
CN112250574B (zh) 塔内反应精馏与膜耦合的方法与装置
KR100548866B1 (ko) 방향족 히드록시카르복실산의 디알칼리 금속염의 제법
Jin et al. Study on the temperature field in the fermentation-extraction-distillation coupling device for biobutanol production
CN105504348A (zh) 珠形颗粒状的抗氧化剂1010及其制备方法与应用
KR100529685B1 (ko) 방향족히드록시카르복실산의 제법
CN112079700A (zh) 一种以异丁酸酐为原料制备二甲基乙烯酮快速分离产物的方法
RU2177938C2 (ru) Способ выделения фталевого ангидрида

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923814

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021923814

Country of ref document: EP

Effective date: 20221206

NENP Non-entry into the national phase

Ref country code: DE